WO2020005041A1 - Polarizing plate, liquid crystal panel, and display device - Google Patents

Polarizing plate, liquid crystal panel, and display device Download PDF

Info

Publication number
WO2020005041A1
WO2020005041A1 PCT/KR2019/007955 KR2019007955W WO2020005041A1 WO 2020005041 A1 WO2020005041 A1 WO 2020005041A1 KR 2019007955 W KR2019007955 W KR 2019007955W WO 2020005041 A1 WO2020005041 A1 WO 2020005041A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarizer
polarizing plate
optical laminate
thickness
light transmissive
Prior art date
Application number
PCT/KR2019/007955
Other languages
French (fr)
Korean (ko)
Inventor
서정현
변진석
심재훈
이수경
문주종
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180075899A external-priority patent/KR20200002427A/en
Priority claimed from KR1020190078374A external-priority patent/KR20200078298A/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US16/976,242 priority Critical patent/US11650362B2/en
Priority to CN201980012905.1A priority patent/CN111712742B/en
Priority to EP19826950.8A priority patent/EP3734335B1/en
Priority to JP2020542567A priority patent/JP2021513111A/en
Publication of WO2020005041A1 publication Critical patent/WO2020005041A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Definitions

  • the present invention relates to a polarizing plate, a liquid crystal panel and a display device.
  • the liquid crystal display is a display that visualizes the polarization due to the switching effect of the liquid crystal, and is used in various categories ranging from large-sized TVs as well as small and medium-sized displays such as computers, laptops, electronic watches, and portable terminals.
  • polarizing plates currently in mass production for display devices are dyed polyvinyl alcohol films with dichroic substances such as iodine or dichroic dyes, crosslinked with boron compounds, and then stretched and oriented to form polarizing films (polarizers). What bonded together the protective film which is optically transparent and mechanical strength on both surfaces or one side is used.
  • the stretched polyvinyl alcohol-based film has a problem that shrinkage deformation easily occurs under durability conditions such as high temperature and high humidity.
  • the stress affects the protective film and the liquid crystal cell, resulting in warpage.
  • problems such as a change in physical properties of the polarizing plate including the same and a light leakage phenomenon in the liquid crystal display may occur.
  • the present invention is to provide a polarizing plate which can prevent cracks by implementing a stable internal structure while controlling the thermal contraction rate of the detailed constituent layer, etc. and having a good bending balance, and can prevent light leakage phenomenon of the liquid crystal display device. It is for.
  • this invention is providing the liquid crystal panel and display apparatus which contain the said polarizing plate, respectively.
  • a polarizer In the present specification, a polarizer; A hard coating layer having a thickness of 10 ⁇ m or less formed on one surface side of the polarizer; And an optical laminate including a light transmissive substrate formed on the other side of the polarizer.
  • a polarizer In addition, in this specification, a polarizer; A hard coating layer having a thickness of 10 ⁇ m or less formed on one surface side of the polarizer; And an optical laminate including a light-transmissive substrate formed on the other side of the polarizer; and a second of the optical laminate perpendicular to the first direction with respect to the heat shrinkage strain value in the first direction of the optical laminate.
  • the polarizing plate containing is provided with the ratio of the heat shrink deformation value of a specific range being a specific range.
  • a polarizer In addition, in this specification, a polarizer; A hard coating layer having a thickness of 10 ⁇ m or less formed on one surface side of the polarizer; And an optical laminate including a light transmissive substrate formed on the other surface side of the polarizer, wherein the optical laminate is perpendicular to the first direction with respect to the heat shrinkage strain value in the first direction of the optical laminate.
  • a polarizing plate having a ratio of heat shrinkage strain values in two directions of 0.8 to 1.2 is provided.
  • a liquid crystal panel in which the polarizing plate is formed on at least one surface of a liquid crystal cell is provided.
  • a display device including the polarizing plate is provided.
  • first and second are used to describe various components, which terms are used only for the purpose of distinguishing one component from other components.
  • (meth) acryl [(meth) acryl] is meant to include both acryl and methacryl.
  • the inorganic nanoparticles of the hollow structure refers to particles having a form in which an empty space exists on the surface and / or inside of the inorganic nanoparticles.
  • (co) polymer is meant to include both co-polymers and homo-polymers.
  • a polarizer According to one embodiment of the invention, a polarizer; A hard coating layer having a thickness of 10 ⁇ m or less formed on one surface side of the polarizer; And an optical laminate including a light transmissive substrate formed on the other side of the polarizer, wherein the optical laminate is perpendicular to the first direction with respect to the heat shrinkage strain value in the first direction of the optical laminate.
  • a polarizing plate may be provided in which the ratio of the heat shrinkage strain values in the two directions is 0.8 to 1.2.
  • Triacetyl cellulose (TAC) film which is widely used as a polarizer protective film of a polarizing plate, is weak in water resistance and may be distorted in a high temperature / high humidity environment and causes defects such as light leakage.
  • TAC Triacetyl cellulose
  • the polarizing plate of the embodiment has a ratio (R) of the heat shrinkage strain value in the second direction of the optical laminate perpendicular to the first direction to the heat shrinkage strain value in the first direction of the optical laminate is 0.8 to 1.2, or 0.85.
  • R ratio of the heat shrinkage strain value in the second direction of the optical laminate perpendicular to the first direction to the heat shrinkage strain value in the first direction of the optical laminate.
  • the ratio R may be defined by the following general formula (1).
  • Each of the heat shrinkage strain values in the first direction of the optical laminate and the heat shrinkage strain values in the second direction of the optical laminate are 80 ° C. to 120 ° C. with an initial length in each of the first and second directions of the optical laminate.
  • the difference in length measured after 80 to 120 hours of exposure to temperature More specifically, it may be a difference between an initial length of the first and second directions of the optical laminate and a length measured after 96 hours of exposure to a temperature of 100 ° C.
  • the heat shrinkage strain value in the first direction of the optical laminate and the heat shrinkage strain value in the second direction of the optical laminate may be defined by the following general formulas (2) and (3).
  • the optical laminate may have the largest deformation in a temperature range of about 80 ° C., specifically, in a temperature range of 80 ° C. to 120 ° C., and includes a light-transmitting substrate on one side of the polarizer and less than 10 ⁇ m on the other side.
  • the ratio of the heat shrinkage strain value in the second direction of the optical laminate perpendicular to the first direction to the heat shrinkage strain value in the first direction of the optical laminate is 0.8 to 1.2, Or 0.85 to 1.1.
  • the optically transparent substrate included in the optical laminate is a polymer film, for example, TAC, PET, acrylic resin, cycloolefin polymer (COP), polycarbonate, polymethyl methacrylate (PMMA) and the like
  • the temperature-dependent change or heat shrinkage deformation may be greater than the previous temperature range in the temperature range of about °C
  • the polarizing plate is the first confirmed after 80 to 120 hours exposure to a temperature of 80 °C to 120 °C
  • the ratio of the heat shrinkage strain value in the second direction of the optical laminate perpendicular to the first direction to the heat shrinkage strain value in the direction may be 0.8 to 1.2, thereby realizing better durability against heat deformation or heat shrinkage, It is possible to obtain structural stability that is difficult to achieve in the polarizer of the other structure previously run.
  • the polarizing plate of the embodiment includes the optical laminate and at the same time, including a hard coating layer having a thickness of less than 10um formed on one side of the polarizer, while achieving a thinner thickness, the heat shrinkage and heat between the detailed layers The contracting force can be properly adjusted, and a solid internal structure can be realized.
  • the previously known polarizing plates have a structure in which a triacetyl cellulose (TAC) film or the like is positioned on both sides of the polarizer, whereas the polarizing plate of the embodiment has an optical stack having the above-described characteristics on one side and 10 ⁇ m on the other side.
  • a hard coating layer having a thickness below may be positioned to block water transfer to the PVA film, and to lower the overall thickness of the polarizing film.
  • a first direction of the optical laminate may be an MD direction of the light transmissive substrate, and a second direction of the optical laminate may be a TD direction of the light transmissive substrate.
  • the ratio of the heat shrinkage strain value in the second direction of the optical laminate perpendicular to the first direction to the heat shrinkage strain value in the first direction of the optical laminate is too small or large, the stress transfer at high temperature and high humidity is uneven.
  • the adhesion between the sublayers may be lowered, the polarizer may be lifted between the optical stack, or cracks may be generated in the polarizer, and light leakage of the liquid crystal display may occur.
  • the light transmissive substrate may have a transmittance of 50% or more at a wavelength of 300 nm or more.
  • the polarizer 100 shown in FIG. 1 includes a polarizer 20 and a hard coating layer 30 having a thickness of 10 ⁇ m or less positioned to face each other with the polarizer centered thereon and a light transmissive substrate 10.
  • the light transmissive substrate may have a retardation (Rth) in the thickness direction measured at a wavelength of 400 nm to 800 nm of 3,000 nm or more.
  • the retardation of the light-transmitting substrate By controlling the retardation of the light-transmitting substrate to 3,000 nm or more, 4,000 to 15,000 nm, or 5,000 to 10,000 nm, the rainbow phenomenon due to destructive interference is suppressed, and the visibility of the image display device is improved in accordance with the cellulose ester-based film. You can.
  • the retardation is a refractive index in the slow axis direction (n x ) which is the direction of the largest refractive index in the plane of the light transmissive substrate, a refractive index (n y ) in the fast axis direction which is a direction orthogonal to the slow axis direction, and the light transmittance
  • the thickness d (unit: nm) of the substrate may be calculated by substituting the following Equation 1.
  • this retardation may be, for example, a value measured using an automatic birefringence meter (KOBRA-WR, measuring angle: 0 °, measuring wavelength: 548.2 nm).
  • the retardation can also be obtained by the following method. First, two axial refractive indices (n x , n y ) which are provided in the alignment axis direction of the light-transmitting substrate using two polarizing plates and orthogonal to the orientation axis direction are made by an Abbe type refractive index meter (NAR-4T). Obtain At this time, the axis showing a larger refractive index is defined as the slow axis.
  • the thickness of the light transmissive substrate is measured using an electric micrometer, for example, and the refractive index difference n x -n y (hereinafter, n x -n y is referred to as ⁇ n) is calculated using the refractive index obtained above. And the retardation can be calculated
  • DELTA refractive index difference
  • the refractive index difference ⁇ n may be 0.05 or more, 0.05 to 0.20, or 0.08 to 0.13.
  • the refractive index difference ⁇ n is less than 0.05, the thickness of the light transmissive substrate required to obtain the retardation value described above may be increased.
  • the refractive index difference ⁇ n exceeds 0.20, it is necessary to excessively increase the draw ratio, so that the light-transmitting base material is easily torn and broken, and the practicality as an industrial material may be remarkably lowered, and the heat and moisture resistance is lowered. Can be.
  • the refractive index (n x ) in the slow axis direction of the light transmissive substrate may be 1.60 to 1.80 or 1.65 to 1.75.
  • the refractive index n y in the fast axis direction of the light transmissive substrate having the birefringence in the plane may be 1.50 to 1.70, or 1.55 to 1.65.
  • the light-transmitting substrate is excellent in water resistance, there is little possibility of causing a light leakage phenomenon, it is possible to use a polyethylene terephthalate (PET) film excellent mechanical properties.
  • PET polyethylene terephthalate
  • the light-transmitting substrate has a retardation (Rth) of the thickness direction measured at a wavelength of 400nm to 800nm while the 3,000nm or more It may have low water permeation characteristics. More specifically, the light transmissive substrate may be 100 g / m 2 or less, or 10 to 100 g / m 2 when the moisture permeation amount is measured for 24 hours at 40 ° C. and 100% humidity.
  • the thickness of the light transmissive substrate is not particularly limited, but may be 10 to 150 ⁇ m, 20 to 120 ⁇ m, or 30 to 100 ⁇ m.
  • the thickness of the light transmissive substrate is less than 10 ⁇ m, the thickness of the hard coating layer is too thin, so that warpage occurs, and the flexibility of the light transmissive substrate may be difficult to control the process.
  • the transmittance of the light transmissive substrate may decrease, resulting in a decrease in optical properties, and it is difficult to thin the image display apparatus including the same.
  • the ratio of the thickness of the hard coating layer to the thickness of the light transmissive substrate may be 0.02 to 0.25 in order to prevent the phenomenon that the internal structure of the polarizing plate is more robust and warpage occurs even when exposed to high temperature conditions.
  • the thickness of the light transmissive substrate does not have a proper range compared to the thickness of the hard coating layer, warpage may occur in the polarizing plate, and the flexibility of the light transmissive substrate may be difficult to control the process.
  • the polarizing plate of the embodiment can implement a rigid structure even through a thinner thickness than other polarizing plate structures previously known, and can also have a characteristic that the durable structure or physical properties do not significantly change by external heat.
  • the polarizer; The hard coating layer; And the light transmissive substrate; the combined thickness may be 200 ⁇ m or less.
  • the polarizer may have a thickness of 40 ⁇ m or less, or 1 to 40 ⁇ m
  • the hard coating layer may have a thickness of 10 ⁇ m or less, or 1 to 10 ⁇ m
  • the light transmissive substrate may be 150 ⁇ m. It may have the following thickness.
  • the hard coating layer is not particularly limited in specific composition, for example, the hard coating layer is a binder resin; And inorganic fine particles dispersed in the binder resin and having organic particles having a particle size of 0.5 ⁇ m to 10 ⁇ m or having a particle size of 1 nm to 500 nm.
  • the binder resin included in the hard coating layer may include a photocurable resin.
  • the photocurable resin refers to a polymer of a photopolymerizable compound that can cause a polymerization reaction when light such as ultraviolet rays is irradiated.
  • Examples of the photocurable resin include urethane acrylate oligomers, epoxide acrylate oligomers, reactive acrylate oligomer groups consisting of polyester acrylates and polyether acrylates; And dipentaerythritol hexaacrylate, dipentaerythritol pentaacrylate, pentaerythritol tetraacrylate, pentaerythritol triacrylate, trimethylolpropane triacrylate, glycerin propoxylate triacrylate, trimethylpropane ethoxylate triacrylate , A group consisting of a polyfunctional acrylate monomer composed of trimethylpropyl triacrylate, 1,6-hexanediol diacrylate, tripropylene glycol diacrylate and ethylene glycol diacrylate ; The epoxy resin containing the polymer or copolymer formed from these, and the epoxy group containing an epoxy group, an alicyclic epoxy group, a gly
  • the binder resin may further include a (co) polymer (hereinafter, referred to as a high molecular weight (co) polymer) having a weight average molecular weight of 10,000 g / mol or more together with the photocurable resin described above.
  • the high molecular weight (co) polymer is, for example, at least one polymer selected from the group consisting of cellulose polymers, acrylic polymers, styrene polymers, epoxide polymers, nylon polymers, urethane polymers and polyolefin polymers. It may include.
  • the organic or inorganic fine particles are not particularly limited in particle size, but for example, the organic fine particles may have a particle size of 1 to 10 ⁇ m, and the inorganic particles may have a particle size of 1 nm to 500 nm, or 1 nm to 300 nm.
  • the organic fine particles may have a particle size of 1 to 10 ⁇ m, and the inorganic particles may have a particle size of 1 nm to 500 nm, or 1 nm to 300 nm.
  • the organic or inorganic fine particles included in the hard coating layer are not limited.
  • the organic or inorganic fine particles may be organic fine particles or silicon oxide composed of acrylic resin, styrene resin, epoxide resin, and nylon resin. It may be an inorganic fine particle consisting of titanium dioxide, indium oxide, tin oxide, zirconium oxide and zinc oxide.
  • the polarizing plate of the embodiment includes a polarizer.
  • the polarizer may use a film made of polyvinyl alcohol (PVA) including a polarizer well known in the art, for example, iodine or dichroic dye.
  • PVA polyvinyl alcohol
  • the polarizer may be prepared by dyeing and stretching an iodine or a dichroic dye on a polyvinyl alcohol film, but a method of manufacturing the same is not particularly limited.
  • the polyvinyl alcohol film may be used without particular limitation as long as it contains a polyvinyl alcohol resin or a derivative thereof.
  • examples of the derivative of the polyvinyl alcohol resin include, but are not limited to, polyvinyl formal resin, polyvinyl acetal resin, and the like.
  • the polyvinyl alcohol film may be a commercially available polyvinyl alcohol film generally used in the manufacture of polarizers in the art, for example, P30, PE30, PE60 manufactured by Kureray, M3000, M6000 manufactured by Nippon Synthetic, and the like. have.
  • the polyvinyl alcohol film is not limited thereto, but the polymerization degree may be 1000 to 10000 or 1500 to 5000. When the degree of polymerization satisfies the above range, the molecular motion is free and can be mixed flexibly with iodine or dichroic dye.
  • the polarizer may have a thickness of 40 ⁇ m or less, 30 ⁇ m or less, 20 ⁇ m or less, 1 to 20 ⁇ m, or 1 ⁇ m to 10 ⁇ m. In this case, thin weight reduction of devices, such as a polarizing plate and an image display apparatus containing the said polarizer, is possible.
  • the optical laminate may further include a second hard coating layer having a thickness of 1 to 100 ⁇ m formed on one surface of the light transmissive substrate to face the polarizer.
  • the optical laminate may implement a predetermined optical characteristic or functionality on one surface of the polarizing layer.
  • the second hard coating layer may serve as an antiglare layer, a high refractive index layer, a medium refractive layer, or a conventional hard coating layer.
  • the second hard coating layer may also be a binder resin such as "hard coating layer having a thickness of 10 ⁇ m or less formed on one side of the polarizer"; And inorganic fine particles dispersed in the binder resin and having organic particles having a particle size of 0.5 ⁇ m to 10 ⁇ m or having a particle size of 1 nm to 500 nm.
  • a binder resin such as "hard coating layer having a thickness of 10 ⁇ m or less formed on one side of the polarizer"
  • the optical laminate may further include a low refractive index layer having a refractive index of 1.20 to 1.60 in a wavelength region of 380 nm to 780 nm formed on the other surface of the second hard coating layer.
  • the polarizing plate may further include an antireflection film formed on one surface of the light transmissive substrate so as to face the polarizer.
  • the polarizing plate 100 shown in FIG. 2 includes a polarizer 20 and a hard coating layer 30 and a light transmissive substrate 10 having a thickness of 10 ⁇ m or less positioned to face each other with the polarizer as the center. It includes an antireflection film 40 formed on one surface of the (10).
  • the antireflection film may have an average reflectance of 2% or less in a wavelength range of 380 nm to 780 nm.
  • the anti-reflection film may include a hard coating layer having a thickness of 1 to 100 ⁇ m and a low refractive layer having a refractive index of 1.20 to 1.60 in a wavelength region of 380 nm to 780 nm.
  • the hard coating layer included in the anti-radiation film may also be a binder such as "hard coating layer having a thickness of 10 ⁇ m or less positioned to face the polarizer.” Suzy; And organic fine particles dispersed in the binder resin and having a particle size of 0.5 ⁇ m to 10 ⁇ m and / or inorganic fine particles having a particle size of 1 nm to 500 nm.
  • the binder resin and the organic fine particles having a particle size of 0.5 ⁇ m to 10 ⁇ m or the inorganic fine particles having a particle size of 1 nm to 500 nm include the above-mentioned contents included in the hard coat layer included in the anti-radiation film.
  • the low refractive index layer having a refractive index of 1.20 to 1.60 in the wavelength region of 380 nm to 780 nm may include a binder resin and organic fine particles or organic fine particles dispersed in the binder resin, and optionally include a fluorine-containing compound having a photoreactive functional group, and / Or a silicon compound having a photoreactive functional group.
  • the binder resin comprises a (co) polymer comprising a polyfunctional (meth) acrylate-based repeating unit, such repeating unit being, for example, trimethylolpropane triacrylate (TMPTA), trimethylolpropaneethoxy tri From polyfunctional (meth) acrylate type compounds, such as acrylate (TMPEOTA), glycerin propoxylated triacrylate (GPTA), pentaerythritol tetraacrylate (PETA), or dipentaerythritol hexaacrylate (DPHA) It may be derived.
  • TMPTA trimethylolpropane triacrylate
  • GPTA glycerin propoxylated triacrylate
  • PETA pentaerythritol tetraacrylate
  • DPHA dipentaerythritol hexaacrylate
  • the photoreactive functional group included in the fluorine-containing compound or silicon-based compound may include one or more functional groups selected from the group consisting of (meth) acrylate groups, epoxide groups, vinyl groups (Vinyl), and thiol groups (Thiol). .
  • the fluorine-containing compound including the photoreactive functional group may include: i) an aliphatic compound or an aliphatic ring compound in which one or more photoreactive functional groups are substituted and at least one fluorine is substituted for at least one carbon; ii) a heteroaliphatic compound or a heteroaliphatic ring compound substituted with one or more photoreactive functional groups, at least one hydrogen substituted with fluorine, and one or more carbons substituted with silicon; iii) at least one photoreactive functional group and a polydialkylsiloxane polymer substituted with at least one fluorine in at least one silicon; And iv) a polyether compound substituted with at least one photoreactive functional group and at least one hydrogen is substituted with fluorine.
  • the low refractive layer may include hollow inorganic nanoparticles, solid inorganic nanoparticles, and / or porous inorganic nanoparticles.
  • the hollow inorganic nanoparticles refer to particles having a maximum diameter of less than 200 nm and having a void space on the surface and / or inside thereof.
  • the hollow inorganic nanoparticles may include one or more selected from the group consisting of inorganic fine particles having a number average particle diameter of 1 to 200 nm, or 10 to 100 nm.
  • the hollow inorganic nanoparticles may have a density of 1.50 g / cm 3 to 3.50 g / cm 3.
  • the hollow inorganic nanoparticles may contain at least one reactive functional group selected from the group consisting of a (meth) acrylate group, an epoxide group, a vinyl group (Vinyl), and a thiol group (Thiol) on the surface.
  • a reactive functional group selected from the group consisting of a (meth) acrylate group, an epoxide group, a vinyl group (Vinyl), and a thiol group (Thiol) on the surface.
  • the solid inorganic nanoparticles may include at least one selected from the group consisting of solid inorganic fine particles having a number average particle diameter of 0.5 to 100 nm.
  • the porous inorganic nanoparticles may include one or more selected from the group consisting of inorganic fine particles having a number average particle diameter of 0.5 to 100nm.
  • the low reflection layer is 10 to 400 parts by weight of the inorganic nanoparticles relative to 100 parts by weight of the (co) polymer; And 20 to 300 parts by weight of a fluorine-containing compound and / or a silicon-based compound including the photoreactive functional group.
  • the polarizing plate may further include an adhesive layer disposed between the polarizer and the light transmissive substrate and having a thickness of 0.1 ⁇ m to 5 ⁇ m.
  • various adhesives for polarizing plates used in the art for example, polyvinyl alcohol-based adhesives, polyurethane-based adhesives, acrylic adhesives, cationic or radical adhesives, and the like may be used as the adhesive.
  • the polarizing plate may further include an adhesive layer formed on the other surface of the hard coating film in contact with the polarizer.
  • the adhesive layer may enable attachment of the polarizing plate of the embodiment and the image panel of the image display device.
  • the adhesive layer may be formed using various adhesives well known in the art, and the kind thereof is not particularly limited.
  • the pressure-sensitive adhesive layer may be a rubber pressure sensitive adhesive, an acrylic pressure sensitive adhesive, a silicone pressure sensitive adhesive, a urethane pressure sensitive adhesive, a polyvinyl alcohol pressure sensitive adhesive, a polyvinylpyrrolidone pressure sensitive adhesive, a polyacrylamide pressure sensitive adhesive, a cellulose pressure sensitive adhesive, a vinyl alkyl ether pressure sensitive adhesive, or the like. It can be formed using.
  • FIG. 3 Another example of the polarizing plate 100 of the above embodiment is shown in FIG. 3.
  • the polarizer 100 shown in FIG. 3 includes a polarizer 20 and a hard coating layer 30 and a light transmissive substrate 10 having a thickness of 10 ⁇ m or less positioned to face each other with the polarizer as the center.
  • the thickness of the pressure-sensitive adhesive layer is not particularly limited, for example, may have a thickness of 1 to 50um.
  • a liquid crystal panel in which a polarizing plate is formed on at least one surface of the liquid crystal cell may be provided.
  • FIG. 4 An example of the liquid crystal panel 200 of the above embodiment is illustrated in FIG. 4.
  • the liquid crystal panel 200 illustrated in FIG. 4 has a structure in which the polarizer 100 is formed on one surface of the liquid crystal panel.
  • FIG. 5 Another example of the liquid crystal panel 200 of the above embodiment is illustrated in FIG. 5.
  • the liquid crystal panel 200 shown in FIG. 5 has a structure in which the polarizer 100 is formed on both surfaces of the liquid crystal panel.
  • polarizers of claim 1 may be formed on both surfaces of the liquid crystal cell, and the two polarizers may be formed on one surface different from the MD direction of the polarizer of the polarizer formed on one surface of the liquid crystal cell.
  • the MD direction of the may be positioned to be perpendicular to each other.
  • a display device including the polarizing plate described above may be provided.
  • the display device may be, for example, a device such as a liquid crystal display, a plasma display device, or an organic light emitting diode device.
  • the display device includes a pair of polarizing plates facing each other; A thin film transistor, a color filter, and a liquid crystal cell sequentially stacked between the pair of polarizing plates; And a liquid crystal display device including a backlight unit.
  • the anti-reflection film may be provided on the outermost surface of the observer side or the backlight side of the display panel.
  • the anti-reflection film may be positioned on one surface of the polarizing plate relatively far from the backlight unit among the pair of polarizing plates.
  • the display apparatus may include a display panel; And the polarizing plate disposed on at least one surface of the display panel.
  • the display device may be a liquid crystal display device including a liquid crystal panel and an optical laminate provided on both surfaces of the liquid crystal panel, wherein at least one of the polarizers includes a polarizer according to one embodiment of the present specification. It may be a polarizing plate.
  • the type of liquid crystal panel included in the liquid crystal display device is not particularly limited, but, for example, twisted nematic (TN) type, super twisted nematic (STN) type, F (ferroelectic) type or PD (polymer dispersed) type
  • TN twisted nematic
  • STN super twisted nematic
  • F ferroelectic
  • PD polymer dispersed
  • a passive matrix panel such as; Active matrix panels such as two-terminal or three-terminal; All known panels, such as an In Plane Switching (IPS) panel and a Vertical Alignment (VA) panel, can be applied.
  • IPS In Plane Switching
  • VA Vertical Alignment
  • a polarizing plate capable of preventing cracks by implementing a stable internal structure while controlling the thermal contraction rate of the detailed constituent layers and having a good bending balance, and the light leakage phenomenon of the liquid crystal display device and the A liquid crystal panel and display device including a polarizing plate can be provided.
  • Figure 1 shows an example of a polarizing plate of an embodiment of the invention.
  • FIG. 2 shows another example of a polarizing plate of an embodiment of the invention.
  • Figure 3 shows another example of a polarizing plate of an embodiment of the invention.
  • FIG. 4 shows an example of a liquid crystal panel of an embodiment of the invention.
  • FIG 5 shows another example of a liquid crystal panel of an embodiment of the invention.
  • TMPTA Trimethylolpropane triacrylate
  • PETA pentaerythritol triacrylate
  • SC2152 A compound in which hexamethylene diisocyanurate (HMDI) and an acrylate compound are connected by a urethane bond [mass average molecular weight 20,000 / manufacturer: Miwon Chemical]
  • IRG-184 initiator (Irgacure 184, Ciba)
  • BYK 350 BYK's Leveling Agent
  • XX-103BQ (2.0 ⁇ m 1.515): Copolymerized particles of polystyrene and polymethyl methacrylate (manufactured by Sekisui Plastic)
  • XX-113BQ (2.0 ⁇ m 1.555): Copolymerized particles of polystyrene and polymethyl methacrylate (manufactured by Sekisui Plastic)
  • MA-ST (30% in MeOH): A dispersion in which nanosilica particles of size 10-15 nm are dispersed in methyl alcohol (product of Nissan Chemical)
  • TMPTA trimethylolpropane triacrylate
  • hollow silica nanoparticles hollow silica nanoparticles (diameter range: about 42 nm to 66 nm, manufactured by JSC catalyst and chemicals) 283 g
  • solid silica nano particles solid silica nano particles (diameter range: about 12 nm to 19 nm) 59 g
  • 1st fluorine-containing compound X-71-1203M, ShinEtsu
  • 2nd fluorine-containing compound RS-537, DIC
  • initiator Irgacure 127, Ciba
  • MIBK initiator
  • Heat shrinkage ratio in the MD direction of the polyethylene terephthalate (PET) film used in each of the Examples and Comparative Examples The ratio of the heat shrinkage rate in the TD direction is cut to each PET film to a size of 10cm * 10cm (width * length) 30 to 80 °C After leaving for a minute, the heat shrinkage (modified length / initial length) was calculated for each of the MD and TD directions.
  • PET polyethylene terephthalate
  • PET 1 The heat shrink ratio (MD / TD) is about 1
  • PET 2 The heat shrink ratio (MD / TD) is about 0.5
  • UV lamp was used for H bulb and curing reaction under nitrogen atmosphere. The amount of UV light irradiated during curing is 150 mJ / cm 2.
  • the coating liquid (C) for forming the low reflection layer was coated with a # 4 mayer bar so that the thickness was about 110 to 120 nm, and dried and cured at a temperature described in Tables 2 and 3 for 1 minute. .
  • the dried coating was irradiated with ultraviolet rays of 252 mJ / cm 2 under nitrogen purge.
  • the optical laminate was cut at 12 cm in the MD direction and the TD direction of the polyethylene terephthalate (PET) film, respectively, to obtain a heat shrinkage strain measurement sample. Prepared.
  • the length of each of the MD direction and the TD direction was measured to measure the heat shrinkage strain value in each direction.
  • Ratio (R) heat shrink deformation value in the second direction (TD direction of PET) of the optical laminate / heat shrink deformation value in the first direction (MD direction of the PET) of the optical laminate
  • Hard coating composition was prepared by uniformly mixing 28 g of trimethylloylpropane triacrylate, 2 g of KBE-403, initiator KIP-100f, 0.1 g, and 0.06 g of leveling agent (Tego wet 270).
  • the coating liquid (A) for forming a hard coating layer was applied to a thickness of 7 ⁇ m, and a hard coating layer was formed by irradiating 500 mJ / cm 2 ultraviolet rays to the coating dried under nitrogen purge.
  • the polarizing plate cut into a square having a length of 10 cm on one side is bonded to one surface of a glass for TV (12 cm wide, 12 cm long and 0.7 mm thick) using an adhesive to prepare a sample for thermal shock evaluation. At this time, the polarizing plate is cut so that the MD direction of the polarizer is parallel to one side of the square.
  • the thermal shock test was carried out under the following conditions with respect to the evaluation sample to which the prepared polarizing plate and the polarizing plate were bonded, and measured and confirmed the following three matters.
  • the polarizer and the evaluation sample are placed upright in the thermal shock chamber.
  • the temperature was raised to 80 ° C. at room temperature and left for 30 minutes. After that, the temperature was lowered to ⁇ 30 ° C. and the temperature was adjusted to room temperature after 30 minutes.
  • the bubbles generated between the polarizer and the protective film of the evaluation sample and the bubbles generated between the polarizer and the hard coating layer were visually confirmed to confirm the number of bubbles having a diameter of 5 mm or more.
  • the thermal contraction rate or thermal contraction strain value between the detailed layers is controlled, in particular, in the first direction of the optical laminate. It was confirmed that the ratio of the heat shrinkage strain value in the second direction of the optical laminate perpendicular to the first direction to the heat shrinkage strain value was within 0.8 to 1.2. Accordingly, it was confirmed that the bending balance of the polarizing plates of the above embodiments was also good, and it was possible to prevent cracking of the polarizing plate and to prevent light leakage from the liquid crystal display.

Abstract

The present invention relates to a polarizing plate comprising: a polarizer; a hard coating layer formed on one side of the polarizer and having a thickness of 10um or less; and an optical laminate formed on the other side of the polarizer and including a light-transmissive substrate.

Description

편광판, 액정 패널 및 디스플레이 장치Polarizers, Liquid Crystal Panels and Display Devices
관련 출원(들)과의 상호 인용Cross Citation with Related Application (s)
본 출원은 2018년 6월 29일자 한국특허출원 제 10-2018-0075899호, 2018년 12월 21일자 한국특허출원 제10-2018-0167778호 및 2019년 06월 28일자 한국특허출원 제10-2019-0078374호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.The present application is filed with Korean Patent Application No. 10-2018-0075899 dated June 29, 2018, Korean Patent Application No. 10-2018-0167778 dated December 21, 2018, and Korean Patent Application No. 10-2019 dated June 28, 2019. Claiming the benefit of priority based on -0078374, all contents disclosed in the literature of the corresponding Korean patent applications are incorporated as part of this specification.
본 발명은 편광판, 액정 패널 및 디스플레이 장치에 관한 것이다.The present invention relates to a polarizing plate, a liquid crystal panel and a display device.
액정표시장치는 액정의 스위칭 효과에 의한 편광을 가시화하는 디스플레이로서, 컴퓨터, 노트북, 전자 시계, 휴대용 단말기 등의 중소형 디스플레이뿐만 아니라 대형 TV에 이르기까지 다양한 범주에서 사용되고 있다.The liquid crystal display is a display that visualizes the polarization due to the switching effect of the liquid crystal, and is used in various categories ranging from large-sized TVs as well as small and medium-sized displays such as computers, laptops, electronic watches, and portable terminals.
현재 디스플레이 장치용으로 양산 실용화되고 있는 편광판의 상당수는 폴리비닐알코올계 필름을 요오드나 이색성 염료 등의 이색성 물질로 염색하고, 붕소 화합물로 가교시킨 후, 연신 배향시켜서 이루어지는 편광 필름(편광자)의 양면 혹은 편면에 광학적으로 투명하고 또한 기계적 강도를 가지는 보호필름을 접합한 것이 이용되고 있다.A large number of polarizing plates currently in mass production for display devices are dyed polyvinyl alcohol films with dichroic substances such as iodine or dichroic dyes, crosslinked with boron compounds, and then stretched and oriented to form polarizing films (polarizers). What bonded together the protective film which is optically transparent and mechanical strength on both surfaces or one side is used.
그러나, 연신된 폴리비닐알코올계 필름은 고온 고습과 같은 내구 조건(durability condition)하에서 수축 변형이 쉽게 일어난다는 문제점이 있다. 편광자가 변형되면, 그 응력이 보호필름 및 액정 셀에 영향을 주어 휘어짐이 발생하게 되며 결과적으로 이를 포함하는 편광판의 물성 변화, 액정표시장치에서의 빛샘 현상을 야기하는 등의 문제가 발생한다.However, the stretched polyvinyl alcohol-based film has a problem that shrinkage deformation easily occurs under durability conditions such as high temperature and high humidity. When the polarizer is deformed, the stress affects the protective film and the liquid crystal cell, resulting in warpage. As a result, problems such as a change in physical properties of the polarizing plate including the same and a light leakage phenomenon in the liquid crystal display may occur.
본 발명은, 세부 구성층 열수축율 등이 조절되며 양호한 휨 밸런스(balance)를 가지면서 안정된 내부 구조를 구현하여 크랙을 방지할 수 있고, 액정 표시 장치의 빛샘 현상을 방지할 수 있는 편광판을 제공하기 위한 것이다.The present invention is to provide a polarizing plate which can prevent cracks by implementing a stable internal structure while controlling the thermal contraction rate of the detailed constituent layer, etc. and having a good bending balance, and can prevent light leakage phenomenon of the liquid crystal display device. It is for.
또한 본 발명은, 상기 편광판을 포함하는 액정 패널 및 디스플레이 장치를 각각 제공하기 위한 것이다.Moreover, this invention is providing the liquid crystal panel and display apparatus which contain the said polarizing plate, respectively.
본 명세서에서는, 편광자; 상기 편광자의 일면 측에 형성되는 10um이하의 두께를 갖는 하드 코팅층; 및 상기 편광자의 다른 일면 측에 형성되는 광투과성 기재를 포함한 광학 적층체;를 포함하는 편광판이 제공된다.In the present specification, a polarizer; A hard coating layer having a thickness of 10 μm or less formed on one surface side of the polarizer; And an optical laminate including a light transmissive substrate formed on the other side of the polarizer.
또한 본 명세서에서는, 편광자; 상기 편광자의 일면 측에 형성되는 10um이하의 두께를 갖는 하드 코팅층; 및 상기 편광자의 다른 일면 측에 형성되는 광투과성 기재를 포함한 광학 적층체;를 포함하며 상기 광학 적층체의 제1방향의 열수축 변형값에 대한 상기 제1방향과 수직하는 상기 광학 적층체의 제2방향의 열수축 변형값의 비율이 특정 범위인, 포함하는 편광판이 제공된다.In addition, in this specification, a polarizer; A hard coating layer having a thickness of 10 μm or less formed on one surface side of the polarizer; And an optical laminate including a light-transmissive substrate formed on the other side of the polarizer; and a second of the optical laminate perpendicular to the first direction with respect to the heat shrinkage strain value in the first direction of the optical laminate. The polarizing plate containing is provided with the ratio of the heat shrink deformation value of a specific range being a specific range.
또한 본 명세서에서는, 편광자; 상기 편광자의 일면 측에 형성되는 10um이하의 두께를 갖는 하드 코팅층; 및 상기 편광자의 다른 일면 측에 형성되는 광투과성 기재를 포함한 광학 적층체;를 포함하고,상기 광학 적층체의 제1방향의 열수축 변형값에 대한 상기 제1방향과 수직하는 상기 광학 적층체의 제2방향의 열수축 변형값의 비율이 0.8 내지 1.2인 편광판이 제공된다.In addition, in this specification, a polarizer; A hard coating layer having a thickness of 10 μm or less formed on one surface side of the polarizer; And an optical laminate including a light transmissive substrate formed on the other surface side of the polarizer, wherein the optical laminate is perpendicular to the first direction with respect to the heat shrinkage strain value in the first direction of the optical laminate. A polarizing plate having a ratio of heat shrinkage strain values in two directions of 0.8 to 1.2 is provided.
또한 본 명세서에서는, 상기 편광판이 액정셀의 적어도 일면에 형성되는 액정 패널이 제공된다.In addition, in the present specification, a liquid crystal panel in which the polarizing plate is formed on at least one surface of a liquid crystal cell is provided.
또한 본 명세서에서는, 상기 편광판을 포함하는 디스플레이 장치가 제공된다.In addition, in the present specification, a display device including the polarizing plate is provided.
이하 발명의 구체적인 구현예에 따른 편광판, 액정 패널 및 디스플레이 장치에 대해서 보다 구체적으로 설명하기로 한다.Hereinafter, a polarizing plate, a liquid crystal panel, and a display device according to specific embodiments of the present invention will be described in more detail.
본 발명에서, 제 1, 제 2 등의 용어는 다양한 구성요소들을 설명하는데 사용되며, 상기 용어들은 하나의 구성 요소를 다른 구성 요소로부터 구별하는 목적으로만 사용된다.In the present invention, terms such as first and second are used to describe various components, which terms are used only for the purpose of distinguishing one component from other components.
또한, (메트)아크릴[(meth)acryl]은 아크릴(acryl) 및 메타크릴(methacryl) 양쪽 모두를 포함하는 의미이다.In addition, (meth) acryl [(meth) acryl] is meant to include both acryl and methacryl.
또한, 중공 구조의 무기 나노입자라 함은 무기 나노입자의 표면 및/또는 내부에 빈 공간이 존재하는 형태의 입자를 의미한다.In addition, the inorganic nanoparticles of the hollow structure refers to particles having a form in which an empty space exists on the surface and / or inside of the inorganic nanoparticles.
또한, (공)중합체는 공중합체(co-polymer) 및 단독 중합체(homo-polymer) 양쪽 모두를 포함하는 의미이다.In addition, (co) polymer is meant to include both co-polymers and homo-polymers.
발명의 일 구현예에 따르면, 편광자; 상기 편광자의 일면 측에 형성되는 10um이하의 두께를 갖는 하드 코팅층; 및 상기 편광자의 다른 일면 측에 형성되는 광투과성 기재를 포함한 광학 적층체;를 포함하고, 상기 광학 적층체의 제1방향의 열수축 변형값에 대한 상기 제1방향과 수직하는 상기 광학 적층체의 제2방향의 열수축 변형값의 비율이 0.8 내지 1.2인, 편광판이 제공될 수 있다.According to one embodiment of the invention, a polarizer; A hard coating layer having a thickness of 10 μm or less formed on one surface side of the polarizer; And an optical laminate including a light transmissive substrate formed on the other side of the polarizer, wherein the optical laminate is perpendicular to the first direction with respect to the heat shrinkage strain value in the first direction of the optical laminate. A polarizing plate may be provided in which the ratio of the heat shrinkage strain values in the two directions is 0.8 to 1.2.
편광판의 편광자 보호필름으로 많이 사용중인 트리아세틸 셀룰로오스(TAC) 필름은 내수성이 약하여 고온/고습 환경에서 뒤틀릴 수 있고 빛샘 등의 불량을 유발하는데 반하여, 본 발명자들은 상기 구현예의 편광판에서는 상술한 특성을 갖는 광투과성 기재를 사용함에 따라서 고온 고습 조건에서 장시간 노출되어도 물성이나 형태에 큰 변화가 없는 내구성을 확보할 수 있다는 점을 실험을 통하여 확인하고 발명을 완성하였다.Triacetyl cellulose (TAC) film, which is widely used as a polarizer protective film of a polarizing plate, is weak in water resistance and may be distorted in a high temperature / high humidity environment and causes defects such as light leakage. As a result of using the light-transmitting substrate having, the experiment confirmed that durability can be secured without a great change in physical properties or form even after long-term exposure under high temperature and high humidity conditions.
상기 구현예의 편광판은 상기 광학 적층체의 제1방향의 열수축 변형값에 대한 상기 제1방향과 수직하는 상기 광학 적층체의 제2방향의 열수축 변형값의 비율(R)이 0.8 내지 1.2, 또는 0.85 내지 1.1를 만족하는데, 이에 따라 상기 편광판은 제조 과정에서 60℃ 이상의 온도가 가해지는 경우에도 세부 층간의 열수축율 또는 열수축 변형율 등이 조절되고 편광판의 휨 밸런스(balance)도 양호한 것으로 확인되었으며, 편광판의 크랙을 방지할 수 있고, 액정 표시 장치의 빛샘 현상을 방지할 수 있다.The polarizing plate of the embodiment has a ratio (R) of the heat shrinkage strain value in the second direction of the optical laminate perpendicular to the first direction to the heat shrinkage strain value in the first direction of the optical laminate is 0.8 to 1.2, or 0.85. To 1.1, whereby the heat shrinkage rate or heat shrinkage strain between layers is controlled even when a temperature of 60 ° C. or higher is applied in the manufacturing process, and the warpage balance of the polarizer is also good. Cracks can be prevented and light leakage of the liquid crystal display can be prevented.
상기 비율(R)은 아래의 일반식1로 정의될 수 있다.The ratio R may be defined by the following general formula (1).
[일반식1][Formula 1]
상기 광학 적층체의 제1방향의 열수축 변형값에 대한 상기 제1방향과 수직하는 상기 광학 적층체의 제2방향의 열수축 변형값의 비율(R)Ratio (R) of the heat shrinkage strain value in the second direction of the optical laminate perpendicular to the first direction with respect to the heat shrinkage strain value in the first direction of the optical laminate
= 상기 광학 적층체의 제2방향의 열수축 변형값 / 상기 광학 적층체의 제1방향의 열수축 변형값= Heat shrink deformation value in the second direction of the optical laminate / heat shrink deformation value in the first direction of the optical laminate
상기 광학 적층체의 제1방향의 열수축 변형값 및 상기 광학 적층체의 제2방향의 열수축 변형값 각각은 상기 광학 적층체의 제1방향 및 제2방향 각각의 최초 길이와 80℃ 내지 120℃의 온도에 80 내지 120시간 노출 이후 측정되는 길이값의 차이일 수 있다. 보다 구체적으로 상기 광학 적층체의 상기 제1방향 및 제2방향의 최초 길이와 100℃의 온도에 96시간 노출 이후 측정된 길이 간의 차이일 수 있다.Each of the heat shrinkage strain values in the first direction of the optical laminate and the heat shrinkage strain values in the second direction of the optical laminate are 80 ° C. to 120 ° C. with an initial length in each of the first and second directions of the optical laminate. The difference in length measured after 80 to 120 hours of exposure to temperature. More specifically, it may be a difference between an initial length of the first and second directions of the optical laminate and a length measured after 96 hours of exposure to a temperature of 100 ° C.
상기 광학 적층체의 제1방향의 열수축 변형값 및 상기 광학 적층체의 제2방향의 열수축 변형값 각각은 하기 일반식2 및 일반식3으로 정의될 수 있다.The heat shrinkage strain value in the first direction of the optical laminate and the heat shrinkage strain value in the second direction of the optical laminate may be defined by the following general formulas (2) and (3).
[일반식2][Formula 2]
상기 광학 적층체의 제1방향의 열수축 변형값Heat shrinkage strain value in the first direction of the optical laminate
= 상기 광학 적층체의 제1방향(PET의 MD방향)의 최초 길이 - 80℃ 내지 120℃의 온도에 80 내지 120시간 노출 이후 측정되는 측정되는 상기 광학 적층체의 제1방향(PET의 MD방향) 길이= Initial length of the first direction of the optical laminate (MD direction of PET)-first direction of the optical laminate measured after 80 to 120 hours exposure to a temperature of 80 ° C to 120 ° C (MD direction of PET) ) Length
[일반식3][Formula 3]
상기 광학 적층체의 제2방향의 열수축 변형값Heat shrinkage deformation value in the second direction of the optical laminate
= 상기 광학 적층체의 제2방향(PET의 TD방향)의 최초 길이 - 80℃ 내지 120℃의 온도에 80 내지 120시간 노출 이후 측정되는 상기 광학 적층체의 제2방향(PET의 TD방향) 길이= Initial length of the second direction (TD direction of the PET) of the optical laminate-second length (TD direction of the PET) of the optical laminate measured after 80 to 120 hours exposure to a temperature of 80 ℃ to 120 ℃
상기 광학 적층체는 80℃ 내외의 온도 구간, 구체적으로 80℃ 내지 120℃의 범위의 온도 구간에서 변형이 제일 크게 나타날 수 있는데, 상기 편광자의 일면에 광투과성 기재를 구비하고 다른 일면에 10um이하의 두께를 갖는 하드 코팅층을 구비함에 따라서, 상기 광학 적층체의 제1방향의 열수축 변형값에 대한 상기 제1방향과 수직하는 상기 광학 적층체의 제2방향의 열수축 변형값의 비율이 0.8 내지 1.2, 또는 0.85 내지 1.1를 만족할 수 있다.The optical laminate may have the largest deformation in a temperature range of about 80 ° C., specifically, in a temperature range of 80 ° C. to 120 ° C., and includes a light-transmitting substrate on one side of the polarizer and less than 10 μm on the other side. With the hard coating layer having a thickness, the ratio of the heat shrinkage strain value in the second direction of the optical laminate perpendicular to the first direction to the heat shrinkage strain value in the first direction of the optical laminate is 0.8 to 1.2, Or 0.85 to 1.1.
특히, 상기 광학 적층체에 포함되는 광투과성 기재가 고분자 필름인 경우, 예를 들어 TAC, PET, 아크릴수지, 사이클로올레핀 고분자(COP), 폴리카보네이트, 폴리메틸 메타크릴레이트(PMMA) 등인 경우, 80℃ 내외의 온도 구간에서 승온에 따른 변화나 열수축 변형값이 그 이전의 온도 구간에 비하여 보다 크게 나타날 수 있는데, 상기 편광판은 80℃ 내지 120℃의 온도에 80 내지 120시간 노출 이후에 확인되는 제1방향의 열수축 변형값에 대한 상기 제1방향과 수직하는 상기 광학 적층체의 제2방향의 열수축 변형값의 비율이 0.8 내지 1.2일 수 있어서, 열변형 또는 열수축에 대하여 보다 우수한 내구성을 구현할 수 있으며, 이전에 달려진 다른 구조의 편광판에서 달성하기 어려운 구조적 안정성을 확보할 수 있다.In particular, when the optically transparent substrate included in the optical laminate is a polymer film, for example, TAC, PET, acrylic resin, cycloolefin polymer (COP), polycarbonate, polymethyl methacrylate (PMMA) and the like, 80 The temperature-dependent change or heat shrinkage deformation may be greater than the previous temperature range in the temperature range of about ℃, the polarizing plate is the first confirmed after 80 to 120 hours exposure to a temperature of 80 ℃ to 120 ℃ The ratio of the heat shrinkage strain value in the second direction of the optical laminate perpendicular to the first direction to the heat shrinkage strain value in the direction may be 0.8 to 1.2, thereby realizing better durability against heat deformation or heat shrinkage, It is possible to obtain structural stability that is difficult to achieve in the polarizer of the other structure previously run.
또한, 상기 구현예의 편광판은 상기 광학 적층체를 포함함과 동시에, 상기 편광자의 일면 측에 형성되는 10um이하의 두께를 갖는 하드 코팅층을 포함하여, 보다 얇은 두께를 구현하면서도 세부 층간의 열수축율 및 열수축력 등이 적절하게 조절할 수 있으며, 견고한 내부 구조를 구현할 수 있다.In addition, the polarizing plate of the embodiment includes the optical laminate and at the same time, including a hard coating layer having a thickness of less than 10um formed on one side of the polarizer, while achieving a thinner thickness, the heat shrinkage and heat between the detailed layers The contracting force can be properly adjusted, and a solid internal structure can be realized.
특히, 이전에 알려진 편광판들은 편광자를 중심으로 양쪽에 트리아세틸 셀룰로오스(TAC) 필름 등을 위치하는 구조를 가졌는데 반하여, 상기 구현예의 편광판은 한쪽에 상술한 특성을 갖는 광학 적층체가 위치하고 다른 한쪽에 10um이하의 두께를 갖는 하드 코팅층이 위치하여 PVA필름쪽으로의 수분전달을 차단할 수 있고, 편광필름의 전체 두께를 낮출 수 있다.In particular, the previously known polarizing plates have a structure in which a triacetyl cellulose (TAC) film or the like is positioned on both sides of the polarizer, whereas the polarizing plate of the embodiment has an optical stack having the above-described characteristics on one side and 10 μm on the other side. A hard coating layer having a thickness below may be positioned to block water transfer to the PVA film, and to lower the overall thickness of the polarizing film.
이때, 상기 광학 적층체의 제1방향은 상기 광투과성 기재의 MD 방향 (Machine Direction)이고, 상기 광학 적층체의 제2방향은 상기 광투과성 기재의 TD방향(Transverse Direction)일 수 있다.In this case, a first direction of the optical laminate may be an MD direction of the light transmissive substrate, and a second direction of the optical laminate may be a TD direction of the light transmissive substrate.
상기 광학 적층체의 제1방향의 열수축 변형값에 대한 상기 제1방향과 수직하는 상기 광학 적층체의 제2방향의 열수축 변형값의 비율이 너무 작거나 큰 경우, 고온 고습에서의 응력전달이 불균일하게 발생하여 세부층간의 밀착력이 하락하고, 편광자와 광학적층체 사이가 들뜨거나, 편광판에 크랙이 발생하고, 액정 표시장치의 빛샘 현상이 나타나 기술적으로 불리할 수 있다.When the ratio of the heat shrinkage strain value in the second direction of the optical laminate perpendicular to the first direction to the heat shrinkage strain value in the first direction of the optical laminate is too small or large, the stress transfer at high temperature and high humidity is uneven. In this case, the adhesion between the sublayers may be lowered, the polarizer may be lifted between the optical stack, or cracks may be generated in the polarizer, and light leakage of the liquid crystal display may occur.
상기 광투과성 기재는 300nm 이상의 파장에서 투과율이 50% 이상일 수 있다.The light transmissive substrate may have a transmittance of 50% or more at a wavelength of 300 nm or more.
한편, 상기 구현예의 편광판(100)의 일 예를 도1에 나타내었다. 도1에 도시된 편광판(100)은 편광자(20)와 상기 편광자를 중심으로 대향하도록 위치하는 10um이하의 두께를 갖는 하드 코팅층(30) 및 광투과성 기재(10)를 포함한다.On the other hand, an example of the polarizing plate 100 of the embodiment is shown in FIG. The polarizer 100 shown in FIG. 1 includes a polarizer 20 and a hard coating layer 30 having a thickness of 10 μm or less positioned to face each other with the polarizer centered thereon and a light transmissive substrate 10.
한편, 상기 광투과성 기재는 파장 400㎚ 내지 800㎚에서 측정되는 두께 방향의 리타데이션(Rth)이 3,000 ㎚ 이상일 수 있다.Meanwhile, the light transmissive substrate may have a retardation (Rth) in the thickness direction measured at a wavelength of 400 nm to 800 nm of 3,000 nm or more.
상기 상기 광투과성 기재의 리타데이션을 3,000nm 이상, 4,000 내지 15,000nm, 또는 5,000 내지 10,000nm으로 제어함으로서 상쇄 간섭으로 인한 레인보우 현상이 억제되고, 셀룰로오스에스테르계 필름에 준하게 화상 표시 장치의 시인성을 향상시킬 수 있다.By controlling the retardation of the light-transmitting substrate to 3,000 nm or more, 4,000 to 15,000 nm, or 5,000 to 10,000 nm, the rainbow phenomenon due to destructive interference is suppressed, and the visibility of the image display device is improved in accordance with the cellulose ester-based film. You can.
상기 리타데이션은 광투과성 기재의 면 내에서 가장 굴절률이 큰 방향인 지상축 방향의 굴절률(nx), 상기 지상축 방향과 직교하는 방향인 진상축 방향의 굴절률(ny), 및 상기 광투과성 기재의 두께 d(단위: nm)를, 하기 수학식 1에 대입하여 계산한 것일 수 있다.The retardation is a refractive index in the slow axis direction (n x ) which is the direction of the largest refractive index in the plane of the light transmissive substrate, a refractive index (n y ) in the fast axis direction which is a direction orthogonal to the slow axis direction, and the light transmittance The thickness d (unit: nm) of the substrate may be calculated by substituting the following Equation 1.
[수학식 1][Equation 1]
Re = (nx-ny) * dRe = (n x -n y ) * d
또한, 이러한 리타데이션은 예를 들어 자동 복굴절계(KOBRA-WR, 측정각: 0°, 측정파장: 548.2nm)를 이용하여 측정된 값일 수 있다. 또는, 상기 리타데이션은 다음 방법에서도 구할 수 있다. 우선 2매의 편광판을 이용하여 상기 광투과성 기재의 배향축 방향으로 구비하고, 배향축 방향에 대해서 직교하는 두 개의 축 굴절률(nx, ny)을 Abbe식 굴절률계(NAR-4T)에 의해 구한다. 이때, 보다 큰 굴절률을 나타내는 축을 지상축으로 정의한다. 또한, 상기 광투과성 기재의 두께를 예를 들어 전기 마이크로 미터를 이용하여 측정하고, 앞서 얻은 굴절률을 이용해 굴절률 차이(nx-ny)(이하, nx-ny를 Δn 라 한다)를 산출하고, 이 굴절률 차이(Δn)와 광투과성 기재의 두께 d(nm)와의 곱에 의해 리타데이션을 구할 수 있다.In addition, this retardation may be, for example, a value measured using an automatic birefringence meter (KOBRA-WR, measuring angle: 0 °, measuring wavelength: 548.2 nm). Alternatively, the retardation can also be obtained by the following method. First, two axial refractive indices (n x , n y ) which are provided in the alignment axis direction of the light-transmitting substrate using two polarizing plates and orthogonal to the orientation axis direction are made by an Abbe type refractive index meter (NAR-4T). Obtain At this time, the axis showing a larger refractive index is defined as the slow axis. In addition, the thickness of the light transmissive substrate is measured using an electric micrometer, for example, and the refractive index difference n x -n y (hereinafter, n x -n y is referred to as Δn) is calculated using the refractive index obtained above. And the retardation can be calculated | required by the product of this refractive index difference (DELTA) n and the thickness d (nm) of a transparent base material.
상기 광투과성 기재의 리타데이션이 3000 nm 이상이므로, 굴절률 차이(Δn)는 0.05 이상, 0.05 내지 0.20, 또는 0.08 내지 0.13일 수 있다. 상기 굴절률 차이(Δn)가 0.05 미만이면 상술한 리타데이션 값을 얻기 위해 필요한 상기 광투과성 기재의 두께가 두꺼워질 수 있다. 한편, 굴절률 차이(Δn)가 0.20을 초과하면, 연신 배율을 과도하게 높일 필요가 발생하므로, 상기 광투과성 기재가 찢어지고 파괴되기 쉬어 공업 재료로서의 실용성이 현저하게 저하될 수 있고, 내습열성이 저하될 수 있다.Since the retardation of the light transmissive substrate is 3000 nm or more, the refractive index difference Δn may be 0.05 or more, 0.05 to 0.20, or 0.08 to 0.13. When the refractive index difference Δn is less than 0.05, the thickness of the light transmissive substrate required to obtain the retardation value described above may be increased. On the other hand, when the refractive index difference Δn exceeds 0.20, it is necessary to excessively increase the draw ratio, so that the light-transmitting base material is easily torn and broken, and the practicality as an industrial material may be remarkably lowered, and the heat and moisture resistance is lowered. Can be.
상기 광투과성 기재의 지상축 방향에서의 굴절률 (nx)은 1.60 내지 1.80 또는 1.65 내지 1.75일 수 있다. 한편, 상기 면 내에 복굴절률을 가지는 광투과성 기재의 진상축 방향에서의 굴절률(ny)은 1.50 내지 1.70, 또는 1.55 내지 1.65일 수 있다.The refractive index (n x ) in the slow axis direction of the light transmissive substrate may be 1.60 to 1.80 or 1.65 to 1.75. Meanwhile, the refractive index n y in the fast axis direction of the light transmissive substrate having the birefringence in the plane may be 1.50 to 1.70, or 1.55 to 1.65.
한편, 상기 광투과성 기재로는 내수성이 우수하여 빛샘 현상을 유발할 가능성이 거의 없고, 기계적 물성이 뛰어난 폴리에틸렌 테레프탈레이트(PET) 필름을 사용할 수 있다.On the other hand, as the light-transmitting substrate is excellent in water resistance, there is little possibility of causing a light leakage phenomenon, it is possible to use a polyethylene terephthalate (PET) film excellent mechanical properties.
한편, 상기 광투과성 기재는 파장 400㎚ 내지 800㎚에서 측정되는 두께 방향의 리타데이션(Rth)이 3,000 ㎚ 이상이면서 낮은 수분투과 특성을 가질 수 있다. 보다 구체적으로 상기 광투과성 기재는 40℃, 습도100% 조건에서 24시간 동안의 수분 투과량을 측정하였을 때, 수분 투과량이 100 g/㎡ 이하, 또는 10 내지 100 g/㎡ 일 수 있다.On the other hand, the light-transmitting substrate has a retardation (Rth) of the thickness direction measured at a wavelength of 400nm to 800nm while the 3,000nm or more It may have low water permeation characteristics. More specifically, the light transmissive substrate may be 100 g / m 2 or less, or 10 to 100 g / m 2 when the moisture permeation amount is measured for 24 hours at 40 ° C. and 100% humidity.
한편, 상기 광투과성 기재의 두께가 크게 한정되는 것은 아니지만, 10 내지 150㎛, 20 내지 120㎛, 또는 30 내지 100㎛일 수 있다. 상기 광투과성 기재의 두께가 10㎛ 미만이면 상기 하드 코팅층의 두께보다 지나치게 얇아 휨이 발생하고, 광투과성 기재의 유연성이 떨어져 공정을 제어하기 어려울 수 있다. 또한, 상기 광투과성 기재가 과다하게 두꺼워지면 광투과성 기재의 투과율이 감소하여 광학 물성이 하락할 수 있으며, 이를 포함하는 화상 표시 장치를 박막화하기 어렵다는 문제점이 있다.On the other hand, the thickness of the light transmissive substrate is not particularly limited, but may be 10 to 150㎛, 20 to 120㎛, or 30 to 100㎛. When the thickness of the light transmissive substrate is less than 10 μm, the thickness of the hard coating layer is too thin, so that warpage occurs, and the flexibility of the light transmissive substrate may be difficult to control the process. In addition, when the light transmissive substrate is excessively thick, the transmittance of the light transmissive substrate may decrease, resulting in a decrease in optical properties, and it is difficult to thin the image display apparatus including the same.
상기 편광판의 내부 구조가 보다 견고해지고 고온 조건에 노출되어도 휨이 발생하는 등의 현상을 방지하기 위해서 상기 광투과성 기재의 두께 대비 하드 코팅층의 두께의 비율이 0.02 내지 0.25일 수 있다.The ratio of the thickness of the hard coating layer to the thickness of the light transmissive substrate may be 0.02 to 0.25 in order to prevent the phenomenon that the internal structure of the polarizing plate is more robust and warpage occurs even when exposed to high temperature conditions.
상술한 바와 같이, 상기 광투과성 기재의 두께가 상기 하드 코팅층의 두께 대비 너무 적정 범위를 갖지 못하면, 편광판에 휨이 발생할 수 있고, 광투과성 기재의 유연성이 떨어져 공정을 제어하기 어려울 수 있다As described above, if the thickness of the light transmissive substrate does not have a proper range compared to the thickness of the hard coating layer, warpage may occur in the polarizing plate, and the flexibility of the light transmissive substrate may be difficult to control the process.
한편, 상기 구현예의 편광판은 이전에 알려진 다른 편광판 구조에 비하여 보다 얇은 두께를 통해서도 견고한 구조를 구현할 수 있으며, 또한 외부 열에 의해서 내구 구조나 물성이 크게 변하지 않는 특성을 가질 수 있다.On the other hand, the polarizing plate of the embodiment can implement a rigid structure even through a thinner thickness than other polarizing plate structures previously known, and can also have a characteristic that the durable structure or physical properties do not significantly change by external heat.
보다 구체적으로, 상기 편광자; 상기 하드 코팅층; 및 상기 광투과성 기재;를 합한 두께가 200 ㎛ 이하일 수 있다. 예를 들어, 상기 편광자는 40 ㎛ 이하, 또는 1 내지 40 ㎛ 의 두께를 가질 수 있고, 상기 하드 코팅층은 10um이하, 또는 1 내지 10 ㎛의 두께를 가질 수 있고, 상기 상기 광투과성 기재는 150 ㎛ 이하의 두께를 가질 수 있다.More specifically, the polarizer; The hard coating layer; And the light transmissive substrate; the combined thickness may be 200 μm or less. For example, the polarizer may have a thickness of 40 μm or less, or 1 to 40 μm, the hard coating layer may have a thickness of 10 μm or less, or 1 to 10 μm, and the light transmissive substrate may be 150 μm. It may have the following thickness.
한편, 상기 하드 코팅층은 구체적인 조성이 크게 한정되는 것은 아니나, 예를 들어 상기 하드 코팅층은 바인더 수지; 및 상기 바인더 수지에 분산되고, 0.5㎛ 내지 10㎛의 입경을 갖는 유기 미립자 또는 1 ㎚ 내지 500 ㎚의 입경을 갖는 무기 미립자를 포함할 수 있다.On the other hand, the hard coating layer is not particularly limited in specific composition, for example, the hard coating layer is a binder resin; And inorganic fine particles dispersed in the binder resin and having organic particles having a particle size of 0.5 μm to 10 μm or having a particle size of 1 nm to 500 nm.
상기 하드 코팅층에 포함되는 바인더 수지는 광경화성 수지를 포함할 수 있다. 상기 광경화성 수지는 자외선 등의 광이 조사되면 중합 반응을 일으킬 수 있는 광중합성 화합물의 중합체를 의미한다.The binder resin included in the hard coating layer may include a photocurable resin. The photocurable resin refers to a polymer of a photopolymerizable compound that can cause a polymerization reaction when light such as ultraviolet rays is irradiated.
상기 광경화성 수지의 예로는, 우레탄 아크릴레이트 올리고머, 에폭사이드 아크릴레이트 올리고머, 폴리에스테르 아크릴레이트 및 폴리에테르 아크릴레이트로 이루어진 반응성 아크릴레이트 올리고머 군; 및 디펜타에리스리톨 헥사아크릴레이트, 디펜타에리스리톨 펜타아크릴레이트, 펜타에리스리톨 테트라아크릴레이트, 펜타에리스리톨 트리아크릴레이트, 트리메틸올프로판 트리아크릴레이트, 글리세린 프로폭시레이트 트리아크릴레이트, 트리메틸프로판 에톡시레이트 트리아크릴레이트, 트리메틸프로필 트리아키를레이트, 1,6-헥산디올 디아크릴레이트, 트리프로필렌글리콜 디아크릴레이트 및 에틸렌글리콜 디아크릴레이트로 이루어진 다관능성 아크릴레이트 단량체로 이루어진 군;으로부터 형성된 중합체 또는 공중합체나, 에폭시기, 지환식 에폭시기, 글리시딜기 에폭시기 또는 옥세탄기를 포함하는 에폭시기를 포함한 에폭시 수지 등을 들 수 있다.Examples of the photocurable resin include urethane acrylate oligomers, epoxide acrylate oligomers, reactive acrylate oligomer groups consisting of polyester acrylates and polyether acrylates; And dipentaerythritol hexaacrylate, dipentaerythritol pentaacrylate, pentaerythritol tetraacrylate, pentaerythritol triacrylate, trimethylolpropane triacrylate, glycerin propoxylate triacrylate, trimethylpropane ethoxylate triacrylate , A group consisting of a polyfunctional acrylate monomer composed of trimethylpropyl triacrylate, 1,6-hexanediol diacrylate, tripropylene glycol diacrylate and ethylene glycol diacrylate ; The epoxy resin containing the polymer or copolymer formed from these, and the epoxy group containing an epoxy group, an alicyclic epoxy group, a glycidyl group epoxy group, or an oxetane group, etc. are mentioned.
상기 바인더 수지는 상술한 광경화성 수지와 함께 중량평균분자량이 10,000g/mol 이상인 (공)중합체(이하, 고분자량 (공)중합체라 함)를 더 포함할 수 있다. 상기 고분자량 (공)중합체는, 예를 들어, 셀룰로오스계 폴리머, 아크릴계 폴리머, 스티렌계 폴리머, 에폭사이드계 폴리머, 나일론계 폴리머, 우레탄계 폴리머 및 폴리올레핀계 폴리머로 이루어진 군에서 선택되는 1 종 이상의 폴리머를 포함할 수 있다.The binder resin may further include a (co) polymer (hereinafter, referred to as a high molecular weight (co) polymer) having a weight average molecular weight of 10,000 g / mol or more together with the photocurable resin described above. The high molecular weight (co) polymer is, for example, at least one polymer selected from the group consisting of cellulose polymers, acrylic polymers, styrene polymers, epoxide polymers, nylon polymers, urethane polymers and polyolefin polymers. It may include.
상기 유기 또는 무기 미립자는 입경의 구체적으로 한정되는 것은 아니나, 예들 들어 유기 미립자는 1 내지 10㎛의 입경을 가질 수 있으며, 상기 무기 입자는 1 ㎚ 내지 500 ㎚, 또는 1㎚ 내지 300㎚의 입경을 가질 수 있다.The organic or inorganic fine particles are not particularly limited in particle size, but for example, the organic fine particles may have a particle size of 1 to 10 μm, and the inorganic particles may have a particle size of 1 nm to 500 nm, or 1 nm to 300 nm. Can have
또한, 상기 하드 코팅층에 포함되는 유기 또는 무기 미립자의 구체적인 예가 한정되는 것은 아니나, 예를 들어 상기 유기 또는 무기 미립자는 아크릴계 수지, 스티렌계 수지, 에폭사이드 수지 및 나일론 수지로 이루어진 유기 미립자이거나 산화규소, 이산화티탄, 산화인듐, 산화주석, 산화지르코늄 및 산화아연으로 이루어진 무기 미립자일 수 있다.In addition, specific examples of the organic or inorganic fine particles included in the hard coating layer are not limited. For example, the organic or inorganic fine particles may be organic fine particles or silicon oxide composed of acrylic resin, styrene resin, epoxide resin, and nylon resin. It may be an inorganic fine particle consisting of titanium dioxide, indium oxide, tin oxide, zirconium oxide and zinc oxide.
상기 일 구현예의 편광판은 편광자를 포함한다.The polarizing plate of the embodiment includes a polarizer.
상기 편광자는 당해 기술분야에 잘 알려진 편광자, 예를 들면 요오드 또는 이색성 염료를 포함하는 폴리비닐알콜(PVA)로 이루어진 필름을 사용할 수 있다. 이때, 상기 편광자는 폴리비닐알코올 필름에 요오드 또는 이색성 염료를 염착시키고 연신하여 제조될 수 있으나, 이의 제조방법은 특별히 한정되지 않는다.The polarizer may use a film made of polyvinyl alcohol (PVA) including a polarizer well known in the art, for example, iodine or dichroic dye. In this case, the polarizer may be prepared by dyeing and stretching an iodine or a dichroic dye on a polyvinyl alcohol film, but a method of manufacturing the same is not particularly limited.
한편, 상기 편광자가 폴리비닐알코올 필름인 경우, 폴리비닐알코올 필름은 폴리비닐알코올 수지 또는 그 유도체를 포함하는 것이면 특별한 제한 없이 사용이 가능하다. 이때, 상기 폴리비닐알코올 수지의 유도체로는, 이에 한정되는 것은 아니나, 폴리비닐포르말 수지, 폴리비닐아세탈 수지 등을 들 수 있다. 또는, 상기 폴리비닐알코올 필름은 당해 기술분야에 있어서 편광자 제조에 일반적으로 사용되는 시판되는 폴리비닐알코올 필름, 예를 들어, 구라레 사의 P30, PE30, PE60, 일본합성사의 M3000, M6000 등을 사용할 수 있다.On the other hand, when the polarizer is a polyvinyl alcohol film, the polyvinyl alcohol film may be used without particular limitation as long as it contains a polyvinyl alcohol resin or a derivative thereof. In this case, examples of the derivative of the polyvinyl alcohol resin include, but are not limited to, polyvinyl formal resin, polyvinyl acetal resin, and the like. Alternatively, the polyvinyl alcohol film may be a commercially available polyvinyl alcohol film generally used in the manufacture of polarizers in the art, for example, P30, PE30, PE60 manufactured by Kureray, M3000, M6000 manufactured by Nippon Synthetic, and the like. have.
한편, 상기 폴리비닐알코올 필름은, 이로써 한정되는 것은 아니나, 중합도가 1000 내지 10000 또는 1500 내지 5000일 수 있다. 중합도가 상기 범위를 만족할 때, 분자 움직임이 자유롭고, 요오드 또는 이색성 염료 등과 유연하게 혼합될 수 있다. 또한, 상기 편광자가 두께는 40㎛ 이하, 30㎛ 이하, 20㎛ 이하, 1 내지 20㎛, 또는 1㎛ 내지 10㎛일 수 있다. 이 경우, 상기 편광자를 포함하는 편광판이나 화상 표시 장치 등의 디바이스의 박형 경량화가 가능하다.On the other hand, the polyvinyl alcohol film is not limited thereto, but the polymerization degree may be 1000 to 10000 or 1500 to 5000. When the degree of polymerization satisfies the above range, the molecular motion is free and can be mixed flexibly with iodine or dichroic dye. In addition, the polarizer may have a thickness of 40 μm or less, 30 μm or less, 20 μm or less, 1 to 20 μm, or 1 μm to 10 μm. In this case, thin weight reduction of devices, such as a polarizing plate and an image display apparatus containing the said polarizer, is possible.
한편, 상기 광학 적층체는 상기 편광자와 대향하도록 상기 광투과성 기재의 일면에 형성되는 1 내지 100㎛의 두께를 갖는 제2하드 코팅층을 더 포함할 수 있다.On the other hand, the optical laminate may further include a second hard coating layer having a thickness of 1 to 100㎛ formed on one surface of the light transmissive substrate to face the polarizer.
상기 제2하드 코팅층이 형성됨에 따라서, 상기 광학 적층체는 상기 편광층의 일면 상에서 소정의 광학 특성 또는 기능성을 구현할 수 있다. 예를 들어, 상기 제2하드 코팅층은 방현층, 또는 고굴절층, 또는 중굴절층, 또는 통상의 하드코팅층 등의 역할을 할 수 있다.As the second hard coating layer is formed, the optical laminate may implement a predetermined optical characteristic or functionality on one surface of the polarizing layer. For example, the second hard coating layer may serve as an antiglare layer, a high refractive index layer, a medium refractive layer, or a conventional hard coating layer.
상기 제2하드 코팅층의 구체적인 예가 한정되는 것은 아니나, 상기 제2하드 코팅층 또한 " 상기 편광자의 일면 측에 형성되는 10um이하의 두께를 갖는 하드 코팅층 "과 같이, 바인더 수지; 및 상기 바인더 수지에 분산되고, 0.5㎛ 내지 10㎛의 입경을 갖는 유기 미립자 또는 1 ㎚ 내지 500 ㎚의 입경을 갖는 무기 미립자를 포함할 수 있다.Although a specific example of the second hard coating layer is not limited, the second hard coating layer may also be a binder resin such as "hard coating layer having a thickness of 10 μm or less formed on one side of the polarizer"; And inorganic fine particles dispersed in the binder resin and having organic particles having a particle size of 0.5 μm to 10 μm or having a particle size of 1 nm to 500 nm.
또한, 상기 광학 적층체는 제2하드 코팅층의 다른 일면에 형성되는 380nm 내지 780nm 파장 영역에서의 굴절율이 1.20 내지 1.60인 저굴절층을 더 포함할 수도 있다.The optical laminate may further include a low refractive index layer having a refractive index of 1.20 to 1.60 in a wavelength region of 380 nm to 780 nm formed on the other surface of the second hard coating layer.
상기 편광판은 상기 편광자와 대향하도록 상기 광투과성 기재의 일면에 형성되는 반사 방지 필름을 더 포함할 수 있다.The polarizing plate may further include an antireflection film formed on one surface of the light transmissive substrate so as to face the polarizer.
상기 구현예의 편광판(100)의 또 다른 일 예를 도2에 나타내었다. 도2에 도시된 편광판(100)은 편광자(20)와 상기 편광자를 중심으로 대향하도록 위치하는 10um이하의 두께를 갖는 하드 코팅층(30) 및 광투과성 기재(10)를 포함하며, 상기 광투과성 기재(10)의 일면에 형성된 반사 방지 필름(40)을 포함한다.Another example of the polarizing plate 100 of the above embodiment is shown in FIG. 2. The polarizing plate 100 shown in FIG. 2 includes a polarizer 20 and a hard coating layer 30 and a light transmissive substrate 10 having a thickness of 10 μm or less positioned to face each other with the polarizer as the center. It includes an antireflection film 40 formed on one surface of the (10).
상기 반사 방지 필름은 380nm 내지 780nm 파장 영역에서의 평균 반사율이 2%이하일 수 있다.The antireflection film may have an average reflectance of 2% or less in a wavelength range of 380 nm to 780 nm.
상기 방사 방지 필름은 1 내지 100㎛의 두께를 갖는 하드 코팅층 및 380nm 내지 780nm 파장 영역에서의 굴절율이 1.20 내지 1.60인 저굴절층을 포함할 수 있다.The anti-reflection film may include a hard coating layer having a thickness of 1 to 100 μm and a low refractive layer having a refractive index of 1.20 to 1.60 in a wavelength region of 380 nm to 780 nm.
상기 방사 방지 필름에 포함되는 하드 코팅층의 구체적인 예가 한정되는 것은 아니나, 상기 방사 방지 필름에 포함되는 하드 코팅층 또한 "상기 편광자를 중심으로 대향하도록 위치하는 10um이하의 두께를 갖는 하드 코팅층"과 같이, 바인더 수지; 및 상기 바인더 수지에 분산되고, 0.5㎛ 내지 10㎛의 입경을 갖는 유기 미립자 및/또는 1 ㎚ 내지 500 ㎚의 입경을 갖는 무기 미립자를 포함할 수 있다.Specific examples of the hard coating layer included in the anti-radiation film are not limited, but the hard coating layer included in the anti-radiation film may also be a binder such as "hard coating layer having a thickness of 10 μm or less positioned to face the polarizer." Suzy; And organic fine particles dispersed in the binder resin and having a particle size of 0.5 μm to 10 μm and / or inorganic fine particles having a particle size of 1 nm to 500 nm.
상기 방사 방지 필름에 포함되는 하드 코팅층에 포함되는 상기 바인더 수지 및 0.5㎛ 내지 10㎛의 입경을 갖는 유기 미립자 또는 1 ㎚ 내지 500 ㎚의 입경을 갖는 무기 미립자에 관한 내용은 상술한 내용을 포함한다.The binder resin and the organic fine particles having a particle size of 0.5 μm to 10 μm or the inorganic fine particles having a particle size of 1 nm to 500 nm include the above-mentioned contents included in the hard coat layer included in the anti-radiation film.
상기 380nm 내지 780nm 파장 영역에서의 굴절율이 1.20 내지 1.60인 저굴절층은 바인더 수지와 상기 바인더 수지에 분산된 유기 미립자 또는 유기 미립자를 포함할 수 있으며, 선택적으로 광반응성 작용기를 갖는 함불소 화합물 및/또는 광반응성 작용기를 갖는 실리콘계 화합물을 더 포함할 수 있다.The low refractive index layer having a refractive index of 1.20 to 1.60 in the wavelength region of 380 nm to 780 nm may include a binder resin and organic fine particles or organic fine particles dispersed in the binder resin, and optionally include a fluorine-containing compound having a photoreactive functional group, and / Or a silicon compound having a photoreactive functional group.
상기 바인더 수지는 다관능 (메트)아크릴레이트계 반복단위를 포함하는 (공)중합체를 포함하고, 이러한 반복단위는 예를 들어, 트리메틸올프로페인 트리아크릴레이트(TMPTA), 트리메틸올프로판에톡시 트리아크릴레이트(TMPEOTA), 글리세린 프로폭실화 트리아크릴레이트(GPTA), 펜타에리트리톨 테트라아크릴레이트(PETA), 또는 디펜타에리트리톨 헥사아크릴레이트(DPHA) 등의 다관능 (메트)아크릴레이트계 화합물로부터 유래한 것일 수 있다.The binder resin comprises a (co) polymer comprising a polyfunctional (meth) acrylate-based repeating unit, such repeating unit being, for example, trimethylolpropane triacrylate (TMPTA), trimethylolpropaneethoxy tri From polyfunctional (meth) acrylate type compounds, such as acrylate (TMPEOTA), glycerin propoxylated triacrylate (GPTA), pentaerythritol tetraacrylate (PETA), or dipentaerythritol hexaacrylate (DPHA) It may be derived.
상기 함불소 화합물 또는 실리콘계 화합물에 포함되는 광반응성 작용기는 (메트)아크릴레이트기, 에폭사이드기, 비닐기(Vinyl) 및 싸이올기(Thiol)로 이루어진 군에서 선택된 1종 이상의 작용기를 포함할 수 있다.The photoreactive functional group included in the fluorine-containing compound or silicon-based compound may include one or more functional groups selected from the group consisting of (meth) acrylate groups, epoxide groups, vinyl groups (Vinyl), and thiol groups (Thiol). .
상기 광반응성 작용기를 포함한 함불소 화합물은 i) 하나 이상의 광반응성 작용기가 치환되고, 적어도 하나의 탄소에 1이상의 불소가 치환된 지방족 화합물 또는 지방족 고리 화합물; ii) 1 이상의 광반응성 작용기로 치환되고, 적어도 하나의 수소가 불소로 치환되고, 하나 이상의 탄소가 규소로 치환된 헤테로(hetero) 지방족 화합물 또는 헤테로(hetero)지방족 고리 화합물; iii) 하나 이상의 광반응성 작용기가 치환되고, 적어도 하나의 실리콘에 1이상의 불소가 치환된 폴리디알킬실록산계 고분자; 및 iv) 1 이상의 광반응성 작용기로 치환되고 적어도 하나의 수소가 불소로 치환된 폴리에테르 화합물;로 이루어진 군에서 선택된 1종 이상의 화합물일 수 있다.The fluorine-containing compound including the photoreactive functional group may include: i) an aliphatic compound or an aliphatic ring compound in which one or more photoreactive functional groups are substituted and at least one fluorine is substituted for at least one carbon; ii) a heteroaliphatic compound or a heteroaliphatic ring compound substituted with one or more photoreactive functional groups, at least one hydrogen substituted with fluorine, and one or more carbons substituted with silicon; iii) at least one photoreactive functional group and a polydialkylsiloxane polymer substituted with at least one fluorine in at least one silicon; And iv) a polyether compound substituted with at least one photoreactive functional group and at least one hydrogen is substituted with fluorine.
상기 저굴절층은 중공형 무기 나노 입자, 솔리드형 무기 나노 입자 및/또는 다공성 무기 나노입자를 포함할 수도 있다.The low refractive layer may include hollow inorganic nanoparticles, solid inorganic nanoparticles, and / or porous inorganic nanoparticles.
상기 중공형 무기 나노 입자는 200㎚ 미만의 최대 직경을 가지며 그 표면 및/또는 내부에 빈 공간이 존재하는 형태의 입자를 의미한다. 상기 중공형 무기 나노 입자는 1 내지 200㎚, 또는 10 내지 100㎚ 의 수평균 입경을 갖는 무기 미세 입자로 이루어진 군에서 선택된 1종 이상을 포함할 수 있다. 또한, 상기 중공형 무기 나노 입자는 1.50g/㎤ 내지 3.50g/㎤의 밀도를 가질 수 있다.The hollow inorganic nanoparticles refer to particles having a maximum diameter of less than 200 nm and having a void space on the surface and / or inside thereof. The hollow inorganic nanoparticles may include one or more selected from the group consisting of inorganic fine particles having a number average particle diameter of 1 to 200 nm, or 10 to 100 nm. In addition, the hollow inorganic nanoparticles may have a density of 1.50 g / cm 3 to 3.50 g / cm 3.
상기 중공형 무기 나노 입자는 표면에 (메트)아크릴레이트기, 에폭사이드기, 비닐기(Vinyl) 및 싸이올기(Thiol)로 이루어진 군에서 선택된 1종 이상의 반응성 작용기를 함유할 수 있다. 상기 중공형 무기 나노 입자 표면에 상술한 반응성 작용기를 함유함에 따라서, 보다 높은 가교도를 가질 수 있다.The hollow inorganic nanoparticles may contain at least one reactive functional group selected from the group consisting of a (meth) acrylate group, an epoxide group, a vinyl group (Vinyl), and a thiol group (Thiol) on the surface. By containing the reactive functional group described above on the surface of the hollow inorganic nanoparticles, it may have a higher degree of crosslinking.
상기 솔리드형 무기 나노입자는 0.5 내지 100nm의 수평균 입경을 갖는 솔리드형 무기 미세 입자로 이루어진 군에서 선택된 1종 이상을 포함할 수 있다.The solid inorganic nanoparticles may include at least one selected from the group consisting of solid inorganic fine particles having a number average particle diameter of 0.5 to 100 nm.
상기 다공성 무기 나노입자는 0.5 내지 100nm의 수평균 입경을 갖는 무기 미세 입자로 이루어진 군에서 선택된 1종 이상을 포함할 수 있다.The porous inorganic nanoparticles may include one or more selected from the group consisting of inorganic fine particles having a number average particle diameter of 0.5 to 100nm.
상기 저반사층은 상기 (공)중합체 100중량부 대비 상기 무기 나노 입자 10 내지 400중량부; 및 상기 광반응성 작용기를 포함한 함불소 화합물 및/또는 실리콘계 화합물 20 내지 300중량부를 포함할 수 있다.The low reflection layer is 10 to 400 parts by weight of the inorganic nanoparticles relative to 100 parts by weight of the (co) polymer; And 20 to 300 parts by weight of a fluorine-containing compound and / or a silicon-based compound including the photoreactive functional group.
상기 편광판은 상기 편광자와 상기 광투과성 기재 사이에 위치하고 0.1㎛ 내지 5㎛의 두께를 갖는 접착층;을 더 포함할 수 있다.The polarizing plate may further include an adhesive layer disposed between the polarizer and the light transmissive substrate and having a thickness of 0.1 μm to 5 μm.
상기 접착층에는 상기 접착제로는 당해 기술 분야에서 사용되는 다양한 편광판용 접착제들, 예를 들면, 폴리비닐알코올계 접착제, 폴리우레탄계 접착제, 아크릴계 접착제, 양이온계 또는 라디칼계 접착제 등이 제한 없이 사용될 수 있다.As the adhesive, various adhesives for polarizing plates used in the art, for example, polyvinyl alcohol-based adhesives, polyurethane-based adhesives, acrylic adhesives, cationic or radical adhesives, and the like may be used as the adhesive.
한편, 상기 편광판은 상기 편광자와 접하는 하드 코팅필름의 다른 일면에 형성된 점착층을 더 포함할 수도 있다.On the other hand, the polarizing plate may further include an adhesive layer formed on the other surface of the hard coating film in contact with the polarizer.
상기 점착층은 상기 일 구현예의 편광판과 화상 표시 장치의 화상 패널의 부착이 가능하게 할 수 있다. 상기 점착층은 당해 기술 분야에 잘 알려져 있는 다양한 점착제들을 사용하여 형성될 수 있으며, 그 종류가 특별히 제한되는 것은 아니다. 예를 들면, 상기 점착층은 고무계 점착제, 아크릴계 점착제, 실리콘계 점착제, 우레탄계 점착제, 폴리비닐알코올계 점착제, 폴리비닐피롤리돈계 점착제, 폴리아크릴아미드계 점착제, 셀룰로오스계 점착제, 비닐알킬에테르계 점착제 등을 이용하여 형성될 수 있다.The adhesive layer may enable attachment of the polarizing plate of the embodiment and the image panel of the image display device. The adhesive layer may be formed using various adhesives well known in the art, and the kind thereof is not particularly limited. For example, the pressure-sensitive adhesive layer may be a rubber pressure sensitive adhesive, an acrylic pressure sensitive adhesive, a silicone pressure sensitive adhesive, a urethane pressure sensitive adhesive, a polyvinyl alcohol pressure sensitive adhesive, a polyvinylpyrrolidone pressure sensitive adhesive, a polyacrylamide pressure sensitive adhesive, a cellulose pressure sensitive adhesive, a vinyl alkyl ether pressure sensitive adhesive, or the like. It can be formed using.
상기 구현예의 편광판(100)의 또 다른 일 예를 도3에 나타내었다. 도3에 도시된 편광판(100)은 편광자(20)와 상기 편광자를 중심으로 대향하도록 위치하는 10um이하의 두께를 갖는 하드 코팅층(30) 및 광투과성 기재(10)를 포함하며, 상기 광투과성 기재(10)의 일면에 형성된 반사 방지 필름(40)을 포함하며, 상기 편광자와 상기 광투과성 기재 사이에 위치하는 접착층(50)과 상기 편광자와 접하는 하드 코팅필름의 다른 일면에 형성된 점착층(60)을 포함한다.Another example of the polarizing plate 100 of the above embodiment is shown in FIG. 3. The polarizer 100 shown in FIG. 3 includes a polarizer 20 and a hard coating layer 30 and a light transmissive substrate 10 having a thickness of 10 μm or less positioned to face each other with the polarizer as the center. An anti-reflection film 40 formed on one surface of the (10), and the adhesive layer 60 formed between the polarizer and the light transmissive substrate and the adhesive layer 60 formed on the other surface of the hard coating film in contact with the polarizer It includes.
상기 점착층의 두께도 크게 한정되는 것은 아니며, 예를 들어 1 내지 50um의 두께를 가질 수 있다.The thickness of the pressure-sensitive adhesive layer is not particularly limited, for example, may have a thickness of 1 to 50um.
발명의 또 다른 구현예에 따르면, 액정셀의 적어도 일면에 편광판이 형성되는 액정 패널이 제공될 수 있다.According to another embodiment of the invention, a liquid crystal panel in which a polarizing plate is formed on at least one surface of the liquid crystal cell may be provided.
상기 구현예의 액정패널(200)의 일 예를 도4에 나타내었다. 도4에 도시된 액정패널(200)은 액정 패널의 일면 상에 상기 편광판(100)의 형성된 구조를 갖는다.An example of the liquid crystal panel 200 of the above embodiment is illustrated in FIG. 4. The liquid crystal panel 200 illustrated in FIG. 4 has a structure in which the polarizer 100 is formed on one surface of the liquid crystal panel.
또한, 상기 구현예의 액정패널(200)의 다른 일 예를 도5에 나타내었다. 도5에 도시된 액정패널(200)은 액정 패널의 양면 상에 상기 편광판(100)의 형성된 구조를 갖는다.In addition, another example of the liquid crystal panel 200 of the above embodiment is illustrated in FIG. 5. The liquid crystal panel 200 shown in FIG. 5 has a structure in which the polarizer 100 is formed on both surfaces of the liquid crystal panel.
상기 액정 패널에서, 상기 액정셀의 양면에 제1항의 편광판이 각각 형성될 수 있으며, 상기 2개의 편광판은 상기 액정셀의 일면에 형성되는 편광판의 편광자의 MD방향과 다른 일면에 형성되는 편광판의 편광자의 MD방향이 서로 수직하도록 위치할 수 있다.In the liquid crystal panel, polarizers of claim 1 may be formed on both surfaces of the liquid crystal cell, and the two polarizers may be formed on one surface different from the MD direction of the polarizer of the polarizer formed on one surface of the liquid crystal cell. The MD direction of the may be positioned to be perpendicular to each other.
발명의 또 다른 구현예에 따르면, 상술한 편광판을 포함하는 디스플레이 장치가 제공될 수 있다.According to another embodiment of the invention, a display device including the polarizing plate described above may be provided.
상기 디스플레이 장치의 구체적인 예가 한정되는 것은 아니며, 예를 들어 액정표시장치 (Liquid Crystal Display]), 플라즈마 디스플레이 장치, 유기발광 다이오드 장치(Organic Light Emitting Diodes) 등의 장치일 수 있다.Specific examples of the display device are not limited, and may be, for example, a device such as a liquid crystal display, a plasma display device, or an organic light emitting diode device.
하나의 일 예로, 상기 디스플레이 장치는 서로 대향하는 1쌍의 편광판; 상기 1쌍의 편광판 사이에 순차적으로 적층된 박막트랜지스터, 컬러필터 및 액정셀; 및 백라이트 유닛을 포함하는 액정디스플레이 장치일 수 있다.As one example, the display device includes a pair of polarizing plates facing each other; A thin film transistor, a color filter, and a liquid crystal cell sequentially stacked between the pair of polarizing plates; And a liquid crystal display device including a backlight unit.
상기 디스플레이 장치에서 상기 반사 방지 필름은 디스플레이 패널의 관측자측 또는 백라이트측의 최외각 표면에 구비될 수 있다.In the display device, the anti-reflection film may be provided on the outermost surface of the observer side or the backlight side of the display panel.
상기 반사 방지 필름을 포함하는 디스플레이 장치는, 1쌍의 편광판 중에서 상대적으로 백라이트 유닛과 거리가 먼 편광판의 일면에 반사 방지 필름이 위치할 수 있다.In the display device including the anti-reflection film, the anti-reflection film may be positioned on one surface of the polarizing plate relatively far from the backlight unit among the pair of polarizing plates.
또한, 다른 일 예로, 상기 디스플레이 장치는 표시 패널; 및 상기 표시 패널의 적어도 일면에 위치하는 상기 편광판을 포함할 수 있다.In another example, the display apparatus may include a display panel; And the polarizing plate disposed on at least one surface of the display panel.
상기 디스플레이 장치는 액정 패널 및 상기 액정 패널의 양면에 각각 구비된 광한 적층체를 포함하는 액정 표시 장치일 수 있으며, 이때, 상기 편광판 중 적어도 하나가 전술한 본 명세서의 일 실시상태에 따른 편광자를 포함하는 편광판일 수 있다. 이때, 상기 액정 표시 장치에 포함되는 액정 패널의 종류는 특별히 한정되지 않으나, 예를 들면, TN(twisted nematic)형, STN(super twisted nematic)형, F(ferroelectic)형 또는 PD(polymer dispersed)형과 같은 수동 행렬 방식의 패널; 2단자형(two terminal) 또는 3단자형(three terminal)과 같은 능동행렬 방식의 패널; 횡전계형(IPS; In Plane Switching) 패널 및 수직배향형(VA; Vertical Alignment) 패널 등의 공지의 패널이 모두 적용될 수 있다.The display device may be a liquid crystal display device including a liquid crystal panel and an optical laminate provided on both surfaces of the liquid crystal panel, wherein at least one of the polarizers includes a polarizer according to one embodiment of the present specification. It may be a polarizing plate. At this time, the type of liquid crystal panel included in the liquid crystal display device is not particularly limited, but, for example, twisted nematic (TN) type, super twisted nematic (STN) type, F (ferroelectic) type or PD (polymer dispersed) type A passive matrix panel such as; Active matrix panels such as two-terminal or three-terminal; All known panels, such as an In Plane Switching (IPS) panel and a Vertical Alignment (VA) panel, can be applied.
본 발명에 따르면, 세부 구성층 열수축율 등이 조절되며 양호한 휨 밸런스(balance)를 가지면서 안정된 내부 구조를 구현하여 크랙을 방지할 수 있고, 액정 표시 장치의 빛샘 현상을 방지할 수 있는 편광판과 상기 편광판을 포함하는 액정 패널 및 디스플레이 장치가 제공될 수 있다.According to the present invention, a polarizing plate capable of preventing cracks by implementing a stable internal structure while controlling the thermal contraction rate of the detailed constituent layers and having a good bending balance, and the light leakage phenomenon of the liquid crystal display device and the A liquid crystal panel and display device including a polarizing plate can be provided.
도1은 발명의 구현예의 편광판의 일 예를 나타낸 것이다.Figure 1 shows an example of a polarizing plate of an embodiment of the invention.
도2은 발명의 구현예의 편광판의 다른 일 예를 나타낸 것이다.2 shows another example of a polarizing plate of an embodiment of the invention.
도3은 발명의 구현예의 편광판의 또 다른 일 예를 나타낸 것이다.Figure 3 shows another example of a polarizing plate of an embodiment of the invention.
도4은 발명의 구현예의 액정 패널의 일 예를 나타낸 것이다.4 shows an example of a liquid crystal panel of an embodiment of the invention.
도5는 발명의 구현예의 액정 패널의 다른 일 예를 나타낸 것이다.5 shows another example of a liquid crystal panel of an embodiment of the invention.
발명의 구현예를 하기의 실시예에서 보다 상세하게 설명한다. 단, 하기의 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의하여 한정되는 것은 아니다.Embodiments of the invention are described in more detail in the following examples. However, the following examples are merely to illustrate the invention, but the content of the present invention is not limited by the following examples.
[제조예][Production example]
제조예1: 광학 적층체의 제조Preparation Example 1 Preparation of Optical Laminate
(1) 하드 코팅층 형성용 코팅액의 제조(1) Preparation of Coating Liquid for Hard Coating Layer Formation
하기 표1에 기재된 성분을 혼합하여 혼합하여 광학 적층체의 하드코팅층 형성용 코팅액(B1, B2)을 제조하였다.The components shown in Table 1 were mixed and mixed to prepare hard coat layer-forming coating liquids (B1, B2) of the optical laminate.
Figure PCTKR2019007955-appb-T000001
Figure PCTKR2019007955-appb-T000001
TMPTA: 트리메틸올프로판 트리아크릴레이트(Trimethylolpropane triacrylate)TMPTA: Trimethylolpropane triacrylate
PETA: 펜타에리트리톨 트리아크릴레이트PETA: pentaerythritol triacrylate
UA-306T: 우레탄 아크릴레이트로 톨루엔 디이소시아네이트와 펜타 에리스리톨트리아크릴레이트의 반응물 (Kyoeisha제품)UA-306T: reactant of toluene diisocyanate with pentaerythritol triacrylate with urethane acrylate (Kyoeisha)
SC2152 : 헥사메틸렌디이소시아누레이트(HMDI)와 아크릴레이트 화합물이 우레탄 결합으로 연결된 화합물 [질량평균분자량 20,000 / 제조사: Miwon Chemical]SC2152: A compound in which hexamethylene diisocyanurate (HMDI) and an acrylate compound are connected by a urethane bond [mass average molecular weight 20,000 / manufacturer: Miwon Chemical]
IRG-184: 개시제 (Irgacure 184, Ciba사)IRG-184: initiator (Irgacure 184, Ciba)
Tego wet 270: Tego 사 레벨링제Tego wet 270: tego leveling agent
BYK 350 : BYK사 레벨링제BYK 350: BYK's Leveling Agent
2-butanol 부틸알코올2-butanol Butyl Alcohol
IPA 이소프로필 알코올IPA Isopropyl Alcohol
XX-103BQ(2.0㎛ 1.515): 폴리스타이렌과 폴리메틸메타크릴레이트의 공중합 입자(Sekisui Plastic 제품)XX-103BQ (2.0 μm 1.515): Copolymerized particles of polystyrene and polymethyl methacrylate (manufactured by Sekisui Plastic)
XX-113BQ(2.0㎛ 1.555): 폴리스타이렌과 폴리메틸메타크릴레이트의 공중합 입자(Sekisui Plastic 제품)XX-113BQ (2.0 μm 1.555): Copolymerized particles of polystyrene and polymethyl methacrylate (manufactured by Sekisui Plastic)
MA-ST(30% in MeOH) : 크기 10~15nm의 나노실리카 입자가 메틸알코올에 분산된 분산액(Nissan Chemical제품)MA-ST (30% in MeOH): A dispersion in which nanosilica particles of size 10-15 nm are dispersed in methyl alcohol (product of Nissan Chemical)
(2) 저반사층 형성용 코팅액(C)의 제조(2) Preparation of Coating Liquid (C) for Forming Low Reflective Layer
트리메틸올프로페인 트리아크릴레이트(TMPTA) 100g, 중공형 실리카 나노 입자(직경범위: 약 42 ㎚ 내지 66 ㎚, JSC catalyst and chemicals사 제품) 283g, 솔리드형 실리카 나노 입자(직경범위: 약 12 ㎚ 내지 19 ㎚) 59g, 제1 함불소 화합물(X-71-1203M, ShinEtsu사) 115g, 제2 함불소 화합물 (RS-537, DIC사) 15.5g 및 개시제 (Irgacure 127, Ciba사) 10g를, MIBK(methyl isobutyl ketone)용매에 고형분 농도 3 중량%가 되도록 희석하여 저반사층 형성용 코팅액을 제조하였다.100 g of trimethylolpropane triacrylate (TMPTA), hollow silica nanoparticles (diameter range: about 42 nm to 66 nm, manufactured by JSC catalyst and chemicals) 283 g, solid silica nano particles (diameter range: about 12 nm to 19 nm) 59 g, 1st fluorine-containing compound (X-71-1203M, ShinEtsu) 115g, 2nd fluorine-containing compound (RS-537, DIC) 15.5g, and initiator (Irgacure 127, Ciba) 10g, MIBK To prepare a coating solution for forming a low reflection layer by diluting to a solid content concentration of 3% by weight in a (methyl isobutyl ketone) solvent.
(2) 광투과성 기재 상에 하드 코팅층이 형성된 광학 적층체의 제조(2) Production of Optical Laminate with Hard Coating Layer on Light-Transmitting Substrate
1) 열수축율의 비율의 측정1) Measurement of the rate of heat shrinkage
실시예 및 비교예 각각에서 사용한 폴리에틸렌테레프탈레이트(PET) 필름의 MD 방향의 열수축율: TD방향의 열수축율의 비율은 각각의 PET 필름을 10cm * 10cm(가로*세로) 크기로 잘라 80℃에 30분간 방치한 후 MD, TD방향 각각에 대하여 열수축율(변형된 길이/초기길이)을 구하여 계산하였다.Heat shrinkage ratio in the MD direction of the polyethylene terephthalate (PET) film used in each of the Examples and Comparative Examples: The ratio of the heat shrinkage rate in the TD direction is cut to each PET film to a size of 10cm * 10cm (width * length) 30 to 80 ℃ After leaving for a minute, the heat shrinkage (modified length / initial length) was calculated for each of the MD and TD directions.
PET 1: 열수축율 비(MD/TD)가 약 1PET 1: The heat shrink ratio (MD / TD) is about 1
PET 2: 열수축율 비(MD/TD)가 약 0.5PET 2: The heat shrink ratio (MD / TD) is about 0.5
2) 광학 적층체의 제조2) Preparation of Optical Laminate
하기 표2 및 3에 기재된 각각의 폴리에틸렌테레프탈레이트(PET) 필름 상에 상기 제조된 하드코팅층 형성용 코팅액(B1, B2) 각각을 #12번 mayer bar로 코팅한 후 하기 표2및 3에 기재된 온도에서 2분 건조하고, UV경화하여 하드코팅층(코팅두께는 5㎛)을 형성했다. UV램프는 H bulb를 이용하였으며, 질소분위기 하에서 경화반응을 진행하였다. 경화 시 조사된 UV광량은 150 mJ/㎠이다.After coating each of the prepared coating liquid (B1, B2) for forming the hard coating layer (B1, B2) on each polyethylene terephthalate (PET) film shown in Tables 2 and 3 after the # 12 mayer bar and the temperature shown in Tables 2 and 3 Dried for 2 minutes and UV-cured to form a hard coat layer (coating thickness of 5 mu m). UV lamp was used for H bulb and curing reaction under nitrogen atmosphere. The amount of UV light irradiated during curing is 150 mJ / cm 2.
상기 하드 코팅 필름 상에, 상기 저반사층 형성용 코팅액(C) 을 #4 mayer bar로 두께가 약 110 내지 120㎚가 되도록 코팅하고, 하기 표2및 3에 기재된 온도에서 1분동안 건조 및 경화하였다. 상기 경화 시에는 질소 퍼징 하에서 상기 건조된 코팅물에 252 mJ/㎠의 자외선을 조사하였다.On the hard coat film, the coating liquid (C) for forming the low reflection layer was coated with a # 4 mayer bar so that the thickness was about 110 to 120 nm, and dried and cured at a temperature described in Tables 2 and 3 for 1 minute. . At the time of curing, the dried coating was irradiated with ultraviolet rays of 252 mJ / cm 2 under nitrogen purge.
2) 광학 적층체의 열수축 변형값의 측정2) Measurement of the heat shrinkage strain value of the optical laminate
상기 광학 적층체를 상기 폴리에틸렌테레프탈레이트(PET) 필름의 MD 방향 및 TD방향으로 각각 12 ㎝로 재단하여 열수축 변형값 측정 샘플을 제조하였다.The optical laminate was cut at 12 cm in the MD direction and the TD direction of the polyethylene terephthalate (PET) film, respectively, to obtain a heat shrinkage strain measurement sample. Prepared.
상기 제조된 샘플을 100℃ 온도에서 96시간 방치한 이후에, 상기 MD 방향 및 TD방향 각각의 길이를 측정하여 각 방향으로의 열수축 변형값을 측정하였다.After leaving the prepared sample at a temperature of 100 ° C. for 96 hours, the length of each of the MD direction and the TD direction was measured to measure the heat shrinkage strain value in each direction.
[일반식 2-1][Formula 2-1]
광학 적층체의 제1방향(PET의 MD방향)의 열수축 변형값Heat shrinkage deformation value in the first direction (MD direction of PET) of the optical laminate
= 상기 광학 적층체의 제1방향(PET의 MD방향)의 최초 길이 - 100℃의 온도에 96시간 노출 이후 측정되는 상기 광학 적층체의 제1방향(PET의 MD방향) 길이= Initial length of the first direction of the optical laminate (MD direction of PET)-length of the first direction of the optical laminate (MD direction of PET) measured after exposure to a temperature of 100 ° C. for 96 hours
[일반식 3-1][Formula 3-1]
상기 광학 적층체의 제2방향(PET의 TD방향)의 열수축 변형Thermal contraction deformation in a second direction (TD direction of PET) of the optical laminate
= 상기 광학 적층체의 제2방향(PET의 TD방향)의 최초 길이 - 100℃의 온도에 96시간 노출 이후 측정되는 상기 광학 적층체의 제2방향(PET의 TD방향) 길이= Initial length of the second direction (TD direction of PET) of the optical laminate-length of the second direction (TD direction of PET) measured after 96 hours exposure to a temperature of 100 ° C
그리고, 상기 광학 적층체에서 상기 광학 적층체의 제1방향(PET의 MD방향)의 열수축 변형값 대비 광학 적층체의 제2방향(PET의 TD방향)의 열수축 변형값의 비율(R)을 구하였다.Then, the ratio (R) of the heat shrinkage deformation value in the second direction (TD direction of PET) of the optical laminate to the heat shrinkage deformation value of the first direction (MD direction of PET) of the optical laminate in the optical laminate. It was.
[일반식1-1][General Formula 1-1]
비율(R) = 광학 적층체의 제2방향(PET의 TD방향)의 열수축 변형값 / 광학 적층체의 제1방향(PET의 MD방향)의 열수축 변형값Ratio (R) = heat shrink deformation value in the second direction (TD direction of PET) of the optical laminate / heat shrink deformation value in the first direction (MD direction of the PET) of the optical laminate
제조예2: 하드코팅층 형성용 코팅액 제조 및 하드 코팅층이 형성된 편광자의 제조Preparation Example 2 Preparation of Coating Solution for Hard Coating Layer Formation and Preparation of Polarizer with Hard Coating Layer
(1) 하드코팅층 형성용 코팅액(A)의 제조(1) Preparation of Coating Liquid (A) for Forming Hard Coating Layer
트리메틸로일프로판 트리아크릴레이트 28g, KBE-403 2g, 개시제 KIP-100f, 0.1g, 레벨링제(Tego wet 270) 0.06g을 균일하게 혼합하여 하드 코팅 조성물을 제조하였다.Hard coating composition was prepared by uniformly mixing 28 g of trimethylloylpropane triacrylate, 2 g of KBE-403, initiator KIP-100f, 0.1 g, and 0.06 g of leveling agent (Tego wet 270).
[실시예 및 비교예: 편광판 및 액정 패널의 제조][Examples and Comparative Examples: Production of Polarizing Plate and Liquid Crystal Panel]
(1) 편광판의 제조(1) Preparation of Polarizing Plate
상기 제조예1에서 제조된 광학 적층체의 광투과성 기재 측에 UV접착제를 이용하여 폴리비닐알콜 편광자(두께:25um, 제조사:엘지화학)를 접합한 후, 상기 광투과성 기재의 반대면에 상기 제조된 하드코팅층 형성용 코팅액(A)을 7um의 두께로 도포하고, 질소 퍼징하에서 건조된 코팅물에 500 mJ/㎠의 자외선을 조사하여 하드 코팅층을 형성하였다.After bonding a polyvinyl alcohol polarizer (thickness: 25um, manufacturer: LG Chem) using a UV adhesive to the light transmissive substrate side of the optical laminate prepared in Preparation Example 1, the preparation on the opposite side of the light transmissive substrate The coating liquid (A) for forming a hard coating layer was applied to a thickness of 7 μm, and a hard coating layer was formed by irradiating 500 mJ / cm 2 ultraviolet rays to the coating dried under nitrogen purge.
(2) 열충격 평가용 샘플 제조(2) Sample Preparation for Thermal Shock Evaluation
한 변의 길이가 10cm인 정사각형으로 재단한 상기 편광판을 TV용 유리(가로 12cm, 세로12cm, 두께 0.7mm)의 일면에 점착제를 이용하여 접합하여 열충격 평가용 샘플을 제조한다. 이 때, 편광자의 MD방향이 정사각형의 한변과 평행하도록 편광판을 재단한다.The polarizing plate cut into a square having a length of 10 cm on one side is bonded to one surface of a glass for TV (12 cm wide, 12 cm long and 0.7 mm thick) using an adhesive to prepare a sample for thermal shock evaluation. At this time, the polarizing plate is cut so that the MD direction of the polarizer is parallel to one side of the square.
[실험예: 열충격 평가]Experimental Example: Thermal Shock Evaluation
상기 제조된 편광판과 편광판이 접합된 평가용 샘플에 대하여 다음과 같은 조건에서 열충격 실험을 진행하고 아래 3가지 사항에 대하여 측정 및 확인하였다.The thermal shock test was carried out under the following conditions with respect to the evaluation sample to which the prepared polarizing plate and the polarizing plate were bonded, and measured and confirmed the following three matters.
- 측정 조건:- Measuring conditions:
편광판과 평가용 샘플을 열충격 챔버에 수직으로 세워 놓는다. 상온에서 80℃로 승온하여 30분 방치하고, 이후 온도를 -30℃로 낮추어 30분 방치 뒤 상온으로 온도 조절하는 것을 1 Cycle로 하여 총 100 Cycle을 반복하였다.The polarizer and the evaluation sample are placed upright in the thermal shock chamber. The temperature was raised to 80 ° C. at room temperature and left for 30 minutes. After that, the temperature was lowered to −30 ° C. and the temperature was adjusted to room temperature after 30 minutes.
(1) Crack발생수(1) Crack occurrence water
상기 평가용 샘플의 편광자 사이에 발생한 Crack과 편광자 사이에 틈이 생긴 것을 육안으로 확인하여 길이 1 cm이상의 크랙의 개수를 확인하였다.Cracks generated between the polarizers and the polarizers of the evaluation sample were visually confirmed to determine the number of cracks having a length of 1 cm or more.
(2) 기포(2) bubble
상기 평가용 샘플의 편광자와 보호필름 사이에 발생한 기포 및 편광자와 하드코팅층 사이에 발생한 기포를 육안으로 확인하여 직경 5mm이상의 기포 수를 확인하였다.The bubbles generated between the polarizer and the protective film of the evaluation sample and the bubbles generated between the polarizer and the hard coating layer were visually confirmed to confirm the number of bubbles having a diameter of 5 mm or more.
(3)(3) 꼭지점 들뜸(mm), 10x10/film 단품Vertex Lift (mm), 10x10 / film
상기 편광판 샘플의 네 꼭지점을 관찰하여 코팅층과 편광자 사이의 들뜸, 편광자와 보호필름 사이의 박리, 하드코팅과 점착층간의 박리와 휨을 관찰한다. 들뜸이 발생하여 휨이 나타날 경우, 편평하게 바닥에 놓은 상태에서 바닥에서부터 휘어진 높이를 측정하여 평균을 구하였다.Observe the four vertices of the polarizing plate sample to observe the lifting between the coating layer and the polarizer, the peeling between the polarizer and the protective film, the peeling and warping between the hard coating and the adhesive layer. When the lifting occurred and the warpage appeared, the average was measured by measuring the height of the bend from the bottom in a flat state.
Figure PCTKR2019007955-appb-T000002
Figure PCTKR2019007955-appb-T000002
Figure PCTKR2019007955-appb-T000003
Figure PCTKR2019007955-appb-T000003
상기 표1 및 표2에서 나타난 바와 같이, 실시예의 편광판은 제조 과정에서 60℃ 이상의 온도가 가해지는 경우에도 세부 층간의 열수축율 또는 열수축 변형값등이 조절되고, 특히 광학 적층체의 제1방향의 열수축 변형값에 대한 상기 제1방향과 수직하는 상기 광학 적층체의 제2방향의 열수축 변형값의 비율이 0.8 내지 1.2이내 인것이 확인되었다. 이에 따라 상기 실시예들의 편광판의 휨 밸런스(balance)도 양호한 것으로 확인되었으며, 편광판의 크랙을 방지할 수 있고, 액정 표시 장치의 빛샘 현상을 방지할 수 있는 것을 확인되었다.As shown in Table 1 and Table 2, in the polarizing plate of the embodiment, even when a temperature of 60 ° C. or more is applied, the thermal contraction rate or thermal contraction strain value between the detailed layers is controlled, in particular, in the first direction of the optical laminate. It was confirmed that the ratio of the heat shrinkage strain value in the second direction of the optical laminate perpendicular to the first direction to the heat shrinkage strain value was within 0.8 to 1.2. Accordingly, it was confirmed that the bending balance of the polarizing plates of the above embodiments was also good, and it was possible to prevent cracking of the polarizing plate and to prevent light leakage from the liquid crystal display.
[부호의 설명][Description of the code]
10 광투과성 기재10 Light transmissive substrate
20 편광자20 polarizer
30 하드 코팅층30 hard coating layers
40 반사 방지 필름40 anti-reflection film
50 접착층50 adhesive layer
60 점착층60 adhesive layer
70 액정셀70 Liquid Crystal Cell
100 편광판100 polarizer
200 액정 패널200 liquid crystal panel

Claims (14)

  1. 편광자;Polarizer;
    상기 편광자의 일면 측에 형성되는 10um이하의 두께를 갖는 하드 코팅층; 및A hard coating layer having a thickness of 10 μm or less formed on one surface side of the polarizer; And
    상기 편광자의 다른 일면 측에 형성되는 광투과성 기재를 포함한 광학 적층체;를 포함하고,And an optical laminate including a light transmissive substrate formed on the other side of the polarizer.
    상기 광학 적층체의 제1방향의 열수축 변형값에 대한 상기 제1방향과 수직하는 상기 광학 적층체의 제2방향의 열수축 변형값의 비율이 0.8 내지 1.2인,The ratio of the heat shrinkage strain value in the second direction of the optical laminate perpendicular to the first direction to the heat shrinkage strain value in the first direction of the optical laminate is 0.8 to 1.2,
    편광판.Polarizer.
  2. 제1항에 있어서,The method of claim 1,
    상기 광학 적층체의 제1방향의 열수축 변형값 및 상기 광학 적층체의 제2방향의 열수축 변형값 각각은 상기 광학 적층체의 제1방향 및 제2방향 각각의 최초 길이 대비 80℃ 내지 120℃의 온도에 80 내지 120시간 노출 이후 측정되는 길이값의 차이인, 편광판.Each of the heat shrinkage strain values in the first direction of the optical laminate and the heat shrinkage strain values in the second direction of the optical laminate is 80 ° C to 120 ° C relative to the initial length of each of the first and second directions of the optical stack. A polarizer, which is the difference in length values measured after 80 to 120 hours exposure to temperature.
  3. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    상기 광학 적층체의 제1방향은 상기 광투과성 기재의 MD 방향 (Machine Direction)이고,The first direction of the optical laminate is an MD direction of the light transmissive substrate (Machine Direction),
    상기 광학 적층체의 제2방향은 상기 광투과성 기재의 TD방향(Transverse Direction)인, 편광판.The 2nd direction of the said optical laminated body is a TD direction (Transverse Direction) of the said light transmissive base material, The polarizing plate.
  4. 제1항에 있어서,The method of claim 1,
    상기 광투과성 기재는 파장 400㎚ 내지 800㎚에서 측정되는 두께 방향의 리타데이션(Rth)이 3,000 ㎚ 이상인, 편광판.The said transparent substrate is a polarizing plate whose retardation (Rth) of the thickness direction measured by the wavelength of 400 nm-800 nm is 3,000 nm or more.
  5. 제1항에 있어서,The method of claim 1,
    40℃, 습도100% 조건에서 24시간 동안 측정한 상기 광투과성 기재의 수분 투과량이 100 g/㎡ 이하인, 편광판.A polarizing plate, wherein the moisture permeation amount of the light transmissive substrate measured for 24 hours at 40 ° C. and 100% humidity condition is 100 g / m 2 or less.
  6. 제1항에 있어서,The method of claim 1,
    상기 광투과성 기재의 두께 대비 하드 코팅층의 두께의 비율이 0.02 내지 0.25인, 편광판.The ratio of the thickness of the hard coat layer to the thickness of the light transmissive substrate is 0.02 to 0.25, the polarizing plate.
  7. 제1항에 있어서,The method of claim 1,
    상기 편광자; 상기 하드 코팅층; 및 상기 광투과성 기재;를 합한 두께가 200 ㎛ 이하인, 편광판.The polarizer; The hard coating layer; And the light-transmitting substrate; the polarizing plate having a thickness of 200 μm or less.
  8. 제1항에 있어서,The method of claim 1,
    상기 하드 코팅층은 바인더 수지; 및 상기 바인더 수지에 분산되고, 0.5㎛ 내지 10㎛의 입경을 갖는 유기 미립자 또는 1 ㎚ 내지 500 ㎚의 입경을 갖는 무기 미립자를 포함하는, 편광판.The hard coating layer is a binder resin; And organic fine particles dispersed in the binder resin and having an organic fine particle having a particle size of 0.5 μm to 10 μm or an inorganic fine particle having a particle size of 1 nm to 500 nm.
  9. 제1항에 있어서,The method of claim 1,
    상기 광학 적층체는 상기 편광자와 대향하도록 상기 광투과성 기재의 일면에 형성되는 1 내지 100㎛의 두께를 갖는 제2하드 코팅층을 더 포함하는, 편광판.The optical laminate further comprises a second hard coating layer having a thickness of 1 to 100 μm formed on one surface of the light transmissive substrate so as to face the polarizer.
  10. 제9항에 있어서,The method of claim 9,
    상기 광학 적층체는 제2하드 코팅층의 다른 일면에 형성되는 380nm 내지 780nm 파장 영역에서의 굴절율이 1.20 내지 1.60인 저굴절층을 더 포함하는, 편광판.The optical laminate further comprises a low refractive index layer having a refractive index of 1.20 to 1.60 in a wavelength range of 380 nm to 780 nm formed on the other surface of the second hard coating layer.
  11. 제1항에 있어서,The method of claim 1,
    상기 편광자와 상기 광투과성 기재 사이에 위치하고 0.1㎛ 내지 5㎛의 두께를 갖는 접착층;을 더 포함하는, 편광판.And a adhesive layer disposed between the polarizer and the light transmissive substrate and having a thickness of 0.1 μm to 5 μm.
  12. 제1항의 편광판이 액정셀의 적어도 일면에 형성되는 액정 패널.The liquid crystal panel of claim 1, wherein the polarizing plate is formed on at least one surface of the liquid crystal cell.
  13. 제12항에 있어서,The method of claim 12,
    상기 액정셀의 양면에 제1항의 편광판이 각각 형성되고,The polarizing plates of claim 1 are formed on both sides of the liquid crystal cell,
    상기 2개의 편광판은 상기 액정셀의 일면에 형성되는 편광판의 편광자의 MD방향과 다른 일면에 형성되는 편광판의 편광자의 MD방향이 서로 수직하도록 위치하는, 액정 패널.The two polarizing plates are positioned such that the MD direction of the polarizer of the polarizing plate formed on one side of the liquid crystal cell and the MD direction of the polarizer of the polarizing plate formed on the other side are perpendicular to each other.
  14. 제1항의 편광판을 포함하는 디스플레이 장치.Display device comprising the polarizing plate of claim 1.
PCT/KR2019/007955 2018-06-29 2019-07-01 Polarizing plate, liquid crystal panel, and display device WO2020005041A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/976,242 US11650362B2 (en) 2018-06-29 2019-07-01 Polarizing plate, liquid crystal panel and display device
CN201980012905.1A CN111712742B (en) 2018-06-29 2019-07-01 Polarizing plate, liquid crystal panel and display device
EP19826950.8A EP3734335B1 (en) 2018-06-29 2019-07-01 Polarizing plate, liquid crystal panel, and display device
JP2020542567A JP2021513111A (en) 2018-06-29 2019-07-01 Polarizing plate, liquid crystal panel and display device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2018-0075899 2018-06-29
KR1020180075899A KR20200002427A (en) 2018-06-29 2018-06-29 Polarizing plate, liquid crystal panel, and display apparatus
KR10-2018-0167778 2018-12-21
KR20180167778 2018-12-21
KR1020190078374A KR20200078298A (en) 2018-12-21 2019-06-28 Polarizing plate, liquid crystal panel, and display apparatus
KR10-2019-0078374 2019-06-28

Publications (1)

Publication Number Publication Date
WO2020005041A1 true WO2020005041A1 (en) 2020-01-02

Family

ID=68987538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/007955 WO2020005041A1 (en) 2018-06-29 2019-07-01 Polarizing plate, liquid crystal panel, and display device

Country Status (1)

Country Link
WO (1) WO2020005041A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100637632B1 (en) * 2005-07-05 2006-10-23 도레이새한 주식회사 Polyester release film for polarizer
JP4776754B2 (en) * 2000-05-22 2011-09-21 日東電工株式会社 Transparent conductive film with protective film and method of using the same
JP2013010199A (en) * 2011-06-28 2013-01-17 Asahi Kasei Chemicals Corp Heat shrinkable oriented multilayer film, and top seal package and pillow shrink package including the same
KR20160012353A (en) * 2014-07-23 2016-02-03 삼성에스디아이 주식회사 Polarizing plate and method for manufacturing thereof
JP6314228B2 (en) * 2014-07-18 2018-04-18 富士フイルム株式会社 Uniaxially oriented polyester film, hard coat film, sensor film for touch panel, anti-scattering film, antireflection film, touch panel and method for producing uniaxially oriented polyester film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4776754B2 (en) * 2000-05-22 2011-09-21 日東電工株式会社 Transparent conductive film with protective film and method of using the same
KR100637632B1 (en) * 2005-07-05 2006-10-23 도레이새한 주식회사 Polyester release film for polarizer
JP2013010199A (en) * 2011-06-28 2013-01-17 Asahi Kasei Chemicals Corp Heat shrinkable oriented multilayer film, and top seal package and pillow shrink package including the same
JP6314228B2 (en) * 2014-07-18 2018-04-18 富士フイルム株式会社 Uniaxially oriented polyester film, hard coat film, sensor film for touch panel, anti-scattering film, antireflection film, touch panel and method for producing uniaxially oriented polyester film
KR20160012353A (en) * 2014-07-23 2016-02-03 삼성에스디아이 주식회사 Polarizing plate and method for manufacturing thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3734335A4 *

Similar Documents

Publication Publication Date Title
WO2018080017A1 (en) Viewer-side polarizing plate for liquid crystal display device, and liquid crystal display device comprising same
WO2019156330A1 (en) Anti-reflective film, polarizing plate comprising same, and optical display device comprising same
WO2019146977A1 (en) Multilayer liquid crystal film, polarizing plate and method for preparing polarizing plate
WO2019132242A1 (en) Polarizing plate and optical display device including same
WO2018043851A1 (en) Polarizing plate and optical display device comprising same
WO2019083160A1 (en) Liquid crystal phase difference film, polarizing plate for light-emitting display device including same, and light-emitting display device including same
WO2020080757A1 (en) Polarizing plate, liquid crystal panel, and display device
WO2020101396A1 (en) Optical laminate, polarizing plate, and display device
WO2016159645A1 (en) Polarizing plate and optical display device including same
KR20220132510A (en) Polarizing plate, liquid crystal panel, and display apparatus
KR20220132511A (en) Polarizing plate, liquid crystal panel, and display apparatus
WO2020005041A1 (en) Polarizing plate, liquid crystal panel, and display device
WO2016104976A1 (en) Optical sheet, and polarizing plate and liquid crystal display comprising same
WO2020149583A1 (en) Polarizing plate and display device
EP3734335B1 (en) Polarizing plate, liquid crystal panel, and display device
WO2022005236A1 (en) Optical modulation device
WO2021177648A1 (en) Flexible window film and display device comprising same
WO2020145672A1 (en) Method for manufacturing optically anisotropic film
WO2020153640A1 (en) Polarizing plate and optical display device including same
WO2019107709A1 (en) Optical device
WO2022080801A1 (en) Anti-glare film laminate, polarizing plate, and display apparatus
WO2020242210A1 (en) Anti-reflective film, polarizing plate, and display device
WO2020242117A1 (en) Anti-reflective film, polarizing plate, and display device
WO2023244030A1 (en) Anti-glare low-reflection film, polarizing plate, and optical display device
WO2020145643A1 (en) Optical laminate, polarization plate, and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19826950

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020542567

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019826950

Country of ref document: EP

Effective date: 20200728

NENP Non-entry into the national phase

Ref country code: DE