WO2020001334A1 - 一种光源模组及包括该光源模组的照明装置 - Google Patents

一种光源模组及包括该光源模组的照明装置 Download PDF

Info

Publication number
WO2020001334A1
WO2020001334A1 PCT/CN2019/091778 CN2019091778W WO2020001334A1 WO 2020001334 A1 WO2020001334 A1 WO 2020001334A1 CN 2019091778 W CN2019091778 W CN 2019091778W WO 2020001334 A1 WO2020001334 A1 WO 2020001334A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
phosphor
source module
light source
peak
Prior art date
Application number
PCT/CN2019/091778
Other languages
English (en)
French (fr)
Inventor
周志贤
强洁
王会会
Original Assignee
欧普照明股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810663422.5A external-priority patent/CN108922955B/zh
Priority claimed from CN201820980924.6U external-priority patent/CN209496889U/zh
Application filed by 欧普照明股份有限公司 filed Critical 欧普照明股份有限公司
Publication of WO2020001334A1 publication Critical patent/WO2020001334A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements

Definitions

  • the invention relates to a light source module and a lighting device including the light source module.
  • LED lighting appliances have been widely used instead.
  • the existing LED lighting products mainly solve the problems of energy saving, illuminance, color and color rendering.
  • more and more people are concerned that more blue light in LED may affect the physiological rhythm of the human body.
  • the circadian StimuIus evaluation model to evaluate, that is, the CS value in the industry, the spectrum of high CS value, under the same illumination, it is particularly suitable for people to focus attention To learn and work.
  • there is a lack of LED lighting products with high CS value which can take into account energy saving, illuminance, color, and color rendering, while further considering the effect of light on the human physiological rhythm.
  • the purpose of the present invention is to solve the above problems, and to find an LED white light source with high CS value, high color rendering, and high light efficiency.
  • the technical solution adopted by the present invention is to provide a light source module including a first light emitting element and a packaging portion covering the first light emitting element.
  • the first light emitting element emits a first color light having a peak wavelength at 435 to 465 nm;
  • the packaging section includes:
  • a first additional luminous body is arranged to receive a part of the light emitted by the first light emitting element and convert it into a second color light having a peak wavelength at 485-520 nm;
  • a second additional luminous body is arranged to receive a part of the light emitted by the first light emitting element and convert it into a third color light having a peak wavelength at 530-580 nm;
  • a third additional luminous body is arranged to receive a part of the light emitted by the first light emitting element and convert it into a fourth color light having a peak wavelength at 605-645 nm,
  • the spectrum of the emitted light is continuously distributed in the visible light range of 380 to 780 nm, and the relative deviation value ⁇ I of the spectral intensity of two adjacent points in the spectrum is defined,
  • Intensit (i) and Intensit (i + 1) respectively indicate the spectral intensity of two points in the spectrum with a wavelength difference of step I, 1nm ⁇ I ⁇ 5nm,
  • the emitted light spectrum includes two wave peaks, a peak valley, and a stable distribution interval:
  • the first peak is located in a wavelength region of 435 to 465 nm;
  • the second peak is located in a wavelength region of 605-645 nm, and the ratio of the spectral intensity of the second peak to the spectral intensity of the first peak is between 70% and 130%;
  • the peaks and valleys are located in the wavelength region of 455 to 485 nm.
  • the ratio of the spectral intensity of the peaks and valleys to the spectral intensity of the first peak is 25% or more, and the width of the peaks and valleys in the long wave direction is 30 nm or less.
  • the end point is the point near the peak and valley of the two adjacent points when the first ⁇ I ⁇ 2% occurs from the peak and valley position in the long wave direction.
  • the width of the peak and valley in the long wave direction refers to the peak and valley long wave direction end point and valley. Wavelength difference between
  • the stable distribution interval is a wavelength region of 495 to 560 nm.
  • the ratio of the spectral intensity at any point in the stable distribution interval to the spectral intensity of the first peak is between 60 and 80%, and the ⁇ I of any two adjacent points is not More than 1.5%.
  • the ratio of the spectral intensity of the second peak to the spectral intensity of the first peak is between 80% and 110%.
  • the ratio of the spectral intensity of the peak and valley to the spectral intensity of the first peak is between 30% and 60%.
  • the ⁇ I of any two adjacent points in the stable distribution interval is not more than 0.8%.
  • the first light emitting element is a blue LED with a peak wavelength of emitted light of 435 to 465 nm;
  • the first additional light emitter is a blue-green phosphor having a peak wavelength of 485 to 520 nm and a half width of 25 to 65 nm;
  • the second additional luminous body is a yellow-green phosphor combination including a yellow phosphor and a green phosphor, including at least one yellow phosphor with a peak wavelength greater than 540 nm and at least one green phosphor with a peak wavelength less than 540.
  • the yellow The peak wavelength of the green phosphor combination is 530 to 580 nm, and the half width is 60 to 115 nm.
  • the third additional luminous body is a red or orange phosphor with a peak wavelength of 605 to 645 nm and a half width of 80 to 120 nm.
  • the sum of the weights of the blue-green phosphor, the yellow-green phosphor combination, and the red or orange phosphor is defined as the total phosphor weight, and the total phosphor weight in the packaging portion accounts for The ratio is 25.0% to 50.0%.
  • the blue-green phosphor is any one or a mixture of two or more of the following phosphors:
  • the proportion of the blue-green phosphor in the total phosphor weight is 15.0-40.0%.
  • the yellow phosphor / green phosphor is any one or a mixture of two or more of the following phosphors:
  • M4 is at least one element of Y, Lu, Gd, and La
  • the proportion of the yellow-green phosphor combination in the total phosphor weight is 25.0% -55.0%.
  • the red or orange phosphor is any one or a mixture of two or more of the following phosphors:
  • the proportion of the red or orange phosphor in the total phosphor weight is 10.0% to 40.0%.
  • the half-width of the emitted light of the yellow-green phosphor combination is 90-115 nm.
  • the packaging portion further includes a base material and a light diffusing agent
  • the base material is silica gel or a resin
  • the light diffusing agent is one of nano-scale titanium oxide, aluminum oxide, or silicon oxide.
  • the light color of the light emitted by the light source module is in the CIE1931 color space, and is located in four of D1 (0.3991, 0.4012), D2 (0.3722, 0.3843), D3 (0.3658, 0.3550), and D4 (0.3885, 0.3688).
  • D1 0.991, 0.4012
  • D2 0.722, 0.3843
  • D3 0.3658, 0.3550
  • D4 0.3885, 0.3688
  • the CS value is ⁇ 0.34.
  • the color rendering index CRI of the emitted light of the light source module is ⁇ 90.0, and R9 is ⁇ 85.0.
  • the present invention also provides a lighting device including the light source module.
  • the light source module controls the proportion of the luminous energy in the total luminous energy in the 495 to 560 nm wavelength region that has the greatest influence on the CS value by providing a high light efficiency, high CS value, and high color rendering.
  • Neutral LED neutral white (4000K) light source This high CS value spectrum is particularly suitable for people to concentrate on studying and working under the same illumination.
  • FIG. 1 is a schematic structural diagram of a light source module according to a preferred embodiment of the present invention.
  • FIG. 2 is a schematic diagram of spectral characteristics of a light source module according to a preferred embodiment of the present invention
  • FIG. 3 is a CIE1931 color coordinate diagram according to the preferred embodiments 1 to 8 of the present invention.
  • FIG. 4 is an emission spectrum chart of the preferred embodiment 1 in the present invention.
  • FIG. 5 is an emission spectrum chart of the preferred embodiment 2 in the present invention.
  • FIG. 6 is an emission spectrum chart of the preferred embodiment 3 in the present invention.
  • FIG. 7 is an emission spectrum chart of the preferred embodiment 4 in the present invention.
  • FIG. 8 is an emission spectrum chart of the preferred embodiment 5 in the present invention.
  • FIG. 9 is an emission spectrum chart of the preferred embodiment 6 in the present invention.
  • FIG. 10 is an emission spectrum chart of the preferred embodiment 7 in the present invention.
  • FIG. 11 is an emission spectrum chart of the preferred embodiment 8 in the present invention.
  • the light source module L1 provided by the present invention is a light source product, which can be applied to a lighting device (not shown) to provide daily lighting.
  • the lighting device can be various types of lamps such as table lamps, chandeliers, ceiling lamps, downlights, spotlights, etc.
  • the lighting device includes a light source module L1 and a power supply module that provides power required for work to the light source module L1.
  • the functions and requirements of the luminaires include controllers, heat sinks and light distribution components.
  • the controller can be used to adjust the color and intensity of the light emitted by the light source module L1, and the light distribution components can be a lamp cover, a lens, a diffusing element, a light guide, and the like.
  • a specific embodiment of the light source module L1 of the present invention is a mixed-light white LED package chip, which may be an LED chip having a general patch package structure or a COB package structure. As shown in FIG. 1, the light source module L1 includes at least one The first light emitting element 1 and a package portion 2 covering the first light emitting element.
  • the first light-emitting element 1 is a blue light LED chip, which is directly excited by a semiconductor material to emit light. Its peak wavelength of light emission is 435-465 nm, and the light color is blue. Here, we call the light emitted by the first light-emitting element 1 as the first color light. In another preferred embodiment, a blue LED chip with a peak wavelength position of 435-465 nm may also be used. LED chips (LED chips), including front-mounted or flip-chip, a single LED chip or multiple LED chips connected in series, parallel or series-parallel.
  • the sealing portion 2 uses transparent silicone or transparent resin as the base material 204, where the transparent resin refers to one of epoxy resin and urea resin.
  • the base material 204 is doped with a first additional luminous body 201, a second additional luminous body 202, and a third additional luminous body 203.
  • the first additional luminous body 201 is a blue-green phosphor that receives a part of the light emitted by the first light-emitting element 1 and converts it into second-color light having a peak wavelength of 485-520 nm and a half-width of 25-65 nm.
  • the second additional luminous body 202 is a combination of yellow-green phosphors including at least one yellow phosphor with a peak wavelength greater than 540 nm and at least one green phosphor with a peak wavelength less than 540 nm. Part of the light emitted by the first light-emitting element 1 is converted into third-color light having a peak wavelength at 530 to 580 nm and a half width of 60 to 115 nm, and a preferred half width is 90 to 115 nm.
  • the third additional luminous body 203 is a red or orange phosphor that receives a part of the light emitted by the first light emitting element 1 and converts it into a fourth color light having a peak wavelength at 605-645 nm and a half-width 80-120 nm.
  • the preferred half width is 80 to 100 nm.
  • the packaging portion 2 may further include a light diffusing agent, and the light diffusing agent may be one of nano-scale titanium oxide, aluminum oxide, or silicon oxide.
  • the above-mentioned various types of phosphors and light diffusing agents are mixed into the packaging substrate 204 and uniformly distributed in the packaging substrate 204.
  • the packaging substrate 204 mixed with the phosphor covers the blue LED chip as the first light-emitting element 1 to form the packaging portion 2.
  • the role of the additional luminous body in the light source module 1 is to receive part of the light emitted by the first light emitting element 1 and convert it into light of a different color than the first color.
  • the first color The light, the second color light, the third color light, and the fourth color light are mixed to form the emission light of the light source module L1.
  • the proportion of the total phosphor weight in the packaging portion 2 is 25 to 50%.
  • the weight of the packaging portion 2 is the total weight of the packaging base 204 after mixing the phosphor and the light diffusing agent.
  • the blue-green phosphor as the first additional luminous body 201 accounts for 15.0 to 40.0% of the total phosphor weight. It can select any one of the following phosphors, or two of the following phosphors. Or above.
  • the specific types of phosphors are as follows (in the present invention, the molar ratio is represented by x):
  • the proportion of the yellow-green phosphor combination as the second additional luminous body 202 in the total phosphor weight is 25.0-55.0%.
  • yellow and green phosphors do not have a clear definition.
  • the two basically have the same chemical formula, and the difference is only that the molar ratio of the components is different.
  • the feature of this application is that it is selected in the 500-580nm band.
  • Two kinds of phosphors with different peak wavelengths are combined, one of which has a peak wavelength greater than 540nm and less than 580nm is called a yellow phosphor, and the other kind of phosphor has a peak wavelength less than 540nm and is greater than 500nm. We call it a green phosphor.
  • more kinds of phosphors can be selected for mixing, but it needs to include a kind of yellow phosphor and a kind of green phosphor.
  • the specific yellow phosphor / green phosphor can be any one of the following phosphors or a mixture of two or more of them:
  • M4 is at least one element of Y, Lu, Gd, and La
  • the proportion of the red or orange phosphor as the third additional luminous body 203 in the total phosphor weight is 10.0 to 40.0%, which can be selected from any of the following phosphors, or two from the following phosphors Or more.
  • the specific types of phosphors are as follows (in the present invention, the molar ratio is represented by x):
  • x and y represent the coordinate values of the phosphor's light color on the CIE1931 color space
  • Peak represents the peak wavelength
  • Hw represents the half width.
  • the above values are all examples.
  • the actual value of the phosphor used in the invention is not a limitation on the present invention, because in actual production, the peak wavelength and half-width of the phosphor may be slightly different from the above data due to the difference in phosphor purity and particle size. This deviation value Generally it will be controlled within ⁇ 5nm. It should be considered that other solutions in this range are equivalent to the above phosphors.
  • Table 2 shows the eight embodiments of the present application, and the types of phosphors and the weights of various phosphors used in each embodiment.
  • the proportion of yellow-green powder refers to the mixed yellow powder and green powder in the total phosphor.
  • the proportion of the weight, and the proportion of the total phosphor refers to the proportion of the total phosphor weight in the total weight of the packaging portion 2 after all four phosphors are mixed with the packaging substrate 204.
  • the packaging substrate 204 is all transparent silicone and weighs 10 g.
  • the weights of the phosphors in the examples in Table 2 are the data when we made the sample chips. Actually, in mass production, due to the different weights of phosphors, the weight will be slightly different, but the basic proportion is in a fixed interval. inside. It can be seen from Table 2 that the proportion of the red phosphor as the third additional luminous body 203 in the total phosphor weight ranges from 22.9% to 35.3%. Considering that other types of phosphors can also be used, this application considers that The proportion of the third additional luminous body 203 in the total phosphor weight should be in the range of 10% to 40%.
  • the proportion of the yellow-green phosphor combination as the second additional luminous body 202 in Table 2 in the total phosphor weight ranges from 40.2% to 54.7%. In this application, the second additional luminous body 202 is considered to be in the total phosphor. The proportion by weight should be in the range of 35.0-55.0%, and further consideration can be made that the proportion of other phosphors can be expanded to 25.0-55.0%.
  • the blue-green phosphor as the first additional luminous body 201 in Table 2 accounts for 17.6% to 28.4% of the total phosphor weight. In the present application, the first additional luminous body 201 is considered to be in the total phosphor weight.
  • the proportion of the phosphor should be in the range of 15.0-30.0%, and further consideration can be made that the proportion of other phosphors can be expanded to 15.0-40.0%.
  • These phosphors can be coated on the LED chip by mixing with transparent silica gel, or the remote phosphor can be set at a position far away from the chip, or part of the phosphor can be mixed into the encapsulant and part of the phosphor, which is not limited in this application.
  • 1.45 g of the red phosphor with a substitution number of R630 is called the third additional luminous body 203.
  • the second additional luminous body 202 is a combination of a yellow phosphor coded as Y550 and a green phosphor coded as G-Ga535, of which 2.23 g of yellow phosphor and 0.86 g of green phosphor, totaling 3.09 g.
  • the first green light emitting body 201 is called 1.80 g of blue-green phosphor powder with substitution number BG490.
  • 1.58 g of red phosphor with a substitution number of R630 is called as the third additional luminous body 203.
  • the second additional luminous body 202 is a combination of a yellow phosphor coded as Y550 and a green phosphor coded as G-Ga535, wherein the yellow phosphor is 0.90 g and the green phosphor is 1.98 g, for a total of 2.88 g. 1.50 g of blue-green phosphor powder which is called the substitution number BG490 is used as the first additional luminous body 201.
  • 1.92 g of the red phosphor with a substitution number of R640 is referred to as the third additional luminous body 203.
  • the second additional luminous body 202 is a combination of a yellow phosphor coded as Y565 and a green phosphor coded as G-L535, wherein the yellow phosphor is 1.37 g and the green phosphor is 1.57 g, for a total of 2.94 g. 1.30 g of blue-green phosphor powder named substitution number BG490 is used as the first additional luminous body 201.
  • 2.05 g of the red phosphor with a substitution number of R640 is referred to as the third additional luminous body 203.
  • the second additional luminous body 202 is a combination of a yellow phosphor coded as Y565 and a green phosphor coded as G-L535, among which 1.27 g of yellow phosphor and 2.48 g of green phosphor, totaling 3.75 g. 1.25 g of a blue-green phosphor powder called a substitution number BG490 is used as the first additional luminous body 201.
  • 1.73 g of red phosphor with a substitution number of R650 is called as the third additional luminous body 203.
  • the second additional luminous body 202 is a combination of a yellow phosphor coded as Y550 and a green phosphor coded as G-L535, wherein the yellow phosphor is 2.17 g and the green phosphor is 1.37 g, for a total of 3.54 g.
  • the 1.20 g of blue-green phosphor powder with the substitution number BG490 is referred to as the first additional luminous body 201.
  • the second additional luminous body 202 is a combination of a yellow phosphor coded as Y565 and a green phosphor coded as G-Ga535, wherein the yellow phosphor is 0.70 g and the green phosphor is 1.35 g, for a total of 2.05 g. 1.25 g of a blue-green phosphor powder called a substitution number BG490 is used as the first additional luminous body 201.
  • the red phosphor 2.50g with the substitution number R630 is called as the third additional luminous body 203.
  • the second additional luminous body 202 is a combination of a yellow phosphor with a code of Y550 and a green phosphor with a code of G-Ga535, wherein the yellow phosphor is 2.33 g and the green phosphor is 2.20 g, for a total of 4.53 g. 1.50 g of blue-green phosphor powder which is called the substitution number BG490 is used as the first additional luminous body 201.
  • the second additional luminous body 202 is a combination of a yellow phosphor with a code of Y550 and a green phosphor with a code of G-Ga535, wherein the yellow phosphor is 2.16 g and the green phosphor is 0.90 g, for a total of 3.06 g. 1.24 g of a blue-green phosphor powder called a substitution number BG500 was used as the first additional luminous body 201. Put the above phosphor into transparent silica gel, and mix thoroughly with a blender, apply it on the blue LED chip, and get a neutral white LED chip after drying and removing bubbles. The spectrum is shown in Figure 11 and the specific luminous characteristics are shown in Table 3.
  • Table 3 lists the light emission characteristics of the light source module L1 in Examples 1-8, where x and y represent the coordinate values of the light color of the light emitted by the light source module L1 on the x and y axes of the CIE1931 color coordinate system.
  • CCT is the color temperature
  • duv represents the distance and direction of the color shift Planckian trajectory in the color coordinate system
  • CRI and R9 are the color rendering indexes.
  • the CS value of 500 lux in this application indicates the CS value of the light emitted by the light source module L1 at an illuminance of 500 lux.
  • the specific calculation formula is as follows:
  • V '( ⁇ ) Dark vision light efficiency function
  • the calculation formula is based on the mathematical model of human rhythm light transmission published by LRC.
  • the CS value of the emitted light of the light source module L1 in all the embodiments is greater than 0.34 when the illuminance is 500 lux, and its color rendering index meets CRI ⁇ 90.0 and R9 ⁇ 85.0.
  • the light color of each embodiment on the CIE1931 color coordinate system, as shown in Figure 3, the light color of each embodiment falls near the black body locus of the correlated color temperature 4000 ⁇ 280K, and the distance from the black body locus BBL is all Less than 0.006, that is, duv is in the range of -0.006 to 0.006.
  • FIG. 2 is a schematic spectral diagram that best reflects the spectral characteristics of the light emitted by the light source module L1 of the present application. We will describe the spectral characteristics of the present application according to FIG. 2. It can be seen from FIG. 2 that the spectrum of the emitted light of the light source module L1 is continuously distributed in the visible light range of 380 to 780 nm, that is, each point in 380 to 780 nm has a certain energy distribution, which can ensure that the spectrum has a better Showability.
  • ⁇ I the relative deviation value of the spectral intensity of two adjacent points in a spectrum.
  • ⁇ I represents the change in the emphasis of the adjacent two points in the spectrum, and it appears in the spectrum diagram that the two adjacent points are connected.
  • the slope of the line The specific formula is Among them, Intensit (i) and Intensit (i + 1) respectively indicate the spectral intensity of two adjacent points in the spectrum with a wavelength difference of step I.
  • the points on the line can be infinitely close, but it is customary in the industry that the two adjacent points generally refer to two points separated by a certain wavelength in the spectrogram.
  • the wavelength of the interval is called the step size.
  • the step size I usually everyone uses 5nm as the step size.
  • the two points 600nm and 605nm in the spectrogram are called two adjacent points. Therefore, the relative deviation value ⁇ I of the spectral intensity of two adjacent points is a value representing the smoothness of the spectrum, and the shorter the step size, the more accurately the change in the spectrum can be expressed. Therefore, the range of the defined step size I can be 1 nm ⁇ I ⁇ 5nm.
  • the spectrum in FIG. 2 mainly includes the characteristics of the first peak P1, the second peak P2, the peak valley V1, and a stable distribution interval Z.
  • the first peak P1 is located in the wavelength region of 435 to 465 nm. Since the light source module L1 uses the first light-emitting element 1 as a blue light emitting chip, although a large part of the light emitted by the blue light LED chip passes through the additional luminous body, Wavelength conversion, but there is still some energy that has not been converted. These energy forms the first peak in the wavelength region of 435 ⁇ 465nm.
  • This P1 point may be the same as the peak wavelength of the blue LED chip, because the main source of this peak energy is A light-emitting element 1, but the converted light of each additional luminous body may also have some energy in this wavelength band. After the two are mixed, this first peak P1 may not necessarily be the peak of the original first light-emitting element 1 blue LED chip.
  • the wavelength positions are completely coincident and may drift slightly, but they are still in the wavelength range of 435 to 465 nm.
  • the second peak P2 is located in a wavelength region of 605 to 645 nm.
  • the energy of the second peak P2 is the red light converted by the red phosphor of the third additional luminous body 203 to receive part of the light emitted by the blue LED chip of the first light emitting element 1. which provided.
  • the ratio of the spectral intensity of the second peak P2 to the spectral intensity of the first peak P1 is between 70% and 130%, and preferably between 80% and 110%. In FIG. 2, the second peak P2 is slightly lower than the first peak P1, and the ratio is close to 95%. In Examples 2, 4, 5, and 7, the second peak P2 is significantly higher than the first peak P1, and the ratio of the two is greater than 100. %.
  • the peak and valley V1 is located in the wavelength region of 455 to 485 nm.
  • the ratio of the spectral intensity of the peak and valley V1 to the spectral intensity of the first peak should be 25% or more, more preferably 30 to 60. %,
  • This part of the energy is provided by the blue-green phosphor of the first additional luminous body 201 receiving part of the light emitted by the blue LED chip of the first light-emitting element 1 and converted into blue-green.
  • the addition of the blue-green phosphor is to ensure This part of the energy will not be too low. But even if the height of the valley bottom is guaranteed, the width of the peak and valley V1 is also affected by the energy distribution.
  • the width of the peak and valley V1 in the long wave direction should be less than or equal to 30 nm, and the peak and valley V1 in the long wave direction.
  • the width is shown in FIG. 2 as the distance W from the peak and valley V1 to the point A, where point A is the first two adjacent points near the peak and valley V1 when the first ⁇ I ⁇ 2% appears from the position of the peak and valley V1 in the long wave direction.
  • Point we call it the end point A in the long-wave direction of the peak and valley.
  • the slope is larger and shows a valley state. After ⁇ I, the ⁇ I becomes smaller and the spectrum rise is relatively gentle.
  • the width W of the peak and valley V1 in the long-wave direction is equal to the wavelength difference between the point A and the peak and valley V1.
  • the stable distribution interval Z is a wavelength region of 495 to 560 nm.
  • the reason why it is called a stable distribution interval is that the spectral intensity changes within this interval are small, and the spectral curve of this segment is almost plateau-shaped, where any two adjacent points ⁇ I is not more than 1.5%, and more preferably not more than 0.8%.
  • the ratio of the spectral intensity at any point to the spectral intensity of the first peak P1 is between 60% and 80%.
  • FIG. 2 is an ideal spectrum diagram of the present application, so point A is located exactly at the beginning of the stable distribution interval Z. In a specific embodiment, point A may fall into the stable distribution interval Z, or may be outside the stable distribution interval Z. This application does not limit this.
  • the energy of the stable distribution zone Z is provided by the yellow-green phosphor combination of the second additional luminous body 202 receiving part of the light emitted by the blue LED chip of the first light-emitting element 1 and is converted into an ideal one in FIG. 2.
  • the stable distribution interval Z has a small overall fluctuation, but because the yellow-green phosphor combination is a mixture of two phosphors, a small peak may also appear in this interval, as in Examples 5, 6, and 7 As shown in the spectrum of 8 and 8, but as long as ⁇ I is within our limited range, it will not have much effect on the result, and we can still achieve the CS value we want.
  • Table 4 lists the characteristic values of the spectra of Examples 1-8, where the P1 wavelength, P2 wavelength, and V1 wavelength refer to the wavelengths of the first peak P1, the second peak P2, and the valley V1 respectively, and the P2 energy ratio refers to the first The ratio of the spectral intensity of the two peaks P2 to the spectral intensity of the first peak P1, the V1 energy ratio refers to the ratio of the spectral intensity of the peak valley V1 and the spectral intensity of the first peak P1, and the minimum value of the energy ratio in the Z interval refers to the stable distribution interval Z The minimum value of the ratio of the spectral intensity at any point to the spectral intensity of the first peak P1.
  • the maximum value of the ⁇ I value in the Z interval refers to the maximum value of the ⁇ I values of any two adjacent points in the stable distribution zone Z.
  • W refers to the peak and valley V1 long wave. The wavelength difference between the direction end point A and the peak and valley V1.

Abstract

一种光源模组和使用所述光源模组的照明装置,光源模组包括第一发光元件(1)和覆盖于第一发光元件(1)的封装部(2),封装部(2)中包括第一附加发光体(201)、第二附加发光体(202)、第三附加发光体(203),各发光体发出的光混合成暖白光,作为光源模组的发射光。光源模组在通过控制对CS值影响最大的495~560nm波长区域内发光能量在总发光能量中的占比,提供了一种同时具有高光效、高CS值、高显色性的LED中性白光(4000K)光源。这种高CS值的光谱,在相同照度下,特别适合人集中注意力进行学习和工作。

Description

一种光源模组及包括该光源模组的照明装置 技术领域
本发明涉及一种光源模组及包括该光源模组的照明装置。
背景技术
随着第三次照明技术革命的到来和发展,白炽灯、卤素灯等由于光效低、不节能已经逐渐被世界各国禁止生产和销售,LED照明器具取而代之已被广泛的使用。现有的LED照明产品主要解决的是节能、照度、颜色和显色性问题。在使用LED照明产品时,越来越多的人们关注到LED中的蓝光较多,可能会对人体的生理节律产生影响。对于照明产品对人体的生理节律产生影响,我们可以通过昼夜刺激(Circadian StimuIus)评价模型来进行评价,即业内所说的CS值,高CS值的光谱,在相同照度下,特别适合人集中注意力进行学习和工作。当前市场上缺乏在兼顾节能、照度、颜色和显色性的同时,可以进一步考虑光对人体生理节律影响的,具有高CS值的LED照明产品。
发明内容
本发明的目的是为了解决上述问题,寻找一种高CS值、高显色性,同时具有高光效的LED白光光源。
本发明为实现上述功能,所采用的技术方案是提供一种光源模组,包括第一发光元件和覆盖于第一发光元件的封装部,
所述第一发光元件发出峰值波长位于435~465nm的第一颜色光;
所述封装部包括:
第一附加发光体,所述第一附加发光体被布置为接收所述第一发光元件所发射的部分光线,并将其转换为峰值波长位于485~520nm的第二颜色光;
第二附加发光体,所述第二附加发光体被布置为接收所述第一发光元件所发射的部分光线,并将其转换为峰值波长位于530~580nm的第三颜色光;
第三附加发光体,所述第三附加发光体被布置为接收所述第一发光元件所发射的部分光线,并将其转换为峰值波长位于605~645nm的第四颜色光,
所述第一颜色、第二颜色光、第三颜色光和第四颜色光混合形成所述光源模组的发射光,所述发射光为中性白光,即所述发射光在CIE1931色空间上,位于相关色温4000±280K与黑体轨迹的距离duv=-0.006~0.006的点围成的区间内,
所述发射光的光谱在380~780nm可见光范围光谱连续分布,定义光谱中相邻两点的光谱强度相对偏差值ΔI,
Figure PCTCN2019091778-appb-000001
其中Intensit(i)、Intensit(i+1)分别表示光谱中波长差为步长I的两点的光谱强度,1nm≤I≤5nm,
所述发射光光谱包括两个波峰、一个峰谷和一个稳定分布区间:
第一峰位于435~465nm波长区域内;
第二峰位于605~645nm波长区域内,所述第二峰的光谱强度和所述第一峰的光谱强度的比值在70%~130%之间;
峰谷位于455~485nm波长区域内,所述峰谷的光谱强度和所述第一峰的光谱强度的比值大于等于25%,且峰谷向长波方向的宽度小于等于30nm,定义峰谷长波方向结束点为由峰谷位置向长波方向出现的第一个ΔI≤2%时相邻两点中靠近峰谷的点,所述峰谷向长波方向的宽度指峰谷长波方向结束点和峰谷之间的波长差;
稳定分布区间为495~560nm波长区域,所述稳定分布区间中任意一点的光谱强度和所述第一峰的光谱强度的比值在60~80%之间,且其中任意相邻两点的ΔI不大于1.5%。
优选地,所述第二峰的光谱强度和所述第一峰的光谱强度的比值在80%~110%之间。
优选地,所述峰谷的光谱强度和所述第一峰的光谱强度的比值在30%~60%之间。
优选地,所述稳定分布区间中任意相邻两点的ΔI不大于0.8%。
优选地,所述第一发光元件为发射光峰值波长在435~465nm的蓝光LED;所述第一附加发光体为峰值波长在485~520nm,半宽度25~65nm的蓝绿色荧光粉;所述第二附加发光体为包括黄色荧光粉和绿色荧光粉的黄绿色荧光粉组合,其中包含至少一种峰值波长大于540nm的黄色荧光粉和至少一种峰值波长小于540的绿色荧光粉,所述黄绿色荧光粉组合的峰值波长在530~580nm,半宽度60~115nm;所述第三附加发光体为峰值波长在605~645nm,半宽度80~120nm的红色或橙色荧光粉。
优选地,定义所述蓝绿色荧光粉、所述黄绿色荧光粉组合、所述红色或橙色荧光粉的重量之和为总荧光粉重量,所述总荧光粉重量在所述封装部中的占比为25.0%~50.0%。
优选地,所述蓝绿色荧光粉为下述荧光粉中的任意一种或两种以上混合而成:
(a)氮氧化物,Eu 2+为激活剂
化学组成通式:(Ba,Ca) 1-xSi 2N 2O 2:Eu x
其中x=0.005~0.200;
(b)掺Ga石榴石荧光粉,Eu 2+为激活剂
化学组成通式:Ga-LuAG:Eu;
(c)硅酸盐荧光粉,Eu 2+为激活剂
化学组成通式:Ba 2SiO 4:Eu。
优选地,所述蓝绿色荧光粉在所述总荧光粉重量中的占比为15.0~40.0%。
优选地,所述黄色荧光粉/绿色荧光粉为下述荧光粉中的任意一种或两种以上混合而成:
(a)石榴石结构荧光粉,Ce 3+为激活剂
化学组成通式:(M4) 3-x(M5) 5O 12:Ce x
其中M4为Y、Lu、Gd及La中至少一种元素,M5为Al、Ga中至少一种元素,x=0.005~0.200;
(b)硅酸盐体系荧光粉,Eu 2+为激活剂
化学组成通式:(M6) 2-xSiO 4:Eu x
或(Ba,Ca,Sr) 2-x(Mg,Zn)Si 2O 7:Eu x
其中M6为Mg、Sr、Ca、Ba中至少一种元素,x=0.01~0.20;
(c)氮氧化物荧光粉(塞隆体β-SiAlON),Eu 2+为激活剂
化学组成通式:Si bAl cO dN e:Eu x
其中x=0.005~0.400,b+c=12,d+e=16;
(d)铝酸盐体系荧光粉,Eu 2+为激活剂
化学组成通式:(Sr,Ba) 2-xAl 2O 4:Eu x
或(Sr,Ba) 4-xAl 14O 25:Eu x
其中x=0.01~0.15。
优选地,所述黄绿色荧光粉组合在所述总荧光粉重量中的占比为25.0%~55.0%。
优选地,所述红色或橙色荧光粉为下述荧光粉中的任意一种或两种以上混合而成:
(a)具有1113晶体结构的氮化物红粉,Eu 2+为激活剂
化学组成通式:(M1) 1-xAlSiN 3:Eu x
其中M1为Ca、Sr、Ba中至少一种元素,x=0.005~0.300;
(b)具有258晶体结构的氮化物红粉,Eu 2+为激活剂
化学组成通式:(M2) 2-xSi 5N 8:Eu x
其中M2为Ca、Sr、Ba、Mg中至少一种元素,x=0.005~0.300;
(c)氮氧化物荧光粉(塞隆体α-SiAlON),Eu 2+为激活剂
化学组成通式:((M3) 1-a) xSi bAl cO dN e:Eu a
其中M3为Li、Na、K、Rb、Cs、Sr、Ba、Sc、Y、La、Gd之中至少一种元素,x=0.15~1.5,a=0.005~0.300,b+c=12,d+e=16;
(d)硅酸盐荧光粉,Eu 2+为激活剂
化学组成通式:(Sr,Ba) 3-xSi 5O 5:Eu x
其中x=0.005~0.300。
优选地,所述红色或橙色荧光粉在在所述总荧光粉重量中的占比为10.0%~40.0%。
优选地,所述黄绿色荧光粉组合的发射光半宽度为90~115nm。
优选地,所述封装部还包括基底材料和光扩散剂,所述基底材料为硅胶或树脂,所述光扩散剂为纳米级氧化钛、氧化铝或氧化硅中的一种。
优选地,所述光源模组发射光的光色在CIE1931色空间上,位于由D1(0.3991,0.4012)、D2(0.3722,0.3843)、D3(0.3658,0.3550)、D4(0.3885,0.3688)四个顶点围成的四边形区域内。
优选地,所述光源模组发射光的光色在CIE1931色空间上,位于中心点x0=0.3805,y0=0.3768,长轴a=0.00313,短轴b=0.00134,倾角θ=54.0°,SDCM=5.0的椭圆范围内。
优选地,所述光源模组的发射光在照度500lux时,CS值≥0.34。
优选地,所述光源模组的发射光的显色指数CRI≥90.0,R9≥85.0。
本发明还提供一种照明装置,包括上述光源模组。
本发明所提供的光源模组在通过控制对CS值影响最大的495~560nm波长区域内发光能量在总发光能量中的占比,提供了一种同时具有高光效、高CS值、高显色性的LED中性白光(4000K)光源。这种高CS值的光谱,在相同照度下,特别适合人集中注意力进行学习和工作。
附图说明
图1是符合本发明优选实施例的光源模组的结构示意图;
图2是符合本发明优选实施例的光源模组的光谱特征示意图;
图3是符合本发明的优选实施例1~8的CIE1931色坐标图;
图4是本发明中优选实施例1的发射光光谱图;
图5是本发明中优选实施例2的发射光光谱图;
图6是本发明中优选实施例3的发射光光谱图;
图7是本发明中优选实施例4的发射光光谱图;
图8是本发明中优选实施例5的发射光光谱图;
图9是本发明中优选实施例6的发射光光谱图;
图10是本发明中优选实施例7的发射光光谱图;
图11是本发明中优选实施例8的发射光光谱图。
具体实施方式
以下结合附图和一些符合本发明的优选实施例对本发明提出的一种光源模组及照明装置作进一步详细的说明。
如图1所示,本发明提供的光源模组L1是一种光源产品,其可应用于照明装置(未图示)中用以提供日常照明。照明装置可以是台灯、吊灯、吸顶灯、筒灯、射灯等各类灯具,照明装置包括光源模组L1和向光源模组L1提供工作所需电力的电源模组,照明装置还可以根据具体灯具的功能、需求带有控制器、散热装置和配光部件等。控制器可用于调整光源模组L1所发出照射光的光色、光强等,而配光部件可以是灯罩、透镜、扩散元件、光导等。
本发明的光源模组L1的一个具体实施方式为一个混光的白光LED封装芯片,其可以为具有一般贴片封装结构或COB封装结构LED芯片如图1所示,光源模组L1至少包括一个第一发光元件1和覆盖于第一发光元件的封装部2。
第一发光元件1为蓝光LED芯片,由半导体材料直接激发发光,其发光的峰值波长位于435~465nm,光色呈蓝色,这里我们称第一发光元件1发出的光为第一颜色光。在另一优选实施方式中也可采用峰值波长位置在435~465nm的蓝光LED芯片。LED芯片(LED Chip),包括正装或倒装,单颗LED Chip或者多颗LED Chip按串联、并联或串并联方式连接在一起。
封装部2以透明硅胶或透明树脂作为基底材料204,其中透明树脂是指环氧树脂、尿素树脂的一种。基底材料204中掺入有第一附加发光体201、第二附加发光体202、第三附加发光体203。其中第一附加发光体201为接收第一发光元件1所发射的部分光线,并将其转换为峰值波长在485~520nm,半宽度25~65nm的第二颜色光的蓝绿色荧光粉。第二附加发光体202为包含至少一种峰值波长大于540nm的黄色荧光粉和至少一种峰值波长小于540nm的绿色荧光粉的黄绿色荧光粉组合,组合后的第二附加发光体202接收所述第一发光元件1所发射的部分光线,并将其转换为峰值波长位于530~580nm,半宽度60~115nm的第三颜色光,优选的半宽度为90~115nm。第三附加发光体203为接收所述第一发光元件1所发射的部分光线,并将其转换为峰值波长位于605~645nm的,半宽度80~120nm的第四颜色光的红色或橙色荧光粉,优选的半宽度为80~100nm。封装部2中还可以包括有光扩散剂,光扩散剂可以是纳米级氧化钛、氧化铝或氧化硅中的一种。上述各类荧光粉和光扩散剂混入封装基底204,并均匀地分布在封装基底204中,混入荧光粉的封装基底204覆盖在作为第一发光元件1的蓝光LED芯片上方形成封装部2。
附加发光体在光源模组1中的作用是接收所述第一发光元件1所发射的部分光线,并将其转换为不同于第一颜色的其他颜色的光,在本实施方式中第一颜色光、第二颜色光、第三颜色光和第四颜色光混合后即形成光源模组L1的发射光,光源模组L1的发射光为在 CIE1931色空间上位于相关色温4000±280K与黑体轨迹的距离duv=-0.006~0.006的点围成的区间内的白光。
下面我们对我们所使用的各种荧光粉进行说明,为了便于描述方便,我们定义上述蓝绿色荧光粉、黄绿色荧光粉组合、红色或橙色荧光粉的重量之和为总荧光粉重量。总荧光粉重量在封装部2中的占比为25~50%。封装部2的重量为混入荧光粉、光扩散剂后的封装基底204的总重量。
作为第一附加发光体201的蓝绿色荧光粉在总荧光粉重量中的占比为15.0~40.0%,其可以选择下述荧光粉中的任意一种,或者从下述荧光粉中选择两种或以上混合而成。具体的荧光粉种类如下(在本发明中以x来表示摩尔比):
(a)氮氧化物,Eu 2+为激活剂
化学组成通式:(Ba,Ca) 1-xSi 2N 2O 2:Eu x
其中x=0.005~0.200;
(b)掺Ga石榴石荧光粉,Eu 2+为激活剂
化学组成通式:Ga-LuAG:Eu;
(c)硅酸盐荧光粉,Eu 2+为激活剂
化学组成通式:Ba 2SiO 4:Eu。
作为第二附加发光体202的黄绿色荧光粉组合在总荧光粉重量中的占比为25.0~55.0%。一般而言黄色和绿色荧光粉并没有一个明确的界定,这两者基本上具有相同的化学通式,其区别仅在于其中成分的摩尔比不同,本申请的特点在于在500~580nm波段中选用两种峰值波长不同的荧光粉进行组合,其中一种峰值波长大于540nm小于580nm的我们称其为黄色荧光粉,另一种荧光粉的峰值波长小于540nm大于500nm的我们称其为绿色荧光粉。当然在其他较佳的实施方式中,也可以选用更多种的荧光粉进行混合,但是其中需要包括一种我们所说的黄色荧光粉和一种我们所说的绿色荧光粉。具体的黄色荧光粉/绿色荧光粉可以为下述荧光粉中的任意一种或两种以上混合而成:
(a)石榴石结构荧光粉,Ce 3+为激活剂
化学组成通式:(M4) 3-x(M5) 5O 12:Ce x
其中M4为Y、Lu、Gd及La中至少一种元素,M5为Al、Ga中至少一种元素,x=0.005~0.200;
(b)硅酸盐体系荧光粉,Eu 2+为激活剂
化学组成通式:(M6) 2-xSiO 4:Eu x
或(Ba,Ca,Sr) 2-x(Mg,Zn)Si 2O 7:Eu x
其中M6为Mg、Sr、Ca、Ba中至少一种元素,x=0.01~0.20;
(c)氮氧化物荧光粉(塞隆体β-SiAlON),Eu 2+为激活剂
化学组成通式:Si bAl cO dN e:Eu x
其中x=0.005~0.400,b+c=12,d+e=16;
(d)铝酸盐体系荧光粉,Eu 2+为激活剂
化学组成通式:(Sr,Ba) 2-xAl 2O 4:Eu x
或(Sr,Ba) 4-xAl 14O 25:Eu x
其中x=0.01~0.15。
作为第三附加发光体203的红色或橙色荧光粉在总荧光粉重量中的占比为10.0~40.0%,其可以选择下述荧光粉中的任意一种,或者从下述荧光粉中选择两种或以上混合而成。具体的荧光粉种类如下(在本发明中以x来表示摩尔比):
(a)具有1113晶体结构的氮化物红粉,Eu 2+为激活剂
化学组成通式:(M1) 1-xAlSiN 3:Eu x
其中M1为Ca、Sr、Ba中至少一种元素,x=0.005~0.300;
(b)具有258晶体结构的氮化物红粉,Eu 2+为激活剂
化学组成通式:(M2) 2-xSi 5N 8:Eu x
其中M2为Ca、Sr、Ba、Mg中至少一种元素,x=0.005~0.300;
(c)氮氧化物荧光粉(塞隆体α-SiAlON),Eu 2+为激活剂
化学组成通式:((M3) 1-a) xSi bAl cO dN e:Eua
其中M3为Li、Na、K、Rb、Cs、Sr、Ba、Sc、Y、La、Gd之中至少一种元素,x=0.15~1.5,a=0.005~0.300,b+c=12,d+e=16;
(d)硅酸盐荧光粉,Eu 2+为激活剂
化学组成通式:(Sr,Ba) 3-xSi 5O 5:Eu x
其中x=0.005~0.300。
以上给出的是可以选用的荧光粉种类,在本申请中我们提供了8个具体实施例,在这些实施例中一共选用了10种荧光粉,实施例选用的各荧光粉的参数及化学式见下表。为了便于描述,在表1中我们给荧光粉定义了代号,在后续的实施例说明中我们就以该代号来进行描述,不再在每个实施例中都详细描述荧光粉的峰值及化学式了。
表1
Figure PCTCN2019091778-appb-000002
在上表中参数都是针对该种荧光粉而言的,x、y表示荧光粉的光色在CIE1931色空间上的坐标值,Peak表示峰值波长,Hw表示半宽度,以上数值都是实施例中采用的荧光粉的实际数值,并不是对本发明的限定,因为在实际生产中由于荧光粉纯度、颗粒大小的不同其峰值波长和半宽度都有可能会和以上数据稍有偏差,这个偏差值一般会被控制在±5nm之间,应该认为在这个范围内的其他方案是等同于上述荧光粉的。
表2展示了本申请的8个实施例,以及各实施例中所采用的荧光粉种类和各类荧光粉的重量,其中黄绿粉占比是指混合后的黄粉和绿粉在总荧光粉重量中的占比,而总荧光粉占比是指总荧光粉重量,在全部四种荧光粉和封装基底204混合后的封装部2的总重量中的占比。在这些实施例中封装基底204都是透明硅胶,重量为10g。
表2
Figure PCTCN2019091778-appb-000003
表2中的实施例荧光粉重量都是我们在制作样例芯片时的数据,实际在批量生产中,由于荧光粉批次不同重量都会稍有差异,但是其基本占比是在一个固定的区间内的。从表2中可见作为第三附加发光体203的红色荧光粉在总荧光粉重量中的占比在22.9%到35.3%这一区间内,考虑到还可以采用其他种类荧光粉,本申请中认为第三附加发光体203在总荧光粉重量中的占比在应该在10%~40%这一范围内。表2中作为第二附加发光体202的黄绿色荧光粉组合在总荧光粉重量中的占比在40.2%到54.7%这一区间内,本申请中认为第二附加发光体202在总荧光粉重量中的占比在应该在35.0~55.0%这一范围内,进一步考虑其他荧光粉占比可扩大为25.0~55.0%。表2中作为第一附加发光体201的蓝绿色荧光粉在总荧光粉重量中的占比在17.6%到28.4%这一区间内,本申请中认为第一附加发光体201在总荧光粉重量中的占比在应该在15.0~30.0%这一范围内,进一步考虑其他荧光粉占比可扩大为15.0~40.0%。这些荧光粉可以通过混入透明硅胶涂覆在LED芯片之上,也可以是远程荧光粉设置在距离芯片较远的位置,或者部分混入封装胶,部分设置在外部,本申请对此不作限定。
参考上表我们对各实施进行详细说明。
实施例1,在光源模组L1中第一发光元件1为Peak=450nm的蓝光LED芯片。称取代号为R630的红色荧光粉1.45g作为第三附加发光体203。第二附加发光体202由代号为Y550的黄色荧光粉和代号为G-Ga535的绿色荧光粉组合而成,其中黄色荧光粉2.23g,绿色荧光粉0.86g,共计3.09g。称取代号为BG490的蓝绿色荧光粉1.80g作为第一附加发光体201。将上述荧光粉放入透明硅胶,再搅拌机充分混合均匀,涂覆在蓝光LED芯片上,烘干除气泡后得到一种中性白光LED芯片,其光谱见图4,具体发光特性见表3。
实施例2,在光源模组L1中第一发光元件1为Peak=450nm的蓝光LED芯片。称取代号为R630的红色荧光粉1.58g作为第三附加发光体203。第二附加发光体202由代号为Y550的黄色荧光粉和代号为G-Ga535的绿色荧光粉组合而成,其中黄色荧光粉0.90g,绿 色荧光粉1.98g,共计2.88g。称取代号为BG490的蓝绿色荧光粉1.50g作为第一附加发光体201。将上述荧光粉放入透明硅胶,再搅拌机充分混合均匀,涂覆在蓝光LED芯片上,烘干除气泡后得到一种中性白光LED芯片,其光谱见图5,具体发光特性见表3。
实施例3,在光源模组L1中第一发光元件1为Peak=455nm的蓝光LED芯片。称取代号为R640的红色荧光粉1.92g作为第三附加发光体203。第二附加发光体202由代号为Y565的黄色荧光粉和代号为G-L535的绿色荧光粉组合而成,其中黄色荧光粉1.37g,绿色荧光粉1.57g,共计2.94g。称取代号为BG490的蓝绿色荧光粉1.30g作为第一附加发光体201。将上述荧光粉放入透明硅胶,再搅拌机充分混合均匀,涂覆在蓝光LED芯片上,烘干除气泡后得到一种中性白光LED芯片,其光谱见图6,具体发光特性见表3。
实施例4,在光源模组L1中第一发光元件1为Peak=450nm的蓝光LED芯片。称取代号为R640的红色荧光粉2.05g作为第三附加发光体203。第二附加发光体202由代号为Y565的黄色荧光粉和代号为G-L535的绿色荧光粉组合而成,其中黄色荧光粉1.27g,绿色荧光粉2.48g,共计3.75g。称取代号为BG490的蓝绿色荧光粉1.25g作为第一附加发光体201。将上述荧光粉放入透明硅胶,再搅拌机充分混合均匀,涂覆在蓝光LED芯片上,烘干除气泡后得到一种中性白光LED芯片,其光谱见图7,具体发光特性见表3。
实施例5,在光源模组L1中第一发光元件1为Peak=450nm的蓝光LED芯片。称取代号为R650的红色荧光粉1.73g作为第三附加发光体203。第二附加发光体202由代号为Y550的黄色荧光粉和代号为G-L535的绿色荧光粉组合而成,其中黄色荧光粉2.17g,绿色荧光粉1.37g,共计3.54g。称取代号为BG490的蓝绿色荧光粉1.20g作为第一附加发光体201。将上述荧光粉放入透明硅胶,再搅拌机充分混合均匀,涂覆在蓝光LED芯片上,烘干除气泡后得到一种中性白光LED芯片,其光谱见图8,具体发光特性见表3。
实施例6,在光源模组L1中第一发光元件1为Peak=445nm的蓝光LED芯片。称取代号为R650的红色荧光粉1.80g作为第三附加发光体203。第二附加发光体202由代号为Y565的黄色荧光粉和代号为G-Ga535的绿色荧光粉组合而成,其中黄色荧光粉0.70g,绿色荧光粉1.35g,共计2.05g。称取代号为BG490的蓝绿色荧光粉1.25g作为第一附加发光体201。将上述荧光粉放入透明硅胶,再搅拌机充分混合均匀,涂覆在蓝光LED芯片上,烘干除气泡后得到一种中性白光LED芯片,其光谱见图9,具体发光特性见表3。
实施例7,在光源模组L1中第一发光元件1为Peak=455nm的蓝光LED芯片。称取代号为R630的红色荧光粉2.50g作为第三附加发光体203。第二附加发光体202由代号为Y550的黄色荧光粉和代号为G-Ga535的绿色荧光粉组合而成,其中黄色荧光粉2.33g,绿色荧光粉2.20g,共计4.53g。称取代号为BG490的蓝绿色荧光粉1.50g作为第一附加发光体201。将上述荧光粉放入透明硅胶,再搅拌机充分混合均匀,涂覆在蓝光LED芯片上,烘干除气泡后得到一种中性白光LED芯片,其光谱见图10,具体发光特性见表3。
实施例8,在光源模组L1中第一发光元件1为Peak=450nm的蓝光LED芯片。称取代号为R640的红色荧光粉1.90g作为第三附加发光体203。第二附加发光体202由代号为Y550的黄色荧光粉和代号为G-Ga535的绿色荧光粉组合而成,其中黄色荧光粉2.16g,绿色荧光粉0.90g,共计3.06g。称取代号为BG500的蓝绿色荧光粉1.24g作为第一附加发光 体201。将上述荧光粉放入透明硅胶,再搅拌机充分混合均匀,涂覆在蓝光LED芯片上,烘干除气泡后得到一种中性白光LED芯片,其光谱见图11,具体发光特性见表3。
表3
Figure PCTCN2019091778-appb-000004
表3中列出了实施例1-8中光源模组L1的发光特性,其中x、y表示光源模组L1的发射光的光色在CIE1931色坐标系上的x、y轴上的坐标值,CCT为色温,duv表示在色坐标系里色彩偏移普朗克轨迹的距离与方向,CRI和R9为显色指数。CS值500lux在本申请中表示光源模组L1发射光在照度500lux时的CS值,具体计算公式如下:
Figure PCTCN2019091778-appb-000005
其中
Figure PCTCN2019091778-appb-000006
Figure PCTCN2019091778-appb-000007
if
Figure PCTCN2019091778-appb-000008
CL A=1548×{∫Mc(λ)P(λ)dλ},if
Figure PCTCN2019091778-appb-000009
其中
Figure PCTCN2019091778-appb-000010
P 0(λ):光源光谱分布
P(λ):对应500lux的光源光谱分布
Mc(λ):按晶状体透过率校正的视黑素敏感曲线
S(λ):S型锥状细胞敏感曲线
mp(λ):黄斑色素透过率
V(λ):明视觉光视效率函数
V'(λ):暗视觉光视效率函数
计算公式依据为LRC已经发布的人体节律光传导数学模型。
从表3中我们可以看到所有实施例的光源模组L1的发射光在照度500lux时的CS值均大于0.34,且其显色指数均符合CRI≥90.0,R9≥85.0。而我们将各实施例中的发光光色标注在CIE1931色坐标系上,如图3所示,各实施例光色均落在相关色温4000±280K的黑体轨迹的附近,距黑体轨迹BBL距离均小于0.006,即duv在-0.006~0.006这一区间内。且所有点均落在位于由点D1(0.3991,0.4012)、点D2(0.3722,0.3843)、点D3(0.3658,0.3550)、点D4(0.3885,0.3688)四个顶点围成的四边形区域内,即图示区域1。在后期对这些实施例进行用户实验后,我们发现实施例1、2、3、4、6、7的效果更好,而从图3中我们可以发现,这些点都落入图示区域2内,区域2为中心点x0=0.3805,y0=0.3768,长轴a=0.00313,短轴b=0.00134,倾角θ=54.0°,SDCM=5.0的椭圆。
在我们提供的这些实施例之所以能够实现较高的CS值,主要是由于发射光在不同波长的能量分布,这些特点可以通过他们的光谱特征来体现。图2是最能体现本申请光源模组L1发射光的光谱特点的示意性光谱图,我们依据图2来对本申请的光谱特点进行说明。从图2中可见,光源模组L1的发射光的光谱在380~780nm可见光范围光谱连续分布,即在380~780nm中的每一点均有一定的能量分布,这可以保证该光谱具有较佳的显示性。为了后续描述方便,这里我们先定义一个光谱中相邻两点的光谱强度相对偏差值ΔI,ΔI表示光谱中相邻两点光谱强调变化情况,在光谱图中表现为相邻两点之间连线的斜率。具体公式为
Figure PCTCN2019091778-appb-000011
其中Intensit(i)、Intensit(i+1)分别表示光谱中波长差为步长I的相邻两点的光谱强度。对于光谱上的相邻两点,理论上线上的点是可以无限接近的,但是业内的习惯,相邻的两点一般指光谱图中间隔一定波长的两点,间隔的波长我们称为步长I,通常大家都采用5nm为步长,例如在光谱图中600nm和605nm这两个点我们就称之为相邻两点。因此相邻两点的的光谱强度相对偏差值ΔI是表征光谱平滑程度的一个值,而步长越短就越能够精确地来表示光谱的变化,所以定义步长I的取值范围可以为1nm≤I≤5nm,当然在本实施例中我们还是采用常规的定义,定义间隔5nm的两点为相邻两点。
在图2的光谱中主要包括第一峰P1、第二峰P2、峰谷V1和一个稳定分布区间Z这些特征。
第一峰P1位于435~465nm波长区域内,由于光源模组L1是由第一发光元件1蓝光LED芯片作为激发光源,虽然蓝光LED芯片发出的光有很大一部分发射光经过附加发光体进行了波长转换,但是仍有一部分能量未经转换,这些能量在435~465nm波长区域内形成了第一峰,这个P1点可能和蓝光LED芯片的峰值波长相同,因为这个峰的能量的主要来源为第一发光元件1,但是各附加发光体转换后的光在该波长段也可能会有部分能量,两者混合后,此第一峰P1并不一定和原第一发光元件1蓝光LED芯片的峰值波长位置完全重合,可能会稍有漂移,但仍然在435~465nm波长区域内。
第二峰P2位于605~645nm波长区域内,第二峰P2的能量是由第三附加发光体203 的红色荧光粉接收第一发光元件1蓝光LED芯片所发射的部分光线转换成为的红光所提供的。第二峰P2的光谱强度和第一峰P1的光谱强度的比值在70~130%之间,优选的是80~110%。在图2中第二峰P2比第一峰P1稍低,比值接近95%,而在实施例2、4、5、7中第二峰P2明显高于第一峰P1,两者比值大于100%。
峰谷V1位于455~485nm波长区域内,为了保证在该区域内的能量不过低,峰谷V1的光谱强度和第一峰的光谱强度的比值应该大于等于25%,更佳的是30~60%,这部分能量是由第一附加发光体201的蓝绿色荧光粉接收第一发光元件1蓝光LED芯片所发射的部分光线转换成为的蓝绿所提供的,蓝绿色荧光粉的加入就是为了保证这一部分的能量不会太低。但是即使保证了谷底的高度,影响能量分布的还有峰谷V1的宽度,为了实现本申请要求的效果,我们要求峰谷V1向长波方向的宽度应该小于等于30nm,峰谷V1向长波方向的宽度在图2上表示为峰谷V1到点A的距离W,其中点A为由峰谷V1位置向长波方向出现的第一个ΔI≤2%时的相邻两点中靠近峰谷V1的点,我们称之为峰谷长波方向结束点A,在A点之前ΔI较大则斜率较大,呈现出谷的状态,A点之后ΔI变小,光谱上升相对较为平缓。峰谷V1向长波方向的宽度W等于A点和峰谷V1之间的波长差。
稳定分布区间Z为495~560nm波长区域,之所以称其为稳定分布区间,是因为这一区间内光谱强度变化较小,这一段的光谱曲线几乎是呈平台状的,其中任意相邻两点的ΔI都不大于1.5%,更佳的是不大于0.8%,其任意一点的光谱强度和第一峰P1的光谱强度的比值都在60~80%之间。图2是本申请理想的光谱示意图,因此A点正好位于稳定分布区间Z的起始位置,在具体实施例中,A点可能落入稳定分布区间Z,也可能在稳定分布区间Z之外,本申请对此不做限定。稳定分布区间Z的能量是由第二附加发光体202的黄绿色荧光粉组合接收第一发光元件1蓝光LED芯片所发射的部分光线转换成后提供的,在图2中是一种比较理想的状态,稳定分布区间Z整体波动很小,但是由于黄绿色荧光粉组合是由两种荧光粉混合而成,因此也有可能在这个区间内再出现一个小的峰值,如实施例5、6、7、8的光谱中所显示的那样,但是只要ΔI在我们所限定的范围内,就不会对结果产生太大的影响,仍然可以实现我们要的CS值。
表4列出了实施例1-8各光谱的特征值,其中P1波长、P2波长、V1波长分别指第一波峰P1、第二波峰P2、峰谷V1这些点的波长,P2能量比指第二峰P2的光谱强度和第一峰P1的光谱强度的比值,V1能量比指峰谷V1的光谱强度和第一峰P1的光谱强度的比值,Z区间能量比最小值指稳定分布区间Z中任意一点的光谱强度和第一峰P1的光谱强度的比值中的最小值,Z区间ΔI最大值指稳定分布区间Z中任意相邻两点的ΔI值中的最大值,W指峰谷V1长波方向结束点A和峰谷V1之间的波长差。
表4
Figure PCTCN2019091778-appb-000012
这些特征值均落在前面所描述光谱特征范围内,正是由于这些特征的存在,具有这些光谱特征的实施例1-8可以实现表3中的高CS值高显示性的发光特性。
上文对本发明优选实施例的描述是为了说明和描述,并非想要把本发明穷尽或局限于所公开的具体形式,显然,可能做出许多修改和变化,这些修改和变化可能对于本领域技术人员来说是显然的,应当包括在由所附权利要求书定义的本发明的范围之内。

Claims (19)

  1. 一种光源模组,包括第一发光元件和覆盖于第一发光元件的封装部,
    所述第一发光元件发出峰值波长位于435~465nm的第一颜色光;
    所述封装部包括:
    第一附加发光体,所述第一附加发光体被布置为接收所述第一发光元件所发射的部分光线,并将其转换为峰值波长位于485~520nm的第二颜色光;
    第二附加发光体,所述第二附加发光体被布置为接收所述第一发光元件所发射的部分光线,并将其转换为峰值波长位于530~580nm的第三颜色光;
    第三附加发光体,所述第三附加发光体被布置为接收所述第一发光元件所发射的部分光线,并将其转换为峰值波长位于605~645nm的第四颜色光,
    所述第一颜色、第二颜色光、第三颜色光和第四颜色光混合形成所述光源模组的发射光,所述发射光为中性白光,即所述发射光在CIE1931色空间上,位于相关色温4000±280K与黑体轨迹的距离duv=-0.006~0.006的点围成的区间内,
    所述发射光的光谱在380~780nm可见光范围光谱连续分布,定义光谱中相邻两点的光谱强度相对偏差值ΔI,
    Figure PCTCN2019091778-appb-100001
    其中Intensit(i)、Intensit(i+1)分别表示光谱中波长差为步长I的两点的光谱强度,1nm≤I≤5nm,
    所述发射光光谱包括两个波峰、一个峰谷和一个稳定分布区间:
    第一峰位于435~465nm波长区域内;
    第二峰位于605~645nm波长区域内,所述第二峰的光谱强度和所述第一峰的光谱强度的比值在70%~130%之间;
    峰谷位于455~485nm波长区域内,所述峰谷的光谱强度和所述第一峰的光谱强度的比值大于等于25%,且峰谷向长波方向的宽度小于等于30nm,定义峰谷长波方向结束点为由峰谷位置向长波方向出现的第一个ΔI≤2%时相邻两点中靠近峰谷的点,所述峰谷向长波方向的宽度指峰谷长波方向结束点和峰谷之间的波长差;
    稳定分布区间为495~560nm波长区域,所述稳定分布区间中任意一点的光谱强度和所述第一峰的光谱强度的比值在60~80%之间,且其中任意相邻两点的ΔI不大于1.5%。
  2. 如权利要求1所述的光源模组,其中,所述第二峰的光谱强度和所述第一峰的光谱 强度的比值在80%~110%之间。
  3. 如权利要求1所述的光源模组,其中,所述峰谷的光谱强度和所述第一峰的光谱强度的比值在30%~60%之间。
  4. 如权利要求1所述的光源模组,其中,所述稳定分布区间中任意相邻两点的ΔI不大于0.8%。
  5. 如权利要求1所述的光源模组,其中,所述第一发光元件为发射光峰值波长在435~465nm的蓝光LED;所述第一附加发光体为峰值波长在485~520nm,半宽度25~65nm的蓝绿色荧光粉;所述第二附加发光体为包括黄色荧光粉和绿色荧光粉的黄绿色荧光粉组合,其中包含至少一种峰值波长大于540nm的黄色荧光粉和至少一种峰值波长小于540的绿色荧光粉,所述黄绿色荧光粉组合的峰值波长在530~580nm,半宽度60~115nm;所述第三附加发光体为峰值波长在605~645nm,半宽度80~120nm的红色或橙色荧光粉。
  6. 如权利要求5所述的光源模组,其中,定义所述蓝绿色荧光粉、所述黄绿色荧光粉组合、所述红色或橙色荧光粉的重量之和为总荧光粉重量,所述总荧光粉重量在所述封装部中的占比为25.0%~50.0%。
  7. 如权利要求6所述的光源模组,其中,所述蓝绿色荧光粉为下述荧光粉中的任意一种或两种以上混合而成:
    (a)氮氧化物,Eu 2+为激活剂
    化学组成通式:(Ba,Ca) 1-xSi 2N 2O 2:Eu x
    其中x=0.005~0.200;
    (b)掺Ga石榴石荧光粉,Eu 2+为激活剂
    化学组成通式:Ga-LuAG:Eu;
    (c)硅酸盐荧光粉,Eu 2+为激活剂
    化学组成通式:Ba 2SiO 4:Eu。
  8. 如权利要求7所述的光源模组,其中,所述蓝绿色荧光粉在所述总荧光粉重量中的占比为15.0~40.0%。
  9. 如权利要求6所述的光源模组,其中,所述黄色荧光粉/绿色荧光粉为下述荧光粉中的任意一种或两种以上混合而成:
    (a)石榴石结构荧光粉,Ce 3+为激活剂
    化学组成通式:(M4) 3-x(M5) 5O 12:Ce x
    其中M4为Y、Lu、Gd及La中至少一种元素,M5为Al、Ga中至少一种元素,x=0.005~0.200;
    (b)硅酸盐体系荧光粉,Eu 2+为激活剂
    化学组成通式:(M6) 2-xSiO 4:Eu x
    或(Ba,Ca,Sr) 2-x(Mg,Zn)Si 2O 7:Eu x
    其中M6为Mg、Sr、Ca、Ba中至少一种元素,x=0.01~0.20;
    (c)氮氧化物荧光粉(塞隆体β-SiAlON),Eu 2+为激活剂
    化学组成通式:Si bAl cO dN e:Eu x
    其中x=0.005~0.400,b+c=12,d+e=16;
    (d)铝酸盐体系荧光粉,Eu 2+为激活剂
    化学组成通式:(Sr,Ba) 2-xAl 2O 4:Eu x
    或(Sr,Ba) 4-xAl 14O 25:Eu x
    其中x=0.01~0.15。
  10. 如权利要求9所述的光源模组,其中,所述黄绿色荧光粉组合在所述总荧光粉重量中的占比为25.0%~55.0%。
  11. 如权利要求6所述的光源模组,其中,所述红色或橙色荧光粉为下述荧光粉中的任意一种或两种以上混合而成:
    (a)具有1113晶体结构的氮化物红粉,Eu 2+为激活剂
    化学组成通式:(M1) 1-xAlSiN 3:Eu x
    其中M1为Ca、Sr、Ba中至少一种元素,x=0.005~0.300;
    (b)具有258晶体结构的氮化物红粉,Eu 2+为激活剂
    化学组成通式:(M2) 2-xSi 5N 8:Eu x
    其中M2为Ca、Sr、Ba、Mg中至少一种元素,x=0.005~0.300;
    (c)氮氧化物荧光粉(塞隆体α-SiAlON),Eu 2+为激活剂
    化学组成通式:((M3) 1-a) xSi bAl cO dN e:Eu a
    其中M3为Li、Na、K、Rb、Cs、Sr、Ba、Sc、Y、La、Gd之中至少一种元素,x=0.15~1.5,a=0.005~0.300,b+c=12,d+e=16;
    (d)硅酸盐荧光粉,Eu 2+为激活剂
    化学组成通式:(Sr,Ba) 3-xSi 5O 5:Eu x
    其中x=0.005~0.300。
  12. 如权利要求11所述的光源模组,其中,所述红色或橙色荧光粉在在所述总荧光粉重量中的占比为10.0%~40.0%。
  13. 如权利要求6所述的光源模组,其中,所述黄绿色荧光粉组合的发射光半宽度为90~115nm。
  14. 如权利要求6所述的光源模组,其中,所述封装部还包括基底材料和光扩散剂,所述基底材料为硅胶或树脂,所述光扩散剂为纳米级氧化钛、氧化铝或氧化硅中的一种。
  15. 如权利要求1-14任一所述的光源模组,其中,所述光源模组发射光的光色在CIE1931色空间上,位于由D1(0.3991,0.4012)、D2(0.3722,0.3843)、D3(0.3658,0.3550)、D4(0.3885,0.3688)四个顶点围成的四边形区域内。
  16. 如权利要求15所述的光源模组,其中,所述光源模组发射光的光色在CIE1931色空间上,位于中心点x0=0.3805,y0=0.3768,长轴a=0.00313,短轴b=0.00134,倾角θ=54.0°,SDCM=5.0的椭圆范围内。
  17. 如权利要求1-14任一所述的光源模组,其中,所述光源模组的发射光在照度500lux时,CS值≥0.34。
  18. 如权利要求1-14任一所述的光源模组,其中,所述光源模组的发射光的显色指数CRI≥90.0,R9≥85.0。
  19. 一种照明装置,其中,包括:如权利要求1至18中任意一项所述的光源模组。
PCT/CN2019/091778 2018-06-25 2019-06-18 一种光源模组及包括该光源模组的照明装置 WO2020001334A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201820980924.6 2018-06-25
CN201810663422.5A CN108922955B (zh) 2018-06-25 2018-06-25 一种光源模组及包括该光源模组的照明装置
CN201820980924.6U CN209496889U (zh) 2018-06-25 2018-06-25 一种光源模组及包括该光源模组的照明装置
CN201810663422.5 2018-06-25

Publications (1)

Publication Number Publication Date
WO2020001334A1 true WO2020001334A1 (zh) 2020-01-02

Family

ID=68984763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/091778 WO2020001334A1 (zh) 2018-06-25 2019-06-18 一种光源模组及包括该光源模组的照明装置

Country Status (1)

Country Link
WO (1) WO2020001334A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1883057A (zh) * 2003-09-18 2006-12-20 日亚化学工业株式会社 发光装置
CN201416780Y (zh) * 2009-06-25 2010-03-03 李欣洋 一种使用具有arton透明基材的光学器件的led光源
CN102254910A (zh) * 2010-05-17 2011-11-23 Lg伊诺特有限公司 发光器件封装
CN102760820A (zh) * 2012-07-10 2012-10-31 江苏博睿光电有限公司 一种白光led光源
CN105870303A (zh) * 2016-04-18 2016-08-17 佛山市中昊光电科技有限公司 一种全光谱的led光源
US20160308097A1 (en) * 2013-12-27 2016-10-20 Citizen Electronics Co., Ltd. Light-emitting device and method for designing light emitting device
CN108922955A (zh) * 2018-06-25 2018-11-30 欧普照明股份有限公司 一种光源模组及包括该光源模组的照明装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1883057A (zh) * 2003-09-18 2006-12-20 日亚化学工业株式会社 发光装置
CN201416780Y (zh) * 2009-06-25 2010-03-03 李欣洋 一种使用具有arton透明基材的光学器件的led光源
CN102254910A (zh) * 2010-05-17 2011-11-23 Lg伊诺特有限公司 发光器件封装
CN102760820A (zh) * 2012-07-10 2012-10-31 江苏博睿光电有限公司 一种白光led光源
US20160308097A1 (en) * 2013-12-27 2016-10-20 Citizen Electronics Co., Ltd. Light-emitting device and method for designing light emitting device
CN105870303A (zh) * 2016-04-18 2016-08-17 佛山市中昊光电科技有限公司 一种全光谱的led光源
CN108922955A (zh) * 2018-06-25 2018-11-30 欧普照明股份有限公司 一种光源模组及包括该光源模组的照明装置

Similar Documents

Publication Publication Date Title
CN108598244B (zh) 一种光源模组及包括该光源模组的照明装置
CN108922955B (zh) 一种光源模组及包括该光源模组的照明装置
CN110212076B (zh) 一种光源模组及包括该光源模组的照明装置
CA2927594A1 (en) Lamps for enhanced optical brightening and color preference
CN105737091B (zh) 光源模组和照明装置
WO2020034390A1 (zh) Led白光器件及其制备方法、led背光模组
CN107461717A (zh) 一种光源模组及包括该光源模组的照明装置
CN207146291U (zh) 一种光源模组及包括该光源模组的照明装置
CN207247111U (zh) 一种光源模组及包括该光源模组的照明装置
CN207247110U (zh) 一种光源模组及包括该光源模组的照明装置
CN209963086U (zh) 一种光源模组及包括该光源模组的照明装置
CN107546312A (zh) 一种光源模组及包括该光源模组的照明装置
CN110233197A (zh) 一种光源模组及包括该光源模组的照明装置
WO2022143329A1 (zh) 一种光源模组及包括该光源模组的照明装置
CA3016820C (en) Led apparatus employing neodymium based materials with variable content of fluorine and oxygen
CN209496889U (zh) 一种光源模组及包括该光源模组的照明装置
TW201107917A (en) A modulating method for CCT and a LED light module with variable CCT
WO2020001334A1 (zh) 一种光源模组及包括该光源模组的照明装置
CN209515728U (zh) 一种光源模组及包括该光源模组的照明装置
CN209859973U (zh) 一种光源模组及包括该光源模组的照明装置
WO2020001333A1 (zh) 一种光源模组及包括该光源模组的照明装置
CN206708740U (zh) 光源模组和照明装置
WO2020244511A1 (zh) 一种光源模组及包括该光源模组的照明装置
WO2020244512A1 (zh) 一种光源模组及包括该光源模组的照明装置
CN107339667A (zh) 一种光源模组及包括该光源模组的照明装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19824835

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19824835

Country of ref document: EP

Kind code of ref document: A1