JP2020199850A - Air conditioner for vehicle - Google Patents

Air conditioner for vehicle Download PDF

Info

Publication number
JP2020199850A
JP2020199850A JP2019107424A JP2019107424A JP2020199850A JP 2020199850 A JP2020199850 A JP 2020199850A JP 2019107424 A JP2019107424 A JP 2019107424A JP 2019107424 A JP2019107424 A JP 2019107424A JP 2020199850 A JP2020199850 A JP 2020199850A
Authority
JP
Japan
Prior art keywords
heat
cooling
heat medium
heat exchanger
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019107424A
Other languages
Japanese (ja)
Inventor
徹也 石関
Tetsuya Ishizeki
徹也 石関
武史 東宮
Takeshi Tomiya
武史 東宮
尭之 松村
Takayuki Matsumura
尭之 松村
謙太朗 守屋
Kentaro Moriya
謙太朗 守屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Automotive Climate Systems Corp
Original Assignee
Sanden Automotive Climate Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Automotive Climate Systems Corp filed Critical Sanden Automotive Climate Systems Corp
Priority to JP2019107424A priority Critical patent/JP2020199850A/en
Priority to PCT/JP2020/020663 priority patent/WO2020246306A1/en
Publication of JP2020199850A publication Critical patent/JP2020199850A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/04Compression machines, plants or systems, with several condenser circuits arranged in series

Abstract

To improve operation efficiency by facilitating heat exhaust of a heat medium for air conditioning in cooling.SOLUTION: An air conditioner for a vehicle includes a heat exchanger 13 which exchanges heat between outside air passing through a periphery and a heat medium for air conditioning passing through an inside, and a heat exchanger 43 which exchanges heat between a heat medium for air conditioning passing through the inside individually and a heat medium for cooling. The heat medium for air conditioning is circulated in cooling so as to pass through an expansion valve 37, an evaporator 15, a compressor 35, a condenser 16, the heat exchanger 43, and the heat exchanger 13 in this order. The heat medium for cooling is circulated so as to pass through the heat exchanger 43 and a radiator 42 in this order.SELECTED DRAWING: Figure 6

Description

本発明は、車両用空気調和装置に関するものである。 The present invention relates to an air conditioner for vehicles.

特許文献1に示されるように、空調用熱媒体を循環させ、ヒートポンプによって車室内の温度を調整する車両用空気調和装置と、冷却用熱媒体を循環させてバッテリを冷却する冷却装置と、を備えたものがある。そして、空調用熱媒体が低圧となる流路に熱交換器を配置し、暖房運転によって低温になった空調用熱媒体と、バッテリの冷却によって高温になった冷却用熱媒体との熱交換を行なうことにより、バッテリの排熱を回収し、車室内の暖房に有効利用している。 As shown in Pat. There is something to prepare. Then, a heat exchanger is arranged in the flow path where the heat medium for air conditioning becomes low pressure, and heat exchange between the heat medium for air conditioning whose temperature has become low due to the heating operation and the heat medium for cooling which has become high due to the cooling of the battery is performed. By doing so, the exhaust heat of the battery is recovered and effectively used for heating the interior of the vehicle.

特開2018−184108号公報JP-A-2018-184108

空調用熱媒体と冷却用熱媒体との熱交換を行なうために、空調用熱媒体が低圧となる流路に熱交換器を配置すると、バッテリの排熱を暖房に利用することしかできず、逆に冷房時には、空調用熱媒体の排熱を促すことができない。
本発明の課題は、冷房時に空調用熱媒体の排熱を促し、運転効率の向上を図ることである。
本発明の課題は、空調能力の安定性を向上させることである。
If a heat exchanger is placed in a flow path where the heat medium for air conditioning has a low pressure in order to exchange heat between the heat medium for air conditioning and the heat medium for cooling, the exhaust heat of the battery can only be used for heating. On the contrary, at the time of cooling, it is not possible to promote the exhaust heat of the heat medium for air conditioning.
An object of the present invention is to promote exhaust heat of an air conditioning heat medium during cooling to improve operating efficiency.
An object of the present invention is to improve the stability of the air conditioning capacity.

本発明の一態様に係る車両用空気調和装置は、
車室内へ空気を供給する供給流路に設けられ、周囲を通過する空気と内部を通過する空調用熱媒体との間で熱交換を行ない、空調用熱媒体に吸熱させる蒸発器と、
供給流路のうち蒸発器よりも下流側に設けられ、周囲を通過する空気と内部を通過する空調用熱媒体との間で熱交換を行ない、空調用熱媒体に放熱させる凝縮器と、
周囲を通過する外気と内部を通過する空調用熱媒体との間で熱交換を行なう第一の熱交換器と、
空調用熱媒体を圧縮する圧縮機と、
冷房時に空調用熱媒体を膨張させる冷房時膨張弁と、
暖房時に空調用熱媒体を膨張させる暖房時膨張弁と、
発熱体を冷却するための冷却用熱媒体が内部を通過し、周囲を通過する外気との間で熱交換を行なう放熱用熱交換器と、
内部を個別に通過する空調用熱媒体と冷却用熱媒体との間で熱交換を行なう第二の熱交換器と、
冷房時に、冷房時膨張弁、蒸発器、圧縮機、凝縮器、第二の熱交換器、及び第一の熱交換器を順に経由するように、空調用熱媒体を循環させる冷房時空調用経路と、
暖房時に、圧縮機、凝縮器、第二の熱交換器、暖房時膨張弁、及び第一の熱交換器を順に経由するように、空調用熱媒体を循環させる暖房時空調用経路と、
冷房時に、第二の熱交換器、及び放熱用熱交換器を順に経由するように、冷却用熱媒体を循環させる冷房時冷却用経路と、を備える。
The vehicle air conditioner according to one aspect of the present invention is
An evaporator provided in the supply flow path for supplying air to the passenger compartment, which exchanges heat between the air passing around and the heat medium for air conditioning passing through the inside and absorbs heat to the heat medium for air conditioning.
A condenser provided on the downstream side of the supply flow path from the evaporator, which exchanges heat between the air passing around and the heat medium for air conditioning passing through the inside and dissipates heat to the heat medium for air conditioning.
The first heat exchanger that exchanges heat between the outside air passing through the surroundings and the heat medium for air conditioning passing through the inside,
A compressor that compresses the heat medium for air conditioning,
An expansion valve for cooling that expands the heat medium for air conditioning during cooling,
An expansion valve for heating that expands the heat medium for air conditioning during heating,
A heat exchanger for heat dissipation, in which a cooling heat medium for cooling a heating element passes through the inside and exchanges heat with the outside air passing around.
A second heat exchanger that exchanges heat between the air-conditioning heat medium and the cooling heat medium that pass through the interior individually.
A cooling air-conditioning path that circulates an air-conditioning heat medium so as to pass through a cooling expansion valve, an evaporator, a compressor, a condenser, a second heat exchanger, and a first heat exchanger in order during cooling. When,
A heating air-conditioning path that circulates an air-conditioning heat medium so as to pass through a compressor, a condenser, a second heat exchanger, a heating expansion valve, and a first heat exchanger in order during heating.
A cooling path for circulating a cooling heat medium is provided so as to pass through a second heat exchanger and a heat radiating heat exchanger in order during cooling.

本発明によれば、第二の熱交換器により、冷房時に、蒸発器、及び圧縮機を順に通過して高温高圧になった空調用熱媒体と、放熱用熱交換器を通過して低温になった冷却用熱媒体との熱交換が行なわれる。また、第二の熱交換器を通過して高温になった冷却用熱媒体は、放熱用熱交換器で外気と熱交換されて低温になる。このように、冷房時に空調用熱媒体の排熱が促され、運転効率の向上を図ることができる。 According to the present invention, the second heat exchanger passes through the heat exchanger and the compressor in order to reach a high temperature and high pressure, and the heat exchanger for heat dissipation to a low temperature by the second heat exchanger. Heat exchange is performed with the heat medium for cooling. Further, the cooling heat medium that has passed through the second heat exchanger and has reached a high temperature is exchanged with the outside air by the heat radiating heat exchanger to become a low temperature. In this way, the exhaust heat of the heat medium for air conditioning is promoted during cooling, and the operating efficiency can be improved.

車両用空気調和装置を示す図である。It is a figure which shows the air conditioner for a vehicle. 暖房運転を示す図である。It is a figure which shows the heating operation. 冷凍サイクルを表すp−h線図である。It is a ph diagram showing a refrigeration cycle. 第2実施形態を示す図である。It is a figure which shows the 2nd Embodiment. 第2実施形態の暖房運転を示す図である。It is a figure which shows the heating operation of 2nd Embodiment. 第2実施形態の冷房運転を示す図である。It is a figure which shows the cooling operation of 2nd Embodiment. 第3実施形態を示す図である。It is a figure which shows the 3rd Embodiment.

以下、本発明の実施形態を図面に基づいて説明する。なお、各図面は模式的なものであって、現実のものとは異なる場合がある。また、以下の実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであり、構成を下記のものに特定するものでない。すなわち、本発明の技術的思想は、特許請求の範囲に記載された技術的範囲内において、種々の変更を加えることができる。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. It should be noted that each drawing is a schematic one and may differ from the actual one. In addition, the following embodiments exemplify devices and methods for embodying the technical idea of the present invention, and do not specify the configuration to the following. That is, the technical idea of the present invention can be modified in various ways within the technical scope described in the claims.

《第1実施形態》
《構成》
図1は、車両用空気調和装置の一部を示す図である。
車両用空気調和装置11は、自動車に搭載されるヒートポンプシステムからなり、車室側に設けられた室内熱交換ユニット12(供給流路)と、車室外に設けられた熱交換器13(第一の熱交換器)と、を備える。車室側と車室外とは、例えばダッシュパネルによって隔てられている。
室内熱交換ユニット12は、ダッシュボードの内部に配置されており、一端側から外気や内気を導入し、他端側から車室内へ空気を供給するダクトによって形成されている。室内熱交換ユニット12は、HVAC(Heating Ventilation and Air Conditioning)とも呼ばれる。室内熱交換ユニット12の内部には、送風ファン14と、蒸発器15と、凝縮器16と、エアミックスダンパ17と、ヒータ18と、が設けられている。
<< First Embodiment >>
"Constitution"
FIG. 1 is a diagram showing a part of an air conditioner for a vehicle.
The vehicle air conditioner 11 comprises a heat pump system mounted on an automobile, and has an indoor heat exchange unit 12 (supply flow path) provided on the vehicle interior side and a heat exchanger 13 (first) provided outside the vehicle interior. Heat exchanger) and. The passenger compartment side and the passenger compartment side are separated by, for example, a dash panel.
The indoor heat exchange unit 12 is arranged inside the dashboard, and is formed by a duct that introduces outside air or inside air from one end side and supplies air to the vehicle interior from the other end side. The indoor heat exchange unit 12 is also called HVAC (Heating Ventilation and Air Conditioning). Inside the indoor heat exchange unit 12, a blower fan 14, an evaporator 15, a condenser 16, an air mix damper 17, and a heater 18 are provided.

送風ファン14は、室内熱交換ユニット12の一端側に設けられており、モータによって駆動されるときに、外気や内気を吸引し、他端側へと吐出する。
蒸発器15は、送風ファン14よりも下流側に設けられており、吸熱器及び除湿器として、放熱フィンの周囲を通過する空気とチューブ内を通過する低温の空調用熱媒体(冷媒)との間で熱交換を行なう。すなわち、チューブ内の空調用熱媒体が吸熱によって蒸発気化することにより、放熱フィンの周囲の空気を冷却すると共に、放熱フィンの表面に結露を生じさせて除湿を行なう。送風ファン14から吹き出された空気は、全て蒸発器15を通過する。
The blower fan 14 is provided on one end side of the indoor heat exchange unit 12, and when driven by a motor, sucks outside air and inside air and discharges them to the other end side.
The evaporator 15 is provided on the downstream side of the blower fan 14, and serves as a heat absorber and a dehumidifier for air passing around the heat radiation fins and a low-temperature air-conditioning heat medium (refrigerant) passing through the tube. Heat exchange between them. That is, the heat medium for air conditioning in the tube evaporates and vaporizes by endothermic heat, thereby cooling the air around the heat radiation fins and causing dew condensation on the surface of the heat radiation fins to dehumidify. All the air blown out from the blower fan 14 passes through the evaporator 15.

凝縮器16は、蒸発器15よりも下流側に設けられており、放熱器として、放熱フィンの周囲を通過する空気とチューブ内を通過する高温の空調用熱媒体(熱媒)との間で熱交換を行なう。すなわち、チューブ内の空調用熱媒体が放熱によって凝縮液化することにより、放熱フィンの周囲の空気を加温する。凝縮器16は、室内熱交換ユニット12の断面のうち、略半分を塞ぐように配置されることで、凝縮器16を通過する流路と、凝縮器16を迂回する流路と、が形成されている。すなわち、蒸発器15を通過した空気の一部が凝縮器16を通過し、残りが凝縮器16を迂回する。 The condenser 16 is provided on the downstream side of the evaporator 15, and as a radiator, between the air passing around the heat radiation fins and the high-temperature air-conditioning heat medium (heat medium) passing through the tube. Perform heat exchange. That is, the air conditioning heat medium in the tube is condensed and liquefied by heat dissipation to heat the air around the heat dissipation fins. By arranging the condenser 16 so as to block substantially half of the cross section of the indoor heat exchange unit 12, a flow path passing through the condenser 16 and a flow path bypassing the condenser 16 are formed. ing. That is, a part of the air that has passed through the evaporator 15 passes through the condenser 16, and the rest bypasses the condenser 16.

エアミックスダンパ17は、凝縮器16を通過する流路を開放して凝縮器16を迂回する流路を閉鎖する位置と、凝縮器16を通過する流路を閉鎖して凝縮器16を迂回する流路を開放する位置と、の間で回動可能である。エアミックスダンパ17が凝縮器16を通過する流路を開放して凝縮器16を迂回する流路を閉鎖する位置にあるときには、蒸発器15を通過した空気は全て凝縮器16を通過する。エアミックスダンパ17が凝縮器16を通過する流路を閉鎖して凝縮器16を迂回する流路を開放する位置にあるときには、蒸発器15を通過した空気は全て凝縮器16を迂回する。エアミックスダンパ17が凝縮器16を通過する流路と凝縮器16を迂回する流路の双方を開放する位置にあるときには、蒸発器15を通過した空気のうち、一部が凝縮器16を通過し、残りが凝縮器16を迂回する。そして、凝縮器16の下流側で、凝縮器16を通過した空気と、凝縮器16を迂回した空気とが混合される。
ヒータ18は、例えば温度によって抵抗値が変化するPTCヒータ(PTC:Positive Temperature Coefficient)であり、凝縮器16の風下側に設けられ、凝縮器16を通過した空気は、全てヒータ18を通過する。ヒータ18は、ON/OFFの切り替えが可能であり、ONのときに通過する空気を加温する。
The air mix damper 17 bypasses the condenser 16 at a position where the flow path passing through the condenser 16 is opened to close the flow path bypassing the condenser 16 and the flow path passing through the condenser 16 is closed to bypass the condenser 16. It is rotatable between the position where the flow path is opened and the position where the flow path is opened. When the air mix damper 17 is in a position to open the flow path passing through the condenser 16 and close the flow path bypassing the condenser 16, all the air passing through the evaporator 15 passes through the condenser 16. When the air mix damper 17 is in a position to close the flow path passing through the condenser 16 and open the flow path bypassing the condenser 16, all the air passing through the evaporator 15 bypasses the condenser 16. When the air mix damper 17 is in a position to open both the flow path passing through the condenser 16 and the flow path bypassing the condenser 16, a part of the air passing through the evaporator 15 passes through the condenser 16. The rest bypasses the condenser 16. Then, on the downstream side of the condenser 16, the air that has passed through the condenser 16 and the air that has bypassed the condenser 16 are mixed.
The heater 18 is, for example, a PTC heater (PTC: Positive Temperature Coefficient) whose resistance value changes depending on the temperature, is provided on the leeward side of the condenser 16, and all the air that has passed through the condenser 16 passes through the heater 18. The heater 18 can be switched ON / OFF, and heats the air passing through when it is ON.

熱交換器13は、エンジンルーム内又はモータルーム内に設けられており、放熱フィンの周囲を通過する外気とチューブ内を通過する空調用熱媒体との間で熱交換を行なう。外気とは主に走行風であるが、十分な走行風が得られないときは、図示しない送風機が駆動されることで、放熱フィンに対して外気が送風される。
運転モードを暖房とするときには、熱交換器13を蒸発器、つまり吸熱器として機能させ、放熱フィンの周囲を通過する外気とチューブ内を通過する低温の空調用熱媒体(冷媒)との間で熱交換を行なう。すなわち、チューブ内の空調用熱媒体に吸熱させ、蒸発気化させる。
運転モードを冷房とするときには、熱交換器13を凝縮器、つまり放熱器として機能させ、放熱フィンの周囲を通過する外気とチューブ内を通過する高温の空調用熱媒体(熱媒)との間で熱交換を行なう。すなわち、チューブ内の空調用熱媒体に放熱させ、凝縮液化させる。
The heat exchanger 13 is provided in the engine room or the motor room, and exchanges heat between the outside air passing around the heat radiation fins and the heat medium for air conditioning passing through the tube. The outside air is mainly the running wind, but when a sufficient running wind cannot be obtained, the outside air is blown to the heat radiation fins by driving a blower (not shown).
When the operation mode is heating, the heat exchanger 13 functions as an evaporator, that is, an endothermic absorber, and is used between the outside air passing around the heat radiation fins and the low-temperature air-conditioning heat medium (refrigerant) passing through the tube. Perform heat exchange. That is, the heat medium for air conditioning in the tube absorbs heat and evaporates and vaporizes.
When the operation mode is set to cooling, the heat exchanger 13 functions as a condenser, that is, a radiator, and is between the outside air passing around the radiating fins and the high-temperature air-conditioning heat medium (heat medium) passing through the tube. Heat exchange is performed at. That is, heat is dissipated to the heat medium for air conditioning in the tube to form a condensed liquid.

次に、空調用熱媒体を循環させる基本的な回路構成について説明する。
凝縮器16の出口は、流路21を介して熱交換器13の入口に連通している。流路21には、膨張弁31(暖房時膨張弁)が設けられている。
膨張弁31は、液相である高圧の空調用熱媒体を霧状にして吹き出すことにより、気化しやすい低圧の空調用熱媒体に減圧するものであり、開度が全閉から全開まで調整可能である。
熱交換器13の出口は、流路22を介して凝縮器16の入口に連通している。流路22には、熱交換器13の側から凝縮器16の側に向かって、開閉弁32、逆止弁33、アキュムレータ34、及び圧縮機35が、順に設けられている。
Next, the basic circuit configuration for circulating the heat medium for air conditioning will be described.
The outlet of the condenser 16 communicates with the inlet of the heat exchanger 13 via the flow path 21. An expansion valve 31 (expansion valve during heating) is provided in the flow path 21.
The expansion valve 31 atomizes a high-pressure air-conditioning heat medium which is a liquid phase and blows it out to reduce the pressure to a low-pressure air-conditioning heat medium which is easily vaporized, and the opening degree can be adjusted from fully closed to fully open. Is.
The outlet of the heat exchanger 13 communicates with the inlet of the condenser 16 via the flow path 22. The flow path 22 is provided with an on-off valve 32, a check valve 33, an accumulator 34, and a compressor 35 in this order from the side of the heat exchanger 13 toward the side of the condenser 16.

開閉弁32は、流路22を開放又は閉鎖する。
逆止弁33は、開閉弁32の側からアキュムレータ34の側への通過を許容し、逆方向の通過を阻止する。
アキュムレータ34は、空調用熱媒体の気液分離を行ない、気相の空調用熱媒体だけを圧縮機35へと供給する。
圧縮機35は、気相である低圧の空調用熱媒体を圧縮することにより、液化しやすい高圧の空調用熱媒体に昇圧させるものであり、空調用熱媒体と共に循環するオイルによって潤滑が行なわれる給油式である。例えば、ロータリー圧縮機、斜板式圧縮機、スクロール圧縮機等である。空調用熱媒体に対するオイル濃度は数%程度である。圧縮機35の駆動源は、エンジンや電動モータである。
The on-off valve 32 opens or closes the flow path 22.
The check valve 33 allows the passage from the on-off valve 32 side to the accumulator 34 side and blocks the passage in the reverse direction.
The accumulator 34 separates gas and liquid from the air conditioning heat medium, and supplies only the gas phase air conditioning heat medium to the compressor 35.
The compressor 35 compresses the low-pressure air-conditioning heat medium that is the gas phase to boost the pressure to the high-pressure air-conditioning heat medium that is easily liquefied, and lubrication is performed by the oil that circulates together with the air-conditioning heat medium. It is a refueling type. For example, a rotary compressor, a swash plate compressor, a scroll compressor and the like. The oil concentration with respect to the heat medium for air conditioning is about several percent. The drive source of the compressor 35 is an engine or an electric motor.

流路21のうち、熱交換器13と膨張弁31との間には分岐点があり、この分岐点は、流路23を介して蒸発器15の入口に連通している。流路23には、分岐点の側から蒸発器15の側に向かって、開閉弁36、及び膨張弁37(冷房時膨張弁)が、順に設けられている。
開閉弁36は、流路23を開放又は閉鎖する。
膨張弁37は、液相である高圧の空調用熱媒体を霧状にして吹き出すことにより、気化しやすい低圧の空調用熱媒体に減圧するものであり、開度が全閉から全開まで調整可能である。
In the flow path 21, there is a branch point between the heat exchanger 13 and the expansion valve 31, and this branch point communicates with the inlet of the evaporator 15 via the flow path 23. The flow path 23 is provided with an on-off valve 36 and an expansion valve 37 (expansion valve during cooling) in this order from the branch point side toward the evaporator 15 side.
The on-off valve 36 opens or closes the flow path 23.
The expansion valve 37 atomizes a high-pressure air-conditioning heat medium which is a liquid phase and blows it out to reduce the pressure to a low-pressure air-conditioning heat medium which is easily vaporized, and the opening degree can be adjusted from fully closed to fully open. Is.

流路22のうち、熱交換器13と開閉弁32との間には分岐点があり、また流路23のうち、開閉弁36と膨張弁37との間には分岐点があり、これら分岐点同士は、流路24を介して連通している。流路24には、逆止弁38が設けられている。
逆止弁38は、流路22の側から流路23の側への通過を許容し、逆方向の通過を阻止する。
流路22のうち、開閉弁32と逆止弁33との間には分岐点があり、この分岐点は、流路25を介して蒸発器15の出口に連通している。
In the flow path 22, there is a branch point between the heat exchanger 13 and the on-off valve 32, and in the flow path 23, there is a branch point between the on-off valve 36 and the expansion valve 37, and these branches. The points communicate with each other via the flow path 24. A check valve 38 is provided in the flow path 24.
The check valve 38 allows passage from the flow path 22 side to the flow path 23 side and blocks the passage in the reverse direction.
Of the flow path 22, there is a branch point between the on-off valve 32 and the check valve 33, and this branch point communicates with the outlet of the evaporator 15 via the flow path 25.

次に、付加的な回路構成について説明する。
自動車には、発熱する発熱体41が搭載されている。発熱体41とは、エンジン自動車であればエンジン、電気自動車であればモータ、インバータ等であり、冷却用熱媒体によって冷却される。冷却用熱媒体は、例えば水であるが、冷媒やクーラント等、他の流体を用いてもよい。
車両用空気調和装置11は、熱交換器43(第二の熱交換器)を備える。
熱交換器43は、内部を個別に通過する空調用熱媒体と冷却用熱媒体との間で熱交換を行なう。
Next, an additional circuit configuration will be described.
The automobile is equipped with a heating element 41 that generates heat. The heating element 41 is an engine in the case of an engine vehicle, a motor, an inverter or the like in the case of an electric vehicle, and is cooled by a cooling heat medium. The cooling heat medium is, for example, water, but other fluids such as a refrigerant and a coolant may be used.
The vehicle air conditioner 11 includes a heat exchanger 43 (second heat exchanger).
The heat exchanger 43 exchanges heat between the air-conditioning heat medium and the cooling heat medium that individually pass through the inside.

熱交換器43のうち、空調用熱媒体が通過する流路の入口は、凝縮器16の出口に連通し、空調用熱媒体が通過する流路の出口は、膨張弁31の入口に連通する。
熱交換器43のうち、冷却用熱媒体が通過する流路の出口は、流路51を介して発熱体41の入口に連通し、冷却用熱媒体が通過する流路の入口は、流路52を介して発熱体41の出口に連通する。
Of the heat exchanger 43, the inlet of the flow path through which the air conditioning heat medium passes communicates with the outlet of the condenser 16, and the outlet of the flow path through which the air conditioning heat medium passes communicates with the inlet of the expansion valve 31. ..
Of the heat exchanger 43, the outlet of the flow path through which the cooling heat medium passes communicates with the inlet of the heating element 41 via the flow path 51, and the inlet of the flow path through which the cooling heat medium passes is the flow path. It communicates with the outlet of the heating element 41 via 52.

流路51には、発熱体41の側から熱交換器43の側に向かって、ポンプ44、及びリザーバタンク45が、順に設けられている。
ポンプ44は、冷却用熱媒体を熱交換器43の側から吸入し、ラジエータ42の側へ吐出する。
リザーバタンク45は、回路内の圧力を調整する働きがあり、冷却用熱媒体の液量を点検したり補給したりする際にも用いられる。
A pump 44 and a reservoir tank 45 are provided in this order in the flow path 51 from the side of the heating element 41 toward the side of the heat exchanger 43.
The pump 44 sucks the cooling heat medium from the side of the heat exchanger 43 and discharges it to the side of the radiator 42.
The reservoir tank 45 has a function of adjusting the pressure in the circuit, and is also used when checking or replenishing the liquid amount of the cooling heat medium.

次に、運転モードについて説明する。
[暖房運転]
図2は、暖房運転を示す図である。
図中、低圧の空調用熱媒体が通過する流路を太い点線で示し、高圧の空調用熱媒体が通過する流路を太い実線で示し、開放された開閉弁を白抜きで示し、閉鎖された開閉弁を黒塗りで示している。また、冷却用熱媒体が通過する流路を太い破線で示す。
運転モードが暖房であるときには、膨張弁31を僅かに解放し、開閉弁32を開放し、開閉弁36を閉鎖し、膨張弁37を閉鎖した状態で、圧縮機35を駆動する。また、ポンプ44を駆動する。
Next, the operation mode will be described.
[Heating operation]
FIG. 2 is a diagram showing a heating operation.
In the figure, the flow path through which the low-pressure air-conditioning heat medium passes is shown by a thick dotted line, the flow path through which the high-pressure air-conditioning heat medium passes is shown by a thick solid line, and the opened on-off valve is shown in white and closed. The on-off valve is shown in black. The flow path through which the cooling heat medium passes is indicated by a thick broken line.
When the operation mode is heating, the compressor 35 is driven in a state where the expansion valve 31 is slightly released, the on-off valve 32 is opened, the on-off valve 36 is closed, and the expansion valve 37 is closed. It also drives the pump 44.

これにより、空調用熱媒体は、圧縮機35、凝縮器16、熱交換器43、膨張弁31、熱交換器13、開閉弁32、逆止弁33、及びアキュムレータ34を順に経由して循環する。このとき、流路21及び流路22を含め、空調用熱媒体の循環する経路が、暖房時空調用経路である。この循環経路において、気相の空調用熱媒体は、圧縮機35で圧縮され高圧となり、凝縮器16で放熱することで凝縮液化し、低温になる。液相の空調用熱媒体は、熱交換器43で吸熱することで高温になり、膨張弁31で膨張され低圧となり、熱交換器13でさらに吸熱することで蒸発気化し、さらに高温になる。 As a result, the heat medium for air conditioning circulates in order through the compressor 35, the condenser 16, the heat exchanger 43, the expansion valve 31, the heat exchanger 13, the on-off valve 32, the check valve 33, and the accumulator 34. .. At this time, the path through which the heat medium for air conditioning circulates, including the flow path 21 and the flow path 22, is the path for air conditioning during heating. In this circulation path, the heat medium for air conditioning in the gas phase is compressed by the compressor 35 to a high pressure, and heat is dissipated by the condenser 16 to condense and liquefy the temperature. The liquid phase air-conditioning heat medium becomes endothermic by absorbing heat in the heat exchanger 43, expands by the expansion valve 31 to a low pressure, and further absorbs heat in the heat exchanger 13 to evaporate and vaporize to a higher temperature.

また、冷却用熱媒体は、ポンプ44、発熱体41、熱交換器43、及びリザーバタンク45を順に経由して循環する。このとき、流路52、及び流路51を含め、冷却用熱媒体の循環する経路が、暖房時冷却用経路である。この循環経路において、冷却用熱媒体は、発熱体41で吸熱することで高温となり、熱交換器43で放熱することで低温となる。
一方、室内熱交換ユニット12では、送風ファン14を駆動すると共に、エアミックスダンパ17で凝縮器16を通過する流路を開放する。これにより、導入された空気が凝縮器16で加温され、温かい空気が車室内に供給される。また、ヒータ18を駆動すると、さらに加温される。
Further, the cooling heat medium circulates through the pump 44, the heating element 41, the heat exchanger 43, and the reservoir tank 45 in this order. At this time, the path through which the cooling heat medium is circulated, including the flow path 52 and the flow path 51, is the cooling path during heating. In this circulation path, the cooling heat medium becomes high temperature by absorbing heat by the heating element 41, and becomes low temperature by dissipating heat by the heat exchanger 43.
On the other hand, in the indoor heat exchange unit 12, the blower fan 14 is driven, and the air mix damper 17 opens the flow path through the condenser 16. As a result, the introduced air is heated by the condenser 16, and warm air is supplied to the vehicle interior. Further, when the heater 18 is driven, it is further heated.

《作用》
次に、第1実施形態の主要な作用効果について説明する。
空調用熱媒体と冷却用熱媒体との熱交換を行なうために、空調用熱媒体が低圧となる流路に熱交換器を配置することが考えられる。しかしながら、空調用熱媒体と冷却用熱媒体との温度差が大きくなり過ぎることがある。そのため、熱移動が増大し、圧縮機の吐出圧が高くなり過ぎたり、空調用熱媒体の相転移が過敏になり過ぎたりして、空調能力の安定性に影響を与える可能性がある。
《Action》
Next, the main effects of the first embodiment will be described.
In order to exchange heat between the heat medium for air conditioning and the heat medium for cooling, it is conceivable to arrange a heat exchanger in a flow path where the heat medium for air conditioning has a low pressure. However, the temperature difference between the air conditioning heat medium and the cooling heat medium may become too large. Therefore, the heat transfer increases, the discharge pressure of the compressor becomes too high, and the phase transition of the heat medium for air conditioning becomes too sensitive, which may affect the stability of the air conditioning capacity.

そこで、空調用熱媒体と冷却用熱媒体との熱交換を行なう熱交換器43を、凝縮器16と膨張弁31との間、つまり凝縮器16の出口側に配置した。これにより、暖房時には、凝縮器16を通過して低温になった高圧の空調用熱媒体と、冷却用熱媒体との間で熱交換が行なわれる。すなわち、空調用熱媒体と冷却用熱媒体との熱交換を行なう熱交換器43は、空調用熱媒体が高圧となる流路に配置される。これにより、空調用熱媒体と冷却用熱媒体との温度差が大きくなり過ぎることを抑制できる。したがって、圧縮機の吐出圧が高くなり過ぎたり、空調用熱媒体の相転移が過敏になり過ぎたりすることを抑制し、空調能力の安定性を向上させることができる。 Therefore, a heat exchanger 43 that exchanges heat between the heat medium for air conditioning and the heat medium for cooling is arranged between the condenser 16 and the expansion valve 31, that is, on the outlet side of the condenser 16. As a result, during heating, heat exchange is performed between the high-pressure air-conditioning heat medium that has passed through the condenser 16 and has become cold, and the cooling heat medium. That is, the heat exchanger 43 that exchanges heat between the air conditioning heat medium and the cooling heat medium is arranged in the flow path where the air conditioning heat medium has a high pressure. As a result, it is possible to prevent the temperature difference between the air conditioning heat medium and the cooling heat medium from becoming too large. Therefore, it is possible to prevent the discharge pressure of the compressor from becoming too high and the phase transition of the heat medium for air conditioning from becoming too sensitive, and to improve the stability of the air conditioning capacity.

また、暖房時には、圧縮機35、凝縮器16、熱交換器43、膨張弁31、及び熱交換器13を順に経由するように、空調用熱媒体を循環させる。また、発熱体41、及び熱交換器43を順に経由するように、冷却用熱媒体を循環させる。これにより、凝縮器16を通過して低温になった空調用熱媒体と、発熱体41を通過して高温になった冷却用熱媒体との間で熱交換が行なわれる。 Further, at the time of heating, the heat medium for air conditioning is circulated so as to pass through the compressor 35, the condenser 16, the heat exchanger 43, the expansion valve 31, and the heat exchanger 13 in this order. Further, the cooling heat medium is circulated so as to pass through the heating element 41 and the heat exchanger 43 in order. As a result, heat exchange is performed between the air-conditioning heat medium that has passed through the condenser 16 and has become cold, and the cooling heat medium that has passed through the heating element 41 and has become hot.

図3は、冷凍サイクルを表すp−h線図である。
凝縮器16を通過した空調用熱媒体は、T1まで温度が低下するが、高温の冷却用熱媒体との熱交換によってT2まで温度を上昇させることができる。このように、発熱体41の排熱を回収し、車室内の暖房に有効利用することができる。さらに、着霜を抑制し、暖房能力の向上を図ることができる。なお、T1は例えば40〜50度ほどであるが、空調用熱媒体の温度をT1から上昇させるために、冷却用熱媒体がT1よりも高温でなければならない。したがって、エンジン自動車であればエンジン、電気自動車であればモータ、インバータ等、高温になる発熱体41を想定している。
FIG. 3 is a ph diagram showing the refrigeration cycle.
The temperature of the air-conditioning heat medium that has passed through the condenser 16 drops to T1, but the temperature can be raised to T2 by heat exchange with the high-temperature cooling heat medium. In this way, the exhaust heat of the heating element 41 can be recovered and effectively used for heating the interior of the vehicle. Furthermore, frost formation can be suppressed and the heating capacity can be improved. Although T1 is, for example, about 40 to 50 degrees, the cooling heat medium must be higher than T1 in order to raise the temperature of the air conditioning heat medium from T1. Therefore, it is assumed that the heating element 41 becomes hot, such as an engine for an engine vehicle and a motor, an inverter for an electric vehicle.

《第2実施形態》
《構成》
第2実施形態は、冷房時に空調用熱媒体の排熱を行ない、運転効率を向上させるものである。
ここでは、冷房時に空調用熱媒体の排熱を行なう構成を追加したことを除いては、前述した第1実施形態と同様であるため、共通する部分については同一符号を付し、詳細な説明を省略する。
<< Second Embodiment >>
"Constitution"
In the second embodiment, the heat of the air conditioning heat medium is exhausted during cooling to improve the operating efficiency.
Here, since it is the same as the above-described first embodiment except that a configuration for exhausting heat of the heat medium for air conditioning is added during cooling, the common parts are designated by the same reference numerals and detailed description thereof will be given. Is omitted.

図4は、第2実施形態を示す図である。
車両用空気調和装置11は、ラジエータ42(放熱用熱交換器)を備える。
ラジエータ42は、熱交換器13の風下側に配置され、内部を通過する冷却用熱媒体と周囲を通過する外気との間で熱交換を行ない、チューブ内の冷却用熱媒体に放熱させる。
流路52のうち、発熱体41とポンプ44との間には分岐点があり、この分岐点は、流路53を介してラジエータ42の入口に連通している。また、流路52のうち、発熱体41と熱交換器43との間には分岐点があり、この分岐点は、流路54を介してラジエータ42の出口に連通している。発熱体41とポンプ44との間の分岐点には、三方弁46が設けられている。
三方弁46は、ポンプ44から送られてきた冷却用熱媒体を、発熱体41に送るか、ラジエータ42に送るか、何れか一方に切り換える。
FIG. 4 is a diagram showing a second embodiment.
The vehicle air conditioner 11 includes a radiator 42 (heat exchanger for heat dissipation).
The radiator 42 is arranged on the leeward side of the heat exchanger 13 to exchange heat between the cooling heat medium passing through the inside and the outside air passing around the inside, and dissipate heat to the cooling heat medium in the tube.
Of the flow path 52, there is a branch point between the heating element 41 and the pump 44, and this branch point communicates with the inlet of the radiator 42 via the flow path 53. Further, in the flow path 52, there is a branch point between the heating element 41 and the heat exchanger 43, and this branch point communicates with the outlet of the radiator 42 via the flow path 54. A three-way valve 46 is provided at a branch point between the heating element 41 and the pump 44.
The three-way valve 46 switches the cooling heat medium sent from the pump 44 to either the heating element 41 or the radiator 42.

次に、各運転モードについて説明する。
[暖房運転]
図5は、第2実施形態の暖房運転を示す図である。
図中、低圧の空調用熱媒体が通過する流路を太い点線で示し、高圧の空調用熱媒体が通過する流路を太い実線で示し、開放された開閉弁を白抜きで示し、閉鎖された開閉弁を黒塗りで示している。また、冷却用熱媒体が通過する流路を太い破線で示す。
運転モードが暖房であるときには、膨張弁31を僅かに解放し、開閉弁32を開放し、開閉弁36を閉鎖し、膨張弁37を閉鎖した状態で、圧縮機35を駆動する。また、三方弁46の出口を発熱体41の側に切り替えた状態で、ポンプ44を駆動する。
Next, each operation mode will be described.
[Heating operation]
FIG. 5 is a diagram showing a heating operation of the second embodiment.
In the figure, the flow path through which the low-pressure air-conditioning heat medium passes is shown by a thick dotted line, the flow path through which the high-pressure air-conditioning heat medium passes is shown by a thick solid line, and the opened on-off valve is shown in white and closed. The on-off valve is shown in black. The flow path through which the cooling heat medium passes is indicated by a thick broken line.
When the operation mode is heating, the compressor 35 is driven in a state where the expansion valve 31 is slightly released, the on-off valve 32 is opened, the on-off valve 36 is closed, and the expansion valve 37 is closed. Further, the pump 44 is driven in a state where the outlet of the three-way valve 46 is switched to the heating element 41 side.

これにより、空調用熱媒体は、圧縮機35、凝縮器16、熱交換器43、膨張弁31、熱交換器13、開閉弁32、逆止弁33、及びアキュムレータ34を順に経由して循環する。このとき、流路21及び流路22を含め、空調用熱媒体の循環する経路が、暖房時空調用経路である。この循環経路において、気相の空調用熱媒体は、圧縮機35で圧縮され高圧となり、凝縮器16で放熱することで凝縮液化し、低温になる。液相の空調用熱媒体は、熱交換器43で吸熱することで高温になり、膨張弁31で膨張され低圧となり、熱交換器13でさらに吸熱することで蒸発気化し、さらに高温になる。 As a result, the heat medium for air conditioning circulates in order through the compressor 35, the condenser 16, the heat exchanger 43, the expansion valve 31, the heat exchanger 13, the on-off valve 32, the check valve 33, and the accumulator 34. .. At this time, the path through which the heat medium for air conditioning circulates, including the flow path 21 and the flow path 22, is the path for air conditioning during heating. In this circulation path, the heat medium for air conditioning in the gas phase is compressed by the compressor 35 to a high pressure, and heat is dissipated by the condenser 16 to be condensed and liquefied to a low temperature. The liquid phase air-conditioning heat medium becomes endothermic by absorbing heat in the heat exchanger 43, expands by the expansion valve 31 to a low pressure, and further absorbs heat in the heat exchanger 13 to evaporate and vaporize to a higher temperature.

また、冷却用熱媒体は、ポンプ44、三方弁46、発熱体41、熱交換器43、及びリザーバタンク45を順に経由して循環する。このとき、流路52、及び流路51を含め、冷却用熱媒体の循環する経路が、暖房時冷却用経路である。この循環経路において、冷却用熱媒体は、発熱体41で吸熱することで高温となり、熱交換器43で放熱することで低温となる。
一方、室内熱交換ユニット12では、送風ファン14を駆動すると共に、エアミックスダンパ17で凝縮器16を通過する流路を開放する。これにより、導入された空気が凝縮器16で加温され、温かい空気が車室内に供給される。また、ヒータ18を駆動すると、さらに加温される。
Further, the cooling heat medium circulates through the pump 44, the three-way valve 46, the heating element 41, the heat exchanger 43, and the reservoir tank 45 in this order. At this time, the path through which the cooling heat medium is circulated, including the flow path 52 and the flow path 51, is the cooling path during heating. In this circulation path, the cooling heat medium becomes high temperature by absorbing heat by the heating element 41, and becomes low temperature by dissipating heat by the heat exchanger 43.
On the other hand, in the indoor heat exchange unit 12, the blower fan 14 is driven, and the air mix damper 17 opens the flow path through the condenser 16. As a result, the introduced air is heated by the condenser 16, and warm air is supplied to the vehicle interior. Further, when the heater 18 is driven, it is further heated.

[冷房運転]
図6は、第2実施形態の冷房運転を示す図である。
図中、低圧の空調用熱媒体が通過する流路を太い点線で示し、高圧の空調用熱媒体が通過する流路を太い実線で示し、開放された開閉弁を白抜きで示し、閉鎖された開閉弁を黒塗りで示している。また、冷却用熱媒体が通過する流路を太い破線で示す。
運転モードが冷房であるときには、膨張弁31を全開放し、開閉弁32を閉鎖し、開閉弁36を閉鎖し、膨張弁37を僅かに解放した状態で、圧縮機35を駆動する。また、三方弁46の出口をラジエータ42の側に切り替えた状態で、ポンプ44を駆動する。
[Cooling operation]
FIG. 6 is a diagram showing a cooling operation of the second embodiment.
In the figure, the flow path through which the low-pressure air-conditioning heat medium passes is shown by a thick dotted line, the flow path through which the high-pressure air-conditioning heat medium passes is shown by a thick solid line, and the opened on-off valve is shown in white and closed. The on-off valve is shown in black. The flow path through which the cooling heat medium passes is indicated by a thick broken line.
When the operation mode is cooling, the compressor 35 is driven in a state where the expansion valve 31 is fully opened, the on-off valve 32 is closed, the on-off valve 36 is closed, and the expansion valve 37 is slightly released. Further, the pump 44 is driven in a state where the outlet of the three-way valve 46 is switched to the radiator 42 side.

これにより、空調用熱媒体は、圧縮機35、凝縮器16、熱交換器43、膨張弁31、熱交換器13、逆止弁38、膨張弁37、蒸発器15、逆止弁33、及びアキュムレータ34を順に経由して循環する。このとき、流路21、流路22の一部、流路24、流路23の一部、及び流路25を含め、空調用熱媒体の循環する経路が、冷房時空調用経路である。この循環経路において、気相の空調用熱媒体は、圧縮機35で圧縮され高圧となり、熱交換器43で放熱することで凝縮液化し、低温になる。液化しつつある空調用熱媒体は、熱交換器13でさらに放熱することで凝縮液化し、さらに低温になる。液相の空調用熱媒体は、膨張弁37で膨張され低圧となり、蒸発器15で吸熱することで蒸発気化し、高温となる。 As a result, the heat medium for air conditioning includes the compressor 35, the condenser 16, the heat exchanger 43, the expansion valve 31, the heat exchanger 13, the check valve 38, the expansion valve 37, the evaporator 15, the check valve 33, and the like. It circulates through the accumulator 34 in order. At this time, the path through which the heat medium for air conditioning circulates, including the flow path 21, a part of the flow path 22, the flow path 24, a part of the flow path 23, and the flow path 25, is the air conditioning path during cooling. In this circulation path, the heat medium for air conditioning in the gas phase is compressed by the compressor 35 to a high pressure, and is radiated by the heat exchanger 43 to be condensed and liquefied to a low temperature. The liquefied heat medium for air conditioning is further radiated by the heat exchanger 13 to condense and liquefy, and the temperature becomes even lower. The liquid phase air-conditioning heat medium is expanded by the expansion valve 37 to a low pressure, and by absorbing heat by the evaporator 15, it evaporates and vaporizes to a high temperature.

また、冷却用熱媒体は、ポンプ44、三方弁46、ラジエータ42、熱交換器43、及びリザーバタンク45を順に経由して循環する。このとき、流路51の一部、流路53、流路54、流路52の一部を含め、冷却用熱媒体の循環する経路が、冷房時冷却用経路である。この循環経路において、冷却用熱媒体は、ラジエータ42で放熱することで低温となり、熱交換器43で吸熱することで高温となる。
一方、室内熱交換ユニット12では、送風ファン14を駆動すると共に、エアミックスダンパ17で凝縮器16を通過する流路を閉鎖する。これにより、導入された空気が蒸発器15で冷却及び除湿された後に、凝縮器16を迂回し、除湿された涼しい空気が車室内に供給される。
Further, the cooling heat medium circulates through the pump 44, the three-way valve 46, the radiator 42, the heat exchanger 43, and the reservoir tank 45 in this order. At this time, the path through which the cooling heat medium circulates, including a part of the flow path 51, the flow path 53, the flow path 54, and a part of the flow path 52, is the cooling path during cooling. In this circulation path, the cooling heat medium becomes low in temperature by dissipating heat in the radiator 42, and becomes high in temperature by absorbing heat in the heat exchanger 43.
On the other hand, in the indoor heat exchange unit 12, the blower fan 14 is driven, and the air mix damper 17 closes the flow path passing through the condenser 16. As a result, after the introduced air is cooled and dehumidified by the evaporator 15, the dehumidified cool air is supplied to the vehicle interior by bypassing the condenser 16.

《作用》
次に、第2実施形態の主要な作用効果について説明する。
暖房時には、圧縮機35、凝縮器16、熱交換器43、膨張弁31、及び熱交換器13を順に経由するように、空調用熱媒体を循環させる。また、発熱体41、及び熱交換器43を順に経由するように、冷却用熱媒体を循環させる。これにより、凝縮器16を通過して低温になった空調用熱媒体と、発熱体41を通過して高温になった冷却用熱媒体との間で熱交換が行なわれる。このように、発熱体41の排熱を回収し、車室内の暖房に有効利用することができる。さらに、着霜を抑制し、暖房能力の向上を図ることができる。
《Action》
Next, the main effects of the second embodiment will be described.
At the time of heating, the heat medium for air conditioning is circulated so as to pass through the compressor 35, the condenser 16, the heat exchanger 43, the expansion valve 31, and the heat exchanger 13 in this order. Further, the cooling heat medium is circulated so as to pass through the heating element 41 and the heat exchanger 43 in order. As a result, heat exchange is performed between the air-conditioning heat medium that has passed through the condenser 16 and has become cold, and the cooling heat medium that has passed through the heating element 41 and has become hot. In this way, the exhaust heat of the heating element 41 can be recovered and effectively used for heating the interior of the vehicle. Furthermore, frost formation can be suppressed and the heating capacity can be improved.

冷房時には、膨張弁37、蒸発器15、圧縮機35、凝縮器16、熱交換器43、及び熱交換器13を順に経由するように、空調用熱媒体を循環させる。また、熱交換器43、及びラジエータ42を順に経由するように、冷却用熱媒体を循環させる。これにより、蒸発器15、及び圧縮機35を順に通過して高温高圧になった空調用熱媒体は、ラジエータ42を通過して低温になった冷却用熱媒体と熱交換され、次いで外気と熱交換されて低温になる。一方、熱交換器43を通過して高温になった冷却用熱媒体は、ラジエータ42で外気と熱交換されて低温になる。このように、冷房時に空調用熱媒体の排熱を行ない、運転効率の向上を図ることができる。 At the time of cooling, the heat medium for air conditioning is circulated so as to pass through the expansion valve 37, the evaporator 15, the compressor 35, the condenser 16, the heat exchanger 43, and the heat exchanger 13 in this order. Further, the cooling heat medium is circulated so as to pass through the heat exchanger 43 and the radiator 42 in order. As a result, the heat medium for air conditioning that has passed through the evaporator 15 and the compressor 35 in this order and has reached a high temperature and high pressure exchanges heat with the heat medium for cooling that has passed through the radiator 42 and has become low in temperature, and then heats with the outside air. It is replaced and becomes cold. On the other hand, the cooling heat medium that has passed through the heat exchanger 43 and has become hot is exchanged with the outside air by the radiator 42 and becomes cold. In this way, the heat of the air-conditioning heat medium can be exhausted during cooling to improve the operating efficiency.

したがって、暖房時に発熱体41の排熱を回収し、暖房に有効利用すること、及び冷房時に空調用熱媒体の排熱を行ない、運転効率を向上させることの双方を実現することができる。
また、冷却用熱媒体を循環させる回路では、発熱体41、及びラジエータ42が、並列に接続されている。これにより、ポンプ44から冷却用熱媒体を発熱体41に送る経路と、ポンプ44から冷却用熱媒体をラジエータ42に送る経路と、が形成される。したがって、暖房時に冷却用熱媒体を発熱体41に送れば、発熱体41の排熱を回収することが可能となり、冷房時に冷却用熱媒体をラジエータ42に送れば、空調用熱媒体の排熱を促進することが可能となる。
Therefore, both the exhaust heat of the heating element 41 can be recovered at the time of heating and effectively used for heating, and the exhaust heat of the heat medium for air conditioning can be exhausted at the time of cooling to improve the operation efficiency.
Further, in the circuit for circulating the cooling heat medium, the heating element 41 and the radiator 42 are connected in parallel. As a result, a path for sending the cooling heat medium from the pump 44 to the heating element 41 and a path for sending the cooling heat medium from the pump 44 to the radiator 42 are formed. Therefore, if the cooling heat medium is sent to the heating element 41 during heating, the exhaust heat of the heating element 41 can be recovered, and if the cooling heat medium is sent to the radiator 42 during cooling, the exhaust heat of the air conditioning heat medium can be recovered. It becomes possible to promote.

また、三方弁46により、冷却用熱媒体を発熱体41に送る経路、冷却用熱媒体をラジエータ42に送る経路の何れか一方に切り換え可能である。これにより、冷却用熱媒体を分流させて、発熱体41及びラジエータ42の双方に送る場合と比較して、暖房時と冷房時とで夫々の作用効果がより顕著になる。
また、ラジエータ42は、熱交換器13の風下側に配置される。これにより、暖房時には、熱交換器13で空調用熱媒体が外気から吸熱し、ラジエータ42で冷却用熱媒体が外気へ放熱する。すなわち、風上側となる熱交換器13で吸熱された外気が、風下側のラジエータ42へと流れるので、冷却用熱媒体の温度を効率よく低下させることができる。したがって、発熱体41の冷却効率が向上する。
その他の作用効果については、前述した第1実施形態と同様である。
Further, the three-way valve 46 can switch between a path for sending the cooling heat medium to the heating element 41 and a path for sending the cooling heat medium to the radiator 42. As a result, as compared with the case where the cooling heat medium is divided and sent to both the heating element 41 and the radiator 42, the respective actions and effects become more remarkable during heating and cooling.
Further, the radiator 42 is arranged on the leeward side of the heat exchanger 13. As a result, during heating, the heat exchanger 13 absorbs heat from the outside air, and the radiator 42 dissipates heat from the cooling heat medium to the outside air. That is, since the outside air absorbed by the heat exchanger 13 on the windward side flows to the radiator 42 on the leeward side, the temperature of the cooling heat medium can be efficiently lowered. Therefore, the cooling efficiency of the heating element 41 is improved.
Other effects are the same as those in the first embodiment described above.

《変形例》
本実施形態では、冷却用熱媒体を循環させる回路において、発熱体41に流すかラジエータ42に流すかを三方弁46で切り替えているが、これに限定されるものではない。例えば、発熱体41に流す流路、及びラジエータ42に流す流路に、夫々、開閉可能な二方弁を設け、一方を開くときに他方を閉じ、一方を閉じるときに他方を開くようにしてもよい。
本実施形態では、冷房時に膨張弁31を全開にする構成について説明したが、これに限定されるものではない。例えば、膨張弁31を迂回するバイパス流路を設け、このバイパス流路を開閉可能に構成してもよい。これにより、冷房時に膨張弁31を閉鎖し、バイパス流路を開放すれば、圧力損失を低減することができる。
<< Modification example >>
In the present embodiment, in the circuit for circulating the cooling heat medium, the three-way valve 46 switches between flowing through the heating element 41 and flowing through the radiator 42, but the present invention is not limited to this. For example, a two-way valve that can be opened and closed is provided in each of the flow path flowing through the heating element 41 and the flow path flowing through the radiator 42 so that when one is opened, the other is closed and when one is closed, the other is opened. May be good.
In the present embodiment, the configuration in which the expansion valve 31 is fully opened during cooling has been described, but the present invention is not limited to this. For example, a bypass flow path that bypasses the expansion valve 31 may be provided so that the bypass flow path can be opened and closed. As a result, the pressure loss can be reduced by closing the expansion valve 31 and opening the bypass flow path during cooling.

《第3実施形態》
《構成》
第3実施形態は、冷房時に、発熱体41の温度上昇を抑制するものである。
ここでは、低圧低温となる空調用熱媒体の一部と高温の冷却用熱媒体との間で熱交換を行なうことを除いては、前述した第2実施形態と同様であるため、共通する部分については同一符号を付し、詳細な説明を省略する。
<< Third Embodiment >>
"Constitution"
The third embodiment suppresses the temperature rise of the heating element 41 during cooling.
Here, since it is the same as the second embodiment described above except that heat exchange is performed between a part of the heat medium for air conditioning having a low pressure and a low temperature and the heat medium for cooling at a high temperature, it is a common part. The same reference numerals are given to the above, and detailed description thereof will be omitted.

図7は、第3実施形態を示す図である。
流路23のうち、流路24への分岐点と膨張弁37との間には分岐点があり、また流路22のうち、逆止弁33とアキュムレータ34との間には分岐点があり、これら分岐点同士は、流路61を介して連通している。流路61には、流路23の側から流路22の側に向かって、膨張弁62、及び熱交換器63が、順に設けられている。
膨張弁62は、液相である高圧の空調用熱媒体を霧状にして吹き出すことにより、気化しやすい低圧の空調用熱媒体に減圧するものであり、開度が全閉から全開まで調整可能である。
熱交換器63は、内部を個別に通過する空調用熱媒体と冷却用熱媒体との間で熱交換を行なう。
FIG. 7 is a diagram showing a third embodiment.
In the flow path 23, there is a branch point between the branch point to the flow path 24 and the expansion valve 37, and in the flow path 22, there is a branch point between the check valve 33 and the accumulator 34. , These branch points communicate with each other via the flow path 61. The flow path 61 is provided with an expansion valve 62 and a heat exchanger 63 in this order from the side of the flow path 23 toward the side of the flow path 22.
The expansion valve 62 atomizes a high-pressure air-conditioning heat medium which is a liquid phase and blows it out to reduce the pressure to a low-pressure air-conditioning heat medium which is easily vaporized, and the opening degree can be adjusted from fully closed to fully open. Is.
The heat exchanger 63 exchanges heat between the air-conditioning heat medium and the cooling heat medium that individually pass through the inside.

流路52のうち、熱交換器43と発熱体41との間には分岐点があり、また流路51のうち、熱交換器43とリザーバタンク45との間には分岐点があり、これら分岐点同士は、流路64を介して連通している。流路64には、熱交換器63が設けられている。
熱交換器63のうち、空調用熱媒体が通過する流路の入口は、膨張弁62の出口に連通し、空調用熱媒体が通過する流路の出口は、流路22に連通する。
熱交換器63のうち、冷却用熱媒体が通過する流路の出口は、流路51に連通し、冷却用熱媒体が通過する流路の入口は、流路52に連通する。
熱交換器43と発熱体41との間の分岐点には、三方弁65が設けられている。三方弁65は、発熱体41から送られてきた冷却用熱媒体を、熱交換器43に送るか、熱交換器63に送るか、何れか一方に切り換える。
In the flow path 52, there is a branch point between the heat exchanger 43 and the heating element 41, and in the flow path 51, there is a branch point between the heat exchanger 43 and the reservoir tank 45. The branch points communicate with each other via the flow path 64. A heat exchanger 63 is provided in the flow path 64.
Of the heat exchanger 63, the inlet of the flow path through which the air conditioning heat medium passes communicates with the outlet of the expansion valve 62, and the outlet of the flow path through which the air conditioning heat medium passes communicates with the flow path 22.
In the heat exchanger 63, the outlet of the flow path through which the cooling heat medium passes communicates with the flow path 51, and the inlet of the flow path through which the cooling heat medium passes communicates with the flow path 52.
A three-way valve 65 is provided at a branch point between the heat exchanger 43 and the heating element 41. The three-way valve 65 switches the cooling heat medium sent from the heating element 41 to either the heat exchanger 43 or the heat exchanger 63.

[冷房運転]
運転モードが冷房であり、発熱体41の発熱量が予め定めた閾値を超えたときには、膨張弁31を全開放し、開閉弁32を閉鎖し、開閉弁36を閉鎖し、膨張弁37及び膨張弁62の双方を僅かに解放した状態で、圧縮機35を駆動する。また、三方弁65の出口を熱交換器63の側に切り替えた状態で、ポンプ44を駆動する。
これにより、空調用熱媒体の一部は、圧縮機35、凝縮器16、熱交換器43、膨張弁31、熱交換器13、逆止弁38、膨張弁37、蒸発器15、逆止弁33、及びアキュムレータ34を順に経由して循環する。この循環経路において、気相の空調用熱媒体は、圧縮機35で圧縮され高圧となり、熱交換器13で放熱することで凝縮液化し、低温になる。液相の空調用熱媒体は、膨張弁37で膨張され低圧となり、蒸発器15で吸熱することで蒸発気化し、高温となる。
[Cooling operation]
When the operation mode is cooling and the amount of heat generated by the heating element 41 exceeds a predetermined threshold value, the expansion valve 31 is fully opened, the on-off valve 32 is closed, the on-off valve 36 is closed, and the expansion valve 37 and expansion are performed. The compressor 35 is driven with both of the valves 62 slightly open. Further, the pump 44 is driven in a state where the outlet of the three-way valve 65 is switched to the heat exchanger 63 side.
As a result, a part of the heat medium for air conditioning is a compressor 35, a condenser 16, a heat exchanger 43, an expansion valve 31, a heat exchanger 13, a check valve 38, an expansion valve 37, an evaporator 15, and a check valve. It circulates through 33 and the accumulator 34 in order. In this circulation path, the heat medium for air conditioning in the gas phase is compressed by the compressor 35 to a high pressure, and is radiated by the heat exchanger 13 to be condensed and liquefied to a low temperature. The liquid phase air-conditioning heat medium is expanded by the expansion valve 37 to a low pressure, and by absorbing heat by the evaporator 15, it evaporates and vaporizes to a high temperature.

また、空調用熱媒体の残りは、圧縮機35、凝縮器16、熱交換器43、膨張弁31、熱交換器13、逆止弁38、膨張弁62、熱交換器63、及びアキュムレータ34を順に経由して循環する。この循環経路において、気相の空調用熱媒体は、圧縮機35で圧縮され高圧となり、熱交換器13で放熱することで凝縮液化し、低温になる。液相の空調用熱媒体は、膨張弁62で膨張され低圧となり、熱交換器63で吸熱することで蒸発気化し、高温となる。
また、冷却用熱媒体は、ポンプ44、三方弁46、発熱体41、三方弁65、熱交換器63、及びリザーバタンク45を順に経由して循環する。この循環経路において、冷却用熱媒体は、熱交換器63で放熱することで低温となり、発熱体41で吸熱することで高温となる。
The rest of the heat medium for air conditioning includes the compressor 35, the condenser 16, the heat exchanger 43, the expansion valve 31, the heat exchanger 13, the check valve 38, the expansion valve 62, the heat exchanger 63, and the accumulator 34. It circulates in order. In this circulation path, the heat medium for air conditioning in the gas phase is compressed by the compressor 35 to a high pressure, and is radiated by the heat exchanger 13 to be condensed and liquefied to a low temperature. The liquid phase air-conditioning heat medium is expanded by the expansion valve 62 to a low pressure, and by absorbing heat by the heat exchanger 63, it evaporates and vaporizes to a high temperature.
The cooling heat medium circulates through the pump 44, the three-way valve 46, the heating element 41, the three-way valve 65, the heat exchanger 63, and the reservoir tank 45 in this order. In this circulation path, the cooling heat medium becomes low in temperature by radiating heat in the heat exchanger 63, and becomes high in temperature by absorbing heat in the heating element 41.

《作用効果》
次に、第3実施形態の主要な作用効果について説明する。
運転モードが冷房であり、発熱体41の発熱量が予め定めた閾値を超えたときには、膨張弁62を僅かに解放し、空調用熱媒体の一部に膨張弁62、及び熱交換器63を経由させる。さらに、三方弁65の出口を熱交換器63の側に切り替え、熱交換器63、及び発熱体41を順に通過するように、冷却用熱媒体を循環させる。これにより、熱交換器13、及び膨張弁62を順に通過して低温低圧になった空調用熱媒体は、発熱体41を通過して高温になった冷却用熱媒体と熱交換されて高温になる。一方、熱交換器63を通過して低温になった冷却用熱媒体は、発熱体41で高温になる。このように、冷房時にも発熱体41の温度上昇を抑制することができる。
その他の作用効果については、前述した第2実施形態と同様である。
《Effect》
Next, the main effects of the third embodiment will be described.
When the operation mode is cooling and the amount of heat generated by the heating element 41 exceeds a predetermined threshold value, the expansion valve 62 is slightly released, and the expansion valve 62 and the heat exchanger 63 are used as a part of the heat medium for air conditioning. Let me go through. Further, the outlet of the three-way valve 65 is switched to the heat exchanger 63 side, and the cooling heat medium is circulated so as to pass through the heat exchanger 63 and the heating element 41 in order. As a result, the heat medium for air conditioning that has passed through the heat exchanger 13 and the expansion valve 62 in this order and has become low temperature and low pressure is exchanged with the heat medium for cooling that has passed through the heating element 41 and has become high temperature, and becomes high temperature. Become. On the other hand, the cooling heat medium that has passed through the heat exchanger 63 and has become low in temperature becomes high in temperature in the heating element 41. In this way, the temperature rise of the heating element 41 can be suppressed even during cooling.
Other effects are the same as those in the second embodiment described above.

以上、限られた数の実施形態を参照しながら説明したが、権利範囲はそれらに限定されるものではなく、上記の開示に基づく実施形態の改変は、当業者にとって自明のことである。 Although the above description has been made with reference to a limited number of embodiments, the scope of rights is not limited thereto, and modifications of the embodiments based on the above disclosure are obvious to those skilled in the art.

11…車両用空気調和装置、12…室内熱交換ユニット、13…熱交換器、14…送風ファン、15…蒸発器、16…凝縮器、17…エアミックスダンパ、18…ヒータ、21…流路、22…流路、23…流路、24…流路、25…流路、31…膨張弁、32…開閉弁、33…逆止弁、34…アキュムレータ、35…圧縮機、36…開閉弁、37…膨張弁、38…逆止弁、41…発熱体、42…ラジエータ、43…熱交換器、44…ポンプ、45…リザーバタンク、46…三方弁、51…流路、52…流路、53…流路、54…流路、61…流路、62…膨張弁、63…熱交換器、64…流路、65…三方弁 11 ... Vehicle air conditioner, 12 ... Indoor heat exchange unit, 13 ... Heat exchanger, 14 ... Blower fan, 15 ... Evaporator, 16 ... Condenser, 17 ... Air mix damper, 18 ... Heater, 21 ... Flow path , 22 ... flow path, 23 ... flow path, 24 ... flow path, 25 ... flow path, 31 ... expansion valve, 32 ... on-off valve, 33 ... check valve, 34 ... accumulator, 35 ... compressor, 36 ... on-off valve , 37 ... expansion valve, 38 ... check valve, 41 ... heating element, 42 ... radiator, 43 ... heat exchanger, 44 ... pump, 45 ... reservoir tank, 46 ... three-way valve, 51 ... flow path, 52 ... flow path , 53 ... flow path, 54 ... flow path, 61 ... flow path, 62 ... expansion valve, 63 ... heat exchanger, 64 ... flow path, 65 ... three-way valve

Claims (7)

車室内へ空気を供給する供給流路に設けられ、周囲を通過する空気と内部を通過する空調用熱媒体との間で熱交換を行ない、前記空調用熱媒体に吸熱させる蒸発器と、
前記供給流路のうち前記蒸発器よりも下流側に設けられ、周囲を通過する空気と内部を通過する前記空調用熱媒体との間で熱交換を行ない、前記空調用熱媒体に放熱させる凝縮器と、
周囲を通過する外気と内部を通過する前記空調用熱媒体との間で熱交換を行なう第一の熱交換器と、
前記空調用熱媒体を圧縮する圧縮機と、
冷房時に前記空調用熱媒体を膨張させる冷房時膨張弁と、
暖房時に前記空調用熱媒体を膨張させる暖房時膨張弁と、
発熱体を冷却するための冷却用熱媒体が内部を通過し、周囲を通過する外気との間で熱交換を行なう放熱用熱交換器と、
内部を個別に通過する前記空調用熱媒体と前記冷却用熱媒体との間で熱交換を行なう第二の熱交換器と、
冷房時に、前記冷房時膨張弁、前記蒸発器、前記圧縮機、前記凝縮器、前記第二の熱交換器、及び前記第一の熱交換器を順に経由するように、前記空調用熱媒体を循環させる冷房時空調用経路と、
暖房時に、前記圧縮機、前記凝縮器、前記第二の熱交換器、前記暖房時膨張弁、及び前記第一の熱交換器を順に経由するように、前記空調用熱媒体を循環させる暖房時空調用経路と、
冷房時に、前記第二の熱交換器、及び前記放熱用熱交換器を順に経由するように、前記冷却用熱媒体を循環させる冷房時冷却用経路と、を備えることを特徴とする車両用空気調和装置。
An evaporator provided in a supply flow path for supplying air to the passenger compartment, which exchanges heat between the air passing around and the heat medium for air conditioning passing through the inside and absorbs heat to the heat medium for air conditioning.
Condensation that is provided on the downstream side of the supply flow path with respect to the evaporator, exchanges heat between the air passing around and the heat medium for air conditioning passing through the inside, and dissipates heat to the heat medium for air conditioning. With a vessel
A first heat exchanger that exchanges heat between the outside air passing through the surroundings and the heat medium for air conditioning passing through the inside.
A compressor that compresses the heat medium for air conditioning,
An expansion valve during cooling that expands the heat medium for air conditioning during cooling,
An expansion valve for heating that expands the heat medium for air conditioning during heating,
A heat exchanger for heat dissipation, in which a cooling heat medium for cooling a heating element passes through the inside and exchanges heat with the outside air passing around.
A second heat exchanger that exchanges heat between the air-conditioning heat medium and the cooling heat medium that individually pass through the inside.
At the time of cooling, the heat medium for air conditioning is passed through the expansion valve during cooling, the evaporator, the compressor, the condenser, the second heat exchanger, and the first heat exchanger in this order. The air-conditioning route for cooling and the circulation
During heating, the heat medium for air conditioning is circulated so as to pass through the compressor, the condenser, the second heat exchanger, the heating expansion valve, and the first heat exchanger in this order. Air conditioning route and
Vehicle air provided with a cooling path for circulating the cooling heat medium so as to pass through the second heat exchanger and the heat radiating heat exchanger in order during cooling. Harmonizer.
前記第二の熱交換器は、冷房時に、前記蒸発器、及び前記圧縮機を順に通過して高温高圧になった前記空調用熱媒体と、前記放熱用熱交換器を通過して低温になった前記冷却用熱媒体との間で熱交換を行なうことを特徴とする請求項1に記載の車両用空気調和装置。 At the time of cooling, the second heat exchanger passes through the evaporator, the compressor, and the heat medium for air conditioning, which has become high temperature and high pressure, and the heat exchanger for heat dissipation, and becomes low temperature. The vehicle air conditioner according to claim 1, wherein heat is exchanged with the cooling heat medium. 暖房時に、前記発熱体、及び前記第二の熱交換器を順に経由するように、前記冷却用熱媒体を循環させる暖房時冷却用経路を備えることを特徴とする請求項1又は2に記載の車両用空気調和装置。 The first or second claim, wherein the heating cooling path for circulating the cooling heat medium is provided so as to pass through the heating element and the second heat exchanger in order during heating. Air conditioner for vehicles. 前記第二の熱交換器は、暖房時に、前記凝縮器、及び前記暖房時膨張弁を順に通過して低温低圧になった前記空調用熱媒体と、前記発熱体を通過して高温になった前記冷却用熱媒体との間で熱交換を行なうことを特徴とする請求項3に記載の車両用空気調和装置。 During heating, the second heat exchanger passed through the condenser and the expansion valve during heating in order to reach a low temperature and low pressure, and passed through the heating element to reach a high temperature. The vehicle air conditioner according to claim 3, wherein heat is exchanged with the cooling heat medium. 前記発熱体、及び前記放熱用熱交換器は、並列に接続されていることを特徴とする請求項3又は4に記載の車両用空気調和装置。 The vehicle air conditioner according to claim 3 or 4, wherein the heating element and the heat exchanger for heat dissipation are connected in parallel. 前記冷房時冷却用経路、及び前記暖房時冷却用経路の何れか一方に切り換え可能であることを特徴とする請求項3〜5の何れか一項に記載の車両用空気調和装置。 The vehicle air conditioner according to any one of claims 3 to 5, wherein the air conditioner can be switched to either the cooling path for cooling or the cooling path for heating. 前記放熱用熱交換器は、前記第一の熱交換器の風下側に配置されていることを特徴とする請求項1〜6の何れか一項に記載の車両用空気調和装置。 The vehicle air conditioner according to any one of claims 1 to 6, wherein the heat radiating heat exchanger is arranged on the leeward side of the first heat exchanger.
JP2019107424A 2019-06-07 2019-06-07 Air conditioner for vehicle Pending JP2020199850A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019107424A JP2020199850A (en) 2019-06-07 2019-06-07 Air conditioner for vehicle
PCT/JP2020/020663 WO2020246306A1 (en) 2019-06-07 2020-05-26 Vehicle air conditioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019107424A JP2020199850A (en) 2019-06-07 2019-06-07 Air conditioner for vehicle

Publications (1)

Publication Number Publication Date
JP2020199850A true JP2020199850A (en) 2020-12-17

Family

ID=73652496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019107424A Pending JP2020199850A (en) 2019-06-07 2019-06-07 Air conditioner for vehicle

Country Status (2)

Country Link
JP (1) JP2020199850A (en)
WO (1) WO2020246306A1 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4061820B2 (en) * 1999-10-20 2008-03-19 株式会社デンソー Refrigeration cycle equipment
JP4048654B2 (en) * 1999-07-26 2008-02-20 株式会社デンソー Refrigeration cycle equipment
JP5440426B2 (en) * 2010-07-09 2014-03-12 株式会社日本自動車部品総合研究所 Temperature control system for vehicles
KR101450636B1 (en) * 2012-06-27 2014-10-14 한라비스테온공조 주식회사 Heat pump system for vehicle
JP6708099B2 (en) * 2016-11-15 2020-06-10 株式会社デンソー Refrigeration cycle equipment
JP6855281B2 (en) * 2017-02-28 2021-04-07 サンデン・オートモーティブクライメイトシステム株式会社 Vehicle air conditioner
CN108688445A (en) * 2017-04-12 2018-10-23 丰田自动车株式会社 Vehicle heat management device

Also Published As

Publication number Publication date
WO2020246306A1 (en) 2020-12-10

Similar Documents

Publication Publication Date Title
JP4505510B2 (en) Vehicle air conditioning system
JP6838518B2 (en) Refrigeration cycle equipment
JP6304578B2 (en) Air conditioner for vehicles
KR20160087001A (en) Heat pump system for vehicle
JP7176405B2 (en) temperature controller
JP2003097857A (en) Air conditioning cycle
JP5517641B2 (en) Vehicle air conditioner
CN104515323A (en) Heat pump system for vehicle
JP2020142789A (en) Heat management system
US10611212B2 (en) Air conditioner for vehicle
WO2021177057A1 (en) Vehicle air conditioner
CN109982877B (en) Vehicle heat pump system
WO2015046194A1 (en) Vehicular air-conditioning device, electric compressor, and vehicle air-conditioning method
JP2014037179A (en) Thermal management system for electric vehicle
KR20090117055A (en) Hvac for bus
WO2020246306A1 (en) Vehicle air conditioning device
WO2017163563A1 (en) Heat exchanging unit and vehicular air conditioning device
WO2021192761A1 (en) Vehicle air conditioner
WO2020241612A1 (en) Vehicular air-conditioning device
WO2020246305A1 (en) Vehicle air conditioning device
KR20210132965A (en) Automotive thermal management system
JP2021146860A (en) Vehicular air conditioner
JP2016161186A (en) Complex type heat exchanger
WO2021039615A1 (en) Vehicle air conditioning device
JP7097345B2 (en) Vehicle air conditioner