WO2020000863A1 - 一种光伏关断器分压电路 - Google Patents

一种光伏关断器分压电路 Download PDF

Info

Publication number
WO2020000863A1
WO2020000863A1 PCT/CN2018/115019 CN2018115019W WO2020000863A1 WO 2020000863 A1 WO2020000863 A1 WO 2020000863A1 CN 2018115019 W CN2018115019 W CN 2018115019W WO 2020000863 A1 WO2020000863 A1 WO 2020000863A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
photovoltaic
output terminal
voltage
resistor
Prior art date
Application number
PCT/CN2018/115019
Other languages
English (en)
French (fr)
Inventor
张有清
姚华文
Original Assignee
江苏集能易新能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏集能易新能源技术有限公司 filed Critical 江苏集能易新能源技术有限公司
Publication of WO2020000863A1 publication Critical patent/WO2020000863A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • H02H7/1213Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for DC-DC converters

Definitions

  • the invention relates to a photovoltaic circuit, in particular to a photovoltaic shutdown voltage divider circuit, and belongs to the technical field of power electronic converters.
  • Quick shutdown is a concept of photovoltaic power plant safety protection introduced from the United States.
  • the concept of fast shutdown is proposed for the protection of firefighters, photovoltaic power plant installation and maintenance personnel, because there is a DC high voltage on the DC side of the photovoltaic power plant, as long as there is sunlight, the DC high voltage on the panel side will always exist. In the fire, firefighters were unable to carry out fire fighting and rescue work until the entire power station was burned out.
  • NEC 2017 stipulates: "Beyond the string, the controller is installed within 0.3 meters from the array and more than 1 meter away from the access point. After using fast shutdown, the system needs to fall to 30V within 30 seconds; in the group Within the string, it drops to 80V in 30 seconds, which is convenient for safety rescue measures. "The output voltage of a single component must be greater than 0.6V to facilitate system troubleshooting.
  • the technical problem to be solved by the present invention is to provide a photovoltaic circuit breaker voltage divider circuit, which can reduce the cost, has high reliability, is easy to implement, and meets the requirements of fast shutdown in the US regulations.
  • a photovoltaic shutdown voltage divider circuit which includes: a photovoltaic module VPV, an input capacitor C4, a first switch Q1, a freewheeling diode D1, an LC trap, An output capacitor C5 and a control unit; one end of the output capacitor C5 is connected to a first output terminal, and the other end of the output capacitor C5 is connected to a second output terminal;
  • the input capacitor C4 is connected in parallel with the photovoltaic component VPV, the anode of the photovoltaic component VPV is connected to the negative pole of the free-wheeling diode D1, the cathode of the photovoltaic component VPV is connected to the drain of the first switching tube Q1, and the first The source of the switch Q1 is connected to one end of the LC trap, the other end of the LC trap is connected to the anode of the freewheeling diode D1, and the base of the first switch Q1 is connected to the control unit;
  • the two ends of the output capacitor C5 are connected in parallel with a resistor R1 and two voltage dividing circuits.
  • Each voltage dividing circuit is controlled by a switching tube, and the control terminal of the switching tube of each voltage dividing circuit is connected to the control unit.
  • the first output terminal is connected to the positive pole of the photovoltaic module VPV
  • the second output terminal is connected to the negative pole of the photovoltaic module VPV through a second switching tube
  • the control end of the second switching tube is connected to the control unit.
  • the second switching transistor is a transistor Q2, the second output terminal is connected through a resistor R2 and a collector of the transistor Q2, and an emitter of the transistor Q2 is connected to a photovoltaic component VPV.
  • the negative electrode is connected, and the base of the transistor Q2 is connected to the control unit through a resistor R3.
  • the above-mentioned voltage divider circuit of the photovoltaic shutdown device wherein one voltage divider circuit is controlled by the transistor Q3 and the transistor Q5, and the other voltage divider circuit is controlled by the transistor Q4 and the transistor Q6; the transistor Q5 and the transistor Q6 are PNP tubes, and The transistor Q3 and the transistor Q4 are NPN tubes; the emitter of the transistor Q5 is connected to the first output terminal, the collector of the transistor Q5 is connected to the second output terminal through a resistor R4, and the base of the transistor Q5 is connected through a resistor R5 Connected to the collector of transistor Q3, the emitter of transistor Q3 is connected to the negative electrode of the photovoltaic module, the base of transistor Q3 is connected to the control unit through resistor R6, and the emitter of transistor Q6 is connected to the first output terminal A collector of the transistor Q6 is connected to the second output terminal through a resistor R7, a base of the transistor Q6 is connected to a collector of the transistor Q4 through a resistor R8, and an
  • the voltage divider circuit of the photovoltaic shutdown device when the first switch Q1 is in an on state, the transistor Q5 and the transistor Q6 are turned off, and the voltage divider circuit does not work; when the first switch Q1 is in an off state The voltage dividing circuit works; when the input voltage is 40V, the voltage between the first output terminal and the second output terminal is controlled to be 0.8V to 1.0V.
  • the present invention has the following beneficial effects: the photovoltaic circuit breaker voltage divider circuit provided by the present invention has the following advantages: (1) low cost, high efficiency, high reliability; (2) it can be well detected Self problems or system problems.
  • FIG. 1 is a schematic diagram of a voltage divider circuit of a photovoltaic shutdown device according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of two voltage dividing circuits connected in parallel to an output end of a voltage dividing circuit of a photovoltaic shutdown device according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a control terminal connection of a photovoltaic shutdown voltage divider circuit in an embodiment of the present invention.
  • the photovoltaic circuit breaker voltage divider circuit in the embodiment of the present invention has high efficiency, does not affect the characteristics of the original system, has high reliability, simple implementation, and convenient maintenance.
  • FIG. 1 is a schematic diagram of a voltage divider circuit of a photovoltaic shut-off device in an embodiment of the present invention
  • FIG. 2 is a schematic diagram of two voltage divider circuits in parallel with an output end of the photovoltaic shut-off voltage divider circuit in an embodiment of the present invention
  • FIG. 3 is Schematic diagram of the control terminal connection of the voltage divider circuit of the photovoltaic shutdown device in the embodiment of the present invention.
  • a voltage-dividing circuit for a photovoltaic shutdown circuit includes a photovoltaic module VPV, an input capacitor C4, a first switching transistor Q1, a free-wheeling diode D1, an LC trap, Output capacitor C5, NPN transistors Q2, Q3, Q4, PNP transistors Q5, Q6, resistors R1, R2, R3, R4, R5, R6, R7, R8, R9, control unit, first output terminal 1-1 and second output terminal 1-2; Q2, Q3, Q4, Q5, Q6 in the figure are not limited to transistors, It can also be other switching tubes (such as Mosfet, IGBT, GTO, etc.).
  • the input capacitor C4 is connected in parallel with the photovoltaic module VPV, the anode of the photovoltaic module VPV is connected to the anode of the free-wheeling diode D1, and the anode of the photovoltaic module VPV is connected to the drain of the first switching transistor Q1.
  • the source of the first switch Q1 is connected to one end of the LC trap, and the other end of the LC trap is connected to the anode of the free-wheeling diode D1; the LC trap is composed of L1 and C1.
  • the first output terminal 1-1 and the first output terminal 1-2 are connected in parallel with the output capacitor C5 and the resistor R1; the resistor R2 is respectively connected with the second output terminal 1-2 and the transistor Q2
  • the collector is connected, the emitter of the transistor Q2 is connected to the negative pole of the photovoltaic module VPV, the base of the transistor Q2 is connected to one end of the resistor R3, and the other end of the resistor R3 is connected to the control unit to receive the CPU control signal PA0.
  • the voltage divider circuit of the photovoltaic shutdown device provided by the present invention, the transistors Q5 and Q6 are PNP tubes, the emitter is connected to the first output terminal 1-1, the collector is connected to one end of the resistors R4 and R7, and the other of the resistors R4 and R7 are One end is connected to the second output terminal 1-2.
  • the bases of the transistors Q5 and Q6 are respectively connected to one end of the resistors R5 and R8.
  • the other ends of the resistors R5 and R8 are respectively connected to the collectors of the transistors Q3 and Q4, and the transistors Q3 and Q4 are connected.
  • the emitter is connected to the negative pole of the photovoltaic module, the bases of the transistors Q3 and Q4 are connected to the resistors R6 and R9 respectively, and the other ends of the resistors R6 and R9 are connected to the control unit to receive the control signal PA1.
  • the voltage dividing circuit between the first output terminal 1-1 and the second output terminal 1-2 is double-parallel, and the PA1 control signal is given by the control unit.
  • the PA1 control signal is given by the control unit.
  • the voltage between R5 and R8 is basically 0V, no power loss in the voltage divider circuit; when the shut-down device cannot detect the signal and exceeds 16S, it turns off the first Switch the transistor Q1, and then set the PA1 control signal high, so that the bases of the transistors Q3 and Q4 flow, the collectors are turned on, and the transistors Q5 and Q6 are also turned on.
  • the resistors R5 and R8 work, and the output voltage is equal to (R5 + R8) * Vpv / R2, by selecting appropriate values of R5, R8, and R2, when Vpv is equal to 40V, the voltage between the first output terminal 1-1 and the second output terminal 1-2 is 0.8V.
  • the output voltage of the photovoltaic module when the open-circuit voltage of the photovoltaic module is 40V, the output voltage is only 0.8V to 1.0V, and the output current can reach 10mA.
  • the circuit is simple, the cost is low, the output voltage-dividing circuit is connected in parallel with two circuits, and the reliability is high.
  • a resistor and a transistor are connected in parallel between Q1, and the purpose thereof is to detect whether the shutdown of the shutdown device is caused by its own problem.
  • PA0 When the control unit is working, PA0 is always turned on, but when the control unit is powered by the power supply or itself, When it is not working, PA0 is at a low voltage, no current flows through the base of Q2, Q2 is turned off, R2 is not working, the resistance Rmos of the switch Q2 is equivalent to infinity, and at the same time PA1 is also at a low level, and the transistors Q5 and Q6 are turned off If the resistors R5 and R8 do not work, then the output voltage is equal to R1 * Vpv / Rmos, which is basically equal to 0V.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Protection Of Static Devices (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种光伏关断器分压电路,包括光伏组件VPV、输入电容C4、第一开关管Q1、续流二极管D1、LC陷波器、输出电容C5和控制单元;所述输入电容C4与光伏组件VPV并联连接,光伏组件的正极与续流二极管D1的负极相连,负极通过第一开关管Q1、LC陷波器与续流二极管D1阳极相连,第一开关管Q1的基极和控制单元相连;所述输出电容C5的两端并联电阻R1和两路分压电路,每一路分压电路采用开关管控制,每一路分压电路的开关管的控制端和控制单元相连。本发明能有效实现关断器关断时,当光伏组件开路电压为40V时,输出电压仅为0.8V,输出电流能达到10mA,电路简单,成本低,输出分压电路两路并联,可靠性高。

Description

一种光伏关断器分压电路 技术领域
本发明涉及一种光伏电路,尤其涉及一种光伏关断器分压电路,属于电力电子变换器技术领域。
背景技术
快速关断,是从美国引入的光伏电站安全保护概念。快速关断概念的提出,出于对消防人员、光伏电站安装及维修人员的保护,因为光伏电站直流侧有直流高压,只要有太阳照射,电池板侧的直流高压就一直存在,一旦光伏电站发生火灾,在整个电站烧毁完之前,消防人员都无法进行灭火抢险工作。
因此,美国国家电气规范NEC 2014 及NEC 2017中对光伏电站直流侧快速关断都提出了明确要求。将于2019年1月1日开始正式执行。NEC 2017规定:“在组串之外,控制器安装在距离阵列0.3米之内以及距离接入点超过1米的范围内,使用快速关断后,系统需要30秒内降至30V;在组串之内,在30秒内降至80V,方便采取安全救援措施。”单个组件的输出电压必须大于0.6V,便于系统问题排查。
技术问题
本发明所要解决的技术问题是提供一种光伏关断器分压电路,可以降低成本,可靠性高,易于实施,满足美国法规快速关断的要求。
技术解决方案
本发明为解决上述技术问题而采用的技术方案是提供一种光伏关断器分压电路,包括:光伏组件VPV、输入电容C4、第一开关管Q1、续流二极管D1、LC陷波器、输出电容C5和控制单元;所述输出电容C5的一端连接第一输出端子,所述输出电容C5的另一端连接第二输出端子;
所述输入电容C4与光伏组件VPV并联连接,所述光伏组件VPV的正极与续流二极管D1的负极相连,所述光伏组件VPV的负极与第一开关管Q1的漏极相连,所述第一开关管Q1的源极与LC陷波器的一端相连,所述LC陷波器的另一端与续流二极管D1阳极相连,所述第一开关管Q1的基极和控制单元相连;
所述输出电容C5的两端并联电阻R1和两路分压电路,每一路分压电路采用开关管控制,每一路分压电路的开关管的控制端和控制单元相连;
所述第一输出端子与光伏组件VPV的正极相连,所述第二输出端子通过第二开关管与光伏组件VPV负极相连,所述第二开关管的控制端和控制单元相连。
上述的光伏关断器分压电路,其中,所述第二开关管为三极管Q2,所述第二输出端子通过电阻R2和三极管Q2的集电极相连,所述三极管Q2的发射极与光伏组件VPV负极相连,所述三极管Q2的基极通过电阻R3和控制单元相连;当关断器出现故障时,所述三极管Q2处于关断状态,使得第一输出端子和第二输出端子之间电压变成0V。
上述的光伏关断器分压电路,其中,一路分压电路采用三极管Q3和三极管Q5控制,另一路分压电路采用三极管Q4和三极管Q6控制;所述三极管Q5和三极管Q6为PNP管,所述三极管Q3和三极管Q4为NPN管;所述三极管Q5的发射极与第一输出端子相连,所述三极管Q5的集电极通过电阻R4与第二输出端子相连,所述三极管Q5的基极通过电阻R5与三极管Q3的集电极相连,所述三极管Q3的发射极与光伏组件的负极相连,所述三极管Q3的基极通过电阻R6和控制单元相连;所述三极管Q6的发射极与第一输出端子相连,所述三极管Q6的集电极通过电阻R7与第二输出端子相连,所述三极管Q6的基极通过电阻R8与三极管Q4的集电极相连,所述三极管Q4的发射极与光伏组件的负极相连,所述三极管Q4的基极通过电阻R9和控制单元相连。
上述的光伏关断器分压电路,其中,当第一开关管Q1处于导通状态时,所述三极管Q5和三极管Q6截止,分压电路不工作;当第一开关管Q1处于关断状态时,分压电路工作;当输入电压为40V时,控制第一输出端子和第二输出端子之间电压为0.8V~1.0V。
有益效果
本发明对比现有技术有如下的有益效果:本发明提供的光伏关断器分压电路,具有以下优点:(1) 成本低,效率高,可靠性高;(2)能很好的排查出自身问题还是系统问题。
附图说明
图1是本发明实施例中的一种光伏关断器分压电路示意图;
图2是本发明实施例中的光伏关断器分压电路输出端并联的两路分压电路示意图;
图3是本发明实施例中的光伏关断器分压电路的控制端连接示意图。
本发明的实施方式
本发明实施例中的一种光伏关断器分压电路,效率高,不影响原有系统的特性,可靠性高,实施简单,维护方便。
为使本发明的上述目的、特征和有益效果能够更为明显易懂,下面结合附图对本发明的具体实例做详细的说明。
图1是本发明实施例中的一种光伏关断器分压电路示意图;图2是本发明实施例中的光伏关断器分压电路输出端并联的两路分压电路示意图;图3是本发明实施例中的光伏关断器分压电路的控制端连接示意图。
请参考图1,图2和图3,本发明提供的一种光伏关断器分压电路,包括光伏组件VPV、输入电容C4、第一开关管Q1、续流二极管D1、LC陷波器、输出电容C5、NPN三极管Q2,Q3,Q4、PNP三极管Q5,Q6、电阻R1,R2, R3,R4,R5,R6,R7,R8,R9、控制单元、第一输出端子1-1和第二输出端子1-2;图中Q2,Q3,Q4,Q5,Q6 不仅仅局限于三极管,同样可以是其它的开关管(如Mosfet、IGBT、GTO等)。
本发明提供的光伏关断器分压电路,输入电容C4与光伏组件VPV并联连接,光伏组件VPV的正极与续流二极管D1的负极相连,光伏组件VPV的负极与第一开关管Q1的漏极相连,所述第一开关管Q1的源极与LC陷波器的一端相连,LC陷波器的另一端与续流二极管D1阳极相连;LC陷波器由L1,C1组成。
本发明提供的光伏关断器分压电路,第一输出端子1-1和第一输出端子1-2与输出电容C5,电阻R1并联;电阻R2分别与第二输出端子1-2及三极管Q2集电极相连, 三极管Q2发射极与光伏组件VPV负极相连,三极管Q2基极与电阻R3一端相连,电阻R3另一端与控制单元相连接收CPU控制信号PA0。
本发明提供的光伏关断器分压电路,三极管Q5, Q6为PNP管,发射极与第一输出端子1-1相连,集电极分别与电阻R4, R7的一端相连,电阻R4,R7的另外一端与第二输出端子1-2相连,三极管Q5,Q6的基极分别与电阻R5,R8的一端相连,电阻R5,R8的另外一端分别与三极管Q3,Q4的集电极相连,三极管Q3,Q4的发射极与光伏组件的负极相连,三极管Q3,Q4的基极分别与电阻R6,R9相连,电阻R6,R9的另外一端与控制单元相连,接收控制信号PA1。
本发明提供的光伏关断器分压电路,第一输出端子1-1和第二输出端子1-2之间的分压电路双路并联,PA1控制信号由控制单元给出,当关断器检测到信号开启第一开关管Q1时,先使PA1信号为低电平,再开启第一开关管Q1,这样三极管Q3,Q4无基极电流,三极管Q3,Q4截止,三极管Q5,Q6的基极不导通,也无基极电流流过,Q5,Q6截止,R5,R8之间电压基本为0V,分压电路无功率损耗;当关断器检测不到信号并超过16S后关闭第一开关管Q1,然后置高PA1控制信号,这样三极管Q3,Q4基极有电流流过,集电极导通,三极管Q5,Q6也导通,电阻R5,R8工作,输出电压等于(R5+ R8)*Vpv/R2,根据需要通过选取R5, R8, R2合适的值,可以使Vpv等于40V的时候,第一输出端子1-1和第二输出端子1-2之间的电压为0.8V。也就是说,当光伏组件开路电压为40V时,输出电压仅为0.8V~1.0V,输出电流能达到10mA,电路简单,成本低,输出分压电路两路并联,可靠性高。
本发明另外在Q1之间并联一个电阻和三极管,其目的在于检测关断器关断是否由于本身问题造成的关断,当控制单元工作时,PA0一直导通,但是当控制单元由于电源或者本身问题造成其不工作时,PA0处于低电压,Q2基极无电流流过,Q2截止,R2不工作,开关管Q2的电阻Rmos相当于无穷大,同时PA1也处于低电平,三极管Q5,Q6截止,电阻R5,R8不工作,那么输出电压等于R1*Vpv/Rmos,基本等于0V。
本发明提供的光伏关断器分压电路,具有以下优点:
(1) 成本低,效率高,可靠性高;
(2)能很好的排查出自身问题还是系统问题;
虽然本发明已以较佳实施例揭示如上,然其并非用以限定本发明,任何本领域技术人员,在不脱离本发明的精神和范围内,当可作些许的修改和完善,因此本发明的保护范围当以权利要求书所界定的为准。

Claims (4)

  1. 一种光伏关断器分压电路,其特征在于,包括:
    光伏组件VPV、输入电容C4、第一开关管Q1、续流二极管D1、LC陷波器、输出电容C5和控制单元;所述输出电容C5的一端连接第一输出端子,所述输出电容C5的另一端连接第二输出端子;
    所述输入电容C4与光伏组件VPV并联连接,所述光伏组件VPV的正极与续流二极管D1的负极相连,所述光伏组件VPV的负极与第一开关管Q1的漏极相连,所述第一开关管Q1的源极与LC陷波器的一端相连,所述LC陷波器的另一端与续流二极管D1阳极相连,所述第一开关管Q1的基极和控制单元相连;
    所述输出电容C5的两端并联电阻R1和两路分压电路,每一路分压电路采用开关管控制,每一路分压电路的开关管的控制端和控制单元相连;
    所述第一输出端子与光伏组件VPV的正极相连,所述第二输出端子通过第二开关管与光伏组件VPV负极相连,所述第二开关管的控制端和控制单元相连。
  2. 根据权利要求1所述的光伏关断器分压电路,其特征在于,所述第二开关管为三极管Q2,所述第二输出端子通过电阻R2和三极管Q2的集电极相连,所述三极管Q2的发射极与光伏组件VPV负极相连,所述三极管Q2的基极通过电阻R3和控制单元相连;当关断器出现故障时,所述三极管Q2处于关断状态,使得第一输出端子和第二输出端子之间电压变成0V。
  3. 根据权利要求1所述的光伏关断器分压电路,其特征在于,一路分压电路采用三极管Q3和三极管Q5控制,另一路分压电路采用三极管Q4和三极管Q6控制;所述三极管Q5和三极管Q6为PNP管,所述三极管Q3和三极管Q4为NPN管;
    所述三极管Q5的发射极与第一输出端子相连,所述三极管Q5的集电极通过电阻R4与第二输出端子相连,所述三极管Q5的基极通过电阻R5与三极管Q3的集电极相连,所述三极管Q3的发射极与光伏组件的负极相连,所述三极管Q3的基极通过电阻R6和控制单元相连;
    所述三极管Q6的发射极与第一输出端子相连,所述三极管Q6的集电极通过电阻R7与第二输出端子相连,所述三极管Q6的基极通过电阻R8与三极管Q4的集电极相连,所述三极管Q4的发射极与光伏组件的负极相连,所述三极管Q4的基极通过电阻R9和控制单元相连。
  4. 根据权利要求3所述的光伏关断器分压电路,其特征在于,当第一开关管Q1处于导通状态时,所述三极管Q5和三极管Q6截止,分压电路不工作;当第一开关管Q1处于关断状态时,分压电路工作;当输入电压为40V时,控制第一输出端子和第二输出端子之间电压为0.8V~1.0V。
PCT/CN2018/115019 2018-06-29 2018-11-12 一种光伏关断器分压电路 WO2020000863A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810698469.5 2018-06-29
CN201810698469.5A CN108666978B (zh) 2018-06-29 2018-06-29 一种光伏关断器分压电路

Publications (1)

Publication Number Publication Date
WO2020000863A1 true WO2020000863A1 (zh) 2020-01-02

Family

ID=63772589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/115019 WO2020000863A1 (zh) 2018-06-29 2018-11-12 一种光伏关断器分压电路

Country Status (2)

Country Link
CN (1) CN108666978B (zh)
WO (1) WO2020000863A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108666978B (zh) * 2018-06-29 2024-02-02 江苏集能易新能源技术有限公司 一种光伏关断器分压电路
CN114050811B (zh) * 2022-01-13 2022-05-17 杭州禾迈电力电子股份有限公司 一种多输入关断器及控制方法、光伏发电系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201061122Y (zh) * 2007-06-25 2008-05-14 深圳市麦格米特电气技术有限公司 交流掉电快速关机电路
WO2014048459A1 (de) * 2012-09-26 2014-04-03 Siemens Aktiengesellschaft Wandleranordnung für eine photovoltaikanlage und betriebsverfahren für eine photovoltaikanlage
CN204089183U (zh) * 2014-08-07 2015-01-07 广州海格通信集团股份有限公司 一种可频繁开关操作的防浪涌电源开关保护电路
CN108666978A (zh) * 2018-06-29 2018-10-16 江苏集能易新能源技术有限公司 一种光伏关断器分压电路

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3761644B2 (ja) * 1996-10-31 2006-03-29 シャープ株式会社 電源スイッチ回路
DE10040879A1 (de) * 2000-08-18 2002-02-28 Thomson Brandt Gmbh Netzteil mit einer Batterie
EP2439829A3 (de) * 2010-10-08 2012-12-05 VWL Umweltcentrum für Haustechnik Anordnung zum sicheren Außerbetriebsetzen von Photovoltaikanlagen
CN103779829A (zh) * 2012-10-19 2014-05-07 鸿富锦精密工业(深圳)有限公司 负载保护电路
CN103001544B (zh) * 2012-11-14 2015-11-25 华为技术有限公司 一种光伏发电的系统及其控制方法
CN208316286U (zh) * 2018-06-29 2019-01-01 江苏集能易新能源技术有限公司 一种光伏关断器分压电路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201061122Y (zh) * 2007-06-25 2008-05-14 深圳市麦格米特电气技术有限公司 交流掉电快速关机电路
WO2014048459A1 (de) * 2012-09-26 2014-04-03 Siemens Aktiengesellschaft Wandleranordnung für eine photovoltaikanlage und betriebsverfahren für eine photovoltaikanlage
CN204089183U (zh) * 2014-08-07 2015-01-07 广州海格通信集团股份有限公司 一种可频繁开关操作的防浪涌电源开关保护电路
CN108666978A (zh) * 2018-06-29 2018-10-16 江苏集能易新能源技术有限公司 一种光伏关断器分压电路

Also Published As

Publication number Publication date
CN108666978A (zh) 2018-10-16
CN108666978B (zh) 2024-02-02

Similar Documents

Publication Publication Date Title
US10122176B2 (en) Photovoltaic intelligent power supply
CN202550515U (zh) 一种大功率igbt综合过流保护电路
WO2020000862A1 (zh) 一种光伏关断器串联驱动电路
CN104104067A (zh) 一种短路保护电路
CN109474020A (zh) 一种光伏组件智能关断系统及其方法
US20130207474A1 (en) Matrix connection device for photovoltaic panels and/or wind turbines
WO2021003790A1 (zh) 一种组件关断器及光伏发电系统安全保护系统
ES2970048T3 (es) Convertidor, método y sistema aplicados a un sistema de generación de energía fotovoltaica
WO2020000863A1 (zh) 一种光伏关断器分压电路
CN205693341U (zh) 高压sic器件过流的检测电路、保护电路及检测与保护电路
CN107425811B (zh) 光伏组件的监测装置和光伏发电系统
CN103926516A (zh) 一种二极管在线检测电路
CN202930915U (zh) 一种变频器开关电源的短路保护装置
CN103138377A (zh) 一种光伏组件优化器冗余直通装置以及控制方法
CN202737439U (zh) 漏电保护器的漏电监控芯片
CN209982435U (zh) 光伏系统的防pid装置及光伏系统
CN104505939B (zh) 带有光伏电池自损检测监控的光伏电池防雷器
CN204068210U (zh) 短路保护电路
TWM636645U (zh) 具高壓直流輸入能力及一對多連接功能之太陽能監控關斷裝置
CN216720889U (zh) 一种用于光伏组件的关断装置及应用其的光伏系统
CN209217733U (zh) 一种光伏组件智能关断系统
CN208316286U (zh) 一种光伏关断器分压电路
CN106711956A (zh) 一种过压欠压保护电路
WO2021142905A1 (zh) 一种光伏逆变器
CN204258620U (zh) 光伏逆变器启动控制装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18924645

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18924645

Country of ref document: EP

Kind code of ref document: A1