WO2020001205A1 - 一种低温煤焦油的预处理方法以及预处理设备 - Google Patents

一种低温煤焦油的预处理方法以及预处理设备 Download PDF

Info

Publication number
WO2020001205A1
WO2020001205A1 PCT/CN2019/088107 CN2019088107W WO2020001205A1 WO 2020001205 A1 WO2020001205 A1 WO 2020001205A1 CN 2019088107 W CN2019088107 W CN 2019088107W WO 2020001205 A1 WO2020001205 A1 WO 2020001205A1
Authority
WO
WIPO (PCT)
Prior art keywords
coal tar
low
temperature coal
oil
mixed
Prior art date
Application number
PCT/CN2019/088107
Other languages
English (en)
French (fr)
Inventor
朱书成
白太宽
王希彬
白书林
王世威
Original Assignee
河南龙成煤高效技术应用有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810680704.6A external-priority patent/CN108822882A/zh
Priority claimed from CN201810681482.XA external-priority patent/CN108795480A/zh
Application filed by 河南龙成煤高效技术应用有限公司 filed Critical 河南龙成煤高效技术应用有限公司
Publication of WO2020001205A1 publication Critical patent/WO2020001205A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10CWORKING-UP PITCH, ASPHALT, BITUMEN, TAR; PYROLIGNEOUS ACID
    • C10C1/00Working-up tar
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10CWORKING-UP PITCH, ASPHALT, BITUMEN, TAR; PYROLIGNEOUS ACID
    • C10C1/00Working-up tar
    • C10C1/04Working-up tar by distillation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G31/00Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for
    • C10G31/11Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for by dialysis
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G33/00Dewatering or demulsification of hydrocarbon oils
    • C10G33/02Dewatering or demulsification of hydrocarbon oils with electrical or magnetic means
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G33/00Dewatering or demulsification of hydrocarbon oils
    • C10G33/04Dewatering or demulsification of hydrocarbon oils with chemical means
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G53/00Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more refining processes
    • C10G53/02Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more refining processes plural serial stages only

Definitions

  • the present disclosure relates to the technical field of coal tar pretreatment, and in particular, to a low-temperature coal tar pretreatment method and pretreatment equipment.
  • Coal tar contains mechanical impurities, moisture, salt, etc., and has a significant impact on the deep processing of coal tar. Therefore, coal tar is often pretreated before hydrogenation to reduce mechanical impurities, moisture, salt, etc. in coal tar as much as possible. Content to meet the low cost, full load and normal operation of coal tar hydrogenation.
  • coal tars in the past were by-products of coking, blue carbon, and coal gasification. They belong to medium and high-temperature coal tars.
  • the density of coal tars is mostly greater than the density of water, and the density of water tar is greatly different. Therefore, these coal tar oils Relative to water, it is relatively easy to separate.
  • medium- and high-temperature coal tars have a high bitumen content, they are usually cut into sections at different temperatures by distilling the coal. Tars and impurities in the coal tar raw materials are left behind. In bitumen, the oil from the distillate enters the corresponding tar hydrogenation link. Therefore, the desalination and dehydration of the cut coal tar hydrogenation are no longer considered.
  • coal tar raw materials are too low with this pretreatment method.
  • bitumen is relatively small, but if the fraction method is still used, the utilization rate of the low-temperature coal tar raw material is still less than 80%, which is uneconomical.
  • the objective of the present disclosure includes, for example, at least providing a low-temperature coal tar pretreatment method.
  • the pretreatment method is simple and practical. It can quickly and efficiently perform oil-water separation on low-temperature coal tars with a density close to that of water, and efficiently remove low-temperature coal tars. Invalid components such as mechanical impurities, moisture, salt, etc.
  • the object of the present disclosure includes, for example, at least providing a low-temperature coal tar pretreatment equipment before hydrogenation.
  • the equipment is simple and convenient to use, and can be used for oil-water separation of low-temperature coal tar with a density close to that of water. Active ingredients in tar.
  • the present disclosure provides a low-temperature coal tar pretreatment method, including:
  • the mixed components after desalting are subjected to primary fractionation at 140 to 180 ° C., and the obtained gas phase components are condensed and mixed with the low-temperature coal tar of the next batch as light oil.
  • the present disclosure provides a low-temperature coal tar pretreatment equipment before hydrogenation, which includes:
  • Desalination equipment where electric desalination and / or membrane desalination are performed
  • Condenser a place where the gaseous components discharged from the primary distillation column are condensed
  • the mixer, the desalination equipment, and the preliminary distillation column are connected in series in sequence; the gas phase outlet of the preliminary distillation column is connected to the feeding end of the mixer through the condenser.
  • the embodiment of the present disclosure provides a low-temperature coal tar pretreatment method, which mixes light oil with low-temperature coal tar to obtain a mixed oil with a density lower than 0.98 kg / L, and then mixes the above-mentioned mixed oil with desalinated water and broken
  • the emulsions are mixed for electric desalination and / or membrane desalination.
  • the pretreatment method makes low-temperature coal tar with a density close to water to form a lower-density mixed oil through the mixing of light oil, which makes it easier to separate from water, speeds up the work efficiency of subsequent desalination steps, and increases the low temperature. Utilization of effective ingredients in coal tar.
  • the light oil of the pretreatment method can use the light components obtained during the initial fractionation of the previous batch of low-temperature coal tar to realize the recycling of this light component.
  • the fractionated light components also accumulate more and more, and the density difference between the obtained mixed oil and water is further widened, which promotes the further separation of the oil phase and the water phase and forms a virtuous cycle.
  • the pretreatment method has the characteristics of simple and practical operation, low equipment requirements, fast and efficient separation, and is suitable for large-scale industrial production.
  • the embodiment of the present disclosure also provides a pretreatment device before hydrogenation of the low-temperature coal tar, which includes a mixer, a desalination device, an initial distillation column, and a condenser connected in series in this order. It can be used in conjunction with the above pretreatment method to efficiently remove mechanical impurities, moisture, salt and other ineffective components in low-temperature coal tar.
  • the structure of the pretreatment device is simple and convenient to use, which is favorable for industrialized production.
  • FIG. 1 is a schematic connection diagram of a pretreatment device before hydrogenation of a low-temperature coal tar provided in Embodiment 1 of the present disclosure.
  • Icons 100-pretreatment equipment; 110-mixer; 120-desalination equipment; 130-primary distillation column; 140-condenser; 150-filter; 160-heat exchanger; 170-feeding pipeline.
  • An embodiment of the present disclosure provides a method for pretreating a low-temperature coal tar, which includes:
  • the mixed components after desalting are subjected to primary fractionation at 140 to 180 ° C., and the obtained gas phase components are condensed and mixed with the low-temperature coal tar of the next batch as light oil.
  • the density of low-temperature coal tar is close to that of water.
  • the density of some components is lower than that of water, and some components are denser than water. This makes it difficult to separate the oil phase from the water phase when separating from water. Layer of the situation. This results in that although the low-temperature coal tar and water can be separated, it takes a long time to stand. If the standing time is too short to perform separation, the water content of the low-temperature coal tar after separation will be large. Especially when the low-temperature coal tar contains more coal powder and other impurities and colloids, the separation of the oil phase and the water phase will become more difficult.
  • the density of the mixed oil is 0.95 kg / L or more.
  • the density of the mixed oil is from 0.958 to 0.962 kg / L. Within this range, the mixed oil can obtain better results in terms of separation efficiency and cost control.
  • the amount of light components is an accumulation process, that is, the amount of light oil that can be mixed with low-temperature coal tar will increase, The cost of fractionating and condensing the light components will also become higher and higher. At this time, the cost can be controlled by limiting the amount of light oil to be redistributed so that the density of the mixed oil is 0.95 kg / L or more, Some of the light oil can be recycled for subsequent production.
  • auxiliary oil when the amount of the light oil is insufficient, additional auxiliary oil is added, and the auxiliary oil is an alkane having a density of 0.65 to 0.75 kg / L.
  • the amount of light components that can be produced by fractional distillation may not be able to reduce the density of the mixed oil to less than 0.98 kg / L.
  • the light components reserved in previous productions are used as supplements, or additional auxiliary oils are added as supplements.
  • the auxiliary oil is an alkane having a density of 0.65 to 0.75 kg / L.
  • the auxiliary oil includes at least one of heptane, octane, and No. 120 solvent oil.
  • the density of the auxiliary oil is low, and the mixing effect with the low-temperature coal tar is good, and the density of the desired mixed oil can be adjusted quickly and conveniently.
  • the boiling point of the auxiliary oil is between 90 and 130 ° C. After the desalting process is completed, it can be recovered together with the light components contained in the low-temperature coal tar by fractional distillation.
  • the light oil is added in an amount of 15% to 25% by weight of the low-temperature coal tar.
  • the inventors found through their own creative labor that adding in accordance with the above ratio, the mixing uniformity of light oil and low temperature coal tar is better.
  • a filtering treatment is performed first, and then an electric desalting and / or a membrane desalting treatment is performed.
  • Filtration can be performed by a decanter centrifuge, as well as one-stage or multi-stage filtration. Filtration can remove mechanical impurities, pulverized coal, asphalt, colloids, etc. in low-temperature coal tar to reduce the emulsification caused by certain surface activity of pulverized coal, asphalt and colloids, and promote oil-water separation.
  • the temperature during the filtration process is 120 to 140 ° C. At this temperature, the viscosity of the mixed oil decreases, which is beneficial to improve the efficiency of filtration.
  • the mass ratio of the mixed oil, desalinated water, and demulsifier is 100: 5 to 12: 0.03 to 0.05.
  • Desalinated water can transfer the salt in coal tar to the water phase to achieve the purpose of desalination.
  • Demulsifiers can break the emulsified state of mixed oil and accelerate oil-water separation.
  • the temperature of the mixed components is maintained at 120 to 140 ° C. At this temperature, the viscosity of the mixed components decreases, the oil-water density difference increases, the oil-water separation speed is fast, and the salt is transferred from the oil to water more thoroughly.
  • the proportion of coal tar obtained after the above treatment method reaches 92% to 95% by weight of the low-temperature coal tar as an initial raw material. If the content of moisture and mechanical impurities in the raw material oil is removed, the recovery of active ingredients can even reach 95% by weight. In the above, the utilization rate of the active ingredient in the raw material oil is high. At the same time, the obtained coal tar has a water content of less than 0.2 wt%, and can be used to prepare high-quality petrochemical products after the hydrogenation process.
  • An embodiment of the present disclosure also provides a pretreatment device before low-temperature coal tar hydrogenation, which includes:
  • Desalination equipment where electric desalination and / or membrane desalination are performed
  • Condenser a place where the gaseous components discharged from the primary distillation column are condensed
  • the mixer, desalination equipment, and initial distillation column are connected in series; the gas phase outlet of the initial distillation column is connected to the input end of the mixer through a condenser.
  • the pretreatment device further includes a heat exchanger, wherein the gas phase of the initial distillation column and the feed of the low-temperature coal tar undergo heat exchange through the heat exchanger, so that the temperature of the low-temperature coal tar fed is When the temperature rises, the gas phase coming out of the primary distillation column cools down, and then becomes the liquid into the mixer through the cooling down of the condenser. In this way, the high-temperature gas phase components generated in the primary distillation column can be used to preheat low-temperature coal tar, increase the use of heat by the entire pretreatment equipment, and reduce production energy consumption.
  • the low-temperature coal tar contains impurities, and the impurities include at least one of the following: mechanical impurities, pulverized coal, asphalt, colloids, moisture, or salts.
  • the density of the low-temperature coal tar is 0.98 to 1.02 kg / L.
  • the density of the mixed oil is 0.958 to 0.962 kg / L.
  • the density of the mixed oil is 0.978, 0.970, 0.960, or 0.950.
  • the boiling point of the auxiliary oil is 90 to 130 ° C.
  • the water content of the pretreated low temperature coal tar is less than 0.2 wt%.
  • the pretreatment method further includes collecting a liquid phase obtained by the primary fractionation to obtain a pretreated coal tar.
  • the pretreatment method further includes heat-exchanging the feed of the low-temperature coal tar with the gas phase from the primary fractionation to preheat the feed of the low-temperature coal tar.
  • This embodiment provides a pretreatment device 100 before the low-temperature coal tar hydrogenation, which includes a mixer 110, a desalination device 120, an initial distillation column 130, and a condenser 140. Among them, the mixer 110, the desalination equipment 120, and the initial distillation column 130 are connected in series in this order.
  • the mixer 110 is a place for mixing low-temperature coal tar, light oil, demulsifier, and demineralized water.
  • the discharge end of the mixer 110 is in communication with the feed end of the filter 150.
  • the obtained mixed components are delivered to the filter 150.
  • the discharge end of the filter 150 is in communication with the feed end of the desalination equipment 120, and the filtered mixed components are sent to the desalination equipment 120 to remove moisture and salt.
  • the discharge end of the desalination device 120 is in communication with the initial distillation column 130.
  • the mixed components are separated into an aqueous phase and an oil phase, and the oil phase components are sent to the initial distillation column 130 for fractionation.
  • the low-boiling components in the low-temperature coal tar form steam, which is discharged from the gas-phase outlet of the primary distillation column 130, and the remaining liquid components are discharged from the liquid-phase outlet of the primary distillation column 130 and transported to the hydrogenation process.
  • the pretreatment device 100 further includes a heat exchanger 160, and the feed of the gas phase of the primary distillation column 130 and the low-temperature coal tar is heat-exchanged through the heat exchanger 160, so that the temperature of the low-temperature coal tar is increased.
  • the temperature of the gas phase exiting the distillation column 130 is reduced, and then the temperature of the condenser 140 is reduced to become a liquid and enter the mixer.
  • the high-temperature gas phase components generated in the primary distillation column 130 can be used to preheat low-temperature coal tar, increase the use of heat by the entire pretreatment equipment 100, and reduce production energy consumption.
  • This embodiment provides a pretreatment method for low-temperature coal tar, which uses the pretreatment device 100 provided in Embodiment 1.
  • the specific steps include:
  • the mixed component is heated to 120 ° C. and sent to a filter 150 to filter out mechanical impurities, pulverized coal, asphalt, colloids and the like.
  • the filtered mixed component is maintained at 120 ° C., and is sent to a desalination apparatus 120 for desalination. After the desalination, the moisture content of the mixed oil is determined to be 0.32 wt%.
  • the oil phase components obtained after desalting are sent to an initial distillation column 130, and fractionated at 140 to 180 ° C. to separate gas phase components and liquid phase components. Among them, the liquid phase component accounts for 94.1% of the mass of the low-temperature coal tar, and its water content is 0.16 wt%.
  • the gas-phase components formed by fractional distillation are sent to a heat exchanger 160, and low-temperature coal tar is pre-heated.
  • the heat-exchanged gas-phase components are transferred to the condenser 140 for condensation, and then returned to the mixer 110 for mixing with the low-temperature coal tar.
  • This embodiment provides a method for pretreating low-temperature coal tar, and the specific steps include:
  • the above mixed oil is mixed with a demulsifier and desalted water to obtain a mixed component.
  • the mass ratio of the mixed oil, desalinated water and demulsifier is 100: 8: 0.05.
  • the mixed component is heated to 140 ° C, and mechanical impurities, pulverized coal, asphalt, colloids and the like are removed by filtration.
  • the filtered mixed component is kept at 140 ° C. for desalting, and the water content of the mixed oil after desalting is determined to be 0.45 wt%.
  • This embodiment provides a method for pretreating low-temperature coal tar, and the specific steps include:
  • the above mixed oil is mixed with a demulsifier and desalted water to obtain a mixed component.
  • the mass ratio of the mixed oil, desalinated water and demulsifier is 100: 12: 0.04.
  • the mixed component is heated to 140 ° C, and mechanical impurities, pulverized coal, asphalt, colloids and the like are removed by filtration.
  • the filtered mixed component is kept at 140 ° C. for desalting, and the water content of the mixed oil after desalting is determined to be 0.49 wt%.
  • This embodiment provides a method for pretreating low-temperature coal tar, and the specific steps include:
  • the above mixed oil is mixed with a demulsifier and desalted water to obtain a mixed component.
  • the mass ratio of mixed oil, desalinated water and demulsifier is 100: 6: 0.03.
  • the mixed components are heated to 130 ° C, and mechanical impurities, pulverized coal, asphalt, colloids and the like are removed by filtration.
  • the filtered mixed component is kept at 130 ° C. for desalting, and the water content of the mixed oil after desalting is determined to be 0.50 wt%.
  • This embodiment provides a method for pretreating low-temperature coal tar, and the specific steps include:
  • the low temperature coal tar (density is 0.993 kg / L) is mixed with a demulsifier and demineralized water to obtain a mixed component.
  • the mass ratio of low temperature coal tar, desalinated water and demulsifier is 100: 9: 0.37.
  • the mixed components are heated to 120 ° C, and mechanical impurities, pulverized coal, asphalt, colloids and the like are removed by filtration.
  • the filtered mixed component is kept at 120 ° C. for desalting, and the water content of the mixed oil after desalting is determined to be 4.3% by weight.
  • This embodiment provides a method for pretreating low-temperature coal tar, and the specific steps include:
  • the low temperature coal tar (density is 1.018 kg / L) is mixed with a demulsifier and demineralized water to obtain a mixed component.
  • the mass ratio of low temperature coal tar, desalinated water and demulsifier is 100: 10: 0.05.
  • the mixed components are heated to 120 ° C., and mechanical impurities, pulverized coal, asphalt, colloids and the like are removed by filtration.
  • the filtered mixed component is kept at 120 ° C. for desalting, and the water content of the mixed oil after desalting is determined to be 7.4 wt%.
  • the embodiment of the present disclosure provides a low-temperature coal tar pretreatment method, which mixes light oil with low-temperature coal tar to obtain a mixed oil with a density lower than 0.98 kg / L, and then mixes the above-mentioned mixed oil It is mixed with desalinated water and demulsifier for electric desalting and / or membrane desalting.
  • the pretreatment method makes low-temperature coal tar with a density close to water to form a lower-density mixed oil through the mixing of light oil, which makes it easier to separate from water, speeds up the work efficiency of subsequent desalination steps, and increases the low temperature. Utilization of effective ingredients in coal tar.
  • the light oil of this pretreatment method uses the light components obtained during the initial fractionation of the last batch of low-temperature coal tar to realize the recycling of this light component.
  • the light components that are fractionated also accumulate more and more, and the density difference between the obtained mixed oil and water is further opened, which promotes the further separation of the oil phase and the water phase and forms a virtuous cycle.
  • the pretreatment method has the characteristics of simple and practical operation, low equipment requirements, fast and efficient separation, and is suitable for large-scale industrial production.
  • the embodiment of the present disclosure also provides a pretreatment device before hydrogenation of the low-temperature coal tar, which includes a mixer, a desalination device, an initial distillation column, and a condenser connected in series in this order. It can be used in conjunction with the above pretreatment method to efficiently remove mechanical impurities, moisture, salt and other ineffective components in low-temperature coal tar.
  • the structure of the pretreatment device is simple and convenient to use, which is favorable for industrialized production.
  • the treatment method of the present disclosure makes low-temperature coal tar with a density close to water to form a lower-density mixed oil through the mixing of light oil, which makes it easier to separate from water, accelerates the work efficiency of subsequent desalination steps, and increases Utilization of effective ingredients in low temperature coal tar.
  • the light oil of this pretreatment method uses the light components obtained during the initial fractionation of the last batch of low-temperature coal tar to realize the recycling of this light component. With the increase of the amount, the light components that are fractionated also accumulate more and more, and the density difference between the obtained mixed oil and water is further opened, which promotes the further separation of the oil phase and the water phase and forms a virtuous cycle.
  • the pretreatment method has the characteristics of simple and practical operation, low equipment requirements, fast and efficient separation, and is suitable for large-scale industrial production.
  • the pretreatment equipment before the hydrogenation of the coal tar according to the present disclosure can be used in conjunction with the above pretreatment method to efficiently remove ineffective components such as mechanical impurities, moisture, and salts in the low temperature coal tar.
  • the structure of the pretreatment device is simple and convenient to use, which is favorable for industrialized production.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

一种低温煤焦油的预处理方法,将轻质油与低温煤焦油进行混合,得到混合油,再将混合油与脱盐水和破乳剂混合进行电脱盐和/或膜脱盐处理。该方法通过轻质油的混配,加快后续脱盐步骤的工作效率,增加对低温煤焦油中有效成分的利用率,具有操作简单实用,分离快速高效的特点,适合大规模的工业化生产。一种低温煤焦油加氢前的预处理设备,该预处理设备结构简单、使用方便,利于进行工业化生产。

Description

一种低温煤焦油的预处理方法以及预处理设备
相关申请的交叉引用
本申请要求于2018年06月27日提交中国专利局的申请号为201810680704.6、名称为“一种低温煤焦油的预处理方法以及预处理设备”的中国专利申请,以及于2018年06月27日提交中国专利局的申请号为201810681482.X、名称为“一种低温煤焦油加氢前的预处理方法以及预处理设备”的中国专利申请的优先权,其每个的全部内容通过引用结合在本申请中。
技术领域
本公开涉及煤焦油预处理技术领域,具体而言,涉及一种低温煤焦油的预处理方法以及预处理设备。
背景技术
煤焦油含有机械杂质、水分、盐分等,对煤焦油的深加工有重大影响,所以,煤焦油加氢前往往要对煤焦油进行预处理,尽可能降低煤焦油中的机械杂质、水分、盐分等含量,以满足煤焦油加氢低成本、满负荷、正常运行。
以往的煤焦油大部分是焦化、兰碳、煤气化的副产品,属于中高温煤焦油,煤焦油的密度大部分都大于水的密度,且与水的密度相差较大,所以这些煤焦油的油和水相对是比较容易分离的,中高温煤焦油因为含沥青较高,通常先采用馏分的方式将煤焦油切割成不同温度的区段,煤焦油原料中的存在的盐分、杂质等留在了沥青中,馏分出的油类进入相应焦油加氢环节,所以,经切割馏分的煤焦油的加氢不再考虑脱盐、脱水,但用此预处理方法,煤焦油原料的利用率太低。对于低温煤热解产生的低温煤焦油,沥青相对较少,但如果仍采用馏分的方式,低温煤焦油原料的利用率仍然低于80%,这是不经济的。
低温煤焦油的大部分密度小于水的密度,也有一少部分大于水的密度,轻质的煤焦油和水以及重质的煤焦油是可以分离的,但要经过较长时间的静置,短时间内因煤焦油密度接近水的密度,油和水难以分离,或分离后的煤焦油含水量大,尤其是煤焦油中含有较多煤粉等杂质和胶质时,煤焦油与水的分离更难。如何使低温煤焦油油水分离更容易,同时便于盐分、杂质、沥青质相应除去,原料油利用率尽可能较高,成为追寻的目标。
发明内容
本公开的目的至少包括例如提供一种低温煤焦油的预处理方法,该预处理方法操作简单实用,其对于密度接近于水的低温煤焦油,能够快速高效地进行油水分离,高效除去低温煤焦油中的机械杂质、水分、盐分等无效成分。
本公开的目的至少包括例如提供一种低温煤焦油加氢前的预处理设备,其设备简单、 使用方便,能够用于对密度接近于水的低温煤焦油的油水分离,较好地保留低温煤焦油中的有效成分。
本公开提供一种低温煤焦油的预处理方法,其包括:
将低温煤焦油与轻质油混合,得到密度小于0.98kg/L的混合油,其中,轻质油由上一批次的低温煤焦油在初级分馏时得到;
对混合油、脱盐水和破乳剂混合后形成的混合组份进行电脱盐和/或膜脱盐处理;
对脱盐后的所述混合组份在140~180℃下进行初级分馏,得到的气相组分经冷凝后,作为轻质油与下一批次的所述低温煤焦油混合。
本公开提供一种低温煤焦油加氢前的预处理设备,其包括:
混合器,用于对低温煤焦油、轻质油、破乳剂和脱盐水进行混合的场所;
脱盐设备,进行电脱盐和/或膜脱盐的场所;
初馏塔,进行初级分馏的场所;
冷凝器,对初馏塔排出的气相组分进行冷凝的场所;
其中,所述混合器、所述脱盐设备、所述初馏塔依次串联;所述初馏塔的气相出口经所述冷凝器连通至所述混合器的入料端。
本公开实施例的有益效果至少包括:
本公开实施例提供了一种低温煤焦油的预处理方法,其将轻质油与低温煤焦油进行混合,得到密度低于0.98kg/L的混合油,再将上述混合油与脱盐水和破乳剂混合进行电脱盐和/或膜脱盐处理。该预处理方法通过轻质油的混配,使密度与水接近的低温煤焦油形成了密度更低的混合油,使其更易于与水进行分离,加快后续脱盐步骤的工作效率,增加对低温煤焦油中有效成分的利用率。另外,该预处理方法的轻质油可以采用上一批次低温煤焦油在初级分馏时得到的轻组分,实现对这部分轻组分的循环利用,并且,随着处理的低温煤焦油的量的增加,分馏出的轻组分同样经过累积越来越多,得到的混合油与水的密度差进一步拉开,促进油相和水相的进一步分离,形成良性循环。该预处理方法具有操作简单实用,对设备要求不高,分离快速高效的特点,适合大规模的工业化生产。
本公开实施例还提供了一种低温煤焦油加氢前的预处理设备,其包括依次串联的混合器、脱盐设备、初馏塔和冷凝器。其可配合上述预处理方法使用,高效除去低温煤焦油中的机械杂质、水分、盐分等无效成分。该预处理设备的结构简单、使用方便,利于进行工业化生产。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本公开的某些实施例,因此不应被看作是对范 围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本公开实施例1所提供的一种低温煤焦油加氢前的预处理设备的连接示意图。
图标:100-预处理设备;110-混合器;120-脱盐设备;130-初馏塔;140-冷凝器;150-过滤器;160-换热器;170-进料管道。
具体实施方式
为使本公开实施方式的目的、技术方案和优点更加清楚,下面将对本公开实施方式中的技术方案进行清楚、完整地描述。实施方式中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
下面对本公开实施方式的一种低温煤焦油的预处理方法以及预处理设备进行具体说明。
本公开实施方式提供了一种低温煤焦油的预处理方法,其包括:
将低温煤焦油与轻质油混合,得到密度小于0.98kg/L的混合油,其中,轻质油由上一批次的低温煤焦油在初级分馏时得到;
对混合油、脱盐水和破乳剂混合后形成的混合组份进行电脱盐和/或膜脱盐处理;
对脱盐后的所述混合组份在140~180℃下进行初级分馏,得到的气相组分经冷凝后,作为轻质油与下一批次的所述低温煤焦油混合。
低温煤焦油的密度接近于水,其部分组分的密度小于水的密度,也有部分组分的密度大于水的密度,这就使得其在与水进行分离时,出现油相和水相难以分层的情况。这就造成了虽然低温煤焦油和水可以分离,但要经过较长时间的静置。若静置时间过短而进行分离,则会造成分离后的低温煤焦油的含水量较大。尤其是对于低温煤焦油中含有较多煤粉等杂质和胶质时,油相和水相的分离将会变得更加困难。此外,油相和水相的分离困难,容易造成电脱盐过程中极板瞬时电流过大,出现频繁跳闸现象,无法正常完成脱盐工作,尤其对于密度在0.98~1.02kg/L之间的低温煤焦油更是如此。
在一种或多种实施方式中,混合油的密度大于等于0.95kg/L。从理论上讲,混合油的密度越小,其与水的分离更加容易,但考虑到轻质油的用量,以及轻质油的回收成本,使混合油的密度大于等于0.95kg/L最为经济适用。优选地,混合油的密度为0.958~0.962kg/L,在该范围内,混合油无论从分离效率还是从成本控制方面均能得到较佳的效果。值得注意的是,随着低温煤焦油处理量的增加,轻组分的量是一个积累的过程,也即是说能够与低温煤焦油进行混配的轻质油的量会越来越多,要对轻组分进行分馏、冷凝的成本也会越来越高,此时可以通过限制回配的轻质油的量,使混合油的密度大于等于0.95kg/L 来控制成本,而多出的部分轻质油可回收留待后续生产使用。
在一种或多种实施方式中,在所述轻质油量不足时,添加额外的辅助油,所述辅助油为密度0.65~0.75kg/L的烷烃。
在生产初始阶段,由于低温煤焦油处理的量还较少,分馏能够产生的轻组分的量可能存在着不能将混合油的密度降至0.98kg/L以下的情况,此时,就可以采用以前生产中预留的轻组分作为补充,或是添加额外的辅助油作为补充。其中,辅助油为密度0.65~0.75kg/L的烷烃。
在一种或多种实施方式中,辅助油包括庚烷、辛烷和120号溶剂油中的至少一种。上述辅助油的密度较低,且与低温煤焦油的混合效果较好,能够快速方便的调整得到想要的混合油的密度。同时,上述辅助油的沸点在90~130℃之间,在完成脱盐处理之后,能够通过分馏与低温煤焦油中所含的轻组分一起进行回收。
在一种或多种实施方式中,轻质油的加入量为低温煤焦油的15wt%~25wt%。发明人经过自身创造性劳动发现,按照上述比例进行添加,轻质油和低温煤焦油的混合均一性较好。
在一种或多种实施方式中,在将混合油与脱盐水和破乳剂混合之后,先进行过滤处理,再进行电脱盐和/或膜脱盐处理。过滤可以通过卧螺离心机进行,也可以采用一级过滤或多级过滤。过滤可以除去低温煤焦油中的机械杂质、煤粉、沥青、胶质物等,以减少煤粉、沥青及胶质物含有一定表面活性带来的乳化性,促进油水分离。
在一种或多种实施方式中,进行过滤处理时的温度为120~140℃。在该温度下,混合油的粘度降低,利于提高过滤的效率。
在一种或多种实施方式中,混合油、脱盐水和破乳剂的质量比为100:5~12:0.03~0.05。脱盐水可以使煤焦油中的盐分转移到水相中,达到脱盐的目的。破乳剂则可以破除混合油的乳化状态,加速油水分离。
在一种或多种实施方式中,在进行电脱盐和/或膜脱盐处理时,保持混合组分的温度为120~140℃。在该温度下,混合组分的粘度降低,油水密度差增大,油水分离速度快,盐分从油中转入水中较彻底。
经过上述处理方法后所得到的煤焦油占比达到作为初始原料的低温煤焦油的92wt%~95wt%,如果刨去原料油中水分和机械杂质的含量,对于有效成分的回收甚至可达到95wt%以上,对于原料油中的有效成分利用率较高。同时,得到的煤焦油的含水量低于0.2wt%,在经过加氢工序后,能够用于制取高品质的石化产品。
本公开实施方式还提供了一种低温煤焦油加氢前的预处理设备,其包括:
混合器,用于对低温煤焦油、轻质油、破乳剂和脱盐水进行混合的场所;
脱盐设备,进行电脱盐和/或膜脱盐的场所;
初馏塔,进行初级分馏的场所;
冷凝器,对初馏塔排出的气相组分进行冷凝的场所;
其中,混合器、脱盐设备、初馏塔依次串联;初馏塔的气相出口经冷凝器连通至混合器的入料端。
在一种或多种实施方式中,该预处理设备还包括换热器,其中,初馏塔的气相与低温煤焦油的进料经过换热器的换热,使得进料的低温煤焦油温度升高,从初馏塔出来的气相降温,再经冷凝器的降温变成液态进入混合器。这样的设置方式,使得初馏塔中产生的高温气相组分,可以用于对低温煤焦油进行预热,增加整个预处理设备对热量的利用,降低生产能耗。
在一种或多种实施方式中,所述低温煤焦油中含有杂质,所述杂质包括以下中至少一种:机械杂质、煤粉、沥青、胶质物、水分或盐。
在一种或多种实施方式中,所述低温煤焦油的密度为0.98~1.02kg/L。
在一种或多种实施方式中,所述混合油的密度为0.958~0.962kg/L。
在一种或多种实施方式中,所述混合油的密度为0.978、0.970、0.960或0.950。
在一种或多种实施方式中,所述辅助油的沸点为90~130℃。
在一种或多种实施方式中,预处理后的低温煤焦油的水含量低于0.2wt%。
在一种或多种实施方式中,所述预处理方法还包括收集所述初级分馏得到的液相得到预处理后的煤焦油。
在一种或多种实施方式中,所述预处理方法还包括使所述低温煤焦油的进料与来自所述初级分馏的气相进行热交换,以预热所述低温煤焦油的进料。
以下结合实施例对本公开的特征和性能作进一步的详细描述。
实施例1
本实施例提供了一种低温煤焦油加氢前的预处理设备100,其包括混合器110、脱盐设备120、初馏塔130和冷凝器140。其中,混合器110、脱盐设备120、初馏塔130依次串联。
混合器110是用于对低温煤焦油、轻质油、破乳剂和脱盐水进行混合的场所。混合器110的出料端与过滤器150的进料端连通,低温煤焦油、轻质油、破乳剂和脱盐水在混合器110中充分混合后,将得到的混合组份输送至过滤器150中过滤,以除去其中的机械杂质、煤粉、沥青、胶质物等。
过滤器150的出料端与脱盐设备120的进料端连通,过滤后的混合组份输送至脱盐设备120进行水分、盐分的脱除。脱盐设备120的出料端与初馏塔130连通,经过脱盐后,混合组份被分离成水相和油相,油相组分输送至初馏塔130内进行分馏。分馏过程中,低 温煤焦油中的低沸点组分形成蒸汽,由初馏塔130的气相出口排出,而余下的液相组分则由初馏塔130的液相出口排出,输送进入氢化工序。
进一步地,该预处理设备100还包括换热器160,初馏塔130的气相与低温煤焦油的进料经过换热器160的换热,使得进料的低温煤焦油温度升高,从初馏塔130出来的气相降温,再经冷凝器140的降温变成液态进入混合器。这样的设置方式,使得初馏塔130中产生的高温气相组分,可以用于对低温煤焦油进行预热,增加整个预处理设备100对热量的利用,降低生产能耗。
实施例2
本实施例提供了一种低温煤焦油的预处理方法,其采用实施例1所提供的预处理设备100,其具体步骤包括:
S1.将低温煤焦油和占其质量20%的120号溶剂油一起加入到混合器110中,充分混合,得到密度为0.978kg/L的混合油。
S2.向混合器110中加入破乳剂和脱盐水,搅拌得到混合组份。其中,所述混合油、所述脱盐水和所述破乳剂的质量比为100:10:0.035。
S3.将上述混合组份加热至120℃,并输送至过滤器150中,滤除其中的机械杂质、煤粉、沥青、胶质物等物质。
S4.将过滤后的混合组份保持在120℃,输送至脱盐设备120中进行脱盐,脱盐后混合油测定含水率为0.32wt%。
S5.将脱盐后得到的油相组分输送至初馏塔130中,于140~180℃下分馏,分离得到气相组分和液相组分。其中,液相组分占低温煤焦油质量的94.1%,其含水量为0.16wt%。
S6.将分馏形成的气相组分输送至换热器160中,对低温煤焦油进行预加热。
S7.将换热后的气相组分输送至冷凝器140中冷凝,再输送回混合器110中与低温煤焦油混合。
实施例3
本实施例提供了一种低温煤焦油的预处理方法,其具体步骤包括:
S1.将低温煤焦油和占其质量15%的上一批次低温煤焦油分馏的轻组分混合,得到密度为0.970kg/L的混合油。
S2.将上述混合油与破乳剂和脱盐水混合,得到混合组份。其中,混合油、脱盐水和破乳剂的质量比为100:8:0.05。
S3.将上述混合组份加热至140℃,过滤滤除其中的机械杂质、煤粉、沥青、胶质物等物质。
S4.将过滤后的混合组份保持在140℃进行脱盐,脱盐后混合油测定含水率为0.45wt%。
S5.将脱盐后得到的油相组分于140~180℃下分馏,分离得到气相组分和液相组分,气相组分冷凝后与下一批次的低温煤焦油混合。其中,液相组分占低温煤焦油质量的93.7%,其含水量为0.18wt%。
实施例4
本实施例提供了一种低温煤焦油的预处理方法,其具体步骤包括:
S1.将低温煤焦油和占其质量20%的上一批次低温煤焦油分馏的轻组分混合,得到密度为0.960kg/L的混合油。
S2.将上述混合油与破乳剂和脱盐水混合,得到混合组份。其中,混合油、脱盐水和破乳剂的质量比为100:12:0.04。
S3.将上述混合组份加热至140℃,过滤滤除其中的机械杂质、煤粉、沥青、胶质物等物质。
S4.将过滤后的混合组份保持在140℃进行脱盐,脱盐后混合油测定含水率为0.49wt%。
S5.将脱盐后得到的油相组分于140~180℃下分馏,分离得到气相组分和液相组分,气相组分冷凝后与下一批次的低温煤焦油混合。其中,液相组分占低温煤焦油质量的92.2%,其含水量为0.20wt%。
实施例5
本实施例提供了一种低温煤焦油的预处理方法,其具体步骤包括:
S1.将低温煤焦油和占其质量15%的120号溶剂油和10%的上一批次低温煤焦油分馏的轻组分混合,得到密度为0.950kg/L的混合油。
S2.将上述混合油与破乳剂和脱盐水混合,得到混合组份。其中,混合油、脱盐水和破乳剂的质量比为100:6:0.03。
S3.将上述混合组份加热至130℃,过滤滤除其中的机械杂质、煤粉、沥青、胶质物等物质。
S4.将过滤后的混合组份保持在130℃进行脱盐,脱盐后混合油测定含水率为0.50wt%。
S5.将脱盐后得到的油相组分于140~180℃下分馏,分离得到气相组分和液相组分,气相组分冷凝后与下一批次的低温煤焦油混合。其中,液相组分占低温煤焦油质量的92.3%,其含水量为0.23wt%。
对比例1
本实施例提供了一种低温煤焦油的预处理方法,其具体步骤包括:
S1.将低温煤焦油(密度为0.993kg/L)与破乳剂和脱盐水混合,得到混合组份。其中,低温煤焦油、脱盐水和破乳剂的质量比为100:9:0.37。
S2.将上述混合组份加热至120℃,过滤滤除其中的机械杂质、煤粉、沥青、胶质物等 物质。
S3.将过滤后的混合组份保持在120℃进行脱盐,脱盐后混合油测定含水率为4.3wt%。
对比例2
本实施例提供了一种低温煤焦油的预处理方法,其具体步骤包括:
S1.将低温煤焦油(密度为1.018kg/L)与破乳剂和脱盐水混合,得到混合组份。其中,低温煤焦油、脱盐水和破乳剂的质量比为100:10:0.05。
S2.将上述混合组份加热至120℃,过滤滤除其中的机械杂质、煤粉、沥青、胶质物等物质。
S3.将过滤后的混合组份保持在120℃进行脱盐,脱盐后混合油测定含水率为7.4wt%。
由实施例2~5可以看出,采用本公开实施例所提供的预处理方法处理过后,可以回收低温煤焦油中92%以上的有效成分,且保证含水量低于0.2wt%。而由对比例1~2可以看出,由于低温煤焦油与水的密度过于接近,其油水分离的效果极差,脱盐后的油相组分中含水量依然达到了4.3wt%以上,未能很好地与水相分离,直接影响到了后续的生产。
综上所述,本公开实施例提供了一种低温煤焦油的预处理方法,其将轻质油与低温煤焦油进行混合,得到密度低于0.98kg/L的混合油,再将上述混合油与脱盐水和破乳剂混合进行电脱盐和/或膜脱盐处理。该预处理方法通过轻质油的混配,使密度与水接近的低温煤焦油形成了密度更低的混合油,使其更易于与水进行分离,加快后续脱盐步骤的工作效率,增加对低温煤焦油中有效成分的利用率。同时,该预处理方法的轻质油采用的是上一批次低温煤焦油在初级分馏时得到的轻组分,实现对这部分轻组分的循环利用,并且,随着处理的低温煤焦油的量的增加,分馏出的轻组分同样经过累积越来越多,得到的混合油与水的密度差进一步拉开,促进油相和水相的进一步分离,形成良性循环。该预处理方法具有操作简单实用,对设备要求不高,分离快速高效的特点,适合大规模的工业化生产。
本公开实施例还提供了一种低温煤焦油加氢前的预处理设备,其包括依次串联的混合器、脱盐设备、初馏塔和冷凝器。其可配合上述预处理方法使用,高效除去低温煤焦油中的机械杂质、水分、盐分等无效成分。该预处理设备的结构简单、使用方便,利于进行工业化生产。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。
工业实用性
本公开的处理方法通过轻质油的混配,使密度与水接近的低温煤焦油形成了密度更低的混合油,使其更易于与水进行分离,加快后续脱盐步骤的工作效率,增加对低温煤焦油 中有效成分的利用率。同时,该预处理方法的轻质油采用的是上一批次低温煤焦油在初级分馏时得到的轻组分,实现对这部分轻组分的循环利用,并且,随着处理的低温煤焦油的量的增加,分馏出的轻组分同样经过累积越来越多,得到的混合油与水的密度差进一步拉开,促进油相和水相的进一步分离,形成良性循环。该预处理方法具有操作简单实用,对设备要求不高,分离快速高效的特点,适合大规模的工业化生产。
本公开的煤焦油加氢前的预处理设备可配合上述预处理方法使用,高效除去低温煤焦油中的机械杂质、水分、盐分等无效成分。该预处理设备的结构简单、使用方便,利于进行工业化生产。

Claims (19)

  1. 一种低温煤焦油的预处理方法,包括:
    将所述低温煤焦油与轻质油混合,得到密度小于0.98kg/L的混合油,其中,所述轻质油由上一批次的所述低温煤焦油在初级分馏时得到;
    对所述混合油、脱盐水和破乳剂混合后形成的混合组份进行电脱盐和/或膜脱盐处理;
    对脱盐后的所述混合组份在140~180℃下进行初级分馏,得到的气相组分经冷凝后,作为所述轻质油与下一批次的所述低温煤焦油混合。
  2. 根据权利要求1所述的预处理方法,其中,所述混合油的密度大于等于0.95kg/L。
  3. 根据权利要求1或2所述的预处理方法,其中,所述轻质油的加入量为所述低温煤焦油的15wt%~25wt%。
  4. 根据前述权利要求中任一项所述的预处理方法,其中,还包括:在所述轻质油量不足时,添加额外的辅助油,所述辅助油为密度0.65~0.75kg/L的烷烃。
  5. 根据权利要求4所述的预处理方法,其中,所述辅助油包括庚烷、辛烷和120号溶剂油中的至少一种。
  6. 根据前述权利要求中任一项所述的预处理方法,其中,在将所述混合油与所述脱盐水和所述破乳剂混合之后,先进行过滤处理,再进行电脱盐和/或膜脱盐处理。
  7. 根据权利要求6所述的预处理方法,其中,进行过滤处理时的温度为120~140℃。
  8. 根据前述权利要求中任一项所述的预处理方法,其中,所述混合油、所述脱盐水和所述破乳剂的质量比为100:5~12:0.03~0.05。
  9. 根据前述权利要求中任一项所述的预处理方法,其中,电脱盐和/或膜脱盐处理的温度为120~140℃。
  10. 根据前述权利要求中任一项所述的预处理方法,其中,所述低温煤焦油中含有杂质,所述杂质包括以下中至少一种:机械杂质、煤粉、沥青、胶质物、水分或盐。
  11. 根据前述权利要求中任一项所述的预处理方法,其中,所述低温煤焦油的密度为0.98~1.02kg/L。
  12. 根据前述权利要求中任一项所述的预处理方法,其中,所述混合油的密度为0.958~0.962kg/L。
  13. 根据权利要求1-11中任一项所述的预处理方法,其中,所述混合油的密度为0.978、0.970、0.960或0.950。
  14. 根据权利要求4-13中任一项所述的预处理方法,其中,所述辅助油的沸点为90~130℃。
  15. 根据前述权利要求中任一项所述的预处理方法,其中,预处理后的低温煤焦油的水含量低于0.2wt%。
  16. 根据前述权利要求中任一项所述的预处理方法,其中,所述预处理方法还包括收集所述初级分馏得到的液相得到预处理后的煤焦油。
  17. 根据前述权利要求中任一项所述的预处理方法,其中,所述预处理方法还包括使所述低温煤焦油的进料与来自所述初级分馏的气相进行热交换,以预热所述低温煤焦油的进料。
  18. 一种低温煤焦油加氢前的预处理设备,包括:
    混合器,用于对低温煤焦油、轻质油、破乳剂和脱盐水进行混合的场所;
    脱盐设备,进行电脱盐和/或膜脱盐的场所;
    初馏塔,进行初级分馏的场所;
    冷凝器,对初馏塔排出的气相组分进行冷凝的场所;
    其中,所述混合器、所述脱盐设备、所述初馏塔依次串联;所述初馏塔的气相出口经所述冷凝器连通至所述混合器的入料端。
  19. 根据权利要求17所述的预处理设备,其中,所述预处理设备还包括换热器,用于使用来自所述初馏塔的气相来预热所述低温煤焦油的进料。
PCT/CN2019/088107 2018-06-27 2019-05-23 一种低温煤焦油的预处理方法以及预处理设备 WO2020001205A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201810680704.6 2018-06-27
CN201810680704.6A CN108822882A (zh) 2018-06-27 2018-06-27 一种低温煤焦油的预处理方法以及预处理设备
CN201810681482.XA CN108795480A (zh) 2018-06-27 2018-06-27 一种低温煤焦油加氢前的预处理方法以及预处理设备
CN201810681482.X 2018-06-27

Publications (1)

Publication Number Publication Date
WO2020001205A1 true WO2020001205A1 (zh) 2020-01-02

Family

ID=68984455

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2019/088131 WO2020001206A1 (zh) 2018-06-27 2019-05-23 一种低温煤焦油加氢前的预处理方法以及预处理设备
PCT/CN2019/088107 WO2020001205A1 (zh) 2018-06-27 2019-05-23 一种低温煤焦油的预处理方法以及预处理设备

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/088131 WO2020001206A1 (zh) 2018-06-27 2019-05-23 一种低温煤焦油加氢前的预处理方法以及预处理设备

Country Status (1)

Country Link
WO (2) WO2020001206A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4415434A (en) * 1981-07-21 1983-11-15 Standard Oil Company (Ind.) Multiple stage desalting and dedusting process
CN105295989A (zh) * 2015-11-27 2016-02-03 煤炭科学技术研究院有限公司 一种高温煤焦油脱水脱盐方法
CN105713658A (zh) * 2014-08-11 2016-06-29 中石化洛阳工程有限公司 一种低温煤焦油的预处理工艺
CN106281407A (zh) * 2015-06-24 2017-01-04 中国石油化工股份有限公司 一种煤焦油的预处理方法和燃料油的生产方法
CN107267195A (zh) * 2017-08-17 2017-10-20 煤炭科学技术研究院有限公司 煤焦油电脱盐脱水系统及方法
CN108795480A (zh) * 2018-06-27 2018-11-13 河南龙成煤高效技术应用有限公司 一种低温煤焦油加氢前的预处理方法以及预处理设备
CN108822882A (zh) * 2018-06-27 2018-11-16 河南龙成煤高效技术应用有限公司 一种低温煤焦油的预处理方法以及预处理设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000230177A (ja) * 1999-02-15 2000-08-22 Dai Ichi Kogyo Seiyaku Co Ltd 石炭タール水分離用乳化破壊剤
CN105316018B (zh) * 2014-08-02 2017-12-19 长江(扬中)电脱盐设备有限公司 一种煤焦油深加工预处理方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4415434A (en) * 1981-07-21 1983-11-15 Standard Oil Company (Ind.) Multiple stage desalting and dedusting process
CN105713658A (zh) * 2014-08-11 2016-06-29 中石化洛阳工程有限公司 一种低温煤焦油的预处理工艺
CN106281407A (zh) * 2015-06-24 2017-01-04 中国石油化工股份有限公司 一种煤焦油的预处理方法和燃料油的生产方法
CN105295989A (zh) * 2015-11-27 2016-02-03 煤炭科学技术研究院有限公司 一种高温煤焦油脱水脱盐方法
CN107267195A (zh) * 2017-08-17 2017-10-20 煤炭科学技术研究院有限公司 煤焦油电脱盐脱水系统及方法
CN108795480A (zh) * 2018-06-27 2018-11-13 河南龙成煤高效技术应用有限公司 一种低温煤焦油加氢前的预处理方法以及预处理设备
CN108822882A (zh) * 2018-06-27 2018-11-16 河南龙成煤高效技术应用有限公司 一种低温煤焦油的预处理方法以及预处理设备

Also Published As

Publication number Publication date
WO2020001206A1 (zh) 2020-01-02

Similar Documents

Publication Publication Date Title
JP6382349B2 (ja) 原油から芳香族を製造するプロセス
DE69920489T2 (de) Integriertes lösungsmittelentasphaltierungs- und vergasungsverfahren
CN105316018B (zh) 一种煤焦油深加工预处理方法
US10041004B2 (en) Processes for producing deashed pitch
JP2018044179A5 (zh)
DK162107B (da) Fremgangsmaade til genraffinering af smoereolier
EP1171554A1 (en) Method of removing contaminants from used oil
JP7104030B2 (ja) 炭化水素蒸気を生成するためのプロセスおよびシステム
CN108822882A (zh) 一种低温煤焦油的预处理方法以及预处理设备
CN105623698A (zh) 一种煤焦油预处理的方法
WO2020001205A1 (zh) 一种低温煤焦油的预处理方法以及预处理设备
CN112574783B (zh) 一种苯乙烯焦油综合利用的方法
CN105713635A (zh) 一种去除煤焦油中喹啉不溶物的方法
CN106675632A (zh) 一种延迟焦化方法
CN110668910B (zh) 一种苯蒸残渣回收装置及回收方法和应用
CN108690658B (zh) 一种回收低芳烃含量油中芳烃的方法
CN108795480A (zh) 一种低温煤焦油加氢前的预处理方法以及预处理设备
RU2232181C1 (ru) Способ разделения нефтяного сырья для получения асфальта, аппарат для осуществления способа
JP2017536231A (ja) 特に精製プロセスからの残渣を処理及び/又は回収及び/又は再利用する方法
US2602044A (en) Clay decolorizing of solvent refined lubricating oils
US20150122703A1 (en) Fouling reduction in supercritical extraction units
US9994781B2 (en) Process and system for obtaining crude oil products
JP2011001503A (ja) 再生油の製造方法
US10000711B2 (en) Method and plant for obtaining crude oil products
RU2176660C1 (ru) Способ переработки нефтяных отходов

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19825280

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19825280

Country of ref document: EP

Kind code of ref document: A1