WO2020003968A1 - Heat exchanger and vehicular air-conditioning device - Google Patents

Heat exchanger and vehicular air-conditioning device Download PDF

Info

Publication number
WO2020003968A1
WO2020003968A1 PCT/JP2019/022661 JP2019022661W WO2020003968A1 WO 2020003968 A1 WO2020003968 A1 WO 2020003968A1 JP 2019022661 W JP2019022661 W JP 2019022661W WO 2020003968 A1 WO2020003968 A1 WO 2020003968A1
Authority
WO
WIPO (PCT)
Prior art keywords
path
heat medium
heat
heat exchanger
condenser
Prior art date
Application number
PCT/JP2019/022661
Other languages
French (fr)
Japanese (ja)
Inventor
徹也 石関
明 堀越
潤 井田
英明 奈良
Original Assignee
サンデン・オートモーティブクライメイトシステム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン・オートモーティブクライメイトシステム株式会社 filed Critical サンデン・オートモーティブクライメイトシステム株式会社
Publication of WO2020003968A1 publication Critical patent/WO2020003968A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates

Definitions

  • the present invention relates to a heat exchanger and a vehicle air conditioner.
  • a heat exchanger In the heat exchanger, the flow from one header to the other is defined as one pass.
  • a heat exchanger As shown in Patent Literature 1, a heat exchanger is generally provided with a plurality of paths, and is configured such that the flow of each path is substantially equal.
  • the outdoor heat exchanger functions as a condenser during cooling
  • the heat medium liquefies closer to the outlet of the heat exchanger. That is, the heat medium is in a gas phase on the inlet side. Since the gas phase has a lower density of the heat medium and a higher flow velocity than the liquid phase, the pressure loss is large. That is, during cooling, the pressure loss increases in the path on the inlet side where the heat medium exists as a gas phase.
  • An object of the present invention is to reduce pressure loss during cooling and improve heat exchange performance.
  • the heat exchanger according to one embodiment of the present invention, A pair of headers extending in the horizontal direction and provided at intervals in the vertical direction, A plurality of tubes extending in the vertical direction, each of the upper end and the lower end being connected to the header, and provided at intervals in the horizontal direction,
  • the flow of the heat medium flowing from one header to the other header through a plurality of tubes is defined as one path, and a path flowing downward and a path flowing upward are alternately provided,
  • the flow of the heat medium in each pass is common during heating and cooling,
  • the first path is the path that flows down,
  • the number of passes is an odd number of 3 or more,
  • the inlet side path has a wider flow path than the other paths.
  • a heat exchanger according to another aspect of the present invention, A pair of headers extending in the horizontal direction and provided at intervals in the vertical direction, A plurality of tubes extending in the vertical direction, each of the upper end and the lower end being connected to the header, and provided at intervals in the horizontal direction,
  • the flow of the heat medium flowing from one header to the other header through a plurality of tubes is defined as one path, and a path flowing downward and a path flowing upward are alternately provided,
  • the flow of the heat medium in each pass is common during heating and cooling,
  • the first path is the path that flows down,
  • the number of passes is an odd number of 3 or more,
  • the exit side path has a narrower flow path than the other paths.
  • the path on the inlet side has a wider flow path than the other paths, the pressure loss during cooling can be reduced and the heat exchange performance can be improved. Further, since the flow path of the outlet side path is narrower than the other paths, the pressure loss during cooling can be reduced, and the heat exchange performance can be improved.
  • FIG. 1 is a diagram illustrating a vehicle air conditioner of one embodiment.
  • the vehicle air conditioner 11 includes a heat pump system mounted on an automobile, and includes an indoor heat exchange unit 12 (supply flow path) provided on the vehicle interior side and a heat exchanger 13 provided outside the vehicle interior. Prepare. The cabin side and the outside of the cabin are separated by, for example, a dash panel.
  • the indoor heat exchange unit 12 is disposed inside the dashboard, and is formed by a duct that introduces outside air or inside air from one end and supplies air into the vehicle interior from the other end.
  • a blower fan 14 Inside the indoor heat exchange unit 12, a blower fan 14, an evaporator 15, a condenser 16, and an air mix damper 17 are provided.
  • the blower fan 14 is provided at one end of the indoor heat exchange unit 12 and, when driven by a motor, sucks outside air or inside air and discharges it to the other end.
  • the evaporator 15 is provided downstream of the blower fan 14 and serves as a heat absorber and a dehumidifier between the air passing around the radiation fins and the low-temperature heat medium (refrigerant) passing through the tube. Perform heat exchange. That is, by evaporating and evaporating the heat medium in the tube, the air around the radiation fins is cooled, and dehumidification is performed by causing dew condensation on the surface of the radiation fins. All the air blown out from the blower fan 14 passes through the evaporator 15.
  • the condenser 16 is provided downstream of the evaporator 15 and serves as a radiator for exchanging heat between air passing around the radiation fins and a high-temperature heat medium (heat medium) passing through the tube. Perform That is, the air around the radiation fins is heated by condensing and liquefying the heat medium in the tube.
  • the condenser 16 is disposed so as to cover substantially half of the cross section of the indoor heat exchange unit 12, so that a flow path passing through the condenser 16 and a flow path bypassing the condenser 16 are formed. ing. That is, part of the air that has passed through the evaporator 15 passes through the condenser 16, and the rest bypasses the condenser 16.
  • the air mix damper 17 opens the flow path passing through the condenser 16 and closes the flow path bypassing the condenser 16, and closes the flow path passing through the condenser 16 to bypass the condenser 16. It is rotatable between a position where the flow path is opened and a position where the flow path is opened. When the air mix damper 17 is at a position where the flow path passing through the condenser 16 is opened and the flow path bypassing the condenser 16 is closed, all the air that has passed through the evaporator 15 passes through the condenser 16.
  • the heat exchanger 13 is provided in the engine room or the motor room, and exchanges heat between the outside air passing around the radiation fins and the heat medium passing through the tube.
  • the outside air is mainly a traveling wind, but when a sufficient traveling wind cannot be obtained, the outside air is blown to the radiation fins by driving a blower (not shown).
  • the heat exchanger 13 functions as an evaporator, that is, a heat absorber, and heat exchange between the outside air passing around the radiation fins and the low-temperature heat medium (refrigerant) passing through the tube. Perform That is, the heat medium in the tube is vaporized and absorbed.
  • the heat exchanger 13 When the operation mode is cooling, the heat exchanger 13 functions as a condenser, that is, a radiator, and heat is transferred between the outside air passing around the radiation fins and the high-temperature heat medium (heat medium) passing through the tube. Perform an exchange. That is, the heat medium in the tube is condensed and liquefied to release heat.
  • the outlet of the condenser 16 communicates with the inlet of the heat exchanger 13 via the flow path 21.
  • the flow path 21 is provided with an expansion valve 31 (first expansion valve).
  • the expansion valve 31 reduces the pressure of the high-pressure heat medium, which is a liquid phase, to a low-pressure heat medium that is easily vaporized by blowing out the mist, and the degree of opening can be adjusted from fully closed to fully open.
  • the outlet of the heat exchanger 13 communicates with the inlet of the condenser 16 via the flow path 22.
  • an on-off valve 32, a check valve 33, an accumulator 34, and a compressor 35 are sequentially provided from the heat exchanger 13 side to the condenser 16 side.
  • the on-off valve 32 opens or closes the flow path 22.
  • the check valve 33 allows passage from the side of the on-off valve 32 to the side of the accumulator 34 and prevents passage in the reverse direction.
  • the accumulator 34 performs gas-liquid separation of the heat medium, and supplies only the heat medium in the gas phase to the compressor 35.
  • the compressor 35 compresses a low-pressure heat medium that is a gaseous phase to increase the pressure to a high-pressure heat medium that is easily liquefied, and is an oil supply type in which lubrication is performed by oil circulating together with the heat medium. For example, it is a rotary compressor, a swash plate type compressor, a scroll compressor, or the like.
  • the oil concentration in the heat medium is about several percent.
  • the drive source of the compressor 35 is an engine or an electric motor.
  • the flow path 21 there is a branch point between the heat exchanger 13 and the expansion valve 31, and this branch point communicates with the inlet of the evaporator 15 via the flow path 23.
  • An on-off valve 36 and an expansion valve 37 (second expansion valve) are sequentially provided in the flow path 23 from the branch point toward the evaporator 15.
  • the on-off valve 36 opens or closes the flow path 23.
  • the expansion valve 37 reduces the pressure of the high-pressure heat medium, which is a liquid phase, to a low-pressure heat medium that is easily vaporized by blowing out the mist, and the opening degree can be adjusted from fully closed to fully open.
  • the flow path 22 there is a branch point between the heat exchanger 13 and the on-off valve 32, and in the flow path 23, there is a branch point between the on-off valve 36 and the expansion valve 37.
  • the points communicate with each other via a flow path 24.
  • the flow path 24 is provided with a check valve 38.
  • the check valve 38 allows passage from the side of the flow path 22 to the side of the flow path 23 and prevents passage in the reverse direction.
  • there is a branch point between the on-off valve 32 and the check valve 33 and this branch point communicates with the outlet of the evaporator 15 via the flow path 25.
  • FIG. 2 is a diagram illustrating a heating operation.
  • the flow path through which the low-pressure heat medium passes is indicated by a thick dotted line
  • the flow path through which the high-pressure heat medium passes is indicated by a thick solid line
  • the open on-off valve is shown in white
  • the closed on-off valve is shown. Shown in black.
  • the heat medium circulates through the compressor 35, the condenser 16, the expansion valve 31, the heat exchanger 13, the on-off valve 32, the check valve 33, and the accumulator 34 in this order.
  • the heat medium in the gas phase is compressed by the compressor 35 to have a high pressure, is condensed and liquefied in the condenser 16, and is cooled to a low temperature by heat radiation.
  • the heat medium in the liquid phase is expanded by the expansion valve 31 to have a low pressure, evaporates and evaporates in the heat exchanger 13, and has a high temperature due to heat absorption.
  • the blower fan 14 is driven and the flow path passing through the condenser 16 is opened by the air mix damper 17. Thereby, the introduced air is heated by the condenser 16, and warm air is supplied into the vehicle interior.
  • FIG. 3 is a diagram illustrating the cooling operation.
  • the flow path through which the low-pressure heat medium passes is indicated by a thick dotted line
  • the flow path through which the high-pressure heat medium passes is indicated by a thick solid line
  • the open on-off valve is shown in white
  • the closed on-off valve is shown. Shown in black.
  • the heat medium passes through the compressor 35, the condenser 16, the expansion valve 31, the heat exchanger 13, the check valve 38, the expansion valve 37, the evaporator 15, the check valve 33, and the accumulator 34 in this order. Circulate.
  • the heat medium in the gas phase is compressed by the compressor 35 to have a high pressure, is condensed and liquefied in the condenser 16, and is cooled to a low temperature by heat radiation.
  • the heat medium that is being liquefied is further condensed and liquefied in the heat exchanger 13, and is further cooled by heat radiation.
  • the heat medium in the liquid phase is expanded by the expansion valve 37 to have a low pressure, evaporates and evaporates in the evaporator 15, and becomes high in temperature by heat absorption.
  • the blower fan 14 is driven and the flow path passing through the condenser 16 is closed by the air mix damper 17.
  • the air bypasses the condenser 16 and cool dehumidified air is supplied into the vehicle interior.
  • FIG. 4 is a diagram illustrating a heat exchanger.
  • the heat exchanger 13 includes a pair of upper and lower headers 41, a plurality of tubes 42, and a plurality of fins 43.
  • the pair of headers 41 extend in the horizontal direction and are provided at intervals in the vertical direction.
  • the header 41 is formed by a cylindrical pipe whose both ends are closed, and the inside is partitioned by a partition 46 into sections arranged in a lateral direction.
  • the inside of the upper header 41 is divided into a section 41A on one side in the horizontal direction and a section 41B on the other side in the horizontal direction, and an inlet 44 is provided in the section 41A on one side in the horizontal direction.
  • the inside of the lower header 41 is divided into a section 41C on one side in the horizontal direction and a section 41D on the other side in the horizontal direction, and a discharge port 45 is provided in the section 41D on the other side in the horizontal direction.
  • Each tube 42 extends in the up-down direction, the upper end and the lower end are respectively connected to the header 41, and are provided at equal intervals along the horizontal direction.
  • the tube 42 is thin and flat in the lateral direction, and both ends are connected to the inside of the header 41 and brazed to the header 41.
  • 42a to 42l are sequentially set from one end in the horizontal direction to the other end.
  • the tube 42d and the tube 42e are partitioned by a partition 46
  • the tube 42h and the tube 42i are partitioned by the partition 46.
  • Each fin 43 is fixed between adjacent tubes 42 by brazing.
  • a flow path is formed by the header 41 and the tube 42, through which the heat medium flows. That is, first, it flows into the section 41A at one lateral side of the upper header 41 via the inflow port 44, is distributed to the tubes 42a to 42d, and then flows into the section 41C at one lateral side of the lower header 41. Next, after being distributed to the tubes 42e to 42h, it flows into the section 41B on the other side in the horizontal direction of the upper header 41, and is then distributed to the tubes 42i to 42l and then flows to the other side in the lower header 41. It flows into the section 41D and is discharged through the discharge port 45. Thus, when the heat medium flows through each tube 42, heat exchange is performed between the heat medium and air flowing around the tubes 42 and the fins 43.
  • the flow of the heat medium flowing from one header 41 to the other header 41 through the plurality of tubes 42 is defined as one path, and a path that flows downward and a path that flows upward Are provided alternately.
  • the path flowing downward through the tubes 42a to 42d is referred to as a first path P1
  • the path flowing upward through the tubes 42e to 42h is referred to as a second path P2
  • the path flowing through is referred to as a third path P3.
  • the first path P1, the second path P2, and the third path P3 are equal paths in which the number of tubes 42 is the same.
  • FIG. 5 is a diagram schematically illustrating an equal path.
  • each pass schematically represents the number of tubes 42.
  • the reference number of the tubes 42 is represented by “2”
  • the number larger than the reference number is represented by “3”
  • the number smaller than the reference number is represented by “1”.
  • all of the first path P1, the second path P2, and the third path P3 are the reference “2”.
  • FIG. 6 is a diagram schematically illustrating a configuration in which the path on the entrance side is widened (3-2-2).
  • the first path P1 is set to “3”
  • the second path P2 is set to “2”
  • the third path P3 is set to “2”. That is, the first path P1 on the entrance side is wider than the second path P2 and the third path P3.
  • the third path P3 on the exit side is narrower than the first path P1.
  • FIG. 7 is a diagram schematically illustrating a configuration in which the path on the entrance side is widened (3-2-1).
  • the first path P1 is set to “3”
  • the second path P2 is set to “2”
  • the third path P3 is set to “1”. That is, the first path P1 on the entrance side is wider than the second path P2 and the third path P3. Further, the third path P3 on the exit side is narrower than the first path P1 and the second path P2.
  • FIG. 8 is a diagram schematically illustrating a configuration in which the path on the entrance side is widened (3-3-2).
  • the first path P1 is set to “3”
  • the second path P2 is set to “3”
  • the third path P3 is set to “2”. That is, the first path P1 on the entrance side is wider than the third path P3.
  • the third path P3 on the exit side is narrower than the first path P1 and the second path P2.
  • FIG. 9 is a diagram schematically illustrating a configuration in which the path on the entrance side is widened (2-3-1).
  • the first path P1 is set to “2”
  • the second path P2 is set to “3”
  • the third path P3 is set to “1”.
  • FIG. 10 is a diagram schematically illustrating a configuration in which the path on the entrance side is widened (3-1-2).
  • the first path P1 is set to “3”
  • the second path P2 is set to “1”
  • the third path P3 is set to “2”. That is, the first path P1 on the entrance side is wider than the second path P2 and the third path P3.
  • the third path P3 on the exit side is narrower than the first path P1.
  • the first first pass P1 is a descending pass that flows from top to bottom, that is, follows gravity. Thereby, the heat medium easily flows.
  • the number of passes is three, that is, an odd number.
  • the last third pass P3 is also a descending pass that flows downward, and the heat medium easily flows. If the last third pass P3 flows upward from the bottom, that is, if it is a rising pass against gravity, the oil circulating together with the heat medium will not be easily discharged. Therefore, by using the last third pass P3 as a descending pass, the accumulation of oil can be suppressed. Further, as the number of passes increases, the pressure loss increases, and therefore, the number of passes is preferably three.
  • the outdoor heat exchanger 13 functions as a condenser during cooling, the heat medium liquefies closer to the outlet of the heat exchanger 13. That is, the heat medium is in a gas phase on the inlet side. Since the gas phase has a lower density of the heat medium and a higher flow velocity than the liquid phase, the pressure loss is large. That is, during cooling, the pressure loss increases in the path on the inlet side where the heat medium exists as a gas phase. Therefore, in the first path P1 on the entrance side, the flow path is wider than in the other paths. That is, in the first path P1 on the inlet side, the number of tubes 42 is larger than in the other paths. In the third path P3 on the outlet side, the flow path is narrower than the other paths. That is, the number of tubes 42 is smaller in the third pass P3 on the outlet side than in the other passes. Thereby, pressure loss during cooling can be reduced, and heat exchange performance can be improved. Therefore, it is suitable for a vehicle in which cooling is prioritized.
  • the first path P1 is set to “3” wider than the reference, and the second path P2 and the third path P3 are set to the reference “2”. Since the first path P1 has the greatest effect of pressure loss during cooling, the pressure loss during cooling can be reduced by widening the first path P1.
  • the first path P1 is set to “3” wider than the reference
  • the second path P2 is set to “2” of the reference
  • the third path P3 is “1” narrower than the reference. Is set to That is, the path is gradually narrowed from the entrance side to the exit side. Therefore, pressure loss during cooling can be effectively reduced.
  • the first path P1 and the second path P2 are set to “3” wider than the reference, and the third path P3 is set to the reference “2”.
  • the third pass P3 has the least effect of pressure loss during cooling. Therefore, by narrowing the third pass P3, the first pass P1 and the second pass P2 can be relatively widened, and as a result, the cooling is performed. The pressure loss at the time can be reduced.
  • the first path P1 is set to the reference “2”
  • the second path P2 is set to “3” wider than the reference
  • the third path P3 is “1” narrower than the reference. Is set to Since the third pass P3 has the least effect of pressure loss during cooling, the first pass P1 can be relatively widened by narrowing the third pass P3. As a result, the pressure loss during cooling can be reduced. Can be reduced.
  • the first path P1 is set to “3” wider than the reference
  • the second path P2 is set to “1” narrower than the reference
  • the third path P3 is set to “2” of the reference. Is set to Thus, by making the first path P1 the widest, the pressure loss during cooling can be reduced. Further, the second path P2 is the narrowest.
  • the second path P2 is a rising path that flows upward from below, and the liquid phase heat medium is less likely to rise than the gas phase heat medium. Therefore, when the second path P2 is wide, the heat medium in the liquid phase hardly flows into the tube 42 of the second path P2 near the first path P1, and the tube 42 on the side near the third path P3. Easier to flow.
  • the second path P2 the narrowest, it is possible to suppress the occurrence of bias in the branch flow in the second path P2 and improve the heat exchange performance. Furthermore, the first path P1 and the third path P3 can be widened by the amount of the narrowing of the second path P2, so that the space can be effectively used and the heat exchange performance can be improved.
  • the number of paths is three, but is not limited to this. Since the number of passes may be an odd number of three or more, the number of passes may be set to, for example, five.
  • the width of the flow path in each path is adjusted by the number of tubes 42, but is not limited thereto. For example, the adjustment may be made according to the flow path cross-sectional area of the tube 42.
  • the condenser 16 is provided as a heat source for heating, but the present invention is not limited to this, and another heat source may be separately added.
  • a PTC heater PTC: Positive Temperature Coefficient

Abstract

[Problem] To reduce pressure loss during cooling and thereby improve heat exchange performance. [Solution] The flow channel of an inlet-side path is made larger than that of another path.

Description

熱交換器、車両用空気調和装置Heat exchangers, vehicle air conditioners
 本発明は、熱交換器、車両用空気調和装置に関するものである。 The present invention relates to a heat exchanger and a vehicle air conditioner.
 熱交換器では、一方のヘッダから他方のヘッダへの流れを一パスとしている。特許文献1に示されるように、熱交換器には一般に複数のパスが設けられ、且つ各パスの流れが略均等になるように構成されている。 で は In the heat exchanger, the flow from one header to the other is defined as one pass. As shown in Patent Literature 1, a heat exchanger is generally provided with a plurality of paths, and is configured such that the flow of each path is substantially equal.
特開2009-115342号公報JP 2009-115342 A
 冷房時に室外の熱交換器は、凝縮器として機能するため、熱交換器の出口に近づくほど熱媒体が液化する。つまり、入口側では熱媒体が気相である。気相は液相に比べて熱媒体の密度が低く、流速が速いため、圧力損失は大きい。すなわち、冷房時には、熱媒体が気相として存在する入口側のパスで圧力損失が大きくなってしまう。
 本発明の課題は、冷房時の圧力損失を低減し、熱交換性能を向上させることにある。
Since the outdoor heat exchanger functions as a condenser during cooling, the heat medium liquefies closer to the outlet of the heat exchanger. That is, the heat medium is in a gas phase on the inlet side. Since the gas phase has a lower density of the heat medium and a higher flow velocity than the liquid phase, the pressure loss is large. That is, during cooling, the pressure loss increases in the path on the inlet side where the heat medium exists as a gas phase.
An object of the present invention is to reduce pressure loss during cooling and improve heat exchange performance.
 本発明の一態様に係る熱交換器は、
 横方向に延び、上下方向に間隔を空けて設けられた一対のヘッダと、
 上下方向に延び、上端及び下端の夫々がヘッダに接続され、横方向に間隔を空けて設けられた複数のチューブと、を備え、
 複数のチューブを通って一方のヘッダから他方のヘッダに向かって流れる熱媒体の流れを一つのパスとし、下に向かって流れるパスと上に向かって流れるパスとが交互に設けられており、
 各パスにおける熱媒体の流れは、暖房時及び冷房時で共通であり、
 最初のパスは、下に向かって流れるパスであり、
 パス数は、三以上の奇数であり、
 入口側のパスは、他のパスに比べて流路が広くされている。
The heat exchanger according to one embodiment of the present invention,
A pair of headers extending in the horizontal direction and provided at intervals in the vertical direction,
A plurality of tubes extending in the vertical direction, each of the upper end and the lower end being connected to the header, and provided at intervals in the horizontal direction,
The flow of the heat medium flowing from one header to the other header through a plurality of tubes is defined as one path, and a path flowing downward and a path flowing upward are alternately provided,
The flow of the heat medium in each pass is common during heating and cooling,
The first path is the path that flows down,
The number of passes is an odd number of 3 or more,
The inlet side path has a wider flow path than the other paths.
 本発明の他の態様に係る熱交換器は、
 横方向に延び、上下方向に間隔を空けて設けられた一対のヘッダと、
 上下方向に延び、上端及び下端の夫々がヘッダに接続され、横方向に間隔を空けて設けられた複数のチューブと、を備え、
 複数のチューブを通って一方のヘッダから他方のヘッダに向かって流れる熱媒体の流れを一つのパスとし、下に向かって流れるパスと上に向かって流れるパスとが交互に設けられており、
 各パスにおける熱媒体の流れは、暖房時及び冷房時で共通であり、
 最初のパスは、下に向かって流れるパスであり、
 パス数は、三以上の奇数であり、
 出口側のパスは、他のパスに比べて流路が狭くされている。
A heat exchanger according to another aspect of the present invention,
A pair of headers extending in the horizontal direction and provided at intervals in the vertical direction,
A plurality of tubes extending in the vertical direction, each of the upper end and the lower end being connected to the header, and provided at intervals in the horizontal direction,
The flow of the heat medium flowing from one header to the other header through a plurality of tubes is defined as one path, and a path flowing downward and a path flowing upward are alternately provided,
The flow of the heat medium in each pass is common during heating and cooling,
The first path is the path that flows down,
The number of passes is an odd number of 3 or more,
The exit side path has a narrower flow path than the other paths.
 本発明によれば、入口側のパスは、他のパスに比べて流路が広くされているので、冷房
時の圧力損失を低減し、熱交換性能を向上させることができる。また、出口側のパスは、他のパスに比べて流路が狭くされているので、冷房時の圧力損失を低減し、熱交換性能を向上させることができる。
According to the present invention, since the path on the inlet side has a wider flow path than the other paths, the pressure loss during cooling can be reduced and the heat exchange performance can be improved. Further, since the flow path of the outlet side path is narrower than the other paths, the pressure loss during cooling can be reduced, and the heat exchange performance can be improved.
一実施形態の車両用空気調和装置を示す図である。It is a figure showing the air conditioner for vehicles of one embodiment. 暖房運転を示す図である。It is a figure which shows a heating operation. 冷房運転を示す図である。It is a figure which shows a cooling operation. 熱交換器を示す図である。It is a figure showing a heat exchanger. 均等パスを模式的に示す図である。It is a figure which shows a uniform path typically. 入口側のパスを広くした構成を模式的に示す図である(3‐2‐2)。It is a figure which shows the structure which widened the path | pass of the entrance side typically (3-2-2). 入口側のパスを広くした構成を模式的に示す図である(3‐2‐1)。It is a figure which shows the structure which widened the path | pass of the entrance side typically (3-2-1). 入口側のパスを広くした構成を模式的に示す図である(3‐3‐2)。It is a figure which shows the structure which widened the path | pass of the entrance side typically (3-3-2). 入口側のパスを広くした構成を模式的に示す図である(2‐3‐1)。It is a figure which shows the structure which widened the path | pass of the entrance side typically (2-3-1). 入口側のパスを広くした構成を模式的に示す図である(3‐1‐2)。It is a figure which shows the structure which widened the path | pass of the entrance side typically (3-1-2).
 以下、本発明の実施形態を図面に基づいて説明する。なお、各図面は模式的なものであって、現実のものとは異なる場合がある。また、以下の実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであり、構成を下記のものに特定するものでない。すなわち、本発明の技術的思想は、特許請求の範囲に記載された技術的範囲内において、種々の変更を加えることができる。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the drawings are schematic and may differ from actual ones. Further, the following embodiment is an example of an apparatus and a method for embodying the technical idea of the present invention, and the configuration is not limited to the following. That is, the technical idea of the present invention can be variously modified within the technical scope described in the claims.
《一実施形態》
 《構成》
 図1は、一実施形態の車両用空気調和装置を示す図である。
 車両用空気調和装置11は、自動車に搭載されるヒートポンプシステムからなり、車室側に設けられた室内熱交換ユニット12(供給流路)と、車室外に設けられた熱交換器13と、を備える。車室側と車室外とは、例えばダッシュパネルによって隔てられている。
 室内熱交換ユニット12は、ダッシュボードの内部に配置されており、一端側から外気や内気を導入し、他端側から車室内へ空気を供給するダクトによって形成されている。室内熱交換ユニット12の内部には、送風ファン14と、蒸発器15と、凝縮器16と、エアミックスダンパ17と、が設けられている。
<< One Embodiment >>
"Constitution"
FIG. 1 is a diagram illustrating a vehicle air conditioner of one embodiment.
The vehicle air conditioner 11 includes a heat pump system mounted on an automobile, and includes an indoor heat exchange unit 12 (supply flow path) provided on the vehicle interior side and a heat exchanger 13 provided outside the vehicle interior. Prepare. The cabin side and the outside of the cabin are separated by, for example, a dash panel.
The indoor heat exchange unit 12 is disposed inside the dashboard, and is formed by a duct that introduces outside air or inside air from one end and supplies air into the vehicle interior from the other end. Inside the indoor heat exchange unit 12, a blower fan 14, an evaporator 15, a condenser 16, and an air mix damper 17 are provided.
 送風ファン14は、室内熱交換ユニット12の一端側に設けられており、モータによって駆動されるときに、外気や内気を吸引し、他端側へと吐出する。
 蒸発器15は、送風ファン14よりも下流側に設けられており、吸熱器及び除湿器として、放熱フィンの周囲を通過する空気とチューブ内を通過する低温の熱媒体(冷媒)との間で熱交換を行なう。すなわち、チューブ内の熱媒体を蒸発気化させることで、放熱フィンの周囲の空気を冷却すると共に、放熱フィンの表面に結露を生じさせて除湿を行なう。送風ファン14から吹き出された空気は、全て蒸発器15を通過する。
The blower fan 14 is provided at one end of the indoor heat exchange unit 12 and, when driven by a motor, sucks outside air or inside air and discharges it to the other end.
The evaporator 15 is provided downstream of the blower fan 14 and serves as a heat absorber and a dehumidifier between the air passing around the radiation fins and the low-temperature heat medium (refrigerant) passing through the tube. Perform heat exchange. That is, by evaporating and evaporating the heat medium in the tube, the air around the radiation fins is cooled, and dehumidification is performed by causing dew condensation on the surface of the radiation fins. All the air blown out from the blower fan 14 passes through the evaporator 15.
 凝縮器16は、蒸発器15よりも下流側に設けられており、放熱器として、放熱フィンの周囲を通過する空気とチューブ内を通過する高温の熱媒体(熱媒)との間で熱交換を行なう。すなわち、チューブ内の熱媒体を凝縮液化させることで、放熱フィンの周囲の空気を加熱する。凝縮器16は、室内熱交換ユニット12の断面のうち、略半分を塞ぐように配置されることで、凝縮器16を通過する流路と、凝縮器16を迂回する流路と、が形成されている。すなわち、蒸発器15を通過した空気の一部が凝縮器16を通過し、残りが凝縮器16を迂回する。
 
The condenser 16 is provided downstream of the evaporator 15 and serves as a radiator for exchanging heat between air passing around the radiation fins and a high-temperature heat medium (heat medium) passing through the tube. Perform That is, the air around the radiation fins is heated by condensing and liquefying the heat medium in the tube. The condenser 16 is disposed so as to cover substantially half of the cross section of the indoor heat exchange unit 12, so that a flow path passing through the condenser 16 and a flow path bypassing the condenser 16 are formed. ing. That is, part of the air that has passed through the evaporator 15 passes through the condenser 16, and the rest bypasses the condenser 16.
 エアミックスダンパ17は、凝縮器16を通過する流路を開放して凝縮器16を迂回する流路を閉鎖する位置と、凝縮器16を通過する流路を閉鎖して凝縮器16を迂回する流路を開放する位置と、の間で回動可能である。エアミックスダンパ17が凝縮器16を通過する流路を開放して凝縮器16を迂回する流路を閉鎖する位置にあるときには、蒸発器15を通過した空気は全て凝縮器16を通過する。エアミックスダンパ17が凝縮器16を通過する流路を閉鎖して凝縮器16を迂回する流路を開放する位置にあるときには、蒸発器15を通過した空気は全て凝縮器16を迂回する。エアミックスダンパ17が凝縮器16を通過する流路と凝縮器16を迂回する流路の双方を開放する位置にあるときには、蒸発器15を通過した空気のうち、一部が凝縮器16を通過し、残りが凝縮器16を迂回する。そして、凝縮器16の下流側で、凝縮器16を通過した空気と、凝縮器16を迂回した空気とが混合される。 The air mix damper 17 opens the flow path passing through the condenser 16 and closes the flow path bypassing the condenser 16, and closes the flow path passing through the condenser 16 to bypass the condenser 16. It is rotatable between a position where the flow path is opened and a position where the flow path is opened. When the air mix damper 17 is at a position where the flow path passing through the condenser 16 is opened and the flow path bypassing the condenser 16 is closed, all the air that has passed through the evaporator 15 passes through the condenser 16. When the air mix damper 17 is at a position where the flow path passing through the condenser 16 is closed and the flow path bypassing the condenser 16 is opened, all the air passing through the evaporator 15 bypasses the condenser 16. When the air mix damper 17 is in a position to open both the flow path passing through the condenser 16 and the flow path bypassing the condenser 16, a part of the air passing through the evaporator 15 passes through the condenser 16. The remainder bypasses the condenser 16. Then, on the downstream side of the condenser 16, the air passing through the condenser 16 and the air bypassing the condenser 16 are mixed.
 熱交換器13は、エンジンルーム内又はモータルーム内に設けられており、放熱フィンの周囲を通過する外気とチューブ内を通過する熱媒体との間で熱交換を行なう。外気とは主に走行風であるが、十分な走行風が得られないときは、図示しない送風機が駆動されることで、放熱フィンに対して外気が送風される。
 運転モードを暖房とするときには、熱交換器13を蒸発器、つまり吸熱器として機能させ、放熱フィンの周囲を通過する外気とチューブ内を通過する低温の熱媒体(冷媒)との間で熱交換を行なう。すなわち、チューブ内の熱媒体を蒸発気化させ、吸熱させる。
 運転モードを冷房とするときには、熱交換器13を凝縮器、つまり放熱器として機能させ、放熱フィンの周囲を通過する外気とチューブ内を通過する高温の熱媒体(熱媒)との間で熱交換を行なう。すなわち、チューブ内の熱媒体を凝縮液化させ、放熱させる。
The heat exchanger 13 is provided in the engine room or the motor room, and exchanges heat between the outside air passing around the radiation fins and the heat medium passing through the tube. The outside air is mainly a traveling wind, but when a sufficient traveling wind cannot be obtained, the outside air is blown to the radiation fins by driving a blower (not shown).
When the operation mode is heating, the heat exchanger 13 functions as an evaporator, that is, a heat absorber, and heat exchange between the outside air passing around the radiation fins and the low-temperature heat medium (refrigerant) passing through the tube. Perform That is, the heat medium in the tube is vaporized and absorbed.
When the operation mode is cooling, the heat exchanger 13 functions as a condenser, that is, a radiator, and heat is transferred between the outside air passing around the radiation fins and the high-temperature heat medium (heat medium) passing through the tube. Perform an exchange. That is, the heat medium in the tube is condensed and liquefied to release heat.
 次に、熱媒体の回路構成について説明する。
 凝縮器16の出口は、流路21を介して熱交換器13の入口に連通している。流路21には、膨張弁31(第一の膨張弁)が設けられている。
 膨張弁31は、液相である高圧の熱媒体を霧状にして吹き出すことにより、気化しやすい低圧の熱媒体に減圧するものであり、開度が全閉から全開まで調整可能である。
 熱交換器13の出口は、流路22を介して凝縮器16の入口に連通している。流路22には、熱交換器13の側から凝縮器16の側に向かって、開閉弁32、逆止弁33、アキュムレータ34、及び圧縮機35が、順に設けられている。
Next, the circuit configuration of the heat medium will be described.
The outlet of the condenser 16 communicates with the inlet of the heat exchanger 13 via the flow path 21. The flow path 21 is provided with an expansion valve 31 (first expansion valve).
The expansion valve 31 reduces the pressure of the high-pressure heat medium, which is a liquid phase, to a low-pressure heat medium that is easily vaporized by blowing out the mist, and the degree of opening can be adjusted from fully closed to fully open.
The outlet of the heat exchanger 13 communicates with the inlet of the condenser 16 via the flow path 22. In the flow path 22, an on-off valve 32, a check valve 33, an accumulator 34, and a compressor 35 are sequentially provided from the heat exchanger 13 side to the condenser 16 side.
 開閉弁32は、流路22を開放又は閉鎖する。
 逆止弁33は、開閉弁32の側からアキュムレータ34の側への通過を許容し、逆方向の通過を阻止する。
 アキュムレータ34は、熱媒体の気液分離を行ない、気相の熱媒体だけを圧縮機35へと供給する。
 圧縮機35は、気相である低圧の熱媒体を圧縮することにより、液化しやすい高圧の熱媒体に昇圧させるものであり、熱媒体と共に循環するオイルによって潤滑が行なわれる給油式である。例えば、ロータリー圧縮機、斜板式圧縮機、スクロール圧縮機等である。熱媒体に対するオイル濃度は数%程度である。圧縮機35の駆動源は、エンジンや電動モータである。
The on-off valve 32 opens or closes the flow path 22.
The check valve 33 allows passage from the side of the on-off valve 32 to the side of the accumulator 34 and prevents passage in the reverse direction.
The accumulator 34 performs gas-liquid separation of the heat medium, and supplies only the heat medium in the gas phase to the compressor 35.
The compressor 35 compresses a low-pressure heat medium that is a gaseous phase to increase the pressure to a high-pressure heat medium that is easily liquefied, and is an oil supply type in which lubrication is performed by oil circulating together with the heat medium. For example, it is a rotary compressor, a swash plate type compressor, a scroll compressor, or the like. The oil concentration in the heat medium is about several percent. The drive source of the compressor 35 is an engine or an electric motor.
 流路21のうち、熱交換器13と膨張弁31との間には分岐点があり、この分岐点は、流路23を介して蒸発器15の入口に連通している。流路23には、分岐点の側から蒸発器15の側に向かって、開閉弁36、及び膨張弁37(第二の膨張弁)が、順に設けられている。
 開閉弁36は、流路23を開放又は閉鎖する。
 膨張弁37は、液相である高圧の熱媒体を霧状にして吹き出すことにより、気化しやすい低圧の熱媒体に減圧するものであり、開度が全閉から全開まで調整可能である。
In the flow path 21, there is a branch point between the heat exchanger 13 and the expansion valve 31, and this branch point communicates with the inlet of the evaporator 15 via the flow path 23. An on-off valve 36 and an expansion valve 37 (second expansion valve) are sequentially provided in the flow path 23 from the branch point toward the evaporator 15.
The on-off valve 36 opens or closes the flow path 23.
The expansion valve 37 reduces the pressure of the high-pressure heat medium, which is a liquid phase, to a low-pressure heat medium that is easily vaporized by blowing out the mist, and the opening degree can be adjusted from fully closed to fully open.
 流路22のうち、熱交換器13と開閉弁32との間には分岐点があり、また流路23のうち、開閉弁36と膨張弁37との間には分岐点があり、これら分岐点同士は、流路24を介して連通している。流路24には、逆止弁38が設けられている。
 逆止弁38は、流路22の側から流路23の側への通過を許容し、逆方向の通過を阻止する。
 流路22のうち、開閉弁32と逆止弁33との間には分岐点があり、この分岐点は、流路25を介して蒸発器15の出口に連通している。
In the flow path 22, there is a branch point between the heat exchanger 13 and the on-off valve 32, and in the flow path 23, there is a branch point between the on-off valve 36 and the expansion valve 37. The points communicate with each other via a flow path 24. The flow path 24 is provided with a check valve 38.
The check valve 38 allows passage from the side of the flow path 22 to the side of the flow path 23 and prevents passage in the reverse direction.
In the flow path 22, there is a branch point between the on-off valve 32 and the check valve 33, and this branch point communicates with the outlet of the evaporator 15 via the flow path 25.
 次に、各運転モードについて説明する。
 [暖房運転]
 図2は、暖房運転を示す図である。
 図中、低圧の熱媒体が通過する流路を太い点線で示し、高圧の熱媒体が通過する流路を太い実線で示し、開放された開閉弁を白抜きで示し、閉鎖された開閉弁を黒塗りで示している。
 運転モードが暖房であるときには、膨張弁31を僅かに解放し、開閉弁32を開放し、開閉弁36を閉鎖し、膨張弁37を閉鎖した状態で、圧縮機35を駆動する。
Next, each operation mode will be described.
[Heating operation]
FIG. 2 is a diagram illustrating a heating operation.
In the figure, the flow path through which the low-pressure heat medium passes is indicated by a thick dotted line, the flow path through which the high-pressure heat medium passes is indicated by a thick solid line, the open on-off valve is shown in white, and the closed on-off valve is shown. Shown in black.
When the operation mode is heating, the compressor 35 is driven while the expansion valve 31 is slightly released, the on-off valve 32 is opened, the on-off valve 36 is closed, and the expansion valve 37 is closed.
 これにより、熱媒体は、圧縮機35、凝縮器16、膨張弁31、熱交換器13、開閉弁32、逆止弁33、及びアキュムレータ34を順に経由して循環する。この循環経路において、気相の熱媒体は、圧縮機35で圧縮され高圧となり、凝縮器16で凝縮液化し、放熱によって低温になる。液相の熱媒体は、膨張弁31で膨張され低圧となり、熱交換器13で蒸発気化し、吸熱によって高温となる。
 一方、室内熱交換ユニット12では、送風ファン14を駆動すると共に、エアミックスダンパ17で凝縮器16を通過する流路を開放する。これにより、導入された空気が凝縮器16で加熱され、温かい空気が車室内に供給される。
Thus, the heat medium circulates through the compressor 35, the condenser 16, the expansion valve 31, the heat exchanger 13, the on-off valve 32, the check valve 33, and the accumulator 34 in this order. In this circulation path, the heat medium in the gas phase is compressed by the compressor 35 to have a high pressure, is condensed and liquefied in the condenser 16, and is cooled to a low temperature by heat radiation. The heat medium in the liquid phase is expanded by the expansion valve 31 to have a low pressure, evaporates and evaporates in the heat exchanger 13, and has a high temperature due to heat absorption.
On the other hand, in the indoor heat exchange unit 12, the blower fan 14 is driven and the flow path passing through the condenser 16 is opened by the air mix damper 17. Thereby, the introduced air is heated by the condenser 16, and warm air is supplied into the vehicle interior.
 [冷房運転]
 図3は、冷房運転を示す図である。
 図中、低圧の熱媒体が通過する流路を太い点線で示し、高圧の熱媒体が通過する流路を太い実線で示し、開放された開閉弁を白抜きで示し、閉鎖された開閉弁を黒塗りで示している。
 運転モードが冷房であるときには、膨張弁31を全開放し、開閉弁32を閉鎖し、開閉弁36を閉鎖し、膨張弁37を僅かに解放した状態で、圧縮機35を駆動する。
[Cooling operation]
FIG. 3 is a diagram illustrating the cooling operation.
In the figure, the flow path through which the low-pressure heat medium passes is indicated by a thick dotted line, the flow path through which the high-pressure heat medium passes is indicated by a thick solid line, the open on-off valve is shown in white, and the closed on-off valve is shown. Shown in black.
When the operation mode is the cooling mode, the compressor 35 is driven with the expansion valve 31 fully opened, the on-off valve 32 closed, the on-off valve 36 closed, and the expansion valve 37 slightly opened.
 これにより、熱媒体は、圧縮機35、凝縮器16、膨張弁31、熱交換器13、逆止弁38、膨張弁37、蒸発器15、逆止弁33、及びアキュムレータ34を順に経由して循環する。この循環経路において、気相の熱媒体は、圧縮機35で圧縮され高圧となり、凝縮器16で凝縮液化し、放熱によって低温になる。液化しつつある熱媒体は、熱交換器13でさらに凝縮液化し、放熱によってさらに低温になる。液相の熱媒体は、膨張弁37で膨張され低圧となり、蒸発器15で蒸発気化し、吸熱によって高温となる。
 一方、室内熱交換ユニット12では、送風ファン14を駆動すると共に、エアミックスダンパ17で凝縮器16を通過する流路を閉鎖する。これにより、導入された空気が蒸発器15で冷却及び除湿された後に、凝縮器16を迂回し、除湿された涼しい空気が車室内に供給される。
Thus, the heat medium passes through the compressor 35, the condenser 16, the expansion valve 31, the heat exchanger 13, the check valve 38, the expansion valve 37, the evaporator 15, the check valve 33, and the accumulator 34 in this order. Circulate. In this circulation path, the heat medium in the gas phase is compressed by the compressor 35 to have a high pressure, is condensed and liquefied in the condenser 16, and is cooled to a low temperature by heat radiation. The heat medium that is being liquefied is further condensed and liquefied in the heat exchanger 13, and is further cooled by heat radiation. The heat medium in the liquid phase is expanded by the expansion valve 37 to have a low pressure, evaporates and evaporates in the evaporator 15, and becomes high in temperature by heat absorption.
On the other hand, in the indoor heat exchange unit 12, the blower fan 14 is driven and the flow path passing through the condenser 16 is closed by the air mix damper 17. Thus, after the introduced air is cooled and dehumidified by the evaporator 15, the air bypasses the condenser 16 and cool dehumidified air is supplied into the vehicle interior.
 次に、熱交換器13について説明する。
 図4は、熱交換器を示す図である。
 熱交換器13は、上下一対のヘッダ41と、複数のチューブ42と、複数のフィン43と、を備える。
 一対のヘッダ41は、横方向に延び、上下方向に間隔を空けて設けられている。ヘッダ41は、両端が閉塞された円筒状の配管によって形成されており、内部は隔壁46によって横方向に並んだ区画に仕切られている。上方のヘッダ41は、内部が横方向一端側の区画41Aと横方向他端側の区画41Bとに分けられており、横方向一端側の区画41Aには流入口44が設けられている。下方のヘッダ41は、内部が横方向一端側の区画41Cと横方向他端側の区画41Dとに分けられており、横方向他端側の区画41Dには排出口45が設けられている。
 
Next, the heat exchanger 13 will be described.
FIG. 4 is a diagram illustrating a heat exchanger.
The heat exchanger 13 includes a pair of upper and lower headers 41, a plurality of tubes 42, and a plurality of fins 43.
The pair of headers 41 extend in the horizontal direction and are provided at intervals in the vertical direction. The header 41 is formed by a cylindrical pipe whose both ends are closed, and the inside is partitioned by a partition 46 into sections arranged in a lateral direction. The inside of the upper header 41 is divided into a section 41A on one side in the horizontal direction and a section 41B on the other side in the horizontal direction, and an inlet 44 is provided in the section 41A on one side in the horizontal direction. The inside of the lower header 41 is divided into a section 41C on one side in the horizontal direction and a section 41D on the other side in the horizontal direction, and a discharge port 45 is provided in the section 41D on the other side in the horizontal direction.
 各チューブ42は、上下方向に延び、上端及び下端の夫々がヘッダ41に接続され、横方向に沿って等間隔に設けられている。チューブ42は横方向に薄い扁平形状であり、両端をヘッダ41の内部に連通させてヘッダ41にろう付けされている。ここでは12本ある場合を示してあり、夫々を識別する場合は、横方向の一端から他端に向かって順に42a~42lとする。上方のヘッダ41では、チューブ42dとチューブ42eとの間が隔壁46によって仕切られており、下方のヘッダ41では、チューブ42hとチューブ42iとの間が隔壁46によって仕切られている。
 各フィン43は、隣り合うチューブ42同士の間にろう付けによって固定されている。
Each tube 42 extends in the up-down direction, the upper end and the lower end are respectively connected to the header 41, and are provided at equal intervals along the horizontal direction. The tube 42 is thin and flat in the lateral direction, and both ends are connected to the inside of the header 41 and brazed to the header 41. Here, there is shown a case where there are twelve, and when each is identified, 42a to 42l are sequentially set from one end in the horizontal direction to the other end. In the upper header 41, the tube 42d and the tube 42e are partitioned by a partition 46, and in the lower header 41, the tube 42h and the tube 42i are partitioned by the partition 46.
Each fin 43 is fixed between adjacent tubes 42 by brazing.
 ヘッダ41及びチューブ42によって流路が形成されており、そこを熱媒体が流れる。すなわち、先ず流入口44を介して上方のヘッダ41における横方向一端側の区画41Aへ流入し、チューブ42a~42dに分配されてから下方のヘッダ41における横方向一端側の区画41Cへ流入する。次にチューブ42e~42hに分配されてから上方のヘッダ41における横方向他端側の区画41Bへ流入し、次にチューブ42i~42lに分配されてから下方のヘッダ41における横方向他端側の区画41Dへ流入し、排出口45を介して排出される。こうして、熱媒体は各チューブ42を流れるときに、チューブ42及びフィン43の周囲を流れる空気との間で熱交換を行なう。 (4) A flow path is formed by the header 41 and the tube 42, through which the heat medium flows. That is, first, it flows into the section 41A at one lateral side of the upper header 41 via the inflow port 44, is distributed to the tubes 42a to 42d, and then flows into the section 41C at one lateral side of the lower header 41. Next, after being distributed to the tubes 42e to 42h, it flows into the section 41B on the other side in the horizontal direction of the upper header 41, and is then distributed to the tubes 42i to 42l and then flows to the other side in the lower header 41. It flows into the section 41D and is discharged through the discharge port 45. Thus, when the heat medium flows through each tube 42, heat exchange is performed between the heat medium and air flowing around the tubes 42 and the fins 43.
 熱交換器13では、複数のチューブ42を通って一方のヘッダ41から他方のヘッダ41に向かって流れる熱媒体の流れを一つのパスとし、下に向かって流れるパスと上に向かって流れるパスとが交互に設けられている。チューブ42a~42dを通って下に向かって流れるパスを第一パスP1とし、チューブ42e~42hを通って上に向かって流れるパスを第二パスP2とし、チューブ42i~42lを通って下に向かって流れるパスを第三パスP3とする。ここでは、説明を簡単にするために、第一パスP1、第二パスP2、及び第三パスP3で、チューブ42の本数を同一とする均等パスとしている。
 図5は、均等パスを模式的に示す図である。
 各パスの幅は、チューブ42の本数を模式的に表している。以下の説明では、チューブ42の基準となる本数を『2』で表し、基準となる本数よりも多い本数を『3』で表し、基準となる本数よりも少ない本数を『1』で表す。ここでは、第一パスP1、第二パスP2、及び第三パスP3の全てが、基準の『2』となる。
In the heat exchanger 13, the flow of the heat medium flowing from one header 41 to the other header 41 through the plurality of tubes 42 is defined as one path, and a path that flows downward and a path that flows upward Are provided alternately. The path flowing downward through the tubes 42a to 42d is referred to as a first path P1, the path flowing upward through the tubes 42e to 42h is referred to as a second path P2, and is directed downward through the tubes 42i to 42l. The path flowing through is referred to as a third path P3. Here, for the sake of simplicity, the first path P1, the second path P2, and the third path P3 are equal paths in which the number of tubes 42 is the same.
FIG. 5 is a diagram schematically illustrating an equal path.
The width of each pass schematically represents the number of tubes 42. In the following description, the reference number of the tubes 42 is represented by “2”, the number larger than the reference number is represented by “3”, and the number smaller than the reference number is represented by “1”. Here, all of the first path P1, the second path P2, and the third path P3 are the reference “2”.
 次に、本実施形態におけるパスの設定例を示す。
 図6は、入口側のパスを広くした構成を模式的に示す図である(3‐2‐2)。
 ここでは、第一パスP1を『3』に設定し、第二パスP2を『2』に設定し、第三パスP3を『2』に設定している。すなわち、入口側の第一パスP1は、第二パスP2及び第三パスP3よりも広い。また、出口側の第三パスP3は、第一パスP1よりも狭い。
 図7は、入口側のパスを広くした構成を模式的に示す図である(3‐2‐1)。
 ここでは、第一パスP1を『3』に設定し、第二パスP2を『2』に設定し、第三パスP3を『1』に設定している。すなわち、入口側の第一パスP1は、第二パスP2及び第三パスP3よりも広い。また、出口側の第三パスP3は、第一パスP1及び第二パスP2よりも狭い。
Next, an example of setting a path in the present embodiment will be described.
FIG. 6 is a diagram schematically illustrating a configuration in which the path on the entrance side is widened (3-2-2).
Here, the first path P1 is set to “3”, the second path P2 is set to “2”, and the third path P3 is set to “2”. That is, the first path P1 on the entrance side is wider than the second path P2 and the third path P3. The third path P3 on the exit side is narrower than the first path P1.
FIG. 7 is a diagram schematically illustrating a configuration in which the path on the entrance side is widened (3-2-1).
Here, the first path P1 is set to “3”, the second path P2 is set to “2”, and the third path P3 is set to “1”. That is, the first path P1 on the entrance side is wider than the second path P2 and the third path P3. Further, the third path P3 on the exit side is narrower than the first path P1 and the second path P2.
 図8は、入口側のパスを広くした構成を模式的に示す図である(3‐3‐2)。
 ここでは、第一パスP1を『3』に設定し、第二パスP2を『3』に設定し、第三パスP3を『2』に設定している。すなわち、入口側の第一パスP1は、第三パスP3よりも広い。また、出口側の第三パスP3は、第一パスP1及び第二パスP2よりも狭い。
 図9は、入口側のパスを広くした構成を模式的に示す図である(2‐3‐1)。
 ここでは、第一パスP1を『2』に設定し、第二パスP2を『3』に設定し、第三パスP3を『1』に設定している。すなわち、入口側の第一パスP1は、第三パスP3よりも広い。また、出口側の第三パスP3は、第一パスP1及び第二パスP2よりも狭い。
 図10は、入口側のパスを広くした構成を模式的に示す図である(3‐1‐2)。
 ここでは、第一パスP1を『3』に設定し、第二パスP2を『1』に設定し、第三パスP3を『2』に設定している。すなわち、入口側の第一パスP1は、第二パスP2及び第三パスP3よりも広い。また、出口側の第三パスP3は、第一パスP1よりも狭い。
FIG. 8 is a diagram schematically illustrating a configuration in which the path on the entrance side is widened (3-3-2).
Here, the first path P1 is set to “3”, the second path P2 is set to “3”, and the third path P3 is set to “2”. That is, the first path P1 on the entrance side is wider than the third path P3. Further, the third path P3 on the exit side is narrower than the first path P1 and the second path P2.
FIG. 9 is a diagram schematically illustrating a configuration in which the path on the entrance side is widened (2-3-1).
Here, the first path P1 is set to “2”, the second path P2 is set to “3”, and the third path P3 is set to “1”. That is, the first path P1 on the entrance side is wider than the third path P3. Further, the third path P3 on the exit side is narrower than the first path P1 and the second path P2.
FIG. 10 is a diagram schematically illustrating a configuration in which the path on the entrance side is widened (3-1-2).
Here, the first path P1 is set to “3”, the second path P2 is set to “1”, and the third path P3 is set to “2”. That is, the first path P1 on the entrance side is wider than the second path P2 and the third path P3. The third path P3 on the exit side is narrower than the first path P1.
 《作用》
 次に、一実施形態の主要な作用効果について説明する。
 熱交換器13は、各パスにおける熱媒体の流れが暖房時と冷房時とで共通である。これにより、運転モードが切り替わるとしても、熱媒体の入口と出口を常に一定にすることができる。そして、最初の第一パスP1は、上から下に向かって流れる、つまり重力に従う下降パスである。これにより、熱媒体が流れやすくなる。また、パス数は三、つまり奇数である。これにより、最後の第三パスP3も下に向かって流れる下降パスとし、熱媒体が流れやすくなる。最後の第三パスP3が、下から上に向かって流れる、つまり重力に逆らう上昇パスになると、熱媒体と共に循環するオイルが排出されにくくなる。したがって、最後の第三パスP3を下降パスとすることで、オイルの滞留を抑制できる。また、パス数が増えると、圧力損失が大きくなるため、パス数は三が好ましい。
《Action》
Next, main functions and effects of the embodiment will be described.
In the heat exchanger 13, the flow of the heat medium in each path is common for heating and cooling. Thereby, even if the operation mode is switched, the inlet and the outlet of the heat medium can always be kept constant. The first first pass P1 is a descending pass that flows from top to bottom, that is, follows gravity. Thereby, the heat medium easily flows. The number of passes is three, that is, an odd number. Thereby, the last third pass P3 is also a descending pass that flows downward, and the heat medium easily flows. If the last third pass P3 flows upward from the bottom, that is, if it is a rising pass against gravity, the oil circulating together with the heat medium will not be easily discharged. Therefore, by using the last third pass P3 as a descending pass, the accumulation of oil can be suppressed. Further, as the number of passes increases, the pressure loss increases, and therefore, the number of passes is preferably three.
 一方、冷房時に室外の熱交換器13は、凝縮器として機能するため、熱交換器13の出口に近づくほど熱媒体が液化する。つまり、入口側では熱媒体が気相である。気相は液相に比べて熱媒体の密度が低く、流速が速いため、圧力損失は大きい。すなわち、冷房時には、熱媒体が気相として存在する入口側のパスで圧力損失が大きくなってしまう。
 そこで、入口側の第一パスP1では、他のパスに比べて流路が広くされている。すなわち、入口側の第一パスP1では、他のパスに比べてチューブ42の本数が多くされている。また、出口側の第三パスP3では、他のパスに比べて流路が狭くされている。すなわち、出口側の第三パスP3では、他のパスに比べてチューブ42の本数が少なくされている。
 これにより、冷房時の圧力損失を低減し、熱交換性能を向上させることができる。したがって、冷房が優先される車両に好適である。
On the other hand, since the outdoor heat exchanger 13 functions as a condenser during cooling, the heat medium liquefies closer to the outlet of the heat exchanger 13. That is, the heat medium is in a gas phase on the inlet side. Since the gas phase has a lower density of the heat medium and a higher flow velocity than the liquid phase, the pressure loss is large. That is, during cooling, the pressure loss increases in the path on the inlet side where the heat medium exists as a gas phase.
Therefore, in the first path P1 on the entrance side, the flow path is wider than in the other paths. That is, in the first path P1 on the inlet side, the number of tubes 42 is larger than in the other paths. In the third path P3 on the outlet side, the flow path is narrower than the other paths. That is, the number of tubes 42 is smaller in the third pass P3 on the outlet side than in the other passes.
Thereby, pressure loss during cooling can be reduced, and heat exchange performance can be improved. Therefore, it is suitable for a vehicle in which cooling is prioritized.
 図6の構成によれば、第一パスP1は基準よりも広い『3』に設定され、第二パスP2及び第三パスP3は基準の『2』に設定されている。第一パスP1は、冷房時に圧力損失の影響が最も大きいため、この第一パスP1を最も広くすることで、冷房時の圧力損失を低減することができる。
 図7の構成によれば、第一パスP1は基準よりも広い『3』に設定され、第二パスP2は基準の『2』に設定され、第三パスP3は基準よりも狭い『1』に設定されている。すなわち、入口側から出口側に向かって、段階的にパスが狭くされている。そのため、冷房時の圧力損失を効果的に低減することができる。
According to the configuration of FIG. 6, the first path P1 is set to “3” wider than the reference, and the second path P2 and the third path P3 are set to the reference “2”. Since the first path P1 has the greatest effect of pressure loss during cooling, the pressure loss during cooling can be reduced by widening the first path P1.
According to the configuration of FIG. 7, the first path P1 is set to “3” wider than the reference, the second path P2 is set to “2” of the reference, and the third path P3 is “1” narrower than the reference. Is set to That is, the path is gradually narrowed from the entrance side to the exit side. Therefore, pressure loss during cooling can be effectively reduced.
 図8の構成によれば、第一パスP1及び第二パスP2は基準よりも広い『3』に設定され、第三パスP3は基準の『2』に設定されている。第三パスP3は、冷房時に圧力損失の影響が最も小さいため、この第三パスP3を狭くすることで、相対的に第一パスP1及び第二パスP2を広くすることができ、結果として冷房時の圧力損失を低減することがで
きる。
 図9の構成によれば、第一パスP1は基準の『2』に設定され、第二パスP2は基準よりも広い『3』に設定され、第三パスP3は基準よりも狭い『1』に設定されている。第三パスP3は、冷房時に圧力損失の影響が最も小さいため、この第三パスP3を狭くすることで、相対的に第一パスP1を広くすることができ、結果として冷房時の圧力損失を低減することができる。
According to the configuration of FIG. 8, the first path P1 and the second path P2 are set to “3” wider than the reference, and the third path P3 is set to the reference “2”. The third pass P3 has the least effect of pressure loss during cooling. Therefore, by narrowing the third pass P3, the first pass P1 and the second pass P2 can be relatively widened, and as a result, the cooling is performed. The pressure loss at the time can be reduced.
According to the configuration of FIG. 9, the first path P1 is set to the reference “2”, the second path P2 is set to “3” wider than the reference, and the third path P3 is “1” narrower than the reference. Is set to Since the third pass P3 has the least effect of pressure loss during cooling, the first pass P1 can be relatively widened by narrowing the third pass P3. As a result, the pressure loss during cooling can be reduced. Can be reduced.
 図10の構成によれば、第一パスP1は基準よりも広い『3』に設定され、第二パスP2は基準よりも狭い『1』に設定され、第三パスP3は基準の『2』に設定されている。このように、第一パスP1を最も広くすることで、冷房時の圧力損失を低減することができる。さらに、第二パスP2を最も狭くしている。第二パスP2は、下から上に向かって流れる上昇パスであり、液相の熱媒体は気相の熱媒体に比べて上昇しにくい。そのため、第二パスP2が広いと、液相の熱媒体は、第二パスP2のうち、第一パスP1に近い側のチューブ42には流れにくくなり、第三パスP3に近い側のチューブ42に流れやすくなる。すなわち、第二パスP2内の分流に偏りが生じ、熱交換性能に影響してしまう。そこで、第二パスP2を最も狭くすることで、第二パスP2内で分流に偏りが生じることを抑制し、熱交換性能を向上させることができる。さらに、第二パスP2を狭くした分だけ、第一パスP1や第三パスP3を広くすることができるので、スペースを有効利用し、熱交換性能を向上させることができる。 According to the configuration of FIG. 10, the first path P1 is set to “3” wider than the reference, the second path P2 is set to “1” narrower than the reference, and the third path P3 is set to “2” of the reference. Is set to Thus, by making the first path P1 the widest, the pressure loss during cooling can be reduced. Further, the second path P2 is the narrowest. The second path P2 is a rising path that flows upward from below, and the liquid phase heat medium is less likely to rise than the gas phase heat medium. Therefore, when the second path P2 is wide, the heat medium in the liquid phase hardly flows into the tube 42 of the second path P2 near the first path P1, and the tube 42 on the side near the third path P3. Easier to flow. That is, a bias occurs in the branch flow in the second path P2, which affects the heat exchange performance. Therefore, by making the second path P2 the narrowest, it is possible to suppress the occurrence of bias in the branch flow in the second path P2 and improve the heat exchange performance. Furthermore, the first path P1 and the third path P3 can be widened by the amount of the narrowing of the second path P2, so that the space can be effectively used and the heat exchange performance can be improved.
 《変形例》
 本実施形態では、パス数を三にしているが、これに限定されるものではない。パス数は三以上の奇数であればよいので、パス数を例えば五にしてもよい。
 本実施形態では、各パスにおける流路の広さを、チューブ42の本数によって調整しているが、これに限定されるものではない。例えば、チューブ42の流路断面積によって調整してもよい。
 本実施形態では、室内熱交換ユニット12において、暖房用の熱源として凝縮器16のみを設けているが、これに限定されるものではなく、別途、他の熱源を追加してもよい。例えば、温度によって抵抗値が変化するPTCヒータ(PTC:Positive Temperature Coefficient)を設けてもよい。これによれば、暖房効果が向上する。
《Modification》
In the present embodiment, the number of paths is three, but is not limited to this. Since the number of passes may be an odd number of three or more, the number of passes may be set to, for example, five.
In the present embodiment, the width of the flow path in each path is adjusted by the number of tubes 42, but is not limited thereto. For example, the adjustment may be made according to the flow path cross-sectional area of the tube 42.
In the present embodiment, in the indoor heat exchange unit 12, only the condenser 16 is provided as a heat source for heating, but the present invention is not limited to this, and another heat source may be separately added. For example, a PTC heater (PTC: Positive Temperature Coefficient) whose resistance changes with temperature may be provided. According to this, the heating effect is improved.
 以上、限られた数の実施形態を参照しながら説明したが、権利範囲はそれらに限定されるものではなく、上記の開示に基づく実施形態の改変は、当業者にとって自明のことである。 Although the above has been described with reference to a limited number of embodiments, the scope of rights is not limited thereto, and modifications of the embodiments based on the above disclosure will be obvious to those skilled in the art.
 11…車両用空気調和装置、12…室内熱交換ユニット、13…熱交換器、14…送風ファン、15…蒸発器、16…凝縮器、17…エアミックスダンパ、21…流路、22…流路、23…流路、24…流路、25…流路、31…膨張弁、32…開閉弁、33…逆止弁、34…アキュムレータ、35…圧縮機、36…開閉弁、37…膨張弁、38…逆止弁、41…ヘッダ、41A…区画、41B…区画、41C…区画、41D…区画、42…チューブ、43…フィン、44…流入口、45…排出口、46…隔壁、P1…第一パス、P2…第二パス、P3…第三パス
 
DESCRIPTION OF SYMBOLS 11 ... Vehicle air conditioner, 12 ... Indoor heat exchange unit, 13 ... Heat exchanger, 14 ... Blower fan, 15 ... Evaporator, 16 ... Condenser, 17 ... Air mix damper, 21 ... Flow path, 22 ... Flow 23, flow path, 24, flow path, 25, flow path, 31, expansion valve, 32, on-off valve, 33, check valve, 34, accumulator, 35, compressor, 36, on-off valve, 37, expansion Valve 38, check valve, 41 header, 41A section, 41B section, 41C section, 41D section, 42 tube, 43 fin, 44 inlet, 45 outlet, 46 partition P1 first pass, P2 second pass, P3 third pass

Claims (6)

  1.  横方向に延び、上下方向に間隔を空けて設けられた一対のヘッダと、
     上下方向に延び、上端及び下端の夫々が前記ヘッダに接続され、横方向に間隔を空けて設けられた複数のチューブと、を備え、
     複数の前記チューブを通って一方の前記ヘッダから他方の前記ヘッダに向かって流れる熱媒体の流れを一つのパスとし、下に向かって流れるパスと上に向かって流れるパスとが交互に設けられており、
     各パスにおける前記熱媒体の流れは、暖房時及び冷房時で共通であり、
     最初のパスは、下に向かって流れるパスであり、
     パス数は、三以上の奇数であり、
     入口側のパスは、他のパスに比べて流路が広くされていることを特徴とする熱交換器。
    A pair of headers extending in the horizontal direction and provided at intervals in the vertical direction,
    A plurality of tubes extending in the vertical direction, each of an upper end and a lower end connected to the header, and provided at intervals in the horizontal direction;
    The flow of the heat medium flowing from one header to the other header through a plurality of tubes is defined as one path, and a path flowing downward and a path flowing upward are alternately provided. Yes,
    The flow of the heat medium in each pass is common during heating and cooling,
    The first path is the path that flows down,
    The number of passes is an odd number of 3 or more,
    A heat exchanger characterized in that the inlet side path has a wider flow path than other paths.
  2.  横方向に延び、上下方向に間隔を空けて設けられた一対のヘッダと、
     上下方向に延び、上端及び下端の夫々が前記ヘッダに接続され、横方向に間隔を空けて設けられた複数のチューブと、を備え、
     複数の前記チューブを通って一方の前記ヘッダから他方の前記ヘッダに向かって流れる熱媒体の流れを一つのパスとし、下に向かって流れるパスと上に向かって流れるパスとが交互に設けられており、
     各パスにおける前記熱媒体の流れは、暖房時及び冷房時で共通であり、
     最初のパスは、下に向かって流れるパスであり、
     パス数は、三以上の奇数であり、
     出口側のパスは、他のパスに比べて流路が狭くされていることを特徴とする熱交換器。
    A pair of headers extending in the horizontal direction and provided at intervals in the vertical direction,
    A plurality of tubes extending in the vertical direction, each of an upper end and a lower end connected to the header, and provided at intervals in the horizontal direction;
    The flow of the heat medium flowing from one header to the other header through a plurality of tubes is defined as one path, and a path flowing downward and a path flowing upward are alternately provided. Yes,
    The flow of the heat medium in each pass is common during heating and cooling,
    The first path is the path that flows down,
    The number of passes is an odd number of 3 or more,
    A heat exchanger characterized in that the outlet side path has a narrower flow path than other paths.
  3.  前記流路の広さは、前記チューブの本数によって調整されることを特徴とする請求項1又は2に記載の熱交換器。 広 The heat exchanger according to claim 1 or 2, wherein the width of the flow path is adjusted by the number of the tubes.
  4.  パス数は、三であることを特徴とする請求項1~3の何れか一項に記載の熱交換器。 The heat exchanger according to any one of claims 1 to 3, wherein the number of passes is three.
  5.  入口側から出口側に向かって、各パスの前記流路が段階的に狭くされていることを特徴とする請求項1~4の何れか一項に記載の熱交換器。 (5) The heat exchanger according to any one of (1) to (4), wherein the flow path of each path is gradually narrowed from an inlet side to an outlet side.
  6.  車室内へ空気を供給する供給流路と、
     前記供給流路に設けられ、周囲を通過する空気と内部を通過する熱媒体との間で熱交換を行ない、前記熱媒体に放熱させる凝縮器と、
     前記供給流路のうち前記凝縮器よりも上流側に設けられ、周囲を通過する空気と内部を通過する前記熱媒体との間で熱交換を行ない、前記熱媒体に吸熱させる蒸発器と、
     車室外に設けられ、周囲を通過する外気と内部を通過する前記熱媒体との間で熱交換を行なう請求項1~5の何れか一項に記載の熱交換器と、
     前記熱媒体を圧縮する圧縮機と、
     前記熱媒体を膨張させる第一の膨張弁及び第二の膨張弁と、を備え、
     暖房時には、前記圧縮機、前記凝縮器、前記第一の膨張弁、前記熱交換器の順に、前記熱媒体を循環させ、
     冷房時には、前記第二の膨張弁、前記蒸発器、前記圧縮機、前記凝縮器、前記熱交換器の順に、前記熱媒体を循環させることを特徴とする車両用空気調和装置。
    A supply channel for supplying air to the vehicle interior;
    A condenser provided in the supply flow path, performs heat exchange between the air passing through the surroundings and the heat medium passing through the inside, and radiates heat to the heat medium,
    An evaporator that is provided upstream of the condenser in the supply flow path, performs heat exchange between air passing around and the heat medium passing through the inside, and absorbs heat by the heat medium,
    The heat exchanger according to any one of claims 1 to 5, wherein the heat exchanger is provided outside the vehicle compartment and exchanges heat between outside air passing around and the heat medium passing inside.
    A compressor for compressing the heat medium,
    A first expansion valve and a second expansion valve for expanding the heat medium,
    During heating, the compressor, the condenser, the first expansion valve, in order of the heat exchanger, circulate the heat medium,
    During cooling, the heat medium is circulated in the order of the second expansion valve, the evaporator, the compressor, the condenser, and the heat exchanger in this order.
PCT/JP2019/022661 2018-06-29 2019-06-07 Heat exchanger and vehicular air-conditioning device WO2020003968A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-124782 2018-06-29
JP2018124782A JP2020003172A (en) 2018-06-29 2018-06-29 Heat exchanger and vehicle air conditioner

Publications (1)

Publication Number Publication Date
WO2020003968A1 true WO2020003968A1 (en) 2020-01-02

Family

ID=68986164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/022661 WO2020003968A1 (en) 2018-06-29 2019-06-07 Heat exchanger and vehicular air-conditioning device

Country Status (2)

Country Link
JP (1) JP2020003172A (en)
WO (1) WO2020003968A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5417158U (en) * 1977-07-05 1979-02-03
WO2009103222A1 (en) * 2008-02-19 2009-08-27 Sun Haichao A micro-spacing parallel flow heat exchanger
JP2012132586A (en) * 2010-12-20 2012-07-12 Calsonic Kansei Corp Refrigeration cycle device
JP2014113975A (en) * 2012-12-12 2014-06-26 Sanden Corp Heat exchanger and heat pump system using heat exchanger
US20170057320A1 (en) * 2014-05-19 2017-03-02 Hanon Systems Outdoor heat exchanger

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5417158U (en) * 1977-07-05 1979-02-03
WO2009103222A1 (en) * 2008-02-19 2009-08-27 Sun Haichao A micro-spacing parallel flow heat exchanger
JP2012132586A (en) * 2010-12-20 2012-07-12 Calsonic Kansei Corp Refrigeration cycle device
JP2014113975A (en) * 2012-12-12 2014-06-26 Sanden Corp Heat exchanger and heat pump system using heat exchanger
US20170057320A1 (en) * 2014-05-19 2017-03-02 Hanon Systems Outdoor heat exchanger

Also Published As

Publication number Publication date
JP2020003172A (en) 2020-01-09

Similar Documents

Publication Publication Date Title
JP6231337B2 (en) Automotive heat exchanger apparatus and air conditioning system
JP6218953B2 (en) Heat pump system for vehicles
JP5775661B2 (en) Automotive heating, ventilation, and / or air conditioning
US11338646B2 (en) Device for distributing the coolant in an air-conditioning system of a motor vehicle
JP2017144951A (en) Vehicular air conditioner
JPWO2014156585A1 (en) Air conditioner for vehicles
WO2014002369A1 (en) Heat pump cycle
JP6026956B2 (en) Indoor heat exchanger
JP5510374B2 (en) Heat exchange system
WO2020003967A1 (en) Heat exchanger and vehicular air-conditioning device
JP2007178098A (en) Evaporator
WO2020003968A1 (en) Heat exchanger and vehicular air-conditioning device
WO2020003966A1 (en) Heat exchanger and vehicular air-conditioning device
WO2021002288A1 (en) Air-conditioning unit, heat exchanger, and air conditioner
JP6537928B2 (en) Heat exchanger and heat pump system
WO2020129496A1 (en) Condenser and air conditioning device for vehicle
WO2020129497A1 (en) Condenser and air conditioning device for vehicle
JP2021000933A (en) Vehicular air conditioner
JP7410672B2 (en) Vehicle air conditioner
WO2020241612A1 (en) Vehicular air-conditioning device
WO2020246305A1 (en) Vehicle air conditioning device
JP2015009720A (en) Air conditioner for vehicle
JP2020199955A (en) Vehicular air-conditioner
JP2020199850A (en) Air conditioner for vehicle
JPH06199127A (en) Evaporator structure for air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19826905

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19826905

Country of ref document: EP

Kind code of ref document: A1