WO2019244644A1 - 移動体制御装置および移動体制御方法、並びにプログラム - Google Patents

移動体制御装置および移動体制御方法、並びにプログラム Download PDF

Info

Publication number
WO2019244644A1
WO2019244644A1 PCT/JP2019/022453 JP2019022453W WO2019244644A1 WO 2019244644 A1 WO2019244644 A1 WO 2019244644A1 JP 2019022453 W JP2019022453 W JP 2019022453W WO 2019244644 A1 WO2019244644 A1 WO 2019244644A1
Authority
WO
WIPO (PCT)
Prior art keywords
autonomous mobile
mobile robot
unit
moving body
moving
Prior art date
Application number
PCT/JP2019/022453
Other languages
English (en)
French (fr)
Inventor
龍一 鈴木
健太郎 井田
英寛 小松
知佳子 立石
雄登 石津
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to US17/250,181 priority Critical patent/US11526172B2/en
Publication of WO2019244644A1 publication Critical patent/WO2019244644A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0214Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory in accordance with safety or protection criteria, e.g. avoiding hazardous areas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network

Definitions

  • the present disclosure relates to a moving object control device, a moving object control method, and a program, and more particularly, to a moving object control device and a moving object control method capable of improving a method of presenting a course when a moving object moves, And the program.
  • Patent Literature 1 proposes a moving device that can recognize a distance to a nearby person and can present a more detailed moving route by a direction instruction unit as the distance to the person is shorter. .
  • Patent Literature 1 when a moving object moves, a presentation method that presents a course based on the distance to a nearby person presents the course irrespective of the action of the person. Sometimes. Therefore, depending on the behavior of the person around the moving body, it is considered that the person may not be able to properly recognize the movement of the moving body, and there is a need to improve the way of presenting the course. I have.
  • the present disclosure has been made in view of such a situation, and is intended to improve a method of presenting a course when a moving object moves.
  • a moving object control device includes a relation determining unit that determines a degree of relation with a person around the moving object, and a driving unit that moves the moving object based on the relation.
  • a setting unit configured to set a traveling mode associated with a process and a process performed by an output unit that outputs an expression indicating a path of the moving object.
  • a moving object control method is that a moving object control device that controls movement of a moving object determines a degree of relation with a person around the moving object, and based on the degree of relation, Setting a traveling mode in which processing performed by the driving unit that moves the moving body and processing performed by the output unit that outputs an expression indicating the course of the moving body are associated with each other.
  • a program according to an embodiment of the present disclosure is directed to a computer of a moving object control device that controls movement of a moving object, determining a degree of relation with a person around the moving object, and based on the degree of relation,
  • a mobile unit control including a process performed by a driving unit that moves the mobile unit and a running mode associated with a process performed by an output unit that outputs an expression indicating a path of the mobile unit are executed. Let it.
  • a degree of relationship with a person around the moving body is determined, and a process performed by the driving unit that moves the moving body, and a course of the moving body are presented based on the degree of relationship.
  • a traveling mode associated with the processing performed by the output unit that outputs the expression to be performed is set.
  • FIG. 1 is a diagram illustrating a configuration example of an embodiment of a moving object control system to which the present technology is applied.
  • FIG. 3 is a hardware block diagram illustrating a configuration example of an autonomous mobile robot. It is a figure showing an example of a mechanum wheel adopted as a drive part. It is a figure showing the example of various composition of a display part. It is a flowchart explaining a moving body control process.
  • FIG. 4 is a diagram illustrating a relationship between a traveling pattern and a traveling mode.
  • FIG. 4 is a diagram showing two types of passages A and B used to explain a traveling pattern of the autonomous mobile robot.
  • FIG. 3 is a diagram illustrating a configuration example of a display unit and a display intensity.
  • FIG. 5 is a diagram illustrating a method for calculating display intensity based on a one-dimensional vector.
  • FIG. 9 is a diagram illustrating a method of calculating display intensity based on a distance on a two-dimensional plane. It is a figure which shows the variation of the display of a traveling direction. It is a figure explaining the spatial localization expression at the time of going straight. It is a figure explaining space localization expression at the time of a turn.
  • FIG. 4 is a diagram illustrating display control using particle expression. It is a figure explaining display control using a ripple expression. It is a figure explaining display control using contraction expression of a circle.
  • FIG. 1 is a diagram illustrating a configuration example of an embodiment of a moving object control system to which the present technology is applied.
  • the mobile control system 11 includes an autonomous mobile robot 12, a processing device 13, and a sensor module 14.
  • the mobile body control system 11 is used in a human living environment, that is, a plurality of persons (in the example of FIG. 1, a standing person and a sitting person) are autonomous mobile robots. It is assumed that the device is used in an environment where the user is around the device 12.
  • the autonomous mobile robot 12 executes, for example, a program that moves with the movement of a person or a program that moves away from the person and moves to an arbitrary place. Can be performed.
  • the autonomous mobile robot 12 includes a display unit (see FIG. 4), and can present the course of the movement to the people around it.
  • the processing device 13 is fixed in an environment where the autonomous mobile robot 12 is used, and based on, for example, inputs from various sensors included in the autonomous mobile robot 12 or inputs from the sensor module 14, A process for controlling the movement of the autonomous mobile robot 12 is executed.
  • the sensor module 14 is fixed in an environment where the autonomous mobile robot 12 is used.
  • the sensor module 14 senses various types of information necessary for the processing device 13 to control the movement of the autonomous mobile robot 12. , To the processing device 13.
  • the configuration example of the mobile control system 11 shown in FIG. 1 is an example.
  • the mobile control system 11 employs a configuration in which the processing device 13 and the sensor module 14 are built in the mobile control system 11. can do.
  • the mobile object control system 11 may adopt a configuration in which the processing device 13 and the sensor module 14 are provided as wearable devices that can be mounted on a person's hand, head, or torso.
  • FIG. 2 is a hardware block diagram showing a configuration example of the autonomous mobile robot 12. As shown in FIG.
  • the autonomous mobile robot 12 includes an input unit 21, a calculation unit 22, a driving unit 23, and a display unit 24.
  • the input unit 21 is used to input information external to the autonomous mobile robot 12, and includes a laser distance measuring device 31, an RGB camera 32, a stereo camera 33, and an inertial measuring device 34.
  • the laser distance measuring device 31 measures a distance to an object around the autonomous mobile robot 12 by detecting reflected light of the laser light irradiated toward the periphery of the autonomous mobile robot 12, and determines a distance to the measured object. Obtain the distance measurement information shown.
  • the RGB camera 32 is configured by, for example, an image sensor having a color filter, and acquires an RGB image by capturing an image around the autonomous mobile robot 12.
  • the stereo camera 33 obtains two images by imaging the surroundings of the autonomous mobile robot 12 with two image sensors, and based on the parallax, obtains a distance indicating a distance to a subject shown in the image. Get an image.
  • the inertial measurement device 34 is constituted by, for example, a gyro sensor, measures the angles and accelerations of three axes generated by the movement of the autonomous mobile robot 12, and acquires the measurement result as inertial measurement information.
  • the input unit 21 is configured as described above, and the input information (that is, the ranging information, the RGB image, the distance image, and the distance information) acquired by the laser distance measuring device 31, the RGB camera 32, the stereo camera 33, and the inertial measuring device 34. And inertia measurement information) to the calculation unit 22.
  • the input information that is, the ranging information, the RGB image, the distance image, and the distance information
  • the input unit 21 is a distance measuring sensor or a depth sensor such as LIDAR (Light Detection and Ranging, Laser Imaging and Detection and Ranging) for grasping the surrounding environment and obstacles, or for recognizing a person by body temperature. It is good also as a structure provided with the thermo camera. Further, the input unit 21 may be configured to include a sound collecting device that collects surrounding sounds, and can recognize the direction in which a person is present by voice. Further, a plurality of sensor modules (for example, the sensor module 14 in FIG. 1) for performing various types of sensing are arranged in an environment in which the autonomous mobile robot 12 is used, and the input unit 21 A configuration for performing communication can be adopted.
  • LIDAR Light Detection and Ranging, Laser Imaging and Detection and Ranging
  • the arithmetic unit 22 is used to control the driving unit 23 and the display unit 24 according to an arithmetic operation based on external information input via the input unit 21.
  • the arithmetic unit 22 includes a CPU 41, a GPU 42, an auxiliary storage device 43, and a storage device. 44.
  • the CPU 41 reads out and executes the control program stored in the auxiliary storage device 43. Then, the CPU 41 refers to the distance measurement information and the inertial measurement information supplied from the input unit 21, various information stored in the storage device 44, the real-time image processing result by the GPU 42, and the like, and A moving object control process (see a flowchart in FIG. 5) for performing control relating to movement and display is performed.
  • the GPU (Graphics Processing Unit) 42 recognizes, in real time (sequentially according to the supply), an image recognizing a person around the autonomous mobile robot 12 with respect to the RGB image and the distance image supplied from the input unit 21. The processing is performed, and the processing result is supplied to the CPU 41.
  • the auxiliary storage device 43 is constituted by, for example, a random access memory (RAM), and reads a control program from the storage device 44 and stores it.
  • RAM random access memory
  • the storage device 44 is configured by, for example, an EEPROM (Electronically Erasable and Programmable Read Only Memory), and stores a control program executed by the CPU 41 and various kinds of information required when the CPU 41 performs a moving object control process.
  • EEPROM Electrically Erasable and Programmable Read Only Memory
  • the calculation unit 22 is configured as described above, and performs various calculations accompanying the movement of the autonomous mobile robot 12 based on the input information supplied from the input unit 21 to determine the action plan of the autonomous mobile robot 12. decide. Then, the arithmetic unit 22 can perform drive control on the drive unit 23 and display control on the display unit 24 based on the action plan.
  • the calculation unit 22 absorbs a difference in behavior that differs depending on the type of the driving unit 23, as described later.
  • the operation unit 22 is not limited to the configuration built in the autonomous mobile robot 12, but may be, for example, an operation unit in an environment where the autonomous mobile robot 12 is used as in the processing device 13 in FIG. 22 can be fixed and used. Thereby, for example, the size of the autonomous mobile robot 12 can be reduced.
  • the drive unit 23 is used to move the autonomous mobile robot 12 according to the drive control by the arithmetic unit 22 and includes a plurality of motor control circuits 51, a plurality of drive motors 52, and a plurality of encoders 53. You.
  • the motor control circuit 51 controls the drive motor 52 so as to perform a behavior according to the drive control by the arithmetic unit 22.
  • the drive motor 52 realizes movement of the autonomous mobile robot 12 by being driven under the control of the motor control circuit 51.
  • the encoder 53 detects drive information (a rotation amount, a rotation angle, a rotation position, and the like) of the drive motor 52 and converts the drive information into the operation unit 22 in order to realize driving in accordance with drive control by the operation unit 22. Feedback to
  • the autonomous mobile robot 12 can employ, as the drive unit 23, a mechanum wheel that can move in all directions.
  • the drive unit 23 has four mechanum wheels 72-1 to 72-4 mounted on a housing 71 in which the input unit 21, the arithmetic unit 22, and the like are built. It can be configured.
  • the Mecanum wheels 72-1 to 72-4 are mounted, for example, at four locations on the front and rear sides of both sides of the housing 71, as in a normal vehicle.
  • a plurality of rollers are rotatably mounted on the outer periphery of the mecanum wheels 72-1 to 72-4, and the rotation axes of the rollers are the rotation axes (axles) of the mecanum wheels 72-1 to 72-4. Has a predetermined angle with respect to.
  • the drive unit 23 can move the housing 71 forward or backward by driving the mechanum wheels 72-1 to 72-4 to rotate in the same direction.
  • the drive unit 23 turns the housing 71 by driving the mechanum wheels 72-1 and 72-2 and the mechanum wheels 72-3 and 72-4 to rotate in opposite directions.
  • the drive unit 23 changes the direction of the housing 71 by driving the mechanum wheels 72-1 and 72-3 and the mechanum wheels 72-2 and 72-4 to rotate in opposite directions. Without moving, the housing 71 can be moved rightward or leftward.
  • the drive unit 23 can move the housing 71 in an arbitrary direction by appropriately controlling the rotation of the mechanum wheels 72-1 to 72-4.
  • the autonomous mobile robot 12 may employ various types of driving modes other than the mechanum wheels 72-1 to 72-4 for the driving unit 23.
  • a vehicle-type robot a multi-legged robot including bipedal walking, an air-floating robot such as a drone / hovercraft, a flying robot, and the like can be adopted.
  • the autonomous mobile robot 12 can employ an underwater robot such as a ROV (Remotely Operated Vehicle).
  • ROV Remote Operated Vehicle
  • the display unit 24 is used to present a course to a person around the autonomous mobile robot 12 in accordance with the display control by the arithmetic unit 22, and includes a plurality of output devices 61.
  • the output device 61 can be configured by a plurality of LEDs (Light Emitting Diode), a plurality of projectors, and a plurality of displays (such as a liquid crystal panel and an organic EL (Electro Luminescence) panel).
  • LEDs Light Emitting Diode
  • projectors a plurality of projectors
  • displays such as a liquid crystal panel and an organic EL (Electro Luminescence) panel.
  • FIG. 4 shows various configuration examples of the display unit 24 that performs display over the entire side surface of the casing in a configuration in which the casing of the autonomous mobile robot 12 is square in plan view. ing.
  • the display unit 24A is configured by a plurality of LEDs arranged in a line along the circumferential direction on four side surfaces of the housing of the autonomous mobile robot 12A.
  • the display unit 24B is configured by a projector provided so as to project an image on the surrounding floor from each of four side surfaces of the housing of the autonomous mobile robot 12B.
  • the display unit 24C is configured by four side surfaces of the housing of the autonomous mobile robot 12C, and displays incorporated in the respective side surfaces.
  • the display unit 24 includes a projector that projects an image on the side surface of the housing of the autonomous mobile robot 12, a plurality of LEDs three-dimensionally arranged on the side surface of the housing of the autonomous mobile robot 12, and the like. May be used.
  • the display unit 24 may be provided on the top surface of the housing of the autonomous mobile robot 12.
  • the casing of the autonomous mobile robot 12 may be configured to have a planar shape, a rounded shape, or a one-dimensional arrangement of point light sources such as an LED array to constitute the display unit 24. Good.
  • a projector in addition to using a number of projectors corresponding to the number of side surfaces of the casing of the autonomous mobile robot 12, an enlarged display using a fisheye lens or the like is performed for one projector. May go. Further, a configuration may be adopted in which a projector that can be driven in two axes is installed in the housing of the autonomous mobile robot 12 so as to project an image in a required direction.
  • the display unit 24 may be configured not to be mounted on the autonomous mobile robot 12 as long as the display unit 24 can achieve the purpose of presenting a course to a person around the autonomous mobile robot 12. That is, an image may be projected by arranging a projection device such as a projector in an environment where the autonomous mobile robot 12 is used (for example, the position of the sensor module 14 in FIG. 1). Alternatively, a person may wear an AR (Augmented Reality) glass, which is a wearable terminal that superimposes and displays an image in the real space, and displays the image on the AR glass.
  • an AR Augmented Reality
  • a sound other than a video may be used as an output unit of the autonomous mobile robot 12.
  • a configuration may be adopted in which a course is presented to a person by a sound output from a speaker.
  • it is effective to use the voice together with the video in a situation where the person around the autonomous mobile robot 12 does not notice the course only by the representation of the video by the display unit 24.
  • the autonomous mobile robot 12 is configured as described above, and the driving control for the driving unit 23 and the display control for the display unit 24 are executed by the moving unit control processing being performed in the calculation unit 22. Then, in the moving object control process, the arithmetic unit 22 determines whether the autonomous mobile robot 12 is in accordance with the degree of relation between the autonomous mobile robot 12 and a person around the autonomous mobile robot 12 (hereinafter, referred to as a surrounding person). A traveling mode when the vehicle 12 moves can be set.
  • the calculation unit 22 determines the degree of relationship based on whether the autonomous mobile robot 12 is acting together with a surrounding person and whether there is a surrounding person who can visually recognize the autonomous mobile robot 12. decide.
  • the degree of relationship determines the behavior performed by the autonomous mobile robot 12 based on the relationship between the autonomous mobile robot 12 and the surrounding people (the presence or absence of the surrounding people, the content of the action of the autonomous mobile robot 12, and the like). This is the information used at the time. For example, the closer the relationship between the autonomous mobile robot 12 and the surrounding person is, the higher the relationship is, and the less the autonomous mobile robot 12 is related to the surrounding person, the lower the relationship is.
  • the arithmetic unit 22 performs a traveling mode in which the higher the degree of relation with the surrounding person is, the more the movement of the autonomous mobile robot 12 acting so as to improve the sense of security of the surrounding person and the presentation of the course are performed. Set. As a result, even when the autonomous mobile robot 12 is used in a human living environment, the movement of the autonomous mobile robot 12 can be appropriately recognized by the surrounding persons, and safer operation becomes possible.
  • the autonomous mobile robot 12 can change the traveling direction without being restricted by the housing direction by employing the mechanum wheel 72 as shown in FIG. Since there is no restriction on the traveling direction, the surrounding persons cannot know in advance the traveling direction, the attention direction, and the like of the autonomous mobile robot 12. For this reason, when using the autonomous mobile robot 12 in a human living environment, it is assumed that a sense of security is reduced. However, as described above, the driving mode is changed according to the degree of relationship with the surrounding persons. By appropriately setting, such a decrease in security can be avoided.
  • the autonomous mobile robot 12 has a configuration in which the display units 24 are provided on all sides of the housing of the autonomous mobile robot 12, so that not only the front but also the side of the autonomous mobile robot 12 is provided. The course can be presented to one or the other.
  • FIG. 5 is a flowchart illustrating a moving object control process in which the calculation unit 22 controls the movement of the autonomous mobile robot 12.
  • step S11 the calculation unit 22 determines the autonomous mobile robot 12 based on the input information supplied from the input unit 21.
  • a person detection process for detecting a surrounding person in the vicinity is performed.
  • the person detection process uses, for example, an RGB image acquired by the sensor module 14 in FIG. 1 and a thermo image acquired by a thermo camera (not shown), in addition to the RGB image acquired by the imaging of the RGB camera 32 of the input unit 21. You may. Furthermore, a person may be detected by moving object detection using a not-shown LIDAR, depth sensor, or the like. Alternatively, it may be determined whether or not a person is near the autonomous mobile robot 12 by communicating with a wearable terminal mounted on the body of the person.
  • step S12 the calculation unit 22 performs an action content recognition process for recognizing the action content of the autonomous mobile robot 12 itself executed by the movement started by the autonomous mobile robot 12.
  • the autonomous mobile robot 12 may move in accordance with the action content of following the person, the action content of leading the person, the action content of moving with the person, a command from the person, or a voluntary judgment.
  • the action content to be performed, the action content to move separately from the person, and the like are executed. Therefore, the operation unit 22 recognizes which of the action contents is to be executed.
  • step S13 the calculation unit 22 determines the degree of relationship between the autonomous mobile robot 12 and the surrounding people based on both the detection result of the person detection process in step S11 and the recognition result of the action content recognition process in step S12. decide. For example, the calculation unit 22 performs a calculation to score a combination of the presence or absence of a nearby person according to the detection result of the person detection process and the above-described various action contents according to the recognition result of the action content recognition process. , The score obtained by the calculation can be determined as the degree of relation.
  • the calculation unit 22 may determine the degree of relationship based on one of the detection result of the person detection process and the recognition result of the action content recognition process.
  • step S14 the calculation unit 22 determines whether or not the autonomous mobile robot 12 moves with the surrounding person based on the degree of relation to the surrounding person determined in step S13.
  • step S15 the arithmetic unit 22 sets the traveling mode 1 in which the casing changes direction and travels when changing the course, and then the process proceeds to step S19.
  • step S14 determines in step S14 that the autonomous mobile robot 12 does not move with the surrounding person (that is, moves independently of the surrounding person)
  • step S16 the calculation unit 22 determines whether there is a surrounding person who can visually recognize the autonomous mobile robot 12 based on the degree of relationship with the surrounding person determined in step S13.
  • step S16 the calculation unit 22 determines that there is a surrounding person who can visually recognize the autonomous mobile robot 12, the processing proceeds to step S17.
  • step S17 after the calculation unit 22 sets the traveling mode 2 in which the traveling direction and the direction change are expressed in order to present the course, the process proceeds to step S19.
  • step S18 the calculation unit 22 sets the traveling mode 3 in which the traveling direction and the direction change for presenting the course are not expressed, and the traveling is performed without changing the direction of the housing when changing the course. After that, the process proceeds to step S19.
  • step S19 the arithmetic unit 22 performs drive control on the drive unit 23 and display control on the display unit 24 based on the travel mode determined in step S15, step S17, or step S18. The process ends.
  • the autonomous mobile robot 12 switches and sets the autonomous mobile robot 12 in the three traveling modes 1 to 3 based on the degree of relation with the surrounding persons. be able to.
  • the traveling mode 1 in which the direction of the housing is changed when the course is changed is set. Accordingly, the autonomous mobile robot 12 performs traveling such that the front of the casing direction always faces the traveling direction, so that the surrounding persons can easily recognize the traveling direction based on the casing direction of the autonomous mobile robot 12. be able to. In this case, the sense of security can be improved without the autonomous mobile robot 12 performing a run that cannot be easily recognized by surrounding persons, such as changing the course in the lateral direction in the housing direction.
  • the autonomous mobile robot 12 does not move with the surrounding person, but has a degree of relationship that there is a visible surrounding person (a lower degree of relation than moving with the surrounding person).
  • the autonomous mobile robot 12 presents the course in the expression of the traveling direction and the direction change when traveling such that the course is changed laterally in the housing direction, and thus, the surrounding person is displayed.
  • the path of the autonomous mobile robot 12 can be reliably recognized.
  • a travel mode 3 is set in which the vehicle travels without expression and without changing the direction of the housing when changing the course. That is, in this case, the autonomous mobile robot 12 does not need to make the surrounding person recognize the course of the autonomous mobile robot 12, so that the autonomous mobile robot 12 can travel efficiently without presenting the course (for example, when the front in the housing direction is forward). Traveling always in the direction of travel is inefficient).
  • the autonomous mobile robot 12 can improve the method of presenting the course by performing the drive control and the display control in the traveling mode according to the degree of relationship with the surrounding persons. For example, it is possible to present a route that improves the sense of security as the degree of relation with the surrounding person is higher, or to present a route that acts to reduce the learning load of the surrounding person (driving, expression, and the like).
  • the arithmetic unit 22 may use the recognition result itself of the action content recognition processing in step S12 as the degree of relation to set the travel mode in consideration of the action content. For example, if the recognition result of the action content recognition processing indicates that the autonomous mobile robot 12 moves together with the surrounding persons, the calculation unit 22 can set the traveling mode 1. Similarly, the calculation unit 22 may set the traveling mode in consideration of the presence or absence of a nearby person, using the detection result itself of the person detection process in step S11 as the degree of relation. For example, the calculation unit 22 sets the traveling mode 2 when the detection result of the person detection processing indicates that there is a surrounding person, and sets the traveling mode 3 when the detection result indicates that there is no surrounding person. Can be set.
  • the three traveling modes 1 to 3 of the autonomous mobile robot 12 determine whether or not to change the direction of the housing when changing the course, and the traveling direction and direction changing for presenting the course. Can be applied to the five traveling patterns based on whether or not the expression is performed.
  • the traveling patterns A to E indicate whether or not the display unit 24 presents the course of the autonomous mobile robot 12 to indicate the traveling direction and the direction change, and whether the autonomous mobile robot 12 Twelve paths are classified according to a combination of whether or not driving of a direction change by the driving unit 23 for changing the course is performed.
  • the display unit 24 for presenting the course of the autonomous mobile robot 12 does not express the traveling direction and the direction change. Further, in the traveling pattern A, the driving unit 23 for changing the course of the autonomous mobile robot 12 does not drive the direction change.
  • the display unit 24 for presenting the course of the autonomous mobile robot 12 does not express the traveling direction and the direction change.
  • driving of the direction change by the driving unit 23 for changing the course of the autonomous mobile robot 12 is performed.
  • the display unit 24 presents the traveling direction for presenting the course of the autonomous mobile robot 12, and the display unit 24 does not represent the direction change.
  • driving of the direction change by the driving unit 23 for changing the course of the autonomous mobile robot 12 is performed.
  • the display unit 24 for presenting the course of the autonomous mobile robot 12 expresses the traveling direction and the direction change.
  • driving of the direction change by the driving unit 23 for changing the course of the autonomous mobile robot 12 is not performed.
  • the display unit 24 for presenting the course of the autonomous mobile robot 12 expresses the traveling direction and the direction change.
  • driving of the direction change by the driving unit 23 for changing the course of the autonomous mobile robot 12 is performed.
  • the driving unit 23 changes the course.
  • the running pattern B or C in which the driving of the direction change is performed is applied.
  • the traveling mode 2 which is set when the autonomous mobile robot 12 does not move with the surrounding person and there is a surrounding person who can visually recognize the autonomous mobile robot 12, the traveling mode 2
  • the traveling pattern D or E in which the display unit 24 expresses the traveling direction and the direction change is applied.
  • the traveling mode 3 In addition, in the traveling mode 3 set when the autonomous mobile robot 12 does not move with the surrounding person and there is no surrounding person who can visually recognize the autonomous mobile robot 12, the traveling mode 3 The traveling pattern A in which the display unit 24 does not express the traveling direction and the direction change, and in which the driving unit 23 does not drive the direction change to change the course, is applied.
  • FIG. 7A shows a path A whose course is bent in units of 90 °. Therefore, for example, when the casing of the autonomous mobile robot 12 is a square, the direction of the side surface of the autonomous mobile robot 12 and the direction in which the course turns are the same.
  • FIG. 7B shows a passage B in which the passage is bent at an angle other than 90 ° (for example, an acute angle as shown). Therefore, for example, when the casing of the autonomous mobile robot 12 is a square, the direction of the side surface of the autonomous mobile robot 12 does not match the direction in which the course turns.
  • passage points P1 to P4 shown in FIG. 7 indicate points in the passages A and B where the drive control and the display control of the autonomous mobile robot 12 are changed.
  • the passage point P1 indicates a point where drive control is performed so as to start traveling
  • the passage point P2 indicates a point where drive control is performed so as to stop traveling because the vehicle is approaching a corner.
  • the passage point P3 indicates a point at which drive control when turning at a turning angle or the like ends
  • the passage point P4 indicates a point at which drive control is performed to end traveling.
  • the display unit 24 of the autonomous mobile robot 12 is configured by arranging a plurality of light emitting units in a line, and a light emission intensity of the light emitting unit in the configuration example.
  • FIG. 8A shows an example of the configuration of the display unit 24, and FIG. 8B shows an example of the light emission intensity of the light emitting unit in the display unit 24.
  • FIG. 8A the configuration of the display unit 24 is simply shown, and the casing of the autonomous mobile robot 12 is formed into a square, and each outer peripheral side surface is divided into five, and 16 light emitting units L1 to L16 are formed.
  • the direction indicated by the black arrow is the front of the housing direction of the autonomous mobile robot 12, the light emitting unit L1 is assigned to the front right end of the autonomous mobile robot 12, and the light emitting units L2 to L16 are sequentially turned counterclockwise. Have been assigned.
  • the front in the housing direction is set to 0 °
  • the clockwise direction is set to 90 ° to the right in the housing direction (the direction of turning in the passage A in FIG. 7)
  • the right rear in the housing direction (FIG. 7 is 135 °.
  • the display unit 24 maximizes the display intensity of the light emitting unit L3 disposed at the front center in the housing direction according to the traveling direction.
  • the traveling direction can be expressed.
  • BB in FIG. 8 shows the representation of the traveling direction by the display unit 24 in a gradation such that the display intensity increases as the display intensity increases and decreases as the display intensity decreases. Therefore, when the autonomous mobile robot 12 moves forward in the housing direction and the display intensity of the light emitting unit L3 is the highest, the display intensity at the front central portion in the housing direction is the highest.
  • FIG. 9 shows an example of a course change in the traveling pattern A in the passage A
  • FIG. 10 shows an example of a course change in the traveling pattern A in the passage B.
  • the calculation unit 22 performs drive control on the driving unit 23 so as to start moving from the passage point P1 toward the front (0 °) in the housing direction, and the passage point P2
  • the drive control for the drive unit 23 is performed so as to stop after moving to.
  • the calculation unit 22 changes the traveling direction from the passage point P3 to the right (90 °) in the housing direction without changing the housing direction of the autonomous mobile robot 12, and restarts the movement.
  • the drive control for the drive unit 23 is performed so that the drive unit 23 stops after moving to the passage point P4. Note that, in the traveling pattern A, the arithmetic unit 22 does not perform display control on the display unit 24 while these drive controls are performed.
  • the calculation unit 22 performs drive control on the driving unit 23 so as to start moving from the passage point P1 forward (0 °) in the housing direction, and the passage point P2
  • the drive control for the drive unit 23 is performed so as to stop after moving to.
  • the arithmetic unit 22 changes the traveling direction from the passage point P3 toward the rear right (135 °) of the housing direction without changing the housing direction of the autonomous mobile robot 12, and restarts the movement.
  • the drive control for the drive unit 23 is performed so that the drive unit 23 stops after moving to the passage point P4. Note that, in the traveling pattern A, the arithmetic unit 22 does not perform display control on the display unit 24 while these drive controls are performed.
  • the display unit 24 for presenting the course of the autonomous mobile robot 12 does not represent the traveling direction and the direction change, and is used to change the course of the autonomous mobile robot 12.
  • the driving of the direction change by the driving unit 23 is not performed. Therefore, in the traveling pattern A, the autonomous mobile robot 12 maintains the housing direction in a constant direction so as to translate in both the passage A and the passage B without presenting the traveling direction and the direction change. Make a course change.
  • FIG. 11 shows an example of a course change in the traveling pattern B in the passage A
  • FIG. 12 shows an example of a course change in the traveling pattern B in the passage B.
  • the calculation unit 22 performs drive control on the driving unit 23 so as to start moving from the passage point P1 toward the front (0 °) in the housing direction, and the passage point P2
  • the drive control for the drive unit 23 is performed so as to stop after moving to.
  • the calculation unit 22 drives the autonomous mobile robot 12 to restart moving forward (0 °) from the passage point P3 toward the housing.
  • the drive control for the drive unit 23 is performed, and the drive control for the drive unit 23 is performed so as to stop after moving to the passage point P4.
  • the arithmetic unit 22 does not perform display control on the display unit 24 while these drive controls are performed.
  • the calculation unit 22 performs drive control on the driving unit 23 so as to start moving from the passage point P1 toward the front (0 °) in the housing direction, and the passage point P2
  • the drive control for the drive unit 23 is performed so as to stop after moving to.
  • the calculation unit 22 drives the autonomous mobile robot 12 to restart moving forward (0 °) from the passage point P3 toward the housing.
  • the drive control for the drive unit 23 is performed, and the drive control for the drive unit 23 is performed so as to stop after moving to the passage point P4.
  • the arithmetic unit 22 does not perform display control on the display unit 24 while these drive controls are performed.
  • the display unit 24 for presenting the course of the autonomous mobile robot 12 does not represent the traveling direction and the direction change, but the course of the autonomous mobile robot 12 is changed. Of the direction change by the drive unit 23 is performed. Therefore, in the traveling pattern B, the autonomous mobile robot 12 changes the course direction by changing the direction of the housing in accordance with the angle of the path without presenting the traveling direction and the direction change in both the path A and the path B. Do.
  • FIG. 13 shows an example of a course change in the traveling pattern C in the passage A
  • FIG. 14 shows an example of a course change in the traveling pattern C in the passage B
  • FIG. 15 shows the light-emitting portion that has the highest display intensity at the passage points P1 to P4 when the course is changed in the traveling pattern C.
  • the calculation unit 22 performs drive control on the driving unit 23 so as to start moving from the passage point P1 toward the front (0 °) in the housing direction, and in the traveling direction.
  • the display control on the display unit 24 is performed so that the central portion on the front side in the housing direction emits light with the strongest intensity.
  • the calculation unit 22 emits the strongest intensity at the front central portion in the housing direction according to the traveling direction up to that time.
  • the display control for the display unit 24 is performed.
  • the arithmetic unit 22 turns the direction of the housing of the autonomous mobile robot 12 by 90 ° by right rotation. At this time, in response to the change in the direction of the housing of the autonomous mobile robot 12, the front central portion of the front of the housing in the forward direction of the traveling direction remains in a state of emitting light with the strongest intensity. After that, the arithmetic unit 22 performs drive control on the driving unit 23 so as to resume the movement from the passage point P3 toward the front (0 °) in the housing direction, and drives to stop after moving to the passage point P4. Drive control for the unit 23 is performed.
  • the calculation unit 22 performs drive control on the driving unit 23 so as to start moving from the passage point P1 toward the front (0 °) in the housing direction, and in the traveling direction.
  • the display control on the display unit 24 is performed so that the central portion on the front side in the housing direction emits light with the strongest intensity.
  • the calculation unit 22 emits the strongest intensity at the front central portion in the housing direction according to the traveling direction up to that time.
  • the display control for the display unit 24 is performed.
  • the arithmetic unit 22 changes the housing direction of the autonomous mobile robot 12 by 135 ° by right rotation. At this time, in response to the change in the direction of the housing of the autonomous mobile robot 12, the front central portion of the front of the housing in the forward direction of the traveling direction remains in a state of emitting light with the strongest intensity. After that, the arithmetic unit 22 performs drive control on the driving unit 23 so as to resume the movement from the passage point P3 toward the front (0 °) in the housing direction, and drives to stop after moving to the passage point P4. Drive control for the unit 23 is performed.
  • the display unit 24 presents the traveling direction of the autonomous mobile robot 12 so as to represent the traveling direction (the front center in the housing direction emits light with the highest intensity), and the autonomous mobile robot 12 performs autonomous operation.
  • the driving unit 23 for changing the course of the mobile robot 12 drives the direction change.
  • the display unit 24 for presenting the course of the autonomous mobile robot 12 performs the direction change. Expression (for example, movement of the light emitting unit that emits light at the highest intensity) is not performed. Therefore, in the traveling pattern C, the autonomous mobile robot 12 expresses the traveling direction in both the passage A and the passage B, but does not express the direction change, and furthermore, according to the angle of the passage, Change direction and change course.
  • the forward direction of the autonomous mobile robot 12 in the housing direction is always the traveling direction. Therefore, as shown in FIG.
  • the portion L3 emits light at the highest intensity.
  • the front surface of the autonomous mobile robot 12 in the housing direction always faces forward in the traveling direction. Therefore, as shown in FIG. 15B, at any of the passage points P1 to P4. Also, the light emitting portion L3 has the highest display intensity.
  • FIG. 16 shows an example of a course change in the traveling pattern D in the passage A
  • FIG. 17 shows an example of a course change in the traveling pattern D in the passage B
  • FIG. 18 shows the light-emitting portion that has the highest display intensity at the passage points P1 to P4 when the course is changed in the traveling pattern D.
  • the calculation unit 22 performs drive control on the drive unit 23 so as to start moving from the passage point P1 toward the front (0 °) in the housing direction, and also in the traveling direction.
  • the display control on the display unit 24 is performed so that the central portion on the front side in the housing direction emits light with the strongest intensity.
  • the arithmetic unit 22 performs drive control on the drive unit 23 so as to stop after moving to the passage point P2, and then to the right (90 °) without changing the direction of the housing of the autonomous mobile robot 12.
  • the display control on the display unit 24 is performed so that the light emission with the highest intensity is moved in accordance with the change of the traveling direction.
  • the display unit 24 is moved from the front central portion in the housing direction, and emits light with the highest intensity at the right central portion in the housing direction according to the traveling direction.
  • the calculation unit 22 performs drive control on the driving unit 23 so as to restart the movement from the passage point P3 toward the right (90 °) in the housing direction, and stops after moving to the passage point P4.
  • the drive control for the drive unit 23 is performed.
  • the calculation unit 22 performs drive control on the driving unit 23 so as to start moving from the passage point P1 toward the front (0 °) in the housing direction, and in the traveling direction.
  • the display control on the display unit 24 is performed so that the central portion on the front side in the housing direction emits light with the strongest intensity.
  • the arithmetic unit 22 performs drive control on the drive unit 23 so as to stop after moving to the passage point P2, and then rightward rearward (135 °) without changing the direction of the housing of the autonomous mobile robot 12.
  • the display control on the display unit 24 is performed so that the light emission with the highest intensity is moved in accordance with the change of the traveling direction.
  • the display unit 24 is moved from the front center portion in the housing direction, and emits light at the highest intensity at the right rear end in the housing direction according to the traveling direction.
  • the calculation unit 22 performs drive control on the driving unit 23 so as to restart moving from the passage point P3 toward the rear right (135 °) in the housing direction, and stops after moving to the passage point P4.
  • the drive control for the drive unit 23 is performed.
  • the display unit 24 emits light with the strongest intensity at the front central portion of the autonomous mobile robot 12 in the housing direction, so that the traveling direction is presented. Is moved, the change of the traveling direction is presented. Further, the direction of the housing of the autonomous mobile robot 12 is not changed by the driving unit 23. Therefore, in the traveling pattern D, the autonomous mobile robot 12 presents the traveling direction and the direction change in both the path A and the path B, and maintains the casing direction in a fixed direction so as to move in parallel. Make a course change.
  • the display unit 24 causes the light emitting unit L3 located at the center of the front surface in the housing direction to emit light with the highest intensity according to the traveling direction at the start of traveling. Then, the display unit 24 causes the light emitting unit L15 located at the center of the right side in the housing direction to emit light with the highest intensity in the passage A in accordance with the course change, and emits light at the right rear end in the housing direction in the passage B. The portion L13 emits light at the highest intensity.
  • the light emitting portion L3 has the highest display intensity from the passage point P1 to the passage point P2. Then, between the passage point P2 and the passage point P3, in the passage A, the maximum display intensity is changed from the light emitting unit L3 toward the light emitting unit L15, and in the passage B, the display maximum intensity is changed from the light emitting unit L3 toward the light emitting unit L13. The maximum strength is changed. Thereafter, between the passage point P3 and the passage point P4, the light emitting unit L15 has the highest display intensity in the passage A, and the light emitting unit L13 has the highest display intensity in the passage B.
  • the direction of the housing of the autonomous mobile robot 12 is maintained in a fixed direction along with the course change, but the display unit 24 sets the front of the traveling direction as the maximum display intensity.
  • the course of the autonomous mobile robot 12 can be appropriately presented.
  • the change of the maximum display intensity between the passage point P2 and the passage point P3 is represented by a curved line as shown in the drawing, and also, for example, a linear change, a binary change, and a change that overshoots in the opposite direction. May be performed.
  • FIG. 19 shows an example of a course change in the traveling pattern E in the passage B.
  • FIG. 20 shows a light emitting unit that has the highest display intensity at the passage points P1 to P4 when the course is changed in the traveling pattern E.
  • the calculation unit 22 performs drive control on the driving unit 23 so as to start moving from the passage point P1 toward the front (0 °) in the housing direction, and also in the traveling direction.
  • the display control on the display unit 24 is performed so that the central portion on the front side in the housing direction emits light with the strongest intensity.
  • the calculation unit 22 performs drive control on the drive unit 23 so as to stop after moving to the passage point P2.
  • the arithmetic unit 22 controls the driving of the drive unit 23 so that the direction of the housing of the autonomous mobile robot 12 is changed by 45 ° by right rotation, and the traveling direction is shifted to the right (90 °) of the housing direction.
  • the display control on the display unit 24 is performed so that the light emission with the highest intensity is moved in accordance with the direction change.
  • the display unit 24 is moved from the front central portion in the housing direction, and emits light with the highest intensity at the right central portion in the housing direction according to the traveling direction.
  • the calculation unit 22 performs drive control on the driving unit 23 so as to restart the movement from the passage point P3 toward the right (90 °) in the housing direction, and stops after moving to the passage point P4.
  • the drive control for the drive unit 23 is performed.
  • the traveling direction is presented.
  • the light emitting unit L3 has the highest display intensity from the passage point P1 to the passage point P2, and the light emitting unit L3 to the light emitting unit L15 between the passage point P2 and the passage point P3.
  • the maximum display intensity is changed toward.
  • the light emitting unit L15 has the highest display intensity.
  • the traveling direction of the autonomous mobile robot 12 is changed by 135 °, but the direction of the autonomous mobile robot 12 is changed by driving so that the side surface direction of the housing matches the traveling direction. It is only necessary to change the housing direction by 45 ° by turning right. That is, the direction change (135 °) of the autonomous mobile robot 12 due to the direction change of the autonomous mobile robot 12 is performed by the direction change (45 °) of the housing direction by driving and the direction change (90 °) of moving the light emission with the strongest intensity. ) Can be presented.
  • the traveling pattern E is an extension of the movement expression in the traveling pattern D. That is, in the traveling pattern D, in the case of the passage B, the direction of the side surface of the housing of the autonomous mobile robot 12 does not match the direction of the passage. It is assumed that the disagreement gives a sense of incongruity to the surrounding persons. Therefore, in the traveling pattern E, the drive unit 23 performs the minimum direction change in which the direction of the housing of the autonomous mobile robot 12 matches the direction of the passage, and compensates for the remaining direction change by the display unit 24. Can be.
  • the rotational expression is represented by a curve as shown in FIG. 20, similarly to the running pattern D.
  • a linear change, a binary change, a change that overshoots in the opposite direction, etc. May be expressed.
  • the arrangement positions of the 16 light emitting units L1 to L16 arranged along the circumferential direction on the outer periphery of the housing of the autonomous mobile robot 12 are developed linearly,
  • An example is shown in which the intensity of another light emitting unit is calculated based on the distance from the light emitting unit having a high display intensity.
  • the display intensity of the light emitting unit L3 arranged at the center of the front surface of the autonomous mobile robot 12 is the highest, the display intensity up to the light emitting unit L11 arranged at the most opposite side to the light emitting unit L3 is light emitting. It is represented by a gentle curve that descends according to the distance from the section L3.
  • the curve as shown in FIG. 21 may be adjusted in accordance with the characteristics of the LEDs and the display constituting the display unit 24, or the display intensity may be changed linearly.
  • FIG. 22A shows an example of a traveling direction vector defined with respect to the center of the casing of the autonomous mobile robot 12.
  • a virtual center point B on the side surface of the housing in the traveling direction from the center of the autonomous mobile robot 12 and a radius r around the virtual center point B are virtually generated.
  • An example of a virtual circle is shown.
  • FIG. 22C illustrates an example of the display unit 24 represented by the display intensity based on the virtual circle.
  • the traveling direction vector is defined as shown in FIG. 22A
  • the intersection between the traveling direction vector and the side surface of the casing of the autonomous mobile robot 12 is set as the virtual center point B.
  • the display intensity is determined based on the distance in the two-dimensional plane such that the center of the virtual circle has the highest intensity and decreases in intensity toward the outer periphery of the virtual circle. Is calculated.
  • the light emitting portion L4 including the virtual center point B has the highest intensity, and the display intensity becomes higher as the light emitting portion L4 is closer to the light emitting portion L4.
  • the traveling direction is expressed on the display unit 24 as a gradation such that the display direction becomes darker as the display intensity increases and becomes thinner as the display intensity decreases.
  • the display unit 24 having a configuration employing a plurality of LEDs arranged in a line displays the front (light emitting unit L3) of the autonomous mobile robot 12 in the housing direction, which is the traveling direction when viewed from above. Variations expressing the course with the highest strength are shown.
  • a display is adopted as the display unit 24C as shown in FIG. 4C, a three-dimensional expression may be used.
  • one bright spot is set on the entire side surface of the display unit 24, one bright spot is set for each side surface of the display unit 24, or the display unit 24 is set.
  • a plurality of luminescent spots can be set in the plane of the side face of.
  • a course can be represented by a range, shading / brightness, hue, and blinking.
  • it is considered to use various variations as shown in FIG. 23 according to a combination of expressions of courses to be selected.
  • only one route expression may be selected, or a plurality of routes may be selected and multiplied.
  • the display unit 24 includes a display on the top surface of the autonomous mobile robot 12 or includes a projector as illustrated in FIG. 4B
  • an arrow is displayed, a route, a process, and the like are displayed. May be.
  • an illustration of an eye that turns his / her eyes in the traveling direction may be displayed.
  • the same expression method is used in all directions. For example, display contents different from other surfaces or other areas are assigned to each surface or only to a specific area. You may. That is, when a person walks from behind the autonomous mobile robot 12, a display directed to that person is assigned to only one surface, and the traveling direction and the degree of progress of the process are expressed. Since it is invisible to a person, it is possible to more efficiently present a course by assigning the display to another person in the vicinity.
  • FIG. 24 illustrates an example in which the display unit 24 performs display such that the image is localized in space when the autonomous mobile robot 12 is traveling straight.
  • the display unit 24 moves leftward at the transition speed v1. Is displayed. That is, the transition speed v1 by the display unit 24 is represented by the following equation (2) using the moving speed v of the autonomous mobile robot 12.
  • FIG. 25 illustrates an example in which the display unit 24 performs display such that an image is localized in space when the autonomous mobile robot 12 is turning.
  • the display unit 24 moves at the transition speed v2 by turning left. Display. That is, the transition speed v2 by the display unit 24 is the distance r from the turning center to the current bright point on the display unit 24, the difference angle ⁇ from the vertical direction of the current bright point on the display unit 24 (minimum value 0 °). , A maximum value of 45 °) as shown in the following equation (3).
  • FIG. 26 shows an example in which the particle representation in space is projected on a two-dimensional plane.
  • a particle expression is created by transiting random noise in a certain direction from a certain starting point in front of the traveling direction of the autonomous mobile robot 12. Then, as shown in FIG. 26B, the display unit 24 displays a portion corresponding to the particle so that the particle is projected on a portion that intersects the outer periphery of the autonomous mobile robot 12 when viewed from above. Can be expressed by causing the light-emitting portion to emit light.
  • the starting point of the particles may be changed in accordance with the traveling direction of the autonomous mobile robot 12, or the amount of the particles or the speed of the particles may be changed in accordance with the speed of the autonomous mobile robot 12.
  • the radiation of particles can be simulated and expressed on a three-dimensional plane.
  • FIG. 27 shows an example of the development of a ripple.
  • ripples there may be a plurality of ripples, and there may be a plurality of places where the ripples occur.
  • Such expression using ripples can be applied not only to emphasizing the traveling direction, but also to a response to communication with surrounding persons and a method of drawing attention to surrounding persons.
  • the dynamic spread of the ripple can be simulated and expressed on a three-dimensional plane.
  • the expressions shown in FIG. 26 or FIG. 27 may express the speed of the moving speed by periodically moving as a function of time.
  • the speed of the moving speed can be represented by the traveling speed or the falling speed of the particles, and in the case of a ripple as shown in FIG.
  • the moving speed can be represented by the speed at which the ripples spread.
  • FIG. 28 shows an example of a virtual circle contraction image.
  • a virtual circle is placed at the center of the autonomous mobile robot 12, and the expression of periodically expanding and contracting the radius (the left side is enlarged / the right side is reduced) is simulated.
  • the display unit 24 displays a portion corresponding to the circle so that the circle is projected on a portion that intersects the outer periphery when the housing of the autonomous mobile robot 12 is viewed from above. Can be expressed by causing the light-emitting portion to emit light.
  • ⁇ Circle around (4) ⁇ As parameters for determining a virtual circle, a circle radius, each cycle of enlargement / reduction, a curve of enlargement / reduction, gradation from the center of the circle to the outer periphery, coordinates of the center of the circle, and the like are used. Then, by adjusting these parameters, the traveling direction, the speed, and the like can be expressed. For example, it is possible to express that the breathing is fast by increasing the contraction cycle, and express that the breathing is moving quickly, or express that the movement is slow by moving it in a slow cycle. Further, by shortening the contraction while moving the center of the circle to the end, it is possible to express such that the direction is noticed.
  • this expression may be switched between the expression of only the front and the all-around expression according to the position of the surrounding person, or may be switched to the expression described above according to the distance to the surrounding person. .
  • the display unit 24 controls the display so that the center of each of the four sides of the autonomous mobile robot 12 has the highest strength. Do. Then, as shown in the middle part of FIG. 29, when the movement is started and the vehicle is accelerating from the passage point P1, the display unit 24 displays the center of the front surface of the autonomous mobile robot 12 according to the traveling vector so that the strongest strength is obtained. In addition to performing the display control, the strongest strength on both side surfaces moves to the front side, and the strength of the rear surface decreases. Also, when moving at a constant speed as shown in the lower part of FIG. 29, and when decelerating as shown in the upper part of FIG. 30, the display unit 24 displays the same display as during acceleration according to the travel vector. Do.
  • the display unit 24 controls the display so that the center of each of the four sides of the autonomous mobile robot 12 has the highest strength. Do.
  • the display unit 24 performs display control on the four side surfaces of the autonomous mobile robot 12 so that the respective central parts have the highest strength.
  • the display unit 24 controls the display so that the center of each of the four sides of the autonomous mobile robot 12 has the highest strength. Do. Then, as shown in the middle part of FIG. 32, when the vehicle starts moving and is accelerating from the passage point P1, the display unit 24 displays the center of the front surface of the autonomous mobile robot 12 in accordance with the acceleration vector such that the strongest strength is obtained. In addition to performing the display control, the strongest strength on both side surfaces moves to the front side, and the strength of the rear surface decreases.
  • the display unit 24 displays the strongest in the center of each of the four sides of the autonomous mobile robot 12 according to the acceleration vector. Display control is performed so as to obtain the intensity. Then, when decelerating just before the passage point P2, as shown in the upper part of FIG. 33, the display unit 24 performs display control according to the acceleration vector so that the center of the rear surface of the autonomous mobile robot 12 has the highest strength. At the same time, the strongest strength on both sides moves to the rear side, reducing the strength on the front side.
  • the display unit 24 when stopped at the passage point P2, the display unit 24 performs display control so that the center of each of the four sides of the autonomous mobile robot 12 has the strongest strength. Do. Similarly, during acceleration as shown in the lower part of FIG. 33, during constant speed as shown in the upper part of FIG. 34, and during deceleration as shown in the middle part of FIG. I do. Thereafter, as shown in the lower part of FIG. 34, when the display unit 24 stops at the passage point P4, the display unit 24 performs display control on the four side surfaces of the autonomous mobile robot 12 such that the central portions thereof have the highest strength.
  • the autonomous mobile robot 12 performs the display control according to the acceleration vector, so that, for example, at the time of deceleration, the expression can be developed in a direction opposite to the traveling direction, and the autonomous mobile robot 12 stops. Can be expressed in advance.
  • the traveling route can be grasped in advance, it is preferable to inform the surroundings of the preliminary operation by displaying the direction of the next turn instead of the current traveling direction in advance.
  • FIG. 35 illustrates an example of display control for performing a preliminary operation expression in the traveling pattern C
  • FIG. 36 illustrates an example of display control for performing the preliminary operation expression in the traveling pattern D.
  • the display system may be fixed at the front at all times. However, as shown in FIG. In addition, it is preferable to perform display control such that once the highest intensity is moved from the central portion to the left, and then returned to the central portion before the turn is completed.
  • the preliminary motion expression may be applied in a standby state where the user does not move.
  • the traveling direction is presented, so that the traveling route is presented before starting traveling. can do. Further, by turning the traveling direction while the vehicle is stopped at the passage point P2, an expression for presenting the next traveling direction can be performed.
  • the display unit 24 displays the strongest strength at the center of the four side surfaces of the autonomous mobile robot 12 as in the standby state.
  • the display control may be performed so that the central portion of the front surface of the autonomous mobile robot 12 has the strongest strength as in the case of traveling.
  • FIG. 39 shows an example of presenting a course when two autonomous mobile robots 12-1 and 12-2 move in cooperation
  • FIG. 40 shows four autonomous mobile robots. An example is shown in which paths are presented when 12-1 to 12-4 move in cooperation.
  • the plurality of autonomous mobile robots 12 can move cooperatively as a larger autonomous mobile robot by being physically connected to each other.
  • the autonomous mobile robot 12 when the autonomous mobile robot 12 is equipped with a proximity sensor, it can move cooperatively as a larger autonomous mobile robot without performing physical connection.
  • the path is presented in the same manner as the presentation method of presenting the path with one autonomous mobile robot 12 as described above. Can be.
  • the side surface where the autonomous mobile robots 12 are in contact with each other is not visible from the surroundings, the light can be turned off as shown in FIGS.
  • the portion where the side surfaces of the autonomous mobile robots 12 are continuous can be supplemented as if they are continuous with each other, as shown in FIGS.
  • the side where the autonomous mobile robots 12 are in contact with each other that is, the side that is turned off is used by the autonomous mobile robots 12 to use light. Can be used for communication.
  • the above-described methods of presenting various routes can be applied not only to one autonomous mobile robot 12 but also to a plurality of autonomous mobile robots 12 moving in a coordinated manner.
  • the adaptation of the traveling mode and the traveling pattern as shown in FIG. 6 may be optimized according to the skill of the surrounding persons. For example, if it is determined from the contact time with a specific person or the behavior of that person that the turning of the casing of the autonomous mobile robot 12 is unnecessary, such as deeming that the user has grasped the behavior during the first look, the traveling is performed. Instead of employing patterns B and C, only traveling patterns D and E may be employed.
  • the traveling patterns D and E may not be used, and the vehicle may travel with other traveling patterns alone. Further, when the direction and the line of sight of a person's face can be detected, the display may be performed only when the person is looking at the autonomous mobile robot 12.
  • the running pattern B and the driving pattern B shown in FIG. C can be applied.
  • the traveling patterns D cannot be applied, when the vehicle retreats, an expression that changes the traveling direction by 180 ° can be applied.
  • a presentation may be applied.
  • ⁇ Attention expression using audio output> For example, it is assumed that the presentation of the route as described above is mainly used as a notification to a surrounding person or another autonomous mobile robot 12, but there is a situation where the surrounding person does not notice the existence of the autonomous mobile robot 12. Is done. In such a situation, the autonomous mobile robot 12 outputs sound from a speaker disposed in an environment in which the autonomous mobile robot 12 is used or a wearable device worn by a surrounding person, thereby enabling the autonomous mobile robot 12 to output itself. Can be noticed by surrounding people.
  • the determination as to whether or not the surrounding person is aware of the autonomous mobile robot 12 is performed by, for example, incorporating the RGB camera 32 (FIG. 2) of the autonomous mobile robot 12, the sensor module 14 of FIG. 1, or the wearable device. This can be performed based on the direction of the human face or the direction of the line of sight with a camera or the like. Then, when it is determined that the autonomous mobile robot 12 is not within the visual field of the surrounding person, or when the autonomous mobile robot 12 is performing a motion that may collide with the autonomous mobile robot 12 based on the position information of the surrounding person. Attention expression using voice output can be performed.
  • ⁇ Change of display content intensity according to people and ambient light> For example, depending on the environment of the autonomous mobile robot 12, it is assumed that the display on the display unit 24 becomes difficult to see. Therefore, for example, when the illuminance of the environment of the autonomous mobile robot 12 is high, the peak luminance of the display, the LED array, the projector, and the like constituting the display unit 24 may be increased according to the illuminance of the environment.
  • the peak luminance of the display unit 24 may be increased.
  • the autonomous mobile robot 12 is likely to enter the line of sight due to being short, such as a child, or if there is a person who is sensitive to light, the peak luminance of the display unit 24 may be reduced. Good.
  • the autonomous mobile robot 12 turns and uses the expression described with reference to FIG. 6, when the surrounding person is in the vicinity of the autonomous mobile robot 12, the surrounding person becomes autonomous.
  • eye contact with the surrounding person may be prioritized over turning expression.
  • ⁇ Expression method in case of emergency or bad environment> For example, when there is a risk that a surrounding person may come into contact with the autonomous mobile robot 12, not only the brightness of the display unit 24 may be maximized, but also a notification may be given using a speaker or the like. Furthermore, the autonomous mobile robot 12 may perform a spin turn at a high speed to intentionally increase the driving sound to make the driver aware. Further, when it is difficult to detect whether or not there is a person around by the sensor of the autonomous mobile robot 12 such as when the environment is extremely bright, the display may be swung to the safe side so that the display unit 24 performs display.
  • the display can be performed at the highest brightness as described above.
  • the mode may be forcibly switched to a mode of performing parallel movement such as traveling patterns A and D.
  • the angle of the display unit 24 such as a projector or an LED array is adjusted so that the area around the autonomous mobile robot 12 can be adjusted. Rather, it is possible to expand the expression widely.
  • the autonomous mobile robot 12 may change the expression to a more easily recognizable expression, or, in an environment where the ambient illuminance is low and the surrounding people are not good, the display unit 24 may illuminate the feet of the surrounding people. It may be used for safety assistance.
  • the autonomous mobile robot 12 provides the display unit 24 in all directions regardless of the direction of the traveling direction, so that the surrounding persons can grasp the motion of the autonomous mobile robot 12 from any direction. it can.
  • the surrounding person can predict the movement of the autonomous mobile robot 12 in advance, it is possible to give a sense of security to the surrounding person and reduce the initial learning cost of the user of the autonomous mobile robot 12. Can be.
  • the autonomous mobile robot 12 can optimize the moving cost of a battery or the like and use the mechanism of the autonomous mobile robot 12 by using an optimum moving method in a place where no person is present around.
  • the autonomous mobile robot 12 does not need a physical direction change by indicating the direction change by the display system even in a place where a person is around, thereby improving responsiveness and optimizing the movement. .
  • the front of the traveling direction coincides with the front surface of the housing of the autonomous mobile robot 12, as in a conventional automobile.
  • a sense of security can be given to the surrounding persons.
  • the same expression method can be used when moving in cooperation with a plurality of autonomous mobile robots 12.
  • the series of processes described above can be performed by hardware or can be performed by software.
  • a program constituting the software is installed in a general-purpose computer or the like.
  • the processing performed by the computer according to the program does not necessarily have to be performed in chronological order according to the order described in the flowchart. That is, the processing performed by the computer according to the program includes processing executed in parallel or individually (for example, parallel processing or processing by an object).
  • the program may be processed by a single computer (processor) or may be processed in a distributed manner by a plurality of computers. Further, the program may be transferred to a remote computer and executed.
  • a system means a set of a plurality of components (devices, modules (parts), etc.), and it does not matter whether all components are in the same housing. Therefore, a plurality of devices housed in separate housings and connected via a network, and one device housing a plurality of modules in one housing are all systems. .
  • the configuration described as one device (or processing unit) may be divided and configured as a plurality of devices (or processing units).
  • the configuration described above as a plurality of devices (or processing units) may be configured as one device (or processing unit).
  • a configuration other than those described above may be added to the configuration of each device (or each processing unit).
  • a part of the configuration of a certain device (or processing unit) may be included in the configuration of another device (or other processing unit).
  • the present technology can adopt a configuration of cloud computing in which one function is shared by a plurality of devices via a network and processed jointly.
  • the above-described program can be executed in any device.
  • the device only has to have necessary functions (functional blocks and the like) and be able to obtain necessary information.
  • each step described in the above-described flowchart can be executed by a single device, or can be shared and executed by a plurality of devices. Further, when a plurality of processes are included in one step, the plurality of processes included in the one step can be executed by one device, or can be shared and executed by a plurality of devices. In other words, a plurality of processes included in one step may be executed as a plurality of steps. Conversely, the processing described as a plurality of steps may be collectively executed as one step.
  • the program executed by the computer may be configured so that the processing of the steps for describing the program is executed in chronological order according to the order described in the present specification, or the program may be executed in parallel or called. It may be executed individually at a necessary timing such as time. That is, as long as no inconsistency arises, the processing of each step may be performed in an order different from the order described above. Further, the processing of the steps for describing this program may be executed in parallel with the processing of another program, or may be executed in combination with the processing of another program.
  • a degree-of-relation determining unit that determines the degree of relation with surrounding persons around the moving object
  • a moving object control device comprising: (2) In the case where the setting unit moves together with the surrounding person, the driving unit changes the direction of the housing of the moving body by the driving unit when changing the course, and sets a traveling mode in which the traveling unit travels.
  • the moving object control device according to the above.
  • the moving body control device wherein the output unit presents the traveling direction of the moving body, but does not perform expression for changing the traveling direction.
  • the moving body control device wherein the output unit does not provide the moving direction of the moving body and does not perform expression for changing the direction of the moving body.
  • the setting unit does not move with the surrounding person, but when the surrounding person is visible, the output unit provides the traveling direction of the moving body by the output unit, and the moving body changes a course.
  • the moving body control device wherein when performing the driving, the traveling mode is set by performing the expression of changing the traveling direction by the output unit.
  • the moving body control device wherein, when the moving body changes a course, the driving unit moves while maintaining a casing of the moving body in a fixed direction.
  • the moving body control device wherein the driving unit changes a direction of a housing of the moving body when the moving body changes a course.
  • the setting unit does not move with the surrounding person, and when there is no visible surrounding person, the output unit expresses the traveling direction and the direction change for presenting the course of the moving body by the output unit.
  • the moving body control device according to (1), wherein a traveling mode in which the driving unit travels without changing the direction of the housing of the moving body by the driving unit is set.
  • the mobile unit control device according to any one of (1) to (8), wherein the output unit is configured by a display unit that performs display over the entire periphery of a side surface of the housing of the mobile unit.
  • a moving object control device that controls the movement of the moving object, Determining the degree of relationship with the person around the moving body, Based on the degree of relationship, setting a traveling mode in which a process performed by a driving unit that moves the moving body and a process performed by an output unit that outputs an expression that presents a course of the moving body are associated with each other.
  • a moving object control method including: (11) The computer of the moving object control device that controls the movement of the moving object, Determining the degree of relationship with the person around the moving body, Based on the degree of relationship, setting a traveling mode in which a process performed by a driving unit that moves the moving body and a process performed by an output unit that outputs an expression that presents a course of the moving body are associated with each other.
  • a program for executing mobile object control including and.
  • 11 mobile object control system ⁇ 12 ⁇ autonomous mobile robot, ⁇ 13 ⁇ processing device, ⁇ 14 ⁇ sensor module, ⁇ 21 ⁇ input unit, ⁇ 22 ⁇ calculation unit, ⁇ 23 ⁇ drive unit, ⁇ 24 ⁇ display unit, ⁇ 31 ⁇ laser ranging device, ⁇ 32 ⁇ RGB camera, ⁇ 33 ⁇ stereo camera, 34 inertia measuring device, 41 CPU, 42 GPU, 43 auxiliary storage device, 44 storage device, 51 motor control circuit, 52 driving motor, 53 encoder, 61 output device, 71 housing, 72 mecanum wheel

Abstract

本開示は、移動体が移動する際の進路の提示方法について改善することができるようにする移動体制御装置および移動体制御方法、並びにプログラムに関する。 移動体の周囲に居る人物との関係度が決定され、その関係度に基づいて、移動体の移動を行う駆動部が行う処理、および、移動体の進路を提示する表現を出力する出力部が行う処理が対応付けられた走行モードが設定される。本技術は、例えば、全方位移動可能な自律移動型ロボットに適用できる。

Description

移動体制御装置および移動体制御方法、並びにプログラム
 本開示は、移動体制御装置および移動体制御方法、並びにプログラムに関し、特に、移動体が移動する際の進路の提示方法について改善することができるようにした移動体制御装置および移動体制御方法、並びにプログラムに関する。
 近年、人間の生活環境の中において、ロボットなどの移動体が移動するような状況が普及すると想定されている。このような状況において、移動体が移動する際の進路を適切に提示することによって、移動体の周囲に居る人物に注意喚起するような運用が検討される。
 例えば、特許文献1には、周囲に居る人物との距離を認識し、その人物との距離が短いほど、より詳細な移動経路を方向指示部により提示することができる移動装置が提案されている。
特開2011-204145号公報
 ところで、特許文献1に開示されているように、移動体が移動する際に、周囲に居る人物との距離に基づいて進路を提示する提示方法では、その人物の行動とは無関係に進路を提示することがある。そのため、移動体の周囲に居る人物の行動によっては、その人物が、移動体の移動を適切に認識することができない状況が生じることがあると考えられ、進路の提示方法の改善が求められている。
 本開示は、このような状況に鑑みてなされたものであり、移動体が移動する際の進路の提示方法について改善することができるようにするものである。
 本開示の一側面の移動体制御装置は、移動体の周囲に居る人物との関係度を決定する関係度決定部と、前記関係度に基づいて、前記移動体の移動を行う駆動部が行う処理、および、前記移動体の進路を提示する表現を出力する出力部が行う処理が対応付けられた走行モードを設定する設定部とを備える。
 本開示の一側面の移動体制御方法は、移動体の移動を制御する移動体制御装置が、前記移動体の周囲に居る人物との関係度を決定することと、前記関係度に基づいて、前記移動体の移動を行う駆動部が行う処理、および、前記移動体の進路を提示する表現を出力する出力部が行う処理が対応付けられた走行モードを設定することとを含む。
 本開示の一側面のプログラムは、移動体の移動を制御する移動体制御装置のコンピュータに、前記移動体の周囲に居る人物との関係度を決定することと、前記関係度に基づいて、前記移動体の移動を行う駆動部が行う処理、および、前記移動体の進路を提示する表現を出力する出力部が行う処理が対応付けられた走行モードを設定することとを含む移動体制御を実行させる。
 本開示の一側面においては、移動体の周囲に居る人物との関係度が決定され、その関係度に基づいて、移動体の移動を行う駆動部が行う処理、および、移動体の進路を提示する表現を出力する出力部が行う処理が対応付けられた走行モードが設定される。
 本開示の一側面によれば、移動体が移動する際の進路の提示方法について改善することができる。
 なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
本技術を適用した移動体制御システムの一実施の形態の構成例を示す図である。 自律移動型ロボットの構成例を示すハードウェアブロック図である。 駆動部として採用されるメカナムホイールの一例を示す図である。 表示部の各種の構成例を示す図である。 移動体制御処理を説明するフローチャートである。 走行パターンおよび走行モードの関係を説明する図である。 自律移動型ロボットの走行パターンを説明するのに用いる2種類の通路Aおよび通路Bを示す図である。 表示部の構成例および表示強度について説明する図である。 通路Aにおける走行パターンAでの進路変更の一例を示す図である。 通路Bにおける走行パターンAでの進路変更の一例を示す図である。 通路Aにおける走行パターンBでの進路変更の一例を示す図である。 通路Bにおける走行パターンBでの進路変更の一例を示す図である。 通路Aにおける走行パターンCでの進路変更の一例を示す図である。 通路Bにおける走行パターンCでの進路変更の一例を示す図である。 走行パターンCの表示最高強度について説明する図である。 通路Aにおける走行パターンDでの進路変更の一例を示す図である。 通路Bにおける走行パターンDでの進路変更の一例を示す図である。 走行パターンDの表示最高強度について説明する図である。 通路Bにおける走行パターンEでの進路変更の一例を示す図である。 走行パターンEの表示最高強度について説明する図である。 1次元ベクトルに基づく表示強度の算出手法について説明する図である。 2次元平面の距離に基づく表示強度の算出手法について説明する図である。 進行方向の表示のバリエーションを示す図である。 直進時における空間定位表現について説明する図である。 旋回時における空間定位表現について説明する図である。 パーティクル表現を利用した表示制御について説明する図である。 波紋表現を利用した表示制御について説明する図である。 円の収縮表現を利用した表示制御について説明する図である。 走行パターンDにおける走行ベクトルを使用した表示制御について説明する図である。 走行パターンDにおける走行ベクトルを使用した表示制御について説明する図である。 走行パターンDにおける走行ベクトルを使用した表示制御について説明する図である。 走行パターンDにおける加速度ベクトルを使用した表示制御について説明する図である。 走行パターンDにおける加速度ベクトルを使用した表示制御について説明する図である。 走行パターンDにおける加速度ベクトルを使用した表示制御について説明する図である。 予備動作表現を行う表示制御について説明する図である。 予備動作表現を行う表示制御について説明する図である。 予備動作表現を行う表示制御について説明する図である。 予備動作表現を行う表示制御について説明する図である。 2台連携移動時における表示制御について説明する図である。 4台連携移動時における表示制御について説明する図である。
 以下、本技術を適用した具体的な実施の形態について、図面を参照しながら詳細に説明する。
 <移動体制御システムの構成例>
 図1は、本技術を適用した移動体制御システムの一実施の形態の構成例を示す図である。
 図1に示すように、移動体制御システム11は、自律移動型ロボット12、処理装置13、およびセンサモジュール14を備えて構成される。例えば、移動体制御システム11は、人間の生活環境の中での利用、即ち、複数の人物(図1の例では、立っている人物と座っている人物との二人)が自律移動型ロボット12の周囲に居るような環境での利用が想定される。
 自律移動型ロボット12は、例えば、人物の動きに伴って移動するプログラムや、人物から離れて任意の場所への移動するプログラムなどを実行することで、人物による操作などに依らずに、自律的な移動を行うことができる。また、自律移動型ロボット12は、表示部(図4参照)を備えており、周囲に居る人物に、移動する際の進路を提示することができる。
 処理装置13は、自律移動型ロボット12が利用される環境内に固定されており、例えば、自律移動型ロボット12が備える各種のセンサからの入力、または、センサモジュール14からの入力に基づいて、自律移動型ロボット12の移動を制御する処理を実行する。
 センサモジュール14は、自律移動型ロボット12が利用される環境内に固定されており、例えば、処理装置13が自律移動型ロボット12の移動を制御するために必要となる各種の情報をセンシングして、処理装置13に入力する。
 なお、図1に示す移動体制御システム11の構成例は一例であり、例えば、移動体制御システム11は、処理装置13およびセンサモジュール14が移動体制御システム11に内蔵されるような構成を採用することができる。その他、移動体制御システム11は、処理装置13およびセンサモジュール14が、人物の手や頭、胴体などに装着可能なウェアラブルデバイスとして提供されるような構成を採用してもよい。
 <自律移動型ロボットの構成例>
 図2乃至図4を参照して、自律移動型ロボット12の構成例について説明する。
 図2は、自律移動型ロボット12の構成例を示すハードウェアブロック図である。
 図2に示すように、自律移動型ロボット12は、入力部21、演算部22、駆動部23、および表示部24を備えて構成される。
 入力部21は、自律移動型ロボット12の外部の情報を入力するために用いられ、レーザ測距装置31、RGBカメラ32、ステレオカメラ33、および慣性計測装置34を有して構成される。
 レーザ測距装置31は、自律移動型ロボット12の周囲に向かって照射したレーザ光の反射光を検出することによって、その周囲にある物体までの距離を測定し、測定された物体までの距離を示す測距情報を取得する。
 RGBカメラ32は、例えば、カラーフィルタを備えた撮像素子などにより構成され、自律移動型ロボット12の周囲を撮像することによりRGB画像を取得する。
 ステレオカメラ33は、自律移動型ロボット12の周囲を2個の撮像素子により撮像することによって2枚の画像を取得し、それらの視差に基づいて画像に写されている被写体までの距離を表す距離画像を取得する。
 慣性計測装置34は、例えば、ジャイロセンサなどにより構成され、自律移動型ロボット12の移動により生じる3軸の角度および加速度を測定し、その測定結果を慣性計測情報として取得する。
 このように入力部21は構成されており、レーザ測距装置31、RGBカメラ32、ステレオカメラ33、および慣性計測装置34により取得される入力情報(即ち、測距情報、RGB画像、距離画像、および慣性計測情報)を演算部22に供給する。
 なお、入力部21は、周囲の環境や障害物などを把握するためのLIDAR(Light Detection and Ranging,Laser Imaging Detection and Ranging)などの測距センサやデプスセンサなど、または、人物を体温により認識するためのサーモカメラを有した構成としてもよい。さらに、入力部21は、周囲の音を集音する収音装置を有した構成としてもよく、音声により人物が居る方向を認識することができる。また、自律移動型ロボット12が利用される環境内に、各種のセンシングを行うための複数のセンサモジュール(例えば、図1のセンサモジュール14)を配置し、入力部21は、それらのセンサモジュールと通信を行うような構成とすることができる。
 演算部22は、入力部21を介して入力される外部の情報に基づいた演算に従って駆動部23および表示部24に対する制御を行うために用いられ、CPU41、GPU42、補助記憶装置43、および記憶装置44を有して構成される。
 CPU(Central Processing Unit)41は、補助記憶装置43に記憶されている制御プログラムを読み出して実行する。そして、CPU41は、入力部21から供給される測距情報および慣性計測情報や、記憶装置44に記憶されている各種の情報、GPU42によるリアルタイム画像処理結果などを参照し、自律移動型ロボット12の移動および表示に関する制御を行う移動体制御処理(図5のフローチャート参照)を行う。
 GPU(Graphics Processing Unit)42は、入力部21から供給されるRGB画像および距離画像に対してリアルタイム(供給に応じて逐次的)に、自律移動型ロボット12の周囲に居る人物などを認識する画像処理を行い、その処理結果をCPU41に供給する。
 補助記憶装置43は、例えば、RAM(Random Access Memory)により構成され、記憶装置44から制御プログラムを読み出して記憶する。
 記憶装置44は、例えば、EEPROM(Electronically Erasable and Programmable Read Only Memory)により構成され、CPU41が実行する制御プログラムや、CPU41が移動体制御処理を行う際に必要となる各種の情報などを記憶する。
 このように演算部22は構成されており、入力部21から供給される入力情報に基づいて、自律移動型ロボット12の移動に伴う各種の演算を行って、自律移動型ロボット12の行動計画を決定する。そして、演算部22は、この行動計画に基づいて、駆動部23に対する駆動制御、および、表示部24に対する表示制御を行うことができる。
 また、演算部22は、後述するように、駆動部23の種類によって異なってくる挙動の差分を吸収する。なお、演算部22は、自律移動型ロボット12に内蔵される構成に限定されることなく、例えば、図1の処理装置13のように、自律移動型ロボット12が利用される環境内に演算部22を固定して用いることができる。これにより、例えば、自律移動型ロボット12の小型化を図ることができる。
 駆動部23は、演算部22による駆動制御に従って自律移動型ロボット12を移動させるために用いられ、複数のモータ制御回路51、複数の駆動用モータ52、および複数のエンコーダ53を有して構成される。
 モータ制御回路51は、演算部22による駆動制御に従った挙動を行うように、駆動用モータ52に対する制御を行う。
 駆動用モータ52は、モータ制御回路51による制御に従って駆動することで、自律移動型ロボット12の移動を実現する。
 エンコーダ53は、駆動用モータ52の駆動情報(回転量や回転角度、回転位置など)を検出して、演算部22による駆動制御に従った駆動を実現するために、その駆動情報を演算部22にフィードバックする。
 ここで、自律移動型ロボット12は、全方位移動可能なメカナムホイールを駆動部23として採用することができる。例えば、図3に示すように、駆動部23は、入力部21や演算部22などが内蔵される筐体71に対して、4個のメカナムホイール72-1乃至72-4が装着された構成とすることができる。
 メカナムホイール72-1乃至72-4は、例えば、通常の車両などと同様に、筐体71の両側面の前方および後方の4カ所に装着される。メカナムホイール72-1乃至72-4の外周には回転自在に複数のローラが取り付けられており、それらのローラの回転軸は、メカナムホイール72-1乃至72-4の回転軸(車軸)に対して所定の角度を有している。
 例えば、駆動部23は、メカナムホイール72-1乃至72-4が同一方向に回転するように駆動することで、筐体71を前方または後方に向かって移動させることができる。また、駆動部23は、メカナムホイール72-1および72-2と、メカナムホイール72-3および72-4とが逆方向に回転するように駆動することで、筐体71を旋回させることができる。そして、駆動部23は、メカナムホイール72-1および72-3と、メカナムホイール72-2および72-4とが逆方向に回転するように駆動することで、筐体71の向きを変更することなく、筐体71を右方または左方に向かって移動させることができる。その他、駆動部23は、メカナムホイール72-1乃至72-4の回転を適切に制御することで、筐体71を任意の方向に移動させることができる。
 なお、自律移動型ロボット12は、メカナムホイール72-1乃至72-4以外の様々な種類の駆動形態を駆動部23に採用してもよい。例えば、自律移動型ロボット12として、車両型ロボットや、2足歩行を含む多足型ロボット、ドローン・ホバークラフトなどの空気浮揚型ロボット、飛行ロボットなどを採用することができる。さらには、自律移動型ロボット12は、ROV(Remotely operated vehicle)などのような水中型ロボットを採用することができる。
 表示部24は、演算部22による表示制御に従って自律移動型ロボット12の周囲に居る人物に進路を提示するために用いられ、複数の出力装置61を有して構成される。
 例えば、出力装置61は、複数のLED(Light Emitting Diode)や、複数のプロジェクタ、複数のディスプレイ(液晶パネルや有機EL(Electro Luminescence)パネルなど)により構成することができる。
 ここで、図4には、自律移動型ロボット12の筐体が平面視して正方形である構成において、筐体の側面全周に亘って表示を行う表示部24の各種の構成例が示されている。
 例えば、図4のAに示すように、表示部24Aは、自律移動型ロボット12Aの筐体の4側面に周方向に沿ってライン状に配置された複数のLEDによって構成される。また、図4のBに示すように、表示部24Bは、自律移動型ロボット12Bの筐体の4側面それぞれから周囲の床に映像を投影するように設けられたプロジェクタによって構成される。また、図4のCに示すように、表示部24Cは、自律移動型ロボット12Cの筐体の4側面として、それぞれの側面に組み込まれたディスプレイによって構成される。
 その他、表示部24には、自律移動型ロボット12の筐体の側面に映像を投影するようなプロジェクタや、自律移動型ロボット12の筐体の側面に三次元的に並べられた複数のLEDなどにより構成してもよい。また、表示部24は、自律移動型ロボット12の筐体の天面に設けられる構成としてもよい。さらに、自律移動型ロボット12の筐体は平面的な形状に構成される他、丸みを帯びた形状としてもよく、LEDアレイのような点光源を1次元で並べて表示部24を構成してもよい。
 さらに、表示部24にプロジェクタを使用する構成では、自律移動型ロボット12の筐体の側面の数に応じた個数のプロジェクタを用いる他、1個のプロジェクタに対して魚眼レンズなどを用いて拡大表示を行ってもよい。また、自律移動型ロボット12の筐体に、2軸駆動することが可能なプロジェクタを設置して、必要な方向に映像を投影するような構成としてもよい。
 また、表示部24は、自律移動型ロボット12の周囲に居る人物に進路を提示するという目的を達成することができれば、自律移動型ロボット12に搭載されないような構成とすることもできる。つまり、自律移動型ロボット12が利用される環境内(例えば、図1のセンサモジュール14の位置)にプロジェクタなどの投影装置を配置して映像を投影してもよい。または、現実空間に映像を重ねて表示するようなウェアラブル端末であるAR(Augmented Reality)グラスを人物が装着し、そのARグラスに映像を表示してもよい。
 その他、自律移動型ロボット12の出力手段として、映像以外に音声を利用してもよく、例えば、スピーカから出力される音声によって人物に進路を提示するような構成を採用してもよい。例えば、表示部24による映像の表現だけでは、自律移動型ロボット12の周囲に居る人物が進路に気付かないような状況において、映像と合わせて音声を利用することが有効である。
 このように自律移動型ロボット12は構成されており、演算部22において移動体制御処理が行われることにより、駆動部23に対する駆動制御、および、表示部24に対する表示制御が実行される。そして、演算部22は、移動体制御処理において、自律移動型ロボット12と、自律移動型ロボット12の周囲に居る人物(以下、周囲人物と称する)との関係度に応じて、自律移動型ロボット12が移動する際の走行モードを設定することができる。
 例えば、演算部22は、自律移動型ロボット12が周囲人物と行動を共にしているか否か、自律移動型ロボット12を視認可能な周囲人物が居るか否かの判断に基づいて、関係度を決定する。ここで、関係度とは、自律移動型ロボット12と周囲人物との関係(周囲人物の有無や自律移動型ロボット12の行動内容など)に基づいて、自律移動型ロボット12が行う振る舞いを決定する際に用いる情報である。例えば、自律移動型ロボット12と周囲人物との関係が緊密であるほど関係度は高くなり、自律移動型ロボット12と周囲人物とが無関係であるほど関係度は低くなる。
 そして、演算部22は、周囲人物との関係度が高いほど、その周囲人物の安心感が向上するように作用する自律移動型ロボット12の移動、および、進路の提示を行うような走行モードを設定する。これにより、自律移動型ロボット12は、人間の生活環境の中での利用においても、自律移動型ロボット12の移動を周囲人物に適切に認識させることができ、より安全な運用が可能となる。
 また、自律移動型ロボット12は、図3に示したようなメカナムホイール72を採用することで、筐体方向に制約されることなく進行方向を方向転換することができる。このように進行方向の制約がないことにより、周囲人物が、自律移動型ロボット12の進行方向や注目方向などを事前に知ることはできない。そのため、自律移動型ロボット12を、人間の生活環境の中において使用する場合には安心感が低下することが想定されるが、上述したように、周囲人物との関係度に応じて走行モードを適切に設定することで、このような安心感の低下を回避することができる。
 また、自律移動型ロボット12は、図4に示したように、自律移動型ロボット12の筐体の全ての側面に表示部24を設ける構成により、自律移動型ロボット12の前方だけでなく、側方または後方に対しても進路を提示することができる。
 <移動体制御処理>
 図5は、演算部22が自律移動型ロボット12の移動を制御する移動体制御処理を説明するフローチャートである。
 例えば、自律移動型ロボット12が移動を開始する際に移動体制御処理が実行され、ステップS11において、演算部22は、入力部21から供給される入力情報に基づいて、自律移動型ロボット12の周囲に居る周囲人物を検出する人物検出処理を行う。
 人物検出処理は、入力部21のRGBカメラ32の撮像により取得されるRGB画像の他、例えば、図1のセンサモジュール14により取得されるRGB画像、図示しないサーモカメラにより取得されるサーモ画像を用いてもよい。さらに、図示しないLIDARやデプスセンサなどを用いた動体検出によって人物を検出してもよい。または、人物の身体に装着されているウェアラブル端末との通信によって、自律移動型ロボット12の近傍に人物が居るか否かを判断してもよい。
 ステップS12において、演算部22は、自律移動型ロボット12が開始した移動によって実行される自律移動型ロボット12自身の行動内容を認識する行動内容認識処理を行う。例えば、自律移動型ロボット12は、人物に追従して移動する行動内容や、人物を先導して移動する行動内容、人物と一緒に移動する行動内容、人物からの命令または自発的な判断に従って移動する行動内容、人物とは別に移動する行動内容などを実行する。従って、演算部22は、それらの行動内容のうちの、いずれを実行するのかを認識する。
 ステップS13において、演算部22は、ステップS11における人物検出処理の検出結果、および、ステップS12における行動内容認識処理の認識結果の両方に基づいて、自律移動型ロボット12と周囲人物との関係度を決定する。例えば、演算部22は、人物検出処理の検出結果に従った周辺人物の有無と、行動内容認識処理の認識結果に従った上述したような各種の行動内容との組み合わせをスコア化する演算を行い、その演算により求められるスコアを関係度として決定することができる。なお、演算部22は、人物検出処理の検出結果および行動内容認識処理の認識結果のうち、いずれか一方に基づいて関係度を決定してもよい。
 ステップS14において、演算部22は、ステップS13で決定された周囲人物との関係度に基づいて、自律移動型ロボット12は周囲人物と一緒に移動を行うか否かを判定する。
 ステップS14において、演算部22が、自律移動型ロボット12は周囲人物と一緒に移動を行うと判定した場合、処理はステップS15に進む。ステップS15において、演算部22は、進路を変更する際に筐体の方向転換を行って走行する走行モード1を設定した後、処理はステップS19に進む。
 一方、ステップS14において、演算部22が、自律移動型ロボット12は周囲人物と一緒に移動を行わない(即ち、周囲人物とは別に移動する)と判定した場合、処理はステップS16に進む。ステップS16において、演算部22は、ステップS13で決定された周囲人物との関係度に基づいて、自律移動型ロボット12を視認可能な周囲人物がいるか否かを判定する。
 ステップS16において、演算部22が、自律移動型ロボット12を視認可能な周囲人物がいると判定した場合、処理はステップS17に進む。ステップS17において、演算部22は、進路を提示するために進行方向および方向転換の表現を行って走行する走行モード2を設定した後、処理はステップS19に進む。
 一方、ステップS16において、演算部22が、自律移動型ロボット12を視認可能な周囲人物がいないと判定した場合、処理はステップS18に進む。ステップS18において、演算部22は、進路を提示するための進行方向および方向転換の表現を行わず、かつ、進路を変更する際に筐体の方向転換を行わずに走行する走行モード3を設定した後、処理はステップS19に進む。
 ステップS19において、演算部22は、ステップS15、ステップS17、またはステップS18で決定した走行モードに基づいて、駆動部23に対する駆動制御、および、表示部24に対する表示制御を行った後、移動体制御処理は終了される。
 以上のような移動体制御処理が実行されることで、自律移動型ロボット12は、周囲人物との関係度に基づいて、自律移動型ロボット12を3つの走行モード1乃至3で切り替えて設定することができる。
 例えば、自律移動型ロボット12は、周囲人物と一緒に移動を行うという関係度が最も高い場合には、進路を変更する際に筐体の方向転換を行って走行する走行モード1を設定する。これにより、自律移動型ロボット12は、筐体方向の前方が常に進行方向に向かうような走行を行うことで、周囲人物は、自律移動型ロボット12の筐体方向により進行方向を容易に認識することができる。この場合、自律移動型ロボット12が、筐体方向の横に向かって進路変更するような、周囲人物が容易に認識できないような走行を行うことがなく、安心感を向上させることができる。
 また、自律移動型ロボット12は、周囲人物と一緒に移動を行わないが、視認可能な周囲人物がいるという程度の関係度(周囲人物と一緒に移動を行うよりも低い関係度)の場合には、進路を提示するために進行方向および方向転換の表現を行って走行する走行モード2を設定する。これにより、自律移動型ロボット12は、筐体方向の横に向かって進路変更するような走行を行う際に、進行方向および方向転換の表現により進路を提示することで、周囲人物に対して、自律移動型ロボット12の進路を確実に認識させることができる。
 そして、自律移動型ロボット12は、周囲人物と一緒に移動を行わず、かつ、視認可能な周囲人物がいないという関係度が最も低い場合には、進路を提示するための進行方向および方向転換の表現を行わず、かつ、進路を変更する際に筐体の方向転換を行わずに走行する走行モード3を設定する。即ち、この場合、自律移動型ロボット12の進路を周囲人物に認識させる必要がないため、自律移動型ロボット12は、進路を提示せずに、効率の良い走行(例えば、筐体方向の前方が常に進行方向に向かうような走行は効率が悪い)を行う。
 このように、自律移動型ロボット12は、周囲人物との関係度に応じた走行モードで駆動制御および表示制御を行うことで、進路の提示方法について改善を図ることができる。例えば、周囲人物との関係度が高いほど安心感を向上させるような進路の提示や、周囲人物の学習負荷を低下させるように作用する進路の提示(駆動や表現など)を行うことができる。
 なお、演算部22は、ステップS12における行動内容認識処理の認識結果そのものを関係度として用いて、行動内容を考慮した走行モードの設定を行ってもよい。例えば、演算部22は、行動内容認識処理の認識結果が、自律移動型ロボット12が周囲人物と一緒に移動することを示している場合には走行モード1を設定することができる。同様に、演算部22は、ステップS11における人物検出処理の検出結果そのものを関係度として用いて、周辺人物の有無を考慮した走行モードの設定を行ってもよい。例えば、演算部22は、人物検出処理の検出結果が、周囲人物がいることを示している場合には走行モード2を設定し、周囲人物がいないことを示している場合には走行モード3を設定することができる。
 ここで、自律移動型ロボット12の3つの走行モード1乃至走行モード3は、進路を変更する際に筐体の方向転換を行うか否か、および、進路を提示するための進行方向および方向転換の表現を行うか否かに基づいて、5つの走行パターンに当て嵌めることができる。
 図6を参照して、自律移動型ロボット12における走行パターンおよび走行モードの関係について説明する。
 図6に示すように、走行パターンA乃至Eは、自律移動型ロボット12の進路を提示するための表示部24による進行方向および方向転換の表現が行われるか否か、並びに、自律移動型ロボット12の進路を変更するための駆動部23による方向転換の駆動が行われるか否かの組み合わせに従って分類される。
 走行パターンAでは、自律移動型ロボット12の進路を提示するための表示部24による進行方向および方向転換の表現は行われない。また、走行パターンAでは、自律移動型ロボット12の進路を変更するための駆動部23による方向転換の駆動は行われない。
 走行パターンBでは、自律移動型ロボット12の進路を提示するための表示部24による進行方向および方向転換の表現は行われない。また、走行パターンBでは、自律移動型ロボット12の進路を変更するための駆動部23による方向転換の駆動が行われる。
 走行パターンCでは、自律移動型ロボット12の進路を提示するための表示部24による進行方向の表現が行われ、表示部24による方向転換の表現は行われない。また、走行パターンCでは、自律移動型ロボット12の進路を変更するための駆動部23による方向転換の駆動が行われる。
 走行パターンDでは、自律移動型ロボット12の進路を提示するための表示部24による進行方向および方向転換の表現が行われる。また、走行パターンDでは、自律移動型ロボット12の進路を変更するための駆動部23による方向転換の駆動は行われない。
 走行パターンEでは、自律移動型ロボット12の進路を提示するための表示部24による進行方向および方向転換の表現が行われる。また、走行パターンEでは、自律移動型ロボット12の進路を変更するための駆動部23による方向転換の駆動が行われる。
 従って、図5のフローチャートを参照して説明したように、自律移動型ロボット12が周囲人物と一緒に移動を行う場合に設定される走行モード1には、進路を変更するために駆動部23による方向転換の駆動が行われる走行パターンBまたはCが適用される。
 また、自律移動型ロボット12が周囲人物と一緒に移動を行わず、かつ、自律移動型ロボット12を視認可能な周囲人物がいる場合に設定される走行モード2には、進路を提示するために表示部24による進行方向および方向転換の表現が行われる走行パターンDまたはEが適用される。
 また、自律移動型ロボット12が周囲人物と一緒に移動を行わず、かつ、自律移動型ロボット12を視認可能な周囲人物がいない場合に設定される走行モード3には、進路を提示するために表示部24による進行方向および方向転換の表現が行われないともに、進路を変更するために駆動部23による方向転換の駆動が行われない走行パターンAが適用される。
 ここで、以下では、図7に示すような2種類の通路Aおよび通路Bに対する自律移動型ロボット12の走行パターンについて説明する。
 即ち、図7のAには、90°単位で進路が折れ曲がるような通路Aが示されている。従って、例えば、自律移動型ロボット12の筐体が正方形である場合、自律移動型ロボット12の側面の方向と、進路が曲がる方向とが一致する。
 また、図7のBには、90°以外の角度(例えば、図示するような鋭角)で通路が折れ曲がるような通路Bが示されている。従って、例えば、自律移動型ロボット12の筐体が正方形である場合、自律移動型ロボット12の側面の方向と、進路が曲がる方向とは一致しない。
 なお、図7に示されている通路地点P1乃至P4は、通路Aおよび通路Bにおいて、自律移動型ロボット12の駆動制御および表示制御が変更される地点を示している。例えば、通路地点P1は、走行を開始するように駆動制御を行う地点を示しており、通路地点P2は、曲がり角に差し掛かるために走行を停止するように駆動制御を行う地点を示している。また、通路地点P3は、曲がり角において旋回などを行う際の駆動制御が終了する地点を示しており、通路地点P4は、走行を終了するように駆動制御を行う地点を示している。
 図8を参照して、複数の発光部がライン状に配置されて自律移動型ロボット12の表示部24が構成される構成例と、その構成例における発光部の発光強度について説明する。
 図8のAには、表示部24の構成例が示されており、図8のBには、表示部24における発光部の発光強度の一例が示されている。
 図8のAでは表示部24の構成が簡易的に示されており、自律移動型ロボット12の筐体を正方形として、その外周の各側面を5分割し、16個の発光部L1乃至L16が配置された構成例となっている。例えば、黒塗りの矢印が示す方向を自律移動型ロボット12の筐体方向の前方とし、自律移動型ロボット12の前方右端に発光部L1を割り当て、左回りに順番に、発光部L2乃至L16が割り当てられている。また、以下の説明では、筐体方向の前方を0°として、右回りに、筐体方向の右方(図7の通路Aで曲がる方向)を90°とし、筐体方向の右後方(図7の通路Bで曲がる方向)を135°とする。
 従って、自律移動型ロボット12が筐体方向の前方に向かって移動する場合、表示部24は、進行方向に従って筐体方向の前面中央部に配置されている発光部L3の表示強度を最も高くすることで、進行方向を表現することができる。
 図8のBには、表示強度が高くなるのに従って濃くなり、表示強度が低くなるのに従って薄くなるようなグラデーションで、表示部24による進行方向の表現が表されている。従って、自律移動型ロボット12が筐体方向の前方に向かって移動し、発光部L3の表示強度が最も高くなる場合には、筐体方向の前面中央部における表示強度が最も高くなる。
 <走行パターンに従った進路変更>
 図9乃至図20を参照して、図6に示した走行パターンA乃至走行パターンEに従って進路変更を行う際の駆動制御および表示制御について説明する。
 図9には、通路Aにおける走行パターンAでの進路変更の一例が示されており、図10には、通路Bにおける走行パターンAでの進路変更の一例が示されている。
 図9に示すように、通路Aにおいて、演算部22は、通路地点P1から筐体方向の前方(0°)に向かって移動を開始するように駆動部23に対する駆動制御を行い、通路地点P2まで移動した後に停止するように駆動部23に対する駆動制御を行う。そして、演算部22は、自律移動型ロボット12の筐体方向を方向転換させることなく、通路地点P3から筐体方向の右方(90°)に向かうように進行方向を変更して移動を再開するように駆動部23に対する駆動制御を行い、通路地点P4まで移動した後に停止するように駆動部23に対する駆動制御を行う。なお、走行パターンAでは、これらの駆動制御が行われる間、演算部22は、表示部24に対する表示制御は行わない。
 図10に示すように、通路Bにおいて、演算部22は、通路地点P1から筐体方向の前方(0°)に向かって移動を開始するように駆動部23に対する駆動制御を行い、通路地点P2まで移動した後に停止するように駆動部23に対する駆動制御を行う。そして、演算部22は、自律移動型ロボット12の筐体方向を方向転換させることなく、通路地点P3から筐体方向の右後方(135°)に向かうように進行方向を変更して移動を再開するように駆動部23に対する駆動制御を行い、通路地点P4まで移動した後に停止するように駆動部23に対する駆動制御を行う。なお、走行パターンAでは、これらの駆動制御が行われる間、演算部22は、表示部24に対する表示制御は行わない。
 このように、走行パターンAでは、自律移動型ロボット12の進路を提示するための表示部24による進行方向および方向転換の表現は行われず、かつ、自律移動型ロボット12の進路を変更するための駆動部23による方向転換の駆動は行われない。従って、走行パターンAでは、自律移動型ロボット12は、通路Aおよび通路Bどちらにおいても、進行方向および方向転換を提示せずに、平行移動するように筐体方向を一定の方向に維持したまま進路変更を行う。
 図11には、通路Aにおける走行パターンBでの進路変更の一例が示されており、図12には、通路Bにおける走行パターンBでの進路変更の一例が示されている。
 図11に示すように、通路Aにおいて、演算部22は、通路地点P1から筐体方向の前方(0°)に向かって移動を開始するように駆動部23に対する駆動制御を行い、通路地点P2まで移動した後に停止するように駆動部23に対する駆動制御を行う。そして、演算部22は、自律移動型ロボット12の筐体方向を右回転で90°転換させた後、通路地点P3から筐体方向の前方(0°)に向かって移動を再開するように駆動部23に対する駆動制御を行い、通路地点P4まで移動した後に停止するように駆動部23に対する駆動制御を行う。なお、走行パターンBでは、これらの駆動制御が行われる間、演算部22は、表示部24に対する表示制御は行わない。
 図12に示すように、通路Bにおいて、演算部22は、通路地点P1から筐体方向の前方(0°)に向かって移動を開始するように駆動部23に対する駆動制御を行い、通路地点P2まで移動した後に停止するように駆動部23に対する駆動制御を行う。そして、演算部22は、自律移動型ロボット12の筐体方向を右回転で135°転換させた後、通路地点P3から筐体方向の前方(0°)に向かって移動を再開するように駆動部23に対する駆動制御を行い、通路地点P4まで移動した後に停止するように駆動部23に対する駆動制御を行う。なお、走行パターンBでは、これらの駆動制御が行われる間、演算部22は、表示部24に対する表示制御は行わない。
 このように、走行パターンBでは、自律移動型ロボット12の進路を提示するための表示部24による進行方向および方向転換の表現は行われない一方で、自律移動型ロボット12の進路を変更するための駆動部23による方向転換の駆動が行われる。従って、走行パターンBでは、自律移動型ロボット12は、通路Aおよび通路Bどちらにおいても、進行方向および方向転換を提示せずに、通路の角度に応じて筐体方向を転換させて進路変更を行う。
 図13には、通路Aにおける走行パターンCでの進路変更の一例が示されており、図14には、通路Bにおける走行パターンCでの進路変更の一例が示されている。また、図15には、走行パターンCで進路変更する際に通路地点P1乃至P4において表示最高強度となる発光部が示されている。
 図13に示すように、通路Aにおいて、演算部22は、通路地点P1から筐体方向の前方(0°)に向かって移動を開始するように駆動部23に対する駆動制御を行うとともに、進行方向に従って筐体方向の前面中央部が最強強度で発光するように表示部24に対する表示制御を行う。また、演算部22は、通路地点P2まで移動した後に停止するように駆動部23に対する駆動制御を行う際、それまでの進行方向に従った筐体方向の前面中央部が最強強度で発光するように表示部24に対する表示制御を行う。
 そして、演算部22は、自律移動型ロボット12の筐体方向を右回転で90°転換させる。このとき、自律移動型ロボット12の筐体方向が転換するのに応じて、進行方向の前方となる筐体方向の前面中央部が最強強度で発光したままの状態となる。その後、演算部22は、通路地点P3から筐体方向の前方(0°)に向かって移動を再開するように駆動部23に対する駆動制御を行い、通路地点P4まで移動した後に停止するように駆動部23に対する駆動制御を行う。
 図14に示すように、通路Bにおいて、演算部22は、通路地点P1から筐体方向の前方(0°)に向かって移動を開始するように駆動部23に対する駆動制御を行うとともに、進行方向に従って筐体方向の前面中央部が最強強度で発光するように表示部24に対する表示制御を行う。また、演算部22は、通路地点P2まで移動した後に停止するように駆動部23に対する駆動制御を行う際、それまでの進行方向に従った筐体方向の前面中央部が最強強度で発光するように表示部24に対する表示制御を行う。
 そして、演算部22は、自律移動型ロボット12の筐体方向を右回転で135°転換させる。このとき、自律移動型ロボット12の筐体方向が転換するのに応じて、進行方向の前方となる筐体方向の前面中央部が最強強度で発光したままの状態となる。その後、演算部22は、通路地点P3から筐体方向の前方(0°)に向かって移動を再開するように駆動部23に対する駆動制御を行い、通路地点P4まで移動した後に停止するように駆動部23に対する駆動制御を行う。
 このように、走行パターンCでは、自律移動型ロボット12の進路を提示するための表示部24による進行方向の表現(筐体方向の前面中央部が最強強度で発光)が行われ、かつ、自律移動型ロボット12の進路を変更するための駆動部23による方向転換の駆動が行われる。このとき、自律移動型ロボット12が方向転換するのに伴って、筐体方向の前面の向きも方向転換されるため、自律移動型ロボット12の進路を提示するための表示部24による方向転換の表現(例えば、最強強度で発光する発光部の移動)は行われない。従って、走行パターンCでは、自律移動型ロボット12は、通路Aおよび通路Bどちらにおいても、進行方向の表現は行われる一方で方向転換の表現は行われず、かつ、通路の角度に応じて筐体方向を転換させて進路変更を行う。
 つまり、走行パターンCでは、自律移動型ロボット12の筐体方向の前方が常に進行方向となるため、図15のAに示すように、表示部24は、筐体方向の前面中央部にある発光部L3を最高強度で発光させる。そして、走行パターンCでは、自律移動型ロボット12の筐体方向の前面が、常に、進行方向の前方を向くことになるため、図15のBに示すように、通路地点P1乃至P4のいずれにおいても、発光部L3が表示最高強度となる。
 図16には、通路Aにおける走行パターンDでの進路変更の一例が示されており、図17には、通路Bにおける走行パターンDでの進路変更の一例が示されている。また、図18には、走行パターンDで進路変更する際に通路地点P1乃至P4において表示最高強度となる発光部が示されている。
 図16に示すように、通路Aにおいて、演算部22は、通路地点P1から筐体方向の前方(0°)に向かって移動を開始するように駆動部23に対する駆動制御を行うとともに、進行方向に従って筐体方向の前面中央部が最強強度で発光するように表示部24に対する表示制御を行う。また、演算部22は、通路地点P2まで移動した後に停止するように駆動部23に対する駆動制御を行った後、自律移動型ロボット12の筐体方向を方向転換させずに右方(90°)に進行方向を方向転換するのに応じて、最強強度での発光を移動させるように表示部24に対する表示制御を行う。
 従って、表示部24は、筐体方向の前面中央部から移動させ、進行方向に従った筐体方向の右面中央部を最強強度で発光させる。その後、演算部22は、通路地点P3から筐体方向の右方(90°)に向かって移動を再開するように駆動部23に対する駆動制御を行い、通路地点P4まで移動した後に停止するように駆動部23に対する駆動制御を行う。
 図17に示すように、通路Bにおいて、演算部22は、通路地点P1から筐体方向の前方(0°)に向かって移動を開始するように駆動部23に対する駆動制御を行うとともに、進行方向に従って筐体方向の前面中央部が最強強度で発光するように表示部24に対する表示制御を行う。また、演算部22は、通路地点P2まで移動した後に停止するように駆動部23に対する駆動制御を行った後、自律移動型ロボット12の筐体方向を方向転換させずに右後方(135°)に進行方向を方向転換するのに応じて、最強強度での発光を移動させるように表示部24に対する表示制御を行う。
 従って、表示部24は、筐体方向の前面中央部から移動させ、進行方向に従った筐体方向の右後方端部を最強強度で発光させる。その後、演算部22は、通路地点P3から筐体方向の右後方(135°)に向かって移動を再開するように駆動部23に対する駆動制御を行い、通路地点P4まで移動した後に停止するように駆動部23に対する駆動制御を行う。
 このように、走行パターンDでは、表示部24により自律移動型ロボット12の筐体方向の前面中央部が最強強度で発光することで進行方向の提示が行われた後、その最強強度での発光を移動させることで、進行方向の方向転換の提示が行われる。また、駆動部23による自律移動型ロボット12の筐体方向の方向転換は行われない。従って、走行パターンDでは、自律移動型ロボット12は、通路Aおよび通路Bどちらにおいても、進行方向および方向転換を提示し、かつ、平行移動するように筐体方向を一定の方向に維持したまま進路変更を行う。
 つまり、走行パターンDでは、図18のAに示すように、表示部24は、走行開始時の進行方向に従って、筐体方向の前面中央部にある発光部L3を最高強度で発光させる。そして、表示部24は進路変更に伴って、通路Aでは、筐体方向の右面中央部にある発光部L15を最高強度で発光させ、通路Bでは、筐体方向の右後方端部にある発光部L13を最高強度で発光させる。
 従って、図18のBに示すように、通路地点P1から通路地点P2までの間は発光部L3が表示最高強度となる。そして、通路地点P2から通路地点P3までの間に、通路Aでは、発光部L3から発光部L15に向かって表示最高強度が変更され、通路Bでは、発光部L3から発光部L13に向かって表示最高強度が変更される。その後、通路地点P3から通路地点P4までの間は、通路Aでは発光部L15が表示最高強度となり、通路Bでは発光部L13が表示最高強度となる。
 このように、走行パターンDでは、進路変更に伴って、自律移動型ロボット12の筐体方向は一定の方向を維持したままであるが、表示部24により進行方向の前方が表示最高強度とする表現によって、自律移動型ロボット12の進路を適切に提示することができる。なお、通路地点P2から通路地点P3までの間における表示最高強度の変更は、図示するような曲線とする他、例えば、直線的な変化や2値変化、反対方向へオーバーシュートする変化などの表現を行ってもよい。
 図19には、通路Bにおける走行パターンEでの進路変更の一例が示されている。また、図20には、走行パターンEで進路変更する際に通路地点P1乃至P4において表示最高強度となる発光部が示されている。
 図19に示すように、通路Bにおいて、演算部22は、通路地点P1から筐体方向の前方(0°)に向かって移動を開始するように駆動部23に対する駆動制御を行うとともに、進行方向に従って筐体方向の前面中央部が最強強度で発光するように表示部24に対する表示制御を行う。また、演算部22は、通路地点P2まで移動した後に停止するように駆動部23に対する駆動制御を行う。
 そして、演算部22は、自律移動型ロボット12の筐体方向を右回転で45°転換させるように駆動部23に対する駆動制御を行うとともに、進行方向が筐体方向の右方(90°)に方向転換するのに応じて、最強強度での発光を移動させるように表示部24に対する表示制御を行う。
 従って、表示部24は、筐体方向の前面中央部から移動させ、進行方向に従った筐体方向の右面中央部を最強強度で発光させる。その後、演算部22は、通路地点P3から筐体方向の右方(90°)に向かって移動を再開するように駆動部23に対する駆動制御を行い、通路地点P4まで移動した後に停止するように駆動部23に対する駆動制御を行う。
 つまり、走行パターンEでは、図20のAに示すように、表示部24により自律移動型ロボット12の筐体方向の前面中央部が最強強度で発光することで進行方向の提示が行われた後、その最強強度での発光を移動させることで、進行方向の方向転換の提示が行われる。従って、図20のBに示すように、通路地点P1から通路地点P2までの間は発光部L3が表示最高強度となり、通路地点P2から通路地点P3までの間に、発光部L3から発光部L15に向かって表示最高強度が変更される。その後、通路地点P3から通路地点P4までの間は、発光部L15が表示最高強度となる。
 このとき、自律移動型ロボット12の進行方向は135°方向転換することになるが、筐体の側面方向を進行方向に一致させるように駆動による方向転換を行うことで、自律移動型ロボット12の筐体方向を右回転で45°転換させるだけでよい。即ち、駆動による筐体方向の方向転換(45°)と、最強強度での発光を移動させる方向転換(90°)とにより、自律移動型ロボット12の進路変更に伴う進路の方向転換(135°)を提示することができる。
 つまり、走行パターンEは、走行パターンDでの移動表現を拡張したものとなっている。即ち、走行パターンDでは、通路Bの場合、自律移動型ロボット12の筐体の側面の向きと通路の向きとが一致していないため、表現によっては進行方向を示していても筐体の向きの不一致によって、周囲人物に対し違和感を与えることが想定される。そこで、走行パターンEでは、自律移動型ロボット12の筐体の向きと通路の向きとが一致する最小限の方向転換を駆動部23が行い、残りの方向転換を表示部24による表現によって補うことができる。
 このように、筐体側面と進行方向とを一致させる駆動制御および表示制御を一般化すると、自律移動型ロボット12の筐体が正多角形(n角形)である場合、進路変更の回転角度aに対して、筐体の回転角度Gおよび表現の回転角度Dは、次の式(1)により表される。
Figure JPOXMLDOC01-appb-M000001
 なお、走行パターンEにおいても表現による回転表現は、走行パターンDと同様に、図20に示すような曲線とする他、例えば、直線的な変化や2値変化、反対方向へオーバーシュートする変化などの表現を行ってもよい。
 <表示強度の算出手法>
 図21および図22を参照して、演算部22が表示部24における表示強度を算出する算出手法について説明する。
 図21を参照して、1次元ベクトルに基づく表示強度の算出手法について説明する。
 図21には、図8に示したように、自律移動型ロボット12の筐体の外周に周方向に沿って配置されている16個の発光部L1乃至L16の配置位置を直線に展開し、表示強度の高い発光部からの距離で、他の発光部の強度を算出する例が示されている。つまり、自律移動型ロボット12の前面中央部に配置されている発光部L3の表示強度を最も高くした場合、発光部L3に対して最も対極に配置される発光部L11までの表示強度は、発光部L3からの距離に応じて降下するような緩やかな曲線で表される。
 なお、図21に示すような曲線は、表示部24を構成するLEDやディスプレイなどの特性に合わせて調整してもよく、直線的に表示強度が変化するようにしてもよい。
 図22を参照して、2次元平面の距離に基づく表示強度の算出手法について説明する。
 図22のAには、自律移動型ロボット12の筐体の中心に対して定義される進行方向ベクトルの一例が示されている。図22のBには、自律移動型ロボット12の中心から進行方向上にある筐体の側面上の仮想中心点Bと、その仮想中心点Bを中心とした半径rの仮想的に生成される仮想円の一例が示されている。図22のCには、仮想円に基づいた表示強度で表現される表示部24の一例が示されている。
 即ち、図22のAに示すように進行方向ベクトルが定義された場合、その進行方向ベクトルと自律移動型ロボット12の筐体の側面との交点が、仮想中心点Bとして設定される。そして、仮想中心点Bを中心とした半径rの仮想円について、仮想円の中心が最高強度となり、仮想円の外周に向かって強度が低下するように、2次元平面の距離に基づいて表示強度が算出される。
 例えば、図22のBに示すように、仮想中心点Bが含まれる発光部L4が最高強度となり、発光部L4に近いほど表示強度が高くなる。その結果、表示部24には、図22のCに示すように、表示強度が高くなるのに従って濃くなり、表示強度が低くなるのに従って薄くなるようなグラデーションで進行方向が表現される。
 なお、図22を参照して説明したのと同様に、例えば、図4のCに示したように表示部24Cにディスプレイが採用される構成では、仮想中心点Bを中心とした球体を用いた3次元的な距離に基づいた表示強度による表現も可能である。
 <表示のバリエーション>
 図23乃至図28を参照して、表示部24による進行方向の表示のバリエーションについて説明する。
 図23には、ライン状に配置された複数のLEDを採用した構成の表示部24において、自律移動型ロボット12を上方から見て進行方向となる筐体方向の前方(発光部L3)を表示最高強度とした場合で進路を表現するバリエーションが示されている。なお、図4のCに示したように表示部24Cにディスプレイが採用される構成では、3次元的な表現を用いてもよい。
 例えば、表示部24に対する輝点の設定としては、表示部24の側面全体で1つの輝点を設定したり、表示部24の側面の面単位で1つの輝点を設定したり、表示部24の側面の面内に複数の輝点を設定したりすることができる。また、表示部24では、範囲、濃淡/明度、色相、および点滅により進路を表現することができる。このような輝点の設定に対し、どのような進路の表現を選択するかという組み合わせに応じて、図23に示すような様々なバリエーションを用いることが検討される。また、進路の表現は、1つだけ選択してもよいし、複数を選択して掛け合わせてもよい。
 なお、表示部24が、自律移動型ロボット12の天面にディスプレイを備えたり、図4のBに示したようなプロジェクタを備えたりする構成では、矢印を表示したり、ルートや行程などを表示してもよい。また、例えば、進行方向に向かって視線を向けるような目のイラストを表示してもよい。
 さらに、図23に示すバリエーションの例では、全方位に同一の表現手法が用いられているが、例えば、面ごとや特定のエリアのみに、他の面や他のエリアとは異なる表示内容を割り当ててもよい。即ち、自律移動型ロボット12の後ろから人物が付いて歩く場合には、その人物に向けた表示を1面だけに割り当てて、進行方向や行程の進捗度を表現し、その他の面は、その人物から見えないため、周囲に居る他の人物に向けての表示に割り当てることで、より効率的に進路を提示することができる。
 図24および図25を参照して、空間に定位する表現について説明する。例えば、自律移動型ロボット12の移動速度に応じて、その移動速度と同じ速度で逆方向に表現を遷移させることで、空間に映像が定位しているような表現が可能である。
 図24には、自律移動型ロボット12が直進しているときに、空間に映像が定位しているように表示部24が表示を行う例が示されている。
 図24の上側から下側に向かって図示するように、自律移動型ロボット12は、右方向に移動速度vで移動しているとき、表示部24は、左方向に向かって遷移速度v1で移動するような表示を行う。即ち、表示部24による遷移速度v1は、自律移動型ロボット12の移動速度vを用いて、次の式(2)に示すよう表される。
Figure JPOXMLDOC01-appb-M000002
 図25には、自律移動型ロボット12が旋回しているときに、空間に映像が定位しているように表示部24が表示を行う例が示されている。
 図25の上側から下側に向かって図示するように、自律移動型ロボット12は、右回転により角速度ωで旋回しているとき、表示部24は、左回転により遷移速度v2で移動するような表示を行う。即ち、表示部24による遷移速度v2は、旋回中心から表示部24における現時点での輝点までの距離r、表示部24における現時点での輝点の垂直方向からの差分角度θ(最小値0°,最大値45°)を用いて、次の式(3)に示すよう表される。
Figure JPOXMLDOC01-appb-M000003
 図26には、空間上でのパーティクル表現を2次元平面に投影した一例が示されている。
 図26のAに示すように、自律移動型ロボット12の進行方向の前方のある起点からランダムのノイズを一定方向に遷移させることでパーティクル表現を作り出す。そして、図26のBに示すように、そのパーティクルが、自律移動型ロボット12の筐体を上から見た際の外周と交わる部分に投影されるように、表示部24によりパーティクルに対応する箇所の発光部を発光させることで表現することができる。
 例えば、自律移動型ロボット12の進行方向に合わせてパーティクルの起点を変化させてもよいし、自律移動型ロボット12の速度に応じてパーティクルの量や粒子の速度を変化させてもよい。なお、図4のCに示したように表示部24Cにディスプレイが採用される構成では、パーティクルの放射を3次元平面でシミュレートして表現することができる。
 図27には、波紋の展開の一例が示されている。
 例えば、図27のAに示すように、2次元で波紋が動的に広がる表現をシミュレートする。そして、図27のBに示すように、その波紋が、自律移動型ロボット12の筐体を上から見た際の外周と交わる部分に投影されるように、表示部24により波紋に対応する箇所の発光部を発光させることで表現することができる。
 また、波紋は複数個あってもよいし、波紋の発生場所も複数個あってもよい。このような波紋による表現は、進行方向の強調だけでなく、周囲人物とのコミュニケーションの応答や、周囲人物に注意を引かせる方法としても適用することができる。なお、図4のCに示したように表示部24Cにディスプレイが採用される構成では、波紋の動的な広がりを3次元平面でシミュレートして表現することができる。
 なお、図26または図27に示した表現などは、時間関数として周期的に動くことで移動速度の速さを表してもよい。例えば、図26に示したパーティクルのような図形群であれば、パーティクルの進行速度や落下速度などにより移動速度の速さを表すことができ、図27に示したような波紋であれば、その波紋が広がる速度により移動速度の速さを表すことができる。
 図28には、仮想的な円の収縮イメージの一例が示されている。
 例えば、図28のAに示すように、自律移動型ロボット12の中心に仮想的な円を置き、その半径を周期的に拡縮(左側が拡大/右側が縮小)させる表現をシミュレートする。そして、図28のBに示すように、その円が、自律移動型ロボット12の筐体を上から見た際の外周と交わる部分に投影されるように、表示部24により円に対応する箇所の発光部を発光させることで表現することができる。
 また、仮想的な円を決めるためのパラメータには、円半径や、拡大/縮小のそれぞれの周期、拡縮のカーブ、円中心から外周までのグラデーション、円中心の座標などが用いられる。そして、これらのパラメータを調整することで、進行方向やその速度などを表現することができる。例えば、収縮の周期を早くすることで呼吸が早い表現を表し、これから早く動くことを表現したり、遅い周期で動かすことで動き出しが遅いことを表現したりすることができる。また、円の中心を端に寄せつつ収縮を早めることで、その方向に注目させるように表現することができる。
 <予備動作を表示系で再現>
 図29乃至図38を参照して、予備動作を表示系により再現する例について説明する。
 例えば、上述の説明では、自律移動型ロボット12の進行方向および速度に基づいて進路を提示していたが、その進路の提示には、これから動く自律移動型ロボット12の動きが反映されていなかった。そのため、自律移動型ロボット12の次の移動を予め提示することで、周囲人物に対する安心感の更なる向上を図ることができる。なお、この表現は、周囲人物の位置に応じて前方のみの表現と全周表現とを切り替えてもよいし、周囲人物との距離に応じて、これまで説明したような表現と切り替えてもよい。
 図29乃至図31を参照して、自律移動型ロボット12の速度の表現方法の一例として、走行パターンDにおける走行ベクトルを使用した表示制御について説明する。
 例えば、図29の上段に示すように、通路地点P1において停止しているとき、表示部24は、自律移動型ロボット12の4側面で、それぞれの中央部が最強強度となるように表示制御を行う。そして、図29の中段に示すように、移動を開始して通路地点P1から加速中であるとき、表示部24は、走行ベクトルに従って、自律移動型ロボット12の前面中央部が最強強度となるように表示制御を行うとともに、両側面における最強強度が前方側に移動し、後面の強度を低下させる。また、図29の下段に示すように一定速度で移動しているとき、および、図30の上段に示すように減速中のとき、表示部24は、走行ベクトルに従って、加速中と同様の表示を行う。
 そして、図30の中段に示すように、通路地点P2において停止しているとき、表示部24は、自律移動型ロボット12の4側面で、それぞれの中央部が最強強度となるように表示制御を行う。以下、同様に、図30の下段に示すような加速中、図31の上段に示すような一定速度、図31の中段に示すような減速中において、表示部24は、走行ベクトルに従った表示を行う。その後、図31の下段に示すように、通路地点P4において停止すると、表示部24は、自律移動型ロボット12の4側面で、それぞれの中央部が最強強度となるように表示制御を行う。
 図32乃至図34を参照して、自律移動型ロボット12の速度の表現方法の一例として、走行パターンDにおける加速度ベクトルを使用した表示制御について説明する。
 例えば、図32の上段に示すように、通路地点P1において停止しているとき、表示部24は、自律移動型ロボット12の4側面で、それぞれの中央部が最強強度となるように表示制御を行う。そして、図32の中段に示すように、移動を開始して通路地点P1から加速中であるとき、表示部24は、加速度ベクトルに従って、自律移動型ロボット12の前面中央部が最強強度となるように表示制御を行うとともに、両側面における最強強度が前方側に移動し、後面の強度を低下させる。
 その後、自律移動型ロボット12が一定速度での移動になると、図32の下段に示すように、表示部24は、加速度ベクトルに従って、自律移動型ロボット12の4側面で、それぞれの中央部が最強強度となるように表示制御を行う。そして、通路地点P2の手前で減速を行うとき、図33の上段に示すように、表示部24は、加速度ベクトルに従って、自律移動型ロボット12の後面中央部が最強強度となるように表示制御を行うとともに、両側面における最強強度が後方側に移動し、前面の強度を低下させる。
 そして、図33の中段に示すように、通路地点P2において停止しているとき、表示部24は、自律移動型ロボット12の4側面で、それぞれの中央部が最強強度となるように表示制御を行う。以下、同様に、図33の下段に示すような加速中、図34の上段に示すような一定速度、図34の中段に示すような減速中において、表示部24は、加速度ベクトルに従った表示を行う。その後、図34の下段に示すように、通路地点P4において停止すると、表示部24は、自律移動型ロボット12の4側面で、それぞれの中央部が最強強度となるように表示制御を行う。
 このように、自律移動型ロボット12は、加速度ベクトルに従った表示制御を行うことで、例えば、減速時には進行方向とは逆向きに表現を展開することができ、自律移動型ロボット12が停止することを予め表現することができる。
 ところで、このように加速度ベクトルを利用しても、例えば、自律移動型ロボット12が曲線的に曲がるときや、直角に曲がるときには、その進路を予め表現することはできない。そこで、走行する経路が事前に把握できている場合は、現在の進行方向ではなく、次に曲がる方向を予め表示することで周囲に予備動作を伝えることが好ましい。
 例えば、図35には、走行パターンCにおいて予備動作表現を行う表示制御の一例が示されており、図36には、走行パターンDにおいて予備動作表現を行う表示制御の一例が示されている。
 例えば、走行パターンCでは、自律移動型ロボット12の筐体が進行方向を必ず向くため、表示系は常に前方固定でよいが、図35に示すように、曲線的に左に向かって旋回する前に、一度、中央部から左側に最高強度を移動させた後、旋回が終了する前に中央部に戻すような表示制御を行うことが好ましい。
 また、走行パターンDでは、自律移動型ロボット12の筐体は原則的に旋回しないため、表示系のみで旋回を表現する。従って、図36に示すように、左に旋回する前に予め左方向を向いておき、進行方向切り替え時には既にその方向を向くことで、周囲人物は、自律移動型ロボット12が次に進む方向を、自律移動型ロボット12が実際に動く前に把握することができる。
 また、図35および図36を参照して説明したような予備動作表現の他にも、例えば、移動していない待機状態で予備動作表現を適用してもよい。
 例えば、図37および図38に示すように通路Aにおいて、通路地点P1で物理的には停止しているときに進行方向を提示することで、走行を開始する前に予備的に、進路を提示することができる。また、通路地点P2で停止中に、進行方向を旋回させることで次の進行方向を提示する表現を行うことができる。
 また、通路地点P4で停止した後も、その先に注目して欲しいものがある場合は、表示部24は、待機状態の様に、自律移動型ロボット12の4側面の中央部が最強強度となるように表示制御とするのではなく、走行中と同様に、自律移動型ロボット12の前面中央部が最強強度となるように表示制御を行ってもよい。
 <複数台連携時の表示方法>
 図39および図40を参照して、複数台連携時の表示方法について説明する。
 図39には、2台の自律移動型ロボット12-1および12-2が連携して移動する際に進路を提示する一例が示されており、図40には、4台の自律移動型ロボット12-1乃至12-4が連携して移動する際に進路を提示する一例が示されている。
 例えば、複数台の自律移動型ロボット12は、互いに物理的に接続することにより、より大型の自律移動型ロボットとして協調して移動を行うことができる。また、自律移動型ロボット12が近接センサを搭載している場合には、物理的な接続を行わずに、より大型の自律移動型ロボットとして協調して移動を行うことができる。
 このように、複数台の自律移動型ロボット12が協調して移動を行う際に、上述したような1台の自律移動型ロボット12で進路を提示する提示方法と同様に、進路を提示することができる。その際、自律移動型ロボット12どうしが接している側面は、周囲から見えないことより、図39および図40に示すように、消灯することができる。また、自律移動型ロボット12どうしの側面が連続している部分は、図39および図40に示すように、互いに連続しているように表現を補うことができる。
 なお、自律移動型ロボット12が照度センサやカメラを内蔵している場合、自律移動型ロボット12どうしが接している側面、即ち、消灯している側面を、自律移動型ロボット12どうしで光を利用した通信用に用いることができる。
 このように、上述した各種の進路の提示方法は、1台の自律移動型ロボット12において適用される他、複数台の自律移動型ロボット12が協調して動く際にも適用することができる。
 <同期/非同期処理>
 上述したように、複数台の自律移動型ロボット12で1つの自律移動型ロボットとして移動を行わなくても、それぞれの自律移動型ロボット12が協調していることを周囲人物に提示することができる。具体的には、時間で変化する点滅や波紋、空間定位、パーティクルなどの表現のタイミングを合わせることで、周囲人物に対して複数台の自律移動型ロボット12が物理的に離れていても同期していることを通知することができる。また、あえて同期をとらないことで、他の複数の自律移動型ロボット12とは別の動きをすることを提示することができる。
 <走行パターンの学習および個別プロファイル化>
 例えば、図6に示したような走行モードと走行パターンとの適応を、周囲人物の熟練度に応じて最適化を行ってもよい。例えば、一回見たらその行動中は把握したと見なすなど、特定の人物との接触時間や、その人物の挙動から自律移動型ロボット12の筐体の旋回が不要と判断された場合は、走行パターンBおよびCを採用せずに、走行パターンDおよびEのみを採用してもよい。
 さらに、子供や高齢の方などのように、まだ習熟度が遅いと判断された場合は走行パターンDおよびEをあえて採用せずに、その他の走行パターンのみで走行してもよい。また、人物の顔の向きや視線を検出可能な場合は、その人物が自律移動型ロボット12を見ている時だけ表示が行われるようにしてもよい。
 <全方位移動ロボット以外への適用>
 上述したような進路の提示は、例えば、図3に示したような全方位移動可能なメカナムホイール72を採用した構成以外にも、ピポットターンや横移動のできない移動機構や、全方位に移動できない移動機構などを採用した構成にも部分的に適用することができる。
 例えば、従来の自動車と同様に移動する自律移動型ロボット12の外周に表示部24を取り付けた構成では、ピポットターンの代わりに曲率の高いカーブを用いることで、図6に示した走行パターンBおよびCを適用することができる。また、この構成では、走行パターンDは全て適用できないものの、後退する場合などに、進行方向を180°変える表現を適用できるなど、その自律移動型ロボット12の移動制約の中で、上述した進路の提示を適用してもよい。
 <音声出力を用いた注目表現>
 例えば、上述したような進路の提示は、周囲人物や、他の自律移動型ロボット12に対する通知として主に用いられるが、周囲人物が自律移動型ロボット12の存在に気付かない状況があることが想定される。このような状況において、自律移動型ロボット12は、自律移動型ロボット12が利用される環境内に配置されるスピーカや、周囲人物が身に着けているウェアラブルデバイスから音声出力を行うことで、自身の存在を周囲人物に気付かせることができる。
 例えば、周囲人物が自律移動型ロボット12に気付いているか否かの判断は、例えば、自律移動型ロボット12のRGBカメラ32(図2)や、図1のセンサモジュール14、ウェアラブルデバイスに内蔵されているカメラなどにより、人の顔の向きや視線方向に基づいて行うことができる。そして、自律移動型ロボット12が、周囲人物の視野内入っていないと判断された場合や、周囲人物の位置情報から自律移動型ロボット12に対し衝突する可能性のある動きをしている場合に、音声出力を用いた注目表現を行うことができる。
 <人や環境光に応じた表示内容の強度の変更>
 例えば、自律移動型ロボット12の環境によっては、表示部24の表示が見え難くなることが想定される。従って、例えば、自律移動型ロボット12の環境の照度が高い場合、表示部24を構成するディスプレイやLEDアレイ、プロジェクタなどのピーク輝度を、環境の照度に応じて高くしてもよい。
 また、周囲人物が自律移動型ロボット12と同一の空間に居ても、自律移動型ロボット12との距離および視野角に応じては、周囲人物が自律移動型ロボット12に気付き難いことが想定される。従って、例えば、自律移動型ロボット12から距離が離れている場合や、視野角外の場合などには、表示部24のピーク輝度を高くしてもよい。または、子供などのように背が低いことより、自律移動型ロボット12が目線に入り易い場合や、光に対する感度に敏感な人物が居る場合には、表示部24のピーク輝度を低くしてもよい。
 さらに、自律移動型ロボット12が旋回するときに、図6を参照して説明したような表現を用いる際に、周囲人物が自律移動型ロボット12の近傍に居る場合には、その周囲人物が自律移動型ロボット12に気付いているか、自律移動型ロボット12を知っているかなどの判断をすることで、旋回表現よりも、その周囲人物へのアイコンタクトを優先してもよい。
 <非常時や環境が悪い場合の表現方法>
 例えば、周囲人物が自律移動型ロボット12に接触する危険がある場合は、表示部24の輝度を最高にするだけでなく、スピーカなどを使用して通知してもよい。さらに、自律移動型ロボット12がスピンターンを高速で行うことで駆動音をあえて大きくして気づかせてもよい。また環境が極端に明るい場合など、自律移動型ロボット12のセンサによって、周囲に人物がいるか否かの検出が困難な場合は、表示部24による表示を行うように安全側に振ってもよい。
 その他、自律移動型ロボット12の故障や移動不可、バッテリー状況など、周囲に異常を通知したい場合は、上述したのと同様に最高輝度で表示することができる。また、人物が周囲に居る状況でも緊急を要する場合は、図6を参照して説明した走行パターンのうち、走行パターンAおよびDなどの平行移動をするモードに強制的に切り替えてもよい。
 また、自律移動型ロボット12の走行通路が狭く、周囲人物からの認識が困難な環境の場合は、プロジェクタやLEDアレイなどの表示部24の角度を調整することで、自律移動型ロボット12の周囲ではなく、広範囲に表現を展開することができる。このとき、自律移動型ロボット12は、より気づきやすい表現に変えてもよいし、環境照度が低く、周囲人物にとっても良くない環境の場合は、その周囲人物の足元を照らすなど、表示部24を安全補助に用いてもよい。
 以上のように、自律移動型ロボット12は、進行方向の向きに関わらず全方位に表示部24を設けることで、周囲人物は、どの向きからも自律移動型ロボット12の動きを把握することができる。また、周囲人物は、自律移動型ロボット12の動きを事前に予測可能となるため、周囲人物に対して安心感を与えることができ、自律移動型ロボット12の使用者の初期学習コストを下げることができる。
 また、自律移動型ロボット12は、周囲に人物が居ない場所では最適な移動方法を用いることで、バッテリーなどの移動コストの最適化や、自律移動型ロボット12の機構を活用することができる。また、自律移動型ロボット12は、周囲に人物が居る場所でも、表示系によって方向転換を示すことで、物理的な方向転換が不要となり、応答性の向上や移動の最適化を図ることができる。
 特に、自律移動型ロボット12は、周囲人物と追従するような動作内容である場合には、従来の自動車などと同様に、進行方向の前方が、自律移動型ロボット12の筐体の前面と一致するような走行を行うことで、周囲人物に対して、より安心感を与えることができる。さらに、複数台の自律移動型ロボット12で連携して移動する際にも、同様の表現手法を用いることができる。
 ここで、上述した一連の処理は、ハードウェアにより行うこともできるし、ソフトウェアにより行うこともできる。一連の処理をソフトウェアによって行う場合には、そのソフトウェアを構成するプログラムが、汎用のコンピュータ等にインストールされる。
 ここで、本明細書において、コンピュータがプログラムに従って行う処理は、必ずしもフローチャートとして記載された順序に沿って時系列に行われる必要はない。すなわち、コンピュータがプログラムに従って行う処理は、並列的あるいは個別に実行される処理(例えば、並列処理あるいはオブジェクトによる処理)も含む。
 また、プログラムは、1のコンピュータ(プロセッサ)により処理されるものであっても良いし、複数のコンピュータによって分散処理されるものであっても良い。さらに、プログラムは、遠方のコンピュータに転送されて実行されるものであっても良い。
 さらに、本明細書において、システムとは、複数の構成要素(装置、モジュール(部品)等)の集合を意味し、すべての構成要素が同一筐体中にあるか否かは問わない。したがって、別個の筐体に収納され、ネットワークを介して接続されている複数の装置、及び、1つの筐体の中に複数のモジュールが収納されている1つの装置は、いずれも、システムである。
 また、例えば、1つの装置(または処理部)として説明した構成を分割し、複数の装置(または処理部)として構成するようにしてもよい。逆に、以上において複数の装置(または処理部)として説明した構成をまとめて1つの装置(または処理部)として構成されるようにしてもよい。また、各装置(または各処理部)の構成に上述した以外の構成を付加するようにしてももちろんよい。さらに、システム全体としての構成や動作が実質的に同じであれば、ある装置(または処理部)の構成の一部を他の装置(または他の処理部)の構成に含めるようにしてもよい。
 また、例えば、本技術は、1つの機能を、ネットワークを介して複数の装置で分担、共同して処理するクラウドコンピューティングの構成をとることができる。
 また、例えば、上述したプログラムは、任意の装置において実行することができる。その場合、その装置が、必要な機能(機能ブロック等)を有し、必要な情報を得ることができるようにすればよい。
 また、例えば、上述のフローチャートで説明した各ステップは、1つの装置で実行する他、複数の装置で分担して実行することができる。さらに、1つのステップに複数の処理が含まれる場合には、その1つのステップに含まれる複数の処理は、1つの装置で実行する他、複数の装置で分担して実行することができる。換言するに、1つのステップに含まれる複数の処理を、複数のステップの処理として実行することもできる。逆に、複数のステップとして説明した処理を1つのステップとしてまとめて実行することもできる。
 なお、コンピュータが実行するプログラムは、プログラムを記述するステップの処理が、本明細書で説明する順序に沿って時系列に実行されるようにしても良いし、並列に、あるいは呼び出しが行われたとき等の必要なタイミングで個別に実行されるようにしても良い。つまり、矛盾が生じない限り、各ステップの処理が上述した順序と異なる順序で実行されるようにしてもよい。さらに、このプログラムを記述するステップの処理が、他のプログラムの処理と並列に実行されるようにしても良いし、他のプログラムの処理と組み合わせて実行されるようにしても良い。
 なお、本明細書において複数説明した本技術は、矛盾が生じない限り、それぞれ独立に単体で実施することができる。もちろん、任意の複数の本技術を併用して実施することもできる。例えば、いずれかの実施の形態において説明した本技術の一部または全部を、他の実施の形態において説明した本技術の一部または全部と組み合わせて実施することもできる。また、上述した任意の本技術の一部または全部を、上述していない他の技術と併用して実施することもできる。
 <構成の組み合わせ例>
 なお、本技術は以下のような構成も取ることができる。
(1)
 移動体の周囲に居る周囲人物との関係度を決定する関係度決定部と、
 前記関係度に基づいて、前記移動体の移動を行う駆動部が行う処理、および、前記移動体の進路を提示する表現を出力する出力部が行う処理が対応付けられた走行モードを設定する設定部と
 を備える移動体制御装置。
(2)
 前記設定部は、前記周囲人物と一緒に移動を行う場合、進路を変更する際に前記駆動部により前記移動体の筐体の方向転換を行って走行する走行モードを設定する
 上記(1)に記載の移動体制御装置。
(3)
 前記出力部は、前記移動体の進行方向の提示を行う一方で、その進行方向を方向変換する表現は行わない
 上記(2)に記載の移動体制御装置。
(4)
 前記出力部は、前記移動体の進行方向の提示を行わず、進行方向を方向変換する表現も行わない
 上記(2)に記載の移動体制御装置。
(5)
 前記設定部は、前記周囲人物と一緒に移動を行わないが、視認可能な前記周囲人物が居る場合、前記出力部により前記移動体の進行方向の提示を行うとともに、前記移動体が進路を変更する際に前記出力部により進行方向を方向変換する表現を行って走行する走行モードを設定する
 上記(1)に記載の移動体制御装置。
(6)
 前記駆動部は、前記移動体が進路を変更する際に、前記移動体の筐体を一定の方向に維持したままの移動を行う
 上記(5)に記載の移動体制御装置。
(7)
 前記駆動部は、前記移動体が進路を変更する際に、前記移動体の筐体の方向転換を行う
 上記(5)に記載の移動体制御装置。
(8)
 前記設定部は、周囲人物と一緒に移動を行わず、かつ、視認可能な周囲人物が居ない場合、前記出力部による前記移動体の進路を提示するための進行方向および方向転換の表現を行わず、かつ、前記駆動部による前記移動体の筐体の方向転換を行わずに走行する走行モードを設定する
 上記(1)に記載の移動体制御装置。
(9)
 前記出力部は、前記移動体の筐体の側面全周に亘って表示を行う表示部により構成される
 上記(1)から(8)までのいずれかに記載の移動体制御装置。
(10)
 移動体の移動を制御する移動体制御装置が、
 前記移動体の周囲に居る人物との関係度を決定することと、
 前記関係度に基づいて、前記移動体の移動を行う駆動部が行う処理、および、前記移動体の進路を提示する表現を出力する出力部が行う処理が対応付けられた走行モードを設定することと
 を含む移動体制御方法。
(11)
 移動体の移動を制御する移動体制御装置のコンピュータに、
 前記移動体の周囲に居る人物との関係度を決定することと、
 前記関係度に基づいて、前記移動体の移動を行う駆動部が行う処理、および、前記移動体の進路を提示する表現を出力する出力部が行う処理が対応付けられた走行モードを設定することと
 を含む移動体制御を実行させるためのプログラム。
 なお、本実施の形態は、上述した実施の形態に限定されるものではなく、本開示の要旨を逸脱しない範囲において種々の変更が可能である。また、本明細書に記載された効果はあくまで例示であって限定されるものではなく、他の効果があってもよい。
 11 移動体制御システム, 12 自律移動型ロボット, 13 処理装置, 14 センサモジュール, 21 入力部, 22 演算部, 23 駆動部, 24 表示部, 31 レーザ測距装置, 32 RGBカメラ, 33 ステレオカメラ, 34 慣性計測装置, 41 CPU, 42 GPU, 43 補助記憶装置, 44 記憶装置, 51 モータ制御回路, 52 駆動用モータ, 53 エンコーダ, 61 出力装置, 71 筐体, 72 メカナムホイール

Claims (11)

  1.  移動体の周囲に居る周囲人物との関係度を決定する関係度決定部と、
     前記関係度に基づいて、前記移動体の移動を行う駆動部が行う処理、および、前記移動体の進路を提示する表現を出力する出力部が行う処理が対応付けられた走行モードを設定する設定部と
     を備える移動体制御装置。
  2.  前記設定部は、前記周囲人物と一緒に移動を行う場合、進路を変更する際に前記駆動部により前記移動体の筐体の方向転換を行って走行する走行モードを設定する
     請求項1に記載の移動体制御装置。
  3.  前記出力部は、前記移動体の進行方向の提示を行う一方で、その進行方向を方向変換する表現は行わない
     請求項2に記載の移動体制御装置。
  4.  前記出力部は、前記移動体の進行方向の提示を行わず、進行方向を方向変換する表現も行わない
     請求項2に記載の移動体制御装置。
  5.  前記設定部は、前記周囲人物と一緒に移動を行わないが、視認可能な前記周囲人物が居る場合、前記出力部により前記移動体の進行方向の提示を行うとともに、前記移動体が進路を変更する際に前記出力部により進行方向を方向変換する表現を行って走行する走行モードを設定する
     請求項1に記載の移動体制御装置。
  6.  前記駆動部は、前記移動体が進路を変更する際に、前記移動体の筐体を一定の方向に維持したままの移動を行う
     請求項5に記載の移動体制御装置。
  7.  前記駆動部は、前記移動体が進路を変更する際に、前記移動体の筐体の方向転換を行う
     請求項5に記載の移動体制御装置。
  8.  前記設定部は、周囲人物と一緒に移動を行わず、かつ、視認可能な周囲人物が居ない場合、前記出力部による前記移動体の進路を提示するための進行方向および方向転換の表現を行わず、かつ、前記駆動部による前記移動体の筐体の方向転換を行わずに走行する走行モードを設定する
     請求項1に記載の移動体制御装置。
  9.  前記出力部は、前記移動体の筐体の側面全周に亘って表示を行う表示部により構成される
     請求項1に記載の移動体制御装置。
  10.  移動体の移動を制御する移動体制御装置が、
     前記移動体の周囲に居る人物との関係度を決定することと、
     前記関係度に基づいて、前記移動体の移動を行う駆動部が行う処理、および、前記移動体の進路を提示する表現を出力する出力部が行う処理が対応付けられた走行モードを設定することと
     を含む移動体制御方法。
  11.  移動体の移動を制御する移動体制御装置のコンピュータに、
     前記移動体の周囲に居る人物との関係度を決定することと、
     前記関係度に基づいて、前記移動体の移動を行う駆動部が行う処理、および、前記移動体の進路を提示する表現を出力する出力部が行う処理が対応付けられた走行モードを設定することと
     を含む移動体制御を実行させるためのプログラム。
PCT/JP2019/022453 2018-06-19 2019-06-06 移動体制御装置および移動体制御方法、並びにプログラム WO2019244644A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/250,181 US11526172B2 (en) 2018-06-19 2019-06-06 Mobile object control apparatus and mobile object control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018116123A JP2021157203A (ja) 2018-06-19 2018-06-19 移動体制御装置および移動体制御方法、並びにプログラム
JP2018-116123 2018-06-19

Publications (1)

Publication Number Publication Date
WO2019244644A1 true WO2019244644A1 (ja) 2019-12-26

Family

ID=68983666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/022453 WO2019244644A1 (ja) 2018-06-19 2019-06-06 移動体制御装置および移動体制御方法、並びにプログラム

Country Status (3)

Country Link
US (1) US11526172B2 (ja)
JP (1) JP2021157203A (ja)
WO (1) WO2019244644A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023127500A1 (ja) * 2021-12-27 2023-07-06 富士フイルム株式会社 制御装置、制御方法、及び制御プログラム

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021157203A (ja) * 2018-06-19 2021-10-07 ソニーグループ株式会社 移動体制御装置および移動体制御方法、並びにプログラム
KR102592823B1 (ko) * 2022-11-29 2023-10-24 (주)토탈소프트뱅크 무인 이송 장비의 동작 정보 표시 장치

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006035381A (ja) * 2004-07-28 2006-02-09 Honda Motor Co Ltd 移動ロボットの制御装置
JP2008152504A (ja) * 2006-12-18 2008-07-03 Hitachi Ltd 案内ロボット装置及び案内システム
JP2010055422A (ja) * 2008-08-28 2010-03-11 Murata Machinery Ltd 自律移動装置
JP2011204145A (ja) * 2010-03-26 2011-10-13 Sony Corp 移動装置、移動方法およびプログラム
JP2013107184A (ja) * 2011-11-24 2013-06-06 Tokyo Denki Univ 人物誘導ロボット
WO2013171905A1 (ja) * 2012-05-18 2013-11-21 株式会社日立製作所 自律移動装置、制御装置および自律移動方法
WO2016104265A1 (ja) * 2014-12-25 2016-06-30 株式会社エクォス・リサーチ 移動体

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060058921A1 (en) * 2004-09-13 2006-03-16 Tamao Okamoto Mobile robot
SE537371C2 (sv) * 2011-11-18 2015-04-14 Atlas Copco Rock Drills Ab Förfarande och anordning vid framförande av en gruv- och/eller anläggningsmaskin
US10776733B2 (en) * 2017-06-26 2020-09-15 Acuitus Ag, Inc. Computer platform for controlling agricultural assets
JP2021157203A (ja) * 2018-06-19 2021-10-07 ソニーグループ株式会社 移動体制御装置および移動体制御方法、並びにプログラム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006035381A (ja) * 2004-07-28 2006-02-09 Honda Motor Co Ltd 移動ロボットの制御装置
JP2008152504A (ja) * 2006-12-18 2008-07-03 Hitachi Ltd 案内ロボット装置及び案内システム
JP2010055422A (ja) * 2008-08-28 2010-03-11 Murata Machinery Ltd 自律移動装置
JP2011204145A (ja) * 2010-03-26 2011-10-13 Sony Corp 移動装置、移動方法およびプログラム
JP2013107184A (ja) * 2011-11-24 2013-06-06 Tokyo Denki Univ 人物誘導ロボット
WO2013171905A1 (ja) * 2012-05-18 2013-11-21 株式会社日立製作所 自律移動装置、制御装置および自律移動方法
WO2016104265A1 (ja) * 2014-12-25 2016-06-30 株式会社エクォス・リサーチ 移動体

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MATSUMARU, TAKAFUM: "Evaluation Experiment in Simulated Interactive Situation between People and Mobile Robot with Preliminary-Announcement and Indication Function of Upcoming Operation", THE TRANSACTIONS OF HUMAN INTERFACE SOCIETY, vol. 10, no. 1, 2008, pages 11 - 20, XP055670005, ISSN: 1344-7262 *
MATSUMARU, TAKAFUMI: "The Human-Machine-Information System and the Robotic Virtual System", JOURNAL OF THE SOCIETY OF INSTRUMENT AND CONTROL ENGINEERS, vol. 43, no. 2, 2004, pages 116 - 121, XP055669964, ISSN: 0453-4662 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023127500A1 (ja) * 2021-12-27 2023-07-06 富士フイルム株式会社 制御装置、制御方法、及び制御プログラム

Also Published As

Publication number Publication date
JP2021157203A (ja) 2021-10-07
US11526172B2 (en) 2022-12-13
US20210255630A1 (en) 2021-08-19

Similar Documents

Publication Publication Date Title
WO2019244644A1 (ja) 移動体制御装置および移動体制御方法、並びにプログラム
US10307911B2 (en) Robot
JP6567563B2 (ja) 衝突回避および軌道復帰能力を有する人型ロボット
US10921818B2 (en) Robot
US9579795B2 (en) Robot device, method of controlling the same, and program for controlling the same
US9959768B2 (en) Apparatuses, methods and computer programs for controlling road user acknowledgement
US9308917B2 (en) Driver assistance apparatus capable of performing distance detection and vehicle including the same
EP2571660B1 (en) Mobile human interface robot
US10901215B1 (en) Systems and methods for providing a mobile artificial reality user with environmental awareness
US11199851B2 (en) Moving body
WO2011146259A2 (en) Mobile human interface robot
GB2527207A (en) Mobile human interface robot
WO2021220679A1 (ja) ロボット制御装置、方法、及びプログラム
US20210349465A1 (en) Autonomous scooter
JP2019109850A (ja) 透過型表示装置、表示制御方法、およびコンピュータープログラム
KR20190105214A (ko) 인공 지능을 통해 구속 상황을 회피하는 로봇 청소기 및 그의 동작 방법
TW201939110A (zh) 擴增實境顯示系統及其顯示方法
KR20200032547A (ko) 자율주행차량용 ar게임 장치 및 그 방법
WO2023145284A1 (ja) 情報処理装置及び情報処理方法、並びにコンピュータプログラム
KR20200083782A (ko) 메카넘 휠 기반의 세그웨이 장치
KR102377988B1 (ko) 로봇과의 협업 보조 방법 및 장치
KR102431493B1 (ko) 증강현실 콘텐츠 기반 차량기능 안내 및 가상 시험주행 경험 제공 시스템 및 방법
WO2023283724A1 (en) Novel motion base for driving simulator
JP2023018497A (ja) 移動体
KR20240019905A (ko) 제어 디바이스 및 제어 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19823641

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19823641

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP