WO2020004110A1 - Run-flat tire - Google Patents

Run-flat tire Download PDF

Info

Publication number
WO2020004110A1
WO2020004110A1 PCT/JP2019/023949 JP2019023949W WO2020004110A1 WO 2020004110 A1 WO2020004110 A1 WO 2020004110A1 JP 2019023949 W JP2019023949 W JP 2019023949W WO 2020004110 A1 WO2020004110 A1 WO 2020004110A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
line
radial direction
intersection
tire radial
Prior art date
Application number
PCT/JP2019/023949
Other languages
French (fr)
Japanese (ja)
Inventor
正志 山口
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to JP2020527413A priority Critical patent/JP7128274B2/en
Publication of WO2020004110A1 publication Critical patent/WO2020004110A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C15/00Tyre beads, e.g. ply turn-up or overlap
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C17/00Tyres characterised by means enabling restricted operation in damaged or deflated condition; Accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/02Carcasses
    • B60C9/04Carcasses the reinforcing cords of each carcass ply arranged in a substantially parallel relationship
    • B60C9/08Carcasses the reinforcing cords of each carcass ply arranged in a substantially parallel relationship the cords extend transversely from bead to bead, i.e. radial ply

Definitions

  • the present disclosure relates to a run flat tire.
  • run flat durability As a run flat tire, it is difficult to achieve both ride comfort during normal running and durability during run flat running, so-called run flat durability, and there is room for improvement. For example, there is a method of lowering the longitudinal spring constant in order to improve the riding comfort during normal running. However, if the side reinforcing rubber is made thinner or softer, the run flat durability is reduced. Further, when the side reinforcing rubber is thickened in order to ensure run-flat durability, the longitudinal spring constant increases, the riding comfort during normal running deteriorates, and the tire weight increases.
  • the present disclosure has been made in consideration of the above-described facts, and has as its object to provide a run-flat tire that can achieve both ride comfort during normal running and run-flat durability.
  • a run flat tire includes a pair of bead cores, a carcass including a main body portion that straddles the pair of bead cores, and a folded portion that folds the bead cores, and a belt provided outside the carcass in a tire radial direction.
  • a side reinforcing layer provided on the inner side in the tire width direction of the carcass and gradually reduced in thickness toward both sides in the tire radial direction; and a bead core provided on the outer side of the tire and contacting a rim flange during run flat running to bury the bead core.
  • a rim guard for limiting the fall of the bead portion to the outside in the tire axial direction, a center line passing through the center of the thickness of the carcass as a case line, mounted on a standard rim, and mounted on a standard rim at a zero inner pressure state.
  • a reference line parallel to the tire rotation axis passes through the tire radial outer end of the bead core.
  • the height dimension of the case line measured in the direction is a side height SH, and a first imaginary parallel to the tire rotation axis passing through a position 10% away from the reference line in the tire radial direction and away from the side height SH.
  • the intersection between the line and the case line is 0.1SHp, the second imaginary line parallel to the tire rotation axis passing through the position 30% of the side height SH outward from the reference line in the tire radial direction and the tire rotation axis.
  • An intersection with the case line is 0.3SHp, a third imaginary line parallel to the tire rotation axis passing through a position 80% of the side height SH outward in the tire radial direction from the reference line and the case line.
  • 0.8SHp a fourth imaginary line parallel to the tire rotation axis passing through a position 90% of the side height SH outward from the reference line in the tire radial direction, and the case line.
  • Is 0.9SHp G is the total gauge from the inner surface of the tire to the outer surface of the tire excluding the rim guard
  • t is the gauge from the inner surface of the tire to the case line. 3Hp, the t / G is set within a range of 40 to 80%, and the t / G between the intersection 0.8Hp and the intersection 0.9Hp is set within a range of 30 to 60%.
  • the position of the vertex of the rim guard is set within a range of 10 to 20% of the side height SH outward in the tire radial direction from the reference line.
  • the run flat tire according to the present disclosure since the t / G of the gauge is optimized as described above, the vertical spring constant is reduced without thinning the side reinforcing layer, and the riding during normal running is performed. Comfort can be improved.
  • the rim guard is provided on the tire outer surface, the bead portion can be prevented from excessively falling down during run flat running, and run flat durability can be ensured. As a result, the run-flat tire according to the present disclosure can achieve both riding comfort performance and run-flat durability.
  • run flat tire of the present disclosure it is possible to achieve both riding comfort during normal running and run flat durability.
  • BRIEF DESCRIPTION OF THE DRAWINGS It is a half cross-sectional view which shows one side of the cut surface which cut
  • BRIEF DESCRIPTION OF THE DRAWINGS It is a half cross-sectional view which shows one side of the cut surface which cut
  • BRIEF DESCRIPTION OF THE DRAWINGS It is a half cross-sectional view which shows one side of the cut surface which cut
  • the arrow TW in the figure indicates the width direction of the run flat tire 10 (tire width direction), and the arrow TR indicates the radial direction of the run flat tire 10 (tire radial direction).
  • the tire width direction refers to a direction parallel to the rotation axis of the run flat tire 10, and is also referred to as a tire axial direction.
  • the tire radial direction refers to a direction perpendicular to the rotation axis of the run flat tire 10.
  • ⁇ Circle around (4) ⁇ indicates the equatorial plane (tire equatorial plane) of the run flat tire 10. Further, in the present embodiment, the rotational axis side of the run flat tire 10 is “inside in the tire radial direction” along the tire radial direction, and the opposite side of the rotational axis of the run flat tire 10 along the tire radial direction is “tire”. Radially outside ".
  • the equator plane CL side of the run flat tire 10 along the tire width direction is “inside in the tire width direction”, and the side opposite to the equatorial plane CL of the run flat tire 10 along the tire width direction is “outside in the tire width direction”. It is described.
  • the rim is a standard rim (or “Approved @ Rim” or “Recommended @ Rim”) in an application size described in the following standard.
  • Standards are determined by industry standards that are in effect in the area where the tire is manufactured or used. For example, in the United States, "The Book of the Tire and Rim Association of Inc., Inc., Year Book", in Europe, "The European, Tire and Rim, Technical, Organization, Standards of Automotive, Japan Association of motorcycles, Japan Motor Company, Japan Association of motorcycles, Japan Association of motorcycles, Japan Association of motorcycles, Japan Association of motorcycles, Japan Association of motorcycles, Japan Association of motorcycles, Japan. Have been.
  • FIGS. 1 to 3 are cross-sectional views of the run flat tire 10 assembled with the standard rim 30 and not filled with the internal pressure (same pressure as the outside air) along the tire rotation axis.
  • the run flat tire 10 according to the present embodiment has a pair of bead portions 12, a carcass 14, a belt 16, a belt reinforcing layer 18, a tread portion 20, and a tire side portion 22. And a side reinforcing rubber 24 as a side reinforcing layer, and an inner liner 32.
  • a pair of left and right bead portions 12 are provided at an interval in the tire width direction (only one bead portion 12 is shown in FIG. 1).
  • a bead core 26 is embedded in each of the pair of bead portions 12, and the carcass 14 extends between the bead cores 26.
  • the carcass 14 of the present embodiment is constituted by one carcass ply 15, and the carcass ply 15 covers a plurality of cords (not shown; for example, an organic fiber cord or a metal cord) with a covering rubber. It is formed.
  • the carcass 14 thus formed extends from one bead core 26 to the other bead core 26 in a toroidal shape, and forms a tire skeleton.
  • the run flat tire 10 of the present embodiment is a tire having a radial structure, and a cord of the carcass ply 15 extends in a tire radial direction (radial direction) on a tire side portion, and a tire equatorial plane on a tire outer peripheral portion. It extends in a direction crossing CL.
  • a portion extending from one bead core 26 to the other bead core 26 is referred to as a main body portion 14A, and a portion in which the bead core 26 is folded from the inside to the outside of the tire is referred to as a folded portion 14B.
  • the end portion 14BE of the folded portion 14B is sandwiched between the belt 16 and the main body portion 14A of the carcass 14 near the outermost end 16E in the tire width direction of the belt 16 described later.
  • the end portion 14BE of the folded portion 14B is located outside the other end portion 24B of the side reinforcing rubber 24 described later in the tire width direction, and is located radially inside the belt end of any of the belt plies 16A and 16B described later. Preferably, they are arranged.
  • the “case line 14CL” indicates the center line of the thickness of the carcass 14.
  • the center line of the thickness of the carcass ply 15 is defined as a “case line 14CL”.
  • the center line of the thickness is referred to as “case line 14CL”.
  • the center line between the main body portion 14A and the folded portion 14B are shown as “case line 14CL”.
  • the bead core 26 is made parallel to the tire rotation axis (not shown) through the tire radial outer end.
  • the maximum height SH of the case line 14CL measured outward from the reference line BL in the tire radial direction is referred to as a side height (see FIG. 1).
  • the intersection of the virtual line FL1 and the case line 14CL which is parallel to the tire rotation axis through a position 10% of the side height SH outward from the reference line BL in the tire radial direction and is parallel to the tire rotation axis, is set to 0.1.
  • 1SHp the intersection of the imaginary line FL2, which is parallel to the tire rotation axis through a position 20% of the side height SH outward in the tire radial direction from the reference line BL and the case line 14CL, is 0.2SHp, the reference line BL.
  • the case line 14CL of the carcass 14 of the present embodiment is such that an arc between the intersection 0.1SHp and the intersection 0.2SHp has a center of curvature inside the tire and is convex to the outside of the tire where the average radius of curvature is R1.
  • Between the intersection 0.4SHp and the intersection 0.6SHp is a circular arc shape having a single radius of curvature having a center of curvature inside the tire and having a radius of curvature of R2 and convex to the outside of the tire.
  • the case line 14CL between the intersections 0.2SHp and 0.4SHp is the arc shape between the intersections 0.1SHp and 0.2SHp, and the arc between the intersections 0.4SHp and 0.6SHp.
  • the arc shape is smoothly connected to the arc shape and is convex toward the outside of the tire.
  • the radius of curvature R1 is set to be larger than the radius of curvature R2, and the ratio R2 / R1 is set to be larger than 0.3. Further, the ratio R2 / R1 is preferably set to be larger than 0.4. Note that the ratio R2 / R1 is preferably set to be smaller than 1.3. Further, the radius of curvature R1 is preferably set within the range of 100 to 200% of the side height SH, and the radius of curvature R2 is set within the range of 50 to 150% of the side height SH. preferable.
  • the radius of curvature R1 is an average value
  • the case line 14CL between the intersection 0.1SHp and the intersection 0.2SHp may have an arc shape having a single radius of curvature.
  • An arc shape may be used, or a substantially arc shape in which the radius of curvature changes gradually.
  • the radius of curvature of the case line 14CL between the intersection 0.1SHp and the intersection 0.2SHp may be infinite in some cases, in other words, the case line 14CL between the intersection 0.1SHp and the intersection 0.2SHp is a straight line. It may be shaped.
  • the run-flat tire 10 is parallel to the tire rotation axis along the tire rotation axis through a position 10% away from the reference line BL in the tire radial direction and away from the side height SH.
  • the intersection of the virtual line FLa and the case line 14CL is 0.1SHp
  • the virtual line FLb is parallel to the tire rotation axis through the position 30% of the side height SH outward from the reference line BL in the tire radial direction, and parallel to the tire rotation axis.
  • the intersection point with the line 14CL is 0.3SHp, and the intersection point between the virtual line FLc passing through a position 55% of the side height SH outward from the reference line BL in the tire radial direction and parallel to the tire rotation axis and the case line 14C. 0.55 SHp, and a virtual line FLd that is parallel to the tire rotation axis through a position 80% of the side height SH outward in the tire radial direction from the reference line BL.
  • the point of intersection with the line 14CL is 0.8SHp, and the point of intersection with the virtual line FLe case line 14CL, which is parallel to the tire rotation axis through a position 90% of the side height SH outward from the reference line BL in the tire radial direction and parallel to the tire rotation axis.
  • the total gauge from the inner surface of the tire to the outer surface of the tire excluding the rim guard 34 described later is G (measured in the direction perpendicular to the tangent to the inner surface of the tire, in other words, in the direction of the normal).
  • G measured in the direction perpendicular to the tangent to the inner surface of the tire, in other words, in the direction of the normal.
  • the gauge from the inner surface of the tire to the case line 14CL is t
  • the t / G between the intersection 0.1SHp and the intersection 0.3SHp is set within a range of 40 to 80%
  • the intersection point 0.9SHp is set within the range of 30 to 60%.
  • the t / G measured through the case line 14CL is preferably set within the range of 50 to 80%, and the height position of the side height SH from 40 to 60% of the side height SH from the reference line BL (the rim guard 34). It is preferable to set the t / G measured through the case line 14CL at the position between the middle and the buttress (shoulder) within the range of 60 to 80%.
  • a bead filler 28 extending from the bead core 26 outward in the tire radial direction is embedded in a region sandwiched between the main body portion 14A and the folded portion 14B of the carcass 14.
  • the thickness of the bead filler 28 decreases outward in the tire radial direction.
  • Bead filler 28 is formed of a rubber harder than side rubber 23. Note that the shape and material of the bead filler 28 are not limited to those of the present embodiment.
  • the main body portion 14A of the carcass 14 has a curved shape (substantially arc shape) in which a portion adjacent to the bead filler 28 outside the bead core 26 in the tire radial direction is convex toward the tire inside.
  • the ratio Abf / Arr is 0.04 to 0.04. It is preferably in the range of 0.17, more preferably in the range of 0.08 to 0.15, and even more preferably in the range of 0.09 to 0.13.
  • the ratio Ari / Aro is set to 0. It is preferably in the range of 3 to 1.5, more preferably in the range of 0.3 to 1.0, and even more preferably in the range of 0.5 to 0.6.
  • the ratio Ac / Abf is preferably in the range of 0.7 to 1.1, and more preferably in the range of 0.8 to 1.8. , 0.90 to 0.95.
  • the ratio ta / G between the total gauge G and the thickness ta is preferably in the range of 0.6 to 1.0, more preferably in the range of 0.6 to 0.8, and 0.7 It is even more preferred to be within the range of -0.8.
  • the flatness of the run flat tire 10 is preferably 65% or less, more preferably 50% or less, and even more preferably 35% or less.
  • the intersection point where the virtual line FLH passing through the rim end of the standard rim 30 and parallel to the tire radial direction intersects with the body portion 14A of the carcass 14 inside the tire radial direction of the tire maximum width portion Wmax is Pa
  • an angle formed by an imaginary line FL ⁇ connecting the intersection Pa with the tire width direction inner end 26P of the bead core 26 with respect to the tire width direction is ⁇
  • the imaginary line FLH is Pb at the intersection of the tire maximum width portion Wmax and the body portion 14A of the carcass 14 on the outer side in the tire radial direction, and the imaginary line FL ⁇ connecting the intersection Pb and the tire width direction inner end 26P of the bead core 26 is
  • it is preferable that 50 ° ⁇ ⁇ 80 °, more preferably 55 ° ⁇ ⁇ 70 °, and 55 ° ⁇ ⁇ 65 ° Is even more preferred.
  • the other end 24 ⁇ / b> B side of the side reinforcing rubber 24 in the tire radial direction is disposed inside the belt end of the first belt ply 16 ⁇ / b> A and the belt end of the second belt ply 16 ⁇ / b> B in the tire width direction. It is preferred that
  • the apex 34T of the rim guard 34 be disposed outside the tire width direction outer end 14max of the main body 14A of the carcass 14 in the tire width direction.
  • a belt 16 is provided outside the carcass 14 in the tire radial direction.
  • the belt 16 of the present embodiment is constituted by one or a plurality of belt plies.
  • the belt 16 of the present embodiment includes, as an example, a first belt ply 16A inside the tire radial direction, and a second belt that is arranged outside the first belt ply 16A in the tire radial direction and is narrower than the first belt ply 16A. And a ply 16B.
  • the belt plies 16A and 16B are formed by covering a plurality of cords (steel cords in this embodiment) arranged in parallel with each other with a covering rubber.
  • the cords constituting the belt plies 16A and 16B are arranged to be inclined with respect to the tire circumferential direction (as an example, inclined at an angle of 15 to 30 degrees with respect to the tire circumferential direction).
  • the cord of the belt ply 16A and the cord of the belt ply 16B are inclined in directions opposite to each other with respect to the tire equatorial plane CL. That is, the belt 16 of the present embodiment is a so-called cross belt.
  • a belt reinforcing layer 18 is disposed outside the belt 16 in the tire radial direction.
  • the belt reinforcing layer 18 includes, for example, a cord extending along the tire circumferential direction, and is disposed so as to cover the entire belt 16.
  • a tread rubber 21 constituting the tread portion 20 is disposed outside the belt 16 and the belt reinforcing layer 18 in the tire radial direction.
  • the tread portion 20 is a portion that comes into contact with the road surface during traveling, and a circumferential groove 20 ⁇ / b> A extending in the tire circumferential direction is formed on the surface of the tread portion 20.
  • the tread portion 20 has a not-shown width direction groove extending in the tire width direction. The shape and number of the circumferential grooves 20A and the width grooves are appropriately set in accordance with the required performance of the run flat tire 10, such as drainage performance and steering stability.
  • a tire side portion 22 is provided between the bead portion 12 and the tread portion 20.
  • the tire side portion 22 extends in the tire radial direction and connects the bead portion 12 and the tread portion 20.
  • a side rubber 23 is arranged outside the carcass 14 in the tire width direction.
  • the tire side portion 22 is configured as described below so as to be able to bear the load acting on the run flat tire 10 during run flat running.
  • a side reinforcing rubber 24 made of a single rubber material for reinforcing the tire side portion 22 is provided inside the carcass 14 in the tire width direction.
  • the side reinforcing rubber 24 is a reinforcing rubber for running a predetermined distance while supporting the weight of the vehicle and the occupant when the internal pressure of the run flat tire 10 decreases due to puncture or the like.
  • the side reinforcing rubber 24 mainly composed of rubber is provided as an example.
  • the present invention is not limited to this, and the side reinforcing rubber 24 may be formed of another material.
  • a thermoplastic resin or the like as a main component.
  • the side reinforcing rubber 24 is formed of one type of rubber member, but is not limited thereto, and may be formed of, for example, a plurality of rubber members having different hardnesses.
  • the side reinforcing rubber 24 may include a filler, a short fiber, a resin, and other materials as long as the rubber member is a main component.
  • the rubber member constituting the side reinforcing rubber 24 may include a rubber member having a JIS hardness of 70 to 85 measured at 20 ° C. using a durometer hardness tester. .
  • the loss coefficient tan ⁇ measured using a viscoelastic spectrometer (for example, a spectrometer manufactured by Toyo Seiki Seisakusho) at a frequency of 20 Hz, an initial strain of 10%, a dynamic strain of ⁇ 2%, and a temperature of 60 ° C. is 0.10 or less.
  • a rubber member having physical properties may be included.
  • the side reinforcing rubber 24 extends in the tire radial direction along the inner surface of the main body portion 14A of the carcass 14, and has a shape whose thickness decreases toward the bead core 26 side and the tread portion 20 side, for example, has a substantially crescent cross section. ing.
  • the thickness refers to the length of the side reinforcing rubber 24 measured perpendicularly from the tire inner surface when the run flat tire 10 is assembled to the standard rim 30 and the internal pressure is set to zero.
  • One end 24 ⁇ / b> A side of the side reinforcing rubber 24 in the tire radial direction is overlapped with the bead filler 28 with the carcass 14 interposed therebetween. That is, the one end 24A side of the side reinforcing rubber 24 is disposed so as to overlap the bead filler 28 in the tire radial direction.
  • the other end 24 ⁇ / b> B of the side reinforcing rubber 24 on the outer side in the tire radial direction overlaps with the belt 16 with the carcass 14 interposed therebetween. That is, the other end 24B side of the side reinforcing rubber 24 is disposed so as to overlap the belt 16 in the tire width direction.
  • the total gauge from the tire inner surface to the tire outer surface as measured on a virtual line FLW passing through the tire maximum width portion Wmax of the run flat tire 10 and parallel to the tire rotation axis is G, from the tire inner surface to the case line 14CL.
  • the distance t is between 30% and 70% of the total gauge G between the virtual line FL1 and the virtual line FL6.
  • it is set.
  • the side reinforcing rubber maximum width portion position 24P at which the side reinforcing rubber 24 has the maximum width (tmax) is preferably within a range of 20 to 60% of the side height SH, and within a range of 30 to 50% of the side height SH. More preferably, the range of 30 to 40% of the side height SH is even more preferable.
  • an inner liner 32 is provided on the inner surface of the carcass 14 and the side reinforcing rubber 24 inside the tread portion 20 in the tire radial direction.
  • the inner liner 32 is made of, for example, rubber containing butyl rubber as a main component.
  • the rubber constituting the inner liner 32 has a lower gas permeability and a greater loss (loss coefficient tan ⁇ ) than other rubbers constituting the run flat tire 10 (for example, the tread rubber 21 and the side rubber 23). Is used.
  • the end 32E in the tire width direction is located outside the imaginary line FLE passing through the outermost end 16E of the belt 16 in the tire width direction (the end in the width direction of the first belt ply 16A) 16E. It is arranged so as not to exceed.
  • the rim guard 34 is integrally provided on the outer surface of the tire in the tire radial direction outside the point where the rim guard 34 begins to separate from the rim guard 30A.
  • the rim guard 34 has a substantially triangular shape protruding outward from the tire from the virtual contour line 22FL of the tire side portion 22 when viewed in a cross section along the tire rotation axis, and has a vertex 34T (virtual contour).
  • the inclined surface 34A on the tire radial direction outside from the line 22FL farthest to the tire outside) is smoothly connected to the outer surface of the tire side portion 22, and the inclined surface 34B on the tire radial direction inside from the vertex 34T is normal.
  • the rim flange 30A via a gap S.
  • the apex 34T of the rim guard 34 is provided within a range of 10 to 20% of the side height SH outward in the tire radial direction from the reference line BL.
  • the distance La in the tire radial direction between the vertex 34T of the rim guard 34 and the virtual line FL2 is preferably set within a range of 4 to 10% of the side height SH.
  • the distance Lb in the tire radial direction between the vertex 34T of the rim guard 34 and an imaginary line FLa parallel to the tire rotation axis passing through the outermost end of the rim flange 30A in the rim radial direction is 3 to 10% of the side height SH. It is preferable to set within the range. It is preferable that the apex 34T of the rim guard 34 be provided within a range of 10% to 20% of the side height SH outward in the tire radial direction from the reference line BL.
  • the thickness ta from the vertex 34T of the rim guard 34 to the case line 14CL is set within a range of 140 to 300% of the thickness tb of the bead portion 12 at the separation point SP (measured perpendicular to the case line 14CL). Is preferred.
  • the run flat tire 10 of the present embodiment the value of the ratio t / G is optimized from the bead portion 12 to the tread portion 20 as described above.
  • the spring constant can be reduced, and the riding comfort during normal running can be improved.
  • the rim guard 34 is provided, it is possible to prevent the bead portion 12 from excessively falling down during run flat running, and to ensure run flat durability. Therefore, the run flat tire 10 of the present embodiment can achieve both ride comfort performance and run flat durability.
  • a position at a height of 20 to 40% of the side height SH outward from the reference line BL in the tire radial direction (a switching position between an arc having a radius of curvature R1 and an arc having a radius of curvature R2).
  • the case line at a height position of 40 to 60% of the side height SH (near the middle position between the rim guard 34 and the buttress (shoulder)) outward from the reference line BL in the tire radial direction.
  • t / G measured through 14CL within the range of 60 to 80%, the effect of lowering the longitudinal spring constant can be enhanced.
  • the position of the apex 34T of the rim guard 34 is provided within the range of 10 to 20% of the side height SH from the reference line BL outward in the tire radial direction. Excessive fall of the bead portion 12 during running is suppressed, and run-flat tire durability is ensured.
  • the carcass 14 of the above embodiment is configured by one carcass ply 15, the present invention is not limited to this, and the carcass 14 may be configured by a plurality of carcass plies 15.
  • the belt 16 in the above embodiment is a so-called intersecting belt composed of two belt plies, but may be a spiral belt. Further, the belt 16 may have a structure in which a cord is embedded in a resin layer.
  • the run-flat tire for a passenger car has been described, but the present invention can be applied to a run-flat tire used for a vehicle other than a passenger car.

Abstract

This run-flat tire is provided with: a pair of bead cores; a carcass; side reinforcing rubber which is provided inside of the carcass in the tire width direction; and a rim guard which is provided on the outside surface of the tire and which limits collapse of the bead part to outside in the tire axial direction. When the center line through the center of the carcass thickness is set as a case line, (t/G) between the point of intersection (0.1 Hp) and the point of intersection (0.3 Hp) is set within the range 40-80%, (t/G) between the point of intersection (0.8 Hp) and the point of intersection (0.9 Hp) is set within the range 30-60%, and the position of the apex of the rim guard is set within the range of 10-20% of the side height from the reference line outwards in the tire radial direction.

Description

ランフラットタイヤRun flat tire
 本開示は、ランフラットタイヤに関する。 The present disclosure relates to a run flat tire.
 タイヤの内圧が低下した状態でも一定距離を走行可能にするランフラットタイヤとして、タイヤサイド部をサイド補強ゴムで補強したサイド補強型のランフラットタイヤがある(例えば、特開2012-116212号公報参照)。 As a run flat tire that can travel a certain distance even when the internal pressure of the tire is reduced, there is a run-flat tire of a side reinforcement type in which a tire side portion is reinforced with side reinforcement rubber (for example, see Japanese Patent Application Laid-Open No. 2012-116212). ).
 ランフラットタイヤとして、通常走行時の乗り心地性能と、ランフラット走行時の耐久性、所謂ランフラット耐久性とを両立することが難しく、改善の余地があった。
 例えば、通常走行時の乗り心地性能を向上するために、縦ばね定数を低下させる方法があるが、サイド補強ゴムを薄くしたり軟らかくすると、ランフラット耐久性が低下する。
 また、ランフラット耐久性を確保するために、サイド補強ゴムを厚くすると、縦ばね定数が高くなり、通常走行時の乗り心地が悪化し、また、タイヤ重量が増加する。
As a run flat tire, it is difficult to achieve both ride comfort during normal running and durability during run flat running, so-called run flat durability, and there is room for improvement.
For example, there is a method of lowering the longitudinal spring constant in order to improve the riding comfort during normal running. However, if the side reinforcing rubber is made thinner or softer, the run flat durability is reduced.
Further, when the side reinforcing rubber is thickened in order to ensure run-flat durability, the longitudinal spring constant increases, the riding comfort during normal running deteriorates, and the tire weight increases.
 本開示は、上記事実を考慮して、通常走行時の乗り心地性能と、ランフラット耐久性とを両立可能なランフラットタイヤを提供することを目的とする。 The present disclosure has been made in consideration of the above-described facts, and has as its object to provide a run-flat tire that can achieve both ride comfort during normal running and run-flat durability.
 本開示に係るランフラットタイヤは、一対のビードコアと、前記一対のビードコアを跨る本体部と前記ビードコアを折り返される折返し部とを備えたカーカスと、前記カーカスのタイヤ径方向外側に設けられたベルトと、前記カーカスのタイヤ幅方向内側に設けられ、タイヤ径方向両側に向けて厚さが漸減するサイド補強層と、タイヤ外側面に設けられ、ランフラット走行時にリムフランジに接触して前記ビードコアを埋設したビード部のタイヤ軸方向外側への倒れ込みを制限するリムガードと、を備え、前記カーカスの厚さの中心を通る中心線をケースラインとし、標準リムに装着して零内圧の状態でタイヤ回転軸に沿った断面で見たときの、前記ビードコアのタイヤ径方向外側端を通って前記タイヤ回転軸に平行な基準線からタイヤ径方向へ計測した前記ケースラインの高さ寸法をサイドハイトSH、前記基準線からタイヤ径方向外側へ前記サイドハイトSHの10%離れた位置を通りタイヤ回転軸に沿って平行とされた第1仮想線と前記ケースラインとの交点を0.1SHp、前記基準線からタイヤ径方向外側へ前記サイドハイトSHの30%離れた位置を通りタイヤ回転軸に沿って平行とされた第2仮想線と前記ケースラインとの交点を0.3SHp、前記基準線からタイヤ径方向外側へ前記サイドハイトSHの80%離れた位置を通りタイヤ回転軸に沿って平行とされた第3仮想線と前記ケースラインとの交点を0.8SHp、前記基準線からタイヤ径方向外側へ前記サイドハイトSHの90%離れた位置を通りタイヤ回転軸に沿って平行とされた第4仮想線と前記ケースラインとの交点を0.9SHp、タイヤ内面から前記リムガードを除くタイヤ外面までの総ゲージをG、タイヤ内面から前記ケースラインまでのゲージをt、としたきに、前記交点0.1Hpと前記交点0.3Hpとの間におけるt/Gが40~80%の範囲内に設定され、前記交点0.8Hpと前記交点0.9Hpとの間におけるt/Gが30~60%の範囲内に設定され、前記リムガードの頂点の位置が、前記基準線からタイヤ径方向外側へ前記サイドハイトSHの10~20%の範囲内に設定されている。 A run flat tire according to the present disclosure includes a pair of bead cores, a carcass including a main body portion that straddles the pair of bead cores, and a folded portion that folds the bead cores, and a belt provided outside the carcass in a tire radial direction. A side reinforcing layer provided on the inner side in the tire width direction of the carcass and gradually reduced in thickness toward both sides in the tire radial direction; and a bead core provided on the outer side of the tire and contacting a rim flange during run flat running to bury the bead core. A rim guard for limiting the fall of the bead portion to the outside in the tire axial direction, a center line passing through the center of the thickness of the carcass as a case line, mounted on a standard rim, and mounted on a standard rim at a zero inner pressure state. When viewed from a cross-section along the tire core diameter, a reference line parallel to the tire rotation axis passes through the tire radial outer end of the bead core. The height dimension of the case line measured in the direction is a side height SH, and a first imaginary parallel to the tire rotation axis passing through a position 10% away from the reference line in the tire radial direction and away from the side height SH. The intersection between the line and the case line is 0.1SHp, the second imaginary line parallel to the tire rotation axis passing through the position 30% of the side height SH outward from the reference line in the tire radial direction and the tire rotation axis. An intersection with the case line is 0.3SHp, a third imaginary line parallel to the tire rotation axis passing through a position 80% of the side height SH outward in the tire radial direction from the reference line and the case line. At the intersection of 0.8SHp, a fourth imaginary line parallel to the tire rotation axis passing through a position 90% of the side height SH outward from the reference line in the tire radial direction, and the case line. Is 0.9SHp, G is the total gauge from the inner surface of the tire to the outer surface of the tire excluding the rim guard, and t is the gauge from the inner surface of the tire to the case line. 3Hp, the t / G is set within a range of 40 to 80%, and the t / G between the intersection 0.8Hp and the intersection 0.9Hp is set within a range of 30 to 60%. The position of the vertex of the rim guard is set within a range of 10 to 20% of the side height SH outward in the tire radial direction from the reference line.
 本開示に係るランフラットタイヤでは、上記の様にしてゲージのt/Gが最適化されているので、サイド補強層を薄くしたりせずに、縦ばね定数を低下させ、通常走行時の乗り心地を改善することが出来る。
 また、タイヤ外側面にリムガードを設けているので、ランフラット走行時におけるビード部の過剰な倒れ込みを抑制することができ、ランフラット耐久性を確保することができる。
 これにより、本開示に係るランフラットタイヤでは、乗り心地性能と、ランフラット耐久性とを両立することが出来る。
In the run flat tire according to the present disclosure, since the t / G of the gauge is optimized as described above, the vertical spring constant is reduced without thinning the side reinforcing layer, and the riding during normal running is performed. Comfort can be improved.
In addition, since the rim guard is provided on the tire outer surface, the bead portion can be prevented from excessively falling down during run flat running, and run flat durability can be ensured.
As a result, the run-flat tire according to the present disclosure can achieve both riding comfort performance and run-flat durability.
 本開示のランフラットタイヤによれば、通常走行時の乗り心地、及びランフラット耐久性を両立することができる。 According to the run flat tire of the present disclosure, it is possible to achieve both riding comfort during normal running and run flat durability.
本発明の一実施形態に係るランフラットタイヤをタイヤ軸方向に沿って切断した切断面の片側を示す半断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a half cross-sectional view which shows one side of the cut surface which cut | disconnected the run flat tire which concerns on one Embodiment of this invention along a tire axial direction. 本発明の一実施形態に係るランフラットタイヤをタイヤ軸方向に沿って切断した切断面の片側を示す半断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a half cross-sectional view which shows one side of the cut surface which cut | disconnected the run flat tire which concerns on one Embodiment of this invention along a tire axial direction. タイヤ側部を示す拡大断面図である。It is an expanded sectional view showing a tire side part. 本発明の一実施形態に係るランフラットタイヤをタイヤ軸方向に沿って切断した切断面の片側を示す半断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a half cross-sectional view which shows one side of the cut surface which cut | disconnected the run flat tire which concerns on one Embodiment of this invention along a tire axial direction.
(ランフラットタイヤの構成)
 以下、図1乃至図3を参照しながら本発明の実施形態に係るランフラットタイヤ10について説明する。なお、本実施形態では、乗用車用のランフラットタイヤ10について説明する。
(Configuration of run flat tire)
Hereinafter, a run flat tire 10 according to an embodiment of the present invention will be described with reference to FIGS. 1 to 3. In this embodiment, a run flat tire 10 for a passenger car will be described.
 ここで、図中矢印TWはランフラットタイヤ10の幅方向(タイヤ幅方向)を示し、矢印TRはランフラットタイヤ10の径方向(タイヤ径方向)を示す。 Here, the arrow TW in the figure indicates the width direction of the run flat tire 10 (tire width direction), and the arrow TR indicates the radial direction of the run flat tire 10 (tire radial direction).
 ここでいうタイヤ幅方向とは、ランフラットタイヤ10の回転軸と平行な方向を指し、タイヤ軸方向ともいう。また、タイヤ径方向とは、ランフラットタイヤ10の回転軸と直交する方向をいう。 タ イ ヤ Here, the tire width direction refers to a direction parallel to the rotation axis of the run flat tire 10, and is also referred to as a tire axial direction. The tire radial direction refers to a direction perpendicular to the rotation axis of the run flat tire 10.
 また、符号CLはランフラットタイヤ10の赤道面(タイヤ赤道面)を示している。さらに、本実施の形態では、タイヤ径方向に沿ってランフラットタイヤ10の回転軸側を「タイヤ径方向内側」、タイヤ径方向に沿ってランフラットタイヤ10の回転軸とは反対側を「タイヤ径方向外側」と記載する。 {Circle around (4)} indicates the equatorial plane (tire equatorial plane) of the run flat tire 10. Further, in the present embodiment, the rotational axis side of the run flat tire 10 is “inside in the tire radial direction” along the tire radial direction, and the opposite side of the rotational axis of the run flat tire 10 along the tire radial direction is “tire”. Radially outside ".
 一方、タイヤ幅方向に沿ってランフラットタイヤ10の赤道面CL側を「タイヤ幅方向内側」、タイヤ幅方向に沿ってランフラットタイヤ10の赤道面CLとは反対側を「タイヤ幅方向外側」と記載する。 On the other hand, the equator plane CL side of the run flat tire 10 along the tire width direction is “inside in the tire width direction”, and the side opposite to the equatorial plane CL of the run flat tire 10 along the tire width direction is “outside in the tire width direction”. It is described.
 また、以下の説明において、リムとは、下記規格に記載されている適用サイズにおける標準リム(または、”Approved Rim”、”Recommended Rim”)のことである。規格は、タイヤが生産又は使用される地域に有効な産業規格によって決められている。例えば、アメリカ合衆国では、”The Tire and Rim Association Inc.のYear Book ”で、欧州では”The European Tire and Rim Technical OrganizationのStandards Manual”で、日本では日本自動車タイヤ協会の“JATMA Year Book”にて規定されている。 リ ム In the following description, the rim is a standard rim (or “Approved @ Rim” or “Recommended @ Rim”) in an application size described in the following standard. Standards are determined by industry standards that are in effect in the area where the tire is manufactured or used. For example, in the United States, "The Book of the Tire and Rim Association of Inc., Inc., Year Book", in Europe, "The European, Tire and Rim, Technical, Organization, Standards of Automotive, Japan Association of Motorcycles, Japan Motor Company, Japan Association of Motorcycles, Japan Association of Motorcycles, Japan Association of Motorcycles, Japan Association of Motorcycles, Japan. Have been.
 図1乃至図3は、標準リム30に組み付けて内圧を充填していない状態(外気と同じ気圧)のランフラットタイヤ10のタイヤ回転軸に沿った断面図である。
 図1に示されるように、本実施の形態に係るランフラットタイヤ10は、一対のビード部12と、カーカス14と、ベルト16と、ベルト補強層18と、トレッド部20と、タイヤサイド部22と、サイド補強層としてのサイド補強ゴム24と、インナーライナー32と、を備えている。
FIGS. 1 to 3 are cross-sectional views of the run flat tire 10 assembled with the standard rim 30 and not filled with the internal pressure (same pressure as the outside air) along the tire rotation axis.
As shown in FIG. 1, the run flat tire 10 according to the present embodiment has a pair of bead portions 12, a carcass 14, a belt 16, a belt reinforcing layer 18, a tread portion 20, and a tire side portion 22. And a side reinforcing rubber 24 as a side reinforcing layer, and an inner liner 32.
 ビード部12は、タイヤ幅方向に間隔を空けて左右一対設けられている(図1では、片側のビード部12のみ図示している。)。この一対のビード部12には、ビードコア26がそれぞれ埋設されており、このビードコア26の間には、カーカス14が跨っている。 (4) A pair of left and right bead portions 12 are provided at an interval in the tire width direction (only one bead portion 12 is shown in FIG. 1). A bead core 26 is embedded in each of the pair of bead portions 12, and the carcass 14 extends between the bead cores 26.
(カーカス)
 本実施形態のカーカス14は、1枚のカーカスプライ15によって構成されており、カーカスプライ15は、複数本のコード(図示省略。例えば、有機繊維コードや金属コードなど。)を被覆ゴムで被覆して形成されている。このようにして形成されたカーカス14が一方のビードコア26から他方のビードコア26へトロイド状に延びてタイヤの骨格を構成している。なお、本実施形態のランフラットタイヤ10は、ラジアル構造のタイヤであり、カーカスプライ15のコードは、タイヤ側部においてタイヤ径方向(ラジアル方向)に延びており、タイヤ外周部においてはタイヤ赤道面CLに対して交差する方向に延びている。
(Carcass)
The carcass 14 of the present embodiment is constituted by one carcass ply 15, and the carcass ply 15 covers a plurality of cords (not shown; for example, an organic fiber cord or a metal cord) with a covering rubber. It is formed. The carcass 14 thus formed extends from one bead core 26 to the other bead core 26 in a toroidal shape, and forms a tire skeleton. The run flat tire 10 of the present embodiment is a tire having a radial structure, and a cord of the carcass ply 15 extends in a tire radial direction (radial direction) on a tire side portion, and a tire equatorial plane on a tire outer peripheral portion. It extends in a direction crossing CL.
 なお、このカーカス14において、一方のビードコア26から他方のビードコア26に跨っている部分を本体部14A、ビードコア26をタイヤ内側から外側へ折り返されている部分を折返し部14Bと呼ぶ。なお、本実施形態において、折返し部14Bの端部14BEは、後述するベルト16のタイヤ幅方向最外端16Eの近傍において、ベルト16とカーカス14の本体部14Aとの間に挟持されている。
 また、折返し部14Bの端部14BEは、後述するサイド補強ゴム24の他端部24Bよりもタイヤ幅方向外側、かつ、後述する何れのベルトプライ16A、16Bのベルト端よりもタイヤ径方向内側に配置されることが好ましい。 
In the carcass 14, a portion extending from one bead core 26 to the other bead core 26 is referred to as a main body portion 14A, and a portion in which the bead core 26 is folded from the inside to the outside of the tire is referred to as a folded portion 14B. In the present embodiment, the end portion 14BE of the folded portion 14B is sandwiched between the belt 16 and the main body portion 14A of the carcass 14 near the outermost end 16E in the tire width direction of the belt 16 described later.
Further, the end portion 14BE of the folded portion 14B is located outside the other end portion 24B of the side reinforcing rubber 24 described later in the tire width direction, and is located radially inside the belt end of any of the belt plies 16A and 16B described later. Preferably, they are arranged.
 以下の説明において、「ケースライン14CL」とは、カーカス14の厚みの中心線のことを指す。例えば、カーカスプライ15が一枚の部分においては、カーカスプライ15の厚みの中心線を「ケースライン14CL」とし、カーカスプライ15が複数枚重なっている部分においては、複数枚重なったカーカスプライ15の厚みの中心線を「ケースライン14CL」とする。また、カーカス14の本体部14Aと折返し部14Bとがある部分(後述するビードフィラー28の配置されている部分)においては、本体部14Aと折返し部14Bとの中心線(図1における2点鎖線で図示する)を「ケースライン14CL」とする。 に お い て In the following description, the “case line 14CL” indicates the center line of the thickness of the carcass 14. For example, in a portion where the carcass ply 15 is a single sheet, the center line of the thickness of the carcass ply 15 is defined as a “case line 14CL”. The center line of the thickness is referred to as “case line 14CL”. Further, in a portion where the main body portion 14A and the folded portion 14B of the carcass 14 are present (a portion where a bead filler 28 described later is disposed), the center line between the main body portion 14A and the folded portion 14B (two-dot chain line in FIG. 1). Are shown as “case line 14CL”.
 また、本実施形態では、標準リム30に組み付けて内圧を充填していない状態のランフラットタイヤ10において、ビードコア26のタイヤ径方向外側端を通ってタイヤ回転軸(図示せず)に平行とされた基準線BLからタイヤ径方向外側へ向けて計測するケースライン14CLの最大高さSHをサイドハイトと呼ぶ(図1参照。)。 Further, in the present embodiment, in the run-flat tire 10 in a state in which the internal pressure is not filled by being assembled to the standard rim 30, the bead core 26 is made parallel to the tire rotation axis (not shown) through the tire radial outer end. The maximum height SH of the case line 14CL measured outward from the reference line BL in the tire radial direction is referred to as a side height (see FIG. 1).
 さらに、本実施形態では、基準線BLからタイヤ径方向外側へサイドハイトSHの10%離れた位置を通りタイヤ回転軸に沿って平行とされた仮想線FL1とケースライン14CLとの交点を0.1SHp、基準線BLからタイヤ径方向外側へサイドハイトSHの20%離れた位置を通りタイヤ回転軸に沿って平行とされた仮想線FL2とケースライン14CLとの交点を0.2SHp、基準線BLからタイヤ径方向外側へサイドハイトSHの40%離れた位置を通りタイヤ回転軸に沿って平行とされた仮想線FL4とケースライン14CLとの交点を0.4SHp、基準線BLからタイヤ径方向外側へサイドハイトSHの60%離れた位置を通りタイヤ回転軸に沿って平行とされた仮想線FL6とケースライン14CLとの交点を0.6SHpと呼ぶ。 Furthermore, in the present embodiment, the intersection of the virtual line FL1 and the case line 14CL, which is parallel to the tire rotation axis through a position 10% of the side height SH outward from the reference line BL in the tire radial direction and is parallel to the tire rotation axis, is set to 0.1. 1SHp, the intersection of the imaginary line FL2, which is parallel to the tire rotation axis through a position 20% of the side height SH outward in the tire radial direction from the reference line BL and the case line 14CL, is 0.2SHp, the reference line BL. At the intersection of the virtual line FL4 and the case line 14CL, which are parallel to the tire rotation axis through the position 40% away from the side height SH from the reference line BL to the tire radial outside from the reference line BL. The intersection point of the virtual line FL6, which is parallel to the tire rotation axis through the position 60% away from the side height SH, and the case line 14CL is called 0.6SHp. .
 本実施形態のカーカス14のケースライン14CLは、交点0.1SHpと交点0.2SHpとの間が、タイヤ内側に曲率中心を有し平均の曲率半径がR1とされたタイヤ外側へ凸となる円弧形状とされ、交点0.4SHpと交点0.6SHpとの間が、タイヤ内側に曲率中心を有し曲率半径がR2とされたタイヤ外側へ凸となる単一の曲率半径を有した円弧形状とされている。なお、交点0.2SHpと交点0.4SHpとの間のケースライン14CLは、交点0.1SHpと交点0.2SHpとの間の円弧形状、及び交点0.4SHpと交点0.6SHpとの間の円弧形状に対して滑らかに繋がるタイヤ外側へ凸となる円弧形状とされている。 The case line 14CL of the carcass 14 of the present embodiment is such that an arc between the intersection 0.1SHp and the intersection 0.2SHp has a center of curvature inside the tire and is convex to the outside of the tire where the average radius of curvature is R1. Between the intersection 0.4SHp and the intersection 0.6SHp is a circular arc shape having a single radius of curvature having a center of curvature inside the tire and having a radius of curvature of R2 and convex to the outside of the tire. Have been. Note that the case line 14CL between the intersections 0.2SHp and 0.4SHp is the arc shape between the intersections 0.1SHp and 0.2SHp, and the arc between the intersections 0.4SHp and 0.6SHp. The arc shape is smoothly connected to the arc shape and is convex toward the outside of the tire.
 本実施形態では、曲率半径R1は、曲率半径R2よりも大きく設定されており、比R2/R1は0.3よりも大きく設定されている。また、比R2/R1は、0.4よりも大きく設定することが好ましい。なお、比R2/R1は、1.3よりも小さく設定することが好ましい。
 さらに、曲率半径R1は、サイドハイトSHの100~200%の範囲内に設定されている事が好ましく、曲率半径R2は、サイドハイトSHの50~150%の範囲内に設定されている事が好ましい。
In the present embodiment, the radius of curvature R1 is set to be larger than the radius of curvature R2, and the ratio R2 / R1 is set to be larger than 0.3. Further, the ratio R2 / R1 is preferably set to be larger than 0.4. Note that the ratio R2 / R1 is preferably set to be smaller than 1.3.
Further, the radius of curvature R1 is preferably set within the range of 100 to 200% of the side height SH, and the radius of curvature R2 is set within the range of 50 to 150% of the side height SH. preferable.
 ここで、曲率半径R1は平均値であり、交点0.1SHpと交点0.2SHpとの間のケースライン14CLは、単一の曲率半径を持つ円弧形状であってもよく、複数の曲率半径からなる円弧形状であってもよく、曲率半径が徐々に変化する略円弧形状であってもよい。また、交点0.1SHpと交点0.2SHpとの間のケースライン14CLの曲率半径は、場合によっては無限大、言い換えれば、交点0.1SHpと交点0.2SHpとの間のケースライン14CLは直線形状であってもよい。 Here, the radius of curvature R1 is an average value, and the case line 14CL between the intersection 0.1SHp and the intersection 0.2SHp may have an arc shape having a single radius of curvature. An arc shape may be used, or a substantially arc shape in which the radius of curvature changes gradually. The radius of curvature of the case line 14CL between the intersection 0.1SHp and the intersection 0.2SHp may be infinite in some cases, in other words, the case line 14CL between the intersection 0.1SHp and the intersection 0.2SHp is a straight line. It may be shaped.
 図1と同じランフラットタイヤ10が記載されている図2Aに示すように、基準線BLからタイヤ径方向外側へサイドハイトSHの10%離れた位置を通りタイヤ回転軸に沿って平行とされた仮想線FLaとケースライン14CLとの交点を0.1SHp、基準線BLからタイヤ径方向外側へサイドハイトSHの30%離れた位置を通りタイヤ回転軸に沿って平行とされた仮想線FLbとケースライン14CLとの交点を0.3SHp、基準線BLからタイヤ径方向外側へサイドハイトSHの55%離れた位置を通りタイヤ回転軸に沿って平行とされた仮想線FLcとケースライン14Cとの交点を0.55SHp、基準線BLからタイヤ径方向外側へサイドハイトSHの80%離れた位置を通りタイヤ回転軸に沿って平行とされた仮想線FLdとケースライン14CLとの交点を0.8SHp、基準線BLからタイヤ径方向外側へサイドハイトSHの90%離れた位置を通りタイヤ回転軸に沿って平行とされた仮想線FLeケースライン14CLとの交点を0.9SHp、図2Bに示すように、タイヤ内面から後述するリムガード34を除くタイヤ外面までの総ゲージをG(タイヤ内面の接線に対して直角な方向、言い換えれば、法線の方向に計測)、タイヤ内面からケースライン14CLまでのゲージをt、としたきに、交点0.1SHpと交点0.3SHpとの間におけるt/Gが40~80%の範囲内に設定され、交点0.8SHpと交点0.9SHpとの間におけるt/Gが30~60%の範囲内に設定されている。 As shown in FIG. 2A in which the same run-flat tire 10 as that in FIG. 1 is described, the run-flat tire 10 is parallel to the tire rotation axis along the tire rotation axis through a position 10% away from the reference line BL in the tire radial direction and away from the side height SH. The intersection of the virtual line FLa and the case line 14CL is 0.1SHp, the virtual line FLb is parallel to the tire rotation axis through the position 30% of the side height SH outward from the reference line BL in the tire radial direction, and parallel to the tire rotation axis. The intersection point with the line 14CL is 0.3SHp, and the intersection point between the virtual line FLc passing through a position 55% of the side height SH outward from the reference line BL in the tire radial direction and parallel to the tire rotation axis and the case line 14C. 0.55 SHp, and a virtual line FLd that is parallel to the tire rotation axis through a position 80% of the side height SH outward in the tire radial direction from the reference line BL. The point of intersection with the line 14CL is 0.8SHp, and the point of intersection with the virtual line FLe case line 14CL, which is parallel to the tire rotation axis through a position 90% of the side height SH outward from the reference line BL in the tire radial direction and parallel to the tire rotation axis. 0.9SHp, as shown in FIG. 2B, the total gauge from the inner surface of the tire to the outer surface of the tire excluding the rim guard 34 described later is G (measured in the direction perpendicular to the tangent to the inner surface of the tire, in other words, in the direction of the normal). Assuming that the gauge from the inner surface of the tire to the case line 14CL is t, the t / G between the intersection 0.1SHp and the intersection 0.3SHp is set within a range of 40 to 80%, and the intersection 0.8SHp And the intersection point 0.9SHp is set within the range of 30 to 60%.
 さらに、図1に示すように、基準線BLからタイヤ径方向外側へサイドハイトSHの20~40%の高さ位置(曲率半径R1の円弧と、曲率半径R2の円弧との切替位置付近)におけるケースライン14CLを通って計測するt/Gを50~80%の範囲内に設定することが好ましく、基準線BLからタイヤ径方向外側へサイドハイトSHの40~60%の高さ位置(リムガード34とバットレス(ショルダー)の中間の位置付近)におけるケースライン14CLを通って計測するt/Gを60~80%の範囲内に設定することが好ましい。 Further, as shown in FIG. 1, at a height position of 20 to 40% of the side height SH outward from the reference line BL in the tire radial direction (near a switching position between an arc having a radius of curvature R1 and an arc having a radius of curvature R2). The t / G measured through the case line 14CL is preferably set within the range of 50 to 80%, and the height position of the side height SH from 40 to 60% of the side height SH from the reference line BL (the rim guard 34). It is preferable to set the t / G measured through the case line 14CL at the position between the middle and the buttress (shoulder) within the range of 60 to 80%.
 ビード部12において、カーカス14の本体部14Aと折返し部14Bとで挟まれた領域には、ビードコア26からタイヤ径方向外側へ延びるビードフィラー28が埋設されている。また、ビードフィラー28は、タイヤ径方向外側に向けて厚みが減少している。ビードフィラー28は、サイドゴム23よりも硬いゴムで形成されている。なお、ビードフィラー28の形状、及び材質は、本実施形態のものに限定されない。 In the bead portion 12, a bead filler 28 extending from the bead core 26 outward in the tire radial direction is embedded in a region sandwiched between the main body portion 14A and the folded portion 14B of the carcass 14. In addition, the thickness of the bead filler 28 decreases outward in the tire radial direction. Bead filler 28 is formed of a rubber harder than side rubber 23. Note that the shape and material of the bead filler 28 are not limited to those of the present embodiment.
 また、カーカス14の本体部14Aは、ビードコア26のタイヤ径方向外側でビードフィラー28と隣接する部分が、タイヤ内側へ凸となる曲線形状(略円弧形状)であることが好ましい。 本体 Further, it is preferable that the main body portion 14A of the carcass 14 has a curved shape (substantially arc shape) in which a portion adjacent to the bead filler 28 outside the bead core 26 in the tire radial direction is convex toward the tire inside.
 なお、ランフラットタイヤ10をタイヤ回転軸に沿って断面にしたときのビードフィラー28の断面積をAbf、サイド補強ゴム24の断面積をArrとしたときに、比Abf/Arrは0.04~0.17の範囲内とすることが好ましく、0.08~0.15の範囲内とすることがより好ましく、0.09~0.13の範囲内とすることがより一層好ましい。 When the cross-sectional area of the bead filler 28 is Abf and the cross-sectional area of the side reinforcing rubber 24 is Arr when the cross section of the run flat tire 10 is taken along the tire rotation axis, the ratio Abf / Arr is 0.04 to 0.04. It is preferably in the range of 0.17, more preferably in the range of 0.08 to 0.15, and even more preferably in the range of 0.09 to 0.13.
 仮想線FLWよりタイヤ径方向内側のサイド補強ゴム24の断面積をArri、仮想線FLWよりタイヤ径方向外側のサイド補強ゴム24の断面積をArroとしたときに、比Arri/Arroを、0.3~1.5の範囲内とすることが好ましく、0.3~1.0の範囲内とすることがより好ましく、0.5~0.6の範囲内とすることがより一層好ましい。 When the cross-sectional area of the side reinforcing rubber 24 inside the tire radial direction from the virtual line FLW is Arri, and the cross-sectional area of the side reinforcing rubber 24 outside the tire radial direction from the virtual line FLW is Aro, the ratio Ari / Aro is set to 0. It is preferably in the range of 3 to 1.5, more preferably in the range of 0.3 to 1.0, and even more preferably in the range of 0.5 to 0.6.
 ビードコア26の断面積をAcとしたときに、比Ac /Abfを、0.7~1.1の範囲内とすることが好ましく、0.8~1.8の範囲内とすることがより好ましく、0.90~0.95の範囲内とすることがより一層好ましい。 When the sectional area of the bead core 26 is Ac, the ratio Ac / Abf is preferably in the range of 0.7 to 1.1, and more preferably in the range of 0.8 to 1.8. , 0.90 to 0.95.
 総ゲージGと厚みtaとの比ta/Gは、0.6~1.0の範囲内とすることが好ましく、0.6~0.8の範囲内とすることがより好ましく、0.7~0.8の範囲内とすることがより一層好ましい。 The ratio ta / G between the total gauge G and the thickness ta is preferably in the range of 0.6 to 1.0, more preferably in the range of 0.6 to 0.8, and 0.7 It is even more preferred to be within the range of -0.8.
 ランフラットタイヤ10の偏平率は、65%以下が好ましく、50%以下がより好ましく、35%以下がより一層好ましい。 The flatness of the run flat tire 10 is preferably 65% or less, more preferably 50% or less, and even more preferably 35% or less.
 図3に示すように、標準リム30のリム端を通りタイヤ径方向に平行な仮想線FLHが、タイヤ最大幅部Wmaxのタイヤ径方向内側のカーカス14の本体部14Aと交わる交点をPa、該交点Paとビードコア26のタイヤ幅方向内側端26Pとを結ぶ仮想線FLαがタイヤ幅方向に対してなす角度をαとしたきに、30°<α<70°とすることが好ましく、35°<α<60°とすることがより好ましく、35°<α<45°とすることがより一層好ましい。 As shown in FIG. 3, the intersection point where the virtual line FLH passing through the rim end of the standard rim 30 and parallel to the tire radial direction intersects with the body portion 14A of the carcass 14 inside the tire radial direction of the tire maximum width portion Wmax is Pa, When an angle formed by an imaginary line FLα connecting the intersection Pa with the tire width direction inner end 26P of the bead core 26 with respect to the tire width direction is α, it is preferable that 30 ° <α <70 °, and 35 ° < More preferably, α <60 °, and even more preferably, 35 ° <α <45 °.
 上記仮想線FLHが、タイヤ最大幅部Wmaxのタイヤ径方向外側のカーカス14の本体部14Aと交わる交点をPb、該交点Pbとビードコア26のタイヤ幅方向内側端26Pとを結ぶ仮想線FLβが、タイヤ幅方向に対してなす角度をβとしたときに、50°<β<80°とすることが好ましく、55°<β<70°とすることがより好ましく、55°<β<65°とすることがより一層好ましい。 The imaginary line FLH is Pb at the intersection of the tire maximum width portion Wmax and the body portion 14A of the carcass 14 on the outer side in the tire radial direction, and the imaginary line FLβ connecting the intersection Pb and the tire width direction inner end 26P of the bead core 26 is When the angle formed with respect to the tire width direction is β, it is preferable that 50 ° <β <80 °, more preferably 55 ° <β <70 °, and 55 ° <β <65 ° Is even more preferred.
 図1に示すように、サイド補強ゴム24のタイヤ径方向外側の他端部24B側は、第1ベルトプライ16Aのベルト端、及び第2ベルトプライ16Bのベルト端よりもタイヤ幅方向内側に配置されていることが好ましい。 As shown in FIG. 1, the other end 24 </ b> B side of the side reinforcing rubber 24 in the tire radial direction is disposed inside the belt end of the first belt ply 16 </ b> A and the belt end of the second belt ply 16 </ b> B in the tire width direction. It is preferred that
 リムガード34の頂点34Tは、カーカス14の本体部14Aのタイヤ幅方向外端14maxよりもタイヤ幅方向外側に配置されていることが好ましい。 頂点 It is preferable that the apex 34T of the rim guard 34 be disposed outside the tire width direction outer end 14max of the main body 14A of the carcass 14 in the tire width direction.
(ベルト)
 カーカス14のタイヤ径方向外側には、ベルト16が配設されている。本実施形態のベルト16は、1枚又は複数枚のベルトプライによって構成されている。本実施形態のベルト16は、一例として、タイヤ径方向内側の第1ベルトプライ16A、及び第1ベルトプライ16Aのタイヤ径方向外側に配置されて第1ベルトプライ16Aよりも幅狭の第2ベルトプライ16Bとを含んで構成されている。
(belt)
A belt 16 is provided outside the carcass 14 in the tire radial direction. The belt 16 of the present embodiment is constituted by one or a plurality of belt plies. As an example, the belt 16 of the present embodiment includes, as an example, a first belt ply 16A inside the tire radial direction, and a second belt that is arranged outside the first belt ply 16A in the tire radial direction and is narrower than the first belt ply 16A. And a ply 16B.
 ベルトプライ16A、16Bは、互いに平行に並列された複数本のコード(本実施形態では、スチールコード)を被覆ゴムで被覆して形成されている。ベルトプライ16A、16Bを構成するコードは、タイヤ周方向に対して傾斜して配設されており(一例として、タイヤ周方向に対し15度~30度の傾斜角度で傾斜している。)。なお、ベルトプライ16Aのコードと、ベルトプライ16Bのコードとは、タイヤ赤道面CLに対して互いに反対方向に傾斜している。即ち、本実施形態のベルト16は、いわゆる交差ベルトである。 The belt plies 16A and 16B are formed by covering a plurality of cords (steel cords in this embodiment) arranged in parallel with each other with a covering rubber. The cords constituting the belt plies 16A and 16B are arranged to be inclined with respect to the tire circumferential direction (as an example, inclined at an angle of 15 to 30 degrees with respect to the tire circumferential direction). The cord of the belt ply 16A and the cord of the belt ply 16B are inclined in directions opposite to each other with respect to the tire equatorial plane CL. That is, the belt 16 of the present embodiment is a so-called cross belt.
 ベルト16のタイヤ径方向外側には、ベルト補強層18が配設されている。ベルト補強層18は、一例としてタイヤ周方向に沿って延びるコードを含んで構成され、ベルト16の全体を覆うように配設されている。 ベ ル ト A belt reinforcing layer 18 is disposed outside the belt 16 in the tire radial direction. The belt reinforcing layer 18 includes, for example, a cord extending along the tire circumferential direction, and is disposed so as to cover the entire belt 16.
 ベルト16及びベルト補強層18のタイヤ径方向外側には、トレッド部20を構成するトレッドゴム21が配置されている。トレッド部20は、走行中に路面に接地する部位であり、トレッド部20の表面には、タイヤ周方向に延びる周方向溝20Aが形成されている。また、トレッド部20には、タイヤ幅方向に延びる図示しない幅方向溝が形成されている。なお、周方向溝20A及び幅方向溝の形状や本数は、ランフラットタイヤ10に要求される排水性や操縦安定性等の性能に応じて適宜設定される。 ト A tread rubber 21 constituting the tread portion 20 is disposed outside the belt 16 and the belt reinforcing layer 18 in the tire radial direction. The tread portion 20 is a portion that comes into contact with the road surface during traveling, and a circumferential groove 20 </ b> A extending in the tire circumferential direction is formed on the surface of the tread portion 20. The tread portion 20 has a not-shown width direction groove extending in the tire width direction. The shape and number of the circumferential grooves 20A and the width grooves are appropriately set in accordance with the required performance of the run flat tire 10, such as drainage performance and steering stability.
 ビード部12とトレッド部20との間には、タイヤサイド部22が設けられている。タイヤサイド部22は、タイヤ径方向に延びてビード部12とトレッド部20とを連結している。タイヤサイド部22、及びビード部12において、カーカス14のタイヤ幅方向外側に、サイドゴム23が配置されている。 タ イ ヤ A tire side portion 22 is provided between the bead portion 12 and the tread portion 20. The tire side portion 22 extends in the tire radial direction and connects the bead portion 12 and the tread portion 20. In the tire side portion 22 and the bead portion 12, a side rubber 23 is arranged outside the carcass 14 in the tire width direction.
(サイド補強ゴム)
 タイヤサイド部22は、ランフラット走行時にランフラットタイヤ10に作用する荷重を負担できるように以下に説明するように構成されている。
 タイヤサイド部22には、カーカス14のタイヤ幅方向内側にタイヤサイド部22を補強する単一のゴム材料からなるサイド補強ゴム24が配設されている。サイド補強ゴム24は、パンクなどでランフラットタイヤ10の内圧が減少した場合に車両及び乗員の重量を支えた状態で所定の距離を走行させるための補強ゴムである。なお、本実施形態では一例としてゴムを主成分とするサイド補強ゴム24を配設しているが、本発明はこれに限らず、サイド補強ゴム24は他の材料で形成してもよく、例えば、熱可塑性樹脂等を主成分として形成されていてもよい。
(Side reinforcement rubber)
The tire side portion 22 is configured as described below so as to be able to bear the load acting on the run flat tire 10 during run flat running.
In the tire side portion 22, a side reinforcing rubber 24 made of a single rubber material for reinforcing the tire side portion 22 is provided inside the carcass 14 in the tire width direction. The side reinforcing rubber 24 is a reinforcing rubber for running a predetermined distance while supporting the weight of the vehicle and the occupant when the internal pressure of the run flat tire 10 decreases due to puncture or the like. In the present embodiment, the side reinforcing rubber 24 mainly composed of rubber is provided as an example. However, the present invention is not limited to this, and the side reinforcing rubber 24 may be formed of another material. , And a thermoplastic resin or the like as a main component.
 本実施形態では、サイド補強ゴム24を1種類のゴム部材で形成しているが、これに限らず、例えば、硬さの異なる複数のゴム部材で形成してもよい。また、サイド補強ゴム24は、ゴム部材が主成分であれば、他にフィラー、短繊維、樹脂等の材料を含んでもよい。さらに、ランフラット走行時の耐久力を高めるため、サイド補強ゴム24を構成するゴム部材として、デュロメータ硬さ試験機を用いて20℃で測定したJIS硬度が70~85のゴム部材を含んでもよい。さらに、粘弾性スペクトロメータ(例えば、東洋精機製作所製スペクトロメータ)を用いて周波数20Hz、初期歪み10%、動歪み±2%、温度60℃の条件で測定した損失係数tanδが0.10以下の物性を有するゴム部材を含んでもよい。 In the present embodiment, the side reinforcing rubber 24 is formed of one type of rubber member, but is not limited thereto, and may be formed of, for example, a plurality of rubber members having different hardnesses. The side reinforcing rubber 24 may include a filler, a short fiber, a resin, and other materials as long as the rubber member is a main component. Further, in order to enhance the durability during run flat running, the rubber member constituting the side reinforcing rubber 24 may include a rubber member having a JIS hardness of 70 to 85 measured at 20 ° C. using a durometer hardness tester. . Further, the loss coefficient tan δ measured using a viscoelastic spectrometer (for example, a spectrometer manufactured by Toyo Seiki Seisakusho) at a frequency of 20 Hz, an initial strain of 10%, a dynamic strain of ± 2%, and a temperature of 60 ° C. is 0.10 or less. A rubber member having physical properties may be included.
 サイド補強ゴム24は、カーカス14の本体部14Aの内面に沿ってタイヤ径方向に延びており、ビードコア26側及びトレッド部20側に向かうにつれて厚みが減少する形状、例えば、断面略三日月形状とされている。なお、ここでいう厚みとは、ランフラットタイヤ10を標準リム30に組み付けて内圧を零とした状態において、サイド補強ゴム24のタイヤ内面から垂直に測定した長さを指している。 The side reinforcing rubber 24 extends in the tire radial direction along the inner surface of the main body portion 14A of the carcass 14, and has a shape whose thickness decreases toward the bead core 26 side and the tread portion 20 side, for example, has a substantially crescent cross section. ing. Here, the thickness refers to the length of the side reinforcing rubber 24 measured perpendicularly from the tire inner surface when the run flat tire 10 is assembled to the standard rim 30 and the internal pressure is set to zero.
 サイド補強ゴム24のタイヤ径方向内側の一端部24A側は、カーカス14を挟んでビードフィラー28と重なっている。すなわち、サイド補強ゴム24の一端部24A側は、ビードフィラー28とタイヤ径方向にオーバーラップするように配設されている。
 一方、サイド補強ゴム24のタイヤ径方向外側の他端部24B側は、カーカス14を挟んでベルト16と重なっている。すなわち、サイド補強ゴム24の他端部24B側は、ベルト16とタイヤ幅方向にオーバーラップするように配設されている。
One end 24 </ b> A side of the side reinforcing rubber 24 in the tire radial direction is overlapped with the bead filler 28 with the carcass 14 interposed therebetween. That is, the one end 24A side of the side reinforcing rubber 24 is disposed so as to overlap the bead filler 28 in the tire radial direction.
On the other hand, the other end 24 </ b> B of the side reinforcing rubber 24 on the outer side in the tire radial direction overlaps with the belt 16 with the carcass 14 interposed therebetween. That is, the other end 24B side of the side reinforcing rubber 24 is disposed so as to overlap the belt 16 in the tire width direction.
 さらに、ランフラットタイヤ10のタイヤ最大幅部Wmaxを通り、かつタイヤ回転軸に平行な仮想線FLW上で計測したときのタイヤ内面からタイヤ外面までの総ゲージをG、タイヤ内面からケースライン14CLまでをタイヤ内面に対して垂直な方向で計測したときの距離をtとしたときに、仮想線FL1と仮想線FL6との間において、距離tは、総ゲージGの30~70%の範囲内に設定されていることが好ましい。 Further, the total gauge from the tire inner surface to the tire outer surface as measured on a virtual line FLW passing through the tire maximum width portion Wmax of the run flat tire 10 and parallel to the tire rotation axis is G, from the tire inner surface to the case line 14CL. Is defined as t when the distance is measured in a direction perpendicular to the tire inner surface, the distance t is between 30% and 70% of the total gauge G between the virtual line FL1 and the virtual line FL6. Preferably, it is set.
 また、サイド補強ゴム24が最大幅(tmax)となるサイド補強ゴム最大幅部位置24Pは、サイドハイトSHの20~60%の範囲内が好ましく、サイドハイトSHの30~50%の範囲内がより好ましく、サイドハイトSHの30~40%の範囲内がより一層好ましい。 Further, the side reinforcing rubber maximum width portion position 24P at which the side reinforcing rubber 24 has the maximum width (tmax) is preferably within a range of 20 to 60% of the side height SH, and within a range of 30 to 50% of the side height SH. More preferably, the range of 30 to 40% of the side height SH is even more preferable.
(インナーライナー)
 本実施形態では、トレッド部20のタイヤ径方向内側におけるカーカス14、及びサイド補強ゴム24の内面に、インナーライナー32が配設されている。インナーライナー32は、一例として、ブチルゴムを主成分とするゴムで構成されている。インナーライナー32を構成するゴムは、ランフラットタイヤ10を構成する他のゴム(一例として、トレッドゴム21、サイドゴム23等)よりも、気体が透過し難く、かつロス(損失係数tanδ)が大きいものが用いられている。
(Inner liner)
In the present embodiment, an inner liner 32 is provided on the inner surface of the carcass 14 and the side reinforcing rubber 24 inside the tread portion 20 in the tire radial direction. The inner liner 32 is made of, for example, rubber containing butyl rubber as a main component. The rubber constituting the inner liner 32 has a lower gas permeability and a greater loss (loss coefficient tan δ) than other rubbers constituting the run flat tire 10 (for example, the tread rubber 21 and the side rubber 23). Is used.
 本実施形態のインナーライナー32は、タイヤ幅方向端32Eが、ベルト16のタイヤ幅方向最外端(第1ベルトプライ16Aの幅方向端部)16Eを通る仮想線FLEよりもタイヤ幅方向外側へ越えることのないように配置されている。 In the inner liner 32 of the present embodiment, the end 32E in the tire width direction is located outside the imaginary line FLE passing through the outermost end 16E of the belt 16 in the tire width direction (the end in the width direction of the first belt ply 16A) 16E. It is arranged so as not to exceed.
 タイヤサイド部22、及びビード部12の一部には、リムフランジ30Aとの離反点SP(ランフラットタイヤ10を標準リム30に装着して、内圧を零としたときのビード部12とリムフランジ30Aとが離間し始める点)よりもタイヤ径方向外側の外面に、リムガード34が一体的に設けられている。 At the tire side portion 22 and a part of the bead portion 12, a separation point SP between the rim flange 30A and the bead portion 12 and the rim flange when the internal pressure is reduced to zero when the run flat tire 10 is mounted on the standard rim 30. The rim guard 34 is integrally provided on the outer surface of the tire in the tire radial direction outside the point where the rim guard 34 begins to separate from the rim guard 30A.
(リムガード)
 リムガード34は、図1に示すように、タイヤ回転軸に沿った断面で見たときに、タイヤサイド部22の仮想輪郭線22FLからタイヤ外側へ突出した略三角形状とされ、頂点34T(仮想輪郭線22FLからタイヤ外側へ最も離れた点)からタイヤ径方向外側の傾斜面34Aは、タイヤサイド部22の外面に滑らかに繋がっており、頂点34Tからタイヤ径方向内側の傾斜面34Bは、通常時、リムフランジ30Aとの間に隙間Sを介して対向している。
(Rim guard)
As shown in FIG. 1, the rim guard 34 has a substantially triangular shape protruding outward from the tire from the virtual contour line 22FL of the tire side portion 22 when viewed in a cross section along the tire rotation axis, and has a vertex 34T (virtual contour). The inclined surface 34A on the tire radial direction outside from the line 22FL farthest to the tire outside) is smoothly connected to the outer surface of the tire side portion 22, and the inclined surface 34B on the tire radial direction inside from the vertex 34T is normal. , And the rim flange 30A via a gap S.
 リムガード34の頂点34Tは、基準線BLからタイヤ径方向外側へ前記サイドハイトSHの10~20%の範囲内に設けられている。 The apex 34T of the rim guard 34 is provided within a range of 10 to 20% of the side height SH outward in the tire radial direction from the reference line BL.
 リムガード34の頂点34Tと仮想線FL2とのタイヤ径方向の距離Laは、サイドハイトSHの4~10%の範囲内に設定することが好ましい。
 リムガード34の頂点34Tとリムフランジ30Aのリム径方向最外側の端部を通るタイヤ回転軸に沿って平行な仮想線FLaとのタイヤ径方向の距離Lbは、サイドハイトSHの3~10%の範囲内に設定することが好ましい。
 リムガード34の頂点34Tは、基準線BLからタイヤ径方向外側へサイドハイトSHの10~20%の範囲内に設けることが好ましい。
 また、リムガード34の頂点34Tからケースライン14CLまでの厚みtaは、離反点SPにおけるビード部12の厚みtb(ケースライン14CLに対して垂直に計測)の140~300%の範囲内に設定することが好ましい。
The distance La in the tire radial direction between the vertex 34T of the rim guard 34 and the virtual line FL2 is preferably set within a range of 4 to 10% of the side height SH.
The distance Lb in the tire radial direction between the vertex 34T of the rim guard 34 and an imaginary line FLa parallel to the tire rotation axis passing through the outermost end of the rim flange 30A in the rim radial direction is 3 to 10% of the side height SH. It is preferable to set within the range.
It is preferable that the apex 34T of the rim guard 34 be provided within a range of 10% to 20% of the side height SH outward in the tire radial direction from the reference line BL.
The thickness ta from the vertex 34T of the rim guard 34 to the case line 14CL is set within a range of 140 to 300% of the thickness tb of the bead portion 12 at the separation point SP (measured perpendicular to the case line 14CL). Is preferred.
(作用、効果)
 次に、本実施形態のランフラットタイヤ10の作用について説明する。
本実施形態のランフラットタイヤ10は、ビード部12からトレッド部20にかけて、上記の様にして比t/Gの値を最適化しているので、サイド補強ゴム24を薄くしたりせずに、縦ばね定数を低下させ、通常走行時の乗り心地を改善することが出来る。
 また、リムガード34を設けているので、ランフラット走行時におけるビード部12の過剰な倒れ込みを抑制することができ、ランフラット耐久性を確保することができる。
 したがって、本実施形態のランフラットタイヤ10は、乗り心地性能と、ランフラット耐久性とを両立することが出来る。
(Action, effect)
Next, the operation of the run flat tire 10 of the present embodiment will be described.
In the run flat tire 10 of the present embodiment, the value of the ratio t / G is optimized from the bead portion 12 to the tread portion 20 as described above. The spring constant can be reduced, and the riding comfort during normal running can be improved.
Further, since the rim guard 34 is provided, it is possible to prevent the bead portion 12 from excessively falling down during run flat running, and to ensure run flat durability.
Therefore, the run flat tire 10 of the present embodiment can achieve both ride comfort performance and run flat durability.
 なお、本実施形態のランフラットタイヤ10では、基準線BLからタイヤ径方向外側へサイドハイトSHの20~40%の高さ位置(曲率半径R1の円弧と、曲率半径R2の円弧との切替位置付近)におけるケースライン14CLを通って計測するt/Gが50~80%の範囲内に設定することで、縦ばね定数を低下させる効果を高めることができる。 In the run flat tire 10 of the present embodiment, a position at a height of 20 to 40% of the side height SH outward from the reference line BL in the tire radial direction (a switching position between an arc having a radius of curvature R1 and an arc having a radius of curvature R2). By setting the t / G measured through the case line 14CL (in the vicinity) within the range of 50 to 80%, the effect of lowering the longitudinal spring constant can be enhanced.
 また、本実施形態のランフラットタイヤ10では、基準線BLからタイヤ径方向外側へサイドハイトSHの40~60%の高さ位置(リムガード34とバットレス(ショルダー)の中間の位置付近)におけるケースライン14CLを通って計測するt/Gを60~80%の範囲内に設定することで、縦ばね定数を低下させる効果を高めることができる。 Further, in the run flat tire 10 of the present embodiment, the case line at a height position of 40 to 60% of the side height SH (near the middle position between the rim guard 34 and the buttress (shoulder)) outward from the reference line BL in the tire radial direction. By setting t / G measured through 14CL within the range of 60 to 80%, the effect of lowering the longitudinal spring constant can be enhanced.
 また、本実施形態のランフラットタイヤ10では、リムガード34の頂点34Tの位置が、基準線BLからタイヤ径方向外側へサイドハイトSHの10~20%の範囲内に設けられているため、ランフラット走行時におけるビード部12の過剰な倒れ込みが抑制され、ランフラットタイヤ耐久性が確保される。 Further, in the run flat tire 10 of the present embodiment, the position of the apex 34T of the rim guard 34 is provided within the range of 10 to 20% of the side height SH from the reference line BL outward in the tire radial direction. Excessive fall of the bead portion 12 during running is suppressed, and run-flat tire durability is ensured.
[その他の実施形態]
 以上、本発明の一実施形態について説明したが、本発明は、上記に限定されるものでなく、上記以外にも、その主旨を逸脱しない範囲内において種々変形して実施可能であることは勿論である。
[Other embodiments]
As described above, one embodiment of the present invention has been described. However, the present invention is not limited to the above, and it goes without saying that various modifications can be made without departing from the gist of the present invention. It is.
 上記実施形態のカーカス14は、1枚のカーカスプライ15によって構成されていたが、本発明はこれに限らず、カーカス14は複数枚のカーカスプライ15によって構成されていてもよい。 Although the carcass 14 of the above embodiment is configured by one carcass ply 15, the present invention is not limited to this, and the carcass 14 may be configured by a plurality of carcass plies 15.
 上記実施形態のベルト16は、2枚のベルトプライによって構成された所謂交錯ベルトであったが、スパイラルベルトであってもよい。また、ベルト16は、樹脂層内にコードを埋設した構造のものであってもよい。 The belt 16 in the above embodiment is a so-called intersecting belt composed of two belt plies, but may be a spiral belt. Further, the belt 16 may have a structure in which a cord is embedded in a resin layer.
 上記実施形態では、乗用車用のランフラットタイヤについて説明したが、本発明は乗用車用以外の車両に用いるランフラットタイヤについても適用できる。 In the above embodiment, the run-flat tire for a passenger car has been described, but the present invention can be applied to a run-flat tire used for a vehicle other than a passenger car.
 2018年6月25日に出願された日本国特許出願2018-120304号の開示は、その全体が参照される。
 本明細書に記載されたすべての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照されることが具体的かつ個々に記された場合と同程度に、本明細書中に参照される。
The disclosure of Japanese Patent Application No. 2018-120304 filed on June 25, 2018 is referred to in its entirety.
All publications, patent applications, and technical standards referred to in this specification are to the same extent as if each individual publication, patent application, or technical standard was specifically and individually stated to be referenced. Referenced in the specification.

Claims (4)

  1.  一対のビードコアと、
     前記一対のビードコアを跨る本体部と前記ビードコアを折り返される折返し部とを備えたカーカスと、
     前記カーカスのタイヤ径方向外側に設けられたベルトと、
     前記カーカスのタイヤ幅方向内側に設けられ、タイヤ径方向両側に向けて厚さが漸減するサイド補強層と、
     タイヤ外側面に設けられ、ランフラット走行時にリムフランジに接触して前記ビードコアを埋設したビード部のタイヤ軸方向外側への倒れ込みを制限するリムガードと、
     を備え、
     前記カーカスの厚さの中心を通る中心線をケースラインとし、
     標準リムに装着して零内圧の状態でタイヤ回転軸に沿った断面で見たときの、前記ビードコアのタイヤ径方向外側端を通って前記タイヤ回転軸に平行な基準線からタイヤ径方向へ計測した前記ケースラインの高さ寸法をサイドハイトSH、
     前記基準線からタイヤ径方向外側へ前記サイドハイトSHの10%離れた位置を通りタイヤ回転軸に沿って平行とされた第1仮想線と前記ケースラインとの交点を0.1SHp、
     前記基準線からタイヤ径方向外側へ前記サイドハイトSHの30%離れた位置を通りタイヤ回転軸に沿って平行とされた第2仮想線と前記ケースラインとの交点を0.3SHp、
     前記基準線からタイヤ径方向外側へ前記サイドハイトSHの80%離れた位置を通りタイヤ回転軸に沿って平行とされた第3仮想線と前記ケースラインとの交点を0.8SHp、
     前記基準線からタイヤ径方向外側へ前記サイドハイトSHの90%離れた位置を通りタイヤ回転軸に沿って平行とされた第4仮想線と前記ケースラインとの交点を0.9SHp、
     タイヤ内面から前記リムガードを除くタイヤ外面までの総ゲージをG、
     タイヤ内面から前記ケースラインまでのゲージをt、
    としたきに、
     前記交点0.1Hpと前記交点0.3Hpとの間におけるt/Gが40~80%の範囲内に設定され、
     前記交点0.8Hpと前記交点0.9Hpとの間におけるt/Gが30~60%の範囲内に設定され、
     前記リムガードの頂点の位置が、前記基準線からタイヤ径方向外側へ前記サイドハイトSHの10~20%の範囲内に設定されている、
     ランフラットタイヤ。
    A pair of bead cores,
    A carcass including a main body portion that straddles the pair of bead cores and a folded portion that folds the bead core;
    A belt provided on the tire radial outside of the carcass,
    A side reinforcing layer provided on the inner side in the tire width direction of the carcass, and having a thickness gradually reduced toward both sides in the tire radial direction,
    A rim guard that is provided on the tire outer surface and that restricts the bead portion in which the bead core is buried by contacting the rim flange during run flat running to prevent the bead portion from falling down in the tire axial direction,
    With
    A center line passing through the center of the thickness of the carcass is a case line,
    Measured in the tire radial direction from a reference line parallel to the tire rotational axis through the tire radial outer end of the bead core when viewed on a cross section along the tire rotational axis at zero internal pressure when mounted on a standard rim Side height SH,
    An intersection point of the first virtual line and the case line, which is parallel to the tire rotation axis through a position 10% of the side height SH outward in the tire radial direction from the reference line, is 0.1 SHp,
    The intersection of the case line with the second imaginary line parallel to the tire rotation axis passing through a position 30% of the side height SH outward in the tire radial direction from the reference line is 0.3 SHp,
    The intersection of the third imaginary line passing through a position 80% of the side height SH outward from the reference line in the tire radial direction along the tire rotation axis and the case line is 0.8SHp,
    An intersection point of the case line with the fourth imaginary line which is parallel to the tire rotation axis at a position 90% of the side height SH outward from the reference line in the tire radial direction is 0.9SHp,
    The total gauge from the tire inner surface to the tire outer surface excluding the rim guard is G,
    The gauge from the tire inner surface to the case line is t,
    And then
    T / G between the intersection 0.1Hp and the intersection 0.3Hp is set within a range of 40 to 80%,
    T / G between the intersection 0.8Hp and the intersection 0.9Hp is set within a range of 30 to 60%,
    The position of the apex of the rim guard is set within a range of 10 to 20% of the side height SH outward in the tire radial direction from the reference line.
    Run flat tire.
  2.  前記基準線からタイヤ径方向外側へ前記サイドハイトSHの20~40%の高さ位置における前記ケースラインを通って計測するt/Gが50~80%の範囲内に設定されている、請求項1に記載のランフラットタイヤ。 The t / G measured through the case line at a height position of 20 to 40% of the side height SH outward from the reference line in the tire radial direction is set within a range of 50 to 80%. 2. The run flat tire according to 1.
  3.  前記基準線からタイヤ径方向外側へ前記サイドハイトSHの40~60%の高さ位置における前記ケースラインを通って計測するt/Gが60~80%の範囲内に設定されている、請求項1または請求項2に記載のランフラットタイヤ。 The t / G measured through the case line at a height position of 40 to 60% of the side height SH from the reference line to the tire radial direction outside is set in a range of 60 to 80%. The run flat tire according to claim 1 or 2.
  4.  前記リムガードの頂点は、前記基準線からタイヤ径方向外側へ前記サイドハイトSHの10~20%の範囲内に設けられている、請求項1~請求項3の何れか1項に記載のランフラットタイヤ。 The run flat according to any one of claims 1 to 3, wherein an apex of the rim guard is provided within a range of 10 to 20% of the side height SH outward in the tire radial direction from the reference line. tire.
PCT/JP2019/023949 2018-06-25 2019-06-17 Run-flat tire WO2020004110A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020527413A JP7128274B2 (en) 2018-06-25 2019-06-17 run flat tires

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018120304 2018-06-25
JP2018-120304 2018-06-25

Publications (1)

Publication Number Publication Date
WO2020004110A1 true WO2020004110A1 (en) 2020-01-02

Family

ID=68986585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/023949 WO2020004110A1 (en) 2018-06-25 2019-06-17 Run-flat tire

Country Status (2)

Country Link
JP (1) JP7128274B2 (en)
WO (1) WO2020004110A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11157310A (en) * 1997-11-26 1999-06-15 Bridgestone Corp Pneumatic tire
JP2000043519A (en) * 1998-07-31 2000-02-15 Sumitomo Rubber Ind Ltd Assembly of tire and rim
JP2006035900A (en) * 2004-07-22 2006-02-09 Nissan Motor Co Ltd Pneumatic tire
JP2006231961A (en) * 2005-02-22 2006-09-07 Bridgestone Corp Pneumatic run flat tire
JP2009018771A (en) * 2007-07-13 2009-01-29 Sumitomo Rubber Ind Ltd Run-flat tire
JP2010083318A (en) * 2008-09-30 2010-04-15 Sumitomo Rubber Ind Ltd Run-flat tire
JP2013159263A (en) * 2012-02-07 2013-08-19 Bridgestone Corp Tire
JP2015157579A (en) * 2014-02-25 2015-09-03 住友ゴム工業株式会社 pneumatic tire
WO2017043205A1 (en) * 2015-09-10 2017-03-16 横浜ゴム株式会社 Pneumatic tire

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11157310A (en) * 1997-11-26 1999-06-15 Bridgestone Corp Pneumatic tire
JP2000043519A (en) * 1998-07-31 2000-02-15 Sumitomo Rubber Ind Ltd Assembly of tire and rim
JP2006035900A (en) * 2004-07-22 2006-02-09 Nissan Motor Co Ltd Pneumatic tire
JP2006231961A (en) * 2005-02-22 2006-09-07 Bridgestone Corp Pneumatic run flat tire
JP2009018771A (en) * 2007-07-13 2009-01-29 Sumitomo Rubber Ind Ltd Run-flat tire
JP2010083318A (en) * 2008-09-30 2010-04-15 Sumitomo Rubber Ind Ltd Run-flat tire
JP2013159263A (en) * 2012-02-07 2013-08-19 Bridgestone Corp Tire
JP2015157579A (en) * 2014-02-25 2015-09-03 住友ゴム工業株式会社 pneumatic tire
WO2017043205A1 (en) * 2015-09-10 2017-03-16 横浜ゴム株式会社 Pneumatic tire

Also Published As

Publication number Publication date
JP7128274B2 (en) 2022-08-30
JPWO2020004110A1 (en) 2021-07-08

Similar Documents

Publication Publication Date Title
JP4295795B2 (en) Pneumatic tire
CN110505965B (en) Pneumatic tire
JP2009035229A (en) Pneumatic tire
WO2019069589A1 (en) Run-flat tire
WO2012120826A1 (en) Pneumatic tire
JP6377390B2 (en) Run-flat radial tire
JP2015145177A (en) run-flat radial tire
JP2015145176A (en) run-flat radial tire
JP2009078589A (en) Pneumatic tire
JP2009035230A (en) Pneumatic tire
WO2017110636A1 (en) Pneumatic tire
JP2008296865A (en) Pneumatic tire
WO2021095884A1 (en) Run-flat tire
JP7128276B2 (en) run flat tires
JP5436376B2 (en) Pneumatic tire
WO2020004110A1 (en) Run-flat tire
JP2011073648A (en) Pneumatic tire
WO2020004109A1 (en) Run-flat tire
WO2020004111A1 (en) Run-flat tire
JP2004306771A (en) Runflat tire
WO2021117612A1 (en) Pneumatic tire
JP7115019B2 (en) pneumatic tire
JP7165497B2 (en) pneumatic tire
JP6274815B2 (en) Run-flat radial tire
JP2013141915A (en) Pneumatic radial tire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19826888

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020527413

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19826888

Country of ref document: EP

Kind code of ref document: A1