WO2020006718A1 - 一种芳纶纤维电化学电容器及其制备方法 - Google Patents

一种芳纶纤维电化学电容器及其制备方法 Download PDF

Info

Publication number
WO2020006718A1
WO2020006718A1 PCT/CN2018/094567 CN2018094567W WO2020006718A1 WO 2020006718 A1 WO2020006718 A1 WO 2020006718A1 CN 2018094567 W CN2018094567 W CN 2018094567W WO 2020006718 A1 WO2020006718 A1 WO 2020006718A1
Authority
WO
WIPO (PCT)
Prior art keywords
aramid fiber
coated
carbon nanotubes
fiber bundles
silver nanoparticles
Prior art date
Application number
PCT/CN2018/094567
Other languages
English (en)
French (fr)
Inventor
顾嫒娟
方浩
梁国正
袁莉
Original Assignee
苏州大学张家港工业技术研究院
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学张家港工业技术研究院, 苏州大学 filed Critical 苏州大学张家港工业技术研究院
Priority to US16/759,329 priority Critical patent/US11942272B2/en
Priority to PCT/CN2018/094567 priority patent/WO2020006718A1/zh
Publication of WO2020006718A1 publication Critical patent/WO2020006718A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/046Reinforcing macromolecular compounds with loose or coherent fibrous material with synthetic macromolecular fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/06Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2329/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2477/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2477/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/14Polymer mixtures characterised by other features containing polymeric additives characterised by shape
    • C08L2205/16Fibres; Fibrils
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the invention relates to a fiber electrode, an electrochemical capacitor and a preparation method thereof, and in particular to an aramid fiber electrochemical capacitor and a preparation method thereof.
  • Polymer fibers are generally obtained by coating the surface with carbon materials (such as carbon nanotubes, graphene, etc.), conductive polymers (such as polyaniline, polypyrrole, etc.) or transition metal oxides (such as manganese dioxide, zinc oxide, etc.) performance. Although the capacitor material is covered, the polymer fiber does not contribute to the capacitance performance, so the specific capacitance of the polymer fiber electrode and the energy density of the capacitor are generally lower.
  • carbon materials such as carbon nanotubes, graphene, etc.
  • conductive polymers such as polyaniline, polypyrrole, etc.
  • transition metal oxides such as manganese dioxide, zinc oxide, etc.
  • the adhesion between the inorganic coating and the fiber matrix is poor, and the coating may fall off after multiple deformations or electrochemical cycles, resulting in performance degradation, resulting in poor wearability of the fiber capacitor.
  • the mechanical properties of existing polymer fiber capacitors have not yet reached the requirements. At present, polyester fiber, polyamide fiber, polyurethane fiber, cotton fiber, etc. are usually used as the matrix of polymer fiber capacitors. Their tensile properties are usually very low, which mainly meets the application in daily life, and is not suitable for bulletproof products. And other fields with high requirements for mechanical properties.
  • the purpose of the present invention is to provide an aramid fiber electrode and an electrochemical capacitor that have both high specific capacitance, high energy density, high mechanical properties, high stability, good flexibility and wearability, and its preparation method is suitable for large-scale applications.
  • a method for preparing an aramid fiber electrochemical capacitor includes the following steps:
  • Aramid fiber bundles are immersed in an aqueous solution containing dopamine hydrochloride and trimethylolaminomethane hydrochloride, and reacted to obtain polydopamine-coated aramid fiber bundles;
  • Aramid fiber bundles coated with silver nanoparticles are added to an aqueous solution containing ⁇ - (2,3-glycidoxy) propyltrimethoxysilane, and the silver nanoparticles with epoxy groups on the surface are obtained by reaction.
  • Aramid fiber bundles coated with silver nanoparticles with epoxy groups on the surface are added to an ethanol solution containing carbon nanotubes with carboxyl groups, and the aramid fibers coated with carbon nanotubes and silver nanoparticles are double-layered. bundle;
  • Aramid fiber bundles coated with carbon nanotubes and silver nanoparticles were added to an aqueous solution containing pyrrole, and then an aqueous solution of silver nitrate was added dropwise to obtain a three-layer coating of polypyrrole, carbon nanotubes, and silver nanoparticles.
  • the invention also discloses an aramid fiber electrochemical capacitor prepared according to the above preparation method.
  • the invention also discloses the application of an aramid fiber bundle covered with a three-layer coating of polypyrrole, carbon nanotubes and silver nanoparticles in preparing an aramid fiber electrochemical capacitor.
  • the method for preparing the aramid fiber bundle covered with the three layers of polypyrrole, carbon nanotubes, and silver nanoparticles includes the following steps:
  • Aramid fiber bundles are immersed in an aqueous solution containing dopamine hydrochloride and trimethylolaminomethane hydrochloride, and reacted to obtain polydopamine-coated aramid fiber bundles;
  • Aramid fiber bundles coated with silver nanoparticles are added to an aqueous solution containing ⁇ - (2,3-glycidoxy) propyltrimethoxysilane, and the silver nanoparticles with epoxy groups on the surface are obtained by reaction.
  • Aramid fiber bundles coated with silver nanoparticles with epoxy groups on the surface are added to an ethanol solution containing carbon nanotubes with carboxyl groups, and the aramid fibers coated with carbon nanotubes and silver nanoparticles are double-layered. bundle;
  • Aramid fiber bundles coated with carbon nanotubes and silver nanoparticles were added to an aqueous solution containing pyrrole, and then an aqueous solution of silver nitrate was added dropwise to obtain a three-layer coating of polypyrrole, carbon nanotubes, and silver nanoparticles. Aramid fiber bundle.
  • the aramid fiber includes one of polyparaphenylene terephthalamide fiber, polyisophthaloyl metaphenylene diamine fiber, and polyparabenamide fiber.
  • the pH value of the aqueous solution containing dopamine hydrochloride and trimethylolaminomethane hydrochloride is 8.5, and the reaction is shaken at room temperature for 5 to 48 hours. After the reaction, the fibers are taken out, washed and dried to obtain a polydopamine coating.
  • the mass ratio of dopamine hydrochloride, trimethylolaminomethane hydrochloride, and aramid fiber bundles is (0.1 to 1): (0.05 to 0.5): (0.1 to 1).
  • step (2) the reaction is a shaking reaction at room temperature for 10 to 60 minutes; after the reaction, the fibers are taken out, washed and dried to obtain aramid fiber bundles coated with silver nanoparticles; silver nitrate, polyvinylpyrrolidone,
  • the mass ratio of the aramid fiber bundle covered with glucose and polydopamine is (0.5 to 5): (0.05 to 0.5): (1 to 10): (0.1 to 1);
  • ⁇ - (2 The mass ratio of 3-glycidyloxy) propyltrimethoxysilane and silver nanoparticle-coated aramid fiber bundles is (0.5 to 5): (0.1 to 1); in step (4), carboxyl carbon nanometers
  • the mass ratio of the aramid fiber bundle covered by the silver nanoparticles with epoxy groups on the surface of the tube is (0.5 to 5): (0.1 to 1).
  • step (3) the reaction is a shaking reaction at 50 to 100 ° C for 1 to 10 hours; after the reaction is completed, the fiber is taken out, washed and dried to obtain aramid coated with silver nanoparticles with epoxy groups on the surface. Fiber bundle; the mass ratio of ⁇ - (2,3-glycidoxy) propyltrimethoxysilane and silver nanoparticle-coated aramid fiber bundle is (0.5 to 5): (0.1 to 1).
  • step (4) the reaction is a shaking reaction at 50 to 80 ° C for 5 to 24 hours. After the reaction, the fibers are taken out, washed, and dried to obtain carbon nanotubes and silver nanoparticle double-layer coated aramid fiber bundles with carboxyl carbon nanometers. The mass ratio of the aramid fiber bundle covered by the silver nanoparticles with epoxy groups on the surface of the tube is (0.5 to 5): (0.1 to 1).
  • the carbon nanotubes include one or more of multi-walled carbon nanotubes, single-walled carbon nanotubes, and carbon nanotube bundles; silver nitrate, pyrrole, carbon nanotubes, and silver
  • the mass ratio of the aramid fiber bundle covered with the nano-particles double layer is (0.2 ⁇ 4): (0.1 ⁇ 2): (0.1 ⁇ 1); the reaction is a shaking reaction at room temperature for 5 ⁇ 48h; after the reaction is finished, the fiber is taken out and washed And dried to obtain an aramid fiber electrode.
  • the acid is phosphoric acid, sulfuric acid, or a combination thereof; the mass ratio of polyvinyl alcohol, acid, and water is (1 to 20): (1 to 20): 100.
  • the aramid fiber electrochemical capacitor disclosed in the present invention and the preparation method thereof can be performed as follows, according to the mass ratio:
  • step (5) The two aramid fiber bundles coated with three layers of polypyrrole, carbon nanotubes, and silver nanoparticles prepared in step (5) are immersed in a polyvinyl alcohol gel, the fibers are taken out and entangled, and the gel Solidified at room temperature to obtain an aramid fiber electrochemical capacitor.
  • the present invention designs a composite coating layer of silver, carbon nanotubes and polypyrrole, which combines the high capacitance of polypyrrole with the high conductivity of silver and carbon nanotubes. At the same time, due to the synergy between silver and carbon nanotubes Effect, the obtained electrochemical capacitor has excellent electrochemical performance such as high specific capacitance and high energy density.
  • the present invention generates a coating layer on the surface of aramid fiber through hybridization and compounding technology. There is a chemical interaction between the coating layer and the fiber matrix. The presence of silver and carbon nanotubes can prevent the structure of polypyrrole from being damaged. Electrochemical capacitors have high stability and good wearability.
  • the present invention uses aramid fibers as the matrix of the fiber electrochemical capacitor, and obtains a fiber electrochemical capacitor that has both good flexibility, high tensile strength, and modulus.
  • FIG. 1 is a polyparaphenylene terephthalamide fiber, polydopamine-coated polyterephthalamide fiber, and silver nanoparticle-coated polyterephthalamide pair provided in Example 3. Scanning electron microscope photographs of phenylenediamine fibers, multi-walled carbon nanotube-coated polyparaphenylene terephthalamide fibers, and polypyrrole-coated polyparaphenylene terephthalamide fibers;
  • FIG. 2 is a polyparaphenylene terephthalamide fiber, polydopamine-coated polyterephthalamide fiber, and a silver nanoparticle-coated polyterephthalamide pair provided in Example 3.
  • FIG. Phenylenediamine fiber, ⁇ - (2,3-glycidoxy) propyltrimethoxysilane-coated polyparaphenylene terephthalamide fiber, multi-walled carbon nanotube-coated polyparaphenylene diene Infrared spectra of formyl-p-phenylenediamine fibers and polypyrrole-coated poly-p-phenylene terephthalamide fibers;
  • Example 3 is a Raman spectrum of a multi-walled carbon nanotube-coated polyparaphenylene terephthalamide fiber and a polypyrrole-coated polyterephthalyl paraphenylene diamine fiber provided in Example 3;
  • FIG. 4 is a polyparaphenylene terephthalamide fiber, polydopamine-coated polyparaphenylene terephthalamide fiber, and silver nanoparticle-coated polyparaphenylene terephthalate fiber provided in Example 3.
  • FIG. X-ray diffraction patterns of phenylenediamine fibers, multi-walled carbon nanotube-coated polyparaphenylene terephthalamide fibers, and polypyrrole-coated polyparaphenylene terephthalamide fibers;
  • Example 5 is a histogram of length specific capacitance, volume specific capacitance, and mass specific capacitance of the aramid fiber electrochemical capacitors provided in Comparative Example 1, Comparative Example 2, Comparative Example 3, and Example 3;
  • Example 6 is a histogram of length energy density, volume energy density, and mass energy density of the aramid fiber electrochemical capacitors provided in Comparative Example 1, Comparative Example 2, Comparative Example 3, and Example 3;
  • Example 7 is a ratio of the capacitance of the aramid fiber electrochemical capacitor provided in Example 3 to the initial capacitance at different bending angles;
  • FIG. 9 is a stress-strain curve of a polypyrrole-coated polyparaphenylene terephthalamide fiber provided in Example 3.
  • FIG. 9 is a stress-strain curve of a polypyrrole-coated polyparaphenylene terephthalamide fiber provided in Example 3.
  • solution A Dissolve 0.1 g of dopamine hydrochloride and 0.05 g of trimethylolaminomethane hydrochloride in 100 mL of water to obtain solution A; dissolve 0.1 g of sodium hydroxide in 100 mL of water to obtain an aqueous sodium hydroxide solution; use sodium hydroxide
  • the pH value of solution A was adjusted to 8.5 by the aqueous solution to obtain solution B; 0.1 g of poly-terephthalyl p-phenylenediamine fiber bundles were immersed in solution B and shaken at room temperature for 5 hours; after the reaction, the fibers were taken out, washed and Drying to obtain polydopamine-coated aramid fiber bundles;
  • FIG. 1 it is a polyparaphenylene terephthalamide fiber provided by Example 3 of the present invention, an aramid fiber covered by polydopamine, an aramid fiber covered by silver nanoparticles, carbon nanotubes, and silver.
  • the surface of the polyparaphenylene terephthalamide fiber is smooth; the surface of the aramid fiber covered by polydopamine is rough with a uniform coating layer; the surface of the aramid fiber bundle covered by silver nanoparticles is about 30nm in diameter.
  • Silver particles; carbon nanotubes and silver nanoparticle double-layer coated aramid fibers have silver particles and carbon nanotubes on the surface; polypyrrole, carbon nanotubes, and silver nanoparticle three-layer coated aramid fibers have a surface coating diameter of approximately 1 ⁇ m polypyrrole particles.
  • FIG. 2 it is a polyparaphenylene terephthalamide fiber bundle, a polydopamine-coated aramid fiber bundle, a silver nanoparticle-coated aramid fiber bundle, and a surface tape provided in Example 3 of the present invention.
  • Aramid fiber bundles coated with epoxy-based silver nanoparticles, aramid fiber bundles coated with carbon nanotubes and silver nanoparticles, and aramid coated with polypyrrole, carbon nanotubes, and silver nanoparticles Infrared spectrum of fiber bundles.
  • the aramid fiber bundles covered by polydopamine show asymmetric stretching vibration (2929cm -1 ) and symmetrical stretching vibration (2851cm -1 ) of methylene. ) Is the characteristic peak, which is derived from polydopamine.
  • the aramid fiber bundles coated with silver nanoparticles the aramid fiber bundles coated with silver nanoparticles with epoxy groups on the surface showed the asymmetric stretching vibration peaks of epoxy groups (845cm -1 and 908cm).
  • FIG. 3 it is an aramid fiber bundle covered with a double-layer coating of carbon nanotubes and silver nanoparticles and an aramid fiber bundle covered with a three-layer coating of polypyrrole, carbon nanotubes, and silver nanoparticles provided in Example 3 of the present invention Raman spectrum.
  • Carbon nanotubes on the surface of the fiber there are C-H in-plane deformation peaks (1000 ⁇ 1150cm -1 ), and pyrrole ring expansion and contraction in the spectrum of the aramid fiber bundles coated with polypyrrole, carbon nanotubes, and silver nanoparticles.
  • FIG. 4 it is a polyparaphenylene terephthalamide fiber bundle, a polydopamine-coated aramid fiber bundle, a silver nanoparticle-coated aramid fiber bundle, and a carbon nanometer.
  • Example 5 shows the length specific capacitance and volume specific capacitance of the aramid fiber electrochemical capacitor prepared in Example 3 of the present invention and the aramid fiber electrochemical capacitor prepared in Comparative Example 1, Comparative Example 2, and Comparative Example 3. And mass ratio capacitance.
  • the aramid fiber electrochemical capacitor prepared in Example 3 has the best capacitance performance, and its length, volume and mass specific capacitance are 100.1mF / cm, 84.3F / cm 3 and 24.8F / g, respectively.
  • the capacitance retention rate of polymer fiber capacitors containing conductive polymers after 1000 cycles is generally below 92%, and the aramid fiber electrochemical capacitor prepared in Example 3 of the present invention has a capacitance retention rate after 1000 cycles. Reached 95.2%.
  • FIG. 7 it is the ratio of the capacitance of the aramid fiber electrochemical capacitor provided in Example 3 of the present invention to the initial capacitance at different bending angles. Even if the bending angle of the aramid fiber capacitor reaches 180 °, its capacitance has only changed slightly, indicating that the aramid fiber capacitor has good flexibility.
  • FIG. 8 it is an aramid fiber electrochemical capacitor provided in Example 3 of the present invention and after being subjected to 90 ° bending at different times from the aramid fiber electrochemical capacitor provided in Comparative Example 1, Comparative Example 2, and Comparative Example 3. Capacitance retention rate. When the number of bending times reaches 500 times, the capacitance retention rate of the aramid fiber capacitor is 94.5%, which is higher than that of Comparative Example 1 (78.8%), Comparative Example 2 (82.2%), and Comparative Example 3 (87.1%). There is good adhesion between the layers.
  • FIG. 9 it is a stress-strain curve of the aramid fiber coated with the three layers of polypyrrole, carbon nanotubes, and silver nanoparticles provided in Example 3 of the present invention.
  • Polypyrrole, carbon nanotubes, and silver nanoparticles coated aramid fibers have a elongation at break of 3.1%, tensile strength and modulus up to 2521 MPa and 95.4 GPa, indicating good mechanical properties.
  • Comparative Example 3 provides The tensile strength and modulus of the aramid fiber were 2232 MPa and 81.9 GPa, which were lower in Comparative Example 1 and Comparative Example 2.
  • the aramid fiber electrochemical capacitor has a capacitance retention rate of 95.1% after 1000 cycles. When the number of bending times reaches 500 times, the capacitance retention rate of the aramid fiber capacitor is 94.1%.
  • solution A Dissolve 1 g of dopamine hydrochloride and 0.5 g of trimethylolaminomethane hydrochloride in 0.1 L of water to obtain solution A; dissolve 10 g of sodium hydroxide in 0.1 L of water to obtain an aqueous solution of sodium hydroxide; use sodium hydroxide
  • the pH value of solution A was adjusted to 8.5 by the aqueous solution to obtain solution B; 1 g of poly-terephthalyl p-phenylenediamine fiber bundle was immersed in solution B, and shaken at room temperature for 48 hours; after the reaction, the fibers were taken out, washed and dried.
  • a polydopamine-coated aramid fiber bundle was obtained.
  • the aramid fiber electrochemical capacitor has a capacitance retention rate of 95.0% after 1,000 cycles. When the number of bending times reaches 500 times, the capacitance retention rate of the aramid fiber capacitor is 94.2%.
  • solution A Dissolve 0.1 g of dopamine hydrochloride and 0.05 g of trimethylolaminomethane hydrochloride in 100 mL of water to obtain solution A; dissolve 0.1 g of sodium hydroxide in 100 mL of water to obtain an aqueous sodium hydroxide solution; use sodium hydroxide
  • the pH value of solution A was adjusted to 8.5 by the aqueous solution to obtain solution B; 0.1 g of polyisophthaloyl metaphenylene diamine fiber bundles were immersed in solution B and shaken at room temperature for 5 hours; after the reaction, the fibers were taken out, washed and After drying, a polydopamine-coated aramid fiber bundle was obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

一种芳纶纤维电化学电容器及其制备方法。将银纳米粒子、碳纳米管、聚吡咯以化学键合方式依次包覆在芳纶纤维的表面,制备芳纶纤维电极。将两束芳纶纤维电极与电解质缠绕,得到芳纶纤维电化学电容器。与现有技术制备的聚合物纤维电化学电容器相比,该芳纶纤维电化学电容器兼具高比电容、高能量密度、高机械性能、高稳定性、良好的柔性和可穿戴性等特点;制备方法工艺可控,适合大规模应用。

Description

一种芳纶纤维电化学电容器及其制备方法 技术领域
本发明涉及纤维电极、电化学电容器及其制备方法,具体涉及一种芳纶纤维电化学电容器及其制备方法。
背景技术
迄今为止,多种纤维被用于制备纤维电容器的电极。其中,碳纤维易碎,不能频繁弯曲且不易于编织;金属纤维(如不锈钢纤维、镍纤维等)虽具有延展性,却质硬、具有塑性;石墨烯纤维和碳纳米管纤维由于成本较高,不适合大规模生产。聚合物纤维由于具有柔性,是制备可穿戴纤维电极的理想材料。
然而,现有的聚合物纤维电极及其电容器存在三个瓶颈。第一,电极的电导率低,导致低能量密度。聚合物纤维一般通过表面包覆碳材料(如碳纳米管、石墨烯等)、导电聚合物(如聚苯胺、聚吡咯等)或过渡金属氧化物(如二氧化锰、氧化锌等)得到电容性能。尽管包覆了电容材料,但是聚合物纤维对电容性能没有贡献,因此聚合物纤维电极的比电容及其电容器的能量密度一般比较低。第二,无机的包覆物和纤维基体之间粘接较差,在多次变形或电化学循环之后包覆层可能脱落造成性能劣化,导致纤维电容器的可穿戴性较差。第三,现有的聚合物纤维电容器的机械性能还不能达到要求。目前,通常用聚酯纤维、聚酰胺纤维、聚氨酯纤维、棉纤维等作为聚合物纤维电容器的基体,它们的拉伸性能通常很低,主要满足日常生活中的应用,而不适合用于防弹产品等对机械性能有很高要求的领域。
技术问题
因此,制备兼具优异的电化学性能和良好的柔性、可穿戴性的聚合物纤维电容器依然是一个挑战。在聚合物纤维中,芳纶纤维由于具有出色的机械性能、热性能和耐化学性能,自从诞生以来便受到了巨大的关注。但是,与其他聚合物纤维电容器相同,芳纶纤维电容器的电容性能以及与无机包覆物之间的粘接性的问题仍然有待解决。研制兼具优异的电化学性能、机械性能和良好的柔性、可穿戴性的芳纶纤维电容器具有重要应用价值。
技术解决方案
本发明的目的在于提供兼具高比电容、高能量密度、高机械性能、高稳定性、良好的柔性和可穿戴性的芳纶纤维电极及电化学电容器,其制备方法适合大规模应用。
实现本发明目的的技术方案是:
一种芳纶纤维电化学电容器的制备方法,包含如下步骤:
(1)将芳纶纤维束浸没在含有盐酸多巴胺和三羟甲基氨基甲烷盐酸盐的水溶液中,反应得到聚多巴胺包覆的芳纶纤维束;
(2)将聚乙烯吡咯烷酮加入银氨溶液中,得到溶液C;将聚多巴胺包覆的芳纶纤维束加入溶液C中,再滴加葡萄糖水溶液,反应得到银纳米粒子包覆的芳纶纤维束;
(3)将银纳米粒子包覆的芳纶纤维束加入含有γ-(2,3-环氧丙氧)丙基三甲氧基硅烷的水溶液中,反应得到表面带有环氧基的银纳米粒子包覆的芳纶纤维束;
(4)将表面带有环氧基的银纳米粒子包覆的芳纶纤维束加入含有带羧基碳纳米管的乙醇溶液中,反应得到碳纳米管和银纳米粒子双层包覆的芳纶纤维束;
(5)将碳纳米管和银纳米粒子双层包覆的芳纶纤维束加入含有吡咯的水溶液中,再滴加硝酸银水溶液,反应得到聚吡咯、碳纳米管和银纳米粒子三层包覆的芳纶纤维束;
(6)将两股聚吡咯、碳纳米管和银纳米粒子三层包覆的芳纶纤维束浸没在聚乙烯醇凝胶中,然后取出并缠绕在一起,于室温下凝固,得到芳纶纤维电化学电容器;将聚乙烯醇、酸和水于50~100℃下加热1~10h,冷却后得到聚乙烯醇凝胶。
本发明还公开了根据上述制备方法制备的芳纶纤维电化学电容器。
本发明还公开了聚吡咯、碳纳米管和银纳米粒子三层包覆的芳纶纤维束在制备芳纶纤维电化学电容器中的应用。
所述应用中,所述聚吡咯、碳纳米管和银纳米粒子三层包覆的芳纶纤维束的制备方法包含如下步骤:
(1)将芳纶纤维束浸没在含有盐酸多巴胺和三羟甲基氨基甲烷盐酸盐的水溶液中,反应得到聚多巴胺包覆的芳纶纤维束;
(2)将聚乙烯吡咯烷酮加入银氨溶液中,得到溶液C;将聚多巴胺包覆的芳纶纤维束加入溶液C中,再滴加葡萄糖水溶液,反应得到银纳米粒子包覆的芳纶纤维束;
(3)将银纳米粒子包覆的芳纶纤维束加入含有γ-(2,3-环氧丙氧)丙基三甲氧基硅烷的水溶液中,反应得到表面带有环氧基的银纳米粒子包覆的芳纶纤维束;
(4)将表面带有环氧基的银纳米粒子包覆的芳纶纤维束加入含有带羧基碳纳米管的乙醇溶液中,反应得到碳纳米管和银纳米粒子双层包覆的芳纶纤维束;
(5)将碳纳米管和银纳米粒子双层包覆的芳纶纤维束加入含有吡咯的水溶液中,再滴加硝酸银水溶液,反应得到聚吡咯、碳纳米管和银纳米粒子三层包覆的芳纶纤维束。
上述技术方案中,步骤(1)中,所述芳纶纤维包括聚对苯二甲酰对苯二胺纤维、聚间苯二甲酰间苯二胺纤维、聚对苯甲酰胺纤维中的一种或几种;含有盐酸多巴胺和三羟甲基氨基甲烷盐酸盐的水溶液的pH值为8.5,反应为室温振荡反应5~48h;反应结束后将纤维取出清洗并干燥,得到聚多巴胺包覆的芳纶纤维束;盐酸多巴胺、三羟甲基氨基甲烷盐酸盐、芳纶纤维束的质量比为(0.1~1)∶(0.05~0.5)∶(0.1~1)。
上述技术方案中,步骤(2)中,反应为室温下振荡反应10~60min;反应结束后将纤维取出清洗并干燥,得到银纳米粒子包覆的芳纶纤维束;硝酸银、聚乙烯吡咯烷酮、葡萄糖、聚多巴胺包覆的芳纶纤维束的质量比为(0.5~5)∶(0.05~0.5)∶(1~10)∶(0.1~1);步骤(3)中,γ-(2,3-环氧丙氧)丙基三甲氧基硅烷、银纳米粒子包覆的芳纶纤维束的质量比为(0.5~5)∶(0.1~1);步骤(4)中,带羧基碳纳米管、表面带有环氧基的银纳米粒子包覆的芳纶纤维束的质量比为(0.5~5)∶(0.1~1)。
上述技术方案中,步骤(3)中,反应为于50~100℃振荡反应1~10h;反应结束后将纤维取出清洗并干燥,得到表面带有环氧基的银纳米粒子包覆的芳纶纤维束;γ-(2,3-环氧丙氧)丙基三甲氧基硅烷、银纳米粒子包覆的芳纶纤维束的质量比为(0.5~5)∶(0.1~1)。步骤(4)中,反应为于50~80℃振荡反应5~24h;反应结束后将纤维取出清洗并干燥,得到碳纳米管和银纳米粒子双层包覆的芳纶纤维束带羧基碳纳米管、表面带有环氧基的银纳米粒子包覆的芳纶纤维束的质量比为(0.5~5)∶(0.1~1)。
上述技术方案中,步骤(5)中,所述碳纳米管包括多壁碳纳米管、单壁碳纳米管、碳纳米管束中的一种或几种;硝酸银、吡咯、碳纳米管和银纳米粒子双层包覆的芳纶纤维束的质量比为(0.2~4)∶(0.1~2)∶(0.1~1);反应为室温下振荡反应5~48h;反应结束后将纤维取出清洗并干燥,得到芳纶纤维电极。
上述技术方案中,步骤(6)中,所述酸为磷酸、硫酸或其组合;聚乙烯醇、酸、水的质量比为(1~20)∶(1~20)∶100。
本发明公开的芳纶纤维电化学电容器及其制备方法,可如下进行,按质量比:
(1)将0.1~1份盐酸多巴胺和0.05~0.5份三羟甲基氨基甲烷盐酸盐溶解在100份水中,得到溶液A;将0.1~10份氢氧化钠溶解在100份水中,得到氢氧化钠水溶液;用氢氧化钠水溶液调节溶液A的pH值至8.5,得到溶液B;将0.1~1份芳纶纤维束浸没在溶液B中,在室温下振荡5~48h;反应结束后将纤维取出、清洗并干燥,得到聚多巴胺包覆的芳纶纤维束;
(2)将0.5~5份硝酸银溶解在50份水中,逐滴加入氨水至银氨溶液再次澄清,加入0.05~0.5份聚乙烯吡咯烷酮,得到溶液C;将1~10份葡萄糖溶解在50份水中,得到葡萄糖水溶液;向溶液C中加入0.1~1份聚多巴胺包覆的芳纶纤维束,在室温下振荡,同时逐滴加入葡萄糖水溶液,继续在室温下振荡10~60min;反应结束后将纤维取出、清洗并干燥,得到银纳米粒子包覆的芳纶纤维束;
(3)将0.5~5份γ-(2,3-环氧丙氧)丙基三甲氧基硅烷加入100份水中,再加入0.1~1份聚多巴胺和银纳米粒子包覆的芳纶纤维束,于50~100℃振荡1~10h;反应结束后将纤维取出、清洗并干燥,得到表面带有环氧基的银纳米粒子包覆的芳纶纤维束;
(4)将0.5~5份带有羧基的碳纳米管加入80份乙醇中,再加入0.1~1份表面带有环氧基的银纳米粒子包覆的芳纶纤维束,于50~80℃振荡5~24h;反应结束后将纤维取出、清洗并干燥,得到碳纳米管和银纳米粒子双层包覆的芳纶纤维束;
(5)将0.2~4份硝酸银溶解在50份水中,得到硝酸银水溶液;将0.1~2份吡咯加入50份水中,再加入0.1~1份碳纳米管和银纳米粒子双层包覆的芳纶纤维束,在室温下振荡,同时逐滴加入硝酸银水溶液,继续在室温下振荡5~48h;反应结束后将纤维取出、清洗并干燥,得到聚吡咯、碳纳米管和银纳米粒子三层包覆的芳纶纤维束;
(6)将1~20份聚乙烯醇、1~20份酸和100份水于50~100℃下加热1~10h,冷却后得到聚乙烯醇凝胶;
(7)将步骤(5)制备的两股聚吡咯、碳纳米管和银纳米粒子三层包覆的芳纶纤维束浸没在聚乙烯醇凝胶中,将纤维取出并缠绕在一起,凝胶于室温下凝固,得到芳纶纤维电化学电容器。
有益效果
1、本发明设计了银、碳纳米管和聚吡咯的复合包覆层,将聚吡咯的高电容与银、碳纳米管的高电导率相结合,同时由于银和碳纳米管之间存在协同效应,获得的电化学电容器具有高比电容、高能量密度等出色的电化学性能。
2、本发明通过杂化和复合技术在芳纶纤维表面生成包覆层,包覆层与纤维基体之间存在化学作用,银和碳纳米管的存在可以防止聚吡咯的结构发生破坏,获得的电化学电容器具有高稳定性和良好的可穿戴性。
3、本发明使用芳纶纤维作为纤维电化学电容器的基体,获得了兼具良好柔性、高拉伸强度和模量的纤维电化学电容器。
附图说明
图1是实施例3提供的聚对苯二甲酰对苯二胺纤维、聚多巴胺包覆的聚对苯二甲酰对苯二胺纤维、银纳米粒子包覆的聚对苯二甲酰对苯二胺纤维、多壁碳纳米管包覆的聚对苯二甲酰对苯二胺纤维和聚吡咯包覆的聚对苯二甲酰对苯二胺纤维的扫描电镜照片;
图2是实施例3提供的聚对苯二甲酰对苯二胺纤维、聚多巴胺包覆的聚对苯二甲酰对苯二胺纤维、银纳米粒子包覆的聚对苯二甲酰对苯二胺纤维、γ-(2,3-环氧丙氧)丙基三甲氧基硅烷包覆的聚对苯二甲酰对苯二胺纤维、多壁碳纳米管包覆的聚对苯二甲酰对苯二胺纤维和聚吡咯包覆的聚对苯二甲酰对苯二胺纤维的红外光谱;
图3是实施例3提供的多壁碳纳米管包覆的聚对苯二甲酰对苯二胺纤维和聚吡咯包覆的聚对苯二甲酰对苯二胺纤维的拉曼光谱;
图4是实施例3提供的聚对苯二甲酰对苯二胺纤维、聚多巴胺包覆的聚对苯二甲酰对苯二胺纤维、银纳米粒子包覆的聚对苯二甲酰对苯二胺纤维、多壁碳纳米管包覆的聚对苯二甲酰对苯二胺纤维和聚吡咯包覆的聚对苯二甲酰对苯二胺纤维的X射线衍射图;
图5是比较例1、比较例2、比较例3和实施例3提供的芳纶纤维电化学电容器的长度比电容、体积比电容和质量比电容柱状图;
图6是比较例1、比较例2、比较例3和实施例3提供的芳纶纤维电化学电容器的长度能量密度、体积能量密度和质量能量密度柱状图;
图7是实施例3提供的芳纶纤维电化学电容器在不同弯曲角度下的电容与初始电容的比例;
图8是比较例1、比较例2、比较例3和实施例3提供的芳纶纤维电化学电容器在进行不同次数的90°弯曲后电容的保持率;
图9是实施例3提供的聚吡咯包覆的聚对苯二甲酰对苯二胺纤维的应力-应变曲线。
本发明的实施方式
比较例1  聚吡咯包覆的芳纶纤维及其电容器的制备
(1)将0.85g硝酸银溶解在50mL水中,得到硝酸银水溶液;将0.67g吡咯加入50mL水中,再加入0.5g聚对苯二甲酰对苯二胺纤维束,在室温下振荡,同时逐滴加入硝酸银水溶液,继续在室温下振荡24h;反应结束后将纤维取出、清洗并干燥,得到聚吡咯包覆的芳纶纤维束;
(2)将10g聚乙烯醇、10g磷酸和100mL水于90℃下加热5h,冷却后得到聚乙烯醇凝胶;
(3)将两股聚吡咯包覆的芳纶纤维束浸没在聚乙烯醇凝胶中,将纤维取出并缠绕在一起,凝胶于室温下凝固,得到芳纶纤维电化学电容器。其长度比电容、体积比电容和质量比电容柱状图,长度能量密度、体积能量密度和质量能量密度柱状图和不同弯曲次数后的电容保持率分别见附图5、6、8。
比较例2  聚吡咯和银纳米粒子双层包覆的芳纶纤维及其电容器的制备
(1)将0.2g盐酸多巴胺和0.16g三羟甲基氨基甲烷盐酸盐溶解在100mL水中,得到溶液A;将2g氢氧化钠溶解在100mL水中,得到氢氧化钠水溶液;用氢氧化钠水溶液调节溶液A的pH值至8.5,得到溶液B;将0.5g聚对苯二甲酰对苯二胺纤维束浸没在溶液B中,在室温下振荡24h;反应结束后将纤维取出、清洗并干燥,得到聚多巴胺包覆的芳纶纤维束;
(2)将1.5g硝酸银溶解在50mL水中,逐滴加入氨水至银氨溶液再次澄清,加入0.25g聚乙烯吡咯烷酮,得到溶液C;将3g葡萄糖溶解在50mL水中,得到葡萄糖水溶液;向溶液C中加入0.5g聚多巴胺包覆的芳纶纤维束,在室温下振荡,同时逐滴加入葡萄糖水溶液,继续在室温下振荡30min;反应结束后将纤维取出、清洗并干燥,得到银纳米粒子包覆的芳纶纤维束;
(3)将0.85g硝酸银溶解在50mL水中,得到硝酸银水溶液;将0.67g吡咯加入50mL水中,再加入0.5g银纳米粒子包覆的芳纶纤维束,在室温下振荡,同时逐滴加入硝酸银水溶液,继续在室温下振荡24h;反应结束后将纤维取出、清洗并干燥,得到聚吡咯和银纳米粒子双层包覆的芳纶纤维束;
(4)将10g聚乙烯醇、10g磷酸和100mL水于90℃下加热5h,冷却后得到聚乙烯醇凝胶;
(5)将两股聚吡咯和银纳米粒子双层包覆的芳纶纤维束浸没在聚乙烯醇凝胶中,将纤维取出并缠绕在一起,凝胶于室温下凝固,得到芳纶纤维电化学电容器。其长度比电容、体积比电容和质量比电容柱状图,长度能量密度、体积能量密度和质量能量密度柱状图和不同弯曲次数后的电容保持率分别见附图5、6、8。
比较例3 聚吡咯和碳纳米管双层包覆的芳纶纤维及其电容器的制备
(1)将0.2g盐酸多巴胺和0.16g三羟甲基氨基甲烷盐酸盐溶解在100mL水中,得到溶液A;将2g氢氧化钠溶解在100mL水中,得到氢氧化钠水溶液;用氢氧化钠水溶液调节溶液A的pH值至8.5,得到溶液B;将0.5g聚对苯二甲酰对苯二胺纤维束浸没在溶液B中,在室温下振荡24h;反应结束后将纤维取出、清洗并干燥,得到聚多巴胺包覆的芳纶纤维束;
(2)将2.5gγ-(2,3-环氧丙氧)丙基三甲氧基硅烷加入100mL水中,再加入0.5g聚多巴胺包覆的芳纶纤维束,于65℃振荡5h;反应结束后将纤维取出、清洗并干燥,得到表面带有环氧基的芳纶纤维束;
(3)将1g带有羧基的多壁碳纳米管加入100mL乙醇中,再加入0.5g表面带有环氧基的银纳米粒子包覆的芳纶纤维束,于70℃振荡12h;反应结束后将纤维取出、清洗并干燥,得到碳纳米管包覆的芳纶纤维束;
(4)将0.85g硝酸银溶解在50mL水中,得到硝酸银水溶液;将0.67g吡咯加入50mL水中,再加入0.5g碳纳米管和银纳米粒子双层包覆的芳纶纤维束,在室温下振荡,同时逐滴加入硝酸银水溶液,继续在室温下振荡24h;反应结束后将纤维取出、清洗并干燥,得到聚吡咯和碳纳米管双层包覆的芳纶纤维束;
(5)将10g聚乙烯醇、10g磷酸和100mL水于90℃下加热5h,冷却后得到聚乙烯醇凝胶;
(6)将两股聚吡咯和碳纳米管双层包覆的芳纶纤维束浸没在聚乙烯醇凝胶中,将纤维取出并缠绕在一起,凝胶于室温下凝固,得到芳纶纤维电化学电容器。其长度比电容、体积比电容和质量比电容柱状图,长度能量密度、体积能量密度和质量能量密度柱状图和不同弯曲次数后的电容保持率分别见附图5、6、8。
实施例1
(1)将0.1g盐酸多巴胺和0.05g三羟甲基氨基甲烷盐酸盐溶解在100mL水中,得到溶液A;将0.1g氢氧化钠溶解在100mL水中,得到氢氧化钠水溶液;用氢氧化钠水溶液调节溶液A的pH值至8.5,得到溶液B;将0.1g聚对苯二甲酰对苯二胺纤维束浸没在溶液B中,在室温下振荡5h;反应结束后将纤维取出、清洗并干燥,得到聚多巴胺包覆的芳纶纤维束;
(2)将0.5g硝酸银溶解在50mL水中,逐滴加入氨水至银氨溶液再次澄清,加入0.05g聚乙烯吡咯烷酮,得到溶液C;将1g葡萄糖溶解在50mL水中,得到葡萄糖水溶液;向溶液C中加入0.1g聚多巴胺包覆的芳纶纤维束,在室温下振荡,同时逐滴加入葡萄糖水溶液,继续在室温下振荡10min;反应结束后将纤维取出、清洗并干燥,得到银纳米粒子包覆的芳纶纤维束;
(3)将0.5gγ-(2,3-环氧丙氧)丙基三甲氧基硅烷加入100mL水中,再加入0.1g聚多巴胺和银纳米粒子包覆的芳纶纤维束,于50℃振荡1h;反应结束后将纤维取出、清洗并干燥,得到表面带有环氧基的银纳米粒子包覆的芳纶纤维束;
(4)将0.5g带有羧基的多壁碳纳米管加入100mL乙醇中,再加入0.1g表面带有环氧基的银纳米粒子包覆的芳纶纤维束,于50℃振荡5h;反应结束后将纤维取出、清洗并干燥,得到碳纳米管和银纳米粒子双层包覆的芳纶纤维束;
(5)将0.2g硝酸银溶解在50mL水中,得到硝酸银水溶液;将0.1g吡咯加入50mL水中,再加入0.1g碳纳米管和银纳米粒子双层包覆的芳纶纤维束,在室温下振荡,同时逐滴加入硝酸银水溶液,继续在室温下振荡5h;反应结束后将纤维取出、清洗并干燥,得到聚吡咯、碳纳米管和银纳米粒子三层包覆的芳纶纤维束;
(6)将1g聚乙烯醇、1g磷酸和100mL水于50℃下加热1h,冷却后得到聚乙烯醇凝胶;
(7)将两股聚吡咯、碳纳米管和银纳米粒子三层包覆的芳纶纤维束浸没在聚乙烯醇凝胶中,将纤维取出并缠绕在一起,凝胶于室温下凝固,得到芳纶纤维电化学电容器。
实施例2
(1)将0.2g盐酸多巴胺和0.16g三羟甲基氨基甲烷盐酸盐溶解在100mL水中,得到溶液A;将2g氢氧化钠溶解在100mL水中,得到氢氧化钠水溶液;用氢氧化钠水溶液调节溶液A的pH值至8.5,得到溶液B;将0.5g聚对苯二甲酰对苯二胺纤维束浸没在溶液B中,在室温下振荡24h;反应结束后将纤维取出、清洗并干燥,得到聚多巴胺包覆的芳纶纤维束;
(2)将1.5g硝酸银溶解在50mL水中,逐滴加入氨水至银氨溶液再次澄清,加入0.25g聚乙烯吡咯烷酮,得到溶液C;将3g葡萄糖溶解在50mL水中,得到葡萄糖水溶液;向溶液C中加入0.5g聚多巴胺包覆的芳纶纤维束,在室温下振荡,同时逐滴加入葡萄糖水溶液,继续在室温下振荡30min;反应结束后将纤维取出、清洗并干燥,得到银纳米粒子包覆的芳纶纤维束;
(3)将2.5gγ-(2,3-环氧丙氧)丙基三甲氧基硅烷加入100mL水中,再加入0.5g聚多巴胺和银纳米粒子包覆的芳纶纤维束,于65℃振荡5h;反应结束后将纤维取出、清洗并干燥,得到表面带有环氧基的银纳米粒子包覆的芳纶纤维束;
(4)将1g带有羧基的多壁碳纳米管加入100mL乙醇中,再加入0.5g表面带有环氧基的银纳米粒子包覆的芳纶纤维束,于70℃振荡12h;反应结束后将纤维取出、清洗并干燥,得到碳纳米管和银纳米粒子双层包覆的芳纶纤维束;
(5)将0.42g硝酸银溶解在50mL水中,得到硝酸银水溶液;将0.34g吡咯加入50mL水中,再加入0.5g碳纳米管和银纳米粒子双层包覆的芳纶纤维束,在室温下振荡,同时逐滴加入硝酸银水溶液,继续在室温下振荡24h;反应结束后将纤维取出、清洗并干燥,得到聚吡咯、碳纳米管和银纳米粒子三层包覆的芳纶纤维束;
(6)将10g聚乙烯醇、10g磷酸和100mL水于90℃下加热5h,冷却后得到聚乙烯醇凝胶;
(7)将两股聚吡咯、碳纳米管和银纳米粒子三层包覆的芳纶纤维束浸没在聚乙烯醇凝胶中,将纤维取出并缠绕在一起,凝胶于室温下凝固,得到芳纶纤维电化学电容器。
实施例3
(1)~(4)与实施例二一致;
(5)将0.85g硝酸银溶解在50mL水中,得到硝酸银水溶液;将0.67g吡咯加入50mL水中,再加入0.5g碳纳米管和银纳米粒子双层包覆的芳纶纤维束,在室温下振荡,同时逐滴加入硝酸银水溶液,继续在室温下振荡24h;反应结束后将纤维取出、清洗并干燥,得到聚吡咯、碳纳米管和银纳米粒子三层包覆的芳纶纤维束。
(6)~(7)与实施例二一致,得到芳纶纤维电化学电容器。
参见附图1,它是本发明实施例3提供的聚对苯二甲酰对苯二胺纤维,聚多巴胺包覆的芳纶纤维,银纳米粒子包覆的芳纶纤维,碳纳米管和银纳米粒子双层包覆的芳纶纤维与聚吡咯、碳纳米管和银纳米粒子三层包覆的芳纶纤维束的扫描电镜照片。聚对苯二甲酰对苯二胺纤维表面光洁;聚多巴胺包覆的芳纶纤维表面粗糙,有均匀的包覆层;银纳米粒子包覆的芳纶纤维束表面分布着直径约为30nm的银粒子;碳纳米管和银纳米粒子双层包覆的芳纶纤维表面有银粒子和碳纳米管;聚吡咯、碳纳米管和银纳米粒子三层包覆的芳纶纤维表面包覆直径约为1μm的聚吡咯粒子。
参见附图2,它是本发明实施例3提供的聚对苯二甲酰对苯二胺纤维束,聚多巴胺包覆的芳纶纤维束,银纳米粒子包覆的芳纶纤维束,表面带有环氧基的银纳米粒子包覆的芳纶纤维束,碳纳米管和银纳米粒子双层包覆的芳纶纤维束与聚吡咯、碳纳米管和银纳米粒子三层包覆的芳纶纤维束的红外光谱。与聚对苯二甲酰对苯二胺纤维束相比,聚多巴胺包覆的芳纶纤维束的图谱出现了亚甲基的不对称伸缩振动(2929cm -1)和对称伸缩振动(2851cm -1)的特征峰,这是来自于聚多巴胺。与银纳米粒子包覆的芳纶纤维束相比,表面带有环氧基的银纳米粒子包覆的芳纶纤维束的谱图出现了环氧基不对称伸缩振动峰(845cm -1和908cm -1)、Si-O-C伸缩振动峰(1034cm -1)、Si-O伸缩振动峰(1110cm -1)和Si-CH 2-R伸缩振动峰(1200cm -1),这是来自于γ-(2,3-环氧丙氧)丙基三甲氧基硅烷。而在碳纳米管和银纳米粒子双层包覆的芳纶纤维束的谱图中没有观察到环氧基的特征峰。聚吡咯、碳纳米管和银纳米粒子三层包覆的芳纶纤维束的谱图中出现了来自于聚吡咯的C-H面内振动峰(1033cm -1)、C-C伸缩振动峰(1533cm -1)和吡咯环伸缩振动峰(1430cm -1),在1385cm -1出现的强的吸收峰归结于聚吡咯和银之间的相互作用。
参见附图3,它是本发明实施例3提供的碳纳米管和银纳米粒子双层包覆的芳纶纤维束与聚吡咯、碳纳米管和银纳米粒子三层包覆的芳纶纤维束的拉曼光谱。碳纳米管和银纳米粒子双层包覆的芳纶纤维束的谱图中存在碳材料的特征峰,分别是D吸收带(1329cm -1)和G吸收带(1583cm -1),这是来自于纤维表面的碳纳米管;聚吡咯、碳纳米管和银纳米粒子三层包覆的芳纶纤维束的谱图中存在C-H面内变形峰(1000~1150cm -1)、吡咯环伸缩峰(1300~1410cm -1)和C=C骨架伸缩峰(1600cm -1),这些都是聚吡咯的特征峰,表明纤维表面有聚吡咯包覆。
参见附图4,它是本发明实施例3提供的聚对苯二甲酰对苯二胺纤维束,聚多巴胺包覆的芳纶纤维束,银纳米粒子包覆的芳纶纤维束,碳纳米管和银纳米粒子双层包覆的芳纶纤维束与聚吡咯、碳纳米管和银纳米粒子三层包覆的芳纶纤维束的X射线衍射图。在所有谱图中都可以观察到聚对苯二甲酰对苯二胺纤维(110)和(200)的衍射峰叠加形成的宽峰,表明包覆前后纤维的结构未被破坏;与聚对苯二甲酰对苯二胺纤维束和聚多巴胺包覆的芳纶纤维束相比,银纳米粒子包覆的芳纶纤维束,碳纳米管和银纳米粒子双层包覆的芳纶纤维束与聚吡咯、碳纳米管和银纳米粒子三层包覆的芳纶纤维束的谱图中均出现了分别对应(111)、(200)、(220)、(311)和(222)晶面的衍射峰,这是面心立方的银的衍射,证明纤维表面有银包覆。
参见附图5,它是本发明实施例3所制备的芳纶纤维电化学电容器与比较例1、比较例2、比较例3所制备的芳纶纤维电化学电容器的长度比电容、体积比电容和质量比电容。实施例3所制备的芳纶纤维电化学电容器具有最优的电容性能,其长度、体积、质量比电容分别为100.1mF/cm、84.3F/cm 3和24.8F/g;且实验测定的三种比电容均高于其理论值( C 比较例 2C 比较例 3-2× C 比较例 1,其中 C为实验测定的比电容),表明在银与碳纳米管之间存在协同效应,这可能是由于碳纳米管填补了银粒子之间的空隙,形成了更好的导电网络,从而提高了电极的电导率。
参见附图6,它是本发明实施例3所制备的芳纶纤维电化学电容器与比较例1、比较例2、比较例3所制备的芳纶纤维电化学电容器的长度能量密度、体积能量密度和质量能量密度。由于能量密度与比电容成正比,因此与比电容有着相似的规律,即实施例3所制备的芳纶纤维电化学电容器具有最高的能量密度,其长度、体积、质量能量密度分别为8.9μWh/cm、7.49mWh/cm 3和2.21mWh/g。
参见表1,它是本发明实施例3所制备的芳纶纤维电化学电容器与比较例1、比较例2、比较例3所制备的芳纶纤维电化学电容器经过1000次循环伏安后的电容保持率。比较例1的电容保持了最低,比较例2和比较例3的循环性能略有提高,实施例3的循环性能最好。这是因为在循环过程中,聚吡咯在电解质中发生溶胀和收缩,而银粒子、碳纳米管的存在可以防止聚吡咯的结构发生破坏,从而提高循环性能。现有报道中含有导电聚合物的聚合物纤维电容器在1000次循环后电容保持率普遍在92%以下,而本发明实施例3所制备的芳纶纤维电化学电容器在1000次循环后电容保持率达到95.2%。
表1 实施例3与比较例1~3的电容保持率
  比较例1 比较例2 比较例3 实施例3
电容保持率(%) 88.1 90.8 91.0 95.2
参见附图7,它是本发明实施例3提供的芳纶纤维电化学电容器在不同弯曲角度下的电容与初始电容的比例。即使芳纶纤维电容器的弯曲角度达到180°,其电容也仅仅发生了微小的变化,表明芳纶纤维电化学电容器具有良好的柔性。
参见附图8,它是本发明实施例3提供的芳纶纤维电化学电容器和在与比较例1、比较例2、比较例3提供的芳纶纤维电化学电容器进行不同次数的90°弯曲后电容的保持率。当弯曲次数达到500次时,芳纶纤维电容器的电容保持率为94.5%,高于比较例1(78.8%)、比较例2(82.2%)和比较例3(87.1%),表明各包覆层之间存在良好的粘接性。
参见附图9,它是本发明实施例3提供的聚吡咯、碳纳米管和银纳米粒子三层包覆的芳纶纤维的应力-应变曲线。聚吡咯、碳纳米管和银纳米粒子三层包覆的芳纶纤维的断裂伸长率为3.1%,拉伸强度和模量高达2521MPa和95.4GPa,表明具有良好的机械性能,比较例3提供的芳纶纤维拉伸强度和模量为2232MPa和81.9GPa,比较例1、比较例2更低。
实施例4
(1)将0.2g盐酸多巴胺和0.16g三羟甲基氨基甲烷盐酸盐溶解在100mL水中,得到溶液A;将2g氢氧化钠溶解在100mL水中,得到氢氧化钠水溶液;用氢氧化钠水溶液调节溶液A的pH值至8.5,得到溶液B;将0.5g聚对苯二甲酰对苯二胺纤维束浸没在溶液B中,在室温下振荡24h;反应结束后将纤维取出、清洗并干燥,得到聚多巴胺包覆的芳纶纤维束。
(2)将1.5g硝酸银溶解在50mL水中,逐滴加入氨水至银氨溶液再次澄清,加入0.25g聚乙烯吡咯烷酮,得到溶液C;将3g葡萄糖溶解在50mL水中,得到葡萄糖水溶液;向溶液C中加入0.5g聚多巴胺包覆的芳纶纤维束,在室温下振荡,同时逐滴加入葡萄糖水溶液,继续在室温下振荡30min;反应结束后将纤维取出、清洗并干燥,得到银纳米粒子包覆的芳纶纤维束。
(3)将2.5gγ-(2,3-环氧丙氧)丙基三甲氧基硅烷加入100mL水中,再加入0.5g聚多巴胺和银纳米粒子包覆的芳纶纤维束,于65℃振荡5h;反应结束后将纤维取出、清洗并干燥,得到表面带有环氧基的银纳米粒子包覆的芳纶纤维束。
(4)将1g带有羧基的多壁碳纳米管加入100mL乙醇中,再加入0.5g表面带有环氧基的银纳米粒子包覆的芳纶纤维束,于70℃振荡12h;反应结束后将纤维取出、清洗并干燥,得到碳纳米管和银纳米粒子双层包覆的芳纶纤维束。
(5)将1.27g硝酸银溶解在50mL水中,得到硝酸银水溶液;将1.01g吡咯加入50mL水中,再加入0.5g碳纳米管和银纳米粒子双层包覆的芳纶纤维束,在室温下振荡,同时逐滴加入硝酸银水溶液,继续在室温下振荡24h;反应结束后将纤维取出、清洗并干燥,得到聚吡咯、碳纳米管和银纳米粒子三层包覆的芳纶纤维束。
(6)将10g聚乙烯醇、10g磷酸和100mL水于90℃下加热5h,冷却后得到聚乙烯醇凝胶。
(7)将两股聚吡咯、碳纳米管和银纳米粒子三层包覆的芳纶纤维束浸没在聚乙烯醇凝胶中,将纤维取出并缠绕在一起,凝胶于室温下凝固,得到芳纶纤维电化学电容器,在1000次循环后电容保持率达到95.1%,当弯曲次数达到500次时,芳纶纤维电容器的电容保持率为94.1%。
实施例5
(1)将1g盐酸多巴胺和0.5g三羟甲基氨基甲烷盐酸盐溶解在0.1L水中,得到溶液A;将10g氢氧化钠溶解在0.1L水中,得到氢氧化钠水溶液;用氢氧化钠水溶液调节溶液A的pH值至8.5,得到溶液B;将1g聚对苯二甲酰对苯二胺纤维束浸没在溶液B中,室温下振荡48h;反应结束后将纤维取出、清洗并干燥,得到聚多巴胺包覆的芳纶纤维束。
(2)将5g硝酸银溶解在50mL水中,逐滴加入氨水至银氨溶液再次澄清,加入0.5g聚乙烯吡咯烷酮,得到溶液C;将10g葡萄糖溶解在50mL水中,得到葡萄糖水溶液;向溶液C中加入1g聚多巴胺包覆的芳纶纤维束,在室温下振荡,同时逐滴加入葡萄糖水溶液,继续在室温下振荡60min;反应结束后将纤维取出、清洗并干燥,得到银纳米粒子包覆的芳纶纤维束。
(3)将5gγ-(2,3-环氧丙氧)丙基三甲氧基硅烷加入100mL水中,再加入1g聚多巴胺和银纳米粒子包覆的芳纶纤维束,于100℃振荡10h;反应结束后将纤维取出、清洗并干燥,得到表面带有环氧基的银纳米粒子包覆的芳纶纤维束。
(4)将5g带有羧基的多壁碳纳米管加入100mL乙醇中,再加入1g表面带有环氧基的银纳米粒子包覆的芳纶纤维束,于80℃振荡24h;反应结束后将纤维取出、清洗并干燥,得到碳纳米管和银纳米粒子双层包覆的芳纶纤维束。
(5)将4g硝酸银溶解在50mL水中,得到硝酸银水溶液;将2g吡咯加入50mL水中,再加入1g碳纳米管和银纳米粒子双层包覆的芳纶纤维束,在室温下振荡,同时逐滴加入硝酸银水溶液,继续在室温下振荡48h;反应结束后将纤维取出、清洗并干燥,得到聚吡咯、碳纳米管和银纳米粒子三层包覆的芳纶纤维束。
(6)将20g聚乙烯醇、20g磷酸和100mL水于100℃下加热10h,冷却后得到聚乙烯醇凝胶。
(7)将两股聚吡咯、碳纳米管和银纳米粒子三层包覆的芳纶纤维束浸没在聚乙烯醇凝胶中,将纤维取出并缠绕在一起,凝胶于室温下凝固,得到芳纶纤维电化学电容器,在1000次循环后电容保持率达到95.0%,当弯曲次数达到500次时,芳纶纤维电容器的电容保持率为94.2%。
实施例6
(1)将0.1g盐酸多巴胺和0.05g三羟甲基氨基甲烷盐酸盐溶解在100mL水中,得到溶液A;将0.1g氢氧化钠溶解在100mL水中,得到氢氧化钠水溶液;用氢氧化钠水溶液调节溶液A的pH值至8.5,得到溶液B;将0.1g聚间苯二甲酰间苯二胺纤维束浸没在溶液B中,在室温下振荡5h;反应结束后将纤维取出、清洗并干燥,得到聚多巴胺包覆的芳纶纤维束。
(2)将0.5g硝酸银溶解在50mL水中,逐滴加入氨水至银氨溶液再次澄清,加入0.05g聚乙烯吡咯烷酮,得到溶液C;将1g葡萄糖溶解在50mL水中,得到葡萄糖水溶液;向溶液C中加入0.1g聚多巴胺包覆的芳纶纤维束,在室温下振荡,同时逐滴加入葡萄糖水溶液,继续在室温下振荡10min;反应结束后将纤维取出、清洗并干燥,得到银纳米粒子包覆的芳纶纤维束。
(3)将0.5gγ-(2,3-环氧丙氧)丙基三甲氧基硅烷加入100mL水中,再加入0.1g聚多巴胺和银纳米粒子包覆的芳纶纤维束,于50℃振荡1h;反应结束后将纤维取出、清洗并干燥,得到表面带有环氧基的银纳米粒子包覆的芳纶纤维束。
(4)将0.5g带有羧基的单壁碳纳米管加入100mL乙醇中,再加入0.1g表面带有环氧基的银纳米粒子包覆的芳纶纤维束,于50℃振荡5h;反应结束后将纤维取出、清洗并干燥,得到碳纳米管和银纳米粒子双层包覆的芳纶纤维束。
(5)将0.2g硝酸银溶解在50mL水中,得到硝酸银水溶液;将0.1g吡咯加入50mL水中,再加入0.1g碳纳米管和银纳米粒子双层包覆的芳纶纤维束,在室温下振荡,同时逐滴加入硝酸银水溶液,继续在室温下振荡5h;反应结束后将纤维取出、清洗并干燥,得到聚吡咯、碳纳米管和银纳米粒子三层包覆的芳纶纤维束。
(6)将1g聚乙烯醇、1g硫酸和0.1L水于50℃下加热1h,冷却后得到聚乙烯醇凝胶。
(7)将两股聚吡咯、碳纳米管和银纳米粒子三层包覆的芳纶纤维束浸没在聚乙烯醇凝胶中,将纤维取出并缠绕在一起,凝胶于室温下凝固,得到芳纶纤维电化学电容器。

Claims (10)

  1. 一种芳纶纤维电化学电容器的制备方法,其特征在于包含如下步骤:
    (1)将芳纶纤维束浸没在含有盐酸多巴胺和三羟甲基氨基甲烷盐酸盐的水溶液中,反应得到聚多巴胺包覆的芳纶纤维束;
    (2)将聚乙烯吡咯烷酮加入银氨溶液中,得到溶液C;将聚多巴胺包覆的芳纶纤维束加入溶液C中,再滴加葡萄糖水溶液,反应得到银纳米粒子包覆的芳纶纤维束;
    (3)将银纳米粒子包覆的芳纶纤维束加入含有γ-(2,3-环氧丙氧)丙基三甲氧基硅烷的水溶液中,反应得到表面带有环氧基的银纳米粒子包覆的芳纶纤维束;
    (4)将表面带有环氧基的银纳米粒子包覆的芳纶纤维束加入含有带羧基碳纳米管的乙醇溶液中,反应得到碳纳米管和银纳米粒子双层包覆的芳纶纤维束;
    (5)将碳纳米管和银纳米粒子双层包覆的芳纶纤维束加入含有吡咯的水溶液中,再滴加硝酸银水溶液,反应得到聚吡咯、碳纳米管和银纳米粒子三层包覆的芳纶纤维束;
    (6)将两股聚吡咯、碳纳米管和银纳米粒子三层包覆的芳纶纤维束浸没在聚乙烯醇凝胶中,然后取出并缠绕在一起,于室温下凝固,得到芳纶纤维电化学电容器;将聚乙烯醇、酸和水于50~100℃下加热1~10h,冷却后得到聚乙烯醇凝胶。
  2. 根据权利要求1所述的制备方法,其特征在于,步骤(1)中,所述芳纶纤维包括聚对苯二甲酰对苯二胺纤维、聚间苯二甲酰间苯二胺纤维、聚对苯甲酰胺纤维中的一种或几种;含有盐酸多巴胺和三羟甲基氨基甲烷盐酸盐的水溶液的pH值为8.5,反应为室温振荡反应5~48h;反应结束后将纤维取出清洗并干燥,得到聚多巴胺包覆的芳纶纤维束;盐酸多巴胺、三羟甲基氨基甲烷盐酸盐、芳纶纤维束的质量比为(0.1~1)∶(0.05~0.5)∶(0.1~1)。
  3. 根据权利要求1所述的制备方法,其特征在于,步骤(2)中,反应为室温下振荡反应10~60min;反应结束后将纤维取出清洗并干燥,得到银纳米粒子包覆的芳纶纤维束;硝酸银、聚乙烯吡咯烷酮、葡萄糖、聚多巴胺包覆的芳纶纤维束的质量比为(0.5~5)∶(0.05~0.5)∶(1~10)∶(0.1~1);步骤(3)中,γ-(2,3-环氧丙氧)丙基三甲氧基硅烷、银纳米粒子包覆的芳纶纤维束的质量比为(0.5~5)∶(0.1~1);步骤(4)中,带羧基碳纳米管、表面带有环氧基的银纳米粒子包覆的芳纶纤维束的质量比为(0.5~5)∶(0.1~1)。
  4. 根据权利要求1或者2所述的制备方法,其特征在于,步骤(3)中,反应为于50~100℃振荡反应1~10h;反应结束后将纤维取出清洗并干燥,得到表面带有环氧基的银纳米粒子包覆的芳纶纤维束;γ-(2,3-环氧丙氧)丙基三甲氧基硅烷、银纳米粒子包覆的芳纶纤维束的质量比为(0.5~5)∶(0.1~1)。
  5. 根据权利要求1或者2所述的制备方法,其特征在于,步骤(4)中,反应为于50~80℃振荡反应5~24h;反应结束后将纤维取出清洗并干燥,得到碳纳米管和银纳米粒子双层包覆的芳纶纤维束带羧基碳纳米管、表面带有环氧基的银纳米粒子包覆的芳纶纤维束的质量比为(0.5~5)∶(0.1~1)。
  6. 根据权利要求1或者2所述的制备方法,其特征在于,步骤(5)中,所述碳纳米管包括多壁碳纳米管、单壁碳纳米管、碳纳米管束中的一种或几种;硝酸银、吡咯、碳纳米管和银纳米粒子双层包覆的芳纶纤维束的质量比为(0.2~4)∶(0.1~2)∶(0.1~1);反应为室温下振荡反应5~48h;反应结束后将纤维取出清洗并干燥,得到芳纶纤维电极。
  7. 根据权利要求1所述的制备方法,其特征在于,步骤(6)中,所述酸为磷酸、硫酸或其组合;聚乙烯醇、酸、水的质量比为(1~20)∶(1~20)∶100。
  8. 根据权利要求1所述制备方法制备的芳纶纤维电化学电容器。
  9. 聚吡咯、碳纳米管和银纳米粒子三层包覆的芳纶纤维束在制备权利要求8所述芳纶纤维电化学电容器中的应用。
  10. 权利要求9所述的应用,其特征在于,所述聚吡咯、碳纳米管和银纳米粒子三层包覆的芳纶纤维束的制备方法包含如下步骤:
    (1)将芳纶纤维束浸没在含有盐酸多巴胺和三羟甲基氨基甲烷盐酸盐的水溶液中,反应得到聚多巴胺包覆的芳纶纤维束;
    (2)将聚乙烯吡咯烷酮加入银氨溶液中,得到溶液C;将聚多巴胺包覆的芳纶纤维束加入溶液C中,再滴加葡萄糖水溶液,反应得到银纳米粒子包覆的芳纶纤维束;
    (3)将银纳米粒子包覆的芳纶纤维束加入含有γ-(2,3-环氧丙氧)丙基三甲氧基硅烷的水溶液中,反应得到表面带有环氧基的银纳米粒子包覆的芳纶纤维束;
    (4)将表面带有环氧基的银纳米粒子包覆的芳纶纤维束加入含有带羧基碳纳米管的乙醇溶液中,反应得到碳纳米管和银纳米粒子双层包覆的芳纶纤维束;
    (5)将碳纳米管和银纳米粒子双层包覆的芳纶纤维束加入含有吡咯的水溶液中,再滴加硝酸银水溶液,反应得到聚吡咯、碳纳米管和银纳米粒子三层包覆的芳纶纤维束。
PCT/CN2018/094567 2018-07-04 2018-07-04 一种芳纶纤维电化学电容器及其制备方法 WO2020006718A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/759,329 US11942272B2 (en) 2018-07-04 2018-07-04 Aramid fiber electrochemical capacitor and preparation method therefor
PCT/CN2018/094567 WO2020006718A1 (zh) 2018-07-04 2018-07-04 一种芳纶纤维电化学电容器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/094567 WO2020006718A1 (zh) 2018-07-04 2018-07-04 一种芳纶纤维电化学电容器及其制备方法

Publications (1)

Publication Number Publication Date
WO2020006718A1 true WO2020006718A1 (zh) 2020-01-09

Family

ID=69060694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/094567 WO2020006718A1 (zh) 2018-07-04 2018-07-04 一种芳纶纤维电化学电容器及其制备方法

Country Status (2)

Country Link
US (1) US11942272B2 (zh)
WO (1) WO2020006718A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111924880A (zh) * 2020-07-20 2020-11-13 山东理工大学 一种碳包覆五氧化二钽纳米片的制备方法
CN115341386A (zh) * 2022-08-15 2022-11-15 四川华造宏材科技有限公司 柔性导电复合纳米纤维薄膜及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114108325B (zh) * 2021-11-25 2023-06-13 哈尔滨工程大学 一种抗油污和降解染料的复合涂层的制备方法
CN114602334B (zh) * 2022-04-25 2023-08-11 中国海洋大学 一种电阻均匀分布的超疏水聚吡咯油水分离尼龙网的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102881463A (zh) * 2012-08-14 2013-01-16 北京大学 一种纤维状超级电容器及其制备方法
KR20150027458A (ko) * 2013-09-03 2015-03-12 재단법인 포항산업과학연구원 슈퍼캐패시터 전극용 탄소 분말의 제조방법 및 이에 의해 제조된 슈퍼캐패시터 전극용 탄소 분말
CN104485234A (zh) * 2014-12-26 2015-04-01 浙江理工大学 基于纺织纤维和电沉积聚吡咯制备柔性超级电容器
CN108831753A (zh) * 2018-06-20 2018-11-16 苏州大学 一种芳纶纤维电极及其制备方法
CN108831752A (zh) * 2018-06-20 2018-11-16 苏州大学 一种芳纶纤维电化学电容器及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11387053B2 (en) * 2018-07-04 2022-07-12 Soochow University Aramid fiber electrode and preparation method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102881463A (zh) * 2012-08-14 2013-01-16 北京大学 一种纤维状超级电容器及其制备方法
KR20150027458A (ko) * 2013-09-03 2015-03-12 재단법인 포항산업과학연구원 슈퍼캐패시터 전극용 탄소 분말의 제조방법 및 이에 의해 제조된 슈퍼캐패시터 전극용 탄소 분말
CN104485234A (zh) * 2014-12-26 2015-04-01 浙江理工大学 基于纺织纤维和电沉积聚吡咯制备柔性超级电容器
CN108831753A (zh) * 2018-06-20 2018-11-16 苏州大学 一种芳纶纤维电极及其制备方法
CN108831752A (zh) * 2018-06-20 2018-11-16 苏州大学 一种芳纶纤维电化学电容器及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111924880A (zh) * 2020-07-20 2020-11-13 山东理工大学 一种碳包覆五氧化二钽纳米片的制备方法
CN115341386A (zh) * 2022-08-15 2022-11-15 四川华造宏材科技有限公司 柔性导电复合纳米纤维薄膜及其制备方法
CN115341386B (zh) * 2022-08-15 2024-03-26 四川华造宏材科技有限公司 柔性导电复合纳米纤维薄膜及其制备方法

Also Published As

Publication number Publication date
US11942272B2 (en) 2024-03-26
US20200294731A1 (en) 2020-09-17

Similar Documents

Publication Publication Date Title
CN111146011B (zh) 一种芳纶纤维电极
WO2020006718A1 (zh) 一种芳纶纤维电化学电容器及其制备方法
Lu et al. Superelastic hybrid CNT/graphene fibers for wearable energy storage
Han et al. Conducting polymers for flexible supercapacitors
WO2020006719A1 (zh) 一种芳纶纤维电极及其制备方法
Hasan et al. Two-dimensional MXene-based flexible nanostructures for functional nanodevices: a review
Huang et al. Textile‐based electrochemical energy storage devices
Devadas et al. Effect of carbon dots on conducting polymers for energy storage applications
CN110838412B (zh) 一种芳纶纤维电化学电容器
Yang et al. A highly stretchable, fiber-shaped supercapacitor.
Chen et al. Design of Novel Wearable, Stretchable, and Waterproof Cable‐Type Supercapacitors Based on High‐Performance Nickel Cobalt Sulfide‐Coated Etching‐Annealed Yarn Electrodes
Tebyetekerwa et al. Surface self-assembly of functional electroactive nanofibers on textile yarns as a facile approach toward super flexible energy storage
Song et al. Silk-inspired stretchable fiber-shaped supercapacitors with ultrahigh volumetric capacitance and energy density for wearable electronics
Li et al. Stretchable energy storage devices based on carbon materials
Chen et al. Recent approaches and future prospects of bacterial cellulose-based electroconductive materials
CN110982114A (zh) 芳纶/碳纳米管杂化气凝胶薄膜、其制备方法及应用
Xia et al. Ternary nanocomposite of polyaniline/manganese dioxide/titanium nitride nanowire array for supercapacitor electrode
Guan et al. Hydrophilicity improvement of graphene fibers for high-performance flexible supercapacitor
JP6495456B2 (ja) 黒鉛シートおよびその製造方法
CN103450682A (zh) 一种碳纳米管/聚吡咯复合海绵及其制备方法
Zhang et al. A high-performance all-solid-state yarn supercapacitor based on polypyrrole-coated stainless steel/cotton blended yarns
CN109065367B (zh) 一种石墨烯/二氧化锰基非对称同轴纤维超级电容器及其制备和应用
Ren et al. Progress in electrode modification of fibrous supercapacitors
Liu et al. High‐performance textile electrode enhanced by surface modifications of fiberglass cloth with polypyrrole tentacles for flexible supercapacitors
Abu-Thabit et al. Smart textile supercapacitors coated with conducting polymers for energy storage applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18925446

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18925446

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14/06/2021)