WO2020003459A1 - Target detection device, angle measurement device, and radar device - Google Patents

Target detection device, angle measurement device, and radar device Download PDF

Info

Publication number
WO2020003459A1
WO2020003459A1 PCT/JP2018/024679 JP2018024679W WO2020003459A1 WO 2020003459 A1 WO2020003459 A1 WO 2020003459A1 JP 2018024679 W JP2018024679 W JP 2018024679W WO 2020003459 A1 WO2020003459 A1 WO 2020003459A1
Authority
WO
WIPO (PCT)
Prior art keywords
doppler
range
targets
unit
window function
Prior art date
Application number
PCT/JP2018/024679
Other languages
French (fr)
Japanese (ja)
Inventor
優 清水
知成 眞庭
聡 影目
照幸 原
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2018/024679 priority Critical patent/WO2020003459A1/en
Priority to JP2020526822A priority patent/JP6820130B2/en
Publication of WO2020003459A1 publication Critical patent/WO2020003459A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/10Systems for measuring distance only using transmission of interrupted, pulse modulated waves
    • G01S13/26Systems for measuring distance only using transmission of interrupted, pulse modulated waves wherein the transmitted pulses use a frequency- or phase-modulated carrier wave
    • G01S13/28Systems for measuring distance only using transmission of interrupted, pulse modulated waves wherein the transmitted pulses use a frequency- or phase-modulated carrier wave with time compression of received pulses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/285Receivers
    • G01S7/32Shaping echo pulse signals; Deriving non-pulse signals from echo pulse signals

Definitions

  • the present invention relates to a target detecting device and a radar device for detecting a target, and an angle measuring device for measuring an angle of the target.
  • Patent Document 1 discloses an FMCW radar device that detects a distance to a target and a speed of the target.
  • a received signal is multiplied by a window function in order to reduce side lobes contained in the received signal reflected on the target.
  • the window function by which the received signal is multiplied is a first window function for improving the resolution when the peak frequencies of a plurality of targets are close to each other. It is a 2nd window function to reduce.
  • the relative Doppler frequency between a plurality of targets is small, if the CFAR processing is performed in the range direction, the power of an adjacent target leaks into a sample cell in the range direction of a certain target, and the CFAR threshold is correctly set. The calculation may not be possible. If the CFAR threshold cannot be calculated correctly, the possibility of erroneous detection of the target increases. Therefore, in the conventional radar apparatus, since the CFAR threshold cannot be calculated correctly, there is a problem that even if the CFAR processing is performed, a target may be erroneously detected.
  • the present invention has been made to solve the above problems, and has as its object to obtain a target detection device and a radar device that can prevent erroneous detection of a target.
  • a target detection device a received signal of electromagnetic waves reflected by a plurality of targets, a map creation unit that creates a range Doppler map indicating the distance to the plurality of targets and the Doppler frequency of the plurality of targets, A direction determining unit that determines a direction in which a constant false alarm rate process is performed on the range Doppler map based on a relative distance between the targets and a relative Doppler frequency between the plurality of targets; and a range created by the map creating unit.
  • a direction determining unit that determines a direction in which a constant false alarm rate process is performed on a range Doppler map.
  • the target detection unit performs a constant false alarm rate process on the range Doppler map created by the map creation unit in the direction determined by the direction determination unit, so as to suppress clutter included in the range Doppler map.
  • a target detecting device based on a relative distance between a plurality of targets and a relative Doppler frequency between a plurality of targets.
  • FIG. 1 is a configuration diagram illustrating a radar device including a target detection device 10 according to a first embodiment.
  • FIG. 2 is a configuration diagram illustrating a transmission / reception unit 1 of the radar device according to the first embodiment.
  • FIG. 3 is a hardware configuration diagram illustrating hardware of the target detection device 10 according to the first embodiment.
  • FIG. 2 is a configuration diagram illustrating a target detection unit 23 of the target detection device 10 according to the first embodiment.
  • FIG. 2 is a hardware configuration diagram of a computer when the target detection device 10 is realized by software or firmware.
  • 9 is a flowchart illustrating a processing procedure when the target detection device 10 is realized by software or firmware.
  • FIG. 1 is a configuration diagram illustrating a radar device including a target detection device 10 according to a first embodiment.
  • FIG. 2 is a configuration diagram illustrating a transmission / reception unit 1 of the radar device according to the first embodiment.
  • FIG. 3 is a hardware configuration diagram illustrating hardware of the target detection device 10 according to the first
  • FIG. 9 is an explanatory diagram illustrating a relationship between a relative distance ⁇ r between a plurality of targets and a relative Doppler frequency ⁇ f dop .
  • 8A is range resolution of the received data s r0 ( ⁇ , h) before the pulse compression section 21 for multiplying the range window function w r in the received data s r0 ( ⁇ , h), shows a main lobe and side lobes Description Figure
  • FIG. 8B pulse compression unit 21 is received data s r0 ( ⁇ , h) the range window function w r received data after it has been multiplied by the s r ( ⁇ , h) range resolution, the main lobe and side lobes
  • FIG. 8A is range resolution of the received data s r0 ( ⁇ , h) before the pulse compression section 21 for multiplying the range window function w r in the received data s r0 ( ⁇ , h), shows a main lobe and side lobes Description Figure
  • Figure 9A is a pulse compression unit 21 is received data s r0 ( ⁇ , h) diagram showing a main lobe and side lobes of the received data s r0 before multiplying the range window function w r in (tau, h),
  • Fig. 9B and 9C are explanatory views showing a main lobe and side lobes of the pulse compressor 21 receives data s r0 ( ⁇ , h) receiving after multiplying the range window function w r to the data s r ( ⁇ , h) It is.
  • Figure 10A is a pulse compressor 21 receives data s r0 ( ⁇ , h) diagram showing a main lobe and side lobes of the received data s r0 before multiplying the range window function w r in (tau, h)
  • Fig. 10B and 10C are explanatory views showing a main lobe and side lobes of the pulse compressor 21 receives data s r0 ( ⁇ , h) receiving after multiplying the range window function w r to the data s r ( ⁇ , h) It is.
  • FIG. 9 is an explanatory diagram showing an example in which the interference between the main lobes is small even when the range resolution ⁇ r reso, w is larger than the relative distance ⁇ r.
  • FIG. 9 is an explanatory diagram showing an example in which the interference between the main lobes is small even when the range resolution ⁇ r reso, w is larger than the relative distance ⁇ r.
  • FIG. 9 is an explanatory diagram illustrating an outline of a CFAR process when a plurality of targets (1) and (2) exist.
  • FIG. 14A is an explanatory diagram illustrating a direction in which the CFAR process is performed when the relative Doppler frequency ⁇ f dop is smaller than the relative distance ⁇ r.
  • FIG. 14B is a diagram illustrating the execution of the CFAR process when the relative distance ⁇ r is smaller than the relative Doppler frequency ⁇ f dop. It is explanatory drawing which shows a direction.
  • FIG. 9 is a configuration diagram illustrating a radar device including an angle measurement device 60 according to a second embodiment.
  • FIG. 9 is a configuration diagram illustrating a transmission / reception unit 50 of the radar device according to the second embodiment.
  • FIG. 9 is a hardware configuration diagram illustrating hardware of an angle measurement device 60 according to a second embodiment.
  • FIG. 1 is a configuration diagram illustrating a radar device including a target detection device 10 according to the first embodiment.
  • FIG. 2 is a configuration diagram illustrating the transmission / reception unit 1 of the radar device according to the first embodiment. 1 and 2, the transmission / reception unit 1 includes a transmission unit 2, a transmission / reception switch 3, a transmission / reception antenna 4, and a reception unit 5.
  • the transmission / reception unit 1 generates a transmission RF (Radio Frequency) signal, radiates the transmission RF signal into space as an electromagnetic wave, and then receives the transmission RF signal reflected on the target as a reception RF signal.
  • RF Radio Frequency
  • the transmission unit 2 includes an oscillator 2a, a pulse modulator 2b, and a transmitter 2c.
  • the oscillator 2a oscillates a transmission RF signal and outputs the transmission RF signal to the pulse modulator 2b.
  • the pulse modulator 2b performs pulse modulation on the transmission RF signal output from the oscillator 2a, and outputs the transmission RF signal after pulse modulation to the transmitter 2c. Further, the pulse modulator 2b outputs a signal for down-conversion of the received RF signal to the receiver 5a.
  • the pulse modulator 2b outputs a reference signal to an analog-to-digital converter (hereinafter, referred to as an "A / D converter") 5b as a signal used for pulse compression.
  • the transmitter 2c performs amplification processing of the pulse-modulated transmission RF signal output from the pulse modulator 2b, and outputs the pulse-modulated transmission RF signal to the transmission / reception switch 3.
  • the transmission / reception switch 3 outputs the transmission RF signal output from the transmitter 2c to the transmission / reception antenna 4, and outputs the reception RF signal received by the transmission / reception antenna 4 to the receiver 5a.
  • the transmission / reception antenna 4 radiates the transmission RF signal output from the transmission / reception switch 3 to space as an electromagnetic wave, receives the transmission RF signal reflected on the target as a reception RF signal, and transmits the reception RF signal to the transmission / reception switch 3. Output.
  • the receiving unit 5 includes a receiver 5a and an A / D converter 5b.
  • the receiver 5a performs a reception process such as an amplification process on the reception RF signal output from the transmission / reception switch 3.
  • the receiver 5a down-converts the frequency of the received RF signal using the down-converting signal output from the pulse modulator 2b.
  • the receiver 5a outputs the received signal whose frequency has been down-converted to the A / D converter 5b.
  • the A / D converter 5b converts the received signal output from the receiver 5a from an analog signal to a digital signal, and outputs the digital signal to the data storage unit 6 as received data.
  • the A / D converter 5b converts the reference signal output from the pulse modulator 2b from an analog signal to a digital signal, and outputs the digital signal to the data storage unit 6 as reference data.
  • the data storage unit 6 is a storage medium that stores the received data and the reference data output from the A / D converter 5b.
  • the target detection device 10 includes a signal processing condition determination unit 11 and a signal processing unit 20.
  • the target detection device 10 is a device that detects a plurality of targets continuously ejected from the ejection device 100 for each elapsed time using each of the reception data and the reference data stored by the data storage unit 6.
  • the injection apparatus 100 is an apparatus that continuously injects a plurality of targets into a space.
  • the injection device 100 outputs, to the target detection device 10, information indicating the injection speed, the injection angle, the injection time interval, and the like of the multiple targets as the injection conditions of the multiple targets.
  • FIG. 3 is a hardware configuration diagram illustrating hardware of the target detection device 10 according to the first embodiment.
  • the signal processing condition determination unit 11 includes a relative value calculation unit 12, a window function selection unit 13, and a direction determination unit 14.
  • the relative value calculation unit 12 is realized by, for example, a relative value calculation circuit 31 illustrated in FIG.
  • the relative value calculation unit 12 acquires a plurality of target injection conditions from the injection device 100.
  • the relative value calculation unit 12 predicts the trajectories of the plurality of targets from the injection conditions of the plurality of targets, and calculates the relative distance between the plurality of targets from the trajectory prediction result. Further, the relative value calculation unit 12 calculates a relative Doppler frequency between a plurality of targets from the injection conditions of the plurality of targets.
  • the window function selection unit 13 includes a range window function selection unit 13a and a Doppler window function selection unit 13b, and is realized by, for example, a window function selection circuit 32 illustrated in FIG.
  • the range window function selector 13a selects a range window function corresponding to the relative distance calculated by the relative value calculator 12 from the plurality of range window functions, and outputs the selected range window function to the pulse compressor 21. I do.
  • the Doppler window function selection unit 13b selects a Doppler window function corresponding to the relative Doppler frequency calculated by the relative value calculation unit 12 from the plurality of Doppler window functions, and sends the selected Doppler window function to the map creation unit 22. Output.
  • the direction determining unit 14 is realized by, for example, a direction determining circuit 33 illustrated in FIG.
  • the direction determining unit 14 determines an execution direction of a constant false alarm rate (CFAR) process for the range Doppler map based on the relative distance and the relative Doppler frequency calculated by the relative value calculating unit 12.
  • the direction determination unit 14 outputs the determined execution direction to the target detection unit 23.
  • CFAR constant false alarm rate
  • the signal processing unit 20 includes a pulse compression unit 21, a map creation unit 22, and a target detection unit 23.
  • the pulse compression unit 21 is realized by, for example, a pulse compression circuit 34 illustrated in FIG.
  • the pulse compression unit 21 multiplies the received data stored by the data storage unit 6 by the range window function output from the range window function selection unit 13a.
  • the pulse compression unit 21 performs pulse compression of the received data after multiplication by the range window function using the reference data stored by the data storage unit 6 and outputs the received data after the pulse compression to the map creation unit 22. .
  • the map creation unit 22 is realized by, for example, a map creation circuit 35 illustrated in FIG.
  • the map creator 22 multiplies the pulse-compressed reception data output from the pulse compressor 21 by the Doppler window function output from the Doppler window function selector 13b.
  • the map creation unit 22 creates a range Doppler map by converting the received data after the Doppler window function multiplication into a frequency domain in the hit direction, and outputs the range Doppler map to the target detection unit 23.
  • the range Doppler map is two-dimensional data indicating distances to a plurality of targets and Doppler frequencies of the plurality of targets.
  • the target detection unit 23 includes a clutter suppression processing unit 23a and a peak detection processing unit 23b.
  • the target detection unit 23 is realized by, for example, a target detection circuit 36 illustrated in FIG.
  • the target detection unit 23 detects a plurality of targets from the range Doppler map output from the map creation unit 22.
  • FIG. 4 is a configuration diagram illustrating the target detection unit 23 of the target detection device 10 according to the first embodiment.
  • the clutter suppression processing unit 23 a suppresses clutter by performing CFAR processing on the range Doppler map created by the map creation unit 22 in the direction determined by the direction determination unit 14.
  • the clutter suppression processing unit 23a outputs the range Doppler map after the clutter suppression to the peak detection processing unit 23b.
  • the peak detection processing unit 23b detects a plurality of targets by detecting a peak value included in the range Doppler map output from the clutter suppression processing unit 23a.
  • each of the relative value calculation unit 12, window function selection unit 13, direction determination unit 14, pulse compression unit 21, map creation unit 22, and target detection unit 23, which are the components of the target detection device 10, is shown in FIG. It is assumed that it is realized by dedicated hardware as shown in (1). That is, it is assumed that the target detection device 10 is realized by a relative value calculation circuit 31, a window function selection circuit 32, a direction determination circuit 33, a pulse compression circuit 34, a map creation circuit 35, and a target detection circuit 36.
  • the relative value calculation circuit 31, the window function selection circuit 32, the direction determination circuit 33, the pulse compression circuit 34, the map creation circuit 35, and the target detection circuit 36 are, for example, a single circuit, a composite circuit, a programmed processor, A processor programmed in parallel, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination thereof is applicable.
  • the constituent elements of the target detection device 10 are not limited to those realized by dedicated hardware, and even if the target detection device 10 is realized by software, firmware, or a combination of software and firmware.
  • Software or firmware is stored as a program in the memory of the computer.
  • the computer means hardware for executing a program, for example, a CPU (Central Processing Unit), a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, a processor, or a DSP (Digital Signal Processor). I do.
  • FIG. 5 is a hardware configuration diagram of a computer when the target detection device 10 is realized by software or firmware.
  • FIG. 6 is a flowchart illustrating a processing procedure when the target detection device 10 is realized by software or firmware.
  • FIG. 3 shows an example in which each of the components of the target detection device 10 is realized by dedicated hardware
  • FIG. 5 shows an example in which the target detection device 10 is realized by software or firmware.
  • this is only an example, and some components of the target detection device 10 may be realized by dedicated hardware, and the remaining components may be realized by software or firmware.
  • the oscillator 2a oscillates the transmission RF signal s osc ( ⁇ ) and outputs the transmission RF signal s osc ( ⁇ ) to the pulse modulator 2b.
  • the oscillator 2a oscillates a chirp signal whose frequency changes with time as the transmission RF signal s os ( ⁇ ).
  • the transmission RF signal s os ( ⁇ ) whose frequency changes with the passage of time is represented by the following equation (1).
  • Amp is the amplitude of the transmitted RF signal s osc ( ⁇ )
  • is the time in the range direction
  • K r is the chirp rate.
  • the pulse modulator 2b Upon receiving the transmission RF signal s os ( ⁇ ) from the oscillator 2a, the pulse modulator 2b pulse-modulates the transmission RF signal s os ( ⁇ ) and transmits the pulse-modulated transmission RF signal s t ( ⁇ ) to the transmitter 2c.
  • Output to The transmission RF signal st ( ⁇ ) after the pulse modulation is represented by the following equation (2).
  • fc is the center frequency of the transmission RF signal st ( ⁇ ).
  • the chirp rate Kr is represented by the following equation (3).
  • B is the frequency bandwidth of the transmission RF signal s t ( ⁇ )
  • T p is the pulse width of the pulse signal constituting the transmission RF signal s t ( ⁇ ).
  • the pulse modulator 2b outputs a signal s down ( ⁇ ) for down-conversion of the received RF signal s r to the receiver 5a.
  • the signal s down ( ⁇ ) is represented by the following equation (4).
  • the pulse modulator 2b outputs the reference signal s ref ( ⁇ ) to the A / D converter 5b as a signal used by the pulse compression unit 21 for pulse compression.
  • the reference signal s ref ( ⁇ ) is a signal obtained by taking the complex conjugate of the phase of the chirp component in the transmission RF signal st ( ⁇ ) after pulse modulation, as shown in the following equation (5).
  • Transmitter 2c receives the transmission from the pulse modulator 2b after the pulse-modulated RF signal s t (tau), and out an amplification processing and the like of the transmission RF signal s t (tau), transmission RF signal s t (tau ) Is output to the transmission / reception switch 3.
  • the transmission / reception switch 3 outputs the transmission RF signal st ( ⁇ ) output from the transmitter 2c to the transmission / reception antenna 4, so that the transmission RF signal st ( ⁇ ) is emitted from the transmission / reception antenna 4 to space as an electromagnetic wave. .
  • the transmission RF signal st ( ⁇ ) radiated from the transmitting / receiving antenna 4 is reflected by the target and returns to the transmitting / receiving antenna 4.
  • the transmission / reception antenna 4 receives the transmission RF signal st ( ⁇ ) reflected on the target as the reception RF signal s r ( ⁇ ), and outputs the reception RF signal s r ( ⁇ ) to the transmission / reception
  • the transmission / reception switch 3 outputs the reception RF signal s r ( ⁇ ) output from the transmission / reception antenna 4 to the receiver 5a.
  • the received RF signal s r ( ⁇ ) reflected on a certain target is represented by the following equation (6).
  • Amp ′ is the amplitude of the received RF signal s r ( ⁇ )
  • Amp> Amp ′ is a round-trip reflection time from when the transmission RF signal st ( ⁇ ) is radiated from the transmission / reception antenna 4 to when it is reflected to the target and the reception RF signal s r ( ⁇ ) returns to the transmission / reception antenna 4.
  • c is the propagation speed of the electromagnetic wave
  • R ( ⁇ ) is the distance from the transmitting / receiving antenna 4 to one target.
  • the receiver 5a Upon receiving the received RF signal s r ( ⁇ ) from the transmission / reception switch 3, the receiver 5a performs a receiving process such as an amplification process on the received RF signal s r . Further, the receiver 5a down-converts the frequency of the received RF signal after the reception processing using the down-conversion signal s down ( ⁇ ) output from the pulse modulator 2b. The receiver 5a outputs the received signal whose frequency has been down-converted to the A / D converter 5b.
  • the A / D converter 5b converts the received signal from an analog signal to a digital signal, and converts the digital signal into the data storage unit 6 as received data sr0 (n, h). Output.
  • the received data s r0 (n, h) is represented by the following equation (8).
  • Amp ′ h is the amplitude of each hit of the received data s r0 (n, h)
  • T pri is the pulse repetition period (PRI)
  • n is the sampling number in the PRI
  • ⁇ t is the PRI Within the sampling interval.
  • h is the hit number
  • H is the number of hits, which is represented by the following equation (9).
  • floor is a function for rounding down the decimal point of the value represented by (T p / T pri ).
  • the received data s r0 ( ⁇ , h) shown in Expression (8) is stored in the data storage unit 6 as two-dimensional data represented by the time ⁇ in the range direction and the hit number h.
  • a / D converter 5b receives a reference signal s ref (tau) from the pulse modulator 2b, the reference signal s ref a (tau) from an analog signal to a digital signal, referring to the digital signal data s ref ( n, h) to the data storage unit 6.
  • the reference data s ref (n, h) is represented by the following equation (10).
  • FIG. 7 is an explanatory diagram showing a relationship between a relative distance ⁇ r between a plurality of targets and a relative Doppler frequency ⁇ f dop .
  • FIG. 7 shows the relationship between the relative distance ⁇ r and the relative Doppler frequency ⁇ f dop when a plurality of targets exist at positions that are close to the radar device.
  • FIG. 7 shows the relationship between the relative distance ⁇ r and the relative Doppler frequency ⁇ f dop when a plurality of targets exist at positions far from the radar device.
  • a plurality of targets located at a short distance from the radar device have less attenuation of the injection speed than a plurality of targets located at a long distance. Therefore, the relative distance ⁇ r between a plurality of targets located at a short distance position is larger than the relative distance ⁇ r between a plurality of targets located at a long distance position. Also, the relative Doppler frequency ⁇ f dop between a plurality of targets located at a short distance is larger than the relative Doppler frequency ⁇ f dop between a plurality of targets located at a long distance.
  • the injection speed and the injection angle when the target is emitted from the injection device 100 are different. Accordingly, the relative distance ⁇ r and the relative Doppler frequency ⁇ f dop change together.
  • the relative value calculation unit 12 acquires a plurality of target injection conditions from the injection device 100.
  • the relative value calculation unit 12 predicts the trajectories of a plurality of targets from the injection speeds and the injection angles of the targets included in the injection conditions of the targets.
  • the process of predicting the target trajectory itself is a well-known technique, and a detailed description thereof will be omitted.
  • the relative value calculation unit 12 calculates a relative distance ⁇ r between a plurality of targets from the trajectory prediction result. Since the injection conditions include the injection time intervals of a plurality of targets that are continuously injected from the injection device 100, the relative distance ⁇ r can be easily calculated if the target trajectory is known.
  • the relative value calculation unit 12 calculates a relative Doppler frequency ⁇ f dop between a plurality of targets as shown in the following equation (11).
  • lambda is the wavelength of the transmitted RF signal s t ( ⁇ )
  • v 1 -v 2 is injection speed of relative between adjacent target.
  • the relative value calculation unit 12 outputs the relative distance ⁇ r to each of the range window function selection unit 13a and the direction determination unit 14. Further, the relative value calculation unit 12 outputs the relative Doppler frequency ⁇ f dop to each of the Doppler window function selection unit 13b and the direction determination unit 14.
  • Range window function selection unit 13a receives the relative distance [Delta] r from the relative value calculating section 12, from among a plurality of ranges the window function, to select the range window function w r corresponding to the relative distance [Delta] r, the selected range window function and outputs the w r the pulse compressor 21 (step ST1 in FIG. 6).
  • range window function selection unit 13a receives the relative distance [Delta] r from the relative value calculating section 12, from among a plurality of ranges the window function, to select the range window function w r corresponding to the relative distance [Delta] r, the selected range window function and outputs the w r the pulse compressor 21 (step ST1 in FIG. 6).
  • range window function selection unit 13a receives the relative distance [Delta] r from the relative value calculating section 12, from among a plurality of ranges the window function, to select the range window function w r corresponding to the relative distance [Delta] r,
  • FIG. 8 is an explanatory diagram showing the range resolution, main lobe, and side lobe of received data before and after multiplication of the range window function.
  • 8A is range resolution of the received data s r0 (n, h) of the front pulse compressor 21 for multiplying the range window function w r in the received data s r0 (n, h), shows the main lobe and side lobes I have.
  • 8B is range resolution pulse compressor 21 receives data s r0 (n, h) the range window function w r received data after it has been multiplied by the s r (n, h), shows the main lobe and side lobes I have. The side lobe level shown in FIG.
  • the pulse compression unit 21 multiplies the reception data s r0 (n, h) by the range window function wr, thereby suppressing the side lobe of the reception data s r0 (n, h).
  • the main lobe shown in FIG. 8B is wider than the main lobe shown in FIG. 8A. Accordingly, by pulse compression unit 21 multiplies the range window function w r in the received data s r0 (n, h), range resolution is changed from [Delta] r reso [Delta] r reso, to w. ⁇ r reso ⁇ r reso, w .
  • Range resolution [Delta] r reso before pulse compression unit 21 multiplies the range window function w r is expressed by the following equation (12).
  • Range resolution after pulse compression unit 21 is multiplied by the range window function w r ⁇ r reso, w is expressed by the following equation (13).
  • ⁇ r, w is range resolution when multiplied by the range window function w r [Delta] r reso, a correction coefficient w.
  • FIG. 9 is an explanatory diagram showing main lobes and side lobes of received data when two targets (1) and (2) are located at short distances from the radar device.
  • Figure 9A shows a main lobe and side lobes of the received data s r0 (n, h) of the front pulse compressor 21 for multiplying the range window function w r in the received data s r0 (n, h).
  • 9B and 9C shows the main lobe and side lobes of the received data s r (n, h) after the pulse compressor 21 is obtained by multiplying the range window function w r in the received data s r0 (n, h) I have.
  • the amplitude attenuation is steeper than that of the shape.
  • the range window function w r that is multiplied to the received data s r shown in FIG. 9B (n, h), the amplitude attenuation from the center to both ends of the applied section is a window function of a gentle shape.
  • a window function having a shape with a gentle amplitude attenuation a window function with a small spread of a main lobe, such as a Hanning window, is applicable.
  • a window function having a shape with gentle amplitude attenuation has a smaller sidelobe suppression effect than a window function with a shape with sharp amplitude attenuation.
  • the amplitude attenuation from the center to both ends of the applied section is a window function of steep shape.
  • a window function having a sharp amplitude attenuation such as a Blackman-Harris window, is a window function that has a large main lobe but can be expected to significantly suppress side lobes.
  • Range resolution [Delta] r reso received data s r (n, h), w is the target (1) and the range window function w r that is greater than the relative distance [Delta] r between the main lobe of the target (2) is selected In this case, since the main lobes interfere with each other, a phase shift occurs and the target detection accuracy decreases.
  • the range window function selecting portion 13a by selecting the range window function w r of the amplitude attenuation steep shape
  • FIG. 10 is an explanatory diagram showing main lobes and side lobes of received data when two targets (1) and (2) are present at positions far from the radar apparatus.
  • Figure 10A shows a main lobe and side lobes of the received data s r0 (n, h) of the front pulse compressor 21 for multiplying the range window function w r in the received data s r0 (n, h).
  • 10B and FIG. 10C shows the main lobe and side lobes of the received data s r (n, h) after the pulse compressor 21 is obtained by multiplying the range window function w r in the received data s r0 (n, h) I have.
  • the amplitude attenuation is steeper than that of the shape.
  • the range window function w r that is multiplied to the received data s r shown in FIG. 10B (n, h), the amplitude attenuation from the center to both ends of the applied section is a window function of a gentle shape.
  • Range window function w r that is multiplied to the received data s r0 (n, h) shown in FIG. 10C, amplitude attenuation from the center to both ends of the applied section is a window function of steep shape.
  • the relative distance ⁇ r between the target (1) and the target (2) is relatively small.
  • the range window function selecting portion 13a the amplitude attenuation selects range window function w r a steep shape. There is a high possibility that the main lobes will interfere with each other. In the example of FIG. 10C, are selected range window function w r of the amplitude attenuation steep shape, but the side lobes are significantly reduced, mutual main lobe is interfering.
  • Range window function selection unit 13a when selecting a range window function w r, in a plurality of ranges window functions are prepared in advance, as shown in the following equation (14), range resolution [Delta] r reso, w Is determined whether or not there is a range window function smaller than the relative distance ⁇ r.
  • Range window function selection unit 13a range resolution [Delta] r reso, if w is not present is small range window function than relative distance [Delta] r, since the mutual main lobe will interfere, not multiplied by a range window function w r This is notified to the pulse compression unit 21.
  • the range window function selection unit 13a determines that each Null point after the range window function multiplication in the two targets (1) and (2) is the main point of the next target (2) (1).
  • a range window function wr is selected so as to be the peak position of the lobe.
  • FIG. 11 is an explanatory diagram showing an example in which the interference between the main lobes is small even when the range resolution ⁇ r reso, w is larger than the relative distance ⁇ r.
  • Range window function selection unit 13a range resolution [Delta] r reso, if w is present a small range window function than relative distance [Delta] r, as a range window function w r, range resolution [Delta] r reso, than w relative distance [Delta] r Choose a small range window function.
  • Range window function w r that is selected by the range window function selecting section 13a is expressed by the following equation (15).
  • equation (15) calc is a function for calculating a window function that satisfies the conditions in parentheses.
  • beta r is range resolution [Delta] r reso, so w is smaller than the relative distance [Delta] r, range resolution [Delta] r reso, a factor for adjusting the w.
  • the coefficient ⁇ r is a coefficient that maximizes the range resolution ⁇ r reso, w after multiplication of the range window function within a range satisfying ⁇ r reso, w ⁇ r.
  • the Doppler window function selecting unit 13b Upon receiving the relative Doppler frequency ⁇ f dop from the relative value calculation unit 12, the Doppler window function selecting unit 13b selects a Doppler window function w dop corresponding to the relative Doppler frequency ⁇ f dop from among a plurality of Doppler window functions (FIG. Step ST2). The Doppler window function selection unit 13b outputs the selected Doppler window function w dop to the map creation unit 22.
  • the Doppler window function selection unit 13b outputs the selected Doppler window function w dop to the map creation unit 22.
  • the resolution ⁇ f dop, reso of the Doppler frequency before the map creator 22 multiplies the Doppler window function w dop is represented by the following equation (16).
  • N hit is the number of hits.
  • the Doppler frequency resolution ⁇ f dop, reso, w after the map creator 22 multiplies the Doppler window function w dop is represented by the following equation (17).
  • ⁇ dop, w is a correction coefficient of the resolution ⁇ f dop, reso, w of the Doppler frequency when multiplied by the Doppler window function w dop .
  • the Doppler window function selection unit 13b sets the resolution ⁇ f dop, reso, w to the relative Doppler frequency ⁇ f dop among a plurality of Doppler window functions prepared in advance. It is determined whether a small Doppler window function exists.
  • the Doppler window function selection unit 13b interferes with each other's main lobes, so that the Doppler window function w dop Is notified to the map creation unit 22.
  • the Doppler window function selection unit 13b selects a Doppler window function w dop such that each Null point after multiplication of the range window function in a plurality of targets is a peak position of a main lobe of an adjacent target. When the Doppler window function w dop is selected, interference between the main lobes is reduced.
  • the Doppler window function selection unit 13b determines the Doppler window function w dop as a Doppler window that satisfies Expression (18). Select a function.
  • the range resolution ⁇ r reso, w selected by the Doppler window function selection unit 13b is represented by the following equation (19).
  • beta dop is the Doppler frequency resolution Delta] f dop, reso, so w is smaller than the relative Doppler frequency Delta] f dop, a factor for adjusting resolution Delta] f dop, reso, the w.
  • the coefficient ⁇ dop is desirably a coefficient that maximizes the resolution ⁇ f dop, reso, w after Doppler window function multiplication within a range satisfying ⁇ f dop, reso, w ⁇ f dop .
  • calc is a function for calculating a window function under the conditions in parentheses.
  • FIG. 12 is an explanatory diagram showing an outline of the CFAR processing.
  • the sample cell average power and the CFAR coefficient which are the average values of the powers of a plurality of sample cells existing before and after the test cell that is the target cell for determining the presence or absence of the target, are calculated.
  • the CFAR threshold is calculated by multiplication.
  • the power of the test cell is compared with the CFAR threshold, and if the power of the test cell is equal to or greater than the CFAR threshold, it is determined that the target is present in the test cell, and the power of the test cell is determined by the CFAR threshold. If less than the threshold, it is determined that the target does not exist in the test cell.
  • by providing a guard cell it is possible to prevent leakage of power of side lobes when calculating a CFAR threshold.
  • FIG. 13 is an explanatory diagram illustrating an outline of the CFAR processing when a plurality of targets (1) and (2) exist.
  • the target (1) and the target (2) may have a small relative distance ⁇ r from each other.
  • the target (1) and the target (2) may have a small relative Doppler frequency ⁇ f dop in each case.
  • the CFAR processing is performed in the Doppler frequency direction when the relative distance ⁇ r is small, as shown in FIG. 13, the power of the adjacent target (2) leaks into the sample cell of the target (1), and the CFAR threshold is correctly calculated. May not be possible. If the CFAR processing is performed in the range direction when the relative Doppler frequency ⁇ f dop is small, the CFAR threshold may not be calculated correctly similarly.
  • FIG. 14A is an explanatory diagram showing the relationship between the relative distance ⁇ r and the relative Doppler frequency ⁇ f dop and the direction in which the CFAR process is performed.
  • 14A is a relative Doppler frequency Delta] f dop represents the implementation direction of CFAR processing is smaller than the relative distance [Delta] r
  • FIG. 14B the relative distance [Delta] r is the implementation direction of CFAR processing is smaller than the relative Doppler frequency Delta] f dop Is shown.
  • the direction determining unit 14 Upon receiving the relative distance ⁇ r and the relative Doppler frequency ⁇ f dop from the relative value calculation unit 12, the direction determining unit 14 normalizes the relative distance ⁇ r with the range resolution ⁇ r reso, w as shown in the following equation (20). .
  • ⁇ r bin is the normalized relative distance.
  • the direction determination unit 14 normalizes the relative Doppler frequency ⁇ f dop with the Doppler frequency resolution ⁇ f dop, reso, w as shown in the following equation (21).
  • ⁇ f dop, bin is the normalized relative Doppler frequency.
  • the direction determining unit 14 compares the normalized relative distance ⁇ r bin with the normalized relative Doppler frequency ⁇ f dop, bin (step ST3 in FIG. 6). If the relative distance ⁇ r bin after the standardization is larger than the relative Doppler frequency ⁇ f dop, bin after the standardization (step ST3 in FIG. 6: Yes), the direction determination unit 14 determines the direction of the CFAR processing as the Doppler frequency. The direction is determined (step ST4 in FIG. 6). If the normalized relative distance ⁇ r bin is equal to or smaller than the normalized relative Doppler frequency ⁇ f dop, bin (step ST3 of FIG. 6: No), the direction determining unit 14 sets the direction of execution of the CFAR processing to the range direction. (Step ST5 in FIG. 6). The direction determination unit 14 outputs the determined execution direction to the target detection unit 23.
  • the pulse compression unit 21 acquires the reception data s r0 (n, h) and the reference data s ref (n, h) from the data storage unit 6.
  • Pulse compressor 21 receives the range window function w r from range window function selecting section 13a, as shown in the following equation (22), the received data s r0 (n, h) to multiply the range window function w r (Step ST6 in FIG. 6).
  • the pulse compression unit 21 performs convolution integration of the reference data s ref (n, h) on the received data s r (n, h) in the time domain as shown in the following equation (24).
  • the pulse compression of the received data s r (n, h) is performed (step ST7 in FIG. 6).
  • the pulse compression unit 21 outputs the received data s rfm (n, h) after the pulse compression to the map creation unit 22.
  • pulse compression unit 21 receives the data s r (n, h) a reference data s ref (n, h) carrying out the convolution in the time domain, the received data s r (n, h) the pulse Compressed.
  • the pulse compression unit 21 may perform pulse compression of the received data s r (n, h) by the following method. That is, the pulse compression unit 21 converts each of the received data s r (n, h) and the reference data s ref (n, h) into a signal in the frequency domain.
  • the pulse compressor 21 removes a chirp component by performing complex multiplication of the frequency domain signal of the received data s r (n, h) and the frequency domain signal of the reference data s ref (n, h). . Then, the pulse compression unit 21 obtains the reception data s rfm (n, h) after the pulse compression by converting the complex multiplied signal into a time domain signal.
  • the map creation unit 22 When receiving the Doppler window function w dop from the Doppler window function selection unit 13b, the map creation unit 22 receives the pulse-compressed reception data s rfm (output from the pulse compression unit 21) as shown in the following equation (25). n, h) is multiplied by a Doppler window function w dop (step ST8 in FIG. 6). When the map creator 22 receives a notification from the Doppler window function selector 13b not multiplying the Doppler window function w dop , the reception data s rfm (n, h) as shown in the following equation (26). ) Is not multiplied by the Doppler window function w dop .
  • the map creation unit 22 converts the received data s rfm, w (n, h) into a frequency domain in the hit direction, as shown in the following equation (27), so that the range Doppler map s 2D (n , K) (step ST9 in FIG. 6).
  • H fft is the number of FFT data points in the hit direction.
  • the map creator 22 outputs the range Doppler map s 2D (n, k) to the target detector 23.
  • Clutter suppression processing section 23a receives the range Doppler map s 2D map creation unit 22 (n, k), the range Doppler map s 2D (n, k) with respect to the direction determined by the direction determination unit 14 By performing the CFAR processing, clutter is suppressed (step ST10 in FIG. 6).
  • the clutter suppression processing unit 23a performs the CFAR processing in the Doppler frequency direction on the range Doppler map s 2D (n, k).
  • the clutter suppression processing unit 23a performs a CFAR process in the range direction on the range Doppler map s 2D (n, k).
  • the clutter suppression processing unit 23a outputs the range Doppler map s 2D, CFAR (n, k) after the CFAR processing to the peak detection processing unit 23b.
  • Peak detection processing section 23b clutter suppression processing section 23a from the range Doppler map s 2D, CFAR (n, k ) receives the, as the detection processing of a plurality of targets, range Doppler map s 2D, the CFAR (n, k) A detection process of the included peak value is performed (step ST11 in FIG. 6).
  • the direction determining unit 14 that determines the direction in which the constant false alarm rate process is performed on the range Doppler map based on the relative distance between the plurality of targets and the relative Doppler frequency between the plurality of targets. Is provided in the range Doppler map by the target detecting unit 23 performing a constant false alarm rate process on the range Doppler map created by the map creating unit 22 in the direction determined by the direction determining unit 14.
  • the target detection device 10 was configured to suppress clutter. Therefore, the target detection device 10 of the first embodiment can prevent erroneous detection of a target.
  • Embodiment 2 FIG.
  • the radar device according to the first embodiment includes a target detection device 10.
  • a radar device including the angle measuring device 60 will be described.
  • FIG. 15 is a configuration diagram illustrating a radar device including the angle measurement device 60 according to the second embodiment.
  • FIG. 16 is a configuration diagram illustrating the transmission / reception unit 50 of the radar device according to the second embodiment.
  • FIG. 17 is a hardware configuration diagram illustrating hardware of the angle measurement device 60 according to the second embodiment. 15 to 17, the same reference numerals as those in FIGS. 1 to 3 denote the same or corresponding parts, and a description thereof will be omitted.
  • the transmission / reception unit 50 includes a transmission unit 2, M (M is an integer of 1 or more) transmission / reception switches 3-1 to 3-M, M transmission / reception antennas 4-1 to 4-M, and a reception unit 5. I have.
  • the transmission / reception unit 50 generates a transmission RF signal, radiates the transmission RF signal into space as an electromagnetic wave, and then receives the transmission RF signal reflected on the target as a reception RF signal. Since the transmission / reception unit 50 includes M transmission / reception switching units 3-1 to 3-M and M transmission / reception antennas 4-1 to 4-M, it can be used as, for example, an adaptive array antenna. Become.
  • the signal processing unit 20 includes a pulse compression unit 21, a map creation unit 22, a target detection unit 23, and an angle measurement unit 24.
  • the peak detection processing unit 23b of the target detection unit 23 extracts the respective phases of the plurality of targets, and outputs the respective phases to the angle measurement unit 24.
  • the angle measuring unit 24 is realized by, for example, an angle measuring circuit 37 shown in FIG.
  • the angle measuring unit 24 measures angles of a plurality of targets by performing angle measuring processing such as a monopulse angle measuring method using the phase output from the peak detection processing unit 23b.
  • the operation of the radar apparatus shown in FIG. 15 will be described. Here, parts different from the radar apparatus shown in FIG. 1 will be described.
  • the received data s r0 (n, h) as shown in Expression (8) is obtained from the A / D converter 5b. Is output to the data storage unit 6.
  • the number of transmission / reception antennas 4-1 to 4-M provided in the transmission / reception unit 1 is M
  • reception from the A / D converter 5b as shown in the following equation (28) is performed.
  • the data s r0 (n, h, m) is output to the data storage unit 6.
  • m is the antenna number of the transmitting / receiving antennas 4-1 to 4-M
  • M is the number of the transmitting / receiving antennas 4-1 to 4-M
  • d is the number of the transmitting / receiving antennas 4-1 to 4-M.
  • the interval, ⁇ is a target angle with respect to the transmitting / receiving antennas 4-1 to 4-M.
  • the operation of the signal processing condition determining unit 11 is the same as that of the first embodiment, and a description thereof will be omitted.
  • the pulse compression section 21 acquires the reception data s r0 (n, h, m) and the reference data s ref (n, h, m) from the data storage section 6.
  • Pulse compressor 21 when the range window function selection unit 13a receives the range window function w r, as shown in the following equation (29), the received data s r0 (n, h, m) to the range window function w r Multiply by Pulse compressor 21, when receiving the notification that no multiplying the range window function w r from range window function selecting section 13a, as shown in the following equation (30), the received data s r0 (n, h , m) to not multiplied by the range window function w r.
  • the pulse compression unit 21 performs convolution integration of the reference data s ref (n, h, m) on the reception data s r (n, h, m) in the time domain as shown in the following equation (31). By doing so, pulse compression of the received data s r (n, h, m) is performed.
  • the pulse compression section 21 outputs the received data s rfm (n, h, m) after the pulse compression to the map creation section 22.
  • pulse compression unit 21 receives the data s r (n, h, m ) reference data s ref to (n, h, m) convolution integration in time domain, the received data s r (n, h, m) are pulse-compressed.
  • the pulse compression unit 21 may perform pulse compression of the received data s r (n, h, m) by the following method. That is, the pulse compression unit 21 converts each of the received data s r (n, h, m) and the reference data s ref (n, h, m) into a signal in the frequency domain.
  • the pulse compression unit 21 performs a complex multiplication of the frequency domain signal of the received data s r (n, h, m) and the frequency domain signal of the reference data s ref (n, h, m), thereby performing chirp. Remove components. Then, the pulse compression unit 21 converts the complex-multiplied signal into a signal in the time domain, thereby obtaining the reception data s rfm (n, h, m) after pulse compression.
  • the map creator 22 When receiving the Doppler window function w dop from the Doppler window function selector 13b, the map creator 22 receives the pulse-compressed received data s rfm () output from the pulse compressor 21 as shown in the following equation (32). n, h, m) is multiplied by a Doppler window function w dop .
  • the map creating unit 22 receives a notification from the Doppler window function selecting unit 13b not multiplying the Doppler window function w dop , the reception data s rfm (n, h) as shown in the following equation (33). , M ) is not multiplied by the Doppler window function w dop .
  • the map creation unit 22 converts the received data s rfm, w (n, h, m) into a frequency domain in the hit direction, as shown in the following equation (34), so that the range Doppler map s 2D Create (n, k, m).
  • a method of converting the reception data s rfm, w (n, h, m) into the frequency domain in the hit direction a method of performing a fast Fourier transform of the reception data s rfm, w (n, h, m) in the hit direction Can be considered.
  • the map creation unit 22 outputs the range Doppler map s 2D (n, k, m) to the target detection unit 23.
  • Clutter suppressing processor 23a determines, upon receiving from the map generator 22 Range Doppler Maps s 2D (n, k, m ) and range Doppler map s 2D (n, k, m ) with respect to, the direction determination unit 14 By performing the CFAR processing in the set direction, clutter is suppressed.
  • the clutter suppression processing unit 23a outputs the range Doppler map s 2D, CFAR (n, k, m) after the CFAR processing to the peak detection processing unit 23b.
  • Peak detection processing section 23b clutter suppression processing section 23a from the range Doppler map s 2D, CFAR (n, k , m) receives the, as the detection processing of a plurality of targets, range Doppler map s 2D, CFAR (n, k , M) is detected.
  • the peak detection processing unit 23b extracts the respective phases of the plurality of targets and outputs the respective phases to the angle measuring unit 24.
  • the angle measurement unit 24 When the angle measurement unit 24 receives the phases of the plurality of targets from the peak detection processing unit 23b, the angle measurement unit 24 measures the plurality of targets by performing angle measurement processing such as a monopulse angle measurement method using the phases of the plurality of targets. Corner.
  • the angle measurement unit 24 outputs angle measurement values of a plurality of targets to the injection device 100.
  • the angle measurement unit 24 uses the sum signal ⁇ shown in the following equation (35) and the difference signal ⁇ shown in the following equation (36) to The angle error voltage ⁇ shown in the equation (37) is calculated.
  • G i is the i-th target signal in the range Doppler map for the received RF signal of one transmission and reception antennas of the transmitting and receiving antennas 4-1 ⁇ 4-M.
  • one receiving antenna is, if the transmitting and receiving antenna 4-m, G i is the i-th target signal in the range Doppler map s 2D (n, k, m ).
  • U i is the i-th target signal in the range Doppler map for the reception RF signal of another transmission / reception antenna among transmission / reception antennas 4-1 to 4-M.
  • the other one receiving antenna if the transmitting and receiving antenna 4- (m + 1), G i is the i-th target signal in the range Doppler map s 2D (n, k, m + 1). ⁇ is a phase difference between the target signal G i and the target signal U i .
  • the phase difference ⁇ is represented by the following equation (38).
  • x is a phase center distance between the target signal G i and the target signal U i
  • ⁇ i is a target angle.
  • the target angle ⁇ i is expressed by Expression (39) below.
  • Angle measuring unit 24 as angle measurement values of the plurality of targets, using equation (39) calculates an angle theta i of the plurality of targets.
  • the angle measurement unit 24 calculates the average value ⁇ bar of the plurality of target angles ⁇ i as shown in the following Expression (40).
  • the symbol "-" cannot be attached to the character because of the electronic filing, so that it is represented as " ⁇ bar”.
  • n ⁇ is the angle measurement value number of a plurality of targets
  • N ⁇ is the number of angle measurement values of a plurality of targets.
  • the angle measurement unit 24 calculates the average value ⁇ bar of the angle measurement values of the plurality of targets
  • the variance ⁇ ⁇ 2 of the angle measurement values of the plurality of targets is expressed by the following equation (41).
  • the angle measurement unit 24 calculates an average value ⁇ bar of the angle measurement values of the plurality of targets, so that the standard deviation ⁇ ⁇ of the angle measurement values of the plurality of targets is expressed by the following equation (42).
  • the angle measurement unit 24 calculates the average value ⁇ bar of the angle measurement values of the plurality of targets, the variance value ⁇ ⁇ 2 is reduced, and the dispersion of the angle measurement values of the plurality of targets is reduced. improves.
  • the angle measurement unit 24 outputs the average value ⁇ bar of the angle measurement values of the plurality of targets to the injection device 100.
  • the injection device 100 calculates, for example, a difference between the average angle measurement value ⁇ bar and the emission angles of a plurality of targets. Then, the injection device 100 corrects the injection angles of a plurality of targets based on the calculated difference.
  • the radar device is configured to include the angle measuring unit 24 that measures the angle of a plurality of targets from the phase extracted by the target detecting unit 23. Therefore, the radar device according to the second embodiment can measure the angle of the detected target without causing erroneous detection.
  • any combination of the embodiments, a modification of an arbitrary component of each embodiment, or an omission of any component in each embodiment is possible within the scope of the invention. .
  • the present invention relates to a target detection device for detecting a target and a radar device. Further, the present invention is suitable for an angle measuring device that measures an angle of a target.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

This angle measurement device (10) comprises a direction determination unit (14) for using the relative distances between a plurality of targets and the relative Doppler frequencies between the plurality of targets to determine an execution direction for constant false alarm rate processing of a range-Doppler map created by a map creation unit (22), and is configured such that clutter included in the range-Doppler map is suppressed as a result of a target detection unit (23) executing constant false alarm rate processing on the range-Doppler map in the direction determined by the direction determination unit (14).

Description

目標検出装置、測角装置及びレーダ装置Target detecting device, angle measuring device and radar device
 この発明は、目標を検出する目標検出装置及びレーダ装置と、目標を測角する測角装置とに関するものである。 The present invention relates to a target detecting device and a radar device for detecting a target, and an angle measuring device for measuring an angle of the target.
 以下の特許文献1には、ターゲットまでの距離及びターゲットの速度を検出するFMCWレーダ装置が開示されている。
 特許文献1に開示されているFMCWレーダ装置では、ターゲットに反射された受信信号に含まれているサイドローブを低減するために、受信信号に窓関数を乗算するようにしている。
 受信信号に乗算する窓関数は、複数のターゲットのピーク周波数が互いに接近している場合、分解能を向上させる第1の窓関数であり、複数のターゲットのピーク周波数が離れている場合、サイドローブを低減する第2の窓関数である。
Patent Document 1 below discloses an FMCW radar device that detects a distance to a target and a speed of the target.
In the FMCW radar device disclosed in Patent Literature 1, a received signal is multiplied by a window function in order to reduce side lobes contained in the received signal reflected on the target.
The window function by which the received signal is multiplied is a first window function for improving the resolution when the peak frequencies of a plurality of targets are close to each other. It is a 2nd window function to reduce.
特開平11-271432号公報JP-A-11-271432
 従来のレーダ装置は、受信信号に含まれているクラッタ成分を抑圧して、目標の検出性能を高めるために、一定誤警報率(CFAR:Constant False Alarm Rate)処理を実施することがある。特許文献1に開示されているFMCWレーダ装置では、受信信号に窓関数を乗算する処理を実施していても、CFAR処理については実施していない。
 しかし、複数の目標の間の相対距離が小さいときに、CFAR処理をドップラー周波数方向に実施すると、或る目標におけるドップラー周波数方向のサンプルセル内に、隣の目標の電力が漏れ込み、CFAR閾値を正しく算出できなくなることがある。
 また、複数の目標の間の相対ドップラー周波数が小さいときに、CFAR処理をレンジ方向に実施すると、或る目標におけるレンジ方向のサンプルセル内に、隣の目標の電力が漏れ込み、CFAR閾値を正しく算出できなくなることがある。CFAR閾値を正しく算出できなければ、目標の誤検出を招く可能性が高くなる。
 したがって、従来のレーダ装置では、CFAR閾値を正しく算出することができないために、CFAR処理を実施しても、目標の誤検出を招いてしまうことがあるという課題があった。
2. Description of the Related Art Conventional radar apparatuses sometimes perform a constant false alarm rate (CFAR) process in order to suppress clutter components included in a received signal and improve target detection performance. In the FMCW radar device disclosed in Patent Literature 1, even though the process of multiplying the received signal by the window function is performed, the CFAR process is not performed.
However, when the CFAR processing is performed in the Doppler frequency direction when the relative distance between a plurality of targets is small, the power of an adjacent target leaks into a sample cell in the Doppler frequency direction at a certain target, and the CFAR threshold is reduced. It may not be possible to calculate correctly.
Further, when the relative Doppler frequency between a plurality of targets is small, if the CFAR processing is performed in the range direction, the power of an adjacent target leaks into a sample cell in the range direction of a certain target, and the CFAR threshold is correctly set. The calculation may not be possible. If the CFAR threshold cannot be calculated correctly, the possibility of erroneous detection of the target increases.
Therefore, in the conventional radar apparatus, since the CFAR threshold cannot be calculated correctly, there is a problem that even if the CFAR processing is performed, a target may be erroneously detected.
 この発明は上記のような課題を解決するためになされたもので、目標の誤検出を防止することができる目標検出装置及びレーダ装置を得ることを目的とする。 The present invention has been made to solve the above problems, and has as its object to obtain a target detection device and a radar device that can prevent erroneous detection of a target.
 この発明に係る目標検出装置は、複数の目標に反射された電磁波の受信信号から、複数の目標までの距離と複数の目標のドップラー周波数とを示すレンジドップラーマップを作成するマップ作成部と、複数の目標の間の相対距離と複数の目標の間の相対ドップラー周波数とに基づいて、レンジドップラーマップに対する一定誤警報率処理の実施方向を決定する方向決定部と、マップ作成部により作成されたレンジドップラーマップに対する一定誤警報率処理を方向決定部により決定された方向に実施することで、レンジドップラーマップに含まれているクラッタを抑圧し、クラッタ抑圧後のレンジドップラーマップから、複数の目標を検出する目標検出部とを備えるようにしたものである。 A target detection device according to the present invention, a received signal of electromagnetic waves reflected by a plurality of targets, a map creation unit that creates a range Doppler map indicating the distance to the plurality of targets and the Doppler frequency of the plurality of targets, A direction determining unit that determines a direction in which a constant false alarm rate process is performed on the range Doppler map based on a relative distance between the targets and a relative Doppler frequency between the plurality of targets; and a range created by the map creating unit. By performing the constant false alarm rate process on the Doppler map in the direction determined by the direction determination unit, clutter included in the range Doppler map is suppressed, and multiple targets are detected from the range Doppler map after clutter suppression. And a target detection unit that performs the processing.
 この発明によれば、複数の目標の間の相対距離と複数の目標の間の相対ドップラー周波数とに基づいて、レンジドップラーマップに対する一定誤警報率処理の実施方向を決定する方向決定部を設け、目標検出部が、マップ作成部により作成されたレンジドップラーマップに対する一定誤警報率処理を方向決定部により決定された方向に実施することで、レンジドップラーマップに含まれているクラッタを抑圧するように、目標検出装置を構成した。したがって、この発明に係る目標検出装置は、目標の誤検出を防止することができる。 According to the present invention, based on a relative distance between a plurality of targets and a relative Doppler frequency between a plurality of targets, a direction determining unit that determines a direction in which a constant false alarm rate process is performed on a range Doppler map is provided. The target detection unit performs a constant false alarm rate process on the range Doppler map created by the map creation unit in the direction determined by the direction determination unit, so as to suppress clutter included in the range Doppler map. And a target detecting device. Therefore, the target detection device according to the present invention can prevent erroneous detection of a target.
実施の形態1による目標検出装置10を含むレーダ装置を示す構成図である。1 is a configuration diagram illustrating a radar device including a target detection device 10 according to a first embodiment. 実施の形態1によるレーダ装置の送受信部1を示す構成図である。FIG. 2 is a configuration diagram illustrating a transmission / reception unit 1 of the radar device according to the first embodiment. 実施の形態1による目標検出装置10のハードウェアを示すハードウェア構成図である。FIG. 3 is a hardware configuration diagram illustrating hardware of the target detection device 10 according to the first embodiment. 実施の形態1による目標検出装置10の目標検出部23を示す構成図である。FIG. 2 is a configuration diagram illustrating a target detection unit 23 of the target detection device 10 according to the first embodiment. 目標検出装置10がソフトウェア又はファームウェアなどで実現される場合のコンピュータのハードウェア構成図である。FIG. 2 is a hardware configuration diagram of a computer when the target detection device 10 is realized by software or firmware. 目標検出装置10がソフトウェア又はファームウェアなどで実現される場合の処理手順を示すフローチャートである。9 is a flowchart illustrating a processing procedure when the target detection device 10 is realized by software or firmware. 複数の目標の間の相対距離Δrと相対ドップラー周波数Δfdopとの関係を示す説明図である。FIG. 9 is an explanatory diagram illustrating a relationship between a relative distance Δr between a plurality of targets and a relative Doppler frequency Δf dop . 図8Aは、パルス圧縮部21が受信データsr0(τ,h)にレンジ窓関数wを乗算する前の受信データsr0(τ,h)のレンジ分解能、メインローブ及びサイドローブを示す説明図、図8Bは、パルス圧縮部21が受信データsr0(τ,h)にレンジ窓関数wを乗算した後の受信データs(τ,h)のレンジ分解能、メインローブ及びサイドローブを示す説明図である。8A is range resolution of the received data s r0 (τ, h) before the pulse compression section 21 for multiplying the range window function w r in the received data s r0 (τ, h), shows a main lobe and side lobes Description Figure, FIG. 8B, pulse compression unit 21 is received data s r0 (τ, h) the range window function w r received data after it has been multiplied by the s r (τ, h) range resolution, the main lobe and side lobes FIG. 図9Aは、パルス圧縮部21が受信データsr0(τ,h)にレンジ窓関数wを乗算する前の受信データsr0(τ,h)のメインローブ及びサイドローブを示す説明図、図9B及び図9Cは、パルス圧縮部21が受信データsr0(τ,h)にレンジ窓関数wを乗算した後の受信データs(τ,h)のメインローブ及びサイドローブを示す説明図である。Figure 9A is a pulse compression unit 21 is received data s r0 (τ, h) diagram showing a main lobe and side lobes of the received data s r0 before multiplying the range window function w r in (tau, h), Fig. 9B and 9C are explanatory views showing a main lobe and side lobes of the pulse compressor 21 receives data s r0 (τ, h) receiving after multiplying the range window function w r to the data s r (τ, h) It is. 図10Aは、パルス圧縮部21が受信データsr0(τ,h)にレンジ窓関数wを乗算する前の受信データsr0(τ,h)のメインローブ及びサイドローブを示す説明図、図10B及び図10Cは、パルス圧縮部21が受信データsr0(τ,h)にレンジ窓関数wを乗算した後の受信データs(τ,h)のメインローブ及びサイドローブを示す説明図である。Figure 10A is a pulse compressor 21 receives data s r0 (τ, h) diagram showing a main lobe and side lobes of the received data s r0 before multiplying the range window function w r in (tau, h), Fig. 10B and 10C are explanatory views showing a main lobe and side lobes of the pulse compressor 21 receives data s r0 (τ, h) receiving after multiplying the range window function w r to the data s r (τ, h) It is. レンジ分解能Δrreso,wが相対距離Δrよりも大きい場合でも、互いのメインローブの干渉が少ない例を示す説明図である。FIG. 9 is an explanatory diagram showing an example in which the interference between the main lobes is small even when the range resolution Δr reso, w is larger than the relative distance Δr. CFAR処理の概要を示す説明図である。FIG. 4 is an explanatory diagram illustrating an outline of a CFAR process. 複数の目標(1)(2)が存在している場合のCFAR処理の概要を示す説明図である。FIG. 9 is an explanatory diagram illustrating an outline of a CFAR process when a plurality of targets (1) and (2) exist. 図14Aは、相対ドップラー周波数Δfdopが相対距離Δrよりも小さい場合のCFAR処理の実施方向を示す説明図、図14Bは、相対距離Δrが相対ドップラー周波数Δfdopよりも小さい場合のCFAR処理の実施方向を示す説明図である。FIG. 14A is an explanatory diagram illustrating a direction in which the CFAR process is performed when the relative Doppler frequency Δf dop is smaller than the relative distance Δr. FIG. 14B is a diagram illustrating the execution of the CFAR process when the relative distance Δr is smaller than the relative Doppler frequency Δf dop. It is explanatory drawing which shows a direction. 実施の形態2による測角装置60を含むレーダ装置を示す構成図である。FIG. 9 is a configuration diagram illustrating a radar device including an angle measurement device 60 according to a second embodiment. 実施の形態2によるレーダ装置の送受信部50を示す構成図である。FIG. 9 is a configuration diagram illustrating a transmission / reception unit 50 of the radar device according to the second embodiment. 実施の形態2による測角装置60のハードウェアを示すハードウェア構成図である。FIG. 9 is a hardware configuration diagram illustrating hardware of an angle measurement device 60 according to a second embodiment.
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。 Hereafter, in order to explain this invention in greater detail, the preferred embodiments of the present invention will be described with reference to the accompanying drawings.
実施の形態1.
 図1は、実施の形態1による目標検出装置10を含むレーダ装置を示す構成図である。
 図2は、実施の形態1によるレーダ装置の送受信部1を示す構成図である。
 図1及び図2において、送受信部1は、送信部2、送受切替器3、送受信アンテナ4及び受信部5を備えている。
 送受信部1は、送信RF(Radio Frequency)信号を生成し、送信RF信号を電磁波として空間に放射した後、目標に反射された送信RF信号を受信RF信号として受信する。
Embodiment 1 FIG.
FIG. 1 is a configuration diagram illustrating a radar device including a target detection device 10 according to the first embodiment.
FIG. 2 is a configuration diagram illustrating the transmission / reception unit 1 of the radar device according to the first embodiment.
1 and 2, the transmission / reception unit 1 includes a transmission unit 2, a transmission / reception switch 3, a transmission / reception antenna 4, and a reception unit 5.
The transmission / reception unit 1 generates a transmission RF (Radio Frequency) signal, radiates the transmission RF signal into space as an electromagnetic wave, and then receives the transmission RF signal reflected on the target as a reception RF signal.
 送信部2は、発振器2a、パルス変調器2b及び送信機2cを備えている。
 発振器2aは、送信RF信号を発振し、送信RF信号をパルス変調器2bに出力する。
 パルス変調器2bは、発振器2aから出力された送信RF信号をパルス変調し、パルス変調後の送信RF信号を送信機2cに出力する。
 また、パルス変調器2bは、受信RF信号のダウンコンバート用の信号を受信機5aに出力する。
 また、パルス変調器2bは、パルス圧縮に用いる信号として、参照信号をアナログデジタル変換器(以下、「A/D変換器」と称する)5bに出力する。
 送信機2cは、パルス変調器2bから出力されたパルス変調後の送信RF信号の増幅処理等を実施して、パルス変調後の送信RF信号を送受切替器3に出力する。
The transmission unit 2 includes an oscillator 2a, a pulse modulator 2b, and a transmitter 2c.
The oscillator 2a oscillates a transmission RF signal and outputs the transmission RF signal to the pulse modulator 2b.
The pulse modulator 2b performs pulse modulation on the transmission RF signal output from the oscillator 2a, and outputs the transmission RF signal after pulse modulation to the transmitter 2c.
Further, the pulse modulator 2b outputs a signal for down-conversion of the received RF signal to the receiver 5a.
The pulse modulator 2b outputs a reference signal to an analog-to-digital converter (hereinafter, referred to as an "A / D converter") 5b as a signal used for pulse compression.
The transmitter 2c performs amplification processing of the pulse-modulated transmission RF signal output from the pulse modulator 2b, and outputs the pulse-modulated transmission RF signal to the transmission / reception switch 3.
 送受切替器3は、送信機2cから出力された送信RF信号を送受信アンテナ4に出力し、送受信アンテナ4により受信された受信RF信号を受信機5aに出力する。
 送受信アンテナ4は、送受切替器3から出力された送信RF信号を電磁波として空間に放射するとともに、目標に反射された送信RF信号を受信RF信号として受信し、受信RF信号を送受切替器3に出力する。
The transmission / reception switch 3 outputs the transmission RF signal output from the transmitter 2c to the transmission / reception antenna 4, and outputs the reception RF signal received by the transmission / reception antenna 4 to the receiver 5a.
The transmission / reception antenna 4 radiates the transmission RF signal output from the transmission / reception switch 3 to space as an electromagnetic wave, receives the transmission RF signal reflected on the target as a reception RF signal, and transmits the reception RF signal to the transmission / reception switch 3. Output.
 受信部5は、受信機5a及びA/D変換器5bを備えている。
 受信機5aは、送受切替器3から出力された受信RF信号に対する増幅処理等などの受信処理を実施する。
 また、受信機5aは、パルス変調器2bから出力されたダウンコンバート用の信号を用いて、受信RF信号の周波数をダウンコンバートする。
 受信機5aは、周波数をダウンコンバートした受信信号をA/D変換器5bに出力する。
 A/D変換器5bは、受信機5aから出力された受信信号をアナログ信号からデジタル信号に変換し、当該デジタル信号を受信データとしてデータ格納部6に出力する。
 A/D変換器5bは、パルス変調器2bから出力された参照信号をアナログ信号からデジタル信号に変換し、当該デジタル信号を参照データとしてデータ格納部6に出力する。
 データ格納部6は、A/D変換器5bから出力された受信データ及び参照データのそれぞれを格納する記憶媒体である。
The receiving unit 5 includes a receiver 5a and an A / D converter 5b.
The receiver 5a performs a reception process such as an amplification process on the reception RF signal output from the transmission / reception switch 3.
The receiver 5a down-converts the frequency of the received RF signal using the down-converting signal output from the pulse modulator 2b.
The receiver 5a outputs the received signal whose frequency has been down-converted to the A / D converter 5b.
The A / D converter 5b converts the received signal output from the receiver 5a from an analog signal to a digital signal, and outputs the digital signal to the data storage unit 6 as received data.
The A / D converter 5b converts the reference signal output from the pulse modulator 2b from an analog signal to a digital signal, and outputs the digital signal to the data storage unit 6 as reference data.
The data storage unit 6 is a storage medium that stores the received data and the reference data output from the A / D converter 5b.
 目標検出装置10は、信号処理条件決定部11及び信号処理部20を備えている。
 目標検出装置10は、データ格納部6により格納されている受信データ及び参照データのそれぞれを用いて、経過時間毎に、射出装置100から連続的に射出された複数の目標を検出する装置である。
 射出装置100は、複数の目標を連続的に空間に射出する装置である。
 射出装置100は、複数の目標の射出条件として、複数の目標の射出速度、射出角度及び射出時間間隔などを示す情報を目標検出装置10に出力する。
The target detection device 10 includes a signal processing condition determination unit 11 and a signal processing unit 20.
The target detection device 10 is a device that detects a plurality of targets continuously ejected from the ejection device 100 for each elapsed time using each of the reception data and the reference data stored by the data storage unit 6. .
The injection apparatus 100 is an apparatus that continuously injects a plurality of targets into a space.
The injection device 100 outputs, to the target detection device 10, information indicating the injection speed, the injection angle, the injection time interval, and the like of the multiple targets as the injection conditions of the multiple targets.
 図3は、実施の形態1による目標検出装置10のハードウェアを示すハードウェア構成図である。
 信号処理条件決定部11は、相対値算出部12、窓関数選択部13及び方向決定部14を備えている。
 相対値算出部12は、例えば、図3に示す相対値算出回路31によって実現される。
 相対値算出部12は、射出装置100から、複数の目標の射出条件を取得する。
 相対値算出部12は、複数の目標の射出条件から、複数の目標の軌道を予測し、軌道の予測結果から、複数の目標の間の相対距離を算出する。
 また、相対値算出部12は、複数の目標の射出条件から、複数の目標の間の相対ドップラー周波数を算出する。
FIG. 3 is a hardware configuration diagram illustrating hardware of the target detection device 10 according to the first embodiment.
The signal processing condition determination unit 11 includes a relative value calculation unit 12, a window function selection unit 13, and a direction determination unit 14.
The relative value calculation unit 12 is realized by, for example, a relative value calculation circuit 31 illustrated in FIG.
The relative value calculation unit 12 acquires a plurality of target injection conditions from the injection device 100.
The relative value calculation unit 12 predicts the trajectories of the plurality of targets from the injection conditions of the plurality of targets, and calculates the relative distance between the plurality of targets from the trajectory prediction result.
Further, the relative value calculation unit 12 calculates a relative Doppler frequency between a plurality of targets from the injection conditions of the plurality of targets.
 窓関数選択部13は、レンジ窓関数選択部13a及びドップラー窓関数選択部13bを備えており、例えば、図3に示す窓関数選択回路32によって実現される。
 レンジ窓関数選択部13aは、複数のレンジ窓関数の中から、相対値算出部12により算出された相対距離に対応するレンジ窓関数を選択し、選択したレンジ窓関数をパルス圧縮部21に出力する。
 ドップラー窓関数選択部13bは、複数のドップラー窓関数の中から、相対値算出部12により算出された相対ドップラー周波数に対応するドップラー窓関数を選択し、選択したドップラー窓関数をマップ作成部22に出力する。
The window function selection unit 13 includes a range window function selection unit 13a and a Doppler window function selection unit 13b, and is realized by, for example, a window function selection circuit 32 illustrated in FIG.
The range window function selector 13a selects a range window function corresponding to the relative distance calculated by the relative value calculator 12 from the plurality of range window functions, and outputs the selected range window function to the pulse compressor 21. I do.
The Doppler window function selection unit 13b selects a Doppler window function corresponding to the relative Doppler frequency calculated by the relative value calculation unit 12 from the plurality of Doppler window functions, and sends the selected Doppler window function to the map creation unit 22. Output.
 方向決定部14は、例えば、図3に示す方向決定回路33によって実現される。
 方向決定部14は、相対値算出部12により算出された相対距離と相対ドップラー周波数とに基づいて、レンジドップラーマップに対する一定誤警報率(CFAR:Constant False Alarm Rate)処理の実施方向を決定する。
 方向決定部14は、決定した実施方向を目標検出部23に出力する。
The direction determining unit 14 is realized by, for example, a direction determining circuit 33 illustrated in FIG.
The direction determining unit 14 determines an execution direction of a constant false alarm rate (CFAR) process for the range Doppler map based on the relative distance and the relative Doppler frequency calculated by the relative value calculating unit 12.
The direction determination unit 14 outputs the determined execution direction to the target detection unit 23.
 信号処理部20は、パルス圧縮部21、マップ作成部22及び目標検出部23を備えている。
 パルス圧縮部21は、例えば、図3に示すパルス圧縮回路34によって実現される。
 パルス圧縮部21は、データ格納部6により格納されている受信データに、レンジ窓関数選択部13aから出力されたレンジ窓関数を乗算する。
 パルス圧縮部21は、データ格納部6により格納されている参照データを用いて、レンジ窓関数乗算後の受信データのパルス圧縮を実施し、パルス圧縮後の受信データをマップ作成部22に出力する。
The signal processing unit 20 includes a pulse compression unit 21, a map creation unit 22, and a target detection unit 23.
The pulse compression unit 21 is realized by, for example, a pulse compression circuit 34 illustrated in FIG.
The pulse compression unit 21 multiplies the received data stored by the data storage unit 6 by the range window function output from the range window function selection unit 13a.
The pulse compression unit 21 performs pulse compression of the received data after multiplication by the range window function using the reference data stored by the data storage unit 6 and outputs the received data after the pulse compression to the map creation unit 22. .
 マップ作成部22は、例えば、図3に示すマップ作成回路35によって実現される。
 マップ作成部22は、パルス圧縮部21から出力されたパルス圧縮後の受信データに、ドップラー窓関数選択部13bから出力されたドップラー窓関数を乗算する。
 マップ作成部22は、ドップラー窓関数乗算後の受信データをヒット方向の周波数領域に変換することで、レンジドップラーマップを作成し、レンジドップラーマップを目標検出部23に出力する。
 レンジドップラーマップは、複数の目標までの距離と複数の目標のドップラー周波数とを示す2次元データである。
The map creation unit 22 is realized by, for example, a map creation circuit 35 illustrated in FIG.
The map creator 22 multiplies the pulse-compressed reception data output from the pulse compressor 21 by the Doppler window function output from the Doppler window function selector 13b.
The map creation unit 22 creates a range Doppler map by converting the received data after the Doppler window function multiplication into a frequency domain in the hit direction, and outputs the range Doppler map to the target detection unit 23.
The range Doppler map is two-dimensional data indicating distances to a plurality of targets and Doppler frequencies of the plurality of targets.
 目標検出部23は、図4に示すように、クラッタ抑圧処理部23a及びピーク検出処理部23bを備えている。
 目標検出部23は、例えば、図3に示す目標検出回路36によって実現される。
 目標検出部23は、マップ作成部22から出力されたレンジドップラーマップから、複数の目標を検出する。
As shown in FIG. 4, the target detection unit 23 includes a clutter suppression processing unit 23a and a peak detection processing unit 23b.
The target detection unit 23 is realized by, for example, a target detection circuit 36 illustrated in FIG.
The target detection unit 23 detects a plurality of targets from the range Doppler map output from the map creation unit 22.
 図4は、実施の形態1による目標検出装置10の目標検出部23を示す構成図である。
 図4において、クラッタ抑圧処理部23aは、マップ作成部22により作成されたレンジドップラーマップに対して、方向決定部14により決定された方向にCFAR処理を実施することで、クラッタを抑圧する。
 クラッタ抑圧処理部23aは、クラッタ抑圧後のレンジドップラーマップをピーク検出処理部23bに出力する。
 ピーク検出処理部23bは、クラッタ抑圧処理部23aから出力されたレンジドップラーマップに含まれているピーク値を検出することで、複数の目標を検出する。
FIG. 4 is a configuration diagram illustrating the target detection unit 23 of the target detection device 10 according to the first embodiment.
In FIG. 4, the clutter suppression processing unit 23 a suppresses clutter by performing CFAR processing on the range Doppler map created by the map creation unit 22 in the direction determined by the direction determination unit 14.
The clutter suppression processing unit 23a outputs the range Doppler map after the clutter suppression to the peak detection processing unit 23b.
The peak detection processing unit 23b detects a plurality of targets by detecting a peak value included in the range Doppler map output from the clutter suppression processing unit 23a.
 図1では、目標検出装置10の構成要素である相対値算出部12、窓関数選択部13、方向決定部14、パルス圧縮部21、マップ作成部22及び目標検出部23のそれぞれが、図3に示すような専用のハードウェアで実現されるものを想定している。即ち、目標検出装置10が、相対値算出回路31、窓関数選択回路32、方向決定回路33、パルス圧縮回路34、マップ作成回路35及び目標検出回路36で実現されるものを想定している。
 ここで、相対値算出回路31、窓関数選択回路32、方向決定回路33、パルス圧縮回路34、マップ作成回路35及び目標検出回路36は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、又は、これらを組み合わせたものが該当する。
In FIG. 1, each of the relative value calculation unit 12, window function selection unit 13, direction determination unit 14, pulse compression unit 21, map creation unit 22, and target detection unit 23, which are the components of the target detection device 10, is shown in FIG. It is assumed that it is realized by dedicated hardware as shown in (1). That is, it is assumed that the target detection device 10 is realized by a relative value calculation circuit 31, a window function selection circuit 32, a direction determination circuit 33, a pulse compression circuit 34, a map creation circuit 35, and a target detection circuit 36.
Here, the relative value calculation circuit 31, the window function selection circuit 32, the direction determination circuit 33, the pulse compression circuit 34, the map creation circuit 35, and the target detection circuit 36 are, for example, a single circuit, a composite circuit, a programmed processor, A processor programmed in parallel, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination thereof is applicable.
 目標検出装置10の構成要素は、専用のハードウェアで実現されるものに限るものではなく、目標検出装置10がソフトウェア、ファームウェア、又は、ソフトウェアとファームウェアとの組み合わせで実現されるものであってもよい。
 ソフトウェア又はファームウェアは、プログラムとして、コンピュータのメモリに格納される。コンピュータは、プログラムを実行するハードウェアを意味し、例えば、CPU(Central Processing Unit)、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサ、あるいは、DSP(Digital Signal Processor)が該当する。
 図5は、目標検出装置10がソフトウェア又はファームウェアなどで実現される場合のコンピュータのハードウェア構成図である。
 目標検出装置10がソフトウェア又はファームウェアなどで実現される場合、相対値算出部12、窓関数選択部13、方向決定部14、パルス圧縮部21、マップ作成部22及び目標検出部23の処理手順をコンピュータに実行させるためのプログラムがメモリ41に格納される。そして、コンピュータのプロセッサ42がメモリ41に格納されているプログラムを実行する。
 図6は、目標検出装置10がソフトウェア又はファームウェアなどで実現される場合の処理手順を示すフローチャートである。
The constituent elements of the target detection device 10 are not limited to those realized by dedicated hardware, and even if the target detection device 10 is realized by software, firmware, or a combination of software and firmware. Good.
Software or firmware is stored as a program in the memory of the computer. The computer means hardware for executing a program, for example, a CPU (Central Processing Unit), a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, a processor, or a DSP (Digital Signal Processor). I do.
FIG. 5 is a hardware configuration diagram of a computer when the target detection device 10 is realized by software or firmware.
When the target detection device 10 is realized by software or firmware, the processing procedure of the relative value calculation unit 12, the window function selection unit 13, the direction determination unit 14, the pulse compression unit 21, the map creation unit 22, and the target detection unit 23 A program to be executed by a computer is stored in the memory 41. Then, the processor 42 of the computer executes the program stored in the memory 41.
FIG. 6 is a flowchart illustrating a processing procedure when the target detection device 10 is realized by software or firmware.
 また、図3では、目標検出装置10の構成要素のそれぞれが専用のハードウェアで実現される例を示し、図5では、目標検出装置10がソフトウェア又はファームウェアなどで実現される例を示している。しかし、これは一例に過ぎず、目標検出装置10における一部の構成要素が専用のハードウェアで実現され、残りの構成要素がソフトウェア又はファームウェアなどで実現されるものであってもよい。 FIG. 3 shows an example in which each of the components of the target detection device 10 is realized by dedicated hardware, and FIG. 5 shows an example in which the target detection device 10 is realized by software or firmware. . However, this is only an example, and some components of the target detection device 10 may be realized by dedicated hardware, and the remaining components may be realized by software or firmware.
 次に、図1に示すレーダ装置の動作について説明する。
 発振器2aは、送信RF信号sosc(τ)を発振し、送信RF信号sosc(τ)をパルス変調器2bに出力する。
 図1に示すレーダ装置では、発振器2aが、送信RF信号sosc(τ)として、時間の経過に伴って周波数が変化するチャープ信号を発振するものとする。
 時間の経過に伴って周波数が変化する送信RF信号sosc(τ)は、以下の式(1)のように表される。
Figure JPOXMLDOC01-appb-I000001
 式(1)において、Ampは、送信RF信号sosc(τ)の振幅、τは、レンジ方向の時間、Kは、チャープ率である。
Next, the operation of the radar device shown in FIG. 1 will be described.
The oscillator 2a oscillates the transmission RF signal s osc (τ) and outputs the transmission RF signal s osc (τ) to the pulse modulator 2b.
In the radar device shown in FIG. 1, it is assumed that the oscillator 2a oscillates a chirp signal whose frequency changes with time as the transmission RF signal s os (τ).
The transmission RF signal s os (τ) whose frequency changes with the passage of time is represented by the following equation (1).
Figure JPOXMLDOC01-appb-I000001
In the formula (1), Amp is the amplitude of the transmitted RF signal s osc (τ), τ is the time in the range direction, K r is the chirp rate.
 パルス変調器2bは、発振器2aから送信RF信号sosc(τ)を受けると、送信RF信号sosc(τ)をパルス変調し、パルス変調後の送信RF信号s(τ)を送信機2cに出力する。
 パルス変調後の送信RF信号s(τ)は、以下の式(2)のように表される。
Figure JPOXMLDOC01-appb-I000002
 式(2)において、fは、送信RF信号s(τ)の中心周波数である。
 チャープ率Kは、以下の式(3)のように表される。
Figure JPOXMLDOC01-appb-I000003
 式(3)において、Bは、送信RF信号s(τ)の周波数帯域幅、Tは、送信RF信号s(τ)を構成しているパルス信号のパルス幅である。
Upon receiving the transmission RF signal s os (τ) from the oscillator 2a, the pulse modulator 2b pulse-modulates the transmission RF signal s os (τ) and transmits the pulse-modulated transmission RF signal s t (τ) to the transmitter 2c. Output to
The transmission RF signal st (τ) after the pulse modulation is represented by the following equation (2).
Figure JPOXMLDOC01-appb-I000002
In the equation (2), fc is the center frequency of the transmission RF signal st (τ).
The chirp rate Kr is represented by the following equation (3).
Figure JPOXMLDOC01-appb-I000003
In the formula (3), B is the frequency bandwidth of the transmission RF signal s t (τ), T p is the pulse width of the pulse signal constituting the transmission RF signal s t (τ).
 また、パルス変調器2bは、受信RF信号sのダウンコンバート用の信号sdown(τ)を受信機5aに出力する。
 信号sdown(τ)は、以下の式(4)のように表される。
Figure JPOXMLDOC01-appb-I000004
 また、パルス変調器2bは、パルス圧縮部21がパルス圧縮に用いる信号として、参照信号sref(τ)をA/D変換器5bに出力する。
 参照信号sref(τ)は、以下の式(5)に示すように、パルス変調後の送信RF信号s(τ)におけるチャープ成分の位相の複素共役がとられた信号である。
Figure JPOXMLDOC01-appb-I000005
Further, the pulse modulator 2b outputs a signal s down (τ) for down-conversion of the received RF signal s r to the receiver 5a.
The signal s down (τ) is represented by the following equation (4).
Figure JPOXMLDOC01-appb-I000004
Further, the pulse modulator 2b outputs the reference signal s ref (τ) to the A / D converter 5b as a signal used by the pulse compression unit 21 for pulse compression.
The reference signal s ref (τ) is a signal obtained by taking the complex conjugate of the phase of the chirp component in the transmission RF signal st (τ) after pulse modulation, as shown in the following equation (5).
Figure JPOXMLDOC01-appb-I000005
 送信機2cは、パルス変調器2bからパルス変調後の送信RF信号s(τ)を受けると、送信RF信号s(τ)の増幅処理等を実施して、送信RF信号s(τ)を送受切替器3に出力する。
 送受切替器3は、送信機2cから出力された送信RF信号s(τ)を送受信アンテナ4に出力することで、送受信アンテナ4から送信RF信号s(τ)を電磁波として空間に放射させる。
 送受信アンテナ4から放射された送信RF信号s(τ)は、目標に反射されて、送受信アンテナ4に戻ってくる。
 送受信アンテナ4は、目標に反射された送信RF信号s(τ)を受信RF信号s(τ)として受信し、受信RF信号s(τ)を送受切替器3に出力する。
Transmitter 2c receives the transmission from the pulse modulator 2b after the pulse-modulated RF signal s t (tau), and out an amplification processing and the like of the transmission RF signal s t (tau), transmission RF signal s t (tau ) Is output to the transmission / reception switch 3.
The transmission / reception switch 3 outputs the transmission RF signal st (τ) output from the transmitter 2c to the transmission / reception antenna 4, so that the transmission RF signal st (τ) is emitted from the transmission / reception antenna 4 to space as an electromagnetic wave. .
The transmission RF signal st (τ) radiated from the transmitting / receiving antenna 4 is reflected by the target and returns to the transmitting / receiving antenna 4.
The transmission / reception antenna 4 receives the transmission RF signal st (τ) reflected on the target as the reception RF signal s r (τ), and outputs the reception RF signal s r (τ) to the transmission / reception switch 3.
 送受切替器3は、送受信アンテナ4から出力された受信RF信号s(τ)を受信機5aに出力する。
 或る1つの目標に反射された受信RF信号s(τ)は、以下の式(6)のように表される。
Figure JPOXMLDOC01-appb-I000006
 式(6)において、Amp’は、受信RF信号s(τ)の振幅であり、Amp>Amp’である。
 τは、送受信アンテナ4から送信RF信号s(τ)が放射されたのち、目標に反射されて、受信RF信号s(τ)が送受信アンテナ4に戻ってくるまでの往復反射時間であり、以下の式(7)のように表される。
Figure JPOXMLDOC01-appb-I000007
 式(7)において、cは、電磁波の伝搬速度であり、R(τ)は、送受信アンテナ4から1つの目標までの距離である。
The transmission / reception switch 3 outputs the reception RF signal s r (τ) output from the transmission / reception antenna 4 to the receiver 5a.
The received RF signal s r (τ) reflected on a certain target is represented by the following equation (6).
Figure JPOXMLDOC01-appb-I000006
In Equation (6), Amp ′ is the amplitude of the received RF signal s r (τ), and Amp> Amp ′.
τ d is a round-trip reflection time from when the transmission RF signal st (τ) is radiated from the transmission / reception antenna 4 to when it is reflected to the target and the reception RF signal s r (τ) returns to the transmission / reception antenna 4. And is expressed as in the following equation (7).
Figure JPOXMLDOC01-appb-I000007
In the equation (7), c is the propagation speed of the electromagnetic wave, and R (τ) is the distance from the transmitting / receiving antenna 4 to one target.
 受信機5aは、送受切替器3から受信RF信号s(τ)を受けると、受信RF信号sに対する増幅処理等などの受信処理を実施する。
 また、受信機5aは、パルス変調器2bから出力されたダウンコンバート用の信号sdown(τ)を用いて、受信処理後の受信RF信号の周波数をダウンコンバートする。
 受信機5aは、周波数をダウンコンバートした受信信号をA/D変換器5bに出力する。
Upon receiving the received RF signal s r (τ) from the transmission / reception switch 3, the receiver 5a performs a receiving process such as an amplification process on the received RF signal s r .
Further, the receiver 5a down-converts the frequency of the received RF signal after the reception processing using the down-conversion signal s down (τ) output from the pulse modulator 2b.
The receiver 5a outputs the received signal whose frequency has been down-converted to the A / D converter 5b.
 A/D変換器5bは、パルス変調器2bから受信信号を受けると、受信信号をアナログ信号からデジタル信号に変換し、当該デジタル信号を受信データsr0(n,h)としてデータ格納部6に出力する。
 受信データsr0(n,h)は、以下の式(8)のように表される。
Figure JPOXMLDOC01-appb-I000008
 式(8)において、Amp’は、受信データsr0(n,h)のヒット毎の振幅、Tpriは、パルス繰り返し周期(PRI)、nは、PRI内のサンプリング番号、Δtは、PRI内のサンプリング間隔である。
 hは、ヒット番号、Hは、ヒット数であり、以下の式(9)のように表される。
Figure JPOXMLDOC01-appb-I000009
 式(9)において、floorは、(T/Tpri)で表される値の小数点を切り捨てる関数である。
 式(8)に示す受信データsr0(τ,h)は、レンジ方向の時間τとヒット番号hとで表される2次元のデータとしてデータ格納部6に格納される。
When receiving the received signal from the pulse modulator 2b, the A / D converter 5b converts the received signal from an analog signal to a digital signal, and converts the digital signal into the data storage unit 6 as received data sr0 (n, h). Output.
The received data s r0 (n, h) is represented by the following equation (8).
Figure JPOXMLDOC01-appb-I000008
In the equation (8), Amp ′ h is the amplitude of each hit of the received data s r0 (n, h), T pri is the pulse repetition period (PRI), n is the sampling number in the PRI, and Δt is the PRI Within the sampling interval.
h is the hit number and H is the number of hits, which is represented by the following equation (9).
Figure JPOXMLDOC01-appb-I000009
In Expression (9), floor is a function for rounding down the decimal point of the value represented by (T p / T pri ).
The received data s r0 (τ, h) shown in Expression (8) is stored in the data storage unit 6 as two-dimensional data represented by the time τ in the range direction and the hit number h.
 A/D変換器5bは、パルス変調器2bから参照信号sref(τ)を受けると、参照信号sref(τ)をアナログ信号からデジタル信号に変換し、当該デジタル信号を参照データsref(n,h)としてデータ格納部6に出力する。
 参照データsref(n,h)は、以下の式(10)のように表される。
Figure JPOXMLDOC01-appb-I000010
A / D converter 5b receives a reference signal s ref (tau) from the pulse modulator 2b, the reference signal s ref a (tau) from an analog signal to a digital signal, referring to the digital signal data s ref ( n, h) to the data storage unit 6.
The reference data s ref (n, h) is represented by the following equation (10).
Figure JPOXMLDOC01-appb-I000010
 射出装置100は、複数の目標の射出速度、複数の目標の射出角度及び複数の目標の射出時間間隔などの射出条件に従って、複数の目標を連続的に空間に射出する。
 射出装置100は、射出条件を示す情報を相対値算出部12に出力する。
 ここで、図7は、複数の目標の間の相対距離Δrと相対ドップラー周波数Δfdopとの関係を示す説明図である。
 図7では、複数の目標がレーダ装置から近距離の位置に存在しているときの相対距離Δrと相対ドップラー周波数Δfdopとの関係を示している。また、図7では、複数の目標がレーダ装置から遠距離の位置に存在しているときの相対距離Δrと相対ドップラー周波数Δfdopとの関係を示している。
The injection device 100 continuously injects a plurality of targets into space according to injection conditions such as a plurality of target injection speeds, a plurality of target injection angles, and a plurality of target injection time intervals.
The injection device 100 outputs information indicating the injection condition to the relative value calculation unit 12.
Here, FIG. 7 is an explanatory diagram showing a relationship between a relative distance Δr between a plurality of targets and a relative Doppler frequency Δf dop .
FIG. 7 shows the relationship between the relative distance Δr and the relative Doppler frequency Δf dop when a plurality of targets exist at positions that are close to the radar device. FIG. 7 shows the relationship between the relative distance Δr and the relative Doppler frequency Δf dop when a plurality of targets exist at positions far from the radar device.
 レーダ装置から近距離の位置に存在している複数の目標は、遠距離の位置に存在している複数の目標と比べて、射出速度の減衰が少ない。したがって、近距離の位置に存在している複数の目標の間の相対距離Δrは、遠距離の位置に存在している複数の目標の間の相対距離Δrよりも大きい。また、近距離の位置に存在している複数の目標の間の相対ドップラー周波数Δfdopについても遠距離の位置に存在している複数の目標の間の相対ドップラー周波数Δfdopよりも大きい。
 なお、複数の目標が、レーダ装置から近距離の位置に存在しているか、遠距離の位置に存在しているかにかかわらず、射出装置100から目標が出射される際の射出速度及び射出角度に応じて、相対距離Δr及び相対ドップラー周波数Δfdopは、共に変化する。
A plurality of targets located at a short distance from the radar device have less attenuation of the injection speed than a plurality of targets located at a long distance. Therefore, the relative distance Δr between a plurality of targets located at a short distance position is larger than the relative distance Δr between a plurality of targets located at a long distance position. Also, the relative Doppler frequency Δf dop between a plurality of targets located at a short distance is larger than the relative Doppler frequency Δf dop between a plurality of targets located at a long distance.
In addition, regardless of whether a plurality of targets are present at a position at a short distance from the radar device or at a position at a long distance, the injection speed and the injection angle when the target is emitted from the injection device 100 are different. Accordingly, the relative distance Δr and the relative Doppler frequency Δf dop change together.
 相対値算出部12は、射出装置100から、複数の目標の射出条件を取得する。
 相対値算出部12は、複数の目標の射出条件に含まれている複数の目標の射出速度及び射出角度から、複数の目標の軌道を予測する。目標の軌道を予測する処理自体は、公知の技術であるため詳細な説明を省略する。
 相対値算出部12は、軌道の予測結果から複数の目標の間の相対距離Δrを算出する。
 射出装置100から連続的に射出される複数の目標の射出時間間隔が射出条件に含まれているため、目標の軌道が分かれば、相対距離Δrは、容易に算出することができる。
 また、相対値算出部12は、以下の式(11)に示すように、複数の目標の間の相対ドップラー周波数Δfdopを算出する。
Figure JPOXMLDOC01-appb-I000011
 式(11)において、λは、送信RF信号s(τ)の波長であり、v-vは、隣接する目標の間の相対の射出速度である。
 相対値算出部12は、相対距離Δrをレンジ窓関数選択部13a及び方向決定部14のそれぞれに出力する。
 また、相対値算出部12は、相対ドップラー周波数Δfdopをドップラー窓関数選択部13b及び方向決定部14のそれぞれに出力する。
The relative value calculation unit 12 acquires a plurality of target injection conditions from the injection device 100.
The relative value calculation unit 12 predicts the trajectories of a plurality of targets from the injection speeds and the injection angles of the targets included in the injection conditions of the targets. The process of predicting the target trajectory itself is a well-known technique, and a detailed description thereof will be omitted.
The relative value calculation unit 12 calculates a relative distance Δr between a plurality of targets from the trajectory prediction result.
Since the injection conditions include the injection time intervals of a plurality of targets that are continuously injected from the injection device 100, the relative distance Δr can be easily calculated if the target trajectory is known.
Further, the relative value calculation unit 12 calculates a relative Doppler frequency Δf dop between a plurality of targets as shown in the following equation (11).
Figure JPOXMLDOC01-appb-I000011
In the formula (11), lambda is the wavelength of the transmitted RF signal s t (τ), v 1 -v 2 is injection speed of relative between adjacent target.
The relative value calculation unit 12 outputs the relative distance Δr to each of the range window function selection unit 13a and the direction determination unit 14.
Further, the relative value calculation unit 12 outputs the relative Doppler frequency Δf dop to each of the Doppler window function selection unit 13b and the direction determination unit 14.
 レンジ窓関数選択部13aは、相対値算出部12から相対距離Δrを受けると、複数のレンジ窓関数の中から、相対距離Δrに対応するレンジ窓関数wを選択し、選択したレンジ窓関数wをパルス圧縮部21に出力する(図6のステップST1)。
 以下、レンジ窓関数選択部13aによるレンジ窓関数wの選択処理の具体例を説明する。
Range window function selection unit 13a receives the relative distance [Delta] r from the relative value calculating section 12, from among a plurality of ranges the window function, to select the range window function w r corresponding to the relative distance [Delta] r, the selected range window function and outputs the w r the pulse compressor 21 (step ST1 in FIG. 6).
Hereinafter, a specific example of the selection process of the range window function w r by range window function selecting section 13a.
 ここで、図8は、レンジ窓関数乗算前後の受信データのレンジ分解能、メインローブ及びサイドローブを示す説明図である。
 図8Aは、パルス圧縮部21が受信データsr0(n,h)にレンジ窓関数wを乗算する前の受信データsr0(n,h)のレンジ分解能、メインローブ及びサイドローブを示している。図8Bは、パルス圧縮部21が受信データsr0(n,h)にレンジ窓関数wを乗算した後の受信データs(n,h)のレンジ分解能、メインローブ及びサイドローブを示している。
 図8Bに示すサイドローブのレベルは、図8Aに示すサイドローブのレベルよりも低下している。したがって、パルス圧縮部21が受信データsr0(n,h)にレンジ窓関数wを乗算することで、受信データsr0(n,h)のサイドローブが抑圧される。
 図8Bに示すメインローブは、図8Aに示すメインローブよりも広がっている。したがって、パルス圧縮部21が受信データsr0(n,h)にレンジ窓関数wを乗算することで、レンジ分解能がΔrresoからΔrreso,wに変化している。Δrreso<Δrreso,wである。
Here, FIG. 8 is an explanatory diagram showing the range resolution, main lobe, and side lobe of received data before and after multiplication of the range window function.
8A is range resolution of the received data s r0 (n, h) of the front pulse compressor 21 for multiplying the range window function w r in the received data s r0 (n, h), shows the main lobe and side lobes I have. 8B is range resolution pulse compressor 21 receives data s r0 (n, h) the range window function w r received data after it has been multiplied by the s r (n, h), shows the main lobe and side lobes I have.
The side lobe level shown in FIG. 8B is lower than the side lobe level shown in FIG. 8A. Therefore, the pulse compression unit 21 multiplies the reception data s r0 (n, h) by the range window function wr, thereby suppressing the side lobe of the reception data s r0 (n, h).
The main lobe shown in FIG. 8B is wider than the main lobe shown in FIG. 8A. Accordingly, by pulse compression unit 21 multiplies the range window function w r in the received data s r0 (n, h), range resolution is changed from [Delta] r reso [Delta] r reso, to w. Δr reso <Δr reso, w .
 パルス圧縮部21がレンジ窓関数wを乗算する前のレンジ分解能Δrresoは、以下の式(12)で表される。
Figure JPOXMLDOC01-appb-I000012
 パルス圧縮部21がレンジ窓関数wを乗算した後のレンジ分解能Δrreso,wは、以下の式(13)で表される。
Figure JPOXMLDOC01-appb-I000013
 式(13)において、αr,wは、レンジ窓関数wを乗算した際のレンジ分解能Δrreso,wの補正係数である。
Range resolution [Delta] r reso before pulse compression unit 21 multiplies the range window function w r is expressed by the following equation (12).
Figure JPOXMLDOC01-appb-I000012
Range resolution after pulse compression unit 21 is multiplied by the range window function w r Δr reso, w is expressed by the following equation (13).
Figure JPOXMLDOC01-appb-I000013
In the formula (13), α r, w is range resolution when multiplied by the range window function w r [Delta] r reso, a correction coefficient w.
 図9は、2つの目標(1)(2)がレーダ装置から近距離の位置に存在しているときの受信データのメインローブ及びサイドローブを示す説明図である。
 図9Aは、パルス圧縮部21が受信データsr0(n,h)にレンジ窓関数wを乗算する前の受信データsr0(n,h)のメインローブ及びサイドローブを示している。
 図9B及び図9Cは、パルス圧縮部21が受信データsr0(n,h)にレンジ窓関数wを乗算した後の受信データs(n,h)のメインローブ及びサイドローブを示している。
 図9Cに示す受信データs(n,h)に乗算されているレンジ窓関数wの形状は、図9Bに示す受信データs(n,h)に乗算されているレンジ窓関数wの形状と比べて、振幅減衰が急峻である。
FIG. 9 is an explanatory diagram showing main lobes and side lobes of received data when two targets (1) and (2) are located at short distances from the radar device.
Figure 9A shows a main lobe and side lobes of the received data s r0 (n, h) of the front pulse compressor 21 for multiplying the range window function w r in the received data s r0 (n, h).
9B and 9C shows the main lobe and side lobes of the received data s r (n, h) after the pulse compressor 21 is obtained by multiplying the range window function w r in the received data s r0 (n, h) I have.
Shape of the range window function w r that is multiplied to the received data s r shown in FIG. 9C (n, h) the received data s r (n, h) range window is multiplied by a function w r shown in FIG. 9B The amplitude attenuation is steeper than that of the shape.
 即ち、図9Bに示す受信データs(n,h)に乗算されているレンジ窓関数wは、適用区間の中心から両端にかけて振幅減衰が緩やかな形状の窓関数である。振幅減衰が緩やかな形状の窓関数としては、例えばハニング窓のように、メインローブの広がりが少ない窓関数が該当する。ただし、振幅減衰が緩やかな形状の窓関数は、振幅減衰が急峻な形状の窓関数よりも、サイドローブの抑圧効果が小さい。
 図9Cに示す受信データs(n,h)に乗算されているレンジ窓関数wは、適用区間の中心から両端にかけて振幅減衰が急峻な形状の窓関数である。振幅減衰が急峻な形状の窓関数としては、例えばブラックマンハリス窓のように、メインローブの広がりが大きいが、サイドローブの大幅な抑圧が期待できる窓関数が該当する。
 受信データs(n,h)のレンジ分解能Δrreso,wが、目標(1)と目標(2)のメインローブの間の相対距離Δrよりも大きくなるようなレンジ窓関数wが選択された場合、互いのメインローブが干渉するため、位相のずれが生じて目標の検出精度が低下してしまう。
 しかし、目標(1)と目標(2)がレーダ装置から近距離の位置に存在している場合、目標(1)と目標(2)の相対距離Δrは、比較的大きい。したがって、目標(1)と目標(2)がレーダ装置から近距離の位置に存在している場合、レンジ窓関数選択部13aが、振幅減衰が急峻な形状のレンジ窓関数wを選択しても、互いのメインローブが干渉する可能性は低い。
That is, the range window function w r that is multiplied to the received data s r shown in FIG. 9B (n, h), the amplitude attenuation from the center to both ends of the applied section is a window function of a gentle shape. As a window function having a shape with a gentle amplitude attenuation, a window function with a small spread of a main lobe, such as a Hanning window, is applicable. However, a window function having a shape with gentle amplitude attenuation has a smaller sidelobe suppression effect than a window function with a shape with sharp amplitude attenuation.
Range window function w r that is multiplied to the received data s r (n, h) shown in FIG. 9C, the amplitude attenuation from the center to both ends of the applied section is a window function of steep shape. A window function having a sharp amplitude attenuation, such as a Blackman-Harris window, is a window function that has a large main lobe but can be expected to significantly suppress side lobes.
Range resolution [Delta] r reso received data s r (n, h), w is the target (1) and the range window function w r that is greater than the relative distance [Delta] r between the main lobe of the target (2) is selected In this case, since the main lobes interfere with each other, a phase shift occurs and the target detection accuracy decreases.
However, when the target (1) and the target (2) are located at a short distance from the radar device, the relative distance Δr between the target (1) and the target (2) is relatively large. Therefore, when the target (1) and the target (2) is present at a short distance from the position from the radar apparatus, the range window function selecting portion 13a, by selecting the range window function w r of the amplitude attenuation steep shape However, it is unlikely that the main lobes interfere with each other.
 図10は、2つの目標(1)(2)がレーダ装置から遠距離の位置に存在しているときの受信データのメインローブ及びサイドローブを示す説明図である。
 図10Aは、パルス圧縮部21が受信データsr0(n,h)にレンジ窓関数wを乗算する前の受信データsr0(n,h)のメインローブ及びサイドローブを示している。
 図10B及び図10Cは、パルス圧縮部21が受信データsr0(n,h)にレンジ窓関数wを乗算した後の受信データs(n,h)のメインローブ及びサイドローブを示している。
 図10Cに示す受信データs(n,h)に乗算されているレンジ窓関数wの形状は、図10Bに示す受信データs(n,h)に乗算されているレンジ窓関数wの形状と比べて、振幅減衰が急峻である。
FIG. 10 is an explanatory diagram showing main lobes and side lobes of received data when two targets (1) and (2) are present at positions far from the radar apparatus.
Figure 10A shows a main lobe and side lobes of the received data s r0 (n, h) of the front pulse compressor 21 for multiplying the range window function w r in the received data s r0 (n, h).
10B and FIG. 10C shows the main lobe and side lobes of the received data s r (n, h) after the pulse compressor 21 is obtained by multiplying the range window function w r in the received data s r0 (n, h) I have.
Shape of the range window function w r that is multiplied to the received data s r shown in FIG. 10C (n, h) the received data s r (n, h) range window is multiplied by a function w r shown in FIG. 10B The amplitude attenuation is steeper than that of the shape.
 即ち、図10Bに示す受信データs(n,h)に乗算されているレンジ窓関数wは、適用区間の中心から両端にかけて振幅減衰が緩やかな形状の窓関数である。
 図10Cに示す受信データsr0(n,h)に乗算されているレンジ窓関数wは、適用区間の中心から両端にかけて振幅減衰が急峻な形状の窓関数である。
 受信データs(n,h)のレンジ分解能Δrreso,wが、目標(1)と目標(2)のメインローブの間の相対距離Δrよりも大きくなるようなレンジ窓関数wが選択された場合、互いのメインローブが干渉するため、位相のずれが生じて目標の検出精度が低下してしまう。
 目標(1)と目標(2)がレーダ装置から遠距離の位置に存在している場合、目標(1)と目標(2)の相対距離Δrは、比較的小さい。したがって、目標(1)と目標(2)がレーダ装置から遠距離の位置に存在している場合、レンジ窓関数選択部13aが、振幅減衰が急峻な形状のレンジ窓関数wを選択すると、互いのメインローブが干渉する可能性が高い。
 図10Cの例では、振幅減衰が急峻な形状のレンジ窓関数wが選択されており、サイドローブが大きく低減されているが、互いのメインローブが干渉している。
 互いのメインローブが干渉しない範囲で、サイドローブを出来るだけ低減するには、Δrreso,w<Δrを満たすレンジ窓関数wの中で、レンジ分解能Δrreso,wが最も大きくなるレンジ窓関数wを選択することが望ましい。
 なお、カイザー窓など、窓関数の形状を特徴付けるパラメータの変更が可能な窓関数を用いる場合、パラメータを変更することで、Δrreso,w<Δrを満たすように、窓関数の形状を変更することが可能である。
That is, the range window function w r that is multiplied to the received data s r shown in FIG. 10B (n, h), the amplitude attenuation from the center to both ends of the applied section is a window function of a gentle shape.
Range window function w r that is multiplied to the received data s r0 (n, h) shown in FIG. 10C, amplitude attenuation from the center to both ends of the applied section is a window function of steep shape.
Range resolution [Delta] r reso received data s r (n, h), w is the target (1) and the range window function w r that is greater than the relative distance [Delta] r between the main lobe of the target (2) is selected In this case, since the main lobes interfere with each other, a phase shift occurs, and the target detection accuracy is reduced.
When the target (1) and the target (2) are located far from the radar device, the relative distance Δr between the target (1) and the target (2) is relatively small. Therefore, when the target (1) and the target (2) is present in the far position from the radar apparatus, the range window function selecting portion 13a, the amplitude attenuation selects range window function w r a steep shape, There is a high possibility that the main lobes will interfere with each other.
In the example of FIG. 10C, are selected range window function w r of the amplitude attenuation steep shape, but the side lobes are significantly reduced, mutual main lobe is interfering.
To the extent that another of the main lobe does not interfere, to reduce as much as possible the side lobes, [Delta] r reso, w <in range window function w r that satisfies [Delta] r, range resolution [Delta] r reso, w and most larger range window function it is desirable to select a w r.
When a window function that can change the parameters that characterize the shape of the window function, such as a Kaiser window, is used, the shape of the window function must be changed so as to satisfy Δr reso, w <Δr by changing the parameters. Is possible.
 レンジ窓関数選択部13aは、レンジ窓関数wを選択する際、事前に用意している複数のレンジ窓関数の中に、以下の式(14)に示すように、レンジ分解能Δrreso,wが相対距離Δrよりも小さいレンジ窓関数が存在しているか否かを判定する。
Figure JPOXMLDOC01-appb-I000014
 レンジ窓関数選択部13aは、レンジ分解能Δrreso,wが相対距離Δrよりも小さいレンジ窓関数が存在していない場合、互いのメインローブが干渉してしまうため、レンジ窓関数wを乗算しない旨をパルス圧縮部21に通知する。
 あるいは、レンジ窓関数選択部13aは、図11に示すように、2つの目標(1)(2)におけるレンジ窓関数乗算後のそれぞれのNull点が、隣の目標(2)(1)のメインローブのピーク位置となるようなレンジ窓関数wを選択する。当該レンジ窓関数wを選択した場合、互いのメインローブの干渉は少なくなる。
 図11は、レンジ分解能Δrreso,wが相対距離Δrよりも大きい場合でも、互いのメインローブの干渉が少ない例を示す説明図である。
Range window function selection unit 13a, when selecting a range window function w r, in a plurality of ranges window functions are prepared in advance, as shown in the following equation (14), range resolution [Delta] r reso, w Is determined whether or not there is a range window function smaller than the relative distance Δr.
Figure JPOXMLDOC01-appb-I000014
Range window function selection unit 13a, range resolution [Delta] r reso, if w is not present is small range window function than relative distance [Delta] r, since the mutual main lobe will interfere, not multiplied by a range window function w r This is notified to the pulse compression unit 21.
Alternatively, as shown in FIG. 11, the range window function selection unit 13a determines that each Null point after the range window function multiplication in the two targets (1) and (2) is the main point of the next target (2) (1). A range window function wr is selected so as to be the peak position of the lobe. When the range window function wr is selected, interference between the main lobes is reduced.
FIG. 11 is an explanatory diagram showing an example in which the interference between the main lobes is small even when the range resolution Δr reso, w is larger than the relative distance Δr.
 レンジ窓関数選択部13aは、レンジ分解能Δrreso,wが相対距離Δrよりも小さいレンジ窓関数が存在している場合、レンジ窓関数wとして、レンジ分解能Δrreso,wが相対距離Δrよりも小さいレンジ窓関数を選択する。
 レンジ窓関数選択部13aにより選択されるレンジ窓関数wは、以下の式(15)で表される。
Figure JPOXMLDOC01-appb-I000015
 式(15)において、calcは、括弧内の条件を満足する窓関数を算出するための関数である。βは、レンジ分解能Δrreso,wが相対距離Δrよりも小さくなるように、レンジ分解能Δrreso,wを調整するための係数である。
 なお、係数βは、Δrreso,w<Δrを満たす範囲で、レンジ窓関数乗算後のレンジ分解能Δrreso,wが最も大きくなるような係数であることが望ましい。
Range window function selection unit 13a, range resolution [Delta] r reso, if w is present a small range window function than relative distance [Delta] r, as a range window function w r, range resolution [Delta] r reso, than w relative distance [Delta] r Choose a small range window function.
Range window function w r that is selected by the range window function selecting section 13a is expressed by the following equation (15).
Figure JPOXMLDOC01-appb-I000015
In equation (15), calc is a function for calculating a window function that satisfies the conditions in parentheses. beta r is range resolution [Delta] r reso, so w is smaller than the relative distance [Delta] r, range resolution [Delta] r reso, a factor for adjusting the w.
Preferably , the coefficient β r is a coefficient that maximizes the range resolution Δr reso, w after multiplication of the range window function within a range satisfying Δr reso, w <Δr.
 ドップラー窓関数選択部13bは、相対値算出部12から相対ドップラー周波数Δfdopを受けると、複数のドップラー窓関数の中から、相対ドップラー周波数Δfdopに対応するドップラー窓関数wdopを選択する(図6のステップST2)。
 ドップラー窓関数選択部13bは、選択したドップラー窓関数wdopをマップ作成部22に出力する。
 以下、ドップラー窓関数選択部13bによるドップラー窓関数wdopの選択処理の具体例を説明する。
Upon receiving the relative Doppler frequency Δf dop from the relative value calculation unit 12, the Doppler window function selecting unit 13b selects a Doppler window function w dop corresponding to the relative Doppler frequency Δf dop from among a plurality of Doppler window functions (FIG. Step ST2).
The Doppler window function selection unit 13b outputs the selected Doppler window function w dop to the map creation unit 22.
Hereinafter, a specific example of the selection processing of the Doppler window function w dop by the Doppler window function selection unit 13b will be described.
 マップ作成部22がドップラー窓関数wdopを乗算する前のドップラー周波数の分解能Δfdop,resoは、以下の式(16)で表される。
Figure JPOXMLDOC01-appb-I000016
 式(16)において、Nhitはヒット数である。
 マップ作成部22がドップラー窓関数wdopを乗算した後のドップラー周波数の分解能Δfdop,reso,wは、以下の式(17)で表される。
Figure JPOXMLDOC01-appb-I000017
 式(17)において、αdop,wは、ドップラー窓関数wdopを乗算した際のドップラー周波数の分解能Δfdop,reso,wの補正係数である。
The resolution Δf dop, reso of the Doppler frequency before the map creator 22 multiplies the Doppler window function w dop is represented by the following equation (16).
Figure JPOXMLDOC01-appb-I000016
In equation (16), N hit is the number of hits.
The Doppler frequency resolution Δf dop, reso, w after the map creator 22 multiplies the Doppler window function w dop is represented by the following equation (17).
Figure JPOXMLDOC01-appb-I000017
In Expression (17), α dop, w is a correction coefficient of the resolution Δf dop, reso, w of the Doppler frequency when multiplied by the Doppler window function w dop .
 ドップラー窓関数wdopを選択する場合でも、レンジ窓関数wを選択する場合と同様に、ドップラー周波数の分解能Δfdop,reso,wが、相対ドップラー周波数Δfdopよりも大きい場合、複数の目標における互いのメインローブが干渉してしまう。
 そこで、ドップラー窓関数選択部13bは、以下の式(18)に示すように、事前に用意している複数のドップラー窓関数の中に、分解能Δfdop,reso,wが相対ドップラー周波数Δfdopよりも小さいドップラー窓関数が存在しているか否かを判定する。
Figure JPOXMLDOC01-appb-I000018
Even if you select the Doppler window function w dop, as in the case of selecting a range window function w r, the Doppler frequency resolution Delta] f dop, reso, w is greater than the relative Doppler frequency Delta] f dop, in a plurality of target The main lobes interfere with each other.
Therefore, as shown in the following equation (18), the Doppler window function selection unit 13b sets the resolution Δf dop, reso, w to the relative Doppler frequency Δf dop among a plurality of Doppler window functions prepared in advance. It is determined whether a small Doppler window function exists.
Figure JPOXMLDOC01-appb-I000018
 ドップラー窓関数選択部13bは、分解能Δfdop,reso,wが相対ドップラー周波数Δfdopよりも小さいドップラー窓関数が存在していない場合、互いのメインローブが干渉してしまうため、ドップラー窓関数wdopを乗算しない旨をマップ作成部22に通知する。
 あるいは、ドップラー窓関数選択部13bは、複数の目標におけるレンジ窓関数乗算後のそれぞれのNull点が、隣の目標のメインローブのピーク位置となるようなドップラー窓関数wdopを選択する。当該ドップラー窓関数wdopを選択した場合、互いのメインローブの干渉は少なくなる。
If there is no Doppler window function whose resolution Δf dop, reso, w is smaller than the relative Doppler frequency Δf dop , the Doppler window function selection unit 13b interferes with each other's main lobes, so that the Doppler window function w dop Is notified to the map creation unit 22.
Alternatively, the Doppler window function selection unit 13b selects a Doppler window function w dop such that each Null point after multiplication of the range window function in a plurality of targets is a peak position of a main lobe of an adjacent target. When the Doppler window function w dop is selected, interference between the main lobes is reduced.
 ドップラー窓関数選択部13bは、分解能Δfdop,reso,wが相対ドップラー周波数Δfdopよりも小さいドップラー窓関数が存在している場合、ドップラー窓関数wdopとして、式(18)を満足するドップラー窓関数を選択する。
 ドップラー窓関数選択部13bにより選択されるレンジ分解能Δrreso,wは、以下の式(19)で表される。
Figure JPOXMLDOC01-appb-I000019
 式(20)において、βdopは、ドップラー周波数の分解能Δfdop,reso,wが相対ドップラー周波数Δfdopよりも小さくなるように、分解能Δfdop,reso,wを調整するための係数である。
 係数βdopは、Δfdop,reso,w<Δfdopを満たす範囲で、ドップラー窓関数乗算後の分解能Δfdop,reso,wが最も大きくなるような係数であることが望ましい。
 calcは、括弧内の条件で窓関数を算出する関数である。
When a Doppler window function having a resolution Δf dop, reso, w smaller than the relative Doppler frequency Δf dop exists, the Doppler window function selection unit 13b determines the Doppler window function w dop as a Doppler window that satisfies Expression (18). Select a function.
The range resolution Δr reso, w selected by the Doppler window function selection unit 13b is represented by the following equation (19).
Figure JPOXMLDOC01-appb-I000019
In the formula (20), beta dop is the Doppler frequency resolution Delta] f dop, reso, so w is smaller than the relative Doppler frequency Delta] f dop, a factor for adjusting resolution Delta] f dop, reso, the w.
The coefficient β dop is desirably a coefficient that maximizes the resolution Δf dop, reso, w after Doppler window function multiplication within a range satisfying Δf dop, reso, w <Δf dop .
calc is a function for calculating a window function under the conditions in parentheses.
 図12は、CFAR処理の概要を示す説明図である。
 CFAR処理では、図12に示すように、目標の有無を判定する対象のセルであるテストセルの前後に存在している複数のサンプルセルにおける電力の平均値であるサンプルセル平均電力とCFAR係数を乗算することで、CFAR閾値を算出する。
 次に、CFAR処理では、テストセルの電力とCFAR閾値とを比較し、テストセルの電力がCFAR閾値以上であれば、目標がテストセルに存在していると判定し、テストセルの電力がCFAR閾値未満であれば、目標がテストセルに存在していないと判定する。
 CFAR処理では、図12に示すように、ガードセルを設けることで、CFAR閾値を算出する際に、サイドローブの電力の漏れ込みを防ぐことが可能である。
FIG. 12 is an explanatory diagram showing an outline of the CFAR processing.
In the CFAR process, as shown in FIG. 12, the sample cell average power and the CFAR coefficient, which are the average values of the powers of a plurality of sample cells existing before and after the test cell that is the target cell for determining the presence or absence of the target, are calculated. The CFAR threshold is calculated by multiplication.
Next, in the CFAR processing, the power of the test cell is compared with the CFAR threshold, and if the power of the test cell is equal to or greater than the CFAR threshold, it is determined that the target is present in the test cell, and the power of the test cell is determined by the CFAR threshold. If less than the threshold, it is determined that the target does not exist in the test cell.
In the CFAR process, as shown in FIG. 12, by providing a guard cell, it is possible to prevent leakage of power of side lobes when calculating a CFAR threshold.
 図13は、複数の目標(1)(2)が存在している場合のCFAR処理の概要を示す説明図である。
 目標(1)と目標(2)は、互いの相対距離Δrが小さい場合がある。また、目標(1)と目標(2)は、互いの相対ドップラー周波数Δfdopが小さい場合がある。
 相対距離Δrが小さいときに、CFAR処理をドップラー周波数方向に実施すると、図13に示すように、目標(1)のサンプルセルに隣の目標(2)の電力が漏れ込み、CFAR閾値を正しく算出できなくなることがある。
 相対ドップラー周波数Δfdopが小さいときに、CFAR処理をレンジ方向に実施すると、同様に、CFAR閾値を正しく算出できなくなることがある。
FIG. 13 is an explanatory diagram illustrating an outline of the CFAR processing when a plurality of targets (1) and (2) exist.
The target (1) and the target (2) may have a small relative distance Δr from each other. The target (1) and the target (2) may have a small relative Doppler frequency Δf dop in each case.
When the CFAR processing is performed in the Doppler frequency direction when the relative distance Δr is small, as shown in FIG. 13, the power of the adjacent target (2) leaks into the sample cell of the target (1), and the CFAR threshold is correctly calculated. May not be possible.
If the CFAR processing is performed in the range direction when the relative Doppler frequency Δf dop is small, the CFAR threshold may not be calculated correctly similarly.
 したがって、相対ドップラー周波数Δfdopが、相対距離Δrよりも小さい場合、図14Aに示すように、CFAR処理をレンジ方向に実施するよりも、ドップラー周波数方向に実施する方が、CFAR閾値を正しく算出できる可能性が高くなる。
 相対距離Δrが、相対ドップラー周波数Δfdopよりも小さい場合、図14Bに示すように、CFAR処理をドップラー周波数方向に実施するよりも、レンジ方向に実施する方が、CFAR閾値を正しく算出できる可能性が高くなる。
 図14は、相対距離Δr及び相対ドップラー周波数ΔfdopとCFAR処理の実施方向との関係を示す説明図である。
 図14Aは、相対ドップラー周波数Δfdopが相対距離Δrよりも小さい場合のCFAR処理の実施方向を示し、図14Bは、相対距離Δrが相対ドップラー周波数Δfdopよりも小さい場合のCFAR処理の実施方向を示している。
Therefore, when the relative Doppler frequency Δf dop is smaller than the relative distance Δr, as shown in FIG. 14A, performing the CFAR processing in the Doppler frequency direction can calculate the CFAR threshold more correctly than performing the CFAR processing in the range direction. The likelihood increases.
When the relative distance Δr is smaller than the relative Doppler frequency Δf dop , there is a possibility that the CFAR processing can be correctly calculated by performing the CFAR processing in the range direction rather than in the Doppler frequency direction as shown in FIG. 14B. Will be higher.
FIG. 14 is an explanatory diagram showing the relationship between the relative distance Δr and the relative Doppler frequency Δf dop and the direction in which the CFAR process is performed.
14A is a relative Doppler frequency Delta] f dop represents the implementation direction of CFAR processing is smaller than the relative distance [Delta] r, FIG. 14B, the relative distance [Delta] r is the implementation direction of CFAR processing is smaller than the relative Doppler frequency Delta] f dop Is shown.
 方向決定部14は、相対値算出部12から相対距離Δr及び相対ドップラー周波数Δfdopを受けると、以下の式(20)に示すように、相対距離Δrをレンジ分解能Δrreso,wで規格化する。
Figure JPOXMLDOC01-appb-I000020
 式(20)において、Δrbinは、規格化後の相対距離である。
 方向決定部14は、以下の式(21)に示すように、相対ドップラー周波数Δfdopをドップラー周波数の分解能Δfdop,reso,wで規格化する。
Figure JPOXMLDOC01-appb-I000021
 式(21)において、Δfdop,binは、規格化後の相対ドップラー周波数である。
Upon receiving the relative distance Δr and the relative Doppler frequency Δf dop from the relative value calculation unit 12, the direction determining unit 14 normalizes the relative distance Δr with the range resolution Δr reso, w as shown in the following equation (20). .
Figure JPOXMLDOC01-appb-I000020
In equation (20), Δr bin is the normalized relative distance.
The direction determination unit 14 normalizes the relative Doppler frequency Δf dop with the Doppler frequency resolution Δf dop, reso, w as shown in the following equation (21).
Figure JPOXMLDOC01-appb-I000021
In equation (21), Δf dop, bin is the normalized relative Doppler frequency.
 方向決定部14は、規格化後の相対距離Δrbinと規格化後の相対ドップラー周波数Δfdop,binとを比較する(図6のステップST3)。
 方向決定部14は、規格化後の相対距離Δrbinが規格化後の相対ドップラー周波数Δfdop,binよりも大きければ(図6のステップST3:Yesの場合)、CFAR処理の実施方向をドップラー周波数方向に決定する(図6のステップST4)。
 方向決定部14は、規格化後の相対距離Δrbinが規格化後の相対ドップラー周波数Δfdop,bin以下であれば(図6のステップST3:Noの場合)、CFAR処理の実施方向をレンジ方向に決定する(図6のステップST5)。
 方向決定部14は、決定した実施方向を目標検出部23に出力する。
The direction determining unit 14 compares the normalized relative distance Δr bin with the normalized relative Doppler frequency Δf dop, bin (step ST3 in FIG. 6).
If the relative distance Δr bin after the standardization is larger than the relative Doppler frequency Δf dop, bin after the standardization (step ST3 in FIG. 6: Yes), the direction determination unit 14 determines the direction of the CFAR processing as the Doppler frequency. The direction is determined (step ST4 in FIG. 6).
If the normalized relative distance Δr bin is equal to or smaller than the normalized relative Doppler frequency Δf dop, bin (step ST3 of FIG. 6: No), the direction determining unit 14 sets the direction of execution of the CFAR processing to the range direction. (Step ST5 in FIG. 6).
The direction determination unit 14 outputs the determined execution direction to the target detection unit 23.
 パルス圧縮部21は、データ格納部6から受信データsr0(n,h)及び参照データsref(n,h)を取得する。
 パルス圧縮部21は、レンジ窓関数選択部13aからレンジ窓関数wを受けると、以下の式(22)に示すように、受信データsr0(n,h)にレンジ窓関数wを乗算する(図6のステップST6)。
Figure JPOXMLDOC01-appb-I000022
 パルス圧縮部21は、レンジ窓関数選択部13aからレンジ窓関数wを乗算しない旨の通知を受けているときは、以下の式(23)に示すように、受信データsr0(n,h)にレンジ窓関数wを乗算しない。
Figure JPOXMLDOC01-appb-I000023
The pulse compression unit 21 acquires the reception data s r0 (n, h) and the reference data s ref (n, h) from the data storage unit 6.
Pulse compressor 21 receives the range window function w r from range window function selecting section 13a, as shown in the following equation (22), the received data s r0 (n, h) to multiply the range window function w r (Step ST6 in FIG. 6).
Figure JPOXMLDOC01-appb-I000022
Pulse compressor 21, when receiving the notification that no multiplying the range window function w r from range window function selecting section 13a, as shown in the following equation (23), the received data s r0 (n, h ) to not multiplied by the range window function w r.
Figure JPOXMLDOC01-appb-I000023
 次に、パルス圧縮部21は、以下の式(24)に示すように、受信データs(n,h)に参照データsref(n,h)を時間領域で畳み込み積分を行うことで、受信データs(n,h)のパルス圧縮を実施する(図6のステップST7)。
Figure JPOXMLDOC01-appb-I000024
 パルス圧縮部21は、パルス圧縮後の受信データsrfm(n,h)をマップ作成部22に出力する。
Next, the pulse compression unit 21 performs convolution integration of the reference data s ref (n, h) on the received data s r (n, h) in the time domain as shown in the following equation (24). The pulse compression of the received data s r (n, h) is performed (step ST7 in FIG. 6).
Figure JPOXMLDOC01-appb-I000024
The pulse compression unit 21 outputs the received data s rfm (n, h) after the pulse compression to the map creation unit 22.
 ここでは、パルス圧縮部21が、受信データs(n,h)に参照データsref(n,h)を時間領域で畳み込み積分を行うことで、受信データs(n,h)をパルス圧縮している。しかし、これは一例に過ぎず、パルス圧縮部21が、以下に示す方法で、受信データs(n,h)のパルス圧縮を実施するようにしてもよい。
 即ち、パルス圧縮部21は、受信データs(n,h)及び参照データsref(n,h)のそれぞれを周波数領域の信号に変換する。
 次に、パルス圧縮部21は、受信データs(n,h)の周波数領域信号と、参照データsref(n,h)の周波数領域信号とを複素乗算することで、チャープ成分を除去する。
 そして、パルス圧縮部21は、複素乗算した信号を時間領域の信号に変換することで、パルス圧縮後の受信データsrfm(n,h)を得る。
Here, pulse compression unit 21 receives the data s r (n, h) a reference data s ref (n, h) carrying out the convolution in the time domain, the received data s r (n, h) the pulse Compressed. However, this is only an example, and the pulse compression unit 21 may perform pulse compression of the received data s r (n, h) by the following method.
That is, the pulse compression unit 21 converts each of the received data s r (n, h) and the reference data s ref (n, h) into a signal in the frequency domain.
Next, the pulse compressor 21 removes a chirp component by performing complex multiplication of the frequency domain signal of the received data s r (n, h) and the frequency domain signal of the reference data s ref (n, h). .
Then, the pulse compression unit 21 obtains the reception data s rfm (n, h) after the pulse compression by converting the complex multiplied signal into a time domain signal.
 マップ作成部22は、ドップラー窓関数選択部13bからドップラー窓関数wdopを受けると、以下の式(25)に示すように、パルス圧縮部21から出力されたパルス圧縮後の受信データsrfm(n,h)にドップラー窓関数wdopを乗算する(図6のステップST8)。
Figure JPOXMLDOC01-appb-I000025
 マップ作成部22は、ドップラー窓関数選択部13bからドップラー窓関数wdopを乗算しない旨の通知を受けているときは、以下の式(26)に示すように、受信データsrfm(n,h)にドップラー窓関数wdopを乗算しない。
Figure JPOXMLDOC01-appb-I000026
When receiving the Doppler window function w dop from the Doppler window function selection unit 13b, the map creation unit 22 receives the pulse-compressed reception data s rfm (output from the pulse compression unit 21) as shown in the following equation (25). n, h) is multiplied by a Doppler window function w dop (step ST8 in FIG. 6).
Figure JPOXMLDOC01-appb-I000025
When the map creator 22 receives a notification from the Doppler window function selector 13b not multiplying the Doppler window function w dop , the reception data s rfm (n, h) as shown in the following equation (26). ) Is not multiplied by the Doppler window function w dop .
Figure JPOXMLDOC01-appb-I000026
 次に、マップ作成部22は、以下の式(27)に示すように、受信データsrfm,w(n,h)をヒット方向の周波数領域に変換することで、レンジドップラーマップs2D(n,k)を作成する(図6のステップST9)。
Figure JPOXMLDOC01-appb-I000027
 式(26)において、Hfftは、ヒット方向のFFTデータ点数である。
 なお、受信データsrfm,w(n,h)をヒット方向の周波数領域に変換する方法としては、受信データsrfm,w(n,h)をヒット方向に高速フーリエ変換する方法が考えられる。
 また、受信データsrfm,w(n,h)をヒット方向に離散フーリエ変換する方法又は受信データsrfm,w(n,h)をヒット方向にチャープz変換する方法が考えられる。
 マップ作成部22は、レンジドップラーマップs2D(n,k)を目標検出部23に出力する。
Next, the map creation unit 22 converts the received data s rfm, w (n, h) into a frequency domain in the hit direction, as shown in the following equation (27), so that the range Doppler map s 2D (n , K) (step ST9 in FIG. 6).
Figure JPOXMLDOC01-appb-I000027
In Equation (26), H fft is the number of FFT data points in the hit direction.
As a method of converting the reception data s rfm, w (n, h) into the frequency domain in the hit direction, a method of performing a fast Fourier transform on the reception data s rfm, w (n, h) in the hit direction can be considered.
Further, a method of performing a discrete Fourier transform on the received data s rfm, w (n, h) in the hit direction or a method of performing a chirp z-transform on the received data s rfm, w (n, h) in the hit direction can be considered.
The map creator 22 outputs the range Doppler map s 2D (n, k) to the target detector 23.
 クラッタ抑圧処理部23aは、マップ作成部22からレンジドップラーマップs2D(n,k)を受けると、レンジドップラーマップs2D(n,k)に対して、方向決定部14により決定された方向にCFAR処理を実施することで、クラッタを抑圧する(図6のステップST10)。
 図14Aの例では、クラッタ抑圧処理部23aが、レンジドップラーマップs2D(n,k)に対して、ドップラー周波数方向のCFAR処理を実施している。
 図14Bの例では、クラッタ抑圧処理部23aが、レンジドップラーマップs2D(n,k)に対して、レンジ方向のCFAR処理を実施している。
 クラッタ抑圧処理部23aは、CFAR処理後のレンジドップラーマップs2D,CFAR(n,k)をピーク検出処理部23bに出力する。
Clutter suppression processing section 23a receives the range Doppler map s 2D map creation unit 22 (n, k), the range Doppler map s 2D (n, k) with respect to the direction determined by the direction determination unit 14 By performing the CFAR processing, clutter is suppressed (step ST10 in FIG. 6).
In the example of FIG. 14A, the clutter suppression processing unit 23a performs the CFAR processing in the Doppler frequency direction on the range Doppler map s 2D (n, k).
In the example of FIG. 14B, the clutter suppression processing unit 23a performs a CFAR process in the range direction on the range Doppler map s 2D (n, k).
The clutter suppression processing unit 23a outputs the range Doppler map s 2D, CFAR (n, k) after the CFAR processing to the peak detection processing unit 23b.
 ピーク検出処理部23bは、クラッタ抑圧処理部23aからレンジドップラーマップs2D,CFAR(n,k)を受けると、複数の目標の検出処理として、レンジドップラーマップs2D,CFAR(n,k)に含まれているピーク値の検出処理を実施する(図6のステップST11)。 Peak detection processing section 23b clutter suppression processing section 23a from the range Doppler map s 2D, CFAR (n, k ) receives the, as the detection processing of a plurality of targets, range Doppler map s 2D, the CFAR (n, k) A detection process of the included peak value is performed (step ST11 in FIG. 6).
 以上の実施の形態1は、複数の目標の間の相対距離と複数の目標の間の相対ドップラー周波数とに基づいて、レンジドップラーマップに対する一定誤警報率処理の実施方向を決定する方向決定部14を設け、目標検出部23が、マップ作成部22により作成されたレンジドップラーマップに対する一定誤警報率処理を方向決定部14により決定された方向に実施することで、レンジドップラーマップに含まれているクラッタを抑圧するように、目標検出装置10を構成した。したがって、実施の形態1の目標検出装置10は、目標の誤検出を防止することができる。 In the first embodiment, the direction determining unit 14 that determines the direction in which the constant false alarm rate process is performed on the range Doppler map based on the relative distance between the plurality of targets and the relative Doppler frequency between the plurality of targets. Is provided in the range Doppler map by the target detecting unit 23 performing a constant false alarm rate process on the range Doppler map created by the map creating unit 22 in the direction determined by the direction determining unit 14. The target detection device 10 was configured to suppress clutter. Therefore, the target detection device 10 of the first embodiment can prevent erroneous detection of a target.
実施の形態2.
 実施の形態1のレーダ装置では、目標検出装置10を備えている。
 実施の形態2では、測角装置60を備えているレーダ装置について説明する。
Embodiment 2 FIG.
The radar device according to the first embodiment includes a target detection device 10.
In the second embodiment, a radar device including the angle measuring device 60 will be described.
 図15は、実施の形態2による測角装置60を含むレーダ装置を示す構成図である。
 図16は、実施の形態2によるレーダ装置の送受信部50を示す構成図である。
 図17は、実施の形態2による測角装置60のハードウェアを示すハードウェア構成図である。
 図15から図17において、図1から図3と同一符号は同一又は相当部分を示すので説明を省略する。
 送受信部50は、送信部2、M(Mは1以上の整数)個の送受切替器3-1~3-M、M個の送受信アンテナ4-1~4-M及び受信部5を備えている。
 送受信部50は、送信RF信号を生成し、送信RF信号を電磁波として空間に放射した後、目標に反射された送信RF信号を受信RF信号として受信する。
 送受信部50が、M個の送受切替器3-1~3-Mと、M個の送受信アンテナ4-1~4-Mとを備えることで、例えば、アダプティブアレーアンテナとして使用することが可能になる。
FIG. 15 is a configuration diagram illustrating a radar device including the angle measurement device 60 according to the second embodiment.
FIG. 16 is a configuration diagram illustrating the transmission / reception unit 50 of the radar device according to the second embodiment.
FIG. 17 is a hardware configuration diagram illustrating hardware of the angle measurement device 60 according to the second embodiment.
15 to 17, the same reference numerals as those in FIGS. 1 to 3 denote the same or corresponding parts, and a description thereof will be omitted.
The transmission / reception unit 50 includes a transmission unit 2, M (M is an integer of 1 or more) transmission / reception switches 3-1 to 3-M, M transmission / reception antennas 4-1 to 4-M, and a reception unit 5. I have.
The transmission / reception unit 50 generates a transmission RF signal, radiates the transmission RF signal into space as an electromagnetic wave, and then receives the transmission RF signal reflected on the target as a reception RF signal.
Since the transmission / reception unit 50 includes M transmission / reception switching units 3-1 to 3-M and M transmission / reception antennas 4-1 to 4-M, it can be used as, for example, an adaptive array antenna. Become.
 信号処理部20は、パルス圧縮部21、マップ作成部22、目標検出部23及び測角部24を備えている。
 目標検出部23のピーク検出処理部23bは、複数の目標を検出すると、複数の目標のそれぞれの位相を抽出し、それぞれの位相を測角部24に出力する。
 測角部24は、例えば、図17に示す測角回路37によって実現される。
 測角部24は、ピーク検出処理部23bから出力された位相を用いて、モノパルス測角方式などの測角処理を実施することで、複数の目標を測角する。
The signal processing unit 20 includes a pulse compression unit 21, a map creation unit 22, a target detection unit 23, and an angle measurement unit 24.
When detecting a plurality of targets, the peak detection processing unit 23b of the target detection unit 23 extracts the respective phases of the plurality of targets, and outputs the respective phases to the angle measurement unit 24.
The angle measuring unit 24 is realized by, for example, an angle measuring circuit 37 shown in FIG.
The angle measuring unit 24 measures angles of a plurality of targets by performing angle measuring processing such as a monopulse angle measuring method using the phase output from the peak detection processing unit 23b.
 次に、図15に示すレーダ装置の動作について説明する。ここでは、図1に示すレーダ装置と相違する部分を説明する。
 図1に示すレーダ装置では、送受信部1が備える送受信アンテナ4の数が1つであるため、A/D変換器5bから、式(8)に示すような受信データsr0(n,h)がデータ格納部6に出力されている。
Next, the operation of the radar apparatus shown in FIG. 15 will be described. Here, parts different from the radar apparatus shown in FIG. 1 will be described.
In the radar device shown in FIG. 1, since the number of transmitting / receiving antennas 4 included in the transmitting / receiving unit 1 is one, the received data s r0 (n, h) as shown in Expression (8) is obtained from the A / D converter 5b. Is output to the data storage unit 6.
 図15に示すレーダ装置では、送受信部1が備える送受信アンテナ4-1~4-Mの数がM個であるため、A/D変換器5bから、以下の式(28)に示すような受信データsr0(n,h,m)がデータ格納部6に出力される。
Figure JPOXMLDOC01-appb-I000028
 式(28)において、mは、送受信アンテナ4-1~4-Mのアンテナ番号、Mは、送受信アンテナ4-1~4-Mの個数、dは、送受信アンテナ4-1~4-Mの間隔、θは、送受信アンテナ4-1~4-Mに対する目標の角度である。
In the radar apparatus shown in FIG. 15, since the number of transmission / reception antennas 4-1 to 4-M provided in the transmission / reception unit 1 is M, reception from the A / D converter 5b as shown in the following equation (28) is performed. The data s r0 (n, h, m) is output to the data storage unit 6.
Figure JPOXMLDOC01-appb-I000028
In the equation (28), m is the antenna number of the transmitting / receiving antennas 4-1 to 4-M, M is the number of the transmitting / receiving antennas 4-1 to 4-M, and d is the number of the transmitting / receiving antennas 4-1 to 4-M. The interval, θ, is a target angle with respect to the transmitting / receiving antennas 4-1 to 4-M.
 信号処理条件決定部11の動作は、実施の形態1と同様であるため、説明を省略する。
 パルス圧縮部21は、データ格納部6から受信データsr0(n,h,m)及び参照データsref(n,h,m)を取得する。
 パルス圧縮部21は、レンジ窓関数選択部13aからレンジ窓関数wを受けると、以下の式(29)に示すように、受信データsr0(n,h,m)にレンジ窓関数wを乗算する。
Figure JPOXMLDOC01-appb-I000029
 パルス圧縮部21は、レンジ窓関数選択部13aからレンジ窓関数wを乗算しない旨の通知を受けているときは、以下の式(30)に示すように、受信データsr0(n,h,m)にレンジ窓関数wを乗算しない。
Figure JPOXMLDOC01-appb-I000030
The operation of the signal processing condition determining unit 11 is the same as that of the first embodiment, and a description thereof will be omitted.
The pulse compression section 21 acquires the reception data s r0 (n, h, m) and the reference data s ref (n, h, m) from the data storage section 6.
Pulse compressor 21, when the range window function selection unit 13a receives the range window function w r, as shown in the following equation (29), the received data s r0 (n, h, m) to the range window function w r Multiply by
Figure JPOXMLDOC01-appb-I000029
Pulse compressor 21, when receiving the notification that no multiplying the range window function w r from range window function selecting section 13a, as shown in the following equation (30), the received data s r0 (n, h , m) to not multiplied by the range window function w r.
Figure JPOXMLDOC01-appb-I000030
 次に、パルス圧縮部21は、以下の式(31)に示すように、受信データs(n,h,m)に参照データsref(n,h,m)を時間領域で畳み込み積分を行うことで、受信データs(n,h,m)のパルス圧縮を実施する。
Figure JPOXMLDOC01-appb-I000031
 パルス圧縮部21は、パルス圧縮後の受信データsrfm(n,h,m)をマップ作成部22に出力する。
Next, the pulse compression unit 21 performs convolution integration of the reference data s ref (n, h, m) on the reception data s r (n, h, m) in the time domain as shown in the following equation (31). By doing so, pulse compression of the received data s r (n, h, m) is performed.
Figure JPOXMLDOC01-appb-I000031
The pulse compression section 21 outputs the received data s rfm (n, h, m) after the pulse compression to the map creation section 22.
 ここでは、パルス圧縮部21が、受信データs(n,h,m)に参照データsref(n,h,m)を時間領域で畳み込み積分を行うことで、受信データs(n,h,m)をパルス圧縮している。しかし、これは一例に過ぎず、パルス圧縮部21が、以下に示す方法で、受信データs(n,h,m)のパルス圧縮を実施するようにしてもよい。
 即ち、パルス圧縮部21は、受信データs(n,h,m)及び参照データsref(n,h,m)のそれぞれを周波数領域の信号に変換する。
 次に、パルス圧縮部21は、受信データs(n,h,m)の周波数領域信号と、参照データsref(n,h,m)の周波数領域信号とを複素乗算することで、チャープ成分を除去する。
 そして、パルス圧縮部21は、複素乗算した信号を時間領域の信号に変換することで、パルス圧縮後の受信データsrfm(n,h,m)を得る。
Here, by performing pulse compression unit 21 receives the data s r (n, h, m ) reference data s ref to (n, h, m) convolution integration in time domain, the received data s r (n, h, m) are pulse-compressed. However, this is only an example, and the pulse compression unit 21 may perform pulse compression of the received data s r (n, h, m) by the following method.
That is, the pulse compression unit 21 converts each of the received data s r (n, h, m) and the reference data s ref (n, h, m) into a signal in the frequency domain.
Next, the pulse compression unit 21 performs a complex multiplication of the frequency domain signal of the received data s r (n, h, m) and the frequency domain signal of the reference data s ref (n, h, m), thereby performing chirp. Remove components.
Then, the pulse compression unit 21 converts the complex-multiplied signal into a signal in the time domain, thereby obtaining the reception data s rfm (n, h, m) after pulse compression.
 マップ作成部22は、ドップラー窓関数選択部13bからドップラー窓関数wdopを受けると、以下の式(32)に示すように、パルス圧縮部21から出力されたパルス圧縮後の受信データsrfm(n,h,m)にドップラー窓関数wdopを乗算する。
Figure JPOXMLDOC01-appb-I000032
 マップ作成部22は、ドップラー窓関数選択部13bからドップラー窓関数wdopを乗算しない旨の通知を受けているときは、以下の式(33)に示すように、受信データsrfm(n,h,m)にドップラー窓関数wdopを乗算しない。
Figure JPOXMLDOC01-appb-I000033
When receiving the Doppler window function w dop from the Doppler window function selector 13b, the map creator 22 receives the pulse-compressed received data s rfm () output from the pulse compressor 21 as shown in the following equation (32). n, h, m) is multiplied by a Doppler window function w dop .
Figure JPOXMLDOC01-appb-I000032
When the map creating unit 22 receives a notification from the Doppler window function selecting unit 13b not multiplying the Doppler window function w dop , the reception data s rfm (n, h) as shown in the following equation (33). , M ) is not multiplied by the Doppler window function w dop .
Figure JPOXMLDOC01-appb-I000033
 次に、マップ作成部22は、以下の式(34)に示すように、受信データsrfm,w(n,h,m)をヒット方向の周波数領域に変換することで、レンジドップラーマップs2D(n,k,m)を作成する。
Figure JPOXMLDOC01-appb-I000034
 なお、受信データsrfm,w(n,h,m)をヒット方向の周波数領域に変換する方法としては、受信データsrfm,w(n,h,m)をヒット方向に高速フーリエ変換する方法が考えられる。
 また、受信データsrfm,w(n,h,m)をヒット方向に離散フーリエ変換する方法又は受信データsrfm,w(n,h,m)をヒット方向にチャープz変換する方法が考えられる。
 マップ作成部22は、レンジドップラーマップs2D(n,k,m)を目標検出部23に出力する。
Next, the map creation unit 22 converts the received data s rfm, w (n, h, m) into a frequency domain in the hit direction, as shown in the following equation (34), so that the range Doppler map s 2D Create (n, k, m).
Figure JPOXMLDOC01-appb-I000034
As a method of converting the reception data s rfm, w (n, h, m) into the frequency domain in the hit direction, a method of performing a fast Fourier transform of the reception data s rfm, w (n, h, m) in the hit direction Can be considered.
Further, a method of performing a discrete Fourier transform on the received data s rfm, w (n, h, m) in the hit direction or a method of performing a chirp z-transform on the received data s rfm, w (n, h, m) in the hit direction can be considered. .
The map creation unit 22 outputs the range Doppler map s 2D (n, k, m) to the target detection unit 23.
 クラッタ抑圧処理部23aは、マップ作成部22からレンジドップラーマップs2D(n,k,m)を受けると、レンジドップラーマップs2D(n,k,m)に対して、方向決定部14により決定された方向にCFAR処理を実施することで、クラッタを抑圧する。
 クラッタ抑圧処理部23aは、CFAR処理後のレンジドップラーマップs2D,CFAR(n,k,m)をピーク検出処理部23bに出力する。
Clutter suppressing processor 23a determines, upon receiving from the map generator 22 Range Doppler Maps s 2D (n, k, m ) and range Doppler map s 2D (n, k, m ) with respect to, the direction determination unit 14 By performing the CFAR processing in the set direction, clutter is suppressed.
The clutter suppression processing unit 23a outputs the range Doppler map s 2D, CFAR (n, k, m) after the CFAR processing to the peak detection processing unit 23b.
 ピーク検出処理部23bは、クラッタ抑圧処理部23aからレンジドップラーマップs2D,CFAR(n,k,m)を受けると、複数の目標の検出処理として、レンジドップラーマップs2D,CFAR(n,k,m)に含まれているピーク値の検出処理を実施する。
 ピーク検出処理部23bは、複数の目標を検出すると、複数の目標のそれぞれの位相を抽出し、それぞれの位相を測角部24に出力する。
Peak detection processing section 23b clutter suppression processing section 23a from the range Doppler map s 2D, CFAR (n, k , m) receives the, as the detection processing of a plurality of targets, range Doppler map s 2D, CFAR (n, k , M) is detected.
When detecting a plurality of targets, the peak detection processing unit 23b extracts the respective phases of the plurality of targets and outputs the respective phases to the angle measuring unit 24.
 測角部24は、ピーク検出処理部23bから複数の目標の位相を受けると、複数の目標の位相を用いて、モノパルス測角方式などの測角処理を実施することで、複数の目標を測角する。
 測角部24は、複数の目標の測角値を射出装置100に出力する。
When the angle measurement unit 24 receives the phases of the plurality of targets from the peak detection processing unit 23b, the angle measurement unit 24 measures the plurality of targets by performing angle measurement processing such as a monopulse angle measurement method using the phases of the plurality of targets. Corner.
The angle measurement unit 24 outputs angle measurement values of a plurality of targets to the injection device 100.
 以下、測角部24によるモノパルス測角方式の測角処理を具体的に説明する。
 測角部24は、モノパルス測角方式の測角処理を実施する場合、以下の式(35)に示す和信号Σと、以下の式(36)に示す差信号Δとを用いて、以下の式(37)に示す角度誤差電圧εを算出する。
Hereinafter, the angle measurement processing of the monopulse angle measurement method by the angle measurement unit 24 will be specifically described.
When performing the angle measurement processing of the monopulse angle measurement method, the angle measurement unit 24 uses the sum signal に shown in the following equation (35) and the difference signal Δ shown in the following equation (36) to The angle error voltage ε shown in the equation (37) is calculated.
Figure JPOXMLDOC01-appb-I000035
Figure JPOXMLDOC01-appb-I000035
 式(35)~式(37)において、Gは、送受信アンテナ4-1~4-Mのうちの1つの送受信アンテナの受信RF信号についてのレンジドップラーマップにおけるi番目の目標信号である。例えば、1つの送受信アンテナが、送受信アンテナ4-mであれば、Gは、レンジドップラーマップs2D(n,k,m)におけるi番目の目標信号である。
 Uは、送受信アンテナ4-1~4-Mのうちの他の1つの送受信アンテナの受信RF信号についてのレンジドップラーマップにおけるi番目の目標信号である。例えば、他の1つの送受信アンテナが、送受信アンテナ4-(m+1)であれば、Gは、レンジドップラーマップs2D(n,k,m+1)におけるi番目の目標信号である。
 Ψは、目標信号Gと目標信号Uとの位相差である。
In the formula (35) to Formula (37), G i is the i-th target signal in the range Doppler map for the received RF signal of one transmission and reception antennas of the transmitting and receiving antennas 4-1 ~ 4-M. For example, one receiving antenna is, if the transmitting and receiving antenna 4-m, G i is the i-th target signal in the range Doppler map s 2D (n, k, m ).
U i is the i-th target signal in the range Doppler map for the reception RF signal of another transmission / reception antenna among transmission / reception antennas 4-1 to 4-M. For example, the other one receiving antenna, if the transmitting and receiving antenna 4- (m + 1), G i is the i-th target signal in the range Doppler map s 2D (n, k, m + 1).
Ψ is a phase difference between the target signal G i and the target signal U i .
 位相差Ψは、以下の式(38)のように表される。
Figure JPOXMLDOC01-appb-I000036
 式(38)において、xは、目標信号Gと目標信号Uとの位相中心距離、θは、目標の角度である。
The phase difference Ψ is represented by the following equation (38).
Figure JPOXMLDOC01-appb-I000036
In Expression (38), x is a phase center distance between the target signal G i and the target signal U i, and θ i is a target angle.
 式(37)及び式(38)より、目標の角度θは、以下の式(39)のように表される。
Figure JPOXMLDOC01-appb-I000037
 測角部24は、複数の目標の測角値として、式(39)を用いて、複数の目標の角度θを算出する。
From Expressions (37) and (38), the target angle θ i is expressed by Expression (39) below.
Figure JPOXMLDOC01-appb-I000037
Angle measuring unit 24, as angle measurement values of the plurality of targets, using equation (39) calculates an angle theta i of the plurality of targets.
 測角部24は、複数の目標の角度θを算出すると、以下の式(40)に示すように、複数の目標の角度θの平均値θバーを算出する。明細書の文書中では、電子出願の関係上、文字の上に“-”の記号を付することができないため、「θバー」のように表記している。
Figure JPOXMLDOC01-appb-I000038
 式(40)において、nθは、複数の目標の測角値番号、Nθは、複数の目標の測角値の個数である。
After calculating the plurality of target angles θ i , the angle measurement unit 24 calculates the average value θ bar of the plurality of target angles θ i as shown in the following Expression (40). In the document of the specification, the symbol "-" cannot be attached to the character because of the electronic filing, so that it is represented as "θ bar".
Figure JPOXMLDOC01-appb-I000038
In Equation (40), n θ is the angle measurement value number of a plurality of targets, and N θ is the number of angle measurement values of a plurality of targets.
 測角部24が複数の目標の測角値の平均値θバーを算出することで、複数の目標の測角値の分散値σθ は、以下の式(41)のように表される。
Figure JPOXMLDOC01-appb-I000039
 また、測角部24が複数の目標の測角値の平均値θバーを算出することで、複数の目標の測角値の標準偏差σθは、以下の式(42)のように表される。
Figure JPOXMLDOC01-appb-I000040
When the angle measurement unit 24 calculates the average value θ bar of the angle measurement values of the plurality of targets, the variance σ θ 2 of the angle measurement values of the plurality of targets is expressed by the following equation (41). .
Figure JPOXMLDOC01-appb-I000039
In addition, the angle measurement unit 24 calculates an average value θ bar of the angle measurement values of the plurality of targets, so that the standard deviation σ θ of the angle measurement values of the plurality of targets is expressed by the following equation (42). You.
Figure JPOXMLDOC01-appb-I000040
 測角部24が複数の目標の測角値の平均値θバーを算出することで、分散値σθ が小さくなり、複数の目標の測角値のばらつきが小さくなるため、測角性能が向上する。
 測角部24は、複数の目標の測角値の平均値θバーを射出装置100に出力する。
 射出装置100は、測角部24から測角値の平均値θバーを受けると、例えば、測角値の平均値θバーと、複数の目標の射出角度との差分を算出する。
 そして、射出装置100は、算出した差分に基づいて、複数の目標の射出角度を補正する。
When the angle measurement unit 24 calculates the average value θ bar of the angle measurement values of the plurality of targets, the variance value σ θ 2 is reduced, and the dispersion of the angle measurement values of the plurality of targets is reduced. improves.
The angle measurement unit 24 outputs the average value θ bar of the angle measurement values of the plurality of targets to the injection device 100.
When receiving the average angle measurement value θ bar from the angle measurement unit 24, the injection device 100 calculates, for example, a difference between the average angle measurement value θ bar and the emission angles of a plurality of targets.
Then, the injection device 100 corrects the injection angles of a plurality of targets based on the calculated difference.
 以上の実施の形態2は、目標検出部23により抽出された位相から、複数の目標を測角する測角部24を備えるように、レーダ装置を構成した。したがって、実施の形態2のレーダ装置は、誤検出を招くことなく、検出された目標を測角することができる。 In the second embodiment, the radar device is configured to include the angle measuring unit 24 that measures the angle of a plurality of targets from the phase extracted by the target detecting unit 23. Therefore, the radar device according to the second embodiment can measure the angle of the detected target without causing erroneous detection.
 なお、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。 In the present invention, any combination of the embodiments, a modification of an arbitrary component of each embodiment, or an omission of any component in each embodiment is possible within the scope of the invention. .
 この発明は、目標を検出する目標検出装置及びレーダ装置に関するものである。
 また、この発明は、目標を測角する測角装置に適している。
The present invention relates to a target detection device for detecting a target and a radar device.
Further, the present invention is suitable for an angle measuring device that measures an angle of a target.
 1 送受信部、2 送信部、2a 発振器、2b パルス変調器、2c 送信機、3,3-1~3-M 送受切替器、4,4-1~4-M 送受信アンテナ、5 受信部、5a 受信機、5b A/D変換器、6 データ格納部、10 目標検出装置、11 信号処理条件決定部、12 相対値算出部、13 窓関数選択部、13a レンジ窓関数選択部、13b ドップラー窓関数選択部、14 方向決定部、20 信号処理部、21 パルス圧縮部、22 マップ作成部、23 目標検出部、23a クラッタ抑圧処理部、23b ピーク検出処理部、24 測角部、31 相関値算出回路、32 窓関数選択回路、33 方向決定回路、34 パルス圧縮回路、35 マップ作成回路、36 目標検出回路、37 測角回路、41 メモリ、42 プロセッサ、50 送受信部、60 測角装置、100 射出装置。 1} transmission / reception unit, 2 transmission unit, 2a oscillator, 2b pulse modulator, 2c transmitter, 3,3-1 to 3-M transmission / reception switch, 4,4-1 to 4-M transmission / reception antenna, 5 reception unit, 5a Receiver, 5b A / D converter, 6 data storage unit, 10 target detection unit, 11 signal processing condition determination unit, 12 relative value calculation unit, 13 window function selection unit, 13a range window function selection unit, 13b Doppler window function Selection unit, 14 ° direction determination unit, 20 ° signal processing unit, 21 ° pulse compression unit, 22 ° map creation unit, 23 ° target detection unit, 23a23 clutter suppression processing unit, 23b peak detection processing unit, 24 angle measurement unit, 31 correlation value calculation circuit 32 ° window function selecting circuit, 33 ° direction determining circuit, 34 ° pulse compression circuit, 35 ° map creating circuit, 36 ° target detecting circuit, 37 ° angle measuring circuit, 41 ° Mori, 42 processor, 50 transceiver unit, 60 an angle measuring device, 100 an injection device.

Claims (14)

  1.  複数の目標に反射された電磁波の受信信号から、前記複数の目標までの距離と前記複数の目標のドップラー周波数とを示すレンジドップラーマップを作成するマップ作成部と、
     前記複数の目標の間の相対距離と前記複数の目標の間の相対ドップラー周波数とに基づいて、前記レンジドップラーマップに対する一定誤警報率処理の実施方向を決定する方向決定部と、
     前記マップ作成部により作成されたレンジドップラーマップに対する一定誤警報率処理を前記方向決定部により決定された方向に実施することで、前記レンジドップラーマップに含まれているクラッタを抑圧し、クラッタ抑圧後のレンジドップラーマップから、前記複数の目標を検出する目標検出部と
     を備えた目標検出装置。
    From the received signals of the electromagnetic waves reflected on a plurality of targets, a map creating unit that creates a range Doppler map indicating the distance to the plurality of targets and the Doppler frequency of the plurality of targets,
    Based on the relative distance between the plurality of targets and the relative Doppler frequency between the plurality of targets, a direction determining unit that determines a direction in which to perform a constant false alarm rate process on the range Doppler map,
    By performing a constant false alarm rate process on the range Doppler map created by the map creating unit in the direction determined by the direction determining unit, the clutter included in the range Doppler map is suppressed, and after clutter suppression. And a target detection unit for detecting the plurality of targets from the range Doppler map.
  2.  前記目標検出部は、
     前記方向決定部により決定された方向がレンジ方向であれば、前記レンジドップラーマップに対する一定誤警報率処理をレンジ方向に実施することで、前記レンジドップラーマップに含まれているクラッタを抑圧し、
     前記方向決定部により決定された方向がドップラー周波数方向であれば、前記レンジドップラーマップに対する一定誤警報率処理をドップラー周波数方向に実施することで、前記レンジドップラーマップに含まれているクラッタを抑圧することを特徴とする請求項1記載の目標検出装置。
    The target detection unit,
    If the direction determined by the direction determining unit is the range direction, by performing a constant false alarm rate process on the range Doppler map in the range direction, to suppress clutter included in the range Doppler map,
    If the direction determined by the direction determining unit is the Doppler frequency direction, by performing a constant false alarm rate process on the range Doppler map in the Doppler frequency direction, clutter included in the range Doppler map is suppressed. 2. The target detecting device according to claim 1, wherein:
  3.  複数のレンジ窓関数の中から、前記相対距離に対応するレンジ窓関数を選択し、複数のドップラー窓関数の中から、前記相対ドップラー周波数に対応するドップラー窓関数を選択する窓関数選択部と、
     前記複数の目標に反射された電磁波の受信信号に前記窓関数選択部により選択されたレンジ窓関数を乗算し、レンジ窓関数乗算後の受信信号のパルス圧縮を行うパルス圧縮部とを備え、
     前記マップ作成部は、前記パルス圧縮部によりパルス圧縮された受信信号に前記窓関数選択部により選択されたドップラー窓関数を乗算し、ドップラー窓関数乗算後の受信信号から、前記レンジドップラーマップを作成することを特徴とする請求項1記載の目標検出装置。
    From a plurality of range window functions, select a range window function corresponding to the relative distance, from a plurality of Doppler window functions, a window function selection unit that selects a Doppler window function corresponding to the relative Doppler frequency,
    A pulse compression unit that multiplies the reception signals of the electromagnetic waves reflected by the plurality of targets by a range window function selected by the window function selection unit and performs pulse compression on the reception signals after the range window function multiplication.
    The map generator multiplies the received signal pulse-compressed by the pulse compressor by the Doppler window function selected by the window function selector, and generates the range Doppler map from the received signal after Doppler window function multiplication. The target detecting apparatus according to claim 1, wherein the target is detected.
  4.  前記複数の目標を射出する射出装置における前記複数の目標の射出条件から、前記相対距離及び前記相対ドップラー周波数のそれぞれを算出する相対値算出部を備えたことを特徴とする請求項1記載の目標検出装置。 2. The target according to claim 1, further comprising a relative value calculator that calculates each of the relative distance and the relative Doppler frequency from the injection conditions of the plurality of targets in the injection device that injects the plurality of targets. 3. Detection device.
  5.  前記窓関数選択部は、前記複数のレンジ窓関数の中から、前記相対距離が大きいほど、前記レンジ窓関数乗算後の受信信号におけるメインローブの広がりが大きくなるレンジ窓関数を選択することを特徴とする請求項1記載の目標検出装置。 The window function selection unit selects a range window function from among the plurality of range window functions, in which, as the relative distance increases, a main lobe spread in a received signal after the range window function multiplication increases. The target detection device according to claim 1, wherein
  6.  前記窓関数選択部は、前記複数のドップラー窓関数の中から、前記相対ドップラー周波数が大きいほど、前記ドップラー窓関数乗算後の受信信号におけるメインローブの広がりが大きくなるドップラー窓関数を選択することを特徴とする請求項1記載の目標検出装置。 The window function selector, from among the plurality of Doppler window functions, selects a Doppler window function in which the spread of a main lobe in the received signal after the Doppler window function multiplication increases as the relative Doppler frequency increases. The target detection device according to claim 1, wherein
  7.  前記マップ作成部は、前記ドップラー窓関数乗算後の受信信号をヒット方向の周波数領域に変換することで、前記レンジドップラーマップを作成することを特徴とする請求項3記載の目標検出装置。 4. The target detection device according to claim 3, wherein the map creating unit creates the range Doppler map by converting the received signal after the Doppler window function multiplication into a frequency domain in a hit direction.
  8.  前記マップ作成部は、前記ドップラー窓関数乗算後の受信信号をヒット方向に高速フーリエ変換することで、当該受信信号をヒット方向の周波数領域に変換することを特徴とする請求項7記載の目標検出装置。 8. The target detection method according to claim 7, wherein the map creator performs a fast Fourier transform on the received signal after the Doppler window function multiplication in a hit direction to convert the received signal into a frequency domain in a hit direction. apparatus.
  9.  前記マップ作成部は、前記ドップラー窓関数乗算後の受信信号をヒット方向に離散フーリエ変換することで、当該受信信号をヒット方向の周波数領域に変換することを特徴とする請求項7記載の目標検出装置。 8. The target detection method according to claim 7, wherein the map generator converts the received signal after the Doppler window function multiplication into a frequency domain in a hit direction by performing a discrete Fourier transform in a hit direction. apparatus.
  10.  前記マップ作成部は、前記ドップラー窓関数乗算後の受信信号をヒット方向にチャープz変換することで、当該受信信号をヒット方向の周波数領域に変換することを特徴とする請求項7記載の目標検出装置。 8. The target detection method according to claim 7, wherein the map generator converts the received signal after the Doppler window function multiplication into a frequency domain in a hit direction by chirp-z transforming the received signal in a hit direction. apparatus.
  11.  複数の目標に反射された電磁波の受信信号から、前記複数の目標までの距離と前記複数の目標のドップラー周波数とを示すレンジドップラーマップを作成するマップ作成部と、
     前記複数の目標の間の相対距離と前記複数の目標の間の相対ドップラー周波数とに基づいて、前記レンジドップラーマップに対する一定誤警報率処理の実施方向を決定する方向決定部と、
     前記マップ作成部により作成されたレンジドップラーマップに対する一定誤警報率処理を前記方向決定部により決定された方向に実施することで、前記レンジドップラーマップに含まれているクラッタを抑圧し、クラッタ抑圧後のレンジドップラーマップから、前記複数の目標を検出して、前記複数の目標のそれぞれの位相を抽出する目標検出部と、
     前記目標検出部により抽出された位相から、前記複数の目標を測角する測角部と
     を備えた測角装置。
    From the received signals of the electromagnetic waves reflected on a plurality of targets, a map creating unit that creates a range Doppler map indicating the distance to the plurality of targets and the Doppler frequency of the plurality of targets,
    Based on the relative distance between the plurality of targets and the relative Doppler frequency between the plurality of targets, a direction determining unit that determines a direction in which to perform a constant false alarm rate process on the range Doppler map,
    By performing a constant false alarm rate process on the range Doppler map created by the map creating unit in the direction determined by the direction determining unit, the clutter included in the range Doppler map is suppressed, and after clutter suppression. From the range Doppler map, a target detection unit that detects the plurality of targets and extracts a phase of each of the plurality of targets,
    An angle measurement unit that measures the plurality of targets from the phase extracted by the target detection unit.
  12.  前記測角部は、前記複数の目標の測角値の平均値を算出することを特徴とする請求項11記載の測角装置。 The angle measurement device according to claim 11, wherein the angle measurement unit calculates an average value of the angle measurement values of the plurality of targets.
  13.  電磁波を複数の目標に向けて放射したのち、前記複数の目標に反射されて戻ってきた前記電磁波を受信し、前記電磁波の受信信号を出力する送受信部と、
     前記送受信部から出力された受信信号から、前記複数の目標までの距離と前記複数の目標のドップラー周波数とを示すレンジドップラーマップを作成するマップ作成部と、
     前記複数の目標の間の相対距離と前記複数の目標の間の相対ドップラー周波数とに基づいて、前記レンジドップラーマップに対する一定誤警報率処理の実施方向を決定する方向決定部と、
     前記マップ作成部により作成されたレンジドップラーマップに対する一定誤警報率処理を前記方向決定部により決定された方向に実施することで、前記レンジドップラーマップに含まれているクラッタを抑圧し、クラッタ抑圧後のレンジドップラーマップから、前記複数の目標を検出する目標検出部と
     を備えたレーダ装置。
    After radiating the electromagnetic wave toward a plurality of targets, receiving the electromagnetic wave reflected and returned to the plurality of targets, a transmitting and receiving unit that outputs a reception signal of the electromagnetic wave,
    From the received signal output from the transmitting and receiving unit, a map creating unit that creates a range Doppler map indicating the distance to the plurality of targets and the Doppler frequency of the plurality of targets,
    Based on the relative distance between the plurality of targets and the relative Doppler frequency between the plurality of targets, a direction determining unit that determines a direction in which to perform a constant false alarm rate process on the range Doppler map,
    By performing a constant false alarm rate process on the range Doppler map created by the map creating unit in the direction determined by the direction determining unit, the clutter included in the range Doppler map is suppressed, and after clutter suppression. A target detection unit configured to detect the plurality of targets from the range Doppler map.
  14.  前記目標検出部は、前記複数の目標のそれぞれの位相を抽出し、
     前記目標検出部により抽出された位相から、前記複数の目標を測角する測角部を備えたことを特徴とする請求項13記載のレーダ装置。
    The target detection unit extracts a phase of each of the plurality of targets,
    14. The radar device according to claim 13, further comprising an angle measuring unit that measures the angles of the plurality of targets from the phase extracted by the target detecting unit.
PCT/JP2018/024679 2018-06-28 2018-06-28 Target detection device, angle measurement device, and radar device WO2020003459A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/024679 WO2020003459A1 (en) 2018-06-28 2018-06-28 Target detection device, angle measurement device, and radar device
JP2020526822A JP6820130B2 (en) 2018-06-28 2018-06-28 Target detection device, angle measuring device and radar device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/024679 WO2020003459A1 (en) 2018-06-28 2018-06-28 Target detection device, angle measurement device, and radar device

Publications (1)

Publication Number Publication Date
WO2020003459A1 true WO2020003459A1 (en) 2020-01-02

Family

ID=68984938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/024679 WO2020003459A1 (en) 2018-06-28 2018-06-28 Target detection device, angle measurement device, and radar device

Country Status (2)

Country Link
JP (1) JP6820130B2 (en)
WO (1) WO2020003459A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112068102A (en) * 2020-09-10 2020-12-11 成都汇蓉国科微系统技术有限公司 Radar signal processing computing power balance design and device
CN112990170A (en) * 2021-05-20 2021-06-18 成都市克莱微波科技有限公司 Phased array radar target identification method and system, electronic device and medium
JP6952939B1 (en) * 2021-03-15 2021-10-27 三菱電機株式会社 Radar device
JP7049572B1 (en) * 2021-07-30 2022-04-07 あおみ建設株式会社 Underwater positioning system and method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102557458B1 (en) * 2021-01-29 2023-07-19 엘아이지넥스원 주식회사 Method and Apparatus for Detecting Radar Target Based on Artificial Intelligence

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011122839A (en) * 2009-12-08 2011-06-23 Mitsubishi Electric Corp Radar system
US20130113647A1 (en) * 2009-12-18 2013-05-09 L-3 Communications Cyterra Corporation Moving-entity detection
JP2017053685A (en) * 2015-09-08 2017-03-16 株式会社東芝 Radar device and radar signal processing method
US9746549B1 (en) * 2014-07-11 2017-08-29 Altera Corporation Constant false alarm rate circuitry in adaptive target detection of radar systems

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011122839A (en) * 2009-12-08 2011-06-23 Mitsubishi Electric Corp Radar system
US20130113647A1 (en) * 2009-12-18 2013-05-09 L-3 Communications Cyterra Corporation Moving-entity detection
US9746549B1 (en) * 2014-07-11 2017-08-29 Altera Corporation Constant false alarm rate circuitry in adaptive target detection of radar systems
JP2017053685A (en) * 2015-09-08 2017-03-16 株式会社東芝 Radar device and radar signal processing method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112068102A (en) * 2020-09-10 2020-12-11 成都汇蓉国科微系统技术有限公司 Radar signal processing computing power balance design and device
CN112068102B (en) * 2020-09-10 2023-08-25 成都汇蓉国科微系统技术有限公司 Radar signal processing calculation power balance design and device
JP6952939B1 (en) * 2021-03-15 2021-10-27 三菱電機株式会社 Radar device
WO2022195672A1 (en) * 2021-03-15 2022-09-22 三菱電機株式会社 Radar device
GB2625179A (en) * 2021-03-15 2024-06-12 Mitsubishi Electric Corp Radar device
CN112990170A (en) * 2021-05-20 2021-06-18 成都市克莱微波科技有限公司 Phased array radar target identification method and system, electronic device and medium
JP7049572B1 (en) * 2021-07-30 2022-04-07 あおみ建設株式会社 Underwater positioning system and method
WO2023008230A1 (en) * 2021-07-30 2023-02-02 あおみ建設株式会社 Underwater positioning system and method

Also Published As

Publication number Publication date
JPWO2020003459A1 (en) 2020-12-17
JP6820130B2 (en) 2021-01-27

Similar Documents

Publication Publication Date Title
JP6820130B2 (en) Target detection device, angle measuring device and radar device
EP3109662B1 (en) Radar signal processing for automated vehicles
JP4356758B2 (en) FMCW radar
EP2697666B1 (en) Method and system for target detection
US8947293B2 (en) Radar apparatus
CN108885254B (en) Object detection device
JP5871559B2 (en) Radar equipment
EP2533069A1 (en) Signal processing unit and method
JP5811931B2 (en) Phase monopulse radar device
US7671788B2 (en) Apparatus and method for suppression of unnecessary signals in a radar system
US10310065B2 (en) Radar device, signal processing device for radar device, and signal processing method
JP2009025159A (en) Radar device
US10761205B2 (en) Systems for determining target direction and methods therefor
JP2005121581A (en) Radar device
JP5460290B2 (en) Radar equipment
JP2012042214A (en) Radar device
Jin et al. Design and implementation of FMCW surveillance radar based on dual chirps
JP2014153088A (en) Rader system and tracking processor
US11960023B2 (en) Radar device
JP7381970B2 (en) Radar device, object detection method, and object detection program
JP2001221854A (en) Fm-cw radar
JPH11271434A (en) Phase monopulse radar apparatus
Testar et al. New super-resolution ranging technique for FMCW radar systems
JP2013113723A (en) Radar system
JP6952939B1 (en) Radar device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18924074

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020526822

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18924074

Country of ref document: EP

Kind code of ref document: A1