WO2019245047A1 - 人工受容体に結合する新規化合物、人工受容体のイメージング方法、アゴニストまたはアンタゴニスト、治療薬、コンパニオン診断薬、神経細胞のイメージング方法 - Google Patents

人工受容体に結合する新規化合物、人工受容体のイメージング方法、アゴニストまたはアンタゴニスト、治療薬、コンパニオン診断薬、神経細胞のイメージング方法 Download PDF

Info

Publication number
WO2019245047A1
WO2019245047A1 PCT/JP2019/024834 JP2019024834W WO2019245047A1 WO 2019245047 A1 WO2019245047 A1 WO 2019245047A1 JP 2019024834 W JP2019024834 W JP 2019024834W WO 2019245047 A1 WO2019245047 A1 WO 2019245047A1
Authority
WO
WIPO (PCT)
Prior art keywords
hm3d
hm4d
receptor
brain
carbon atoms
Prior art date
Application number
PCT/JP2019/024834
Other languages
English (en)
French (fr)
Inventor
敬史 南本
裕司 永井
斌 季
尚久 宮川
真人 樋口
哲也 須原
Original Assignee
国立研究開発法人量子科学技術研究開発機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人量子科学技術研究開発機構 filed Critical 国立研究開発法人量子科学技術研究開発機構
Priority to JP2020525833A priority Critical patent/JP6926357B2/ja
Priority to EP19823442.9A priority patent/EP3812373A4/en
Priority to US17/253,913 priority patent/US20210275696A1/en
Publication of WO2019245047A1 publication Critical patent/WO2019245047A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/041Heterocyclic compounds
    • A61K51/044Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine, rifamycins
    • A61K51/0468Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine, rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole
    • A61K51/047Benzodiazepines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/55Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole
    • A61K31/551Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole having two nitrogen atoms, e.g. dilazep
    • A61K31/55131,4-Benzodiazepines, e.g. diazepam or clozapine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/18Antipsychotics, i.e. neuroleptics; Drugs for mania or schizophrenia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/20Hypnotics; Sedatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B59/00Introduction of isotopes of elements into organic compounds ; Labelled organic compounds per se
    • C07B59/002Heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D243/00Heterocyclic compounds containing seven-membered rings having two nitrogen atoms as the only ring hetero atoms
    • C07D243/06Heterocyclic compounds containing seven-membered rings having two nitrogen atoms as the only ring hetero atoms having the nitrogen atoms in positions 1 and 4
    • C07D243/10Heterocyclic compounds containing seven-membered rings having two nitrogen atoms as the only ring hetero atoms having the nitrogen atoms in positions 1 and 4 condensed with carbocyclic rings or ring systems
    • C07D243/38[b, e]- or [b, f]-condensed with six-membered rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/05Isotopically modified compounds, e.g. labelled
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants

Definitions

  • the present invention relates to a technique for visualizing hM4D receptor or hM3D receptor artificially expressed in the brain, a technique for visualizing nerve cells, and a therapeutic agent for a disease associated with hM4 receptor or hM3 receptor.
  • Armbraster ⁇ BN ⁇ et al. Evolving the lock to fit the key to create, a family of G, protein-coupled receptors, potentiated activated by an anert ligand. Proc Natl Acad Sci USA. ⁇ Mar ⁇ 20; ⁇ 104 (12): ⁇ 5163-5168 ⁇ (2007) Ji et al. , Multimodal Imaging for DREADD-Expressing Neurons in Living Brain and And Their Application to to Implantation of iPSC-Derived Neurals. ⁇ Journal ⁇ Neurosci. ⁇ 36 (45): ⁇ 11544-11558 ⁇ (2016) Nagai et al.
  • PET imaging-guided chemogenetic silencing reveals a ricritical role of primate rotromedial certified in reward evaluation.
  • a gene that expresses an artificial receptor is introduced into a specific organ or a specific region, and after a predetermined period necessary for expression of the receptor has elapsed, the artificial receptor has high affinity and radioactivity.
  • a labeled activator is introduced and PET imaging is performed.
  • a mutant muscarinic receptor obtained by artificially mutating a receptor domain of a mother nucleus is used.
  • a specific vector is infected with a virus vector incorporating an artificial receptor gene.
  • a mutated human muscarinic M4 receptor (sometimes abbreviated as hM4D) or a mutated human muscarinic M3 receptor (sometimes abbreviated as hM3D) is introduced into a monkey brain at a specific site.
  • clozapine labeled with 11 C (clozapine; hereinafter, sometimes abbreviated as [ 11 C] clozapine), which is an activator capable of PET imaging, and 11 C.
  • Labeled clozapine-N-oxide (clozapine-N-oxide; hereinafter may be abbreviated as [ 11 C] CNO) is administered from a blood vessel outside the brain, and imaging is performed.
  • [ 11 C] CNO has a property that it is less likely to act on endogenous receptors than clozapine, but recent studies have shown that [ 11 C] CNO is metabolized in animal organisms to produce [ 11 C] clozapine. , The selectivity in the brain was not sufficiently exhibited, and the metabolic degradability was high, so that the number of detectable signals was small and the quantitativeness of measurement was insufficient (Non-patent Documents 1 to 4). .
  • the present invention has been made in view of the above circumstances, and has as its object to provide an animal living brain imaging technique and its application.
  • the present inventors have conducted diligent studies and have found dibenzoazepine derivatives exhibiting high brain localization, high receptor selectivity, and high quantitativeness, and have completed the present invention.
  • (1-0) a compound of formula (I), or a pharmaceutically acceptable salt or solvate thereof: (Wherein one or more of the atoms is, or is not, a radioisotope of the atom).
  • the compound is a compound of the formula (II): Or a pharmaceutically acceptable salt or solvate thereof.
  • composition comprising the compound according to the above (1) or (2), or a pharmaceutically acceptable salt or solvate thereof.
  • hM4D mutant human muscarinic acetylcholine M4 receptor
  • hM3D mutant human muscarinic acetylcholine M3 receptor
  • the hM4D or hM3D is produced by the expression of a mutant human muscarinic acetylcholine M4 receptor (hM4D) or a gene encoding a mutant human muscarinic acetylcholine M3 receptor (hM3D) introduced into cells in the animal living brain.
  • hM4D mutant human muscarinic acetylcholine M4 receptor
  • hM3D mutant human muscarinic acetylcholine M3 receptor
  • hM4D mutant human muscarinic acetylcholine M4 receptor
  • hM3D mutant human muscarinic acetylcholine M3 receptor
  • the hM4D expression site is twice or more as large as the non-expression site, or Use, wherein the hM3D expression site is at least 1.4 times the non-expression site.
  • the animal organism is a primate organism
  • the predetermined time is 30 to 90 minutes
  • the detected amount is less than 2.5 g / cc in the whole brain including the non-expressed site in an index normalized by the dose and body weight
  • a method for imaging hM4D or hM3D in the brain of an animal body A gene encoding a mutant human muscarinic acetylcholine M4 receptor (hM4D) or a mutant human muscarinic acetylcholine M3 receptor (hM3D) has been introduced into cells in the animal living brain, The compound according to the above (1) or (2), which selectively binds to the hM4D or hM3D, or a pharmaceutically acceptable salt or solvate thereof, which is administered to the animal body, is transferred into the brain.
  • hM4D human muscarinic acetylcholine M4 receptor
  • hM3D mutant human muscarinic acetylcholine M3 receptor
  • a method for imaging hM4D or hM3D in the brain of an animal living organism comprising a step of obtaining data on the amount.
  • a method for imaging brain activity of an animal body A gene encoding a mutant human muscarinic acetylcholine M4 receptor (hM4D) or a mutant human muscarinic acetylcholine M3 receptor (hM3D) has been introduced into cells in the animal living brain, The compound according to the above (1) or (2), which selectively binds to the hM4D or hM3D, or a pharmaceutically acceptable salt or solvate thereof, which is administered to the animal body, is transferred into the brain.
  • hM4D human muscarinic acetylcholine M4 receptor
  • hM3D mutant human muscarinic acetylcholine M3 receptor
  • An imaging method for brain activity of an animal living body comprising a step of acquiring data relating to the manipulation of the activity of hM4D or hM3D-expressing cells in the brain.
  • the substance is an antagonist or agonist which is the compound according to the above (1) or (2), or a pharmaceutically acceptable salt or solvate thereof.
  • mutant receptor is a mutant human muscarinic acetylcholine M3 receptor (hM3D).
  • (3-7) Contains a mutant human muscarinic acetylcholine M4 receptor (hM4D) or a substance that selectively binds to a mutant human muscarinic acetylcholine M3 receptor (hM3D) introduced into cells in the primate living brain.
  • the drug wherein the substance is the compound described in the above (1) or (2), or a pharmaceutically acceptable salt or solvate thereof.
  • hM4D human muscarinic acetylcholine M4 receptor
  • hM3D a mutant human muscarinic acetylcholine M3 receptor
  • a method for imaging a nerve cell over a plurality of regions in a living animal brain The nerve cell, when the cell body including dendrites belongs to the first region, and the axon end of the nerve cell belongs to a region different from the first region, In the first region, a gene encoding a mutant human muscarinic acetylcholine M4 receptor (hM4D) or a mutant human muscarinic acetylcholine M3 receptor (hM3D) has been introduced, The radioactively labeled compound of the above (1) or (2), which selectively binds to the hM4D or hM3D, or a pharmaceutically acceptable salt or solvate thereof, administered to the animal body, And selectively binds to said hM4D or hM3D, By detecting radiation emitted from the radiolabeled compound according to the above (1) or (2), or a pharmaceutically acceptable salt or solvate thereof, which selectively binds to the hM4D or
  • a composition for imaging comprising: A composition comprising a radiolabeled compound according to the above (1) or (2), or a pharmaceutically acceptable salt or solvate thereof.
  • hM4D or hM3D produced by expression of a gene encoding a mutant human muscarinic acetylcholine M4 receptor (hM4D) or a mutant human muscarinic acetylcholine M3 receptor (hM3D) introduced into cells in a living animal brain
  • a composition for imaging A compound of formula (III), or a pharmaceutically acceptable salt or solvate thereof:
  • R 1 is hydrogen, alkyl, allyl, hydroxyalkyl, alkoxyalkyl, or alkoyloxyalkyl;
  • Alkyl has 1 to 6 carbon atoms, hydroxyalkyl has 1 to 2 carbon atoms, and alkoxyalkyl and alkoyloxyalkyl have 1 to 5 carbon atoms.
  • X is sulfur, sulfinyl, imino, methylene, or alkylimino; Alkylimino has 1 to 6 carbon atoms.
  • R 2 is hydrogen, halogen, hydroxy, trifluoromethyl, alkyl, alkoxy, alkylthio, nitro, amino, or aminosulfonyl; Alkyl, alkoxy and alkylthio have 1 to 5 carbon atoms.
  • One or more atoms are radioisotopes of the atom.
  • hM4D or hM3D produced by expression of a gene encoding a mutant human muscarinic acetylcholine M4 receptor (hM4D) or a mutant human muscarinic acetylcholine M3 receptor (hM3D) introduced into cells in the living animal brain
  • hM4D mutant human muscarinic acetylcholine M4 receptor
  • hM3D mutant human muscarinic acetylcholine M3 receptor
  • the animal living body is a primate living body
  • the predetermined time is a time of 30 to 90 minutes
  • the detected amount is less than 2.5 g / cc in the whole brain including the non-expressed site in an index normalized by the dose and body weight
  • hM3D has been introduced,
  • R 1 is hydrogen, alkyl, allyl, hydroxyalkyl, alkoxyalkyl, or alkoyloxyalkyl
  • Alkyl has 1 to 6 carbon atoms
  • hydroxyalkyl has 1 to 2 carbon atoms
  • alkoxyalkyl and alkoyloxyalkyl have 1 to 5 carbon atoms.
  • X is sulfur, sulfinyl, imino, methylene, or alkylimino
  • Alkylimino has 1 to 6 carbon atoms.
  • R 2 is hydrogen, halogen, hydroxy, trifluoromethyl, alkyl, alkoxy, alkylthio, nitro, amino, or aminosulfonyl; Alkyl, alkoxy and alkylthio have 1 to 5 carbon atoms. One or more atoms are radioisotopes of the atom. ) Is selectively transferred to the hM4D or hM3D expressed by the gene and transferred to the brain, thereby imaging hM4D or hM3D in the brain of an animal body.
  • a method for imaging hM4D or hM3D in the brain of an animal living body wherein the cells in the animal living brain are mutated human muscarinic acetylcholine M4 receptor (hM4D) or mutated human muscarinic acetylcholine M3 receptor (hM3D).
  • hM4D mutated human muscarinic acetylcholine M4 receptor
  • hM3D mutated human muscarinic acetylcholine M3 receptor
  • R 2 is hydrogen, halogen, hydroxy, trifluoromethyl, alkyl, alkoxy, alkylthio, nitro, amino, or aminosulfonyl; Alkyl, alkoxy and alkylthio have 1 to 5 carbon atoms. One or more atoms are radioisotopes of the atom.
  • An imaging method for hM4D or hM3D in the brain of an animal living organism comprising a step of acquiring data on distribution and / or expression level.
  • (9-1) a step of obtaining data on the distribution and / or expression level of hM4D or hM3D in the brain by detecting radiation emitted from the compound selectively bound to hM4D or hM3D in the brain.
  • (9-2) A method for imaging hM4D or hM3D in the brain of an animal living body, wherein the cells in the brain of the animal living body have a mutant human muscarinic acetylcholine M4 receptor (hM4D) or a mutant human muscarinic acetylcholine M3 receptor (hM4D).
  • hM4D human muscarinic acetylcholine M4 receptor
  • hM4D mutant human muscarinic acetylcholine M3 receptor
  • hM3D has been introduced,
  • the composition according to (4), which is selectively bound to hM4D or hM3D, administered to the animal body, is transferred into the brain, and selectively binds to the hM4D or hM3D expressed by the gene,
  • radiation emitted from the compound selectively bound to hM4D or hM3D in the brain, or a pharmaceutically acceptable salt or solvate thereof By detecting radiation emitted from the compound selectively bound to hM4D or hM3D in the brain, or a pharmaceutically acceptable salt or solvate thereof, the distribution and / or distribution of hM4D or hM3D in the brain is detected.
  • An imaging method for hM4D or hM3D in the brain of an animal living organism comprising a step of acquiring data on the expression level.
  • a method for imaging brain activity of an animal body A gene encoding a mutant human muscarinic acetylcholine M4 receptor (hM4D) or a mutant human muscarinic acetylcholine M3 receptor (hM3D) has been introduced into cells in the animal living brain,
  • R 1 is hydrogen, alkyl, allyl, hydroxyalkyl, alkoxyalkyl, or alkoyloxyalkyl;
  • Alkyl has 1 to 6 carbon atoms, hydroxyalkyl has 1 to 2 carbon atoms, and alkoxyalkyl and alkoyloxyalkyl have 1 to 5 carbon atoms.
  • X is sulfur, sulfinyl, imino, methylene, or alkylimino; Alkylimino has 1 to 6 carbon atoms.
  • R 2 is hydrogen, halogen, hydroxy, trifluoromethyl, alkyl, alkoxy, alkylthio, nitro, amino, or aminosulfonyl; Alkyl, alkoxy and alkylthio have 1 to 5 carbon atoms.
  • a method for imaging brain activity of an animal living body comprising a step of acquiring data relating to manipulation of the activity of hM4D or hM3D-expressing cells in the brain.
  • Said substance is a compound of formula (III), or a pharmaceutically acceptable salt or solvate thereof:
  • R 1 is hydrogen, alkyl, allyl, hydroxyalkyl, alkoxyalkyl, or alkoyloxyalkyl
  • Alkyl has 1 to 6 carbon atoms
  • hydroxyalkyl has 1 to 2 carbon atoms
  • alkoxyalkyl and alkoyloxyalkyl have 1 to 5 carbon atoms.
  • X is sulfur, sulfinyl, imino, methylene, or alkylimino; Alkylimino has 1 to 6 carbon atoms.
  • R 2 is hydrogen, halogen, hydroxy, trifluoromethyl, alkyl, alkoxy, alkylthio, nitro, amino, or aminosulfonyl; Alkyl, alkoxy and alkylthio have 1 to 5 carbon atoms. One or more atoms is or is not a radioisotope of the atom. )
  • mutant receptor is a mutant human muscarinic acetylcholine M3 receptor (hM3D).
  • R 3 is hydrogen, alkyl, allyl, hydroxyalkyl, alkoxyalkyl, or alkoyloxyalkyl; Alkyl has 1 to 6 carbon atoms, hydroxyalkyl has 1 to 2 carbon atoms, and alkoxyalkyl and alkoyloxyalkyl have 1 to 5 carbon atoms.
  • a diagnostic agent, Said substance is a compound of formula (IV), or a pharmaceutically acceptable salt or solvate thereof:
  • R 3 is hydrogen, alkyl, allyl, hydroxyalkyl, alkoxyalkyl, or alkoyloxyalkyl;
  • Alkyl has 1 to 6 carbon atoms, hydroxyalkyl has 1 to 2 carbon atoms, Alkoxyalkyl and alkyloxyalkyl have 1 to 5 carbon atoms.
  • One or more atoms is or is not a radioisotope of the atom.
  • a method for imaging nerve cells over a plurality of regions in a living animal brain The nerve cell, when the cell body including dendrites belongs to the first region, and the axon end of the nerve cell belongs to a region different from the first region, In the first region, a gene encoding a mutant human muscarinic acetylcholine M4 receptor (hM4D) or a mutant human muscarinic acetylcholine M3 receptor (hM3D) has been introduced, A substance which selectively binds to hM4D or hM3D and has a radiolabel, which is administered to the animal body, is transferred into the brain and selectively binds to hM4D or hM3D; By detecting radiation emitted from the substance selectively bound to the hM4D or hM3D, A nerve cell imaging method, comprising a step of acquiring data on the distribution and / or expression level of hM4D or hM3D at the
  • a method for imaging nerve cells over a plurality of regions in a living animal brain The nerve cell, when the cell body including dendrites belongs to the first region, and the axon end of the nerve cell belongs to a region different from the first region, In the first region, a gene encoding a mutant human muscarinic acetylcholine M4 receptor (hM4D) or a mutant human muscarinic acetylcholine M3 receptor (hM3D) has been introduced, The radiolabeled dibenzoazepine derivative that selectively binds to the hM4D or hM3D administered to the animal body is transferred into the brain to selectively bind to the hM4D or hM3D, Detecting radiation emitted from the radiolabeled dibenzoazepine derivative selectively bound to the hM4D or hM3D, A nerve cell imaging method, comprising a step of acquiring data on the distribution and / or expression level of hM4
  • a nerve cell covering a plurality of regions in the animal living brain has a cell body including dendrites belonging to the first region, and the axon end of the nerve cell is different from the first region.
  • a gene encoding a mutant human muscarinic acetylcholine M4 receptor (hM4D) or a mutant human muscarinic acetylcholine M3 receptor (hM3D) has been introduced,
  • the radiolabeled dibenzoazepine derivative is the compound of the above formula (III), or a pharmaceutically acceptable salt or solvate thereof.
  • the dibenzoazepine derivative, the dibenzodiazepine derivative compound, or the compound (III) or (IV) does not include the compound described in (1-0), (1) or (2).
  • the present invention it is possible to provide a technique for imaging hM4D or hM3D receptor in an organ of an animal body such as a brain of an animal body, and an application thereof.
  • FIG. 2 is a micro-scale diagram illustrating a projection neuron imaging method of the present invention.
  • FIG. 2 is a meso-scale diagram illustrating the method for imaging a projection neuron of the present invention. It is a PET imaging image (binding ability) using [ 11 C] C22b of the hM4D receptor expressed in the putamen. It is a PET imaging image (SUV) of hM4D receptor expressed in putamen using [ 11 C] clozapine. It is a PET imaging image (SUV) using [ 11 C] C22b of the hM4D receptor expressed in the putamen.
  • FIG. 11 shows PET imaging images of glucose metabolism performed by using [ 18 F] FDG by binding C22b to hM3D receptor expressed in the left amygdala.
  • C22b was bound to hM3D receptor expressed in the left amygdala, and the image (t value) obtained by one-way analysis of variance of glucose metabolism PET using [ 18 F] FDG was superimposed on the brain structure image.
  • It is an image image.
  • alkyl means a monovalent group generated by losing one hydrogen atom of an aliphatic saturated hydrocarbon.
  • Alkyl has 1-6 (C1-C6) carbon atoms, typically 1-5 (C1-C5), 1-4 (C1-C4), 1-3 (C1-C3) It has from 1 to 2 (C1-C2) or from 2 to 6 (C2-C6) carbon atoms.
  • Alkyl may be straight-chain or branched.
  • alkyl examples include, but are not limited to, methyl, ethyl, propyl, isopropyl, 2-methyl-1-propyl, 2-methyl-2-propyl, 2-methyl-1-butyl, 3-methyl-1-butyl , 2-methyl-3-butyl, 2,2-dimethyl-1-propyl, 2-methyl-1-pentyl, 3-methyl-1-pentyl, 4-methyl-1-pentyl, 2-methyl-2-pentyl , 3-methyl-2-pentyl, 4-methyl-2-pentyl, 2,2-dimethyl-1-butyl, 3,3-dimethyl-1-butyl, 2-ethyl-1-butyl, n-butyl, isobutyl , T-butyl, pentyl, isopentyl, neopentyl, and hexyl.
  • Alkyl may be further substituted by a suitable substituent.
  • a hydrogen atom may be referred to as a
  • hydroxyalkyl means a group in which part or all of the hydrogen atoms of an alkyl group has been substituted with a hydroxyl group.
  • the number of hydroxyl groups in hydroxyalkyl is preferably 1 to 5, and most preferably 1.
  • alkoxyalkyl means an alkyl substituted with an alkoxy group having 1 to 3 (C1-C3) carbon atoms. Alkyl may be further substituted by a suitable substituent. Alkyl means a monovalent group resulting from the loss of one hydrogen atom of an aliphatic saturated hydrocarbon, and is 1-2 carbon atoms (C1-C2), typically 1-2 carbon atoms (C1 Having -C2) carbon atoms. Alkyl may be straight-chain or branched. Examples of alkoxyalkyl include, but are not limited to, methoxymethyl, methoxyethyl, methoxypropyl, and the like.
  • alcoyloxyalkyl means an alkyl substituted with an alcoyloxy group (alkoxycarbonyl group) having 1 to 2 (C1-C2) carbon atoms.
  • alcoyl is also referred to as alkanoyl.
  • Alkyl substituted by an alkoxycarbonyl group may be used in place of the alkoyloxy group.
  • Alkyl may be further substituted by a suitable substituent.
  • Alkyl means a monovalent group resulting from the loss of one hydrogen atom of an aliphatic saturated hydrocarbon, and has from 1 to 3 (C1-C3) carbon atoms, typically 1-2 (C1 Having -C2) carbon atoms.
  • Alkyl may be straight-chain or branched.
  • alcoyloxy groups include, but are not limited to, methanoyloxy, ethanoyloxy, and the like.
  • alkoxycarbonyl groups include, but are not limited to, methoxycarbonyl, ethoxycarbonyl, and the like.
  • methylene means — (CH 2 ) —.
  • alkylimino means — (NR 4 ) —.
  • R 4 is alkyl and may be further substituted by a suitable substituent.
  • Alkyl means a monovalent group resulting from the loss of one hydrogen atom of an aliphatic saturated hydrocarbon, and has from 1 to 3 (C1-C3) carbon atoms, typically 1-2 (C1 Having -C2) carbon atoms. Alkyl may be straight-chain or branched. Examples of alkyl include, but are not limited to, methyl, ethyl, propyl, isopropyl, and the like.
  • halogen refers to fluoro (—F), chloro (—Cl), bromo (—Br), and iodo (—I).
  • halogen includes a halogen atom.
  • alkyl means a monovalent group generated by losing one hydrogen atom of an aliphatic saturated hydrocarbon.
  • Alkyl has 1 to 5 (C1-C5) carbon atoms, typically 1-4 (C1-C4), 1-3 (C1-C3), 1-2 (C1-C2) Or 2 to 5 (C2-C5) carbon atoms.
  • Alkyl may be straight-chain or branched.
  • alkyl examples include, but are not limited to, methyl, ethyl, propyl, isopropyl, 2-methyl-1-propyl, 2-methyl-2-propyl, 2-methyl-1-butyl, 3-methyl-1-butyl , 2-methyl-3-butyl, 2,2-dimethyl-1-propyl, 2-methyl-1-pentyl, 3-methyl-1-pentyl, 4-methyl-1-pentyl, 2-methyl-2-pentyl , 3-methyl-2-pentyl, 4-methyl-2-pentyl, 2,2-dimethyl-1-butyl, 3,3-dimethyl-1-butyl, 2-ethyl-1-butyl, n-butyl, isobutyl , T-butyl, pentyl, isopentyl, and neopentyl.
  • Alkyl may be further substituted by a suitable substituent.
  • alkoxy means — (O—R 5 ) —.
  • R 5 is alkyl and may be further substituted by a suitable substituent.
  • Alkyl has 1 to 5 (C1-C5) carbon atoms, typically 1-4 (C1-C4), 1-3 (C1-C3), 1-2 (C1-C2) Or 2 to 5 (C2-C5) carbon atoms.
  • Alkyl may be straight-chain or branched. Examples of alkoxy include, but are not limited to, methoxy, ethoxy, propanoxy, and the like.
  • alkylthio refers to —SR 6 .
  • R 6 is alkyl and may be further substituted by a suitable substituent.
  • Alkyl has 1 to 5 (C1-C5) carbon atoms, typically 1-4 (C1-C4), 1-3 (C1-C3), 1-2 (C1-C2) Or 2 to 5 (C2-C5) carbon atoms.
  • Alkyl may be straight-chain or branched.
  • alkylthio include, but are not limited to, methylthio, methoxy, ethylthio, propanethio, and the like.
  • nitro means —NO 2 .
  • the term “amino” means any of —NH 2 , —NHR 7 and —NR 7 R 8 .
  • R 7 and R 8 are alkyl, and R 7 and R 8 may be the same or different. It may be further substituted by a suitable substituent.
  • Alkyl has 1 to 5 (C1-C5) carbon atoms, typically 1-4 (C1-C4), 1-3 (C1-C3), 1-2 (C1-C2) Or 2 to 5 (C2-C5) carbon atoms.
  • Alkyl may be straight-chain or branched.
  • An example of an amino includes, but is not limited to, an amino group (—NH 2 ).
  • —NHR 7 and —NR 7 R 8 may be collectively referred to as “alkylamino”.
  • aminosulfonyl means —SO 2 NR 9 R 10 .
  • R 9 and R 10 are selected from hydrogen, methyl, and —SONR 11 and may be the same or different.
  • R 11 is C1-C2 alkyl or —SO 2 NR 12
  • R 12 is C1-C2 alkyl.
  • aminosulfonyl include, but are not limited to, -SO 2 N (CH 3 ) 2 , -SO 2 NHCH 3 .
  • pharmaceutically acceptable salt refers to a salt that is not harmful to animal organisms, especially mammals.
  • Pharmaceutically acceptable salts can be formed with non-toxic acids or bases, including inorganic acids or bases, or organic acids or bases.
  • Pharmaceutically acceptable salts include acid addition and base addition salts.
  • acidic salt examples include salts with alkali metals such as sodium, potassium and lithium, salts with alkaline earth metals such as calcium and magnesium, metal salts such as aluminum and zinc, ammonium salts, and trimethylamine and triethylamine.
  • Tributylamine pyridine, N, N-dimethylaniline, N-methylpiperidine, N-methylmorpholine, diethylamine, diethanolamine, ethylenediamine, dicyclohexylamine, procaine, chloroprocaine, dibenzylamine, N-benzyl- ⁇ -phenethylamine, 1 -Ephenamine and salts with nitrogen-containing organic bases such as N, N'-dibenzylethylenediamine and meglumine (N-methylglucamine).
  • Examples of the basic salt include salts with mineral acids such as hydrochloric acid, hydrobromic acid, nitric acid and sulfuric acid; formic acid, acetic acid, citric acid, oxalic acid, fumaric acid, maleic acid, succinic acid, malic acid, tartaric acid And salts with organic carboxylic acids such as aspartic acid, trichloroacetic acid and trifluoroacetic acid; and salts with sulfonic acids such as methanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, mesitylenesulfonic acid and naphthalenesulfonic acid.
  • mineral acids such as hydrochloric acid, hydrobromic acid, nitric acid and sulfuric acid
  • formic acid acetic acid, citric acid, oxalic acid, fumaric acid, maleic acid, succinic acid, malic acid, tartaric acid
  • organic carboxylic acids such as
  • solvate means a solvate formed by the association of one or more solvent molecules with the compound of the present invention.
  • Solvates include, for example, mono-, di-, tri-, and tetra-solvates.
  • the solvate includes a hydrate.
  • the solvate may include at least one selected from the group consisting of a monohydrate, a dihydrate, a trihydrate, and a tetrahydrate. It is preferably at least one selected from the group consisting of a hydrate, a trihydrate, and a tetrahydrate.
  • compound refers to any isomer (eg, optical isomer, geometric isomer, tautomer, and the like), and the present invention includes all such isomers. And may include hydrates, solvates and all crystalline forms.
  • agent includes medicines, medical foods, foods, and supplements.
  • Food includes functional foods, health foods, health-oriented foods, and the like.
  • the term “animal” includes mammals or non-mammals.
  • mammals include rodents and non-rodents.
  • Non-rodents include primates.
  • rodents are rats, mice, guinea pigs, rabbits, and the like.
  • non-rodents and non-primates include, for example, dogs, cats, minipigs and the like. Animals may be categorized into humans and non-humans.
  • the term “primate” includes, for example, human, monkey (marmoset (for example, common marmoset), rhesus monkey, cynomolgus monkey) and the like. Primates may be classified as human or non-human in classification.
  • brain has a meaning commonly used by those skilled in the art, for example, cerebrum, diencephalon, cerebellum, or midbrain. More specifically, the cerebral cortex, for example, the limbic cortex. More specifically, it is a cingulate, amygdala, hippocampus, septum, fornix, papillary body, or hippocampus.
  • human muscarinic acetylcholine M4 receptor and “human muscarinic acetylcholine M3 receptor” are known to those skilled in the art, and are each a subtype M3 of a metabolic regulatory receptor derived from human. And M4.
  • Human muscarinic acetylcholine M4 receptor and “human muscarinic acetylcholine M3 receptor” may be abbreviated as “hM4" and "hM3", respectively.
  • mutant human muscarinic M4 receptor and “mutant human muscarinic M3 receptor” are also known to those skilled in the art, and may be abbreviated to “hM4D” and “hM3D”, respectively.
  • the mutant human muscarinic M4 receptor or the mutant human muscarinic M3 receptor is prepared by using a viral vector encoding hM4D or hM3D, introducing it into a desired site in a mammal, and expressing it. Things.
  • the gene encoding hM4D and the gene encoding hM3D may be used separately or simultaneously.
  • hM4D Mutant human muscarinic acetylcholine M4 receptor (hM4D) and the gene encoding hM4D are known to those skilled in the art.
  • hM4D is the amino acid sequence of human muscarinic acetylcholine M4 receptor (hM4) (SEQ ID NO: 1) in which the tyrosine (Tyr) at position 113 is cysteine (Cys) and the amino acid sequence at position 203
  • hM4D has an amino acid sequence in which alanine (Ala) has been mutated to glycine (Gly) (SEQ ID NO: 2).
  • the gene encoding hM4D has the nucleotide sequence of SEQ ID NO: 3.
  • hM4D does not bind to endogenous transmitters such as neurotransmitters.
  • hM3D human muscarinic acetylcholine M3 receptor
  • hM3D in the amino acid sequence of human muscarinic acetylcholine M3 receptor (hM3) (SEQ ID NO: 4), tyrosine (Tyr) at position 149 is cysteine (Cys), and alanine (Ala) at position 239 is glycine.
  • hM3D has an amino acid sequence mutated (SEQ ID NO: 5).
  • the gene encoding hM3D has the nucleotide sequence of SEQ ID NO: 6. hM3D does not bind to endogenous transmitters such as neurotransmitters.
  • the gene encoding hM4D or hM3D can be linked to a promoter, enhancer, and / or Poly (A), if necessary.
  • a Thy-1-promoter that is specifically expressed in nerve cells can be ligated.
  • the gene encoding hM4D or hM3D has the Thy-1-promoter upstream and SV40 downstream.
  • imaging refers to molecular imaging, and is not particularly limited, but positron tomography (Positron Emission Tomography, PET), multiphoton imaging, two-photon imaging, near-infrared fluorescence imaging Method, autoradiography, and single photon emission tomography (Single Photon Emission Computed Tomography, SPECT) and the like. Among them, PET imaging is preferable.
  • the present invention provides a compound of the above formula (I), which is a dibenzodiazepine derivative, or a pharmaceutically acceptable salt or solvate thereof. Wherein one or more of the atoms is, or is not, a radioisotope of the atom.
  • the compound of the above formula (I) contains a radioisotope, specifically, the carbon atom may be 11 C and the nitrogen atom may be 13 N. The number of 11 C may be one, and the number of 13 N may be one.
  • Radioactive isotopes in the compound of formula (I) is preferably a radioactive isotope of carbon atoms, more preferably from 11 C, more preferably 11 C is one.
  • examples of the combination of the compound of the formula (I) include the compound of the formula (II), or a pharmaceutically acceptable salt or solvate thereof.
  • the compound of the above formula (I) may not contain a radioisotope.
  • the present invention provides a composition comprising a compound of formula (I) or a compound of formula (II), or a pharmaceutically acceptable salt or solvate thereof.
  • the composition may be included in a pharmaceutically acceptable carrier.
  • Pharmaceutically acceptable carriers are not particularly limited, for example, sterile water, saline, physiological saline or phosphate buffered saline (PBS), sodium chloride injection, Ringer's injection, isotonic dextrose injection, There are sterile water injection, dextrose, and lactated Ringer's injection.
  • the composition is not particularly limited, but for example, can be administered parenterally, intravenously, or intraperitoneally.
  • the substance (“compound, or a pharmaceutically acceptable salt or solvate thereof”) is transported through the blood vessels and then passes through the blood-brain barrier to the brain. For this reason, the substance needs to have a property capable of passing through the blood-brain barrier, and preferably has a predetermined blood solubility in addition to a predetermined low molecular weight and lipid solubility.
  • the substance may be a single substance, or may be supported on a DDS (drug delivery system).
  • the dose of the substance may be appropriately set depending on the kind of the substance to be used; the age, weight, health condition, sex and meal content of the subject to be administered, the number of administrations, the administration route, and the like.
  • the administration of the substance is not particularly limited.
  • composition [1] for imaging hM4D or hM3D provides, as a composition for imaging M4D or hM3D produced by expression of a gene encoding hM4D or hM3D introduced into cells in a living animal brain, a compound of the above formula (III), or a medicament thereof.
  • a composition comprising a salt or solvate which is acceptable as Wherein one or more of the atoms is a radioisotope of the atom.
  • a radioisotope a carbon atom may be 11 C, a nitrogen atom may be 13 N, an oxygen atom may be 15 O, and a fluorine atom which is an example of halogen may be 18 F. May be.
  • the composition may be contained in a pharmaceutically acceptable carrier as described in (4. Composition) above.
  • R 1 is preferably C1-C6 alkyl
  • X is preferably sulfur, sulfinyl, imino, methylene, or C1-C6 alkylimino
  • R 2 is preferably hydrogen , Halogen, hydroxy, trifluoromethyl, C1-C5 alkyl, C1-C5 alkoxy, C1-C5 alkylthio, nitro, amino, or aminosulfonyl.
  • R 1 is C1-C6 alkyl
  • X is sulfur, sulfinyl, imino, methylene, or C1-C6 alkylimino
  • R 2 is hydrogen, halogen, hydroxy, trifluoromethyl, C1-C5 alkyl, C1-C5 alkoxy, C1-C5 alkylthio, nitro, amino, or aminosulfonyl
  • One or more atoms are radioisotopes of the atom.
  • a carbon atom may be 11 C
  • a nitrogen atom may be 13 N
  • an oxygen atom may be 15 O
  • a fluorine atom which is an example of halogen may be 18 F. May be.
  • R 1 is C1-C6 alkyl
  • X is imino
  • R 2 is hydrogen, halogen, hydroxy, trifluoromethyl, C1-C5 alkyl, C1-C5 alkoxy, C1-C5 alkylthio, nitro, amino, or aminosulfonyl
  • One or more atoms are radioisotopes of the atom.
  • a radioisotope a carbon atom may be 11 C, a nitrogen atom may be 13 N, an oxygen atom may be 15 O, and a fluorine atom which is an example of halogen may be 18 F. May be.
  • R 1 is C1-C6 alkyl
  • X is sulfur, sulfinyl, imino, methylene, or C1-C6 alkylimino
  • R 2 is hydrogen
  • One or more atoms are radioisotopes of the atom.
  • the carbon atom may be 11 C
  • the nitrogen atom may be 13 N
  • the oxygen atom may be 15 O.
  • R 1 is C1-C6 alkyl
  • X is imino
  • R 2 is hydrogen
  • One or more atoms are radioisotopes of the atom.
  • the carbon atom may be 11 C and the nitrogen atom may be 13 N.
  • R 1 is methyl
  • X is imino
  • R 2 is hydrogen
  • One or more atoms are radioisotopes of the atom.
  • the carbon atom may be 11 C and the nitrogen atom may be 13 N.
  • 11- (piperazin-1-yl) -5H-dibenzo [b, e] [1,4] diazepine and 6- (4-methylpiperazin-1-yl ) Compounds of one or more atoms of 11H-benzo [c] [1] benzazepine that are radioisotopes of said atoms may be excluded.
  • composition containing a compound of the formula (II) as a combination of each substituent in the compound of the formula (III).
  • the above description of the compound of the formula (III) is described in (6. Composition for imaging hM4D or hM3D [2]), (7. Method for imaging hM4D or hM3D in brain), (8) (Method of imaging changes in brain activity accompanying manipulation of the activity of hM4D or hM3D-expressing cells in the brain), (9. Agonist / antagonist), (11. Imaging method of axon termination of nerve cells over multiple regions), And (12. Composition for imaging axon termination of nerve cells over a plurality of regions). Further, the above description of the compound of the formula (III) can be applied to a compound used in (10. Pharmaceutical) described later, except that the compound does not contain a radioisotope.
  • composition containing these compounds can specifically bind to hM4D or hM3D produced by expressing in a cell a gene encoding hM4D or hM3D previously introduced into cells in the animal living brain. it can.
  • the composition containing these compounds can pass through the blood-brain barrier (BBB) in the animal's living brain. That is, a composition containing these compounds can be administered downstream from the BBB, for example, from the periphery such as limbs, preferably from a blood vessel such as intravenous injection, and when administered from a blood vessel, it is expressed and produced in cells. HM4D or hM3D.
  • BBB blood-brain barrier
  • a composition containing these compounds can be administered downstream from the BBB, for example, from the periphery such as limbs, preferably from a blood vessel such as intravenous injection, and when administered from a blood vessel, it is expressed and produced in cells.
  • HM4D or hM3D downstream of the BBB may be referred to as peripheral
  • administration from the downstream of the BBB may be referred to as peripheral administration.
  • compositions containing these compounds have high binding to hM4D or hM3D, and low binding to endogenous substances such as wild-type receptors, and therefore have high selectivity for hM4D or hM3D.
  • a vector that specifically expresses the hM4D receptor or the hM3D receptor eg, an adeno-associated virus (AAV) vector (AAV2-CMV-hM4D)
  • AAV2-CMV-hM4D adeno-associated virus vector
  • the binding capacity can be increased to about 11 times. In this case, it can be approximately 3.4 times.
  • Such binding ability is described in (6. Composition for imaging hM4D or hM3D [2]), (7. Method for imaging hM4D or hM3D in brain), (8. hM4D or hM3D expression in brain) (Method for imaging changes in brain activity accompanying manipulation of cell activity), (9. Agonist / antagonist), (11. Imaging method for axon termination of nerve cell over multiple regions), and (12. Method over imaging multiple regions)
  • the present invention can also be applied to compounds used in the composition for axon termination imaging of nerve cells.
  • compositions containing these compounds can be easily excreted from the animal body. That is, when a composition containing these compounds is administered downstream from the BBB, for example, from the periphery of limbs or the like, preferably from a blood vessel such as intravenous injection, hM4D or hM3D expressed and produced in cells can be stably produced. Imaging without toxicity. Further, a composition containing these compounds has a high signal intensity of radiation. That is, when a composition containing these compounds is administered downstream from the BBB, for example, from the periphery of limbs or the like, preferably from blood vessels such as intravenous injection, hM4D or hM3D expressed and produced in cells can be quantitatively determined. PET imaging.
  • the present invention provides a dibenzodiazepine derivative or a pharmaceutically acceptable salt thereof as a composition for imaging M4D or hM3D produced by expression of a gene encoding hM4D or hM3D introduced into cells in an animal living brain, Or containing a solvate,
  • the dibenzodiazepine derivative is radioactively labeled,
  • the amount of radiation detected from the derivative detected by imaging for a predetermined time after peripheral administration is twice or more the hM4D expression site relative to the non-expression site, or the hM3D expression site is 1.4 times the non-expression site.
  • a composition as described above is provided.
  • the dibenzodiazepine derivative means a compound having a dibenzodiazepine skeleton.
  • the composition may be contained in a pharmaceutically acceptable carrier, as described in (4. Composition).
  • the compound is a radioisotope of one or more atoms.
  • the carbon atom may be 11 C and the nitrogen atom may be 13 N.
  • dibenzodiazepine skeleton examples include a dibenzodiazepine or dibenzodiazepine derivative containing or having a mother nucleus as 1,2-diazepine, 1,3-diazepine, or 1,4-diazepine.
  • the dibenzodiazepine skeleton is a skeleton comprising 1,4-diazepine.
  • An example of a dibenzodiazepine derivative is dibenzo [b, e] [1,4] diazepine.
  • the dibenzodiazepine skeleton can be substituted by a suitable substituent.
  • Suitable substituents that the dibenzodiazepine skeleton may have are, for example, alkyl, acyl, aryl, nitrogen-containing heterocycle, sulfur-containing heterocycle, oxygen-containing heterocycle, and halogen.
  • the nitrogen-containing heterocyclic ring may be aromatic or non-aromatic, and examples of the non-aromatic nitrogen-containing heterocyclic ring include a nitrogen-containing aliphatic hydrocarbon ring and the like, and a nitrogen-containing saturated aliphatic hydrocarbon. Hydrogen rings are preferred. Further, these substituents may be further substituted by a suitable substituent.
  • composition containing these compounds specifically binds to hM4D or hM3D produced by expressing in a cell a gene encoding hM4D or hM3D previously introduced into cells in a predetermined organ of an animal body. can do.
  • compositions containing these compounds can cross the blood-brain barrier (BBB) in animal living brain. That is, a composition containing these compounds can be administered downstream from the BBB, for example, from the periphery such as limbs, preferably from a blood vessel such as intravenous injection, and when administered from a blood vessel, it is expressed and produced in cells.
  • BBB blood-brain barrier
  • the detection amount detected by imaging for a predetermined time is a composition in which the hM4D expression site is at least twice the non-expression site. That is, it is a composition showing a selectivity of a hM4D expression site to a non-expression site in an imaging of an organ of a living body of an animal is twice or more.
  • the detection amount or selectivity may be, for example, 5 times or less.
  • hM3D is expressed only in cells that are present in some but not all regions of the organ
  • a composition containing these compounds is administered from the periphery of the animal, and when imaging a predetermined organ, a predetermined time period is required.
  • the detection amount or selectivity may be, for example, 5 times or less.
  • the detection amount is calculated by an integrated value (integrated value) of the detected signal after performing imaging for a predetermined time.
  • the above selectivity can be measured by performing the detection amount for both the non-expression site and the expression site, and dividing the detection amount of the expression site by the detection amount of the non-expression site. In the measurement, if the background noise is the amount counted as a signal, the background detection amount is subtracted from each detection amount before the calculation is performed.
  • the hM4D expression site in imaging an organ of a living body of an animal, by using a composition having a selectivity of the hM4D expression site of 2 times or more or a selectivity of the hM3D expression site of 1.4 times or more, the hM4D expression site or the hM3D
  • the expression site can be favorably imaged, and expression or non-expression can be easily determined. It is also possible to quantitatively measure the expression level.
  • the hM4D expression site is preferably 2.1 times or more, more preferably 2.2 times or more, more preferably 2.3 times or more, still more preferably 2.31 times or more, more preferably 2.31 times or more than the non-expression site. For example, it may be five times or less.
  • the hM3D expression site is preferably 1.41 times or more, more preferably 1.43 times or more, more preferably 1.45 times or more, for example, 5 times or less, relative to the non-expression site.
  • the imaging is performed for 30 to 90 minutes from the peripheral administration of the compound, and the detected amount is the dose.
  • the hM4D expression site is 6.3 g / cc or more when the whole brain including the non-expression site is 2.5 g / cc or less in the index normalized by the body weight of the living body to be administered.
  • the hM3D expression site is a composition containing a dibenzodiazepine derivative or a pharmaceutically acceptable salt or solvate thereof at 3.7 g / cc or more.
  • one embodiment of the present invention is one in which the dibenzodiazepine skeleton of the compound is substituted with a nitrogen-containing heterocyclic ring.
  • the nitrogen-containing heterocyclic ring may be aromatic or non-aromatic, and examples of the non-aromatic nitrogen-containing heterocyclic ring include a nitrogen-containing aliphatic hydrocarbon ring and the like, and a nitrogen-containing saturated aliphatic hydrocarbon. Hydrogen rings are preferred.
  • the compound is one in which one or more atoms are radioisotopes of the atom. As an example of a radioisotope, the carbon atom may be 11 C and the nitrogen atom may be 13 N.
  • Piperazine is an example of a nitrogen-containing heterocycle.
  • it may be 11-piperazino-5H-dibenzo [b, e] [1,4] diazepine in which position 11 of the dibenzodiazepine skeleton is substituted by piperazine.
  • the nitrogen-containing heterocyclic ring substituted on the dibenzodiazepine skeleton may be further substituted by a suitable substituent.
  • a suitable substituent for example, in the case of 11-piperazino-5H-dibenzo [b, e] [1,4] diazepine, the nitrogen on the piperazine skeleton may be replaced by an alkyl group.
  • An example of the alkyl group which is a substituent in this example is a C1-C6 alkyl group, specifically, a methyl group.
  • compositions containing these compounds can be easily excreted from the animal body. That is, when a composition containing these compounds is administered downstream from the BBB, for example, from the periphery of limbs or the like, preferably from a blood vessel such as intravenous injection, hM4D or hM3D expressed and produced in cells can be stably produced. Imaging without toxicity. Further, a composition containing these compounds has a high signal intensity of radiation. That is, when a composition containing these compounds is administered downstream from the BBB, for example, from the periphery of limbs or the like, preferably from blood vessels such as intravenous injection, hM4D or hM3D expressed and produced in cells can be quantitatively determined. PET imaging.
  • the present invention relates to a method for imaging hM4D or hM3D in the brain of an animal living organism, wherein the cells in the brain of the living animal are mutated human muscarinic acetylcholine M4 receptor (hM4D) or mutated human muscarinic acetylcholine M3 receptor (hM3D).
  • hM4D mutated human muscarinic acetylcholine M4 receptor
  • hM3D mutated human muscarinic acetylcholine M3 receptor
  • the compound of formula (III) or a pharmaceutically acceptable salt or solvate thereof selectively administered to the hM4D or hM3D, which has been introduced into the living organism of the animal,
  • the substance (the compound or a pharmaceutically acceptable salt thereof, which is selectively transferred to the hM4D or hM3D expressed by the gene after being transferred into the brain and selectively bound to the hM4D or hM3D in the brain, Or solvate) to detect the amount of hM4D or hM3D in the brain.
  • a step of acquiring data relating / or expression level provides a method of imaging brain hM4D or hM3D living animal body.
  • the compound of formula (III) has one or more atoms as radioisotopes of said atoms.
  • a radioisotope a carbon atom may be 11 C, a nitrogen atom may be 13 N, an oxygen atom may be 15 O, and a fluorine atom which is an example of halogen may be 18 F. May be.
  • Compounds in which one or more atoms of benzazepine are radioisotopes of said atoms may be excluded.
  • composition may also be included in a pharmaceutically acceptable carrier, as described in (4. Composition).
  • the step of detecting radiation and acquiring data on the distribution and / or expression level of hM4D or hM3D in the brain can be realized by using PET which is an imaging device. Specifically, after expression of hM4D or hM3D in advance, a compound containing the compound of the formula (III) or a pharmaceutically acceptable salt or solvate thereof is administered, and the blood-brain barrier (BBB) is activated. This is performed by placing the living body that has passed through the brain and completed in a PET apparatus, and continuously imaging radiation emitted from the brain for a predetermined time.
  • BBB blood-brain barrier
  • the PET device used here does not need to be special, and a general PET device, that is, a multilayer ring array type PET device using a simultaneous calculation method can be used.
  • the apparatus may be capable of two-dimensional (2D) or three-dimensional (3D) acquisition, and may be one that involves mechanical scanning in a plane or in the body axis direction.
  • a partially collectable device called a micro PET may be used.
  • the composition containing the compound can specifically bind to hM4D or hM3D produced by expressing in a cell the gene encoding hM4D or hM3D previously introduced into cells in the animal living brain. it can. At this time, the binding to hM4D or hM3D is high, and the binding to endogenous substances such as a wild-type receptor is low. Therefore, the selectivity to hM4D or hM3D is high, so that a high-contrast image can be obtained. .
  • the site where the gene encoding hM4D or hM3D is expressed can be visualized, and the position of the expressed site in the brain can be accurately displayed.
  • hM4D or hM3D can be quantitatively calculated from the obtained image.
  • the present invention relates to a method for imaging changes in brain activity of an animal living body, wherein a mutant human muscarinic acetylcholine M4 receptor (hM4D) or a mutant human muscarinic acetylcholine M3 receptor (hM3D) is added to cells in the animal living brain.
  • hM4D human muscarinic acetylcholine M4 receptor
  • hM3D mutant human muscarinic acetylcholine M3 receptor
  • Selectively transferred to the hM4D or hM3D expressed by the gene when transferred into the brain Continuously acquiring a brain activity image for the animal living brain, the step of acquiring data relating to a brain activity change accompanying the manipulation of the activity of the hM4D or hM3D expressing cells in the brain, Provide a functional imaging method.
  • the composition may be contained in a pharmaceutically acceptable carrier as described in (4. Composition).
  • glucose positron is used as a brain activity measurement method using glucose metabolism as an index
  • [ 15 O] H2O-PET is used as brain activity measurement using cerebral blood flow as an index
  • Magnetic resonance (fMRI), near-infrared brain function measurement (fNIRS), intrinsic light measurement, and the like can be used.
  • an electroencephalogram electroencephalogram
  • MEG magnetoencephalogram
  • VSDI membrane potential-sensitive dye imaging method
  • a compound containing a compound of the formula (III), or a pharmaceutically acceptable salt or solvate thereof is administered, and selectively administered.
  • a composition containing a sugar positron nuclide is administered, and the living body that has been transferred into the brain is placed in a PET apparatus.
  • the living body emits radiation emitted from the brain for a predetermined period of time. This is done by imaging.
  • cells expressing hM4D or hM3D if sugar metabolism is actively performed, sugar positron nuclides are consumed in large amounts, and if glucose metabolism is scarcely performed, sugar positron nuclides are hardly consumed. Therefore, by measuring the radiation distribution and / or radiation dose from sugar positron nuclides in the brain, it is possible to obtain data on the distribution and / or metabolism of glucose metabolism in the hM4D or hM3D expression region.
  • sugar positron nuclide used here, a known sugar positron nuclide can be used, and for example, [ 18 F] fluorodeoxyglucose ( 18 F-FDG) can be suitably used. Further, it can be used as a composition containing physiological saline. The composition may also include D-mannitol.
  • 18 F-FDG [ 18 F] fluorodeoxyglucose
  • the PET device used here does not need to be special, and a general PET device, that is, a multilayer ring array type PET device using a simultaneous calculation method can be used.
  • the apparatus may be capable of two-dimensional (2D) or three-dimensional (3D) acquisition, and may be one that involves mechanical scanning in a plane or in the body axis direction.
  • a partially collectable device called a micro PET may be used.
  • the compound of the formula (III) can specifically bind to hM4D or hM3D produced by expressing in a cell a gene encoding hM4D or hM3D previously introduced into cells in the living animal brain. it can.
  • the binding to hM4D or hM3D is high, and the binding to endogenous substances such as wild-type receptors is low, so that the binding state has high selectivity to hM4D or hM3D.
  • this method of imaging glucose metabolism in the brain it is possible to visualize the glucose metabolism distribution in a state where the compound of the formula (III) is bound to the hM4D or hM3D expression site, and to accurately measure the metabolic rate.
  • the binding of the compound of formula (III) And the amount of increase or decrease in glucose metabolism can be quantitatively obtained.
  • the present invention relates to an antagonist containing a mutant human muscarinic acetylcholine M4 receptor (hM4D) or a substance that selectively binds to a mutant human muscarinic acetylcholine M3 receptor (hM3D) introduced into cells in a living animal brain,
  • An agonist, an antagonist (antagonist) or an agonist (agonist), which is the compound of the above formula (III), or a pharmaceutically acceptable salt or solvate thereof, is provided.
  • one or more atoms are or are not radioisotopes of the atom.
  • 11- (piperazin-1-yl) -5H-dibenzo [b, e] [1,4] diazepine and 6- (4-methylpiperazin-1-yl) -11H-benzo [c] [1] Benzazepine may be omitted. Also, in one embodiment, 11- (piperazin-1-yl) -5H-dibenzo [b, e] [1,4] diazepine and 6- (4-methylpiperazin-1-yl) -11H-benzo [ c] [1] Benzazepine compounds in which one or more atoms are radioisotopes of said atoms may be excluded.
  • the mutant human muscarinic acetylcholine M3 It acts as an agonist acting selectively on the receptor (hM3D). Therefore, the present invention can provide an agonist, particularly when the mutant receptor is a mutant human muscarinic acetylcholine M3 receptor (hM3D).
  • the mutant human muscarinic acetylcholine M4 It acts as an agonist acting selectively on the receptor (hM4D). Therefore, when the mutant receptor is a mutant human muscarinic acetylcholine M4 receptor (hM4D), an agonist can be provided.
  • the present invention contains a substance that selectively binds to a mutant human muscarinic acetylcholine M4 receptor (hM4D) or a mutant human muscarinic acetylcholine M3 receptor (hM3D) introduced into cells in the living brain of a primate.
  • a therapeutic agent, Said substance provides a medicament which is a compound of formula (IV), or a pharmaceutically acceptable salt or solvate thereof.
  • the compound of the formula (III) has a property of selectively acting on the mutant human muscarinic acetylcholine M3 receptor (hM3D) and the mutant human muscarinic acetylcholine M4 receptor (hM4D). .
  • mutant human muscarinic acetylcholine M3 receptor (hM3D) or mutant human muscarinic acetylcholine M4 receptor Diseases can be treated by introducing a gene that expresses the body (hM4D), expressing hM3D or hM4D, and then administering a compound of formula (IV), or a pharmaceutically acceptable salt or solvate thereof. It has been found that a medicine can be provided.
  • 11- (piperazin-1-yl) -5H-dibenzo [b, e] [1,4] diazepine may be omitted.
  • it is used for mental disorders, neurodegenerative disorders, cognitive / memory disorders, and sleep disorders.
  • mental illness examples include depression, major depression, bipolar depression, dysthymia, affective disorder, recurrent depression, postpartum depression, stress disorder, depressive symptoms, mania, anxiety, general anxiety Disability, anxiety syndrome, panic disorder, phobia, social phobia, social anxiety disorder, obsessive-compulsive disorder, post-traumatic stress syndrome, post-traumatic stress disorder, Taurette syndrome, autism, fragile X syndrome, Rett syndrome , Adjustment disorders, bipolar disorder, neurosis, schizophrenia, chronic fatigue syndrome, anxiety, obsessive-compulsive disorder, panic disorder, epilepsy, nervousness, attention deficit hyperactivity disorder, psychotic major depression, There are intractable major depression and treatment-resistant depression.
  • neurodegenerative diseases include Alzheimer's disease, Alzheimer's senile dementia, Huntington's disease, multiple cerebral infarction dementia, frontotemporal dementia, Parkinson's frontotemporal dementia, progressive supranuclear palsy, Pick's syndrome, Niemann-Pick syndrome, basal ganglia degeneration, Down's syndrome, defective dementia, Lewy body dementia, amyotrophic lateral cord sclerosis, motor neurogenic disease, Creutzfeldt-Jakob disease, cerebral encephalopathy Paralysis, progressive supranuclear palsy, multiple sclerosis, etc.
  • Specific examples of cognitive and memory impairment include age-related memory impairment and senile dementia.
  • sleep disorders include intrinsic sleep disorders, extrinsic sleep disorders, circadian rhythm disorders, parasomnia, sleep disorders associated with internal or psychiatric disorders, stress insomnia, insomnia, insomnia Sleep disorders such as sexual neurosis and sleep apnea syndrome.
  • the compound of the formula (IV) or a pharmaceutically acceptable salt or solvate thereof may be used in combination with other active ingredients.
  • an excipient When the compound of the above formula (IV) or a pharmaceutically acceptable salt or solvate thereof is used in medicine, an excipient, a binder, a disintegrant, a disintegration inhibitor, a caking / adhesion inhibitor, Lubricants, absorption / adsorption carriers, solvents, extenders, tonicity agents, solubilizers, emulsifiers, suspending agents, thickeners, coating agents, absorption promoters, gelling / coagulation promoters, light stability Agents, preservatives, desiccants, emulsification / suspension / dispersion stabilizers, coloring inhibitors, deoxygenation / oxidation inhibitors, flavoring / flavoring agents, coloring agents, foaming agents, defoamers, soothing agents, Oral preparations (tablets, capsules, powders, granules, fine granules, pills, suspensions, emulsions, liquids, syrups) by mixing various pharmaceutical additives
  • the administration method of the above preparation is not particularly limited, but is appropriately determined according to the form of the preparation, the age, sex and other conditions of the patient, and the degree of symptoms of the patient.
  • the compound of the formula (IV) can treat a disease associated with muscarinic acetylcholine M3 receptor and muscarinic acetylcholine M4 receptor
  • the compound of formula (IV) is used as a companion diagnostic agent for treating or preventing the disease.
  • a companion diagnostic agent for treatment is a diagnostic agent for judging whether a treatment can be expected when a disease is found.
  • the companion diagnostic agent for prevention is to predict the future disease state (prognosis) when it is determined to be a disease, or to determine whether prevention is possible to suppress further progression It is a diagnostic agent to do.
  • the compound of formula (IV) may or may not be a radioisotope of formula (IV), wherein one or more of the atoms may be a radioisotope of the atom.
  • 11- (piperazin-1-yl) -5H-dibenzo [b, e] [1,4] diazepine may be omitted.
  • the compound of 11- (piperazin-1-yl) -5H-dibenzo [b, e] [1,4] diazepine wherein one or more atoms is a radioisotope of said atom May be excluded.
  • the present invention is a method for imaging a nerve cell over a plurality of regions in a living animal brain, wherein the nerve cell has a cell body containing dendrites belonging to a first region, and the axon end of the nerve cell has When belonging to a region different from the first region, the first region is a gene encoding a mutant human muscarinic acetylcholine M4 receptor (hM4D) or a mutant human muscarinic acetylcholine M3 receptor (hM3D) Introduced into the living body of the animal, the substance that selectively binds to the hM4D or hM3D and has a radioactive label is transferred into the brain to selectively bind to the hM4D or hM3D, By detecting radiation emitted from the substance selectively bound to hM4D or hM3D, the distribution of hM4D or hM3D at
  • the central nervous system composed of the brain and spinal cord contains more than 100 billion neurons (neurons).
  • a neuron has a relatively short axon, an interneuron (Inter ⁇ neuron) that conveys information only to a nearby neuron, and a relatively long axon, and conveys information to other regions.
  • a neuron is a single cell, and one neuron has one axon. Axons vary in length, ranging from a few microns to a meter. Neural circuits are very complex, and elucidating from which region the projection neuron transmits information to which region has become an issue in brain science.
  • the present inventor has conducted extensive studies and found that, regarding nerve cells over a plurality of regions of the living animal brain, a cell body containing dendrites constituting the nerve cells belongs to the first region, and the axis of the nerve cells When the cord terminus belongs to a region different from the first region, the first region is mutated to cells in the animal living brain by a mutant human muscarinic acetylcholine M4 receptor (hM4D) or a mutant human muscarinic acetylcholine.
  • hM4D human muscarinic acetylcholine M4 receptor
  • a gene encoding the M3 receptor (hM3D) has been introduced, and the substance selectively bound to hM4D or hM3D and having a radioactive label, which has been administered to the living body of the animal, is transferred into the brain to produce the gene.
  • Nerve cells according to the present invention will be described with reference to microscale (microscopic) and mesoscale (mesoscopic) diagrams.
  • FIG. 1 is a micro-scale diagram of a nerve cell (neuron) for explaining the present invention.
  • FIG. 1 shows one nerve cell (neuron) 1 existing in the brain 10000.
  • the nerve cell 1 is a projection neuron, and both ends of the nerve cell 1 exist in different regions, so that the nerve cell 1 extends over different regions.
  • the nerve cell 1 includes a cell body (Cell body or Soma) 10, an axon (Axon) 20, and an axon side branch (Synaptic terminals or Telodendria) 30.
  • the cell body 10 includes a dendrite 11 (Dendrite) 11.
  • the cell body 10 may or may not include the nucleus (Nucleus) 12, but FIG. 1 illustrates one that does.
  • the axon 20 includes a myelin sheath 21.
  • the axon side branch 30 includes axon terminals 31.
  • the cell body 10 including the dendrites 11 belongs to the first region 1000.
  • the axon side branch 30 including the axon end 31 belongs to the second region 2000.
  • the region means a structural classification in the brain, a morphological classification, an anatomical classification, a cytological classification, a functional classification, a physical classification (including electrical properties), It may be an area defined by a classification on information processing, a classification on brain coordinates, or the like.
  • the area may be an area based on a Broadman territory (Broadmann area), which is also called a Broadman brain map, which is an anatomical classification.
  • the area is represented as an area with a reference number 1 to 52. Further, it may be a 1-83 area based on a classification emphasizing the classification by the function. Further, the region may be 1 to 180 according to the classification that emphasizes the classification in cytology. What is important in any case is that the first region 1000 and the second region 2000 are different regions and do not overlap each other.
  • the first region 1000 is introduced as a composition containing a gene encoding a mutant human muscarinic acetylcholine M4 receptor (hM4D) or a mutant human muscarinic acetylcholine M3 receptor (hM3D).
  • a liquid composition containing a gene encoding hM4D or hM3D is supplied from outside the brain by a microsyringe or the like so as to reach the cell body 10 containing the dendrites 11 of the target nerve cell 1. Injected.
  • the injection amount is not limited, an amount larger than the amount required for gene expression, for example, an amount of 1 to 1000 ⁇ l is injected so as to reliably reach a predetermined nerve cell 1.
  • the injected composition occupies a spherical injection region 100 (the region shown by the two-dot chain line) including the cell body 10 including the dendrites 11 of the target nerve cell 1.
  • the gene encoding hM4D or hM3D is injected into the region 1000, and the cell body 10 including the dendrites 11 of the nerve cell 1 is included in the region 1000.
  • the gene encoding hM4D or hM3D is introduced into a cell body 10 containing dendrites 11. Depending on the injection amount of the composition, the gene may be introduced into a part of the axon 20 unavoidably connected to the cell body 10 in addition to the cell body 10 including the dendrites 11. In any case, the implantation region 100 is included in the first region 1000.
  • a substance that selectively binds to hM4D or hM3D and has a radioactive label is externally administered and transferred into the brain.
  • This substance selectively binds to hM4D or hM3D expressed by the gene, and this selective binding is also performed at the axon terminal 31 to which the nerve cell 1 is projected.
  • the axon terminal 31 is radioactively labeled, and molecular imaging becomes possible. If the intensity of radiation is converted into lightness (luminance) during imaging and expressed, in principle, the axon end 31 can be observed to emit light with its shape information. Then, the illuminated axon end 31 is in the second area 2000.
  • the entire axon lateral branch 30 including the axon terminal 31 branched from the nerve cell 1 is completely removed. Observed as emitting radiation. In other words, it includes the axon terminal 31 and is observed as a certain light emitting area 200 (an area shown by a dashed line).
  • the light emitting region 200 different from the first region into which the gene has been introduced is observed. This means that, when the nerve transmission route is unknown, it is possible to know to which region the nerve cell 1 having the dendrites 11 in the first area 100 is connected and the nerve transmission is being projected.
  • FIG. 2 is a mesoscale diagram of a nerve cell for explaining the present invention.
  • FIG. 2 shows, as an example, four nerve cells 1A to 1D present in the brain 10000.
  • Each of the nerve cells 1A to 1D is a projection neuron, and both ends of the nerve cells 1A to 1D are present in different regions. As a result, the nerve cells 1A to 1D extend over different regions.
  • the detailed configuration of the nerve cells 1A to 1D is the same as that of the nerve cell 1 in FIG. Regarding the nerve cells 1A to 1D, the cell bodies including dendrites all belong to the first region 1001. Then, for the nerve cells 1A to 1D, the axon side branches including the axon terminal all belong to the sixth region 6000.
  • the first region 1001 and the sixth region 6000 are different regions and do not overlap with each other. That is, the axon side branch including the axon terminal belongs to a different region from the cell body including the dendrites.
  • a second area 2001, a third area 3000, and a fourth area are located between the first area 1001 and the sixth area 6000 on the coordinate space in the brain. 4000 and a fifth region 5000 are present. Looking at this for each nerve cell, for the nerve cells 1A and 1B, between the first area 1001 and the sixth area 6000, the second area 2001, the third area 3000, and the Four regions 4000 and a fifth region 5000 exist.
  • a second region 2001, a fourth region 4000, and a fifth region 5000 exist between the first region 1001 and the sixth region 6000 ( The third region 3000 is not interposed).
  • a liquid composition containing a gene encoding hM4D or hM3D is introduced into the first region 1001 from outside the brain using a microsyringe or the like, and is injected into the injection region 101 (the region shown by a two-dot chain line). Occupy). At this time, the implantation region 101 is in the first region 1001. When viewed in nerve cell units, only the nerve cells 1A to 1C are in the injection region 101. In this case, the nerve cells 1A to 1C produce gene expression, but the nerve cells 1D do not produce gene expression.
  • a substance that selectively binds to hM4D or hM3D and has a radiolabel is externally administered and transferred into the brain, and only the axon terminals of nerve cells 1A to 1C are observed by molecular imaging. You can do it.
  • a luminous region 600 (a region shown by a dashed line) including the axon terminal of the nerve cells 1A to 1C is observed, but the axon of the nerve cell 1D in which gene expression does not occur. Termination is not included.
  • the nerve cells 1A and 1B are observed as emitting light similarly to the nerve cell 1C that does not pass through the third region, the nerve cells 1A and 1B are interposed between the first region 1001 and the sixth region 6000. It is not affected by other areas (each area other than the first area 1001 and the sixth area 6000).
  • composition containing the encoding gene is injected from the outside of the brain in a very accurate and extremely small amount, the process of nerve transmission can be elucidated in units of nerve cells or bundles of nerve cells. .
  • imaging time is not particularly limited. For example, imaging may be started immediately after the administration of the substance, and may be ended at any time. In addition, imaging may be started immediately after the substance is transferred into the brain, and the imaging may be terminated at any time.
  • imaging may be started after a predetermined time has elapsed, and imaging may be terminated at any time.
  • those that do not contribute to the binding to the nerve cell 1 or other cells are washed away, so that the axon terminal 31 can be easily observed.
  • noise is reduced when acquiring data on the distribution and / or expression level of hM4D or hM3D at the axon terminal 31.
  • the predetermined time may be set for each target animal living body.
  • the predetermined time may be 10 minutes or more, 20 minutes or more, 30 minutes or more, 40 minutes or more, 50 minutes or more, 60 minutes or more, 70 minutes or more immediately after administration of the substance.
  • the end time of the imaging is arbitrary, but is PET imaging.
  • the substance is [ 11 C], taking into consideration its half-life, it is 50 minutes or less, 60 minutes or less, 70 minutes or less, It may be 80 minutes or less, 90 minutes or less, 100 minutes or less, 110 minutes or less, 120 minutes or less, 130 minutes or less.
  • an image diagram is created by adjusting the position and angle of the image cross section so that the axon end 31 is exposed as a cross section.
  • composition containing the gene encoding hM4D or hM3D was introduced, and the imaging of the axonal terminal 31 of the brain after the expression of hM4D or hM3D has been described.
  • imaging is performed in advance before the introduction of the code gene, a differential image before and after the gene introduction can be created electronically, so that a region where the gene expression level is increased can be more easily specified.
  • the present invention is directed to imaging the axonal terminus of a nerve cell into which a gene encoding a mutated human muscarinic acetylcholine M4 receptor (hM4D) or a mutated human muscarinic acetylcholine M3 receptor (hM3D) in an animal living brain has been introduced.
  • a composition for A composition comprising a radiolabeled dibenzoazepine derivative, or a pharmaceutically acceptable salt or solvate thereof.
  • the dibenzoazepine derivative means a compound having a dibenzoazepine skeleton or a compound in which the dibenzoazepine skeleton is substituted with an appropriate substituent.
  • examples of the compound in which the dibenzoazepine skeleton is substituted with an appropriate substituent include a compound having a dibenzodiazepine skeleton and a compound having a dibenzothiazepine skeleton.
  • Diazepines include 1,2-diazepine, 1,3-diazepine, or 1,4-diazepine.
  • Thiazepine includes 1,3-thiazepine or 1,4-thiazepine.
  • dibenzoazepine derivatives include, for example, dibenzo [b, e] azepine derivatives, dibenzo [b, e] [1,4] diazepine derivatives, and dibenzo [b, e] [1,4] thiazepine derivatives.
  • dibenzoazepine derivatives may be further substituted by a suitable substituent.
  • suitable substituents are, for example, alkyl, acyl, aryl, nitrogen-containing heterocycle, sulfur-containing heterocycle, oxygen-containing heterocycle, and halogen.
  • the compound may be contained in a pharmaceutically acceptable carrier to form a composition.
  • the imaging is PET imaging
  • the compound is a radioisotope of one or more atoms.
  • the carbon atom may be 11 C and the nitrogen atom may be 13 N.
  • a dibenzoazepine derivative with a nitrogen-containing heterocycle is piperazine.
  • a compound in which the 11-position of a dibenzoazepine skeleton is substituted by piperazine is substituted by piperazine.
  • it may be 11-piperazino-5H-dibenzo [b, e] [1,4] diazepine.
  • the nitrogen-containing heterocyclic ring substituted on the dibenzodiazepine skeleton may be further substituted by a suitable substituent.
  • a suitable substituent for example, in the case of 11-piperazino-5H-dibenzo [b, e] [1,4] diazepine, the nitrogen on the piperazine skeleton may be replaced by an alkyl group.
  • the substituent alkyl group is a methyl group.
  • one or more atoms are radioisotopes of the atoms.
  • the carbon atom may be 11 C.
  • it may be a compound of formula (II).
  • the halogen may be fluoro (—F), chloro (—Cl), bromo (—Br), and iodo (—I).
  • the substituent halogen is chlorine.
  • one or more atoms are radioisotopes of the atoms.
  • the carbon atom may be 11 C.
  • Example 1 A Japanese monkey (male / 5.5 kg) was head-fixed in stereo under general anesthesia, and a Hamilton syringe (10 ⁇ l) was placed in the center of the right putamen read from a nuclear magnetic resonance (MRI) image taken in advance. 6 ⁇ l of an adeno-associated virus (AAV) vector (AAV2-CMV-hM4D) that specifically expresses the hM4D receptor in neurons was injected over 12 minutes.
  • AAV adeno-associated virus
  • AAV2-CMV-hM4D adeno-associated virus vector that specifically expresses the hM4D receptor in neurons was injected over 12 minutes.
  • CMV is a promoter for gene expression.
  • FIG. 3 shows the created image.
  • the arrow in FIG. 3 is the right puta put into the AAV vector.
  • a region having a high binding ability to [ 11 C] C22b is found in the right putamen, which is the injection site.
  • the region opposite to the site into which the AAV vector was injected as the control region (corresponding to the left putamen) was 0.28
  • the right puta into which the AAV vector was injected was 0.28.
  • the area was 3.07, indicating a significant 11-fold binding compared to the non-injected area. This confirmed the expression of the hM4D receptor.
  • Example 2 and Comparative Example 1 As target Japanese macaques used in Example 1, the expression hM4D visualization characteristics, carried out with [11 C] C22b (Example 2), a comparison of [11 C] clozapine ([11 C] CLZ, Comparative Example 1) was. The process of expressing the hM4D receptor is the same as in Example 1.
  • FIGS. 4 and 5 are the average image images created for 30 to 90 minutes, in which FIG. 4 uses [ 11 C] clozapine and FIG. 5 uses [ 11 C] C22b as a tracer.
  • Table 1 shows the uptake amount (tracer amount per volume (g / cc)) of each tracer in the region of the right puta where the AAV vector was injected and the opposite region (corresponding to the left puta) which is the control region. Shown in The selectivity, which is the ratio of the amount of tracer per volume of the expression region to the amount of tracer per volume of the non-expression region, was 1.25 for [ 11 C] clozapine, whereas it was 2.15 for [ 11 C] C22b. It showed a high value of 31.
  • [ 11 C] C22b showed high uptake of [ 11 C] clozapine in the hM4D expression region, but low uptake in the non-expression control region, indicating high selectivity for artificial receptors. .
  • Example 3 A rhesus monkey (male / 4.2 kg) was head-fixed in stereo under general anesthesia, and a Hamilton syringe (10 ⁇ l) was used in the central part of the left amygdala, which was read from a nuclear magnetic resonance (MRI) image taken in advance. Then, 3 ⁇ l of an adeno-associated virus (AAV) vector (AAV2-CMV-hM3D) expressing the hM3D receptor in a neuron-specific manner was injected over 12 minutes.
  • AAV adeno-associated virus
  • [ 11 C] C22b 277 MBq was intravenously administered as a radiolabeled tracer under isoflurane anesthesia, and a 90-minute PET scan was performed.
  • FIG. 6 shows the created image.
  • the arrow in FIG. 6 is the left amygdala injected with the AAV vector.
  • a region having a high binding ability to [ 11 C] C22b is found in the left amygdala, which is the injection site.
  • the region opposite to the site where the AAV vector was injected as a control region was 0.31, whereas the region of the left amygdala where the AAV vector was injected was 0.31%. 1.05, indicating a significant 3.4-fold binding compared to the non-injected region. This confirmed the expression of the hM3D receptor.
  • Table 2 shows the incorporation amount of each tracer (the amount of tracer per volume (g / cc)) in the region into which the AAV vector was injected and the opposite region which is the control region.
  • the selectivity which is the ratio of the amount of tracer per volume of the expression region to the amount of tracer per volume of the non-expression region, showed a high value of 1.45.
  • Example 4 The same rhesus monkey as in Example 3 was administered intravenously with 0.1 mg / kg of the C22b compound under isoflurane anesthesia 65 days after AAV vector injection, and 1 minute later with 263 MBq of 18 F-FDG intravenously. Then, a PET scan for 90 minutes was performed.
  • the C22b compound is a compound in which R 1 is methyl, X is imino and R 2 is hydrogen in the formula (III), and HY-42110 manufactured by MedChemExpress is used.
  • a glucose metabolism image (Whole Brain Activity) was created based on the captured PET data for 90 minutes, with the whole brain average as 100%.
  • FIG. 7 shows the created image.
  • a rhesus monkey male, 3 kg
  • a C22b compound solution (1 ⁇ g / kg) or a solvent.
  • 18 F-FDG 18 F-FDG (224 to 286 MBq) was intravenously administered, and PET scans for 120 minutes were performed four times each.
  • the same solvent was used as the solvent used for the C22b compound solution (solvent: 0.1 mL / kg of physiological saline containing 1% of dimethyl sulfoxide and 5% of Tween 20 (surfactant)).
  • Glucose metabolism image (Whole Brain Activity) was prepared from PET data integrated for 30 to 60 minutes after administration, with the whole brain average as 100%. Subsequently, sites that showed statistically significant changes in C22b administration compared to vehicle administration were analyzed using repeated measures one-way ANOVA with MATLAB (R2016a) and SPM12. In the left amygdala, which is the injection site of the AAV vector, a region where the activity of glucose metabolism was significantly higher was found (uncorrected p ⁇ 0.001).
  • FIG. 8 is a diagram in which an analysis image (corresponding to the tip of an arrow) of the left amygdala by repeated measurement one-way ANOVA is superimposed on the brain structure image (entire). As shown in FIG. 8, the t value (t-value) of the AAV vector injection region was t> 5.2, and it was confirmed that the activity of glucose metabolism was significant.
  • Example 5 With respect to the Japanese macaque used in Example 1, the substantia nigra-like portion of the right putamen to which the neurons were projected was observed. Specifically, as in Example 1, [ 11 C] C22b was administered as a tracer from outside the body, and a PET scan was performed for 90 minutes. After the PET scan, an integrated average image was created for 30 to 90 minutes after administration of the tracer.
  • FIG. 9 shows the forehead cross section including the substantia nigra of the created image (the shading of the image is indicated by SUV).
  • the arrow in the figure is the substantia nigra reticulum, and it was confirmed that hM4D was expressed at the end of the axon, which is the projection destination of neurons.
  • Example 6 Similar to Example 5, the substantia nigra of the right putamen, which is a projection target of the neurons, was observed in Japanese macaques. Specifically, the compound of the formula (V) ([ 11 C] C22b) was externally administered as a tracer, and a PET scan was performed for 90 minutes. After the PET scan, an integrated average image was created for 30 to 90 minutes after the administration of the tracer.
  • FIG. 10 shows the forehead cross section including the substantia nigra of the created image (the shading of the image is indicated by SUV).
  • the arrow in the figure is the substantia nigra reticulum, and it was confirmed that hM4D was expressed at the end of the axon, which is the projection destination of neurons.
  • the compound of the formula (VI) [ 11 C] 8-chloro-11- (4-methylpiperazine-1-) is also added to nerve cells other than the target nerve cells or brain tissue.
  • Il) -5H-dibenzo [b, e] [1,4] diazepine) is bound to some extent.
  • the compound of the present invention is a compound having both specificity and quantitativeness with respect to the artificial receptor hM4D or the hM3D receptor.
  • the hM3D receptor can be imaged. Further, the compounds of the present invention can activate the hM4D or hM3D receptor.
  • the compounds of the present invention can also provide agonists, antagonists, companion diagnostic agents, and therapeutic agents for diseases involving hM4D or hM3D receptor.
  • the compound of the present invention can also image the axon terminal, which is the projection destination of a projection neuron in an animal body.
  • neuron 10 cell body 11: dendrites 12: nucleus 20: axon 21: myelin sheath 30: axon side branch 31: axon terminal 100: injection region 101: injection region 200: light emitting region 600: light emitting region 1000: first area 1001: first area 2000: second area 2001: second area 3000: third area 4000: fourth area 5000: fifth area 6000: sixth area 10000: brain

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Neurosurgery (AREA)
  • Neurology (AREA)
  • Biomedical Technology (AREA)
  • Epidemiology (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Psychiatry (AREA)
  • Anesthesiology (AREA)
  • Hospice & Palliative Care (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

動物生体脳のイメージング技術、及びその応用の提供を目的とする。 高い脳移行性、高い受容体選択性、高い定量性を示す放射性標識されたジベンゾアゼピン誘導体を、動物生体のイメージングに用いる。ジベンゾアゼピン誘導体を、hM4D受容体又はhM3D受容体に関与する疾患の治療に用いる。また、放射性標識されたジベンゾアゼピン誘導体を、神経細胞の投射先である軸索終端のイメージングに用いる。

Description

人工受容体に結合する新規化合物、人工受容体のイメージング方法、アゴニストまたはアンタゴニスト、治療薬、コンパニオン診断薬、神経細胞のイメージング方法
 本発明は、脳内に人工的に発現させたhM4D受容体又はhM3D受容体の可視化技術、神経細胞の可視化技術、及びhM4受容体又はhM3受容体に関連する疾患の治療剤に関する。
 従来より、人工受容体を体内に導入し、その人工受容体に選択的に作用する薬物を用いて、疾患のメカニズムや疾患の治療に関する研究が行われている。その研究に用いられる受容体は、人工薬物に選択的に作動する人工受容体(Designer Receptor Exclusively Activated by Designer Drug;DREADD)と呼ばれており、細胞レベルの研究が数多く行われている。
Armbruster BN et al., Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc Natl Acad Sci USA. Mar 20; 104(12): 5163-5168 (2007) Ji et al., Multimodal Imaging for DREADD-Expressing Neurons in Living Brain and Their Application to Implantation of iPSC-Derived Neural Progenitors. Journal Neurosci. 36(45): 11544-11558 (2016) Nagai et al., PET imaging-guided chemogenetic silencing reveals a critical role of primate rostromedial caudate in reward evaluation. Nature Communications. 7: 13605 (2016) Gomez J. et al., Chemogenetics revealed: DREADD occupancy and activation via converted clozapine, Science 357(6350): 503-507 (2017)
 この技術におけるインビボの研究では、目標とする特定の臓器、又は臓器の特定の領域において、導入した人工受容体が狙いどおりに発現することが必須である。生体における人工受容体の発現を確認する方法として、組織標本(切片等)を作成し、染色等の方法によって確認していた。しかしながら、この方法は、大型動物では実験個体数が限られ、疾患メカニズムの解明や、治療薬の開発では、開発効率が悪かった。
 一方、生体における人工受容体の発現を確認する別の方法として、ポジトロン断層撮影法(Positron Emission Tomography, PET)を用いた研究が進んでいる。この方法は、組織標本(切片等)を作成する必要がないうえ、生体内の薬理動態を動的に観察することが可能であり、発現のタイミング、位置、範囲、強度などを定量的に捉えることができ、大きな期待が寄せられている。
 具体的には、人工受容体を発現する遺伝子を特定の臓器、特定の領域に導入し、受容体の発現に必要な所定の期間を経過した後、その人工受容体に親和性が高く、放射性標識した活性化剤を導入し、PETイメージングが行われる。
 Gタンパク質結合型であるムスカリン受容体をターゲットとしたDREADDでは、母核の受容体ドメインに人工的な遺伝子変異を施した変異型ムスカリン受容体が用いられている。具体的には、人工受容体遺伝子を組み込んだウイルスベクタを、特定の領域に感染させることが行われる。
 例えば、サルの生体脳に対して、変異型ヒトムスカリンM4受容体(hM4Dと略すことがある)、又は変異型ヒトムスカリンM3受容体(hM3Dと略すことがある)が特定部位に導入される。人工遺伝子が発現したことを確認する方法として、PETイメージング可能な活性化剤である、11Cで標識化したクロザピン(Clozapine;以降、[11C]クロザピンと略すことがある)、及び11Cで標識化したクロザピンNオキシド(Clozapine-N-Oxide;以降、[11C]CNOと略すことがある)を脳外の血管から投与し、撮像が行われる。
 しかしながら、[11C]クロザピンを用いた従来の方法は、血液脳関門(BBB)を通過する高い脳移行性を示しながらも、脳が元々有している内在性受容体に対しても作用し、選択性(特異性)に劣るという性質がある。また、内在性受容体に作用するということは、副作用の懸念もある。
 一方、[11C]CNOは、クロザピンと比べ、内在性受容体に作用しにくいという性質があるものの、最近の研究で、動物生体内では[11C]CNOが代謝によって、[11C]クロザピンに分解するため、脳内での選択性が充分発揮されず、また代謝分解性が高いため、検出可能なシグナルが少なく、測定の定量性も不充分であった(非特許文献1~4)。
 本発明は、以上の実情に鑑みてなされたものであり、動物生体脳のイメージング技術、及びその応用の提供を目的とする。
 本発明者らは、鋭意研究の結果、高い脳移行性、高い受容体選択性、高い定量性を示すジベンゾアゼピン誘導体を見出し、本発明を完成するに至った。
 すなわち、本発明は以下に示されるとおりである。
(1-0)式(I)の化合物、又はその医薬として許容し得る塩若しくは溶媒和物:
Figure JPOXMLDOC01-appb-C000009
(式中、1個又はそれ以上の原子が該原子の放射性同位体である、または、放射性同位体でない。)。
(1)式(I)の化合物、又はその医薬として許容し得る塩若しくは溶媒和物:
Figure JPOXMLDOC01-appb-C000010
(式中、1個又はそれ以上の原子が該原子の放射性同位体である。)。
 (2) 上記化合物は、式(II)の化合物:
Figure JPOXMLDOC01-appb-C000011
である上記(1)記載の化合物、又はその医薬として許容し得る塩若しくは溶媒和物。
 (3)上記(1)又は(2)記載の化合物、又はその医薬として許容し得る塩若しくは溶媒和物を含有する組成物。
 (3-1)変異型ヒトムスカリン性アセチルコリンM4受容体(hM4D)又は変異型ヒトムスカリン性アセチルコリンM3受容体(hM3D)のイメージングにおける、上記(1)若しくは(2)記載の化合物、又はその医薬として許容し得る塩若しくは溶媒和物、あるいは上記(3)記載の組成物の使用であって、
 前記hM4D又はhM3Dは、動物生体脳内の細胞に導入した変異型ヒトムスカリン性アセチルコリンM4受容体(hM4D)又は変異型ヒトムスカリン性アセチルコリンM3受容体(hM3D)をコードする遺伝子が発現して産生するhM4D又はhM3Dである、使用。
 (3-2)変異型ヒトムスカリン性アセチルコリンM4受容体(hM4D)又は変異型ヒトムスカリン性アセチルコリンM3受容体(hM3D)のイメージングにおける、上記(1)若しくは(2)記載の化合物、又はその医薬として許容し得る塩若しくは溶媒和物、あるいは上記(3)記載の組成物の使用であって、
 前記hM4D又はhM3Dは、動物生体脳内の細胞に導入した変異型ヒトムスカリン性アセチルコリンM4受容体(hM4D)又は変異型ヒトムスカリン性アセチルコリンM3受容体(hM3D)をコードする遺伝子が発現して産生するhM4D又はhM3Dであり、
 末梢投与から所定時間のイメージングにより検出される前記化合物、又はその医薬として許容し得る塩若しくは溶媒和物からの放射線の検出量が、前記hM4D発現部位は未発現部位に対し2倍以上、または前記hM3D発現部位は未発現部位に対し、1.4倍以上である、使用。
 (3-2-1)前記動物生体が、霊長類生体であり、
 前記所定時間が、30~90分の時間であり、
 前記検出される検出量が、投与量及び体重により規格化した指数において、前記未発現部位を含む全脳は2.5g/cc以下であるときに、
 前記hM4D発現部位は6.3g/cc以上である、または
 前記hM3D発現部位は3.7g/cc以上である上記(3-2)に記載の使用。
 (3-3)動物生体の脳内hM4D又はhM3Dのイメージング方法であって、
 動物生体脳内の細胞に変異型ヒトムスカリン性アセチルコリンM4受容体(hM4D)又は変異型ヒトムスカリン性アセチルコリンM3受容体(hM3D)をコードする遺伝子が導入されており、
 前記動物生体に投与された、前記hM4D又はhM3Dに選択的に結合する上記(1)若しくは(2)記載の化合物、又はその医薬として許容し得る塩若しくは溶媒和物を、脳内に移行させて前記遺伝子によって発現した前記hM4D又はhM3Dに選択的に結合させ、
 前記脳内hM4D又はhM3Dに選択的に結合した前記化合物、又はその医薬として許容し得る塩若しくは溶媒和物から放射される放射線を検出することで、前記脳内hM4D又はhM3Dの分布及び/又は発現量に関するデータを取得する工程を有する、動物生体の脳内hM4D又はhM3Dのイメージング方法。
 (3-4)動物生体の脳活動のイメージング方法であって、
 動物生体脳内の細胞に変異型ヒトムスカリン性アセチルコリンM4受容体(hM4D)又は変異型ヒトムスカリン性アセチルコリンM3受容体(hM3D)をコードする遺伝子が導入されており、
 前記動物生体に投与された、前記hM4D又はhM3Dに選択的に結合する上記(1)若しくは(2)記載の化合物、又はその医薬として許容し得る塩若しくは溶媒和物を、脳内に移行させて前記遺伝子によって発現した前記hM4D又はhM3Dに選択的に結合させ、
 前記脳内hM4D又はhM3D発現細胞の活性操作に関するデータを取得する工程を有する、動物生体の脳活動のイメージング方法。
 (3-5)動物生体脳内の細胞に導入した変異型ヒトムスカリン性アセチルコリンM4受容体(hM4D)又は変異型ヒトムスカリン性アセチルコリンM3受容体(hM3D)に選択的に結合する物質を含有するアンタゴニスト又はアゴニストであって、
前記物質は、上記(1)若しくは(2)記載の化合物、又はその医薬として許容し得る塩若しくは溶媒和物であるアンタゴニスト又はアゴニスト。
 (3-6)前記変異型受容体は、変異型ヒトムスカリン性アセチルコリンM3受容体(hM3D)である上記(3-5)記載のアゴニスト。
 (3-7)霊長類の生体脳内の細胞に導入した変異型ヒトムスカリン性アセチルコリンM4受容体(hM4D)又は変異型ヒトムスカリン性アセチルコリンM3受容体(hM3D)に選択的に結合する物質を含有する医薬であって、
前記物質は、上記(1)若しくは(2)記載の化合物、又はその医薬として許容し得る塩若しくは溶媒和物である医薬。
 (3-8)霊長類の生体脳内の細胞に導入した変異型ヒトムスカリン性アセチルコリンM4受容体(hM4D)又は変異型ヒトムスカリン性アセチルコリンM3受容体(hM3D)に選択的に結合する物質を含有するコンパニオン診断薬であって、
前記物質は、上記(1)若しくは(2)記載の化合物、又はその医薬として許容し得る塩若しくは溶媒和物であるコンパニオン診断薬。
 (3-9)動物生体脳内の複数の領域にわたる神経細胞のイメージング方法であって、
 前記神経細胞は、樹状突起を含む細胞体が第1の領域に属し、前記神経細胞の軸索終端が前記第1の領域とは異なる領域に属するときに、
 前記第1の領域は、変異型ヒトムスカリン性アセチルコリンM4受容体(hM4D)又は変異型ヒトムスカリン性アセチルコリンM3受容体(hM3D)をコードする遺伝子が導入されており、
 前記動物生体に投与された、前記hM4D又はhM3Dに選択的に結合する放射性標識化された上記(1)若しくは(2)記載の化合物、又はその医薬として許容し得る塩若しくは溶媒和物を、脳内に移行させて前記hM4D又はhM3Dに選択的に結合させ、
 前記hM4D又はhM3Dに選択的に結合した前記放射性標識化された上記(1)若しくは(2)記載の化合物、又はその医薬として許容し得る塩若しくは溶媒和物から放射される放射線を検出することで、
前記軸索終端におけるhM4D又はhM3Dの分布及び/又は発現量に関するデータを取得する工程を有する、神経細胞のイメージング方法。
 (3-10)動物生体脳内の変異型ヒトムスカリン性アセチルコリンM4受容体(hM4D)又は変異型ヒトムスカリン性アセチルコリンM3受容体(hM3D)をコードする遺伝子が導入された神経細胞の軸索終端をイメージングするための組成物であって、
 放射性標識化された上記(1)若しくは(2)記載の化合物、又はその医薬として許容し得る塩若しくは溶媒和物を含有する組成物。
 (4)動物生体脳内の細胞に導入した変異型ヒトムスカリン性アセチルコリンM4受容体(hM4D)又は変異型ヒトムスカリン性アセチルコリンM3受容体(hM3D)をコードする遺伝子が発現して産生するhM4D又はhM3Dをイメージングするための組成物であって、
式(III)の化合物、又はその医薬として許容し得る塩、若しくは溶媒和物:
Figure JPOXMLDOC01-appb-C000012
(式中、Rは、水素、アルキル、アリル、ヒドロキシアルキル、アルコキシアルキル、又はアルコイルオキシアルキルであり、
アルキルはその炭素数が1~6であり、ヒドロキシアルキルはその炭素数が1~2であり、アルコキシアルキル及びアルコイルオキシアルキルはその炭素数が1~5である。
Xは、硫黄、スルフィニル、イミノ、メチレン、又はアルキルイミノであり、
アルキルイミノは、その炭素数が1~6である。
は、水素、ハロゲン、ヒドロキシ、トリフルオロメチル、アルキル、アルコキシ、アルキルチオ、ニトロ、アミノ、又はアミノスルホニルであり、
アルキル、アルコキシ及びアルキルチオにおける炭素数が1~5である。
 1個又はそれ以上の原子が該原子の放射性同位体である。)
を含有する組成物。
 (5)Rは、アルキルである上記(4)記載の組成物。
 (6)Xは、イミノであり、Rは、水素である上記(5)記載の組成物。
 (7)動物生体脳内の細胞に導入した変異型ヒトムスカリン性アセチルコリンM4受容体(hM4D)又は変異型ヒトムスカリン性アセチルコリンM3受容体(hM3D)をコードする遺伝子が発現して産生するhM4D又はhM3Dをイメージングするための組成物であって、
 ジベンゾジアゼピン誘導体又はその医薬として許容し得る塩、若しくは溶媒和物を含有し、
 上記ジベンゾジアゼピン誘導体は、放射性標識されており、
 末梢投与から所定時間のイメージングにより検出される上記誘導体からの放射線の検出量が、上記hM4D発現部位は未発現部位に対し2倍以上、または上記hM3D発現部位は未発現部位に対し、1.4倍以上である組成物。
 (8)上記動物生体が、霊長類生体であり、
 上記所定時間が、30~90分の時間であり、
 上記検出される検出量が、投与量及び体重により規格化した指数において、上記未発現部位を含む全脳は2.5g/cc以下であるときに、
 上記hM4D発現部位は6.3g/cc以上である、または
 上記hM3D発現部位は3.7g/cc以上である上記(7)記載の組成物。
 (9-0)動物生体の脳内hM4D又はhM3Dのイメージング方法であって、動物生体脳内の細胞に変異型ヒトムスカリン性アセチルコリンM4受容体(hM4D)又は変異型ヒトムスカリン性アセチルコリンM3受容体(hM3D)をコードする遺伝子が導入されており、
 上記動物生体に投与された、上記hM4D又はhM3Dに選択的に結合する式(III)の化合物、又はその医薬として許容し得る塩、若しくは溶媒和物:
Figure JPOXMLDOC01-appb-C000013
(式中、
 Rは、水素、アルキル、アリル、ヒドロキシアルキル、アルコキシアルキル、又はアルコイルオキシアルキルであり、
アルキルはその炭素数が1~6であり、ヒドロキシアルキルはその炭素数が1~2であり、アルコキシアルキル及びアルコイルオキシアルキルはその炭素数が1~5である。
Xは、硫黄、スルフィニル、イミノ、メチレン、又はアルキルイミノであり、
アルキルイミノは、その炭素数が1~6である。
は、水素、ハロゲン、ヒドロキシ、トリフルオロメチル、アルキル、アルコキシ、アルキルチオ、ニトロ、アミノ、又はアミノスルホニルであり、
アルキル、アルコキシ及びアルキルチオにおける炭素数が1~5である。
 1個又はそれ以上の原子が該原子の放射性同位体である。)
を、脳内に移行させて上記遺伝子によって発現した上記hM4D又はhM3Dに選択的に結合させることを含む、動物生体の脳内hM4D又はhM3Dのイメージング方法。
 (9)動物生体の脳内hM4D又はhM3Dのイメージング方法であって、動物生体脳内の細胞に変異型ヒトムスカリン性アセチルコリンM4受容体(hM4D)又は変異型ヒトムスカリン性アセチルコリンM3受容体(hM3D)をコードする遺伝子が導入されており、
 上記動物生体に投与された、上記hM4D又はhM3Dに選択的に結合する式(III)の化合物、又はその医薬として許容し得る塩、若しくは溶媒和物:
Figure JPOXMLDOC01-appb-C000014
(式中、
 Rは、水素、アルキル、アリル、ヒドロキシアルキル、アルコキシアルキル、又はアルコイルオキシアルキルであり、
アルキルはその炭素数が1~6であり、ヒドロキシアルキルはその炭素数が1~2であり、アルコキシアルキル及びアルコイルオキシアルキルはその炭素数が1~5である。
Xは、硫黄、スルフィニル、イミノ、メチレン、又はアルキルイミノであり、
アルキルイミノは、その炭素数が1~6である。
は、水素、ハロゲン、ヒドロキシ、トリフルオロメチル、アルキル、アルコキシ、アルキルチオ、ニトロ、アミノ、又はアミノスルホニルであり、
アルキル、アルコキシ及びアルキルチオにおける炭素数が1~5である。
 1個又はそれ以上の原子が該原子の放射性同位体である。)
を、脳内に移行させて上記遺伝子によって発現した上記hM4D又はhM3Dに選択的に結合させ、
 上記脳内hM4D又はhM3Dに選択的に結合した上記物質(上記化合物、又はその医薬として許容し得る塩、若しくは溶媒和物)から放射される放射線を検出することで、上記脳内hM4D又はhM3Dの分布及び/又は発現量に関するデータを取得する工程を有する、動物生体の脳内hM4D又はhM3Dのイメージング方法。
 (9-1)前記脳内hM4D又はhM3Dに選択的に結合した前記化合物から放射される放射線を検出することで、前記脳内hM4D又はhM3Dの分布及び/又は発現量に関するデータを取得する工程を有する、上記(9-0)記載のイメージング方法。
 (9-2)動物生体の脳内hM4D又はhM3Dのイメージング方法であって、動物生体脳内の細胞に変異型ヒトムスカリン性アセチルコリンM4受容体(hM4D)又は変異型ヒトムスカリン性アセチルコリンM3受容体(hM3D)をコードする遺伝子が導入されており、
 上記動物生体に投与された、hM4D又はhM3Dに選択的に結合する上記(4)記載の組成物を、脳内に移行させて上記遺伝子によって発現した上記hM4D又はhM3Dに選択的に結合させ、
 上記脳内hM4D又はhM3Dに選択的に結合した上記化合物、又はその医薬として許容し得る塩、若しくは溶媒和物から放射される放射線を検出することで、上記脳内hM4D又はhM3Dの分布及び/又は発現量に関するデータを取得する工程を有する、動物生体の脳内hM4D又はhM3Dのイメージング方法。
 (10)動物生体の脳活動のイメージング方法であって、
動物生体脳内の細胞に変異型ヒトムスカリン性アセチルコリンM4受容体(hM4D)又は変異型ヒトムスカリン性アセチルコリンM3受容体(hM3D)をコードする遺伝子が導入されており、
 上記動物生体に投与された、上記hM4D又はhM3Dに選択的に結合する式(III)の化合物、又はその医薬として許容し得る塩、若しくは溶媒和物:
Figure JPOXMLDOC01-appb-C000015
(式中、Rは、水素、アルキル、アリル、ヒドロキシアルキル、アルコキシアルキル、又はアルコイルオキシアルキルであり、
アルキルはその炭素数が1~6であり、ヒドロキシアルキルはその炭素数が1~2であり、アルコキシアルキル及びアルコイルオキシアルキルはその炭素数が1~5である。
Xは、硫黄、スルフィニル、イミノ、メチレン、又はアルキルイミノであり、
アルキルイミノは、その炭素数が1~6である。
は、水素、ハロゲン、ヒドロキシ、トリフルオロメチル、アルキル、アルコキシ、アルキルチオ、ニトロ、アミノ、又はアミノスルホニルであり、
アルキル、アルコキシ及びアルキルチオにおける炭素数が1~5である。)
を、脳内に移行させて上記遺伝子によって発現した上記hM4D又はhM3Dに選択的に結合させ、上記脳内hM4D又はhM3D発現細胞の活性操作に関するデータを取得する工程を有する、動物生体の脳活動イメージング方法。
 (10-1)上記式(III)の化合物は、1個又はそれ以上の原子が該原子の放射性同位体である、または、放射性同位体でない、上記(10)記載のイメージング方法。
 (10-2)動物生体の脳活動のイメージング方法であって、
動物生体脳内の細胞に変異型ヒトムスカリン性アセチルコリンM4受容体(hM4D)又は変異型ヒトムスカリン性アセチルコリンM3受容体(hM3D)をコードする遺伝子が導入されており、
 上記動物生体に投与された、hM4D又はhM3Dに選択的に結合する上記(4)記載の組成物を、脳内に移行させて上記遺伝子によって発現した上記hM4D又はhM3Dに選択的に結合させ、上記脳内hM4D又はhM3D発現細胞の活性操作に関するデータを取得する工程を有する、動物生体の脳活動イメージング方法。
 (10-3)上記脳内に移行させて上記遺伝子によって発現した上記hM4D又はhM3Dに選択的に結合させ、上記脳内hM4D又はhM3D発現細胞の活性操作に関するデータを取得し、動物生体の脳活動をイメージングする工程を有する、上記(9-0)記載のイメージング方法。
 (11)動物生体脳内の細胞に導入した変異型ヒトムスカリン性アセチルコリンM4受容体(hM4D)又は変異型ヒトムスカリン性アセチルコリンM3受容体(hM3D)に選択的に結合する物質を含有するアンタゴニスト又はアゴニストであって、
上記物質は、式(III)の化合物、又はその医薬として許容し得る塩若しくは溶媒和物:
Figure JPOXMLDOC01-appb-C000016
(式中、Rは、水素、アルキル、アリル、ヒドロキシアルキル、アルコキシアルキル、又はアルコイルオキシアルキルであり、
アルキルはその炭素数が1~6であり、ヒドロキシアルキルはその炭素数が1~2であり、アルコキシアルキル及びアルコイルオキシアルキルはその炭素数が1~5である。
Xは、硫黄、スルフィニル、イミノ、メチレン、又はアルキルイミノであり、
アルキルイミノは、その炭素数が1~6である。
は、水素、ハロゲン、ヒドロキシ、トリフルオロメチル、アルキル、アルコキシ、アルキルチオ、ニトロ、アミノ、又はアミノスルホニルであり、
アルキル、アルコキシ及びアルキルチオにおける炭素数が1~5である。
 1個又はそれ以上の原子が該原子の放射性同位体である、または、放射性同位体でない。)
であるアンタゴニスト又はアゴニスト。
 (12)上記変異型受容体は、変異型ヒトムスカリン性アセチルコリンM3受容体(hM3D)である上記(11)記載のアゴニスト。
 (13)霊長類の生体脳内の細胞に導入した変異型ヒトムスカリン性アセチルコリンM4受容体(hM4D)又は変異型ヒトムスカリン性アセチルコリンM3受容体(hM3D)に選択的に結合する物質を含有する医薬であって、
上記物質は、式(IV)の化合物、又はその医薬として許容し得る塩若しくは溶媒和物:
Figure JPOXMLDOC01-appb-C000017
(式中、
 Rは、水素、アルキル、アリル、ヒドロキシアルキル、アルコキシアルキル、又はアルコイルオキシアルキルであり、
アルキルはその炭素数が1~6であり、ヒドロキシアルキルはその炭素数が1~2であり、アルコキシアルキル及びアルコイルオキシアルキルはその炭素数が1~5である。)
である医薬。
 (14)霊長類の生体脳内の細胞に導入した変異型ヒトムスカリン性アセチルコリンM4受容体(hM4D)又は変異型ヒトムスカリン性アセチルコリンM3受容体(hM3D)に選択的に結合する物質を含有するコンパニオン診断薬であって、
上記物質は、式(IV)の化合物、又はその医薬として許容し得る塩若しくは溶媒和物:
Figure JPOXMLDOC01-appb-C000018
(式中、Rは、水素、アルキル、アリル、ヒドロキシアルキル、アルコキシアルキル、又はアルコイルオキシアルキルであり、
アルキルはその炭素数が1~6であり、ヒドロキシアルキルはその炭素数が1~2であり、
アルコキシアルキル及びアルコイルオキシアルキルはその炭素数が1~5である。
1個又はそれ以上の原子が該原子の放射性同位体である、または、放射性同位体でない。)
であるコンパニオン診断薬。
 (15)動物生体脳内の複数の領域にわたる神経細胞のイメージング方法であって、
 上記神経細胞は、樹状突起を含む細胞体が第1の領域に属し、上記神経細胞の軸索終端が上記第1の領域とは異なる領域に属するときに、
 上記第1の領域は、変異型ヒトムスカリン性アセチルコリンM4受容体(hM4D)又は変異型ヒトムスカリン性アセチルコリンM3受容体(hM3D)をコードする遺伝子が導入されており、
 上記動物生体に投与された、上記hM4D又はhM3Dに選択的に結合しかつ放射性標識を有する物質を、脳内に移行させて上記hM4D又はhM3Dに選択的に結合させ、
 上記hM4D又はhM3Dに選択的に結合した上記物質から放射される放射線を検出することで、
上記軸索終端におけるhM4D又はhM3Dの分布及び/又は発現量に関するデータを取得する工程を有する、神経細胞のイメージング方法。
 (16)動物生体脳内の複数の領域にわたる神経細胞のイメージング方法であって、
 上記神経細胞は、樹状突起を含む細胞体が第1の領域に属し、上記神経細胞の軸索終端が上記第1の領域とは異なる領域に属するときに、
 上記第1の領域は、変異型ヒトムスカリン性アセチルコリンM4受容体(hM4D)又は変異型ヒトムスカリン性アセチルコリンM3受容体(hM3D)をコードする遺伝子が導入されており、
 上記動物生体に投与された、上記hM4D又はhM3Dに選択的に結合する放射性標識化されたジベンゾアゼピン誘導体を、脳内に移行させて上記hM4D又はhM3Dに選択的に結合させ、
 上記hM4D又はhM3Dに選択的に結合した上記放射性標識化されたジベンゾアゼピン誘導体から放射される放射線を検出することで、
上記軸索終端におけるhM4D又はhM3Dの分布及び/又は発現量に関するデータを取得する工程を有する、神経細胞のイメージング方法。
 (16-1)動物生体脳内の複数の領域にわたる神経細胞は、樹状突起を含む細胞体が第1の領域に属し、上記神経細胞の軸索終端が上記第1の領域とは異なる領域に属するときに、
 上記第1の領域は、変異型ヒトムスカリン性アセチルコリンM4受容体(hM4D)又は変異型ヒトムスカリン性アセチルコリンM3受容体(hM3D)をコードする遺伝子が導入されており、
 上記放射性標識化されたジベンゾアゼピン誘導体は、上記式(III)の化合物、又はその医薬として許容し得る塩、若しくは溶媒和物であり、
 上記化合物、又はその医薬として許容し得る塩、若しくは溶媒和物から放射される放射線を検出することで、上記軸索終端におけるhM4D又はhM3Dの分布及び/又は発現量に関するデータを取得し、動物生体脳内の複数の領域にわたる神経細胞をイメージングする工程を有する、上記(9)記載のイメージング方法。
 (17)動物生体脳内の変異型ヒトムスカリン性アセチルコリンM4受容体(hM4D)又は変異型ヒトムスカリン性アセチルコリンM3受容体(hM3D)をコードする遺伝子が導入された神経細胞の軸索終端をイメージングするための組成物であって、
 放射性標識化されたジベンゾアゼピン誘導体、又はその医薬として許容し得る塩若しくは溶媒和物を含有する組成物。
 (18)上記ジベンゾアゼピン誘導体がジベンゾジアゼピン誘導体である、上記(17)記載の組成物、又は上記(16)記載のイメージング方法。
 (19)上記ジベンゾジアゼピン誘導体が上記式(III)の化合物である、上記(7)、(8)若しくは(18)のいずれか記載の組成物、又は上記(16)若しくは(18)記載のイメージング方法。
 (20)上記化合物が上記式(IV)の化合物である、上記(4)~(6)若しくは(19)のいずれか記載の組成物、上記(9)、(10)若しくは(19)記載のイメージング方法、あるいは上記(11)若しくは(12)記載のアンタゴニスト又はアゴニスト。
 (21)上記化合物が上記(1-0)記載の式(I)の化合物である、上記(4)~(6)、(19)若しくは(20)のいずれか記載の組成物、上記(9)、(10)、(19)若しくは(20)記載のイメージング方法、上記(11)、(12)若しくは(20)記載のアンタゴニスト又はアゴニスト、上記(13)記載の医薬、あるいは上記(14)記載のコンパニオン診断薬。
 (22)上記化合物が上記(1-0)記載の式(I)の化合物(但し、放射性同位体を含まない。)である、上記(13)記載の医薬。
 (23)上記化合物が上記(1)記載の式(I)の化合物である、上記(4)~(6)、(19)、(20)、若しくは(21)のいずれか記載の組成物、上記(9)、(10)、(19)、(20)、若しくは(21)記載のイメージング方法、上記(11)、(12)、(20)、若しくは(21)記載のアンタゴニスト又はアゴニスト、あるいは上記(14)若しくは(21)記載のコンパニオン診断薬。
 (24)上記化合物が上記(2)記載の式(II)の化合物である、上記(4)~(6)、(19)、(20)、(21)若しくは(23)のいずれか記載の組成物、上記(9)、(10)、(19)、(20)、(21)若しくは(23)記載のイメージング方法、上記(11)、(12)、(20)、(21)若しくは(23)記載のアンタゴニスト又はアゴニスト、あるいは上記(14)、(21)若しくは(23)記載のコンパニオン診断薬。
 (25)上記ジベンゾアゼピン誘導体、上記ジベンゾジアゼピン誘導体化合物、又は上記(III)若しくは(IV)の化合物が、上記(1-0)、(1)又は(2)記載の化合物を含まない、上記(4)~(20)記載の組成物、イメージング方法、アンタゴニスト又はアゴニスト、医薬、あるいはコンパニオン診断薬。
 本発明によれば、動物生体の脳等の動物生体の臓器内のhM4D又はhM3D受容体をイメージング化する技術及びその応用を提供することができる。
本発明の投射ニューロンのイメージング方法を示すミクロスケールの図である。 本発明の投射ニューロンのイメージング方法を示すメゾスケールの図である。 被殻に発現させたhM4D受容体の[11C]C22bを用いたPETイメージング像(結合能)である。 被殻に発現させたhM4D受容体の[11C]クロザピンを用いたPETイメージング像(SUV)である。 被殻に発現させたhM4D受容体の[11C]C22bを用いたPETイメージング像(SUV)である。 左扁桃体に発現させたhM3D受容体の[11C]C22bを用いたPETイメージング像(結合能)である。 左扁桃体に発現させたhM3D受容体にC22bを結合させ、[18F]FDGを用いて行った糖代謝PETイメージング像である。 左扁桃体に発現させたhM3D受容体にC22bを結合させ、[18F]FDGを用いて行った糖代謝PETの反復測定一元配置分散分析によるイメージ(t値)を、脳構造画像に重ねあわせたイメージ像である。 hM4D受容体を発現した神経細胞投射先の[11C]C22bを用いたPETイメージング像(SUV)である。 hM4D受容体を発現した神経細胞投射先の化学式(V)の化合物([11C])を用いたPETイメージング像(SUV)である。
 以下、本発明の実施形態について詳述する。
(1.定義)
 Rにおいて、用語「アルキル」とは、脂肪族飽和炭化水素の水素原子1個が失われて生じる1価の基を意味する。アルキルは、1~6個(C1-C6)の炭素原子、典型的には、1~5個(C1-C5)、1~4個(C1-C4)、1~3個(C1-C3)、1~2個(C1-C2)、又は2~6個(C2-C6)の炭素原子を有する。アルキルは、直鎖若しくは分枝状であってもよい。アルキルの例を挙げると、限定されないが、メチル、エチル、プロピル、イソプロピル、2-メチル-1-プロピル、2-メチル-2-プロピル、2-メチル-1-ブチル、3-メチル-1-ブチル、2-メチル-3-ブチル、2,2-ジメチル-1-プロピル、2-メチル-1-ペンチル、3-メチル-1-ペンチル、4-メチル-1-ペンチル、2-メチル-2-ペンチル、3-メチル-2-ペンチル、4-メチル-2-ペンチル、2,2-ジメチル-1-ブチル、3,3-ジメチル-1-ブチル、2-エチル-1-ブチル、n-ブチル、イソブチル、t-ブチル、ペンチル、イソペンチル、ネオペンチル、及びヘキシルなどがある。アルキルは、さらに適当な置換基によって置換されてもよい。なお、本願明細書中において、水素原子を用語「水素」ということがある。
 Rにおいて、用語「アリル」とは、-CHCH=CHを意味する。
 Rにおいて、用語「ヒドロキシアルキル」とは、アルキル基の水素原子の一部又は全部を、水酸基で置換した基を意味する。ヒドロキシアルキルにおける水酸基の数は、1~5が好ましく、1が最も好ましい。
 Rにおいて、用語「アルコキシアルキル」とは、1~3個(C1-C3)の炭素原子を有するアルコキシ基で置換されたアルキルを意味する。アルキルは、さらに適当な置換基によって置換されてもよい。アルキルは、脂肪族飽和炭化水素の水素原子1個が失われて生じる1価の基を意味し、1~2個(C1-C2)の炭素原子、典型的には、1~2個(C1-C2)の炭素原子を有する。アルキルは、直鎖若しくは分枝状であってもよい。アルコキシアルキルの例を挙げると、限定されないが、メトキシメチル、メトキシエチル、メトキシプロピルなどがある。
 Rにおいて、用語「アルコイルオキシアルキル」とは、1~2個(C1-C2)の炭素原子を有するアルコイルオキシ基(アルコキシカルボニル基)で置換されたアルキルを意味する。用語「アルコイル」をアルカノイルともいう。アルコイルオキシ基の代りにアルコキシカルボニル基で置換されたアルキルも用いることができる。アルキルは、さらに適当な置換基によって置換されてもよい。アルキルは、脂肪族飽和炭化水素の水素原子1個が失われて生じる1価の基を意味し、1~3個(C1-C3)の炭素原子、典型的には、1~2個(C1-C2)の炭素原子を有する。アルキルは、直鎖若しくは分枝状であってもよい。アルコイルオキシ基の例を挙げると、限定されないが、メタノイルオキシ、エタノイルオキシなどがある。アルコキシカルボニル基の例を挙げると、限定されないが、メトキシカルボニル、エトキシカルボニルなどがある。
 Xにおいて、用語「スルフィニル」とは、-(S=O)-を意味する。
 Xにおいて、用語「イミノ」とは、-(NH)-を意味する。
 Xにおいて、用語「メチレン」とは、-(CH)-を意味する。
 Xにおいて、用語「アルキルイミノ」とは、-(NR)-を意味する。Rは、アルキルであり、さらに適当な置換基によって置換されてもよい。アルキルは、脂肪族飽和炭化水素の水素原子1個が失われて生じる1価の基を意味し、1~3個(C1-C3)の炭素原子、典型的には、1~2個(C1-C2)の炭素原子を有する。アルキルは、直鎖若しくは分枝状であってもよい。アルキルの例を挙げると、限定されないが、メチル、エチル、プロピル、イソプロピルなどがある。
 Rにおいて、用語「ハロゲン」は、フルオロ(-F)、クロロ(-Cl)、ブロモ(-Br)、及びヨード(-I)を意味する。なお、本願明細書中において、用語「ハロゲン」は、ハロゲン原子を含む。
 Rにおいて、用語「アルキル」とは、脂肪族飽和炭化水素の水素原子1個が失われて生じる1価の基を意味する。アルキルは、1~5個(C1-C5)の炭素原子、典型的には、1~4個(C1-C4)、1~3個(C1-C3)、1~2個(C1-C2)、又は2~5個(C2-C5)の炭素原子を有する。アルキルは、直鎖若しくは分枝状であってもよい。アルキルの例を挙げると、限定されないが、メチル、エチル、プロピル、イソプロピル、2-メチル-1-プロピル、2-メチル-2-プロピル、2-メチル-1-ブチル、3-メチル-1-ブチル、2-メチル-3-ブチル、2,2-ジメチル-1-プロピル、2-メチル-1-ペンチル、3-メチル-1-ペンチル、4-メチル-1-ペンチル、2-メチル-2-ペンチル、3-メチル-2-ペンチル、4-メチル-2-ペンチル、2,2-ジメチル-1-ブチル、3,3-ジメチル-1-ブチル、2-エチル-1-ブチル、n-ブチル、イソブチル、t-ブチル、ペンチル、イソペンチル、及びネオペンチルなどがある。アルキルは、さらに適当な置換基によって置換されてもよい。
 Rにおいて、用語「アルコキシ」とは、-(O―R)-を意味する。Rは、アルキルであり、さらに適当な置換基によって置換されてもよい。アルキルは、1~5個(C1-C5)の炭素原子、典型的には、1~4個(C1-C4)、1~3個(C1-C3)、1~2個(C1-C2)、又は2~5個(C2-C5)の炭素原子を有する。アルキルは、直鎖若しくは分枝状であってもよい。アルコキシの例を挙げると、限定されないが、メトキシ、エトキシ、プロパノキシなどがある。
 Rにおいて、用語「アルキルチオ」とは、-SRを意味する。Rは、アルキルであり、さらに適当な置換基によって置換されてもよい。アルキルは、1~5個(C1-C5)の炭素原子、典型的には、1~4個(C1-C4)、1~3個(C1-C3)、1~2個(C1-C2)、又は2~5個(C2-C5)の炭素原子を有する。アルキルは、直鎖若しくは分枝状であってもよい。アルキルチオの例を挙げると、限定されないが、メチルチオ、メトキシ、エチルチオ、プロパンチオなどがある。
 Rにおいて、用語「ニトロ」とは、-NOを意味する。
 Rにおいて、用語「アミノ」とは、-NH、-NHR及び-NRのいずれかを意味する。ここで、R、Rは、アルキルであり、R、Rは、同一であっても、異なっていてもよい。さらに適当な置換基によって置換されてもよい。アルキルは、1~5個(C1-C5)の炭素原子、典型的には、1~4個(C1-C4)、1~3個(C1-C3)、1~2個(C1-C2)、又は2~5個(C2-C5)の炭素原子を有する。アルキルは、直鎖若しくは分枝状であってもよい。アミノの例を挙げると、限定されないが、アミノ基(-NH)がある。本願明細書中において、-NHR及び-NRを総称して用語「アルキルアミノ」ということがある。
 Rにおいて、用語「アミノスルホニル」とは、-SONR10を意味する。ここで、R、R10は、水素、メチル、及び-SONR11から選ばれるものであり、同一であっても、異なっていてもよい。ここで、R11は、C1-C2アルキル、又は-SONR12であり、R12は、C1-C2アルキルである。アミノスルホニルの例を挙げると、限定されないが、-SON(CH、-SONHCHがある。
 用語「医薬として許容し得る塩」とは、動物生体、特に哺乳動物に対して有害でない塩を指す。医薬として許容し得る塩は、無機酸若しくは無機塩基、又は有機酸若しくは有機塩基を含む、無毒性の酸又は塩基を用いて形成することができる。医薬として許容し得る塩は、酸付加塩及び塩基付加塩を包含する。
 酸性の塩としては、例えば、ナトリウム、カリウム、及びリチウムなどのアルカリ金属との塩、カルシウム及びマグネシウムなどのアルカリ土類金属との塩、アルミニウム及び亜鉛などの金属塩、アンモニウム塩、ならびにトリメチルアミン、トリエチルアミン、トリブチルアミン、ピリジン、N,N-ジメチルアニリン、N-メチルピペリジン、N-メチルモルホリン、ジエチルアミン、ジエタノールアミン、エチレンジアミン、ジシクロヘキシルアミン、プロカイン、クロロプロカイン、ジベンジルアミン、N-ベンジル-β-フェネチルアミン、1-エフェナミン及びN,N'-ジベンジルエチレンジアミン、メグルミン(N-メチルグルカミン)などの含窒素有機塩基との塩などが挙げられる。
 塩基性の塩としては、例えば、塩酸、臭化水素酸、硝酸及び硫酸などの鉱酸との塩;ギ酸、酢酸、クエン酸、シュウ酸、フマル酸、マレイン酸、コハク酸、リンゴ酸、酒石酸、アスパラギン酸、トリクロロ酢酸及びトリフルオロ酢酸などの有機カルボン酸との塩;ならびにメタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸、メシチレンスルホン酸及びナフタレンスルホン酸などのスルホン酸との塩が挙げられる。
 用語「溶媒和物」とは、本発明化合物に対する1つ又は複数の溶媒分子の会合により形成される含溶媒化合物を意味する。溶媒和物は、例えば、一溶媒和物、二溶媒和物、三溶媒和物、及び四溶媒和物を含む。また、溶媒和物は、水和物を含む。溶媒和物は、一水和物、二水和物、三水和物、及び四水和物からなる群より選択される少なくとも1つを含むものであってよく、一水和物、二水和物、三水和物、及び四水和物からなる群より選択される少なくとも1つであることが好ましい。
 用語「化合物、又はその医薬として許容し得る塩」は、異性体(例えば、光学異性体、幾何異性体及び互変異性体など)が存在する場合、本発明は、それらすべての異性体を包含し、また、水和物、溶媒和物及びすべての結晶形を包含するものであってよい。
 用語「剤」とは、医薬、医療用食品、食品、サプリメントを含む。「食品」には、機能性食品、健康食品、健康志向食品なども含まれる。
 本願明細書中において、用語「動物」は、哺乳類又は非哺乳類を含む。また、哺乳類は、齧歯類、非齧歯類を含む。非齧歯類は、霊長類を含む。例えば、齧歯類はラット、マウス、モルモット、ウサギなどである。また、非齧歯類であり、霊長類ではないものは、例えば、イヌ、ネコ、ミニブタなどである。動物は、分類上、ヒトと非ヒトに分けることがある。
 本願明細書中において、用語「霊長類」は、例えば、ヒト、サル(マーモセット(例えば、コモンマーモセット)、アカゲザル、カニクイザル)などである。霊長類は、分類上、ヒトと非ヒトに分けることがある。
 本願明細書中において、用語「脳」とは、当業者により一般的に用いられる意味を有し、例えば、大脳、間脳、小脳、又は中脳である。より具体的には、大脳皮質、例えば、大脳辺縁皮質である。さらに具体的には、帯状回、扁桃体、海馬、中隔、脳弓、乳頭体、又は海馬傍回などである。
 本願明細書中において、用語「ヒトムスカリン性アセチルコリンM4受容体」、及び「ヒトムスカリン性アセチルコリンM3受容体」は、当業者に公知であり、それぞれ、ヒト由来の代謝調節型受容体のサブタイプM3及びM4を意味する。「ヒトムスカリン性アセチルコリンM4受容体」及び「ヒトムスカリン性アセチルコリンM3受容体」を、それぞれ、「hM4」及び「hM3」と略すことがある。
 また、本願明細書中において、用語「変異型ヒトムスカリンM4受容体」、及び「変異型ヒトムスカリンM3受容体」も当業者に公知であり、それぞれ「hM4D」、及び「hM3D」と略すことがある。
 ここで変異型ヒトムスカリンM4受容体、又は変異型ヒトムスカリンM3受容体は、それぞれhM4D又はhM3Dをコードするウイルスベクタを利用し、哺乳動物の所望の部位に導入し、発現させることで作成されるものである。本発明において、hM4Dをコードする遺伝子とhM3Dをコードする遺伝子とは、別々に用いても、同時に用いてもよい。
 変異型ヒトムスカリン性アセチルコリンM4受容体(hM4D)、及びhM4Dをコードする遺伝子は、当業者に公知である。配列表に示すように、hM4Dは、ヒトムスカリン性アセチルコリンM4受容体(hM4)のアミノ酸配列(配列番号1)のうち、第113番目のチロシン(Tyr)がシステイン(Cys)に、及び第203番目のアラニン(Ala)がグリシン(Gly)に変異したアミノ酸配列を有する(配列番号2)。hM4Dをコードする遺伝子は、配列番号3の塩基配列を有する。hM4Dは、神経伝達物質などの内在性の伝達物質と結合しない。
 また、変異型ヒトムスカリン性アセチルコリンM3受容体(hM3D)、及び該hM3Dをコードする遺伝子も、当業者に公知である。hM3Dは、ヒトムスカリン性アセチルコリンM3受容体(hM3)のアミノ酸配列(配列番号4)のうち、第149番目のチロシン(Tyr)がシステイン(Cys)に、及び第239番目のアラニン(Ala)がグリシン(Gly)に変異したアミノ酸配列を有する(配列番号5)。hM3Dをコードする遺伝子は、配列番号6の塩基配列を有する。hM3Dは、神経伝達物質などの内在性の伝達物質と結合しない。
 hM4D又はhM3Dをコードする遺伝子は、必要に応じて、プロモーター、エンハンサー及び/又はPoly(A)などを連結することができる。好ましくは、神経細胞に特異的に発現するThy-1-プロモーターを連結することができる。好ましくは、hM4D又はhM3Dをコードする遺伝子は、上流にThy-1-プロモーター及び下流にSV40が連結されている。
 本願明細書中において、用語「イメージング」とは、分子イメージングであり、特に限定されないが、ポジトロン断層撮影法(Positron Emission Tomography, PET)、多光子イメージング法、二光子イメージング法、近赤外蛍光イメージング法、オートラジオグラフィー、及び単一光子放射断層撮影法(Single Photon Emission Computed Tomography, SPECT)などであってよい。なかでもPETイメージングが好ましいものである。
(2.化合物)
 本発明は、ジベンゾジアゼピン誘導体である上記式(I)の化合物、又はその医薬として許容し得る塩若しくは溶媒和物を提供する。
 ここで、式中、1個又はそれ以上の原子が該原子の放射性同位体である、または、放射性同位体でない。上記式(I)の化合物が放射性同位体を含む場合、具体的には、炭素原子が、11Cであってよく、窒素原子が13Nであってよい。11Cが1個であってよく、また、13Nが1個であってよい。上記式(I)の化合物中の放射性同位体は、炭素原子の放射性同位体であることが好ましく、11Cであることがより好ましく、11Cが1個であることがさらに好ましい。
 また、本発明の一実施態様において、上記式(I)の化合物における組み合わせ例として、上記式(II)の化合物、又はその医薬として許容し得る塩若しくは溶媒和物がある。
 上記式(I)の化合物は放射性同位体を含まないものであってもよい。
(3.合成方法)
 上記式(II)の化合物([11C]C22bということがある)は、次の合成方法によって製造することができる(式(V))。
Figure JPOXMLDOC01-appb-C000019
 出発原料として、11-(ピペラジン-1-イル)-5H-ジベンゾ[b,e][1,4]ジアゼピン(C21ということがある)0.2mgを、無水ジクロロメタン溶液0.3mLに溶解させ、[11C]標識合成用反応容器に仕込んだ。この混合溶液に、常法により放射性標識した[11C]メチルトリフレート([11C]MeOTf)を、窒素気流下で、冷却された上記反応容器に捕集し、放射能飽和後、室温で5分間反応させた。反応後、窒素気流を用いて、溶媒を留去し、残渣を回収した。次に、回収した残渣にHPLC分離溶媒(アセトニトリル/水=40/60、トリエチルアミンを0.1%含む溶媒)0.5mLを加え、高速液体クロマトグラフィ(HPLC)を用いて、目的物[11C]C22bのRIピーク部分を分取した。
 動物実験に用いる場合には、分取液を濃縮し、生理食塩水(界面活性剤Tween80(ポリソルベート80)を含有)で回収したものを用いた。
(4.組成物)
 本発明は、式(I)の化合物、又は式(II)の化合物、又はそれらの医薬として許容し得る塩若しくは溶媒和物を含む、組成物を提供する。組成物は、医薬として許容し得る担体中に含まれてもよい。
 医薬として許容し得る担体は、特に制限されないが、例えば、滅菌水、食塩水、生理食塩水又はリン酸緩衝食塩水(PBS)、塩化ナトリウム注射液、リンゲル注射液、等張性デキストロース注射液、無菌水注射液、デキストロース、及び乳酸リンゲル注射液などがある。
 組成物は、特に制限されないが、例えば、非経口投与、静脈内投与、又は腹腔内投与することが可能である。上記物質(「化合物、又はその医薬として許容し得る塩若しくは溶媒和物」)は、血管を通じて輸送された後、血液脳関門を通過して脳へ移行する。このため、上記物質は、血液脳関門を通過可能な特性を有する必要があり、所定の低分子量、脂溶性とともに、所定の血液溶解性を備えることが好ましい。なお、上記物質は、単一物質であってもよく、あるいは、DDS(ドラッグデリバリーシステム)に担持された状態でもよい。
 なお、上記物質の投与量は、使用される物質の種類;投与される対象の年齢、体重、健康状態、性別及び食事内容、投与の回数、及び投与経路等によって、適宜設定されてよい。上記物質の投与は、特に限定されない。
(5.hM4D又はhM3Dをイメージングするための組成物[1])
 本発明は、動物生体脳内の細胞に導入したhM4D又はhM3Dをコードする遺伝子が発現して産生するM4D又はhM3Dをイメージングするための組成物として、上記式(III)の化合物、又はそれらの医薬として許容し得る塩若しくは溶媒和物を含む、組成物を提供する。ここで式中、1個又はそれ以上の原子が該原子の放射性同位体である。放射性同位体の一例としては、炭素原子は11Cであってよく、窒素原子は13Nであってよく、酸素原子は15Oであってよく、ハロゲンの一例であるフッ素原子は18Fであってよい。
 ここで、組成物は、上記(4.組成物)において述べたように、医薬として許容し得る担体中に含まれてもよい。
 式(III)の化合物において、Rは、好ましくはC1-C6アルキルであり、Xは、好ましくは硫黄、スルフィニル、イミノ、メチレン、又はC1-C6アルキルイミノであり、Rは、好ましくは水素、ハロゲン、ヒドロキシ、トリフルオロメチル、C1-C5アルキル、C1-C5アルコキシ、C1-C5アルキルチオ、ニトロ、アミノ、又はアミノスルホニルである。
 本発明の一実施態様において、式(III)の化合物における各置換基の組み合わせとして、Rは、C1-C6アルキルであり、
 Xは、硫黄、スルフィニル、イミノ、メチレン、又はC1-C6アルキルイミノであり、
 Rは、水素、ハロゲン、ヒドロキシ、トリフルオロメチル、C1-C5アルキル、C1-C5アルコキシ、C1-C5アルキルチオ、ニトロ、アミノ、又はアミノスルホニルであり、
 1個又はそれ以上の原子が該原子の放射性同位体である。放射性同位体の一例としては、炭素原子は11Cであってよく、窒素原子は13Nであってよく、酸素原子は15Oであってよく、ハロゲンの一例であるフッ素原子は18Fであってよい。
  また、他の実施態様において、式(III)の化合物における各置換基の組み合わせとして、Rは、C1-C6アルキルであり、
 Xは、イミノであり、
 Rは、水素、ハロゲン、ヒドロキシ、トリフルオロメチル、C1-C5アルキル、C1-C5アルコキシ、C1-C5アルキルチオ、ニトロ、アミノ、又はアミノスルホニルであり、
 1個又はそれ以上の原子が該原子の放射性同位体である。放射性同位体の一例としては、炭素原子は11Cであってよく、窒素原子は13Nであってよく、酸素原子は15Oであってよく、ハロゲンの一例であるフッ素原子は18Fであってよい。
 また、他の実施態様において、式(III)の化合物における各置換基の組み合わせとして、Rは、C1-C6アルキルであり、
 Xは、硫黄、スルフィニル、イミノ、メチレン、又はC1-C6アルキルイミノであり、
 Rは、水素であり、
 1個又はそれ以上の原子が該原子の放射性同位体である。放射性同位体の一例としては、炭素原子は11Cであってよく、窒素原子は13Nであってよく、酸素原子は15Oであってよい。
 また、他の実施態様において、式(III)の化合物における各置換基の組み合わせとして、Rは、C1-C6アルキルであり、
 Xは、イミノであり、
 Rは、水素であり、
 1個又はそれ以上の原子が該原子の放射性同位体である。放射性同位体の一例としては、炭素原子は11Cであってよく、窒素原子は13Nであってよい。
 また、他の実施態様において、式(III)の化合物における各置換基の組み合わせとして、Rは、メチルであり、
 Xは、イミノであり、
 Rは、水素であり、
 1個又はそれ以上の原子が該原子の放射性同位体である。放射性同位体の一例としては、炭素原子は11Cであってよく、窒素原子は13Nであってよい。
 一実施態様において、式(III)の化合物から、11-(ピペラジン-1-イル)-5H-ジベンゾ[b,e][1,4]ジアゼピン、及び6-(4-メチルピペラジン-1-イル)-11H-ベンゾ[c][1]ベンザゼピンの、1個又はそれ以上の原子が該原子の放射性同位体である化合物は、除かれてもよい。
また、他の実施態様において、式(III)の化合物における各置換基の組み合わせとして、式(II)の化合物を含有する組成物がある。
 以上の式(III)の化合物についての記載は、後述の(6.hM4D又はhM3Dをイメージングするための組成物[2])、(7.脳内のhM4D又はhM3Dをイメージングする方法)、(8.脳内のhM4D又はhM3D発現細胞の活性操作に伴う脳活動の変化をイメージングする方法)、(9.アゴニスト/アンタゴニスト)、(11.複数の領域にわたる神経細胞の軸索終端のイメージング方法)、及び(12.複数の領域にわたる神経細胞の軸索終端イメージング用組成物)において用いられる化合物にも適用することができる。また、以上の式(III)の化合物についての記載は、放射性同位体を含まないこと以外は、後述の(10.医薬)において用いられる化合物にも適用することができる。
 これら化合物を含む組成物は、動物生体脳内の細胞にあらかじめ導入したhM4D又はhM3Dをコードする遺伝子が細胞内で発現することによって産生されるhM4D又はhM3Dに対して、特異的に結合することができる。
 また、これら化合物を含む組成物は、動物生体脳内の血液脳関門(BBB)を通過することができる。すなわち、これら化合物を含む組成物を、BBBよりも下流、例えば手足等の末梢、好ましくは静脈注射等の血管から投与することができ、血管から投与したときに、細胞内で発現し、産生されたhM4D又はhM3Dに対して、特異的に結合することができる。本明細書及び請求項において、BBBの下流を末梢ということがあり、BBBの下流からの投与を末梢投与ということがある。
 また、これら化合物を含む組成物は、hM4D又はhM3Dに対する結合性が高く、野生型の受容体など内在性物質に対する結合性は低く、従ってhM4D又はhM3Dに対して、選択性が高い。
 これら組成物に含まれる化合物の結合能を数値化すると、例えば、hM4D受容体又はhM3D受容体を神経細胞特異的に発現するベクター(例えば、アデノ随伴ウィルス(AAV)ベクター(AAV2-CMV-hM4D))を注入し、例えば撮像した90分間積算のPETデータから小脳を参照領域としたリガンド結合能のイメージを作成する場合(小脳の結合能(BP)を1とする)、ベクターを注入した部位とは反対側の対照領域(非注入領域)と比べて、ベクターを注入した領域は、3.4~11倍と著しい結合性を示す。該結合能の例としては、例えばhM4D受容体(上記領域が左被殻・右被殻)の場合、約11倍とすることができ、hM3D受容体(上記領域が右扁桃体・左扁桃体)の場合、約3.4倍とすることができる。
 かかる結合能は、後述の(6.hM4D又はhM3Dをイメージングするための組成物[2])、(7.脳内のhM4D又はhM3Dをイメージングする方法)、(8.脳内のhM4D又はhM3D発現細胞の活性操作に伴う脳活動の変化をイメージングする方法)、(9.アゴニスト/アンタゴニスト)、(11.複数の領域にわたる神経細胞の軸索終端のイメージング方法)、及び(12.複数の領域にわたる神経細胞の軸索終端イメージング用組成物)において用いられる化合物にも適用することができる。
 また、これら化合物を含む組成物は、動物体内から、容易に排出され得る。すなわち、これら化合物を含む組成物を、BBBよりも下流、例えば手足等の末梢、好ましくは静脈注射等の血管から投与したときに、細胞内で発現し、産生されたhM4D又はhM3Dを、安定的に且つ毒性なくイメージングすることができる。
 また、これら化合物を含む組成物は、放射線のシグナル強度が高い。すなわち、これら化合物を含む組成物を、BBBよりも下流、例えば手足等の末梢、好ましくは静脈注射等の血管から投与したときに、細胞内で発現し、産生されたhM4D又はhM3Dを、定量的にPETイメージングすることができる。
(6.hM4D又はhM3Dをイメージングするための組成物[2])
 本発明は、動物生体脳内の細胞に導入したhM4D又はhM3Dをコードする遺伝子が発現して産生するM4D又はhM3Dをイメージングするための組成物として、ジベンゾジアゼピン誘導体又はその医薬として許容し得る塩、若しくは溶媒和物を含有し、
 上記ジベンゾジアゼピン誘導体は、放射性標識されており、
 末梢投与から所定時間のイメージングにより検出される上記誘導体からの放射線の検出量が、上記hM4D発現部位は未発現部位に対し2倍以上、または上記hM3D発現部位は未発現部位に対し1.4倍以上である組成物を提供する。
 ここで、ジベンゾジアゼピン誘導体は、ジベンゾジアゼピン骨格を有する化合物を意味する。そして、組成物は、(4.組成物)にて述べたように、医薬として許容し得る担体中に含まれてもよい。また、イメージングがPETによるイメージングであるとき、化合物は、1個又はそれ以上の原子が該原子の放射性同位体である。放射性同位体の一例としては、炭素原子は11Cであってよく、窒素原子は13Nであってよい。
 ジベンゾジアゼピン骨格としては、例えば、1,2-ジアゼピン、1,3-ジアゼピン、1,4-ジアゼピンを含む若しくは母核とするジベンゾジアゼピン又はジベンゾジアゼピン誘導体がある。
 本発明の一実施態様において、ジベンゾジアゼピン骨格は、1,4-ジアゼピンを含む骨格である。そしてジベンゾジアゼピン誘導体の一例としては、ジベンゾ[b,e][1,4]ジアゼピンがある。
 ジベンゾジアゼピン骨格は、適当な置換基によって、置換しうる。ジベンゾジアゼピン骨格が有していてもよい適当な置換基とは、例えば、アルキル、アシル、アリール、含窒素複素環、含硫黄複素環、含酸素複素環、ハロゲンである。含窒素複素環としては、芳香族性でも非芳香族性でもよく、非芳香族性の含窒素複素環としては、例えば、含窒素脂肪族炭化水素環等が挙げられ、含窒素飽和脂肪族炭化水素環が好ましい。また、これら置換基はさらに適当な置換基によって、置換されてもよい。
 一実施態様において、11-(ピペラジン-1-イル)-5H-ジベンゾ[b,e][1,4]ジアゼピンの、1個又はそれ以上の原子が該原子の放射性同位体である化合物は、除かれてもよい。
 これら化合物を含む組成物は、動物生体の所定の臓器内の細胞にあらかじめ導入したhM4D又はhM3Dをコードする遺伝子が細胞内で発現することによって産生されるhM4D又はhM3Dに対して、特異的に結合することができる。
 また、これら化合物を含む組成物は、動物生体脳内の血液脳関門(BBB)を通過することができる。すなわち、これら化合物を含む組成物を、BBBよりも下流、例えば手足等の末梢、好ましくは静脈注射等の血管から投与することができ、血管から投与したときに、細胞内で発現し、産生されたhM4D又はhM3Dに対して、特異的に結合することができる。
 そして、その臓器の全部ではない一部の領域(以降、部位ということがある)内に存在する細胞についてのみhM4Dを発現させ、これら化合物を含む組成物を、動物の末梢から投与し、所定の臓器をイメージングするとき、所定時間のイメージングにより検出される検出量が、hM4D発現部位が未発現部位に対し2倍以上である組成物である。すなわち動物生体の臓器のイメージングにおいて、未発現部位に対するhM4D発現部位の選択性が2倍以上を示す組成物である。上記検出量ないし選択性は、例えば、5倍以下であってもよい。
 あるいは、その臓器の全部ではない一部の領域内に存在する細胞についてのみhM3Dを発現させ、これら化合物を含む組成物を、動物の末梢から投与し、所定の臓器をイメージングするとき、所定時間のイメージングにより検出される検出量が、上記hM3D発現部位が未発現部位に対し、1.4倍以上である組成物である。すなわち動物生体の臓器のイメージングにおいて、未発現部位に対するhM3D発現部位の選択性が1.4倍以上を示す組成物である。上記検出量ないし選択性は、例えば、5倍以下であってもよい。
 なおここで、検出量は、所定時間のイメージングを行って、検出されたシグナルの積算値(積分値)によって算出されるものである。未発現部位と発現部位の両方に対して検出量を行い、発現部位の検出量を未発現部位の検出量で割ることによって、上記の選択性は測定できる。なお、測定にあたって、バックグラウンドノイズがシグナルとしてカウントされる量である場合には、各々の検出量からバックグラウンドの検出量を差し引いてから、計算に供する。
 このように、動物生体の臓器のイメージングにおいて、hM4D発現部位の選択性が2倍以上、またはhM3D発現部位の選択性が1.4倍以上である組成物を用いることにより、hM4D発現部位又はhM3D発現部位は、良好にイメージングすることができ、発現又は未発現の判定が容易に行える。また、発現量を定量的に測定することも可能となる。
 さらには定量安定性を有する範囲も存在する。具体的には、hM4D発現部位が未発現部位に対し2.1倍以上が望ましく、2.2倍以上がより望ましく、2.3倍以上がさらに望ましく、2.31倍以上がさらにより望ましく、例えば、5倍以下であってもよい。また、hM3D発現部位が未発現部位に対し1.41倍以上が望ましく、1.43倍以上がより望ましく、1.45倍以上がさらに望ましく、例えば、5倍以下であってもよい。
 選択性をこのような数値とすることにより、イメージング画像の信号雑音強度比(S/N比)が向上し、定量評価が安定的に行われる。安定的にとは、繰り返し再現性のような同一条件による測定の普遍性を意味する。
 また、動物生体が、霊長類生体であり、臓器が脳である場合には、イメージングは、上記化合物の末梢投与から30~90分の時間であり、その上記検出される検出量が、投与量及びその投与される生体の体重により規格化した指数において、未発現部位を含む全脳が2.5g/cc以下であるときに、上記hM4D発現部位は6.3g/cc以上である、または上記hM3D発現部位は3.7g/cc以上であるジベンゾジアゼピン誘導体又はその医薬として許容し得る塩、若しくは溶媒和物を含有する組成物である。
 以上の検出量、選択性等についての記載は、上述の(5.hM4D又はhM3Dをイメージングするための組成物[1])、後述の(7.脳内のhM4D又はhM3Dをイメージングする方法)、(8.脳内のhM4D又はhM3D発現細胞の活性操作に伴う脳活動の変化をイメージングする方法)、(9.アゴニスト/アンタゴニスト)、(11.複数の領域にわたる神経細胞の軸索終端のイメージング方法)、及び(12.複数の領域にわたる神経細胞の軸索終端イメージング用組成物)において用いられる化合物にも適用することができる。
 上記イメージングが、PETによるイメージングであるときに、本発明の一実施形態は、上記化合物のジベンゾジアゼピン骨格が、含窒素複素環により置換されるものである。含窒素複素環としては、芳香族性でも非芳香族性でもよく、非芳香族性の含窒素複素環としては、例えば、含窒素脂肪族炭化水素環等が挙げられ、含窒素飽和脂肪族炭化水素環が好ましい。また、化合物は、1個又はそれ以上の原子が該原子の放射性同位体である。放射性同位体の一例としては、炭素原子は11Cであってよく、窒素原子は13Nであってよい。
 含窒素複素環の一例として、ピペラジンがある。例えばジベンゾジアゼピン骨格の11位がピペラジンによって置換された11-ピペラジノ-5H-ジベンゾ[b,e][1,4]ジアゼピンであってよい。
 ジベンゾジアゼピン骨格に置換された含窒素複素環は、さらに適当な置換基によって置換しうる。一例として、11-ピペラジノ-5H-ジベンゾ[b,e][1,4]ジアゼピンである場合、ピペラジン骨格上の窒素がアルキル基によって置換しうる。この例において置換基であるアルキル基の一例としては、C1-C6アルキル基、具体的にはメチル基がある。
 これら化合物を含む組成物は、動物体内から、容易に排出され得る。すなわち、これら化合物を含む組成物を、BBBよりも下流、例えば手足等の末梢、好ましくは静脈注射等の血管から投与したときに、細胞内で発現し、産生されたhM4D又はhM3Dを、安定的に且つ毒性なくイメージングすることができる。
 また、これら化合物を含む組成物は、放射線のシグナル強度が高い。すなわち、これら化合物を含む組成物を、BBBよりも下流、例えば手足等の末梢、好ましくは静脈注射等の血管から投与したときに、細胞内で発現し、産生されたhM4D又はhM3Dを、定量的にPETイメージングすることができる。
(7.脳内のhM4D又はhM3Dをイメージングする方法)
 本発明は、動物生体の脳内hM4D又はhM3Dのイメージング方法であって、動物生体脳内の細胞に変異型ヒトムスカリン性アセチルコリンM4受容体(hM4D)又は変異型ヒトムスカリン性アセチルコリンM3受容体(hM3D)をコードする遺伝子が導入されており、上記動物生体に投与された、上記hM4D又はhM3Dに選択的に結合する上記式(III)化合物、又はその医薬として許容し得る塩、若しくは溶媒和物を、脳内に移行させて上記遺伝子によって発現した上記hM4D又はhM3Dに選択的に結合させ、上記脳内hM4D又はhM3Dに選択的に結合した上記物質(上記化合物、又はその医薬として許容し得る塩、若しくは溶媒和物)から放射される放射線を検出することで、上記脳内hM4D又はhM3Dの分布及び/又は発現量に関するデータを取得する工程を有する、動物生体の脳内hM4D又はhM3Dのイメージング方法を提供する。
 ここで式(III)化合物は、1個又はそれ以上の原子が該原子の放射性同位体である。放射性同位体の一例としては、炭素原子は11Cであってよく、窒素原子は13Nであってよく、酸素原子は15Oであってよく、ハロゲンの一例であるフッ素原子は18Fであってよい。
 一実施態様において、11-(ピペラジン-1-イル)-5H-ジベンゾ[b,e][1,4]ジアゼピン、及び6-(4-メチルピペラジン-1-イル)-11H-ベンゾ[c][1]ベンザゼピンの、1個又はそれ以上の原子が該原子の放射性同位体である化合物は、除かれてもよい。
 また、組成物は、(4.組成物)にて述べたように、医薬として許容し得る担体中に含まれてもよい。
 放射線を検出し、脳内hM4D又はhM3Dの分布及び/又は発現量に関するデータを取得する工程は、イメージング装置であるPETを用いることで実現できる。
 具体的には、あらかじめhM4D又はhM3Dが発現した後、式(III)の化合物、又はその医薬として許容し得る塩、若しくは溶媒和物を含有する組成物が投与され、血液脳関門(BBB)を通過して脳内移行が完了した生体を、PET装置内に設置し、その脳から発せられる放射線を所定の時間、連続してイメージングすることで行われる。
 ここで用いるPET装置は特殊なものである必要はなく、一般的なPET装置、すなわち同時計算方式を用いた多層リング配列形PET装置を用いることができる。二次元(2D)、三次元(3D)収集が可能な装置であってよく、平面内や体軸方向の機械的走査を伴うものであってもよい。また、マイクロPETと呼ばれる部分的に収集可能な装置であってもよい。
 上記化合物を含む組成物は、動物生体脳内の細胞にあらかじめ導入したhM4D又はhM3Dをコードする遺伝子が細胞内で発現することによって産生されるhM4D又はhM3Dに対して、特異的に結合することができる。
 このとき、hM4D又はhM3Dに対する結合性が高く、野生型の受容体など内在性物質に対する結合性は低く、従ってhM4D又はhM3Dに対して、選択性が高いので、高コントラストな画像を得ることができる。
 従って、このイメージング方法によって、hM4D又はhM3Dをコードする遺伝子が発現した部位を、可視化できるとともに、脳内の発現した部位の位置を正確に表示することができる。
 また、これら化合物を含む組成物は、放射線のシグナル強度が高いので、得られた画像からhM4D又はhM3Dを、定量的に算出することができる。
(8.脳内のhM4D又はhM3D発現細胞の活性操作に伴う脳活動の変化をイメージングする方法)
 本発明は、動物生体の脳活動変化のイメージング方法であって、動物生体脳内の細胞に変異型ヒトムスカリン性アセチルコリンM4受容体(hM4D)又は変異型ヒトムスカリン性アセチルコリンM3受容体(hM3D)をコードする遺伝子が導入されており、上記動物生体に投与された、上記hM4D又はhM3Dに選択的に結合する上記式(III)の化合物、又はその医薬として許容し得る塩、若しくは溶媒和物を、脳内に移行させて上記遺伝子によって発現した上記hM4D又はhM3Dに選択的に結合させ、
 続けて上記動物生体脳を対象とした脳活動画像を取得することで、上記脳内hM4D又はhM3D発現細胞の活性操作に伴う脳活動変化に関するデータを取得する工程を有する、動物生体の脳活動の機能的なイメージング方法を提供する。
 ここで、組成物は、(4.組成物)にて述べたように、医薬として許容し得る担体中に含まれてもよい。
 脳活動イメージの取得には、様々な方法があるが、例えば糖代謝を指標とした脳活動測定法として糖ポジトロン、脳血流を指標とした脳活動測定として[15O]H2O-PET、機能的磁気共鳴(fMRI), 近赤外脳機能計測(fNIRS)、内因性光計測法などが利用可能である。また神経細胞の電気活動を可視化する方法として脳電図(脳波)、脳磁図(MEG)、膜電位感受性色素イメージング法(VSDI)などが利用可能である。
 具体的には、糖ポジトロン法では、あらかじめhM4D又はhM3Dが発現した後、式(III)の化合物、又はその医薬として許容し得る塩、若しくは溶媒和物を含有する組成物が投与され、選択的に結合された後、糖ポジトロン核種を含有する組成物が投与されて脳内移行が完了した生体に対し、生体をPET装置内に設置し、その脳から発せられる放射線を所定の時間、連続してイメージングすることで行われる。hM4D又はhM3Dを発現した細胞において、糖代謝が活発に行われるならば、糖ポジトロン核種は多く消費されるし、糖代謝がほとんど行われないならば、糖ポジトロン核種はほとんど消費されない。従って脳内の糖ポジトロン核種からの放射線の分布及び/又は放射線量を測定することによって、hM4D又はhM3D発現領域における糖代謝の分布及び/又は代謝量に関するデータを取得することができる。
 ここで用いる糖ポジトロン核種は、公知の糖ポジトロン核種を用いることができ、例えば[18F]フルオロデオキシグルコース(18F-FDG)を好適に用いることができる。また、生理食塩水を含む組成物として用いることができる。また組成物は、D-マンニトールを含んでもよい。
 ここで用いるPET装置は特殊なものである必要はなく、一般的なPET装置、すなわち同時計算方式を用いた多層リング配列形PET装置を用いることができる。二次元(2D)、三次元(3D)収集が可能な装置であってよく、平面内や体軸方向の機械的走査を伴うものであってもよい。また、マイクロPETと呼ばれる部分的に収集可能な装置であってもよい。
 式(III)の化合物は、動物生体脳内の細胞にあらかじめ導入したhM4D又はhM3Dをコードする遺伝子が細胞内で発現することによって産生されるhM4D又はhM3Dに対して、特異的に結合することができる。
 このとき、hM4D又はhM3Dに対する結合性が高く、野生型の受容体などする内在性物質に対する結合性は低く、従ってhM4D又はhM3Dに対して高い選択性を持った結合状態となる。
 従って、この脳内糖代謝のイメージング方法によって、hM4D又はhM3Dの発現部位に式(III)の化合物が結合した状態における糖代謝分布を可視化できるとともに、代謝量を精度よく測定することができる。
 また、hM4D又はhM3Dの発現部位において、式(III)の化合物が結合することによって、糖代謝が増加又は減少又は変化しないといった傾向に関するデータも取得することができる。
 また、hM4D又はhM3Dの発現部位において、あらかじめ糖代謝量を測定しておき、それと本発明による組成物を用いるイメージング方法により測定した糖代謝量を比較することによって、式(III)の化合物の結合による糖代謝が増減量を定量的に取得することができる。
(9.アゴニスト/アンタゴニスト)
 本発明は、動物生体脳内の細胞に導入した変異型ヒトムスカリン性アセチルコリンM4受容体(hM4D)又は変異型ヒトムスカリン性アセチルコリンM3受容体(hM3D)に選択的に結合する物質を含有するアンタゴニスト又はアゴニストであって、上記式(III)の化合物、又はその医薬として許容し得る塩若しくは溶媒和物であるアンタゴニスト(拮抗薬)又はアゴニスト(作動薬)、を提供する。
 ここで、上記式(III)の式中、1個又はそれ以上の原子が該原子の放射性同位体である、または放射性同位体でない。
 一実施態様において、11-(ピペラジン-1-イル)-5H-ジベンゾ[b,e][1,4]ジアゼピン、及び6-(4-メチルピペラジン-1-イル)-11H-ベンゾ[c][1]ベンザゼピンは、除かれてもよい。
 また、一実施態様において、11-(ピペラジン-1-イル)-5H-ジベンゾ[b,e][1,4]ジアゼピン、及び6-(4-メチルピペラジン-1-イル)-11H-ベンゾ[c][1]ベンザゼピンの、1個又はそれ以上の原子が該原子の放射性同位体である化合物は、除かれてもよい。
 例えば、式(III)の化合物において、Xをイミノ、Rを水素、Rをメチルとした化合物は、その化合物が放射性標識される、放射性標識されないにかかわらず、変異型ヒトムスカリン性アセチルコリンM3受容体(hM3D)に対して、選択的に作用する作動薬として振舞う。
 従って、本発明は、特に上記変異型受容体が、変異型ヒトムスカリン性アセチルコリンM3受容体(hM3D)であるときに、アゴニストを提供することができる。
 さらに、式(III)の化合物において、Xをイミノ、Rを水素、Rをメチルとした化合物は、その化合物が放射性標識される、放射性標識されないにかかわらず、変異型ヒトムスカリン性アセチルコリンM4受容体(hM4D)に対して、選択的に作用する作動薬として振舞う。
 従って、上記変異型受容体が、変異型ヒトムスカリン性アセチルコリンM4受容体(hM4D)であるときに、アゴニストを提供することができる。
(10.医薬)
 本発明は、霊長類の生体脳内の細胞に導入した変異型ヒトムスカリン性アセチルコリンM4受容体(hM4D)又は変異型ヒトムスカリン性アセチルコリンM3受容体(hM3D)に選択的に結合する物質を含有する治療薬であって、
 上記物質は、式(IV)の化合物、又はその医薬として許容し得る塩若しくは溶媒和物、である医薬を提供する。
 上述したように、式(III)の化合物は、変異型ヒトムスカリン性アセチルコリンM3受容体(hM3D)と変異型ヒトムスカリン性アセチルコリンM4受容体(hM4D)に対して、選択的に作用する性質を有する。
 この点に着目し、霊長類の生体脳について、研究を進めたところ、脳内の疾患に関わる部位に、変異型ヒトムスカリン性アセチルコリンM3受容体(hM3D)、又は変異型ヒトムスカリン性アセチルコリンM4受容体(hM4D)を発現させる遺伝子を導入し、hM3D又はhM4Dを発現した後に、式(IV)の化合物、又はその医薬として許容し得る塩若しくは溶媒和物を投与することによって、疾患を治療しうる医薬を提供できることが分かった。
 一実施態様において、11-(ピペラジン-1-イル)-5H-ジベンゾ[b,e][1,4]ジアゼピンは、除かれてもよい。
 例えば、精神疾患、神経変性疾患、認知・記憶障害、睡眠障害の疾患に用いられる。
 精神疾患の具体例としては、うつ病、大うつ病、双極性うつ病、気分変調障害、情動障害、再発性うつ病、産後うつ病、ストレス性障害、うつ症状、躁病、不安、全般性不安障害、不安症候群、パニック障害、恐怖症、社会性恐怖症、社会性不安障害、強迫性障害、心的外傷後ストレス症候群、外傷後ストレス障害、タウレット症候群、自閉症、脆弱X症候群、レット症候群、適応障害、双極性障害、神経症、統合失調症、慢性疲労症候群、不安神経症、強迫神経症、恐慌性障害、てんかん、神経過敏症、注意欠陥多動性障害、精神病性大うつ病、難治性大うつ病、治療抵抗性うつ病などがある。
 神経変性疾患の具体例としては、アルツハイマー病、アルツハイマー型老人性認知症、ハンチントン舞踏病、多発脳梗塞性認知症、前頭側頭認知症、パーキンソン型前頭側頭認知症、進行性核上麻痺、ピック症候群、ニーマン-ピック症候群、大脳皮質基底核変性症、ダウン症、欠陥性認知症、レヴィー小体認知症、筋委縮性脊髄側索硬化症、運動神経原性疾患、クロイツフェルト・ヤコブ病、脳性麻痺、進行性核上麻痺、多発性硬化症などがある。
 認知・記憶障害の具体例としては、加齢性記憶障害、老人性認知症などがある。
 睡眠障害の具体例としては、内在因性睡眠障害、外在因性睡眠障害、概日リズム障害、睡眠時随伴症、内科又は精神科障害に伴う睡眠障害、ストレス性不眠症、不眠症、不眠性神経症、睡眠時無呼吸症候群などの睡眠障害などがある。
 この他、外傷性脳損傷、脳卒中、神経性食欲不振、摂食障害、神経性無食欲症、過食症、その他の摂食障害、アルコール依存症、アルコール乱用、アルコール性健忘症、アルコール妄想症、アルコール嗜好性、アルコール離脱、アルコール性精神病、アルコール中毒、アルコール性嫉妬、アルコール性躁病、アルコール依存性精神障害、アルコール精神病、薬物嗜好、薬物恐怖症、薬物狂、薬物離脱、偏頭痛、ストレス性頭痛、緊張性頭痛、糖尿病性ニューロパシー、肥満、糖尿病、筋肉痙攣、メニエール病、自律神経失調症、脱毛症、緑内障、難聴、高血圧、心臓病、頻脈、うっ血性心不全、過呼吸、気管支喘息、無呼吸、乳幼児突然死症候群、炎症性疾患、アレルギー疾患、インポテンス、更年期障害、不妊症、癌、HIV感染による免疫不全症候群、脳脊髄膜炎、末端肥大症、失禁、メタボリック・シンドローム、骨粗しょう症、消化性潰瘍、過敏性腸症候群、炎症性腸疾患、潰瘍性大腸炎、クローン病、ストレス性胃腸障害、神経性嘔吐、消化性潰瘍、下痢、便秘、術後イレウス、麻酔薬、外傷性疾患、又は神経変性疾患などに起因する呼吸抑制にも用いられる。
 なお、上記式(IV)の化合物又はその医薬として許容し得る塩若しくは溶媒和物は、他の活性成分と併用して使用してもよい。
 また、上記式(IV)の化合物、又はその医薬として許容し得る塩若しくは溶媒和物を、医薬に用いる場合、賦形剤、結合剤、崩壊剤、崩壊抑制剤、固結・付着防止剤、滑沢剤、吸収・吸着担体、溶剤、増量剤、等張化剤、溶解補助剤、乳化剤、懸濁化剤、増粘剤、被覆剤、吸収促進剤、ゲル化・凝固促進剤、光安定化剤、保存剤、防湿剤、乳化・懸濁・分散安定化剤、着色防止剤、脱酸素・酸化防止剤、矯味・矯臭剤、着色剤、起泡剤、消泡剤、無痛化剤、帯電防止剤、緩衝・pH調節剤などの各種医薬品添加物を配合して、経口剤(錠剤、カプセル剤、散剤、顆粒剤、細粒剤、丸剤、懸濁剤、乳剤、液剤、シロップ剤など)、注射剤、点眼剤などの医薬品製剤とすることができる。
 上記製剤の投与方法は、特に限定されないが、製剤の形態、患者の年齢、性別その他の条件、患者の症状の程度に応じて適宜決定される。
 また、上述したように、式(IV)の化合物は、ムスカリン性アセチルコリンM3受容体、ムスカリン性アセチルコリンM4受容体に関わる疾患を治療しうることから、疾患の治療又は予防のためのコンパニオン診断薬を提供することができる。ここで治療のためのコンパニオン診断薬とは、疾患が判明した場合に、治療が見込めるかどうかを判断するため診断薬である。
 また、ここで予防のためのコンパニオン診断薬とは、疾患であることが判明した場合に、今後の疾患病勢(予後)を推測する、若しくはそれ以上の進行を抑制する予防が見込めるかどうかを判断するため診断薬である。
 コンパニオン診断薬の場合、式(IV)の化合物は、式(IV)中、1個又はそれ以上の原子が該原子の放射性同位体であってもよい、放射性同位体でなくてもよい。
 一実施態様において、11-(ピペラジン-1-イル)-5H-ジベンゾ[b,e][1,4]ジアゼピンは、除かれてもよい。
 また、一実施態様において、11-(ピペラジン-1-イル)-5H-ジベンゾ[b,e][1,4]ジアゼピンの、1個又はそれ以上の原子が該原子の放射性同位体である化合物は、除かれてもよい。
(11.複数の領域にわたる神経細胞の軸索終端のイメージング方法)
 本発明は、動物生体脳内の複数の領域にわたる神経細胞のイメージング方法であって、上記神経細胞は、樹状突起を含む細胞体が第1の領域に属し、上記神経細胞の軸索終端が上記第1の領域とは異なる領域に属するときに、上記第1の領域は、変異型ヒトムスカリン性アセチルコリンM4受容体(hM4D)又は変異型ヒトムスカリン性アセチルコリンM3受容体(hM3D)をコードする遺伝子が導入されており、上記動物生体に投与された、上記hM4D又はhM3Dに選択的に結合し且つ放射性標識を有する物質を、脳内に移行させて上記hM4D又はhM3Dに選択的に結合させ、上記hM4D又はhM3Dに選択的に結合した上記物質から放射される放射線を検出することで、上記軸索終端におけるhM4D又はhM3Dの分布及び/又は発現量に関するデータを取得する工程を有する、神経細胞のイメージング方法を提供する。
 脳と脊髄から構成される中枢神経系には1000億個以上の神経細胞(ニューロン、Neuron)が存在すると言われている。ニューロンには、比較的短い軸索を持ち、特定の部位に限局して、近傍のニューロンとのみ情報伝達する介在ニューロン(Inter neuron)と、比較的長い軸索を持ち、他の領域へと情報を伝達する投射ニューロン(Projection neuron)とがある。ニューロンは、単一細胞であり、1つのニューロンは1つの軸索を有する。軸索の長さは様々であり、数ミクロンから1メートルにも及ぶ。神経回路は大変複雑であり、投射ニューロンがどの領域から、どの領域に情報を伝達しているのかを解明することが脳科学上の課題となっている。
 本発明者は、鋭意研究を重ねた結果、動物生体脳の複数の領域にわたる神経細胞について、上記神経細胞を構成する樹状突起を含む細胞体が第1の領域に属し、上記神経細胞の軸索終端が上記第1の領域とは異なる領域に属するときに、上記第1の領域は、動物生体脳内の細胞に変異型ヒトムスカリン性アセチルコリンM4受容体(hM4D)又は変異型ヒトムスカリン性アセチルコリンM3受容体(hM3D)をコードする遺伝子が導入されており、上記動物生体に投与された、上記hM4D又はhM3Dに選択的に結合し且つ放射性標識を有する物質を、脳内に移行させて上記遺伝子によって発現した上記hM4D又はhM3Dに選択的に結合させ、上記脳内hM4D又はhM3Dに選択的に結合した上記物質から放射される放射線を検出することで、上記軸索終端におけるhM4D又はhM3Dの分布及び/又は発現量に関するデータを取得できることを見出した。
 本発明における神経細胞(ニューロン)について、ミクロスケール(マイクロスコピック)とメゾスケール(メゾスコピック)の図を用いて説明する。
 図1は、本発明を説明するための神経細胞(ニューロン)のミクロスケールの図である。図1は、脳10000内に存在する1つの神経細胞(ニューロン)1を示している。神経細胞1は、投射ニューロンであり、神経細胞1の両端は異なる領域に存在しており、その結果、神経細胞1は異なる領域にわたっている。
 具体的には、神経細胞1は、細胞体(Cell body又はSoma)10と、軸索(Axon)20と、軸索側枝(Synaptic terminals又はTelodendria)30と、を含んでいる。
 そして、細胞体10は、樹状突起(Dendrite)11を含んでいる。細胞体10は、核(Nucleus)12を含んでも、含まなくてもよいが、図1では、含んでいるものを図示している。
 軸索20は、ミエリン鞘(Myelin sheath)21を含んでいる。
 軸索側枝30は、軸索終端(Synaptic terminals)31を含んでいる。
 そして、樹状突起11を含む細胞体10は、第1の領域1000に属している。また、軸索終端31を含む軸索側枝30は、第2の領域2000に属している。ここで、第1の領域1000と、第2の領域2000とは異なる領域であり、互いに重ならない。なおここで領域とは、脳内の構造上の分類、組織形態上の分類、解剖学上の分類、細胞学上の分類、機能による分類、物理学上の分類(電気的性質を含む)、情報処理学上の分類、脳座標上の分類などにより定義された領域であってよい。例えば、解剖学上の分類であるブロードマンの脳地図とも呼ばれるブロードマン領野(Broadmann area)による領域であってよく、その場合は1~52番の符号を付した領域として表現される。また、機能による分類を重視した分類による1~83領域であってもよい。また、細胞学上の分類を重視した分類による1~180領域であってもよい。いずれにせよ重要なことは、第1の領域1000と、第2の領域2000とは異なる領域であり、互いに重ならないことである。
 第1の領域1000には、変異型ヒトムスカリン性アセチルコリンM4受容体(hM4D)又は変異型ヒトムスカリン性アセチルコリンM3受容体(hM3D)をコードする遺伝子を含む組成物として導入される。具体的には、対象とする神経細胞1の樹状突起11を含む細胞体10に届くように、脳の外部から、hM4D又はhM3Dをコードする遺伝子を含む液状の組成物が、マイクロシリンジなどによって注入される。注入量に限定はないが、所定の神経細胞1に確実に届くように、遺伝子発現に必要とされる量よりも多い量、例えば1~1000μlの量が注入される。従って注入された組成物は、対象とする神経細胞1の樹状突起11を含む細胞体10を含んだ球状の注入領域100(二点鎖線で図示した領域)を占有する。言い換えれば、領域1000にhM4D又はhM3Dをコードする遺伝子が注入されており、領域1000のなかに、神経細胞1の樹状突起11を含む細胞体10が含まれている。
 hM4D又はhM3Dをコードする遺伝子は、樹状突起11を含む細胞体10に導入される。組成物の注入量により、樹状突起11を含む細胞体10に加え、不可避的に細胞体10と接続する軸索20の一部にも遺伝子が導入されることがある。いずれにしても、注入領域100は、第1の領域1000に含まれている。
 導入された遺伝子が生体の神経細胞1全体に発現するのには、所定の期間を要する。例えば1日以降、3日以降、5日以降、7日以降、10日以降、20日以降、30日以降、40日以降、50日以降、60日以降、100日以降、150日以降、200日以降、250日以降、300日以降、400日以降、500日以降である。遺伝子が発現することにより、hM4D又はhM3D受容体が産み出され、それは上記所定の期間以降、動物の外部からの観察が可能となる。
 具体的には、hM4D又はhM3Dに選択的に結合し且つ放射性標識を有する物質を、外部より投与し、脳内に移行させる。この物質は、上記遺伝子によって発現したhM4D又はhM3Dに選択的に結合するが、神経細胞1の投射先である軸索終端31においても、この選択的結合は行われる。この結果、軸索終端31は放射性標識され、分子イメージングが可能となる。イメージング時に放射線の強度を明度(輝度)に変換して表現するならば、原理的には軸索終端31は、その形状情報を伴って、発光するように観察できる。そして発光した軸索終端31は、第2の領域2000内にある。
 分子イメージングがPETイメージングである場合、汎用PET装置の現在の空間解像度(空間分解能)では、ミクロスケールの解像度がないため、神経細胞1から分岐した軸索終端31を含んだ軸索側枝30全体が、放射線を発しているように観察される。言い換えれば、軸索終端31を含んで、あるまとまった発光領域200(一点鎖線で図示した領域)として観察される。
 すなわち、遺伝子を導入した第1の領域とは異なる領域である発光領域200が観察されることになる。このことは、神経伝達経路が不明である場合に、第1の領域100に樹状突起11を有する神経細胞1が、どの領域に接続され、神経伝達が投射されているかを知ることができる。
 また、軸索終端31におけるhM4D又はhM3Dの分布及び/又は発現量に関するデータを取得できる。
 図2は、本発明を説明するための神経細胞のメゾスケールの図である。図2は、一例として、脳10000内に存在する4つの神経細胞1A~1Dを示している。神経細胞1A~1Dは、いずれも投射ニューロンであり、神経細胞1A~1Dの両端は、いずれも異なる領域に存在しており、その結果、神経細胞1A~1Dは異なる領域にわたっている。
 神経細胞1A~1Dの細部の構成は、図1における神経細胞1と同様であるので説明及び図示を省略する。神経細胞1A~1Dについて、各々樹状突起を含む細胞体は、すべて第1の領域1001に属している。そして、神経細胞1A~1Dについて、軸索終端を含む軸索側枝は、すべて第6の領域6000に属している。
 ここで、第1の領域1001と、第6の領域6000とは異なる領域であり、互いに重ならない。すなわち、軸索終端を含む軸索側枝は、樹状突起を含む細胞体とは、異なる領域に属している。
 なお、図2に図示するように、脳内座標空間上、第1の領域1001と、第6の領域6000との間には、第2の領域2001、第3の領域3000、第4の領域4000、第5の領域5000が存在している。これを各神経細胞ごとにみると、神経細胞1Aと神経細胞1Bについては、第1の領域1001と、第6の領域6000との間に、第2の領域2001、第3の領域3000、第4の領域4000、第5の領域5000が存在している。
 神経細胞1Cと神経細胞1Dについては、第1の領域1001と、第6の領域6000との間に、第2の領域2001、第4の領域4000、第5の領域5000が存在している(第3の領域3000は介在していない)。
 ここで、脳の外部から、第1の領域1001に対して、hM4D又はhM3Dをコードする遺伝子を含む液状の組成物を、マイクロシリンジなどによって導入し、注入領域101(二点鎖線で図示した領域)を占有する。このとき、注入領域101は第1の領域1001の内にある。神経細胞単位でみると、神経細胞1A~1Cの神経細胞のみが、注入領域101にある。この場合、神経細胞1A~1Cの神経細胞は遺伝子発現を生じるが、神経細胞1Dの神経細胞は遺伝子発現を生じない。
 従って、遺伝子発現後に、hM4D又はhM3Dに選択的に結合し且つ放射性標識を有する物質を、外部より投与し、脳内に移行させると、神経細胞1A~1Cの軸索終端のみ、分子イメージングにより観察できることとなる。PETイメージングの場合には、神経細胞1A~1Cの軸索終端を含んで、発光領域600(一点鎖線で図示した領域)として観察されるが、ここに遺伝子発現が生じない神経細胞1Dの軸索終端は含まれない。
 また、神経細胞1A・1Bは、第3の領域を介さない神経細胞1Cと同様に発光するものとして観察されることから、第1の領域1001と、第6の領域6000との間に介在する他の領域(第1の領域1001と、第6の領域6000以外の各領域)の影響を受けない。
 このように脳の外部から、コードする遺伝子を含む組成物を非常に正確に、極めて少量注入するならば、神経細胞単位、又は神経細胞の束の単位で、神経伝達の過程が解明できることになる。
 なお、イメージングに際し、イメージング時間は、特に限定されない。例えば、上記物質を投与した直後からイメージングを開始し、任意の時にイメージングを終了してよい。また、上記物質が脳内に移行した直後からイメージングを開始し、任意の時にイメージングを終了してよい。
 また、上記物質を投与した直後、又は上記物質が脳内に移行した直後に対し、所定の時間経過してからイメージングを開始し、任意の時にイメージングを終了してよい。上記物質のうち、神経細胞1やその他の細胞との結合に寄与しないものが洗い流されることによって、軸索終端31が観察しやすくなる。また、軸索終端31におけるhM4D又はhM3Dの分布及び/又は発現量に関するデータを取得する際に、ノイズが少なくなる。
 ここで、所定の時間は、対象となる動物生体ごとに設定してよい。例えば、所定の時間は、上記物質を投与した直後の10分以上、20分以上、30分以上、40分以上、50分以上、60分以上、70分以上、であってよい。また、イメージングの終了時間は、任意であるが、PETイメージングであり、上記物質が[11C]であるときは、その半減期を考慮して、50分以下、60分以下、70分以下、80分以下、90分以下、100分以下、110分以下、120分以下、130分以下であってよい。
 なお、軸索終端31を鮮明に観察するためには、軸索終端31が断面として露出するように、画像断面の位置、角度を調節して、イメージ図を作成する。
 以上、hM4D、又はhM3Dをコードする遺伝子を含む組成物を導入し、hM4D、又はhM3Dが発現した後の脳の軸索終端31のイメージングについて説明してきた。ここで、上記コード遺伝子導入の前に、事前にイメージングを行っておくならば、遺伝子導入前後の差分画像を電子的に作成できるから、遺伝子発現量の増加領域を、より特定しやすくできる。
(12.複数の領域にわたる神経細胞の軸索終端イメージング用組成物)
 本発明は、動物生体脳内の変異型ヒトムスカリン性アセチルコリンM4受容体(hM4D)又は変異型ヒトムスカリン性アセチルコリンM3受容体(hM3D)をコードする遺伝子が導入された神経細胞の軸索終端をイメージングするための組成物であって、
 放射性標識化されたジベンゾアゼピン誘導体、又はその医薬として許容し得る塩若しくは溶媒和物を含有する組成物を提供する。
 ここで、ジベンゾアゼピン誘導体とは、ジベンゾアゼピン骨格を有する化合物、又はジベンゾアゼピン骨格を適当な置換基によって置換した化合物を意味する。ここで、ジベンゾアゼピン骨格を適当な置換基によって置換した化合物は、例えば、ジベンゾジアゼピン骨格を有する化合物、ジベンゾチアゼピン骨格を有する化合物がある。
 ジアゼピンには、1,2-ジアゼピン、1,3-ジアゼピン、又は1,4-ジアゼピンがある。
 チアゼピンには、1,3-チアゼピン、又は1,4-チアゼピンがある。
 ジベンゾアゼピン誘導体の例としては、例えば、ジベンゾ[b,e]アゼピン誘導体、ジベンゾ[b,e][1,4]ジアゼピン誘導体、ジベンゾ[b,e][1,4]チアゼピン誘導体である。
 これらジベンゾアゼピン誘導体は、さらに適当な置換基によって置換されてもよい。適当な置換基とは、例えば、アルキル、アシル、アリール、含窒素複素環、含硫黄複素環、含酸素複素環、ハロゲンである。
 そして、化合物は、(4.組成物)にて述べたように、医薬として許容し得る担体中に含まれて、組成物としてもよい。
 また、イメージングがPETによるイメージングであるとき、化合物は、1個又はそれ以上の原子が該原子の放射性同位体である。放射性同位体の一例としては、炭素原子は11Cであってよく、窒素原子は13Nであってよい。
 ジベンゾアゼピン誘導体を含窒素複素環で置換する一例として、ピペラジンがある。例えばジベンゾアゼピン骨格の11位がピペラジンによって置換された化合物がある。例えば、11-ピペラジノ-5H-ジベンゾ[b,e][1,4]ジアゼピンであってよい。
 ジベンゾジアゼピン骨格に置換された含窒素複素環は、さらに適当な置換基によって置換しうる。一例として、11-ピペラジノ-5H-ジベンゾ[b,e][1,4]ジアゼピンである場合、ピペラジン骨格上の窒素がアルキル基によって置換しうる。
 本発明の一実施態様において、置換基であるアルキル基がメチル基である、上記式(I)の化合物がある。ここで、上記式(I)の化合物は、1個又はそれ以上の原子が該原子の放射性同位体である。
 放射性同位体の一例として、炭素原子が11Cであってよい。
 さらに一例として、式(II)の化合物であってよい。
 また、ジベンゾアゼピン骨格において、置換しうる置換基がハロゲンである場合、ハロゲンは、フルオロ(-F)、クロロ(-Cl)、ブロモ(-Br)、及びヨード(-I)であってよい。
 本発明の他の実施態様において、置換基であるハロゲンが塩素である以下の式(VI)の化合物がある。
Figure JPOXMLDOC01-appb-C000020
ここで、上記式(VI)の化合物は、1個又はそれ以上の原子が該原子の放射性同位体である。
 放射性同位体の一例として、炭素原子が11Cであってよい。
 以下、実施例を記載する。下記実施例は、請求の範囲に関する理解を深めるために記載しているものであり、請求の範囲を限定することを意図するものではない。なお、以下の動物実験にあたっては、国立研究開発法人量子科学技術研究開発機構の動物実験倫理委員会の許可を得て、実施している。
 実施例1
 ニホンザル(オス/5.5kg)を全身麻酔状態で頭部をステレオに固定し、事前に撮像した核磁気共鳴画像法(MRI)画像から読影した右被殻中央部に、ハミルトンシリンジ(10μl)を用い、hM4D受容体を神経細胞特異的に発現するアデノ随伴ウィルス(AAV)ベクター(AAV2-CMV-hM4D)6μlを、12分かけて注入した。なお、ここで、CMVは、遺伝子発現のためのプロモーターである。
 注入427日後に、イソフルラン麻酔下で、放射性標識したトレーサーとして、式(II)の化合物(以降、[11C]C22bということがある)364MBqを、静脈から投与し、90分間のPETスキャンを行った。
 撮像した90分間積算のPETデータから、小脳を参照領域としたリガンド結合能のイメージを作成した(小脳の結合能(BP)を1とする)。作成したイメージを図3に示す。
 図3の矢印部分は、AAVベクターを注入した右被殻である。図3に示すとおり、注入した部位である右被殻に、[11C]C22bとの結合能の高い領域が見られる。結合能を数値化すると、対照領域であるAAVベクターを注入した部位とは反対側の領域(左被殻に相当)が0.28であったのに対し、AAVベクターを注入した右被殻の領域は3.07であり、非注入領域と比べて11倍の著しい結合性を示した。このことから、hM4D受容体の発現が確認できた。
 実施例2、及び比較例1
 実施例1で用いたニホンザルを対象として、発現hM4D可視化特性について、[11C]C22b(実施例2)と、[11C]クロザピン([11C]CLZ、比較例1)との比較を行った。hM4D受容体を発現させる過程は、実施例1と同じである。
 hM4Dを発現する右被殻を含む前額断面におけるトレーサー投与後30~90分のPETイメージングより、30~90分の間の積算平均イメージ像を、SUV値(Standardized Uptake Value)をもとに作成するとともに、脳内取り込み量を算出した。
 図4、図5は、作成した30~90分の間の平均イメージ像であり、図4が[11C]クロザピン、図5が[11C]C22bをトレーサーとして用いたものである。
 AAVベクターを注入した部位である右被殻の領域と、対照領域である反対側領域(左被殻に相当)における各トレーサーの取り込み量(体積あたりのトレーサー量(g/cc))を表1に示す。発現領域の体積あたりのトレーサー量と非発現領域の体積あたりのトレーサー量の比である選択性は、[11C]クロザピンが1.25であったのに対し、[11C]C22bは2.31と高い値を示した。
 [11C]C22bは、[11C]クロザピンに対して、hM4D発現領域での取り込みが高い一方、発現のない対照領域での取り込みが低く、人工受容体に対する選択性が高いことが示された。
Figure JPOXMLDOC01-appb-T000021
 実施例3
 アカゲザル(オス/4.2kg)を全身麻酔状態で頭部をステレオに固定し、事前に撮像した核磁気共鳴画像法(MRI)画像から読影した左扁桃体中央部に、ハミルトンシリンジ(10μl)を用い、hM3D受容体を神経細胞特異的に発現するアデノ随伴ウィルス(AAV)ベクター(AAV2-CMV-hM3D)3μlを、12分かけて注入した。なお、ここで、CMVは、遺伝子発現のためのプロモーターである。
 注入57日後に、イソフルラン麻酔下で、放射性標識したトレーサーとして、[11C]C22b 277MBqを、静脈から投与し、90分間のPETスキャンを行った。
 撮像した90分間積算のPETデータから、小脳を参照領域としたリガンド結合能のイメージを作成した(小脳の結合能(BP)を1とする)。作成したイメージを図6に示す。
 図6の矢印部分は、AAVベクターを注入した左扁桃体である。図6に示すとおり、注入した部位である左扁桃体に、[11C]C22bとの結合能の高い領域が見られる。
 結合能を数値化すると、対照領域であるAAVベクターを注入した部位とは反対側の領域(右扁桃体に相当)が0.31であったのに対し、AAVベクターを注入した左扁桃体の領域は1.05であり、非注入領域と比べて3.4倍の著しい結合性を示した。このことから、hM3D受容体の発現が確認できた。
 AAVベクターを注入した領域と、対照領域である反対側領域における各トレーサーの取り込み量(体積あたりのトレーサー量(g/cc))を表2に示す。発現領域の体積あたりのトレーサー量と非発現領域の体積あたりのトレーサー量の比である選択性は1.45と高い値を示した。
Figure JPOXMLDOC01-appb-T000022
 実施例4
 実施例3と同一のアカゲザルに対して、AAVベクター注入65日後に、イソフルラン麻酔下で、C22b化合物0.1mg/kgを静脈から投与し、その1分後に18F-FDG 263MBqを、静脈から投与し、90分間のPETスキャンを行った。なおここで、C22b化合物とは、式(III)において、Rをメチル、Xをイミノ、Rを水素とした化合物であり、MedChemExpress社製のHY-42110を用いた。
 撮像した90分間積算のPETデータから、全脳平均を100%とした糖代謝イメージ(Whole Brain Activity)を作成した。作成したイメージを図7に示す。
 図7に示すとおり、注入部位である左扁桃体(矢印)に高い糖代謝が認められた。糖代謝量を数値化すると、対照領域であるAAVベクターを注入した領域とは反対側の領域(右扁桃体に相当)に対し、AAVベクターを注入した左扁桃体の領域は1.88倍の著しい糖代謝の活性化であった。このことから、hM3D受容体の発現とともに、糖代謝が活性化し、すなわちアゴニストとして作用していることが確認できた。
 次に、実施例3とは別のアカゲザル(オス3kg)に対して、同様な方法で、AAVベクターを注入し、70日後に、イソフルラン麻酔下で、C22b化合物溶液(1μg/kg)、又は溶媒を静脈から投与し、その1分後に18F-FDG(224~286MBq)を、静脈から投与し、120分間のPETスキャンを、各々4回ずつ行った。なお、ここで上記溶媒と、C22b化合物溶液に用いた溶媒とは、同じものを用いた(溶媒:ジメチルスルホキシド1%と、Tween20(界面活性剤)を5%含む生理食塩水0.1mL/kg)。
 投与後30~60分の間を積算したPETデータから、全脳平均を100%とした糖代謝イメージ(Whole Brain Activity)を作成した。続いて、溶媒投与と比較してC22b投与が、統計的有意な変化を示す部位について、MATLAB(R2016a)及びSPM12による反復測定一元配置分散分析を用いて解析した。上記AAVベクターの注入部位である左扁桃体に、糖代謝の活性が有意に高い領域が認められた(uncorrected p<0.001)。
 また、図8は、脳構造画像(全体)に対し、左扁桃体についての反復測定一元配置分散分析による解析画像(矢印の先端部に相当)を重ねあわせた図である。図8に示すとおり、AAVベクター注入領域のt値(t-value)は、t>5.2であり、糖代謝の活性が有意であることを確認することができた。
 実施例5
 実施例1で用いたニホンザルを対象として、右被殻の神経細胞の投射先である黒質網様部の観察を行った。具体的には、実施例1と同様、[11C]C22bをトレーサーとして体外から投与し、90分間、PETスキャンを行った。PETスキャン後、トレーサー投与後30~90分間の積算平均イメージを作成した。
 図9は、作成したイメージのうち、黒質網様部を含む前額断面を表示するものである(イメージの濃淡は、SUVで表示)。図中の矢印は黒質網様部であり、神経細胞の投射先である軸索終端でhM4Dを発現していることが確認できた。
 実施例6
 実施例5と同様、ニホンザルを対象として、右被殻の神経細胞の投射先である黒質網様部の観察を行った。具体的には、式(V)の化合物([11C]C22b)をトレーサーとして体外から投与し、90分間、PETスキャンを行った。PETスキャン後、トレーサー投与後30~90分間の積算平均イメージを作成した。
 図10は、作成したイメージのうち、黒質網様部を含む前額断面を表示するものである(イメージの濃淡は、SUVで表示)。
 図中の矢印は黒質網様部であり、神経細胞の投射先である軸索終端でhM4Dを発現していることが確認できた。しかしながら、[11C]C22bの場合と異なり、対象神経細胞以外の神経細胞又は脳組織にも、式(VI)の化合物([11C]8-クロロ-11-(4-メチルピペラジン-1-イル)-5H-ジベンゾ[b,e][1,4]ジアゼピン)は、ある程度結合している。狙いとする神経細胞をより明確に特定したい場合や、高い解像度を求める場合には、[11C]C22bを用いることが望ましい。
 以上の各実施例が示すように、本発明の化合物は、人工受容体であるhM4D又はhM3D受容体に対し、特異性と定量性を兼ね備える化合物であり、動物生体の臓器内に発現したhM4D又はhM3D受容体を、イメージング化することができる。
 また、本発明の化合物は、hM4D又はhM3D受容体を活性化することができる。
 また、本発明の化合物は、hM4D又はhM3D受容体が関与する疾患に関するアゴニスト、アンタゴニスト、コンパニオン診断薬、治療薬を提供することができる。
 また、本発明の化合物は、動物生体内の投射ニューロンの投射先である軸索終端を、イメージング化することができる。
1:神経細胞
10:細胞体
11:樹状突起
12:核
20:軸索
21:ミエリン鞘
30:軸索側枝
31:軸索終端
100:注入領域
101:注入領域
200:発光領域
600:発光領域
1000:第1の領域
1001:第1の領域
2000:第2の領域
2001:第2の領域
3000:第3の領域
4000:第4の領域
5000:第5の領域
6000:第6の領域
10000:脳

Claims (16)

  1.  式(I)の化合物、又はその医薬として許容し得る塩若しくは溶媒和物:
    Figure JPOXMLDOC01-appb-C000001
    (式中、1個又はそれ以上の原子が該原子の放射性同位体である、または、放射性同位体でない。)。
  2.  前記化合物は、式(II)の化合物:
    Figure JPOXMLDOC01-appb-C000002
    である請求項1記載の化合物、又はその医薬として許容し得る塩若しくは溶媒和物。
  3.  請求項1又は2記載の化合物、又はその医薬として許容し得る塩若しくは溶媒和物を含有する組成物。
  4.  動物生体脳内の細胞に導入した変異型ヒトムスカリン性アセチルコリンM4受容体(hM4D)又は変異型ヒトムスカリン性アセチルコリンM3受容体(hM3D)をコードする遺伝子が発現して産生するhM4D又はhM3Dをイメージングするための組成物であって、
    式(III)の化合物、又はその医薬として許容し得る塩、若しくは溶媒和物:
    Figure JPOXMLDOC01-appb-C000003
    (式中、Rは、水素、アルキル、アリル、ヒドロキシアルキル、アルコキシアルキル、又はアルコイルオキシアルキルであり、
    アルキルはその炭素数が1~6であり、ヒドロキシアルキルはその炭素数が1~2であり、アルコキシアルキル及びアルコイルオキシアルキルはその炭素数が1~5である。
    Xは、硫黄、スルフィニル、イミノ、メチレン、又はアルキルイミノであり、
    アルキルイミノは、その炭素数が1~6である。
    は、水素、ハロゲン、ヒドロキシ、トリフルオロメチル、アルキル、アルコキシ、アルキルチオ、ニトロ、アミノ、又はアミノスルホニルであり、
    アルキル、アルコキシ及びアルキルチオにおける炭素数が1~5である。
    式中、1個又はそれ以上の原子が該原子の放射性同位体である。)
    を含有する組成物。
  5.  Rは、アルキルである請求項4記載の組成物。
  6.  Xは、イミノであり、Rは水素である請求項5記載の組成物。
  7.  動物生体脳内の細胞に導入した変異型ヒトムスカリン性アセチルコリンM4受容体(hM4D)又は変異型ヒトムスカリン性アセチルコリンM3受容体(hM3D)をコードする遺伝子が発現して産生するhM4D又はhM3Dをイメージングするための組成物であって、
     ジベンゾジアゼピン誘導体又はその医薬として許容し得る塩、若しくは溶媒和物を含有し、
     前記ジベンゾジアゼピン誘導体は、放射性標識されており、
     末梢投与から所定時間のイメージングにより検出される前記誘導体からの放射線の検出量が、前記hM4D発現部位は未発現部位に対し2倍以上、または前記hM3D発現部位は未発現部位に対し、1.4倍以上である組成物。
  8.  前記動物生体が、霊長類生体であり、
     前記所定時間が、30~90分の時間であり、
     前記検出される検出量が、投与量及び体重により規格化した指数において、前記未発現部位を含む全脳は2.5g/cc以下であるときに、
     前記hM4D発現部位は6.3g/cc以上である、または
     前記hM3D発現部位は3.7g/cc以上である請求項7に記載の組成物。
  9.  動物生体の脳内hM4D又はhM3Dのイメージング方法であって、
     動物生体脳内の細胞に変異型ヒトムスカリン性アセチルコリンM4受容体(hM4D)又は変異型ヒトムスカリン性アセチルコリンM3受容体(hM3D)をコードする遺伝子が導入されており、
     前記動物生体に投与された、前記hM4D又はhM3Dに選択的に結合する式(III)の化合物、又はその医薬として許容し得る塩、若しくは溶媒和物:
    Figure JPOXMLDOC01-appb-C000004
    (式中、Rは、水素、アルキル、アリル、ヒドロキシアルキル、アルコキシアルキル、又はアルコイルオキシアルキルであり、
    アルキルはその炭素数が1~6であり、ヒドロキシアルキルはその炭素数が1~2であり、アルコキシアルキル及びアルコイルオキシアルキルはその炭素数が1~5である。
    Xは、硫黄、スルフィニル、イミノ、メチレン、又はアルキルイミノであり、
    アルキルイミノは、その炭素数が1~6である。
    は、水素、ハロゲン、ヒドロキシ、トリフルオロメチル、アルキル、アルコキシ、アルキルチオ、ニトロ、アミノ、又はアミノスルホニルであり、
    アルキル、アルコキシ及びアルキルチオにおける炭素数が1~5である。
    式中、1個又はそれ以上の原子が該原子の放射性同位体である。)
    を、脳内に移行させて前記遺伝子によって発現した前記hM4D又はhM3Dに選択的に結合させ、
     前記脳内hM4D又はhM3Dに選択的に結合した前記化合物、又はその医薬として許容し得る塩、若しくは溶媒和物から放射される放射線を検出することで、前記脳内hM4D又はhM3Dの分布及び/又は発現量に関するデータを取得する工程を有する、動物生体の脳内hM4D又はhM3Dのイメージング方法。
  10.  動物生体の脳活動のイメージング方法であって、
     動物生体脳内の細胞に変異型ヒトムスカリン性アセチルコリンM4受容体(hM4D)又は変異型ヒトムスカリン性アセチルコリンM3受容体(hM3D)をコードする遺伝子が導入されており、
     前記動物生体に投与された、前記hM4D又はhM3Dに選択的に結合する式(III)の化合物、又はその医薬として許容し得る塩、若しくは溶媒和物:
    Figure JPOXMLDOC01-appb-C000005
    (式中、Rは、水素、アルキル、アリル、ヒドロキシアルキル、アルコキシアルキル、又はアルコイルオキシアルキルであり、
    アルキルはその炭素数が1~6であり、ヒドロキシアルキルはその炭素数が1~2であり、アルコキシアルキル及びアルコイルオキシアルキルはその炭素数が1~5である。
    Xは、硫黄、スルフィニル、イミノ、メチレン、又はアルキルイミノであり、
    アルキルイミノは、その炭素数が1~6である。
    は、水素、ハロゲン、ヒドロキシ、トリフルオロメチル、アルキル、アルコキシ、アルキルチオ、ニトロ、アミノ、又はアミノスルホニルであり、
    アルキル、アルコキシ及びアルキルチオにおける炭素数が1~5である。)
    を、脳内に移行させて前記遺伝子によって発現した前記hM4D又はhM3Dに選択的に結合させ、
     前記脳内hM4D又はhM3D発現細胞の活性操作に関するデータを取得する工程を有する、動物生体の脳活動のイメージング方法。
  11.  動物生体脳内の細胞に導入した変異型ヒトムスカリン性アセチルコリンM4受容体(hM4D)又は変異型ヒトムスカリン性アセチルコリンM3受容体(hM3D)に選択的に結合する物質を含有するアンタゴニスト又はアゴニストであって、
    前記物質は、式(III)の化合物、又はその医薬として許容し得る塩若しくは溶媒和物:
    Figure JPOXMLDOC01-appb-C000006
    (式中、Rは、水素、アルキル、アリル、ヒドロキシアルキル、アルコキシアルキル、又はアルコイルオキシアルキルであり、
    アルキルはその炭素数が1~6であり、ヒドロキシアルキルはその炭素数が1~2であり、アルコキシアルキル及びアルコイルオキシアルキルはその炭素数が1~5である。
    Xは、硫黄、スルフィニル、イミノ、メチレン、又はアルキルイミノであり、
    アルキルイミノは、その炭素数が1~6である。
    は、水素、ハロゲン、ヒドロキシ、トリフルオロメチル、アルキル、アルコキシ、アルキルチオ、ニトロ、アミノ、又はアミノスルホニルであり、
    アルキル、アルコキシ及びアルキルチオにおける炭素数が1~5である。
    式中、1個又はそれ以上の原子が該原子の放射性同位体である、または、放射性同位体でない。)
    であるアンタゴニスト又はアゴニスト。
  12.  前記変異型受容体は、変異型ヒトムスカリン性アセチルコリンM3受容体(hM3D)である請求項11記載のアゴニスト。
  13.  霊長類の生体脳内の細胞に導入した変異型ヒトムスカリン性アセチルコリンM4受容体(hM4D)又は変異型ヒトムスカリン性アセチルコリンM3受容体(hM3D)に選択的に結合する物質を含有する医薬であって、
    前記物質は、式(IV)の化合物、又はその医薬として許容し得る塩若しくは溶媒和物:
    Figure JPOXMLDOC01-appb-C000007
    (式中、Rは、水素、アルキル、アリル、ヒドロキシアルキル、アルコキシアルキル、又はアルコイルオキシアルキルであり、
    アルキルはその炭素数が1~6であり、ヒドロキシアルキルはその炭素数が1~2であり、アルコキシアルキル及びアルコイルオキシアルキルはその炭素数が1~5である。)
    である医薬。
  14.  霊長類の生体脳内の細胞に導入した変異型ヒトムスカリン性アセチルコリンM4受容体(hM4D)又は変異型ヒトムスカリン性アセチルコリンM3受容体(hM3D)に選択的に結合する物質を含有するコンパニオン診断薬であって、
    前記物質は、式(IV)の化合物、又はその医薬として許容し得る塩若しくは溶媒和物:
    Figure JPOXMLDOC01-appb-C000008
    (式中、Rは、水素、アルキル、アリル、ヒドロキシアルキル、アルコキシアルキル、又はアルコイルオキシアルキルであり、
    アルキルはその炭素数が1~6であり、ヒドロキシアルキルはその炭素数が1~2であり、
    アルコキシアルキル及びアルコイルオキシアルキルはその炭素数が1~5である。
    式中、1個又はそれ以上の原子が該原子の放射性同位体である、または、放射性同位体でない。)
    であるコンパニオン診断薬。
  15.  動物生体脳内の複数の領域にわたる神経細胞のイメージング方法であって、
     前記神経細胞は、樹状突起を含む細胞体が第1の領域に属し、前記神経細胞の軸索終端が前記第1の領域とは異なる領域に属するときに、
     前記第1の領域は、変異型ヒトムスカリン性アセチルコリンM4受容体(hM4D)又は変異型ヒトムスカリン性アセチルコリンM3受容体(hM3D)をコードする遺伝子が導入されており、
     前記動物生体に投与された、前記hM4D又はhM3Dに選択的に結合する放射性標識化されたジベンゾアゼピン誘導体を、脳内に移行させて前記hM4D又はhM3Dに選択的に結合させ、
     前記hM4D又はhM3Dに選択的に結合した前記放射性標識化されたジベンゾアゼピン誘導体から放射される放射線を検出することで、
    前記軸索終端におけるhM4D又はhM3Dの分布及び/又は発現量に関するデータを取得する工程を有する、神経細胞のイメージング方法。
  16.  動物生体脳内の変異型ヒトムスカリン性アセチルコリンM4受容体(hM4D)又は変異型ヒトムスカリン性アセチルコリンM3受容体(hM3D)をコードする遺伝子が導入された神経細胞の軸索終端をイメージングするための組成物であって、
     放射性標識化されたジベンゾアゼピン誘導体、又はその医薬として許容し得る塩若しくは溶媒和物を含有する組成物。
PCT/JP2019/024834 2018-06-21 2019-06-21 人工受容体に結合する新規化合物、人工受容体のイメージング方法、アゴニストまたはアンタゴニスト、治療薬、コンパニオン診断薬、神経細胞のイメージング方法 WO2019245047A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020525833A JP6926357B2 (ja) 2018-06-21 2019-06-21 人工受容体に結合する新規化合物、人工受容体のイメージング方法、アゴニストまたはアンタゴニスト、治療薬、コンパニオン診断薬、神経細胞のイメージング方法
EP19823442.9A EP3812373A4 (en) 2018-06-21 2019-06-21 NEW COMPOUND BONDING TO A CUSTOM-MADE RECEIVER, IMAGING PROCESS FOR CUSTOM-MADE RECEIVER, AGONIST OR ANTAGONIST, THERAPEUTIC AGENT, ACCOMPANYING DIAGNOSIS AGENT, AND NERVOUS CELL IMAGING PROCESS
US17/253,913 US20210275696A1 (en) 2018-06-21 2019-06-21 Novel compound binding to designer receptor, imaging method for designer receptor, agonist or antagonist, therapeutic agent, companion diagnostic agent, and imaging method for nerve cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018118210 2018-06-21
JP2018-118210 2018-06-21

Publications (1)

Publication Number Publication Date
WO2019245047A1 true WO2019245047A1 (ja) 2019-12-26

Family

ID=68984087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/024834 WO2019245047A1 (ja) 2018-06-21 2019-06-21 人工受容体に結合する新規化合物、人工受容体のイメージング方法、アゴニストまたはアンタゴニスト、治療薬、コンパニオン診断薬、神経細胞のイメージング方法

Country Status (4)

Country Link
US (1) US20210275696A1 (ja)
EP (1) EP3812373A4 (ja)
JP (2) JP6926357B2 (ja)
WO (1) WO2019245047A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11046651B2 (en) 2019-10-21 2021-06-29 Alairion, Inc. Piperazine substituted azapine derivatives and uses thereof
WO2023278295A1 (en) * 2021-06-29 2023-01-05 The Broad Institute, Inc. Compositions and methods for ameliorating anterodorsal thalamus hyperexcitability

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015071560A (ja) * 2013-10-02 2015-04-16 独立行政法人放射線医学総合研究所 遺伝子発現をインビボでイメージングするための組成物
WO2017049252A1 (en) * 2015-09-17 2017-03-23 Switch Bio, Inc. Compositions and methods for treating neurological disorders
JP2017509625A (ja) * 2014-03-13 2017-04-06 ユーシーエル ビジネス ピーエルシー 発作の治療における、改変された受容体をコードするベクターとその外因性アゴニストの併用
WO2019157083A1 (en) * 2018-02-07 2019-08-15 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Dreadd actuators

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU3250997A (en) * 1996-07-08 1998-02-02 Resolution Pharmaceuticals Inc. Tricyclic radiolabeled d4 receptor ligands

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015071560A (ja) * 2013-10-02 2015-04-16 独立行政法人放射線医学総合研究所 遺伝子発現をインビボでイメージングするための組成物
JP2017509625A (ja) * 2014-03-13 2017-04-06 ユーシーエル ビジネス ピーエルシー 発作の治療における、改変された受容体をコードするベクターとその外因性アゴニストの併用
WO2017049252A1 (en) * 2015-09-17 2017-03-23 Switch Bio, Inc. Compositions and methods for treating neurological disorders
WO2019157083A1 (en) * 2018-02-07 2019-08-15 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Dreadd actuators

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
ARMBRUSTER BN ET AL.: "Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand", PROC NATL ACAD SCI USA., vol. 104, no. 12, 2007, pages 5163 - 5168, XP055185711, DOI: 10.1073/pnas.0700293104
ARMBRUSTER, B ,N: "Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES, vol. 104, 20 March 2007 (2007-03-20), pages 5163 - 5168, XP055185711, ISSN: 0027-8424, DOI: 10.1073/pnas.0700293104 *
BURKI, H. R.: "EFFECTS OF CLOZAPINE AND OTHER DIBENZO-EPINES ON CENTRAL DOPAMINERGIC AND CHOLINERGIC SYSTEMS STRUCTURE-ACTIVITY RELATIONSHIPS", ARZNEIMITTEL-FORSCHUNG, vol. 27, 1977, pages 1561 - 1565, XP009037300, ISSN: 0004-4172 *
CHEN, XIN: "The First Structure-Activity Relationship Studies for Designer Receptors Exclusively Activated by Designer Drugs", ACS CHEMICAL NEUROSCIENCE, vol. 6, no. 3, 2015, pages 476 - 484, XP002790277, DOI: 10.1021/cn500325v *
GOMEZ J ET AL.: "Chemogenetics revealed: DREADD occupancy and activation via converted clozapine", SCIENCE, vol. 357, no. 6350, 2017, pages 503 - 507
HARRIS, TERRY W.: "Affinity of 10-(4-Methylpiperazino)dibenz[b,f]oxepins for Clozapine and Spiroperidol Binding Sites in Rat Brain", JOURNAL OF THE MEDICINAL CHEMISTRY, vol. 25, no. 7, 1 January 1982 (1982-01-01), pages 855 - 858, XP055665900 *
JI ET AL.: "Multimodal Imaging for DREADD-Expressing Neurons in Living Brain and Their Application to Implantation of iPSC-Derived Neural Progenitors", JOURNAL NEUROSCI, vol. 36, no. 45, 2016, pages 11544 - 11558
NAGAI ET AL.: "PET imaging-guided chemogenetic silencing reveals a critical role of primate rostromedial caudate in reward evaluation", NATURE COMMUNICATIONS, vol. 7, 2016, pages 13605
NAGAI, YUJI: "PET imaging-guided chemogenetic silencing reveals a critical role of primate rostromedial caudate in reward evaluation", NATURE COMMUNICATIONS, vol. 7, no. 13605, 6 December 2016 (2016-12-06), pages 1 - 8, XP002790276, ISSN: 2041-1723, DOI: 10.1038/ncomms13605 *
See also references of EP3812373A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11046651B2 (en) 2019-10-21 2021-06-29 Alairion, Inc. Piperazine substituted azapine derivatives and uses thereof
WO2023278295A1 (en) * 2021-06-29 2023-01-05 The Broad Institute, Inc. Compositions and methods for ameliorating anterodorsal thalamus hyperexcitability

Also Published As

Publication number Publication date
EP3812373A4 (en) 2021-06-16
JP6926357B2 (ja) 2021-08-25
JPWO2019245047A1 (ja) 2021-02-15
EP3812373A1 (en) 2021-04-28
JP2021100962A (ja) 2021-07-08
US20210275696A1 (en) 2021-09-09

Similar Documents

Publication Publication Date Title
Notter et al. Translational evaluation of translocator protein as a marker of neuroinflammation in schizophrenia
Holmes et al. In vivo imaging of brain microglial activity in antipsychotic-free and medicated schizophrenia: a [11C](R)-PK11195 positron emission tomography study
Doorduin et al. [11 C]-DPA-713 and [18 F]-DPA-714 as new PET tracers for TSPO: a comparison with [11 C]-(R)-PK11195 in a rat model of herpes encephalitis
CN106459059B (zh) 氘化杂环化合物和其作为成像剂的用途
TWI528977B (zh) New amyloid affinity products
CN102918031A (zh) 放射标记的化合物及其方法
Miyamoto et al. Preclinical substantia nigra dysfunction in rapid eye movement sleep behaviour disorder
CN101506201A (zh) 新的杂芳基取代的苯并唑类
JP2021525742A (ja) 診断のための二環式化合物
JP2021100962A (ja) 人工受容体に結合する新規化合物、人工受容体のイメージング方法、アゴニストまたはアンタゴニスト、治療薬、コンパニオン診断薬、神経細胞のイメージング方法
KR20100072344A (ko) 신규 아밀로이드 친화성 화합물
Vuorimaa et al. In vivo PET imaging of adenosine 2A receptors in neuroinflammatory and neurodegenerative disease
Wong et al. Characterization of [11C] RO5013853, a novel PET tracer for the glycine transporter type 1 (GlyT1) in humans
Herde et al. GABAA receptor subtypes in the mouse brain: regional mapping and diazepam receptor occupancy by in vivo [18F] flumazenil PET
Wang et al. Carbon-11-labeled KF21213: a highly selective ligand for mapping CNS adenosine A2A receptors with positron emission tomography
JPWO2007125988A1 (ja) 新規アミロイド親和性化合物
CN118510781A (zh) 二氢吡咯并[3,4c]-吡唑衍生物及其在诊断中的用途
Bauwens et al. Radioiodinated phenylalkyl malonic acid derivatives as pH-sensitive SPECT tracers
KR102180603B1 (ko) 아민기 및 [18f]플루오르가 도입된 뇌신경염증 진단용 양성자방출단층촬영 방사성화합물.
Haneda et al. In vivo mapping of substance P receptors in brains of laboratory animals by high‐resolution imaging systems
JP2000344684A (ja) ピロニンb類似化合物によるアミロイドが蓄積する疾患の画像診断プローブおよびそれを含む画像診断用組成物
Ishiwata et al. Preclinical studies on [11 C] MPDX for mapping adenosine A 1 receptors by positron emission tomography
Xu et al. Preclinical and clinical study on [18 F] DRKXH1: A novel β-amyloid PET tracer for Alzheimer’s disease
CN112469701A (zh) Tspo结合剂
ES2864825T3 (es) Derivados de azetidina para la obtención de imágenes Tau

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19823442

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020525833

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019823442

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019823442

Country of ref document: EP

Effective date: 20210121