WO2020006721A1 - 一种高接枝密度环梳状聚合物及其制备方法 - Google Patents

一种高接枝密度环梳状聚合物及其制备方法 Download PDF

Info

Publication number
WO2020006721A1
WO2020006721A1 PCT/CN2018/094576 CN2018094576W WO2020006721A1 WO 2020006721 A1 WO2020006721 A1 WO 2020006721A1 CN 2018094576 W CN2018094576 W CN 2018094576W WO 2020006721 A1 WO2020006721 A1 WO 2020006721A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
cyclic
solvent
ring
reaction
Prior art date
Application number
PCT/CN2018/094576
Other languages
English (en)
French (fr)
Inventor
张伟
张双双
李洁爱
朱秀林
张正彪
周年琛
Original Assignee
南通纺织丝绸产业技术研究院
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南通纺织丝绸产业技术研究院, 苏州大学 filed Critical 南通纺织丝绸产业技术研究院
Priority to PCT/CN2018/094576 priority Critical patent/WO2020006721A1/zh
Publication of WO2020006721A1 publication Critical patent/WO2020006721A1/zh
Priority to US17/140,550 priority patent/US11905378B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G81/00Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
    • C08G81/02Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers at least one of the polymers being obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C08G81/024Block or graft polymers containing sequences of polymers of C08C or C08F and of polymers of C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G81/00Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers

Definitions

  • the invention belongs to the technical field of polymer synthesis, and relates to a ring-graft polymer with a high graft density and a preparation method thereof.
  • Comb polymers are a class of worm-like topological macromolecular structures. They have a main backbone and multiple grafted side chains. The polymer properties can be adjusted by changing the number, type, and length of grafts. It is favored in the fields of drug delivery, biosensors, lubricants, nanowires, and nanotubes.
  • the existing synthesis methods are mainly divided into the following three categories: (1) “grafting through”, in short, using macromolecules as monomers to directly polymerize to form comb polymers; (2) “grafting from”, specifically It is to establish multiple sites that can initiate polymerization on the backbone skeleton, and then use "living" / controlled radical polymerization, ring-opening polymerization and other techniques to "elongate” multiple side chains from the backbone skeleton, thereby Generate comb-like polymers; (3) “grafting onto”, that is, first synthesize the backbone skeleton and the side chain polymer separately, and then modify the grafted side chain by efficient chemical reactions such as "Click", Thereby, a comb polymer is produced.
  • “Grafting onto” methods have some adjustable properties in the process of preparing comb polymers, because the backbone and side chains are synthesized and characterized separately.
  • the graft density is often determined by the efficiency of the chemical reaction between the side chain and the backbone backbone.
  • a series of efficient chemical reactions and supramolecular assembly methods are used to construct comb polymers, such as: copper-catalyzed azide / alkynyl cycloaddition (CuAAC), thiol-double bond coupling, Diels-Alder reaction, substitution reaction of active ester and amine, electrostatic self-assembly-covalent fixation (ESA-CF).
  • Comb polymers can be divided into linear, ring, star, bottle, dendritic and other comb polymers according to different frameworks.
  • a ring-comb polymer as a type of comb-like topology, has a ring-shaped backbone structure and a plurality of grafted side chains.
  • cyclic polymers show many excellent properties compared to their linear precursors due to the absence of terminal groups, such as: smaller hydrodynamic size, lower intrinsic viscosity, higher density, higher Glass transition temperature, etc., has been well applied in biomedicine, materials science and other fields.
  • Comb-ring polymers, combining the properties of comb-shaped and cyclic polymers obviously the polymer field has become a class of topological structures with great potential, with certain research value and potential applications.
  • the present invention uses a small molecule amine to perform post-modification on the main chain of the cyclic polymer to prepare a functionalized cyclic polymer, and then the polymer chain is post-modified to a functionalized cyclic by an efficient reaction.
  • the polymer is formed on the polymer main chain to form a ring comb polymer.
  • the polymer amine can also be used to directly modify the polymer to form a ring comb polymer.
  • the ring comb polymer prepared by these two methods Both have the characteristics of high graft density.
  • a method for preparing a ring-shaped comb polymer with high graft density includes the following steps:
  • a linear polyformate is prepared by reacting a formate monomer as a raw material in the presence of a RAFT reagent in a solvent;
  • the molar ratio of the formate monomer and RAFT reagent is (50 ⁇ 150): (1 ⁇ 2), preferably 100: 1; the formate monomer is pentafluoro Phenyl 4-vinyl phenyl formate; the solvent is toluene; the reaction temperature is 80 ⁇ 120 °C, the time is 4 ⁇ 10 hours.
  • step (2) the light is induced to react with ultraviolet light for 6 to 24 hours.
  • the ultraviolet light is selected from any one of a low-pressure mercury lamp, a medium-pressure mercury lamp, and a high-pressure mercury lamp, and a low-pressure mercury lamp is preferred.
  • the solvent is dichloromethane and acetonitrile, the volume ratio of dichloromethane and acetonitrile (0 ⁇ 1): (2 ⁇ 4), preferably 1: 3.
  • the solvent is selected from any one of tetrahydrofuran, chloroform, and dichloromethane, preferably tetrahydrofuran; the molar ratio of the cyclic polyformate to the small molecule amine (1 to 2): (40 ⁇ 80), preferably 1:60; the reaction is stirred at room temperature for 6 ⁇ 24 hours; the small molecule amine is propargylamine.
  • step (4) the molar ratio of the functionalized cyclic polymer, linear azide polystyrene, pentamethyldiethylenetriamine, copper, and copper salt is (1 to 2): ( 20 ⁇ 40): (20 ⁇ 40): (10 ⁇ 20): (20 ⁇ 40), preferably 1:30: 30: 15: 30; the solvent is THF and DMF, and the volume ratio between them is 2 ⁇ 4: 1 ⁇ 2, preferably 2: 1; the copper salt is cuprous bromide.
  • the invention also discloses a method for preparing a ring-comb polymer having a high graft density, including the following steps:
  • a linear polyformate is prepared by reacting a formate monomer as a raw material in the presence of a RAFT reagent in a solvent;
  • the molar ratio of the formate monomer and RAFT reagent is (50 ⁇ 150): (1 ⁇ 2), preferably 100: 1; the formate monomer is pentafluoro Phenyl 4-vinyl phenyl formate; the solvent is toluene; the reaction temperature is 80 ⁇ 120 °C, the time is 4 ⁇ 10 hours.
  • step (2) the light is induced to react with ultraviolet light for 6 to 24 hours.
  • the ultraviolet light is selected from any one of a low-pressure mercury lamp, a medium-pressure mercury lamp, and a high-pressure mercury lamp, and a low-pressure mercury lamp is preferred.
  • the solvent is dichloromethane and acetonitrile, the volume ratio of dichloromethane and acetonitrile (0 ⁇ 1): (2 ⁇ 4), preferably 1: 3.
  • the molar ratio of the cyclic polyurethane to the amino-terminated polymer is 1 to 2: 10 to 30, preferably 1: 18; and the solvent is a volume ratio between THF and DMF. 1 ⁇ 2: 1 ⁇ 2, preferably 1: 1; the amino-terminated polymer is methoxypolyethylene glycol amine (PEG-NH 2 ).
  • the method for preparing a ring-comb polymer of high graft density according to the present invention can be expressed as follows:
  • the monomer (pentafluorophenyl 4-vinylphenylformate), RAFT reagent and solvent toluene were added to the reaction vessel.
  • the reaction vessel was frozen-evacuated-thaw cycled three times on a vacuum line and reacted at 80-120 ° C. 4 ⁇ 10 hours, the linear polymer l- PPF4VB 4.0k is obtained , in which the molar ratio between monomer and RAFT reagent is 50 ⁇ 150: 1 ⁇ 2;
  • the polymer ( l- PPF4VB 4.0k ) and a mixed solvent (dichloromethane / acetonitrile) were added to the reaction solvent.
  • the solution was irradiated under ultraviolet light for 6 to 24 hours to obtain a ring Polymer ( c- PPF4VB 4.0k ), in which the volume ratio between the mixed solvent methylene chloride and acetonitrile is 0 ⁇ 1: 2 ⁇ 4;
  • a cyclic polymer ( c -PPF4VB 4.0k ), propargylamine and solvent THF were added to the reaction vessel, and the reaction solution was stirred at room temperature for 6 to 24 hours to obtain a functionalized cyclic polymer ( c- P1), wherein the molar ratio between the polymer and the propargylamine is 1 to 2: 40 to 80;
  • a cyclic polymer ( c- PPF4VB 4.0k ), PEG-NH 2 and a mixed solvent THF / DMF were added to the reaction vessel.
  • the reaction was stirred at room temperature for 12 to 48 hours to obtain a crude ring-shaped comb polymer ( c- PPF4VB 4.0k - g -PEG), in which a cyclic polymer ( c- PPF4VB 4.0k ) and PEG-NH 2
  • the molar ratio between them is 1 ⁇ 2: 10 ⁇ 30, and the volume ratio between the solvent THF and DMF is 1 ⁇ 2: 1 ⁇ 2.
  • the inert gas is selected from any one of nitrogen, helium, and neon, and nitrogen is preferred.
  • 2,3-dimethylanisole, copper sulfate pentahydrate, and potassium persulfate are used as raw materials, and the reaction is stirred in an acetonitrile / water mixed solvent to prepare 2-methoxy-6-methylbenzaldehyde. ; Add AlCl 3 to a solution of 2-methoxy-6-methylbenzaldehyde in dichloromethane, and stir at room temperature overnight to obtain 2-hydroxy-6-methylbenzaldehyde; Formaldehyde and bromopropanol were added to K 2 CO 3 in DMF solution, and reacted at 90 °C overnight. After the reaction was completed, suction was filtered to remove insoluble matters.
  • the substitution reaction between the active ester and the amine is used for the post-modification of the polymer. It is a relatively efficient chemical reaction. Compared with other synthetic methods, it can participate in the reaction of many types of amines and mild reaction conditions (such as: Room temperature, no catalyst), provides a very good synthetic approach for the synthesis of new functional polymer materials.
  • the present invention has the following advantages over the prior art:
  • the present invention combines photo-induction and substitution reaction of an active ester with an amine to prepare a ring-comb polymer having a high graft density.
  • the obtained ring-comb polymer still maintains a narrow molecular weight distribution;
  • the present invention utilizes synthesized from the RAFT agent and the monomer (pentafluorophenyl 4-vinyl benzoate), RAFT polymerization performed under thermal polymerization conditions, synthesized a novel linear polymers (l - PPF4VB 4.0k ), and no additional initiator (such as AIBN) is needed in the thermal polymerization process, and the polymerization components only need monomers, RAFT reagents and solvents;
  • a novel cyclic polymer ( c- PPF4VB 4.0k ) is prepared by using a light-induced cyclization method, and then the cyclic polymer c- PPF4VB 4.0k is modified by using a small molecule amine to prepare
  • the functionalized cyclic polymer ( c- P1) was analyzed and analyzed from the NMR spectrum, and the modification efficiency reached ⁇ 100%;
  • the present invention uses post-polymerization of the cyclic polymer ( c- P1) through an efficient click reaction to construct a ring-comb polymer ( c- P1- g- PS) with a high graft density. Spectral analysis showed that its grafting efficiency also reached ⁇ 100%.
  • FIG 1 is a RAFT agent, and synthetic monomers linear polystyrene (l -PS-N 3) of the road map;
  • 2 is a synthetic roadmap of a ring comb polymer ( c- P1- g- PS, c- PPF4VB 4.0k - g -PEG);
  • Figure 3 shows linear poly (pentafluorophenyl 4-vinylbenzoate) ( l- PPF4VB 4.0k ) and cyclic poly (pentafluorophenyl 4-vinylbenzoate) ( c- PPF4VB 4.0k ) Proton spectrum of nuclear magnetic resonance;
  • Figure 4 is a GPC effluent curve (THF phase) of a linear polymer ( 1- PPF4VB 4.0k ), a cyclic polymer ( c- PPF4VB 4.0k ) and a functionalized cyclic polymer ( c- P1);
  • Figure 5 is a mass spectrum of a linear polymer ( l- PPF4VB 4.0k );
  • Figure 6 is a mass spectrum of a cyclic polymer ( c- PPF4VB 4.0k );
  • FIG. 8 is a nuclear magnetic resonance hydrogen spectrum of a functionalized cyclic polymer ( c -P1) and a purified ring comb polymer ( c -P1- g -PS);
  • FIG 9 is a functionalized cyclic polymer (c -P1), GPC elution curve of FIG linear polystyrene (l -PS-N 3) and the purified cyclic comb polymer (c -P1- g -PS) of (THF phase);
  • FIG 10 is a cyclic polymer (l -PPF4VB 4.0k), methoxy polyethylene glycol amine (PEG-NH 2) and the ring comb polymer (c -PPF4VB 4.0k - g -PEG) a GPC elution curve Figure (DMF phase).
  • Example 1 Synthesis of linear poly (pentafluorophenyl 4-vinyl benzoate) ( l- PPF4VB 4.0k )
  • 2,3-dimethylanisole (4.08 g, 30 mmol), copper sulfate pentahydrate (7.86g, 31.5 mmol), potassium persulfate (24.33 g, 90 mmol) and a mixed solvent of acetonitrile / water (v / v, 1/1, 360 mL) were added to a 500 mL round bottom flask.
  • the reaction was stirred in an oil bath at 90 ° C until all the starting materials (2,3-dimethylanisole) were consumed by TLC, and the reaction was stopped.
  • the reaction solution was extracted with dichloromethane, and the combined organic phases were dried over anhydrous magnesium sulfate.
  • the concentrated solution was purified by silica gel column chromatography.
  • the final product was a red oil, which was the RAFT reagent (497.8 mg, yield: 71.0%). .
  • Pentafluorophenyl 4-vinyl benzoate (6.28 g, 20 mmol) and RAFT reagent (91.1 mg, 0.2 mmol) were dissolved in 10 mL of toluene.
  • the polymer tube was frozen-exhausted-thaw cycled three times on the vacuum line, and placed in an oil bath at 110 ° C for 7 hours.
  • the polymer tube was unsealed after cooling with ice water, and then precipitated in 200 mL of n-hexane.
  • the precipitated polymer was obtained by suction filtration and dried in a vacuum box at 30 ° C for 24 hours to obtain linear poly (pentafluorophenyl 4-vinylbenzoate) ( l- PPF4VB 4.0k , 789 mg, conversion rate: 12.4%). ), To avoid the influence of viscosity, to ensure a high degree of terminal functionality, that is, the integrity of the polymer.
  • Example 2 Photo-induced cyclization of a linear polymer to prepare a cyclic polymer ( c- PPF4VB 4.0k )
  • the polymer 1- PPF4VB 4.0k , 15 mg
  • dichloromethane 100 mL
  • acetonitrile 300 mL
  • the solution was exposed to light for 12 hours under a UV light source.
  • the solution was concentrated by rotary evaporation and precipitated in ice-n-hexane.
  • the precipitated polymer was obtained by suction filtration and dried in a vacuum box at 30 ° C for 24 hours to obtain a cyclic polymer. (11.7 mg, yield: 78%), a low-pressure mercury lamp (120 W, CEL-LPH120-254) was used as a light source for ultraviolet light.
  • Example 3 Post-modification of cyclic polymer c- PPF4VB 4.0k with small molecules to prepare functionalized cyclic polymer ( c- P1)
  • a cyclic polymer ( c- PPF4VB4.0k) (50 mg, 1.25 ⁇ 10 -2 mmol), propargylamine (41.31 mg, 0.75 mmol), and THF (600 ⁇ L) were added to a 2 mL ampoule. The solution was stirred at room temperature for 12 hours. Then it was precipitated in n-hexane, and the precipitation was repeated 3 times.
  • the functionalized cyclic polymer ( c- P1) was obtained by suction filtration and dried in a vacuum box at 30 ° C for 24 hours (25.3 mg).
  • Example 4 Post-polymer modification of a cyclic polymer ( c- P1) to construct a ring-comb polymer ( c- P1- g- PS) with high graft density
  • CuBr (8.61 mg, 6 ⁇ 10 -2 mmol) and Cu (1.9 mg, 3 ⁇ 10 -2 mmol) were added to the above solution. The solution was further stirred at room temperature for 24 hours. The polymer was precipitated in methanol, obtained by suction filtration, and dried in a vacuum box at 30 ° C for 24 hours.
  • the crude ring comb polymer was subjected to cyclic preparation grade SEC to remove excess l- PS-N 3 to obtain a ring graft polymer with high graft density ( c -P1- g -PS, 31.1 mg).
  • Example 5 Cyclic polymer c- PPF4VB 4.0k was directly post-modified with a macromolecule to construct a ring-shaped comb polymer with high graft density ( c- PPF4VB 4.0k - g -PEG)
  • Branch-density ring comb polymer ( c- PPF4VB 4.0k - g -PEG) (74.6 mg).
  • Figure 3 shows linear poly (pentafluorophenyl 4-vinylbenzoate) ( l- PPF4VB 4.0k ) and cyclic poly (pentafluorophenyl 4-vinylbenzoate) ( c- PPF4VB 4.0k NMR hydrogen spectroscopy. From the figure, the peak position of the functional group at the end of the linear polymer can be seen, and the integral ratio of a / h / e / g is about 1/5/2/2, which indicates the polymerization. The compound has high terminal functionality. After cyclization, the chemical shift peak (a) of hydrogen on the aldehyde group disappeared, and the chemical shift of hydrogen (k) on the benzyl group also occurred. This aspect illustrates the synthesis of cyclic polymers.
  • Figure 5 is a linear polymer ( l- PPF4VB 4.0k ).
  • the representative peak in the figure it is the molecular weight of the polymer with 11 repeating units.
  • the experimental value is 3933.07 Da, and the theoretical value is 3932.51 Da ( ⁇ 1 Da). )
  • the cyclic polymer has no molecular weight difference from the linear polymer, so it can be seen from Figure 6 that the experimental values are consistent with the theoretical values, and there is no big difference from the linear polymer.
  • Figure 7 is the macromolecular mass spectrum of the functionalized cyclic polymer ( c- P1). The figure shows that the experimental value is consistent with the theoretical calculation value. The peak difference between the two adjacent groups is exactly the molecular weight of a repeating unit. In order to improve the efficiency of transesterification reaction, the post-modification efficiency reached ⁇ 100%, so that a graft ratio of ⁇ 100% can be obtained.
  • the integral of the NMR spectrum of c- P1 in Fig. 8 shows that a / b / The ratio of c / d / e is about 2/2/1/2/1, which also illustrates the high efficiency of the transesterification reaction, and the post-modification rate reaches ⁇ 100%.
  • NMR hydrogen spectrum of a ring-comb polymer ( c- P1- g- PS) with a high graft density is also attached in Figure 8. From the figure, the ratio of a / b / c is about 2/1/2. It is proved that a ring-shaped comb polymer ( c -P1- g -PS) with high graft density was successfully prepared by efficient click reaction.
  • FIG 9 is a functionalized cyclic polymer (c -P1), linear polystyrene (l -PS-N 3) and the purified cyclic comb polymer (c -P1- g -PS) a GPC elution curve comparison It can be clearly seen from the figure that the ring-comb polymer still maintains a narrow molecular weight distribution after clicking the chemical reaction, and the molecular weight distribution is controlled at 1.06.
  • FIG 10 is a cyclic comb polymer (c -PPF4VB 4.0k - g -PEG) , cyclic polymers (l -PPF4VB 4.0k), GPC effluent methoxy polyethylene glycol amine (PEG-NH 2) curve Comparing the graphs, it is clear that in addition to the obvious increase in molecular weight, the characteristic of narrow molecular weight distribution (1.05) is still maintained, which is similar to the former case; it can also be found from the mass spectrometry test that the grafting rate reaches ⁇ 100%.
  • a linear polymer ( l- PPF4VB 4.0k ) is first polymerized, and then a corresponding cyclic polymer ( c- PPF4VB 4.0k ) is prepared by a light-induced cyclization method, and then a small molecule amine (propargylamine) pair cyclic polymer after modification, resulting functionalized cyclic polymer (c -P1) after the linear polystyrene (l -PS-N 3) after the azide-modified and then to the c -P1, prepared a high grafting density cyclic comb polymer (c -P1- g -PS); macroamines may also be utilized (methoxy polyethylene glycol amine, PEG-NH 2) directly cyclic polymer (c -PPF4VB 4.0k ) was post-modified to prepare a cyclic polymer with high graft density ( c- PPF4VB 4.0k - g -PEG).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

一种高接枝密度环梳状聚合物及其制备方法。该方法包括如下步骤:1)线性聚(五氟苯基4-乙烯基苯甲酸酯)(l-PPF4VB 4.0k)的合成;2)线性聚合物的光诱导环化制备环状聚合物(c-PPF4VB 4.0k);3)利用小分子对环状聚合物c-PPF4VB 4.0k进行后修饰,制备出功能化的环状聚合物(c-P1);4)再利用高效的点击反应,对环状聚合物(c-P1)进行聚合物后修饰,构建高接枝密度的环梳状聚合物(c-P1-g-PS);5)利用大分子对环状聚合物c-PPF4VB 4.0k直接进行聚合物后修饰,构建高接枝密度的环梳状聚合物(c-PPF4VB 4.0k-g-PEG),得到的环梳状聚合物依然保持分子量分布窄的特征。

Description

一种高接枝密度环梳状聚合物及其制备方法 技术领域
本发明属于高分子合成技术领域,涉及一种高接枝密度环梳状聚合物及其制备方法。
背景技术
梳状聚合物是一类如蠕虫状的拓扑大分子结构,具有一个主心骨架和多个接枝侧链的聚合物,可以通过改变接枝的数量、种类、长度等方式来调节聚合物性能,在药物输送、生物传感器、润滑剂、纳米线、纳米管等领域备受青睐。现有的合成方法主要分为以下三类:(1)“grafting through”,简言之是以大分子作为单体,直接进行聚合生成梳状聚合物;(2)“grafting from”,具体讲是在主心骨架上建立多个可引发聚合的位点,然后再通过“活性”/可控自由基聚合、开环聚合等技术来使多个侧链从主心骨架上“伸长”出来,从而生成梳状聚合物;(3)“grafting onto”,也就是说先分别合成主心骨架和侧链聚合物,然后再通过“Click”等高效的化学反应,将接枝的侧链后修饰上去,从而生成梳状聚合物。
“Grafting onto”这类方法在制备梳状聚合物的过程中具备一定的可调节性能,因为主心骨架和侧链是分别合成与表征的。然而,接枝密度往往受侧链与主心骨架之间的化学反应的高效性决定的。为了提高接枝密度,一系列高效的化学反应和超分子组装方法被用于构建梳状聚合物,例如:铜催化的叠氮/炔基环加成(CuAAC)、巯基-双键偶联、Diels-Alder反应、活性酯与胺的取代反应、静电自组装-共价固定(ESA-CF)。
梳状聚合物可根据骨架的不同,可分为线状、环状、星形、瓶形、树枝形等梳状聚合物。环梳状聚合物,作为梳状拓扑结构的一类,具备一个环状的主心骨架和多个接枝侧链。众所周知,环状聚合物由于无末端基的存在,与其线性前体相比,表现出很多优异的性能,如:更小的流体力学尺寸、更低的特性粘度、更高的密度、更高的玻璃化转变温度等,在生物医药、材料学等领域获得很好的应用。环梳状聚合物,结合梳状和环状聚合物的特性,显然高分子领域成为一类极具潜力的拓扑结构,具备一定的研究价值和潜在的应用。
技术问题
针对上述情况,本发明在环状聚合物主链上利用小分子胺进行后修饰制备出功能化的环状聚合物,然后再通过高效的反应将聚合物链后修饰到功能化后的环状聚合物主链上,从而来构建环梳状聚合物;也可直接利用聚合物胺直接进行聚合物后修饰,来构建环梳状聚合物;这两种途径制备而成的环梳状聚合物均具有高接枝密度的特性。
技术解决方案
为了达到上述目的,本发明采用如下技术方案:
一种高接枝密度的环梳状聚合物的制备方法,包括如下步骤:
(1)以甲酸酯单体为原料,在RAFT试剂存在下,溶剂中反应制备线性聚甲酸酯;
(2)惰性气体氛围下,溶剂中,线性聚甲酸酯经过光诱导反应得到环状聚甲酸酯;
(3)惰性气体氛围下,溶剂中,环状聚甲酸酯与小分子胺反应制备功能化环状聚合物;
(4)惰性气体氛围下,溶剂中,在五甲基二乙烯三胺、铜、铜盐存在下,功能化环状聚合物与线性叠氮化的聚苯乙烯反应制备高接枝密度的环梳状聚合物。
上述技术方案中,步骤(1)中,所述甲酸酯单体、RAFT试剂的摩尔比为(50~150): (1~2),优选100:1;甲酸酯单体为五氟苯基4-乙烯苯基甲酸酯;溶剂为甲苯;反应的温度为80~120 ℃,时间为4~10 小时。
上述技术方案中,步骤(2)中,所述光诱导为紫外光照反应6~24小时,紫外光照选自低压汞灯、中压汞灯、高压汞灯中的任意一种,优选低压汞灯;溶剂为二氯甲烷与乙腈,二氯甲烷与乙腈的体积比(0~1):(2~4),优选1:3。
上述技术方案中,步骤(3)中,溶剂选自四氢呋喃、三氯甲烷、二氯甲烷中任意一种,优选四氢呋喃;环状聚甲酸酯与小分子胺的摩尔比(1~2):(40~80),优选1:60;反应为室温下搅拌反应6~24小时;小分子胺为炔丙胺。
上述技术方案中,步骤(4) 中,功能化环状聚合物、线性叠氮化的聚苯乙烯、五甲基二乙烯三胺、铜、铜盐的摩尔比为(1~2):(20~40):(20~40):(10~20):(20~40),优选1:30: 30: 15: 30;溶剂为THF与DMF,之间的体积比2~4:1~2,优选2:1;铜盐为溴化亚铜。
上述技术方案中,将苯乙烯、2-溴-2-甲基丙酸乙酯(EBiB)、溴化铜(CuBr 2)、N,N,N’,N’,N”-五甲基二乙烯三胺(PMDETA)、抗坏血酸(AA)和苯甲醚混合后,于90 ℃搅拌反应2.5小时,得到聚合物;将聚合物、叠氮化钠(NaN 3)和 N,N-二甲基甲酰胺(DMF)混合后室温下搅拌反应24小时,得到线性叠氮化的聚苯乙烯。
本发明还公开了一种高接枝密度的环梳状聚合物的制备方法,包括如下步骤:
(1)以甲酸酯单体为原料,在RAFT试剂存在下,溶剂中反应制备线性聚甲酸酯;
(2)惰性气体氛围下,溶剂中,线性聚甲酸酯经过光诱导反应得到环状聚甲酸酯;
(3)惰性气体氛围下,溶剂中,环状聚甲酸酯与端氨基聚合物反应制备高接枝密度的环梳状聚合物。
上述技术方案中,步骤(1)中,所述甲酸酯单体、RAFT试剂的摩尔比为(50~150): (1~2),优选100:1;甲酸酯单体为五氟苯基4-乙烯苯基甲酸酯;溶剂为甲苯;反应的温度为80~120 ℃,时间为4~10 小时。
上述技术方案中,步骤(2)中,所述光诱导为紫外光照反应6~24小时,紫外光照选自低压汞灯、中压汞灯、高压汞灯中的任意一种,优选低压汞灯;溶剂为二氯甲烷与乙腈,二氯甲烷与乙腈的体积比(0~1):(2~4),优选1:3。
上述技术方案中,步骤(3)中,环状聚甲酸酯与端氨基聚合物的摩尔比为1~2:10~30,优选1:18;溶剂为THF与DMF,之间的体积比1~2:1~2,优选1:1;端氨基聚合物为甲氧基聚乙二醇胺(PEG-NH 2)。
本发明高接枝密度的环梳状聚合物的制备方法,可表示如下:
(1)合成分子量为3000~6000 g/mol的线性聚(五氟苯基4-乙烯基苯甲酸酯)( l-PPF4VB 4.0k):
    将单体(五氟苯基4-乙烯苯基甲酸酯)、RAFT试剂和溶剂甲苯加入到反应容器中,反应容器在真空线上冷冻-抽气-解冻循环三次,于80~120 ℃反应4~10 小时,得到线性聚合物 l-PPF4VB 4.0k,其中单体、RAFT试剂之间的摩尔比50~150:1~2;
(2)线性聚合物的光诱导环化制备环状聚合物( c-PPF4VB 4.0k):
惰性气体氛围下,将聚合物( l-PPF4VB 4.0k)和混合溶剂(二氯甲烷/乙腈)加入到反应溶剂中,室温搅拌情况下,溶液在紫外光源下光照反应6~24小时,得到环状的聚合物( c-PPF4VB 4.0k),其中混合溶剂二氯甲烷与乙腈之间的体积比0~1:2~4;
(3)利用小分子对环状聚合物 c-PPF4VB 4.0k进行后修饰,制备出功能化的环状聚合物( c-P1):
惰性气体氛围下,环状聚合物( c-PPF4VB 4.0k)、炔丙胺和溶剂THF加入反应容器中,反应溶液在室温下搅拌反应6~24小时,得到功能化的环状聚合物( c-P1),其中,聚合物与炔丙胺之间的摩尔比1~2:40~80;
(4)利用高效的反应对环状聚合物( c-P1)进行聚合物后修饰,构建高接枝密度的环梳状聚合物( c-P1- g-PS):
惰性气体氛围下,将环状聚合物( c-P1)、线性叠氮化的聚苯乙烯( l-PS-N 3)、PMDETA和混合溶剂THF/DMF加入反应容器中;随后,在惰性气体氛围下,向反应容器中再加入溴化亚铜(CuBr)和微量铜粉;反应在室温下搅拌12~48小时,得到粗的环梳状聚合物,再使用循环制备级SEC除去过量的线性叠氮化的聚苯乙烯,得到最终的高接枝密度的环梳状聚合物( c-P1- g-PS),其中环状聚合物( c-P1)、线性叠氮化的聚苯乙烯( l-PS-N 3)、PMDETA、Cu和CuBr之间的摩尔比1~2:20~40: 20~40: 10~20:20~40,溶剂THF与DMF之间的体积比2~4:1~2。
或者
(5)利用大分子对环状聚合物 c-PPF4VB 4.0k直接进行聚合物后修饰,构建高接枝密度的环梳状聚合物( c-PPF4VB 4.0k- g-PEG):
惰性气体氛围下,将环状聚合物( c-PPF4VB 4.0k),PEG-NH 2和混合溶剂THF/DMF加入到反应容器中。反应在室温下搅拌反应12~48小时,得到粗的环梳状聚合物( c-PPF4VB 4.0k- g-PEG),其中,环状聚合物( c-PPF4VB 4.0k)与PEG-NH 2之间的摩尔比为1~2:10~30,溶剂THF与DMF之间的体积比1~2:1~2。
  本发明中,所述惰性气体选自氮气、氦气、氖气中的任意一种,优选氮气。
本发明中,以2,3-二甲基苯甲醚、五水合硫酸铜、过硫酸钾为原料,在乙腈/水混合溶剂中搅拌反应,制备2-甲氧基-6-甲基苯甲醛;将AlCl 3加入2-甲氧基-6-甲基苯甲醛的二氯甲烷溶液中,室温搅拌过夜,得到2-羟基-6-甲基苯甲醛;将2-羟基-6-甲基苯甲醛和溴丙醇加入到K 2CO 3的DMF溶液中,90 ℃条件下反应过夜,反应完成后抽滤除去不溶物,向滤液中加入HCl溶液,得到2-(3-羟基丙氧基)-6-甲基苯甲醛;将2-(3-羟基丙氧基)-6-甲基苯甲醛和4-氰基-4-(硫代苯甲酰硫基)戊酸溶解在二氯甲烷中,随后滴加带有 N, N -二环己基碳酰亚胺(DCC)和4-二甲氨基吡啶(DMAP)的二氯甲烷溶液,室温下搅拌24 h,得到RAFT试剂。
本发明方法中,活性酯与胺的取代反应用于聚合物的后修饰,是一类相当高效的化学反应,相对于其他的合成方法,可参与反应胺的种类很多、反应条件温和(如:室温、无催化剂),为合成新型功能化高分子材料提供了相当不错的合成途径。
有益效果
由于上述技术方案的实施,本发明与现有技术相比具有下列优点:
(1)本发明首次结合光诱导化及活性酯与胺的取代反应制备高接枝密度的环梳状聚合物,得到的环梳状聚合物依然保持分子量分布窄的特征;
(2)本发明利用自合成的RAFT试剂和单体(五氟苯基4-乙烯基苯甲酸酯),在热聚合条件下进行RAFT聚合,合成了一种新型的线性聚合物( l-PPF4VB 4.0k),且热聚合过程中不需要另添加引发剂(如AIBN),聚合组分仅需单体、RAFT试剂和溶剂即可;
(3)本发明利用光诱导环化方法,制备出一种新型的环状聚合物( c-PPF4VB 4.0k),再利用小分子胺对环状聚合物 c-PPF4VB 4.0k进行后修饰,制备出功能化的环状聚合物( c-P1),从核磁谱图分析,其后修饰效率达到~100%;
(4)本发明通过高效的点击反应,对环状聚合物( c-P1)进行聚合物后修饰,构建高接枝密度的环梳状聚合物( c-P1- g-PS),从核磁谱图分析,其接枝效率也达到~100%。
附图说明
图1为RAFT试剂、单体和线性聚苯乙烯( l-PS-N 3)的合成路线图;
图2为环梳状聚合物( c-P1- g-PS、 c-PPF4VB 4.0k- g-PEG)的合成路线图;
图3为线性聚(五氟苯基4-乙烯基苯甲酸酯)( l-PPF4VB 4.0k)和环状聚(五氟苯基4-乙烯基苯甲酸酯)( c-PPF4VB 4.0k)的核磁共振氢谱图;
图4为线性聚合物( l-PPF4VB 4.0k)、环状聚合物( c-PPF4VB 4.0k)及功能化的环状聚合物( c-P1)的GPC流出曲线图(THF相);
图5为线性聚合物( l-PPF4VB 4.0k)的质谱图;
图6为环状聚合物( c-PPF4VB 4.0k)的质谱图;
图7为功能化环状聚合物( c-P1)的质谱图;
图8为功能化环状聚合物( c-P1)和纯化后的环梳状聚合物( c-P1- g-PS)的核磁共振氢谱图;
图9为功能化环状聚合物( c-P1)、线性聚苯乙烯( l-PS-N 3)及纯化后的环梳状聚合物( c-P1- g-PS)的GPC流出曲线图(THF相);
图10为环状聚合物( l-PPF4VB 4.0k)、甲氧基聚乙二醇胺(PEG-NH 2)及环梳状聚合物( c-PPF4VB 4.0k- g-PEG)的GPC流出曲线图(DMF相)。
本发明的实施方式
下面将结合具体的实施例和附图对本发明做出进一步的描述。
实施例1:线性聚(五氟苯基4-乙烯基苯甲酸酯)( l-PPF4VB 4.0k)的合成
具体合成路线如图1和图2所示,方法如下:
2,3-二甲基苯甲醚(4.08 g, 30 mmol),五水合硫酸铜(7.86g, 31.5 mmol),过硫酸钾(24.33 g, 90 mmol)和乙腈/水(v/v, 1/1, 360 mL)混合溶剂加入一个500 mL的圆底烧瓶中。置于90 ℃的油浴中搅拌反应,直至薄层色谱显示所有初始原料(2,3-二甲基苯甲醚)被消耗,停止反应。反应液用二氯甲烷萃取,合并的有机相用无水硫酸镁干燥。抽滤,滤液通过旋蒸浓缩后,用硅胶柱层析纯化,淋洗剂为石油醚/乙酸乙酯 = 6/1(v/v)。最终产物2-甲氧基-6-甲基苯甲醛为黄色固体(2.46 g, 产率: 54.6%)。
在0 ℃冰浴下,2-甲氧基-6-甲基苯甲醛(2.5 g, 10 mmol)溶解于干燥的二氯甲烷(20 mL)。AlCl 3(4.0 g, 30 mmol)加入到溶液中,室温搅拌过夜。混合溶液用水淬灭。反应液用二氯甲烷(40 mL×3)萃取,合并的有机相用无水硫酸镁干燥。抽滤,滤液通过旋蒸浓缩后,用硅胶柱层析纯化,淋洗剂为石油醚/乙酸乙酯 = 16/1(v/v),得到2-羟基-6-甲基苯甲醛(1.22 g, 产率: 89.6%)。
将得到的2-羟基-6-甲基苯甲醛(1 g, 7.34 mmol)和溴丙醇(1.02 g, 7.34 mmol)加入到K 2CO 3(3.03 g, 22.02 mmol)的DMF(20 mL)溶液中。反应液在90 ℃条件下反应过夜。冷却到室温后,混合液抽滤除去不溶物,向滤液中加入一定量的1M HCl溶液。混合液再用乙酸乙酯萃取三次,并用饱和食盐水洗涤。有机相用无水硫酸镁干燥后,抽滤,滤液通过旋蒸浓缩后,用硅胶柱层析纯化,淋洗剂为石油醚/乙酸乙酯 = 2/1(v/v),得到2-(3-羟基丙氧基)-6-甲基苯甲醛(0.72 g, 产率: 50.5%)。
在0 ℃条件下,将得到的2-(3-羟基丙氧基)-6-甲基苯甲醛(358.1 mg, 1.84 mmol)和4-氰基-4-(硫代苯甲酰硫基)戊酸(429.2 mg, 1.54 mmol)溶解在5 mL的二氯甲烷中。随后DCC(633.6 mg)和DMAP(37.54 mg, 0.31 mmol)溶解在4 mL的二氯甲烷中,滴加到上述溶液中。室温下搅拌24 h,反应液抽滤,除去不溶物,滤液用旋转蒸发仪旋蒸浓缩。浓缩液用硅胶柱层析纯化,淋洗剂为石油醚/乙酸乙酯 = 5/1(v/v),最终产物为红色油状物,即为RAFT试剂(497.8 mg, 产率: 71.0%)。
4-乙烯基苯甲酸(13.3 g, 90 mmol),2,3,4,5,6-五氟苯酚(14.7 g, 80 mmol)和DMAP (1.95 g, 16 mmol)溶解在150 mL的THF中。DCC溶解在THF 中,再滴加到上述反应液中。溶液在室温下搅拌24 小时。混合液抽滤除去不溶物,然后在用硅胶柱层析快速纯化,淋洗剂为正己烷。得到的粗产物在-20 ℃条件下用正己烷重结晶,即为单体五氟苯基4-乙烯基苯甲酸酯。(13.24 g, 产率: 52.7%)
五氟苯基4-乙烯基苯甲酸酯(6.28 g, 20 mmol)、RAFT试剂(91.1 mg, 0.2 mmol)溶解在10 mL的甲苯中。聚合管在真空线上冷冻-抽气-解冻循环三次,置于110 ℃的油浴中反应7 h。聚合管用冰水冷却后开封,然后在200 mL正己烷中沉淀。沉淀的聚合物通过抽滤得到,真空箱30 ℃下干燥24 小时,得到线性聚(五氟苯基4-乙烯基苯甲酸酯)( l-PPF4VB 4.0k ,789 mg, 转化率: 12.4%),避免粘度影响,保证高的末端官能团度,即聚合物的完整性。
实施例2:线性聚合物的光诱导环化制备环状聚合物( c-PPF4VB 4.0k
合成路线如图2所示,方法如下:
氮气氛围下,聚合物( l-PPF4VB 4.0k, 15 mg)和二氯甲烷(100 mL)/乙腈(300 mL)加入到圆底烧瓶中。室温下,溶液在紫外光源下光照反应12 小时。溶液旋蒸浓缩,在冰正己烷中沉淀。沉淀的聚合物通过抽滤得到,真空箱30 ℃下干燥24 小时,得到环状聚合物。(11.7 mg,产率:78%),低压汞灯(120 W, CEL-LPH120-254)作为紫外光照光源。
实施例3: 利用小分子对环状聚合物 c-PPF4VB 4.0k进行后修饰,制备出功能化的环状聚合物( c-P1)
具体合成如图2所示,方法如下:
氮气氛围下,环状聚合物( c-PPF4VB4.0k)(50 mg, 1.25×10 -2 mmol),炔丙胺(41.31 mg, 0.75 mmol)和THF(600 μL)加入2 mL安瓿瓶中。溶液在室温下搅拌12 小时。然后沉淀在正己烷中,反复沉淀3次。功能化的环状聚合物( c-P1)通过抽滤得到,真空箱30 ℃下干燥24小时(25.3 mg)。
实施例4: 对环状聚合物( c-P1)进行聚合物后修饰,构建高接枝密度的环梳状聚合物( c-P1- g-PS)
具体合成如图1和图2所示,方法如下:
苯乙烯(9.06 g, 87.00 mmol)、EBiB(339.4 mg, 1.74 mmol)、CuBr 2(111.7 mg, 0.05 mmol)、PMDETA(173.30 mg, 1.5 mmol)、AA(176.13 mg, 1.0 mmol)和10 mL的溶剂苯甲醚加入到25 mL的Schlenk瓶中。反应溶液置于90 ℃的油浴中,搅拌2.5小时。聚合物快速降温至室温,THF溶解并通过短小的中性氧化铝柱中,随后旋蒸溶剂浓缩。聚合物( l-PS-Br)沉淀在甲醇中,通过抽滤得到,真空箱30 ℃下干燥24 小时(3.23 g, conv.%: 34.4%)。
聚合物( l-PS-Br, 1.2 g, 0.5 mmol)、NaN 3(488.0 mg, 7.5 mmol)和8 mL的DMF加入到一个圆底烧瓶中,室温下搅拌24小时。聚合物用THF溶解,并通过短小的中性氧化铝柱中除去过量的NaN 3,随后旋蒸溶剂浓缩。线性叠氮化的聚苯乙烯( l-PS-N 3)沉淀在甲醇中,通过抽滤得到,真空箱30 ℃下干燥24 小时(974.8 mg, 产率:81.2%)。
氮气氛围下,环状聚合物( c-P1, 4.4 mg, 2×10 -3 mmol), l-PS-N 3(150 mg, 6×10-2 mmol),PMDETA(10.40 mg, 6×10 -2 mmol)和THF/DMF(v/v = 2/1, 6 mL)加入10 mL安瓿瓶中。CuBr(8.61 mg, 6×10 -2 mmol)和Cu(1.9 mg, 3×10 -2 mmol)加入上述溶液中。溶液进一步在室温下搅拌24 小时。聚合物沉淀在甲醇中,通过抽滤得到,真空箱30 ℃下干燥24小时。粗的环梳状聚合物,通过循环制备级SEC除去过量的 l-PS-N 3得到高接枝密度的环梳状聚合物( c-P1- g-PS, 31.1 mg)。
实施例5: 利用大分子对环状聚合物 c-PPF4VB 4.0k直接进行聚合物后修饰,构建高接枝密度的环梳状聚合物( c-PPF4VB 4.0k- g-PEG)
具体合成如图2所示,方法如下:
氮气氛围下,将环状聚合物( c-PPF4VB 4.0k, 10 mg, 2.63×10 -3 mmol)、PEG-NH 2(95 mg, 4.7×10 -2 mmol)和混合溶剂THF/DMF(v/v = 1/1, 1 mL)加入5 mL的安瓿瓶中,溶液在室温下搅拌24 h,再在冰乙醚中沉淀,通过抽滤得到,真空箱30 ℃下干燥24 小时,得到高接枝密度的环梳状聚合物( c-PPF4VB 4.0k- g-PEG)(74.6 mg)。
   图3为线性聚(五氟苯基4-乙烯基苯甲酸酯)( l-PPF4VB 4.0k)和环状聚(五氟苯基4-乙烯基苯甲酸酯)( c-PPF4VB 4.0k)的核磁共振氢谱图,从图中可看出线性聚合物末端官能的团的出峰位置,且a/h/e/g的积分比值约为1/5/2/2,这说明聚合物具有末端高官能度。环化之后,醛基上氢的化学位移峰(a)明显消失,且苄基上的氢(k)也发生了化学位移,这侧面说明环状聚合物的合成。
图4中,成环之后,环状聚合物的GPC流出曲线向低分子量区域发生位移,这符合环状聚合物相比于同分子量的线性前体具有较小的流体力学体积这一特征。
图5为线性聚合物( l-PPF4VB 4.0k),就图中的代表峰而言,是具备11个重复单元的聚合物的分子量,实验值为3933.07 Da,与理论值3932.51 Da(±1 Da)相一致,且相邻的两组峰值差正好是一个重复单元的分子量。环化之后,环状聚合物跟线性聚合物没有分子量的差异,所以从图6中可以看出,实验值与理论值相符合,且与线性聚合物无大差别。结合核磁共振氢谱、GPC流出曲线图以及大分子质谱图综合分析,可以说明环状聚合物( c-PPF4VB 4.0k)的成功制备。
图7为功能化环状聚合物( c-P1)的大分子质谱图,图中为实验值与理论计算值相一致,相邻的两组峰值差正好是一个重复单元的分子量,这直接说明了酯交换反应的高效性,后修饰效率达到~100%,从而可以取得~100%的接枝率;再加上图8中 c-P1的核磁共振氢谱的积分来看,a/b/c/d/e的比值约为2/2/1/2/1, 也说明了酯交换反应的高效性,后修饰率达到~100%。图8中还附有高接枝密度的环梳状聚合物( c-P1- g-PS)的核磁共振氢谱图,从图中a/b/c的比值约为2/1/2,说明了通过高效的点击反应成功制备了高接枝密度的环梳状聚合物( c-P1- g-PS)。
图9为功能化环状聚合物( c-P1)、线性聚苯乙烯( l-PS-N 3)及纯化后的环梳状聚合物( c-P1- g-PS)的GPC流出曲线比较图,从图中可以明显看出,环梳状聚合物在点击化学反应之后,仍然保持着分子量分布较窄的特征,分子量分布控制在1.06。
图10为环梳状聚合物( c-PPF4VB 4.0k- g-PEG)、环状聚合物( l-PPF4VB 4.0k)、甲氧基聚乙二醇胺(PEG-NH 2)的GPC流出曲线比较图,明显看出,除了分子量的明显增加,依然保持分子量分布窄(1.05)的特性,与前者情况相似;另从质谱测试也可发现,接枝率达到~100%。
本发明首先聚合制备线性的聚合物( l-PPF4VB 4.0k),再利用光诱导环化的方法制备对应的环状聚合物( c-PPF4VB 4.0k),随后利用小分子胺(炔丙胺)对环状聚合物后修饰,得到功能化的环状聚合物( c-P1)后,再将叠氮化后的线性聚苯乙烯( l-PS-N 3)后修饰到 c-P1上,制备出高接枝密度的环梳状聚合物( c-P1- g-PS);也可利用大分子胺(甲氧基聚乙二醇胺,PEG-NH 2)直接对环状聚合物( c-PPF4VB 4.0k)进行后修饰,制备出高接枝密度的环状聚合物( c-PPF4VB 4.0k- g-PEG)。

Claims (10)

  1. 一种高接枝密度的环梳状聚合物的制备方法,包括如下步骤:
    (1)以甲酸酯单体为原料,在RAFT试剂存在下,溶剂中反应制备线性聚甲酸酯;
    (2)惰性气体氛围下,溶剂中,线性聚甲酸酯经过光诱导反应得到环状聚甲酸酯;
    (3)惰性气体氛围下,溶剂中,环状聚甲酸酯与小分子胺反应制备功能化环状聚合物;
    (4)惰性气体氛围下,溶剂中,在五甲基二乙烯三胺、铜、铜盐存在下,功能化环状聚合物与线性叠氮化的聚苯乙烯反应制备高接枝密度的环梳状聚合物。
  2. 一种高接枝密度的环梳状聚合物的制备方法,包括如下步骤:
    (1)以甲酸酯单体为原料,在RAFT试剂存在下,溶剂中反应制备线性聚甲酸酯;
    (2)惰性气体氛围下,溶剂中,线性聚甲酸酯经过光诱导反应得到环状聚甲酸酯;
    (3)惰性气体氛围下,溶剂中,环状聚甲酸酯与端氨基聚合物反应制备高接枝密度的环梳状聚合物。
  3. 根据权利要求1或者2所述高接枝密度的环梳状聚合物的制备方法,其特征在于,步骤(1)中,所述甲酸酯单体、RAFT试剂的摩尔比为(50~150):(1~2);甲酸酯单体为五氟苯基4-乙烯苯基甲酸酯;溶剂为甲苯;反应的温度为80~120 ℃,时间为4~10 小时。
  4. 根据权利要求1或者2所述高接枝密度的环梳状聚合物的制备方法,其特征在于,步骤(2)中,所述光诱导为紫外光照反应6~24小时,紫外光照选自低压汞灯、中压汞灯、高压汞灯中的任意一种,优选低压汞灯;溶剂为二氯甲烷与乙腈,二氯甲烷与乙腈的体积比(0~1):(2~4)。
  5. 根据权利要求1或者2所述高接枝密度的环梳状聚合物的制备方法,其特征在于,以2,3-二甲基苯甲醚、五水合硫酸铜、过硫酸钾为原料,在乙腈/水混合溶剂中搅拌反应,制备2-甲氧基-6-甲基苯甲醛;将三氯化铝加入2-甲氧基-6-甲基苯甲醛的二氯甲烷溶液中,室温搅拌过夜,得到2-羟基-6-甲基苯甲醛;将2-羟基-6-甲基苯甲醛和溴丙醇加入到碳酸钾的 N,N-二甲基甲酰胺溶液中,90 ℃条件下反应过夜,反应完成后抽滤除去不溶物,向滤液中加入HCl溶液,得到2-(3-羟基丙氧基)-6-甲基苯甲醛;将2-(3-羟基丙氧基)-6-甲基苯甲醛和4-氰基-4-(硫代苯甲酰硫基)戊酸溶解在二氯甲烷中,随后滴加带有 N, N -二环己基碳酰亚胺和4-二甲氨基吡啶的二氯甲烷溶液,室温下搅拌24 h,得到RAFT试剂。
  6. 根据权利要求1所述高接枝密度的环梳状聚合物的制备方法,其特征在于,步骤(3)中,溶剂选自四氢呋喃、三氯甲烷、二氯甲烷中任意一种;环状聚甲酸酯与小分子胺的摩尔比(1~2):(40~80);反应为室温下搅拌反应6~24小时;小分子胺为炔丙胺。
  7. 根据权利要求1所述高接枝密度的环梳状聚合物的制备方法,其特征在于,步骤(4) 中,功能化环状聚合物、线性叠氮化的聚苯乙烯、五甲基二乙烯三胺、铜、铜盐的摩尔比为(1~2):(20~40):(20~40):(10~20):(20~40);溶剂为四氢呋喃与 N,N-二甲基甲酰胺,四氢呋喃与 N,N-二甲基甲酰胺的体积比2~4:1~2;铜盐为溴化亚铜。
  8. 根据权利要求1所述高接枝密度的环梳状聚合物的制备方法,其特征在于,将苯乙烯、2-溴-2-甲基丙酸乙酯、溴化铜、N,N,N’,N’,N”-五甲基二乙烯三胺、抗坏血酸和苯甲醚混合后,于90 ℃搅拌反应2.5小时,得到聚合物;将聚合物、叠氮化钠和 N,N-二甲基甲酰胺混合后室温下搅拌反应24小时,得到线性叠氮化的聚苯乙烯。
  9. 根据权利要求2所述高接枝密度的环梳状聚合物的制备方法,其特征在于,环状聚甲酸酯与端氨基聚合物的摩尔比为1~2:10~30;溶剂为四氢呋喃与 N,N-二甲基甲酰胺,四氢呋喃与 N,N-二甲基甲酰胺的体积比1~2:1~2;端氨基聚合物为甲氧基聚乙二醇胺。
  10. 根据权利要求1或者2所述高接枝密度的环梳状聚合物的制备方法制备的高接枝密度的环梳状聚合物。
PCT/CN2018/094576 2018-07-04 2018-07-04 一种高接枝密度环梳状聚合物及其制备方法 WO2020006721A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/094576 WO2020006721A1 (zh) 2018-07-04 2018-07-04 一种高接枝密度环梳状聚合物及其制备方法
US17/140,550 US11905378B2 (en) 2018-07-04 2021-01-04 High-grafting density cyclic comb shaped polymer and preparation method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/094576 WO2020006721A1 (zh) 2018-07-04 2018-07-04 一种高接枝密度环梳状聚合物及其制备方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/140,550 Continuation US11905378B2 (en) 2018-07-04 2021-01-04 High-grafting density cyclic comb shaped polymer and preparation method therefor

Publications (1)

Publication Number Publication Date
WO2020006721A1 true WO2020006721A1 (zh) 2020-01-09

Family

ID=69060688

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/094576 WO2020006721A1 (zh) 2018-07-04 2018-07-04 一种高接枝密度环梳状聚合物及其制备方法

Country Status (2)

Country Link
US (1) US11905378B2 (zh)
WO (1) WO2020006721A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114181348A (zh) * 2021-12-20 2022-03-15 安徽农业大学 一种全生物基瓶刷状热塑性弹性体及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117551244A (zh) * 2023-02-16 2024-02-13 吉林省翰驰科技有限公司 一种嵌段聚合物及其制备方法和应用、固态电解质及其应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103772714A (zh) * 2014-01-24 2014-05-07 同济大学 一种星形嵌段共聚物及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108342049B (zh) * 2017-01-25 2023-08-22 厦门天策材料科技有限公司 一种物理分相动态聚合物及其应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103772714A (zh) * 2014-01-24 2014-05-07 同济大学 一种星形嵌段共聚物及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
AN, XIAONAN ET AL.: "Synthesis, Thermal Properties, and Thermoresponsive Behaviors of Cyclic Poly(2-(dimethylamino)ethyl Methacrylate)s", MACROMOLECULAR RAPID COMMUNICATIONS, vol. 37, no. 12, 31 December 2015 (2015-12-31), pages 980 - 986, XP055674442, DOI: 10.1002/marc.201600152 *
ZHANG, HONGCAN ET AL.: "Synthesis and Thermoresponsive Behaviors of Thermo-, pH-, C02-, and Oxidation-Responsive Linear and Cyclic Graft Copolymers", MACROMOLECULES, vol. 50, 6 April 2017 (2017-04-06), pages 3412 - 3420, XP055674438, DOI: 10.1021/acs.macromol.7b00220 *
ZHU, WEN ET AL.: "Cyclic Polymer with Alternating Monomer Sequence", MAC ROMOLECULES, vol. 36, no. 22, 31 December 2015 (2015-12-31), pages 1987 - 1993, XP055674440, DOI: 10.1002/marc.201500367 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114181348A (zh) * 2021-12-20 2022-03-15 安徽农业大学 一种全生物基瓶刷状热塑性弹性体及其制备方法
CN114181348B (zh) * 2021-12-20 2022-08-26 安徽农业大学 一种全生物基瓶刷状热塑性弹性体及其制备方法

Also Published As

Publication number Publication date
US20210122883A1 (en) 2021-04-29
US11905378B2 (en) 2024-02-20

Similar Documents

Publication Publication Date Title
CN110003481B (zh) 一种八臂杂臂星形聚合物的制备方法
EP2079844B1 (en) Synthesis of inimers and hyperbranched polymers
EP2977391B1 (en) Polymer-dendrimer hybrids
US11905378B2 (en) High-grafting density cyclic comb shaped polymer and preparation method therefor
Li et al. Synthesis of graft copolymer with pendant macrocycles via combination of ATRP and click chemistry
Zhang et al. Synthesis of a cyclic-brush polymer with a high grafting density using activated ester chemistry via the “grafting onto” approach
CN102617855B (zh) 一种环状聚合物及其制备方法
Ding et al. New azo-chromophore-containing multiblock poly (butadiene) s synthesized by the combination of ring-opening metathesis polymerization and click chemistry
CN108929433B (zh) 一种末端为环糊精的星形聚合物的制备方法
Sun et al. Synthesis of poly (ethylene oxide)-block-poly (methyl methacrylate)-block-polystyrene triblock copolymers by two-step atom transfer radical polymerization
CN111285970A (zh) 芘荧光基团和环氧基团接枝超支化聚乙烯及其制备和在制备荧光环氧树脂中的应用
Hirano et al. Precise synthesis of novel ferrocene-based star-branched polymers by using specially designed 1, 1-diphenylethylene derivatives in conjunction with living anionic polymerization
Yu et al. Novel triblock copolymers synthesized via radical telomerization of N-isopropylacrylamide in the presence of polypseudorotaxanes made from thiolated PEG and α-CDs
Ding et al. ATRP synthesis of polyallene-based amphiphilic triblock copolymer
CN108948349B (zh) 一种螺环聚合物材料及其制备方法
EP2202248B1 (en) Method for producing hyperbranched polymer
CN108976426B (zh) 一种高接枝密度环梳状聚合物及其制备方法
Liu et al. Synthesis and characterization of H-shaped copolymers by combination of RAFT polymerization and CROP
JP2005113049A (ja) 新規な脂環式ビニルエーテル類の重合体
Gunay et al. Ring-opening reactions of backbone epoxidized polyoxanorbornene
Feng et al. Synthesis and self-assembly study of two-armed polymers containing crown ether core
Zhou et al. First polyallene-based well-defined amphiphilic diblock copolymer via RAFT polymerization
CN107759776B (zh) 一种共轭聚嘧啶类化合物及多组分串联聚合制备该化合物的方法与应用
Zhang et al. A versatile ring-closure method for efficient synthesis of cyclic polymer and tadpole-shaped copolymer
Liu et al. Synthesis and chiroptical properties of novel helical polyacetylenes containing fluorene pendant groups in the side chains

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18925314

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18925314

Country of ref document: EP

Kind code of ref document: A1