WO2020000508A1 - 一种液晶显示面板的控制电路及液晶显示面板 - Google Patents

一种液晶显示面板的控制电路及液晶显示面板 Download PDF

Info

Publication number
WO2020000508A1
WO2020000508A1 PCT/CN2018/095093 CN2018095093W WO2020000508A1 WO 2020000508 A1 WO2020000508 A1 WO 2020000508A1 CN 2018095093 W CN2018095093 W CN 2018095093W WO 2020000508 A1 WO2020000508 A1 WO 2020000508A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
liquid crystal
gamma
gamma voltage
crystal display
Prior art date
Application number
PCT/CN2018/095093
Other languages
English (en)
French (fr)
Inventor
高翔
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US16/219,239 priority Critical patent/US10629156B2/en
Publication of WO2020000508A1 publication Critical patent/WO2020000508A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3696Generation of voltages supplied to electrode drivers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3614Control of polarity reversal in general
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3685Details of drivers for data electrodes
    • G09G3/3688Details of drivers for data electrodes suitable for active matrices only
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/0426Layout of electrodes and connections
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/08Details of timing specific for flat panels, other than clock recovery
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0209Crosstalk reduction, i.e. to reduce direct or indirect influences of signals directed to a certain pixel of the displayed image on other pixels of said image, inclusive of influences affecting pixels in different frames or fields or sub-images which constitute a same image, e.g. left and right images of a stereoscopic display
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0247Flicker reduction other than flicker reduction circuits used for single beam cathode-ray tubes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0673Adjustment of display parameters for control of gamma adjustment, e.g. selecting another gamma curve

Definitions

  • the present invention relates to the field of electronic technology, and in particular, to a control circuit for a liquid crystal display panel and a liquid crystal display panel.
  • LCD Liquid Crystal Display
  • driving circuit is also continuously improved, so that the LCD can display clear and stable pictures.
  • the polarity of the pixel voltage is periodically changed around the common voltage (Vcom) of the LCD, the pixel voltage is the voltage of the pixel electrode, and the common voltage is the voltage of the common electrode.
  • Vcom common voltage
  • the common voltage under the screen of a specific gray level can be adjusted to make the difference between the pixel voltage of the positive and negative periods and the common voltage.
  • the absolute values are as equal as possible to minimize flicker.
  • a commonly used method is to determine the best Vcom on a screen with a gray level of 255. Based on this best Vcom, the gamma voltage of each grayscale point is determined based on the best Flicker (if the Flicker is the smallest).
  • the coupling capacitance also known as parasitic capacitance
  • the coupling capacitance generated by the common voltage and the data line voltage is large, so the voltage on Vcom will be pulled up, causing the voltage difference stored in the liquid crystal to be reduced. Therefore, the gray level will change and cause horizontal crosstalk.
  • Embodiments of the present invention provide a control circuit for a liquid crystal display panel and a liquid crystal display panel, which can reduce horizontal crosstalk generated during a liquid crystal display process and improve screen flicker.
  • an embodiment of the present invention provides a control circuit for a liquid crystal display panel.
  • the control circuit is used to drive an array pixel unit.
  • the control circuit includes a timing controller, a gamma voltage generation module, a source driver, and An array of pixel units,
  • a first control terminal of the timing controller is connected to an input terminal of the gamma voltage generating module, an output terminal of the gamma voltage generating module is connected to a first input terminal of the source driver, and the timing control A second control terminal of the driver is connected to a second input terminal of the source driver, and an output terminal of the source driver is connected to a data line of the array pixel unit;
  • the timing controller When the timing controller detects crosstalk on the LCD display screen, the timing controller controls the gamma voltage generation module to output a symmetrical gamma voltage to the source driver, and the source driver outputs symmetrical A data line voltage to a data line of the array pixel unit, the symmetrical data line voltage is obtained according to the symmetrical gamma voltage division; the symmetrical data line voltage includes a first positive frame voltage and a first negative frame voltage An absolute value of a difference between the first positive frame voltage and a common voltage is equal to an absolute value of a difference between the first negative frame voltage and the common voltage;
  • the timing controller When the timing controller detects that crosstalk does not occur on the liquid crystal display screen and flicker occurs on the liquid crystal display screen, the timing controller controls the gamma voltage to generate and output an asymmetric gamma voltage to the A source driver that outputs an asymmetric data line voltage to a data line of the array pixel unit, the asymmetric data line voltage is obtained according to the asymmetric gamma voltage divided voltage, the asymmetric data line voltage
  • the gamma voltage is set under the condition that the flicker of the liquid crystal display screen is minimized;
  • the asymmetric data line voltage includes a second positive frame voltage and a second negative frame voltage, and the second positive frame voltage and the common
  • the absolute value of the difference between the voltages is not equal to the absolute value of the difference between the second negative frame voltage and the common voltage.
  • an embodiment of the present invention provides a liquid crystal display panel including an array pixel unit, a gate driving circuit, and the control circuit described in the first aspect.
  • the control circuit provided by the embodiment of the present invention can control the gamma voltage generation module to output a symmetrical gamma voltage when crosstalk occurs on the liquid crystal display screen, and the source driver can output a symmetrical data line voltage with reference to the symmetrical gamma voltage, thereby reducing the voltage due to the data line.
  • the gamma voltage generation module can be controlled to output an asymmetric gamma voltage, and the source driver can refer to the asymmetric gamma voltage
  • the output of asymmetric data line voltage can improve the flicker phenomenon. In general, it can achieve the optimization effect of considering the reduction of flicker and the reduction of horizontal crosstalk, that is, it can reduce the horizontal crosstalk generated during the liquid crystal display process and improve the screen flicker phenomenon.
  • FIG. 1 is a schematic diagram of a control circuit of a liquid crystal display panel according to an embodiment of the present invention
  • FIG. 2a is a schematic diagram of an asymmetric data line voltage according to an embodiment of the present invention.
  • 2b is a schematic diagram of a horizontal crosstalk interface according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a symmetrical data line voltage according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a control circuit of a liquid crystal display panel according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a control circuit of another liquid crystal display panel according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a voltage dividing unit according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a liquid crystal display panel according to an embodiment of the present invention.
  • the term “if” can be construed as “when” or “once” or “in response to a determination” or “in response to a detection” depending on the context .
  • the phrase “if determined” or “if [the described condition or event] is detected” may be interpreted, depending on the context, to mean “once determined” or “in response to the determination” or “once [the condition or event described ] “Or” In response to [Description of condition or event] detected ".
  • the gray scale mentioned in the embodiments of the present invention refers to the degree of brightness of the brightness.
  • gray scale is the determining factor for the number of displayed colors. Generally speaking, the higher the gray level, the richer the displayed colors, the finer the picture, and the easier it is to express rich details.
  • the white and black are divided into several levels according to the logarithmic relationship, which is called "gray level". The range is generally from 0 to 255, white is 255, and black is 0. Therefore, black and white pictures are also called gray images. There is also a concept of so-called grayscale.
  • An image can be defined as a two-dimensional function f (x, y), where x and y are spatial plane coordinates, and the size of f is on any pair of coordinate axes (x, y).
  • This image is called the intensity or gray level of the image at that point, that is, the gray level refers to the level of the shades of the electromagnetic radiation emitted by the features on the black and white image. It is a feature that divides the spectrum of the features. The scale.
  • a pixel is just a unit of resolution, not image quality. Like photographs, digital images have a continuous gradation of shades. If we enlarge the image several times, we will find that these continuous tones are actually composed of many small dots with similar colors. These small dots constitute the image.
  • the smallest unit-pixels The smallest graphics unit displayed on the screen is usually a single dyeing point. The higher the pixel, the richer the color plate it has, and the more it can express the reality of color. From a definition point of view, a pixel refers to the basic coding of basic primitive pigments and their gray levels.
  • a liquid crystal display panel may include a timing controller, a source driver (source driving circuit), a gate driver (gate driving circuit), a gamma chip, etc.
  • the gamma chip may be used to generate a gamma voltage. It is used to control the gray scale of the display. Generally, it can be divided into fourteen groups (G0 ⁇ G14). The difference in voltage between different gamma voltages and Vcom causes the liquid crystal rotation angle to be different, and the brightness difference is the best. The condition is intermediate between G0 and G14, so the flicker condition of the LCD screen will be the best.
  • the liquid crystal needs dynamic voltage control, otherwise it is easy to form inertia.
  • the voltage difference between G0 ⁇ G14 and Vcom just constitutes a voltage method similar to a sine wave, which prevents the inertia stagnation of the liquid crystal at the same brightness.
  • the data line voltage is also called the source driver voltage.
  • the source driver can provide voltages for the TFT corresponding to each column of pixel units through multiple data lines.
  • the data line voltage is The voltage of a pixel can also be referred to as the pixel voltage.
  • the data line voltage is divided into positive frame voltage and negative frame voltage.
  • the pixel voltage of a pixel is continuously alternated between the positive frame voltage and the negative frame voltage. In this way, the array pixel unit is driven to realize the display.
  • FIG. 1 is a schematic diagram of a control circuit for a liquid crystal display panel according to an embodiment of the present invention.
  • the control circuit is used to drive an array pixel unit.
  • the control circuit may include a timing controller 10 and a gamma.
  • the first control terminal 11 of the timing controller 10 is connected to the input terminal 21 of the gamma voltage generating module 20, and the output terminal 22 of the gamma voltage generating module 20 It is connected to the first input terminal 31 of the source driver 30, the second control terminal 12 of the timing controller 10 is connected to the second input terminal 32 of the source driver 30, and the output terminal 33 of the source driver 30 is connected to the array pixel unit 40.
  • Data line 41 is connected,
  • the timing controller 10 When the timing controller 10 detects crosstalk on the LCD display, the timing controller 10 controls the gamma voltage generating module 20 to output a symmetrical gamma voltage to the source driver 30, and the source driver 30 outputs a symmetrical data line voltage to the array.
  • the symmetrical data line voltage is obtained by dividing the symmetrical gamma voltage; the symmetrical data line voltage includes a first positive frame voltage and a first negative frame voltage, and the first positive frame voltage and The absolute value of the difference between the common voltages is equal to the absolute value of the difference between the first negative frame voltage and the common voltage;
  • the timing controller 10 When the timing controller 10 detects that no crosstalk occurs on the liquid crystal display screen and the liquid crystal display screen flickers, the timing controller 10 controls the gamma voltage generating module 20 to output an asymmetric gamma voltage to the source driver 30.
  • the source driver 30 outputs an asymmetric data line voltage to the data line 41 of the array pixel unit 40.
  • the asymmetric data line voltage is obtained by dividing the asymmetric gamma voltage, and the asymmetric gamma voltage is used for the liquid crystal.
  • the asymmetric data line voltage includes the second positive frame voltage and the second negative frame voltage, and the absolute value of the difference between the second positive frame voltage and the common voltage is not equal to the first The absolute value of the difference between the two negative frame voltages and the common voltage.
  • the timing controller 10 may control the gamma voltage generating module 20 to output a symmetrical gamma voltage to the source driver 30.
  • the gamma voltage is used to control the gray of the display.
  • the stage is generally divided into two groups of voltages including the same number of voltages, which are respectively used to divide the voltage to generate a positive frame voltage and a negative frame voltage among a plurality of data line voltages.
  • the symmetrical gamma voltages can be 2N.
  • the 2N symmetrical gamma voltages are arranged in order from high to low or low to high.
  • the first voltage difference and the second voltage difference of the symmetrical gamma voltage are equal.
  • a voltage difference is the difference between the first voltage value and the Nth voltage value in the symmetric gamma voltage
  • the second voltage difference is the N + 1th voltage value and the 2Nth voltage value in the symmetric gamma voltage.
  • the N is a positive integer greater than 1.
  • Vcom is the middle value of the symmetric gamma voltage, that is, it can be the average of the first voltage value and the 2Nth voltage value.
  • the above N is 7, that is, 7 groups (14) of gamma voltages are set: 14V, 13V, 12V, 11V, 10V, 9V, 8V, 7V, 6V, 5V, 4V, 3V, 2V, 1V, these 14
  • the symmetric gamma voltages are arranged in order from high to low, which is also 6V.
  • These 14 gamma voltages can be called symmetric gamma voltages. If the above conditions are not met, they are asymmetric gamma point pressures. You can refer to the symmetrical gamma voltages shown in Table 1. Among them, 14 symmetrical gamma voltages GM1-GM14 are arranged in order from high to low. The difference between GM1 and GM7 is equal to the difference between GM8 and GM14.
  • the symmetrical data line voltage includes a first positive frame voltage and a first negative frame voltage.
  • the first positive frame voltage and the first negative frame voltage represent data line voltages in different frames with one pixel. If 2N symmetrical gammas are set, Voltage, when the voltage values are arranged from high to low, the first N symmetrical gamma voltages are used to divide the voltage to obtain the positive frame voltage in the symmetrical data line voltage, and the last N symmetrical gamma voltages are used to divide the voltage to obtain the symmetrical data line voltage.
  • Negative frame voltage The first positive frame voltage can be understood as any one of the positive frame voltages.
  • the first negative frame voltage is a negative frame voltage corresponding to the first positive frame voltage.
  • the absolute value of the difference between the first positive frame voltage and the common voltage is equal to the absolute value of the difference between the first negative frame voltage and the common voltage.
  • Data + and Data- are the data line voltage of a column of pixel cells of the array pixel unit
  • Data + is the positive frame voltage of the data line voltage
  • Data- is the negative frame voltage of the data line voltage
  • the voltage change of Data + is ⁇ V1
  • the absolute value of is greater than the absolute value of the corresponding Data-voltage change ⁇ V2.
  • the data line voltage is asymmetric and may affect the stability of Vcom, that is, the coupling capacitance between the data line voltage and the common voltage may occur, such as As shown by Vcom1 in the figure, the common voltage is affected by a sudden change.
  • the grayscale changes. Different levels of horizontal crosstalk may occur between adjacent pixels. Taking the data line voltage shown in the figure as an example, horizontal crosstalk (X_talk) X1 and X2 as shown in Figure 2b may be generated.
  • the gray level of the pixels in the row of X1 is low.
  • the gray level at the adjacent pixel position in the same column, thus showing a darker color the gray level of the pixels in row X2 is higher than the gray level of the adjacent pixel position in the same column, thus showing Light colors, affecting the display.
  • Data + and Data- in the figure can represent the symmetrical data line voltage obtained by the above-mentioned symmetrical gamma voltage division
  • Data + is the positive frame voltage of the symmetrical data line voltage
  • Data- is the negative of the symmetrical data line voltage.
  • the frame voltage, Data + and Data- are respectively equal to the absolute value of the difference between the common voltage Vcom
  • Vcom2 represents the actual common voltage (no deviation compared to the set Vcom)
  • the impact on Vcom is just offset.
  • Data + is guaranteed The absolute value of the voltage change ⁇ V3 and the absolute value of Data-voltage change ⁇ V4, so inputting the symmetrical data line voltage to the array pixel unit can reduce the horizontal crosstalk phenomenon.
  • the above-mentioned asymmetric gamma voltage is set under the condition that the flicker of the liquid crystal display screen is minimized.
  • a grayscale screen for example, a grayscale level of 255
  • Vcom in this case is the best Vcom.
  • the gamma voltage is still determined based on the principle of minimizing the flicker of the picture.
  • the gamma voltage at this time is an asymmetric gamma voltage.
  • the absolute value of the difference between the second positive frame voltage and the common voltage obtained by dividing the asymmetric gamma voltage is not equal to the second negative frame voltage and the common voltage.
  • the absolute value of the difference but it can improve the flicker that appears on the LCD screen.
  • the asymmetric gamma voltages (G01-G14) shown in Table 2 are set under the condition that the flicker of the liquid crystal display screen is minimized.
  • the asymmetric data line voltage obtained by the asymmetric gamma voltage can improve the flicker phenomenon that appears on the liquid crystal display screen.
  • liquid crystal display Liquid Crystal Display, LCD
  • LCD Liquid Crystal Display
  • TFT thin-film transistor
  • color filter on the upper substrate glass.
  • the direction of rotation of the liquid crystal molecules is controlled by changing the signal and voltage on the TFT, so as to control whether the polarized light of each pixel is emitted or not and achieve the display purpose.
  • the above-mentioned array pixel unit is a set of pixels performing a display function in an LCD screen.
  • Each pixel corresponds to a thin film transistor (TFT).
  • the array pixel unit includes multiple columns of pixel units. Each column may have multiple pixels. Each pixel corresponds to a thin film transistor TFT.
  • the structure of the display panel driving circuit shown in FIG. 4 includes a control circuit 00, a gate driving circuit 01, and an array pixel unit 40.
  • the control circuit 00 is used to provide the foregoing data to the TFT corresponding to each column of pixel units through a data line.
  • Line signals (such as Data1, Data2, Data3, Data4, Data5, Data6, Data7, Data8, etc.), in fact, the control circuit can provide the corresponding data line voltage (including the positive frame) to each pixel in the array pixel unit Voltage and negative frame voltage).
  • the gate driving circuit 01 is used to provide a gate scanning signal for the TFT corresponding to each row of pixels (such as G (N-2), G (N-1), G (N), G (N + 1), G (N + 2), etc.).
  • Flicker in the LCD display is mainly because the actual positive frame voltage and negative frame voltage of a certain pixel are asymmetric, that is, the difference between the positive frame voltage and the common voltage is not equal to the difference between the negative frame voltage and the common voltage , Resulting in a difference in brightness between the two adjacent frames, that is, a flicker phenomenon.
  • the timing controller 10 can detect the crosstalk appearing on the liquid crystal display screen, which may specifically be:
  • the timing controller 10 can detect that the difference between the first positive frame voltage of the adjacent pixels of the first column of pixel units of the array pixel unit 40 and the difference between the first negative frame voltage of the adjacent pixels are not equal, where
  • the first column of pixel units is any one of a plurality of columns of pixel units included in the array pixel unit.
  • the data line voltage is divided into two polarities, that is, a positive frame voltage higher than Vcom and a negative frame voltage lower than Vcom.
  • the two voltage polarities of the same pixel are continuously frame-by-frame. Alternating.
  • the timing controller 10 detects that the difference between the positive frame voltage of the sixth pixel and the seventh pixel of the third column pixel unit of the array pixel unit 40 is 2V, and the sixth pixel and the seventh pixel are different.
  • the difference between the negative frame voltage corresponding to the pixel is 1V, that is, the difference between the positive frame voltage of the two adjacent pixels and the difference between the negative frame voltage are not equal, the timing controller 10 determines that crosstalk occurs in the LCD display screen. .
  • the timing controller may detect crosstalk in the above-mentioned liquid crystal display screen through an image processing algorithm.
  • the timing controller stores image processing algorithms and data.
  • the timing controller can perform statistical analysis on the input data such as voltage at the input end to determine whether horizontal crosstalk will occur in a specified screen when using the input data. It can be understood as: Before the input data has not been converted into a data line voltage and enters the above-mentioned array pixel unit, the timing controller can detect that horizontal crosstalk will be generated in a certain screen after the input data is converted into a data line voltage.
  • the control circuit of the liquid crystal display panel can control the gamma voltage generating module to output a symmetrical gamma voltage when crosstalk occurs on the liquid crystal display screen, and the source driver can output a symmetrical data line voltage with reference to the symmetrical gamma voltage.
  • the source driver can refer to Asymmetric gamma voltage outputs asymmetric data line voltage, which can improve the flicker phenomenon. In general, it can achieve the optimization effect that considers reducing flicker and reducing horizontal crosstalk, that is, it can reduce the horizontal crosstalk generated during the LCD display and improve it. The screen flickers.
  • the gamma voltage generating module 20 further includes a first memory 201 and a second memory 202.
  • the first memory 201 is used to store a symmetric gamma voltage
  • the second memory 202 is used to store an asymmetric gamma voltage.
  • the timing controller 10 controls the gamma voltage generating module 20 to output the symmetric gamma voltage to the source driver 30.
  • the timing controller 10 may control the gamma voltage generating module 20 to obtain the symmetric gamma voltage stored in the first memory 201. , Output the above-mentioned symmetrical gamma voltage to the source driver 30;
  • the timing controller 10 controls the gamma voltage generating module 20 to output the asymmetric gamma voltage to the source driver 30, which may be as follows:
  • the timing controller 10 controls the gamma voltage generating module 20 to obtain the asymmetrical information stored in the second memory 202.
  • the gamma voltage outputs the asymmetric gamma voltage to the source driver 30.
  • the above-mentioned gamma voltage generating module may include a first memory and a second memory for storing voltages, respectively, for storing the symmetric gamma voltage and the asymmetric gamma voltage.
  • the user can pre-select the gamma voltage to be set and store it in the above-mentioned memory.
  • the above-mentioned gamma voltage generating module outputs the corresponding gamma voltage (symmetrical) Or asymmetric).
  • the gamma voltage generating module 20 may directly obtain and output the gamma voltage in the first memory or the second memory through the specified signal of the timing controller.
  • the above-mentioned memory can conveniently set the required gamma voltage in advance and store it in the gamma voltage generation module.
  • the gamma voltage generation module can select an appropriate voltage value to generate the gamma voltage. And output.
  • the gamma voltage generating module may be a programmable gamma correction buffer circuit chip (P_Gamma IC).
  • P_Gamma IC programmable gamma correction buffer circuit chip
  • FIG. 5 is a schematic diagram of a control circuit of a liquid crystal display panel provided by the present invention, which is optimized on the basis of the control circuit of the liquid crystal display panel shown in FIG. 1, wherein the source driver 30 may further include a The first input terminal 311 of the voltage dividing unit 310 is connected to the first input terminal 31 of the source driver 30, and the second input terminal 312 of the voltage dividing unit 310 is connected to the second input terminal 32 of the source driver;
  • the voltage dividing unit 310 may include a plurality of voltage dividing resistors. After the timing controller 10 controls the gamma voltage generating module 20 to output a symmetrical gamma voltage to the source driver 30, the voltage dividing unit 310 may divide the above symmetrical gamma voltage.
  • the source driver 30 also includes a frame rate conversion unit 320.
  • the input terminal 321 of the frame rate conversion unit 320 is connected to the output terminal 313 of the voltage dividing unit 310.
  • the output terminal of the frame rate conversion unit 320 is the output terminal 33 of the source driver 30.
  • the frame rate conversion unit 320 may process the symmetrical divided voltage to obtain a second quantity of the symmetrical data line voltage, and the second quantity is greater than the first quantity.
  • the above voltage-dividing unit includes multiple voltage-dividing resistors. These voltage-dividing resistors are connected in series to divide the gamma voltage, that is, the gamma voltage can be divided into a larger number of voltages, for example, 2N gammas.
  • the voltage is divided into 2 2N divided voltages, because there are N gamma voltages corresponding to the positive and negative frames in the 2N gamma voltages, that is, the gamma voltage is actually N group voltages, and the 2 2N divided voltages generated by the divided voltage There are 2 2N gamma voltages corresponding to the positive and negative frames. Referring to the schematic diagram of the voltage division unit shown in FIG.
  • the voltage dividing unit may also be a symmetric gamma voltage GM1-GM14 to perform voltage division together.
  • the voltage division operation of the voltage division unit is the same.
  • a voltage divider resistor can better generate a sufficient number of voltages to provide the required data line voltage for all pixels.
  • the frame rate conversion unit 320 may process the symmetrical divided voltages, for example, double the number of the symmetrical divided voltages to obtain 128 groups (256) of the symmetrical data line voltages.
  • the voltage of the two data lines of the group can be understood as the positive frame voltage and negative frame voltage of a pixel, for example, the positive frame voltage is 13V and the negative frame voltage is 2V; the absolute value of the difference between the above positive frame voltage and the common voltage is equal to the above negative frame voltage
  • the absolute value of the difference from the common voltage for example, the common voltage is 7.5V, the absolute value of the difference between the positive frame voltage 13V and the common voltage is 5.5V, and the absolute value of the difference between the negative frame voltage 2V and the common voltage is also 5.5V.
  • the timing controller can control the gamma voltage generation module to output the gamma voltage according to the display condition of the liquid crystal display screen.
  • the source driver divides the gamma voltage through the voltage dividing unit, and the frame rate conversion unit performs further conversion to obtain the same Pixel voltage matching the number of pixels (output as columns of data line voltage).
  • An embodiment of the present invention further provides a liquid crystal display panel, including an array pixel unit, a gate driving circuit, and any control circuit in the above embodiments.
  • a schematic structural diagram of a liquid crystal display panel includes a liquid crystal display panel including the above-mentioned array pixel unit 40, a gate driving circuit 01, and any one of the control circuits 00 in the foregoing embodiments.
  • a gate driving circuit 01 for specific structures, reference may also be made to FIG.
  • the schematic diagram of the control circuit structure of the liquid crystal display panel shown in FIG. 4 is not repeated here.
  • the disclosed circuit or device may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the modules is only a logical function division.
  • multiple modules or components may be combined or Can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices, or units, or may be electrical, mechanical, or other forms of connection.
  • the units (modules) described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, which may be located in one place, or may be distributed to multiple networks On the unit. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments of the present invention.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above integrated unit may be implemented in the form of hardware or in the form of software functional unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

公开了一种液晶显示面板的控制电路及液晶显示面板。其中,控制电路用于驱动阵列像素单元,该控制电路(00)包括:时序控制器(10)、伽玛电压产生模块(20)、源极驱动器(30),其中,时序控制器(10)的第一控制端(11)与伽玛电压产生模块的输入端(21)连接,伽玛电压产生模块(20)的输出端(22)与源极驱动器的第一输入端(31)连接,时序控制器(10)的第二控制端(12)与源极驱动器的第二输入端(32)连接,源极驱动器的输出端(33)与阵列像素单元(40)的数据线(41)连接。该控制电路可以降低液晶显示过程中产生的水平串扰以及改善画面闪烁现象。

Description

一种液晶显示面板的控制电路及液晶显示面板 技术领域
本发明涉及电子技术领域,尤其涉及一种液晶显示面板的控制电路及液晶显示面板。
背景技术
随着液晶显示器(Liquid Crystal Display,LCD)及相关技术的发展,对液晶面板类的产品性能要求越来越高,想要LCD的显示效果进一步提高,除了工艺制造方面的改进外,相关的LCD驱动电路也在不断地改进,从而使LCD能显示清晰稳定的画面。
一般地,液晶显示器在正常工作时,为防止液晶老化,像素电压的极性以LCD的公共电压(Vcom)为中心周期性变化,像素电压为像素电极的电压,公共电压为公共电极的电压,当正负周期的像素电压与公共电压的压差的绝对值不一样时,就会产生闪烁(Flicker)的现象。
为了改善由于像素电压与公共电压的压差的绝对值不一样导致的闪烁现象,可通过调整特定灰阶等级的画面下的公共电压,以使正负周期的像素电压与公共电压的压差的绝对值尽可能相等,达到将闪烁现象最小化。有一种常用方法是,可以选择在灰度等级为255的画面确定最佳Vcom,从而在此最佳Vcom的基础上根据最佳Flicker(Flicker最小的情况下)确定各灰阶点的伽玛电压值,但这样公共电压与数据线(Data Line)电压产生的耦合电容(也称为寄生电容)较大,因此会将Vcom上的电压往上拉,造成储存于液晶内的电压差值缩小,因此灰度会有所变化而造成水平串扰。
发明内容
本发明实施例提供一种液晶显示面板的控制电路及液晶显示面板,可以降低液晶显示过程中产生的水平串扰以及改善画面闪烁现象。
第一方面,本发明实施例提供了一种液晶显示面板的控制电路,所述控制电路用于驱动阵列像素单元,所述控制电路包括:时序控制器、伽玛电压产生 模块、源极驱动器和阵列像素单元,其中,
所述时序控制器的第一控制端与所述伽玛电压产生模块的输入端连接,所述伽玛电压产生模块的输出端与所述源极驱动器的第一输入端连接,所述时序控制器的第二控制端与所述源极驱动器的第二输入端连接,所述源极驱动器的输出端与所述阵列像素单元的数据线连接;
当所述时序控制器侦测到所述液晶显示画面出现串扰时,所述时序控制器控制所述伽玛电压产生模块输出对称伽玛电压至所述源极驱动器,所述源极驱动器输出对称数据线电压至所述阵列像素单元的数据线,所述对称数据线电压是根据所述对称伽玛电压分压得到的;所述对称数据线电压包括第一正帧电压和第一负帧电压,所述第一正帧电压与公共电压的差值的绝对值等于所述第一负帧电压与所述公共电压的差值的绝对值;
当所述时序控制器侦测到所述液晶显示画面未出现串扰并且所述液晶显示画面出现闪烁的情况下,所述时序控制器控制所述伽玛电压产生输出非对称伽玛电压至所述源极驱动器,所述源极驱动器输出非对称数据线电压至所述阵列像素单元的数据线,所述非对称数据线电压是根据所述非对称伽玛电压分压得到的,所述非对称伽玛电压为使所述液晶显示画面的闪烁最小的情况下设置的;所述非对称数据线电压包括第二正帧电压和第二负帧电压,所述第二正帧电压与所述公共电压的差值的绝对值不等于所述第二负帧电压与所述公共电压的差值的绝对值。
第二方面,本发明实施例提供了一种液晶显示面板,包括阵列像素单元、栅极驱动电路和上述第一方面所述的控制电路。
本发明实施例提供的控制电路可以在液晶显示画面出现串扰时,控制伽玛电压产生模块输出对称伽玛电压,源极驱动器可以参考对称伽玛电压输出对称数据线电压,从而降低由于数据线电压与公共电压上产生寄生电容现象引起的水平串扰;而在液晶显示画面未出现串扰但出现闪烁时,可以控制伽玛电压产生模块输出非对称伽玛电压,源极驱动器可以参考非对称伽玛电压输出非对称数据线电压,可以改善闪烁现象,总体来说,可以实现考虑减少闪烁和降低水平串扰两方面的最优化效果,即可以降低液晶显示过程中产生的水平串扰以及改善画面闪烁现象。
附图说明
为了更清楚地说明本发明实施例技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的一种液晶显示面板的控制电路的示意图;
图2a是本发明实施例提供的一种非对称数据线电压的示意图;
图2b是本发明实施例提供的一种水平串扰界面示意图;
图3是本发明实施例提供的一种对称数据线电压的示意图;
图4是本发明实施例提供的一种液晶显示面板的控制电路的结构示意图;
图5是本发明实施例提供的另一种液晶显示面板的控制电路的示意图;
图6是本发明实施例提供的一种分压单元的结构示意图;
图7是本发明实施例提供的一种液晶显示面板的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本发明的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固 有的其他步骤或单元。
还应当理解,在此本发明说明书中所使用的术语仅仅是出于描述特定实施例的目的而并不意在限制本发明。如在本发明说明书和所附权利要求书中所使用的那样,除非上下文清楚地指明其它情况,否则单数形式的“一”、“一个”及“该”意在包括复数形式。
还应当进一步理解,在本发明说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。
如在本说明书和所附权利要求书中所使用的那样,术语“如果”可以依据上下文被解释为“当...时”或“一旦”或“响应于确定”或“响应于检测到”。类似地,短语“如果确定”或“如果检测到[所描述条件或事件]”可以依据上下文被解释为意指“一旦确定”或“响应于确定”或“一旦检测到[所描述条件或事件]”或“响应于检测到[所描述条件或事件]”。
本发明实施例中提到的灰度(Gray scale)是指亮度的明暗程度。对于数字化的显示技术而言,灰度是显示色彩数的决定因素。一般而言灰度越高,显示的色彩越丰富,画面也越细腻,更易表现丰富的细节。把白色与黑色之间按对数关系分成若干级,称为“灰度等级”,范围一般从0到255,白色为255,黑色为0,故黑白图片也称灰度图像,灰度相似的概念还有所谓的灰阶,一个影像可被定义是一个二维的函数f(x,y),其中x和y是空间平面坐标,在任意一对坐标轴(x,y),f的大小称为这幅影像在该点的强度(instensity)或灰阶(gray level),也即,灰阶是指地物电磁波辐射强度表现在黑白影像上的色调深浅的等级,是划分地物波谱特征的尺度。
像素的中文全称为图像元素,像素仅仅只是分辨率的尺寸单位,而不是画质。如同摄影的相片一样,数码影像也具有连续性的浓淡阶调,我们若把影像放大数倍,会发现这些连续色调其实是由许多色彩相近的小方点所组成,这些小方点就是构成影像的最小单元——像素。这种最小的图形单元在屏幕上显示通常是单个的染色点,越高位的像素,其拥有的色板也就越丰富,也就越能表达颜色的真实感。从定义上来看,像素是指基本原色素及其灰度的基本编码。
一般而言,液晶显示面板中可以包括时序控制器、源极驱动器(源极驱动电路)、栅极驱动器(栅极驱动电路)、伽玛芯片等,伽玛芯片可以用于产生 伽玛电压,用来控制显示器的灰阶,一般情况下可以分为十四组(G0~G14),不同的伽玛电压与Vcom之间的压差造成液晶旋转角度不同从而形成亮度的差异,Vcom最好的状况是位于G0和G14的中间值,这样液晶屏的闪烁状况会最好。液晶需要动态电压控制,否则容易形成惰性,G0~G14与Vcom之间的压差正好构成了类似于正弦波的电压方式,避免了液晶在同一亮度下的惰性停滞状况发生。而数据线(Data Line)电压,也叫源极驱动(Source Driver)电压,源极驱动器可以通过多条数据线为每列像素单元对应的TFT提供的电压,具体的,数据线电压上针对每一个像素的电压也可称为像素电压,数据线电压分为正帧电压和负帧电压,一个像素的像素电压在正帧电压和负帧电压中不断交替,以此阵列像素单元被驱动实现显示功能。
参见图1,是本发明实施例提供的一种液晶显示面板的控制电路的示意图,该控制电路用于驱动阵列像素单元,如图1所示该控制电路可包括:时序控制器10、伽玛电压产生模块20、源极驱动器30和阵列像素单元40,其中,时序控制器10的第一控制端11与伽玛电压产生模块20的输入端21连接,伽玛电压产生模块20的输出端22与源极驱动器30的第一输入端31连接,时序控制器10的第二控制端12与源极驱动器30的第二输入端32连接,源极驱动器30的输出端33与阵列像素单元40的数据线41连接,
当时序控制器10侦测到液晶显示画面出现串扰时,时序控制器10控制伽玛电压产生模块20输出对称伽玛电压至源极驱动器30,源极驱动器30输出对称数据线电压至所述阵列像素单元40的数据线41,上述对称数据线电压是根据上述对称伽玛电压分压得到的;上述对称数据线电压包括第一正帧电压和第一负帧电压,上述第一正帧电压与公共电压的差值的绝对值等于上述第一负帧电压与上述公共电压的差值的绝对值;
当所述时序控制器10侦测到液晶显示画面未出现串扰并且所述液晶显示画面出现闪烁的情况下,时序控制器10控制伽玛电压产生模块20输出非对称伽玛电压至源极驱动器30,源极驱动器30输出非对称数据线电压至阵列像素单元40的数据线41,上述非对称数据线电压是根据上述非对称伽玛电压分压得到的,上述非对称伽玛电压为使上述液晶显示画面的闪烁最小的情况下设置的;上述非对称数据线电压包括第二正帧电压和第二负帧电压,上述第二正帧电压与上述公共电压的差值的绝对值不等于上述第二负帧电压与上述公共电压的差值的 绝对值。
具体地,当时序控制器10侦测到液晶显示画面出现串扰时,时序控制器10可以控制伽玛电压产生模块20输出对称伽玛电压至源极驱动器30,伽玛电压用于控制显示器的灰阶,一般分为包含相同数量个电压的两组电压,分别用于分压产生多个数据线电压中的正帧电压和负帧电压。
对称伽玛电压可以为2N个,上述2N个对称伽玛电压按照从高到低或从低到高的大小依次排列,上述对称伽玛电压的第一电压差与第二电压差相等,上述第一电压差为上述对称伽玛电压中第1个电压值与第N个电压值的差值,上述第二电压差为上述对称伽玛电压中第N+1个电压值与第2N个电压值的差值,所述N为大于1的正整数,通常情况下Vcom为对称伽玛电压的中间值,即可以为第1个电压值与第2N个电压值的平均值。
例如,上述N为7,即设置7组(14个)伽玛电压:14V、13V、12V、11V、10V、9V、8V、7V、6V、5V、4V、3V、2V、1V,这14个对称伽玛电压按照从高到低的大小依次排列,也为6V,则这14个伽玛电压可以称为对称伽玛电压,若不满足上述条件,则为非对称伽玛点压。可以参见表1所示的对称伽玛电压,其中14个对称伽玛电压GM1-GM14按照从高到低的大小依次排列,GM1、GM7的差值与GM8、GM14的差值相等。
表1
Figure PCTCN2018095093-appb-000001
Figure PCTCN2018095093-appb-000002
上述对称数据线电压包括第一正帧电压和第一负帧电压,上述第一正帧电压和上述第一负帧电压代表用一个像素点不同帧的数据线电压,若设置2N个对称伽玛电压,电压值由高到低排列时前N个对称伽玛电压用于分压得到对称数据线电压中的正帧电压,后N个对称伽玛电压用于分压得到对称数据线电压中的负帧电压,上述第一正帧电压可以理解为上述正帧电压中的任一个,上述第一负帧电压为与第一正帧电压对应的负帧电压,通过上述对称伽玛电压得到的上述第一正帧电压与公共电压的差值的绝对值等于上述第一负帧电压与上述公共电压的差值的绝对值。
如图2a所示,Data+、Data-为阵列像素单元的一列像素单元的数据线电压,Data+为数据线电压的正帧电压,Data-为数据线电压的负帧电压,Data+的电压变化△V1的绝对值大于对应的Data-电压变化△V2的绝对值,可以理解为数据线电压是非对称的,可能会影响Vcom的稳定性,即上述数据线电压与上述公共电压上可能产生耦合电容,如图中Vcom1所示,公共电压受到影响会有突变,根据数据线电压相邻像素的正帧电压的差值与负帧电压的差值的不同情况,灰度有所变化,在液晶显示画面相邻像素间可能会出现不同程度的水平串扰,以图所示的数据线电压为例,可能会产生如图2b所示的水平串扰(X_talk)X1和X2,X1一行的像素的灰度等级低于同一列相邻像素位置的灰度等级,因而显示出更深的颜色,X2一行的像素的灰度等级高于同一列相邻像素位置的灰度等级,因而显示出更浅的颜色,影响了显示效果。
如图3所示,图中的Data+和Data-可以表示通过上述对称伽玛电压分压得到的对称数据线电压,Data+为对称数据线电压的正帧电压,Data-为对称数据线电压的负帧电压,Data+和Data-分别与公共电压Vcom的差值的绝对值相等,Vcom2表示实际的公共电压(与设置的Vcom相比无偏差),对Vcom的影响刚好抵销,此时保证了Data+的电压变化△V3的绝对值与Data-电压变化△V4的绝对值,所以向上述阵列像素单元输入上述对称数据线电压,可以降低水平串扰现象。
上述非对称伽玛电压为使所述液晶显示画面的闪烁最小的情况下设置的,具体地,一般在显示屏的显示调试阶段,可以选择一个灰度等级的画面(例如灰阶等级为255的画面)通过调节Vcom的电压值使画面的闪烁现象最低,在此情况下的Vcom则为最佳Vcom,在最佳Vcom的基础上,仍然依据使画面的闪烁现象最低的原则确定伽玛电压,此时的伽玛电压为非对称伽玛电压。即与上述对称伽玛电压相对的,通过上述非对称伽玛电压分压得到的上述第二正帧电压与上述公共电压的差值的绝对值不等于上述第二负帧电压与上述公共电压的差值的绝对值,但可以改善液晶显示画面出现的闪烁现象。例如表2所示的非对称伽玛电压(G01-G14),这14个非对称伽玛电压为使上述液晶显示画面的闪烁最小的情况下设置的,因此若向上述阵列像素单元输入通过上述非对称伽玛电压得到的非对称数据线电压,可以改善液晶显示画面出现的闪烁现象。
表2
Figure PCTCN2018095093-appb-000003
Figure PCTCN2018095093-appb-000004
液晶显示器(Liquid Crystal Display,LCD)的构造是在两片平行的玻璃基板当中放置液晶盒,下基板玻璃上设置薄膜晶体管(Thin-film transistor,TFT),上基板玻璃上设置彩色滤光片,通过TFT上的信号与电压改变来控制液晶分子的转动方向,从而达到控制每个像素点偏振光出射与否而达到显示目的。
上述阵列像素单元为液晶屏中执行显示功能的像素集合,每个像素对应一个薄膜晶体管(Thin Film Transistor,TFT),阵列像素单元中包含多列像素单元,每一列的像素可以有多个,每个像素对应一个薄膜晶体管TFT。
如图4所示的显示面板驱动电路的结构示意图,其中包括控制电路00、栅极驱动电路01和阵列像素单元40,控制电路00用于通过数据线为每列像素单元对应的TFT提供上述数据线信号(如图中的Data1、Data2、Data3、Data4、Data5、Data6、Data7、Data8等),实际上,控制电路可以对阵列像素单元中的每一个像素提供对应的数据线电压(包括正帧电压和负帧电压)。栅极驱动电路01用于为每行像素对应的TFT提供栅极扫描信号(如图中的G(N-2)、G(N-1)、G(N)、G(N+1)、G(N+2)等)。
液晶显示画面中出现的闪烁(Flicker),主要是因为某个像素的实际正帧电压与负帧电压不对称,即正帧电压与公共电压的差值不等于负帧电压与公共电压的差值,从而产生相邻两帧画面出现亮暗差异,即形成闪烁现象。
时序控制器10可以侦测到液晶显示画面出现的串扰,具体可以为:
时序控制器10可以侦测到阵列像素单元40的第一列像素单元的相邻像素的第一正帧电压的差值与上述相邻像素的上述第一负帧电压的差值不相等,其中,第一列像素单元为上述阵列像素单元包括的多列像素单元中的任一列。
其中,对于LCD的同一像素而言,其数据线电压分为两种极性,即高于Vcom的正帧电压和低于Vcom的负帧电压,同一像素的两种电压极性是不断按帧交替的。例如,时序控制器10侦测到阵列像素单元40的第3列像素单元的第6个像素与第7个像素的正帧电压的差值为2V,而上述第6个像素与上述第7个像素对应的负帧电压的差值为1V,即这两个相邻像素的正帧电压的差值与负帧电压的差值不相等,则时序控制器10确定侦测到液晶显示画面出现串扰。
可选的,时序控制器可以通过图像处理算法侦测到上述液晶显示画面出现串扰。时序控制器中存储有图像处理算法和数据,时序控制器可以对输入端的电压等输入数据进行数据统计分析,来判断使用输入数据时在某一指定画面下是否会产生水平串扰,可以理解为,在这些输入数据还未转换为数据线电压进入上述阵列像素单元之前,时序控制器可以侦测到使用上述输入数据转换为数据线电压后在某一指定画面下会产生水平串扰。
上述本发明实施例提供的液晶显示面板的控制电路可以在液晶显示画面出现串扰时,控制伽玛电压产生模块输出对称伽玛电压,源极驱动器可以参考对称伽玛电压输出对称数据线电压,从而降低由于数据线电压与公共电压上产生寄生电容现象引起的水平串扰;而在液晶显示画面未出现串扰但出现闪烁时,可以控制伽玛电压产生模块输出非对称伽玛电压,源极驱动器可以参考非对称伽玛电压输出非对称数据线电压,可以改善闪烁现象,总体来说,可以实现考虑减少闪烁和降低水平串扰两方面的最优化效果,即可以降低液晶显示过程中产生的水平串扰以及改善画面闪烁现象。
在可选实施例中,伽玛电压产生模块20还包括第一存储器201和第二存储器202,第一存储器201用于存储对称伽玛电压,第二存储器202用于存储非对称伽玛电压;
上述时序控制器10控制伽玛电压产生模块20输出上述对称伽玛电压至源极驱动器30,可以为:时序控制器10控制伽玛电压产生模块20获取第一存储器201存储的上述对称伽玛电压,输出上述对称伽玛电压至源极驱动器30;
上述时序控制器10控制伽玛电压产生模块20输出非对称伽玛电压至源极驱动器30,可以为:所述时序控制器10控制伽玛电压产生模块20获取第二存储器202存储的上述非对称伽玛电压,输出上述非对称伽玛电压至源极驱动器30。
可选的,上述伽玛电压产生模块中可以包含用于存储电压的第一存储器和第二存储器,分别用于存储上述对称伽玛电压和上述非对称伽玛电压。用户可以预先选定需要设置的伽玛电压并将其存储在上述存储器中,根据时序控制器侦测到显示情况后发出的指定信号,控制上述伽玛电压产生模块输出对应的伽玛电压(对称或非对称)。在需要输出伽玛电压的情况下,伽玛电压产生模块20可以通过上述时序控制器的指定信号直接获取第一存储器或者第二存储器中的伽玛电压并输出。通过上述存储器可以方便地对需要的伽玛电压进行预先设置并将其存储在伽玛电压产生模块中,在时序控制器的控制下伽玛电压产生模块可以选取合适的电压值来产生伽玛电压并输出。
可选的,伽玛电压产生模块可以为可编程伽玛校正缓冲电路芯片(P_Gamma IC)。与传统伽玛校正电路芯片相比,本质相同,增加了可编程功能,可以实现电压存储等功能,可以更灵活地控制伽玛电压(对称伽玛电压或者非对称伽玛电压)的产生。
参见图5,是本发明提供的一种液晶显示面板的控制电路的示意图,在图1所示的液晶显示面板的控制电路的基础上进行了优化,其中,上述源极驱动器30还可以包含分压单元310,分压单元310的第一输入端311与源极驱动器30的第一输入端31连接,分压单元310的第二输入端312与源极驱动器的第二输入端32连接;分压单元310可以包括多个分压电阻,在时序控制器10控制伽玛电压产生模块20输出对称伽玛电压至源极驱动器30之后,分压单元310可以对上述对称伽玛电压进行分压,得到第一数量的对称分压电压。上述源极驱动器30还包括帧率转换单元320,帧率转换单元320的输入端321与分压单元310的输出端313连接,帧率转换单元320的输出端为源极驱动器30的输出端33,帧率转换单元320可以对上述对称分压电压进行处理得到第二数量的上述对称数据线电压,上述第二数量大于上述第一数量。
上述分压单元包括多个分压电阻,这些分压电阻通过串联的方式连接,可以对伽玛电压进行分压,即可以将伽玛电压分成更多数量的电压,例如,将2N 个伽玛电压分成2 2N个分压电压,因为2N个伽玛电压中对应正帧和负帧的伽玛电压分别有N个,即伽玛电压其实为N组电压,分压产生的2 2N个分压电压中有2 2N个对应正帧和负帧的伽玛电压。参见如图6所示的分压单元的结构示意图,以14个(GM1-GM14)对称伽玛电压为例,通过分压单元中的分压电阻进行分压可以产生2 7=64组(128个)对称分压电压,如图所示,分压单元可以分别对称伽玛电压中产生正帧电压的GM1-GM7进行分压和对产生负帧电压的GM7-GM14进行分压,可选的,分压单元也可以是对称伽玛电压GM1-GM14一起进行分压。当伽玛电压为非对称伽玛电压的情况下,分压单元对其分压的操作是相同的。通过分压电阻能更好地产生足够数量的电压为所有像素提供需要的数据线电压。
进一步地,帧率转换单元320可以对上述对称分压电压进行处理,例如使上述对称分压电压的个数变为两倍,得到128组(256个)上述对称数据线电压,其中,每一组的两个数据线电压可以理解为一个像素的正帧电压和负帧电压,例如正帧电压13V和负帧电压2V;上述正帧电压与公共电压的差值的绝对值等于上述负帧电压与上述公共电压的差值的绝对值,例如上述公共电压为7.5V,正帧电压13V与公共电压的差值的绝对值为5.5V、负帧电压2V与公共电压的差值的绝对值也为5.5V。
时序控制器可以根据液晶显示画面的显示情况控制伽马电压产生模块输出伽玛电压,源极驱动器通过分压单元对伽玛电压进行分压,帧率转换单元再进行进一步地转换,可以获得与像素个数匹配的像素电压(以数据线电压的方式按列输出)。
在本发明实施例中还提供一种液晶显示面板,包括阵列像素单元、栅极驱动电路和上述实施例中的任一控制电路。
参见图7所示的一种液晶显示面板的结构示意图,该液晶显示面板包括上述阵列像素单元40、栅极驱动电路01和上述实施例中的任一控制电路00,其具体结构还可以参考图4所示的液晶显示面板的控制电路结构示意图,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示 例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的电路或装置,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个模块或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元(模块)可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本发明实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
以上对本发明实施例公开的一种液晶显示面板的控制电路和液晶显示面板进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (18)

  1. 一种液晶显示面板的控制电路,所述控制电路用于驱动阵列像素单元,其特征在于,所述控制电路包括:时序控制器、伽玛电压产生模块、源极驱动器,其中,所述时序控制器的第一控制端与所述伽玛电压产生模块的输入端连接,所述伽玛电压产生模块的输出端与所述源极驱动器的第一输入端连接,所述时序控制器的第二控制端与所述源极驱动器的第二输入端连接,所述源极驱动器的输出端与所述阵列像素单元的数据线连接;
    当所述时序控制器侦测到液晶显示画面出现串扰时,所述时序控制器控制所述伽玛电压产生模块输出对称伽玛电压至所述源极驱动器,所述源极驱动器输出对称数据线电压至所述阵列像素单元的数据线,所述对称数据线电压是根据所述对称伽玛电压分压得到的;所述对称数据线电压包括第一正帧电压和第一负帧电压,所述第一正帧电压与公共电压的差值的绝对值等于所述第一负帧电压与所述公共电压的差值的绝对值;
    当所述时序控制器侦测到所述液晶显示画面未出现串扰并且所述液晶显示画面出现闪烁的情况下,所述时序控制器控制所述伽玛电压产生输出非对称伽玛电压至所述源极驱动器,所述源极驱动器输出非对称数据线电压至所述阵列像素单元的数据线,所述非对称数据线电压是根据所述非对称伽玛电压分压得到的,所述非对称伽玛电压为使所述液晶显示画面的闪烁最小的情况下设置的;所述非对称数据线电压包括第二正帧电压和第二负帧电压,所述第二正帧电压与所述公共电压的差值的绝对值不等于所述第二负帧电压与所述公共电压的差值的绝对值。
  2. 根据权利要求1所述的液晶显示面板的控制电路,其特征在于,所述时序控制器侦测到液晶显示画面出现串扰,包括:
    所述时序控制器侦测到所述阵列像素单元的第一列像素单元的相邻像素的第一正帧电压的差值与所述相邻像素的所述第一负帧电压的差值不相等,所述第一列像素单元为所述阵列像素单元包括的多列像素单元中的任一列。
  3. 根据权利要求1所述的液晶显示面板的控制电路,其特征在于,所述时序控制器侦测到液晶显示画面出现串扰,包括:
    所述时序控制器通过图像处理算法侦测到所述液晶显示画面出现串扰。
  4. 根据权利要求2所述的液晶显示面板的控制电路,其特征在于,所述伽玛电压产生模块包括第一存储器和第二存储器,所述第一存储器用于存储所述对称伽玛电压,所述第二存储器用于存储所述非对称伽玛电压;所述时序控制器控制所述伽玛电压产生模块输出对称伽玛电压至所述源极驱动器包括:
    所述时序控制器控制所述伽玛电压产生模块获取所述第一存储器存储的所述对称伽玛电压,输出所述对称伽玛电压至所述源极驱动器;
    所述时序控制器控制所述伽玛电压产生模块输出非对称伽玛电压至所述源极驱动器包括:
    所述时序控制器控制所述伽玛电压产生模块获取所述第二存储器存储的所述非对称伽玛电压,输出所述非对称伽玛电压至所述源极驱动器。
  5. 根据权利要求4所述的液晶显示面板的控制电路,其特征在于,所述源极驱动器包含分压单元,所述分压单元包括多个分压电阻,
    在所述时序控制器控制所述伽玛电压产生模块输出对称伽玛电压至所述源极驱动器之后,所述分压单元对所述对称伽玛电压进行分压,得到第一数量的对称分压电压。
  6. 根据权利要求5所述的液晶显示面板的控制电路,其特征在于,所述分压单元还用于:
    在所述时序控制器控制所述伽玛电压产生模块输出非对称伽玛电压至所述源极驱动器之后,对所述非对称伽玛电压进行分压,得到第一数量的非对称分压电压。
  7. 根据权利要求5所述的液晶显示面板的控制电路,其特征在于,所述源极驱动器还包括帧率转换单元,所述帧率转换单元对所述对称分压电压进行处理得到第二数量的所述对称数据线电压,所述第二数量大于所述第一数量。
  8. 根据权利要求7所述的液晶显示面板的控制电路,其特征在于,所述对称伽玛电压为2N个,所述2N个对称伽玛电压按照从高到低或从低到高的大小依次排列;所述对称伽玛电压的第一电压差与第二电压差相等,所述第一电压差为所述对称伽玛电压中第1个电压值与第N个电压值的差值,所述第二电压差为所述对称伽玛电压中第N+1个电压值与第2N个电压值的差值,所述N为大于1的正整数。
  9. 根据权利要求4所述的液晶显示面板的控制电路,其特征在于,所述伽玛电压产生模块包括可编程伽玛校正缓冲电路芯片。
  10. 一种液晶显示面板,包括阵列像素单元、栅极驱动电路和如权利要求1所述的液晶显示面板的控制电路。
  11. 根据权利要求10所述的液晶显示面板,其特征在于,所述时序控制器侦测到液晶显示画面出现串扰,包括:
    所述时序控制器侦测到所述阵列像素单元的第一列像素单元的相邻像素的第一正帧电压的差值与所述相邻像素的所述第一负帧电压的差值不相等,所述第一列像素单元为所述阵列像素单元包括的多列像素单元中的任一列。
  12. 根据权利要求10所述的液晶显示面板,其特征在于,所述时序控制器侦测到液晶显示画面出现串扰,包括:
    所述时序控制器通过图像处理算法侦测到所述液晶显示画面出现串扰。
  13. 根据权利要求11所述的液晶显示面板,其特征在于,所述伽玛电压产生模块包括第一存储器和第二存储器,所述第一存储器用于存储所述对称伽玛电压,所述第二存储器用于存储所述非对称伽玛电压;所述时序控制器控制所述伽玛电压产生模块输出对称伽玛电压至所述源极驱动器包括:
    所述时序控制器控制所述伽玛电压产生模块获取所述第一存储器存储的所 述对称伽玛电压,输出所述对称伽玛电压至所述源极驱动器;
    所述时序控制器控制所述伽玛电压产生模块输出非对称伽玛电压至所述源极驱动器包括:
    所述时序控制器控制所述伽玛电压产生模块获取所述第二存储器存储的所述非对称伽玛电压,输出所述非对称伽玛电压至所述源极驱动器。
  14. 根据权利要求13所述的液晶显示面板,其特征在于,所述源极驱动器包含分压单元,所述分压单元包括多个分压电阻,
    在所述时序控制器控制所述伽玛电压产生模块输出对称伽玛电压至所述源极驱动器之后,所述分压单元对所述对称伽玛电压进行分压,得到第一数量的对称分压电压。
  15. 根据权利要求14所述的液晶显示面板,其特征在于,所述分压单元还用于:
    在所述时序控制器控制所述伽玛电压产生模块输出非对称伽玛电压至所述源极驱动器之后,对所述非对称伽玛电压进行分压,得到第一数量的非对称分压电压。
  16. 根据权利要求14所述的液晶显示面板,其特征在于,所述源极驱动器还包括帧率转换单元,所述帧率转换单元对所述对称分压电压进行处理得到第二数量的所述对称数据线电压,所述第二数量大于所述第一数量。
  17. 根据权利要求16所述的液晶显示面板,其特征在于,所述对称伽玛电压为2N个,所述2N个对称伽玛电压按照从高到低或从低到高的大小依次排列;所述对称伽玛电压的第一电压差与第二电压差相等,所述第一电压差为所述对称伽玛电压中第1个电压值与第N个电压值的差值,所述第二电压差为所述对称伽玛电压中第N+1个电压值与第2N个电压值的差值,所述N为大于1的正整数。
  18. 根据权利要求13所述的液晶显示面板,其特征在于,所述伽玛电压产生模块包括可编程伽玛校正缓冲电路芯片。
PCT/CN2018/095093 2018-06-29 2018-07-10 一种液晶显示面板的控制电路及液晶显示面板 WO2020000508A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/219,239 US10629156B2 (en) 2018-06-29 2018-12-13 Control circuit for LCD panel and LCD panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810704546.3 2018-06-29
CN201810704546.3A CN108630165B (zh) 2018-06-29 2018-06-29 一种液晶显示面板的控制电路及液晶显示面板

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/219,239 Continuation US10629156B2 (en) 2018-06-29 2018-12-13 Control circuit for LCD panel and LCD panel

Publications (1)

Publication Number Publication Date
WO2020000508A1 true WO2020000508A1 (zh) 2020-01-02

Family

ID=63689480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/095093 WO2020000508A1 (zh) 2018-06-29 2018-07-10 一种液晶显示面板的控制电路及液晶显示面板

Country Status (3)

Country Link
US (1) US10629156B2 (zh)
CN (1) CN108630165B (zh)
WO (1) WO2020000508A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102552804B1 (ko) * 2018-07-25 2023-07-10 삼성디스플레이 주식회사 표시 장치 및 이의 구동 방법
CN109377957B (zh) * 2018-12-03 2020-05-05 惠科股份有限公司 一种驱动方法、驱动电路以及显示装置
CN109616067B (zh) 2019-01-02 2020-09-01 合肥京东方显示技术有限公司 一种电压补偿电路及其方法、显示驱动电路、显示装置
CN109872701B (zh) * 2019-04-22 2021-10-01 京东方科技集团股份有限公司 源电极电压调节方法、显示调节方法、显示模组和液晶屏
CN112397035B (zh) * 2019-08-12 2023-03-03 京东方科技集团股份有限公司 源极驱动器、驱动系统、液晶显示装置及其校正方法
CN110930922B (zh) * 2019-11-25 2021-09-03 Tcl华星光电技术有限公司 显示面板水平串扰的改善方法
CN111161688B (zh) * 2019-12-17 2021-07-23 福建华佳彩有限公司 一种像素驱动方法
CN112201212B (zh) * 2020-10-13 2022-04-01 深圳市华星光电半导体显示技术有限公司 一种显示装置及其驱动方法
CN112150979B (zh) * 2020-10-23 2022-04-08 京东方科技集团股份有限公司 液晶显示装置及其驱动方法
CN113050330B (zh) * 2021-03-26 2022-04-01 Tcl华星光电技术有限公司 液晶显示面板及其配向方法
CN113129849B (zh) * 2021-04-09 2022-11-01 深圳市华星光电半导体显示技术有限公司 像素驱动电路及像素驱动方法
CN114664268B (zh) 2022-03-26 2023-01-10 绵阳惠科光电科技有限公司 水平串扰消除方法、公共电极电压调整系统及显示装置
CN114822439B (zh) * 2022-04-29 2023-10-10 长沙惠科光电有限公司 显示驱动电路、阵列基板、显示面板及显示器
CN116564243B (zh) * 2023-04-27 2024-06-25 惠科股份有限公司 亮度控制方法、显示装置及可读存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102663974A (zh) * 2012-05-04 2012-09-12 福建华映显示科技有限公司 立体显示装置及其驱动方法
US9013519B2 (en) * 2012-01-26 2015-04-21 Samsung Display Co., Ltd. Organic light emitting display and method of driving the same
CN105469762A (zh) * 2015-12-25 2016-04-06 深圳市华星光电技术有限公司 液晶显示器及其液晶面板

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102470936B1 (ko) * 2018-01-04 2022-11-28 삼성디스플레이 주식회사 액정 표시 장치 및 이의 구동 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9013519B2 (en) * 2012-01-26 2015-04-21 Samsung Display Co., Ltd. Organic light emitting display and method of driving the same
CN102663974A (zh) * 2012-05-04 2012-09-12 福建华映显示科技有限公司 立体显示装置及其驱动方法
CN105469762A (zh) * 2015-12-25 2016-04-06 深圳市华星光电技术有限公司 液晶显示器及其液晶面板

Also Published As

Publication number Publication date
US10629156B2 (en) 2020-04-21
CN108630165A (zh) 2018-10-09
CN108630165B (zh) 2020-02-28
US20200005725A1 (en) 2020-01-02

Similar Documents

Publication Publication Date Title
WO2020000508A1 (zh) 一种液晶显示面板的控制电路及液晶显示面板
US10878761B2 (en) Image display processing method and device, display device, and non-volatile storage medium
CN109064979B (zh) 图像显示处理方法及装置、显示装置及存储介质
CN108538260B (zh) 图像显示处理方法及装置、显示装置及存储介质
US10565953B2 (en) Display device capable of changing frame frequency and driving method thereof
US9182805B2 (en) Display device and method to control driving voltages based on changes in display image frame frequency
CN108831399B (zh) 显示驱动方法及液晶显示装置
US8174515B2 (en) Method of driving a display panel and display apparatus for performing the method
CN111883079B (zh) 显示面板的驱动方法、电路及显示装置
EP1865489A2 (en) Liquid crystal display device and integrated circuit chip therefor
US10878766B2 (en) Liquid crystal display device and method of driving the same
US10872558B2 (en) Image display processing method and device, display device and non-volatile storage medium
US11288995B2 (en) Pixel data optimization method, pixel matrix driving device and display apparatus
WO2021016943A1 (zh) 背光驱动方法、显示驱动方法、驱动装置及显示装置
WO2020216213A1 (zh) 源电极电压调节方法、显示调节方法及计算机存储介质
KR101765798B1 (ko) 액정표시장치 및 그 구동방법
TW201905890A (zh) 顯示裝置及其伽瑪曲線補償電路與驅動方法
WO2023039945A1 (zh) 显示装置及其驱动方法
US9275590B2 (en) Liquid crystal display and driving method capable of adaptively changing a problem pattern
WO2016070461A1 (zh) 液晶面板及其驱动方法、液晶显示器
JP2003295843A (ja) 液晶表示装置及びその駆動方法
US8730280B2 (en) Display device and method of driving the same
KR101951934B1 (ko) 액정표시장치와 그 구동방법
WO2023039944A1 (zh) 显示装置及其驱动方法
KR102037695B1 (ko) 액정표시장치 및 그 제어방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18924169

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18924169

Country of ref document: EP

Kind code of ref document: A1