WO2019244583A1 - Heat treatment device - Google Patents

Heat treatment device Download PDF

Info

Publication number
WO2019244583A1
WO2019244583A1 PCT/JP2019/021245 JP2019021245W WO2019244583A1 WO 2019244583 A1 WO2019244583 A1 WO 2019244583A1 JP 2019021245 W JP2019021245 W JP 2019021245W WO 2019244583 A1 WO2019244583 A1 WO 2019244583A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
heat treatment
semiconductor wafer
chamber
susceptor
Prior art date
Application number
PCT/JP2019/021245
Other languages
French (fr)
Japanese (ja)
Inventor
行雄 小野
Original Assignee
株式会社Screenホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Screenホールディングス filed Critical 株式会社Screenホールディングス
Publication of WO2019244583A1 publication Critical patent/WO2019244583A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation

Definitions

  • the present invention relates to a heat treatment apparatus that heats a thin precision electronic substrate (hereinafter, simply referred to as “substrate”) such as a semiconductor wafer by irradiating the substrate with light.
  • substrate a thin precision electronic substrate
  • substrate such as a semiconductor wafer
  • Flash lamp annealing uses a xenon flash lamp (hereinafter simply referred to as a xenon flash lamp) to irradiate the surface of a semiconductor wafer with flash light, thereby extremely exposing only the surface of the semiconductor wafer.
  • a xenon flash lamp hereinafter simply referred to as a xenon flash lamp
  • the emission spectral distribution of the xenon flash lamp is from the ultraviolet region to the near infrared region, the wavelength is shorter than that of the conventional halogen lamp, and almost coincides with the basic absorption band of a silicon semiconductor wafer. Therefore, when the semiconductor wafer is irradiated with flash light from the xenon flash lamp, the transmitted light is small and the temperature of the semiconductor wafer can be rapidly raised. In addition, it has been found that when the flash light is irradiated for a very short time of several milliseconds or less, only the vicinity of the surface of the semiconductor wafer can be selectively heated.
  • Such flash lamp annealing is used for a process requiring heating for an extremely short time, for example, activation of impurities typically implanted into a semiconductor wafer.
  • activation of impurities typically implanted into a semiconductor wafer By irradiating the surface of the semiconductor wafer into which impurities are implanted by the ion implantation method with flash light from a flash lamp, the surface of the semiconductor wafer can be heated to the activation temperature for a very short time, and the impurities can be diffused deeply. Without activation, only impurity activation can be performed.
  • Patent Literature 1 discloses a flash lamp annealing apparatus that preheats a semiconductor wafer with a halogen lamp disposed below a chamber, and then irradiates a flash light onto a surface of the semiconductor wafer from a flash lamp disposed above the chamber. Have been. Further, in the flash lamp annealing apparatus disclosed in Patent Document 1, a quartz susceptor holding a semiconductor wafer is preheated by a halogen lamp before processing the semiconductor wafer.
  • Patent Document 1 discloses a radiation thermometer that measures the temperature of a semiconductor wafer, and also discloses a radiation thermometer that measures the temperature of a susceptor.
  • a radiation thermometer receives infrared light radiated from a measuring object and measures the temperature of the measuring object from the intensity.
  • the radiation thermometer also receives such reflected infrared light in addition to the infrared light radiated from the measurement object, so that a measurement error due to the reflected light occurs.
  • the angle between the optical axis of the radiation thermometer and the object to be measured is small, the ratio of the reflected light component becomes higher than the light emitted from the object to be measured, and the error in the temperature measurement is further increased Become.
  • the present invention has been made in view of the above problems, and has as its object to provide a heat treatment apparatus that can accurately measure the temperature of an object to be measured by eliminating the influence of reflected light.
  • a first aspect of the present invention is a heat treatment apparatus for heating a substrate by irradiating the substrate with light, wherein a chamber for accommodating the substrate and a light irradiating unit for irradiating the substrate with light are provided. And a radiation thermometer for measuring the temperature of a structure provided in the chamber, and a polarizing element provided between the structure and the radiation thermometer, wherein the radiation thermometer has the structure
  • the polarizing element is provided at a position along the traveling direction of the reflected light of the light incident on the surface of the object at a Brewster angle, and the polarizing element transmits only p-polarized light.
  • the structure is a quartz susceptor that holds the substrate in the chamber.
  • the structure is a quartz window provided in the chamber.
  • a heat treatment apparatus for heating a substrate by irradiating the substrate with light
  • a chamber accommodating the substrate, a susceptor holding the substrate in the chamber, and applying light to the substrate.
  • the polarizing element is provided at a position along the traveling direction of the reflected light of the light incident on the surface at the Brewster angle, and the polarizing element transmits only p-polarized light.
  • an angle adjustment mechanism for adjusting a rotation angle of the polarizing element with respect to an optical axis of the reflected light is further provided.
  • the radiation thermometer is provided at a position along the traveling direction of the reflected light of the light incident on the surface of the structure at Brewster's angle, Since a polarizing element that transmits only p-polarized light is provided between the radiation thermometer and the radiation thermometer, the radiation thermometer can receive only infrared light emitted from the structure itself by blocking the reflected light, The temperature of the measurement object can be accurately measured by eliminating the influence of the reflected light.
  • the radiation thermometer is provided at a position along the traveling direction of the reflected light of the light incident on the main surface of the substrate at the Brewster angle, and the substrate and the radiation thermometer are provided. Since a polarizing element that passes only p-polarized light is provided between the substrate and the substrate, the reflected light is blocked, and only the infrared light emitted from the substrate itself can be received by the radiation thermometer. The temperature of the object to be measured can be accurately measured by excluding it.
  • FIG. 1 is a longitudinal sectional view showing the configuration of the heat treatment apparatus 1 according to the present invention.
  • the heat treatment apparatus 1 in FIG. 1 is a flash lamp annealing apparatus that heats a semiconductor wafer W having a disc shape as a substrate by irradiating the semiconductor wafer W with flash light.
  • the size of the semiconductor wafer W to be processed is not particularly limited, but is, for example, ⁇ 300 mm or ⁇ 450 mm ( ⁇ 300 mm in the present embodiment).
  • Impurities have been implanted into the semiconductor wafer W before being loaded into the heat treatment apparatus 1, and activation processing of the impurities implanted by the heat treatment by the heat treatment apparatus 1 is performed. Note that, in FIG. 1 and each of the following drawings, the dimensions and the numbers of the respective parts are exaggerated or simplified as necessary for easy understanding.
  • the heat treatment apparatus 1 includes a chamber 6 for accommodating a semiconductor wafer W, a flash heating unit 5 containing a plurality of flash lamps FL, and a halogen heating unit 4 containing a plurality of halogen lamps HL.
  • a flash heating unit 5 is provided above the chamber 6, and a halogen heating unit 4 is provided below the chamber 6.
  • the heat treatment apparatus 1 further includes a holding unit 7 that holds the semiconductor wafer W in a horizontal position inside the chamber 6, a transfer mechanism 10 that transfers the semiconductor wafer W between the holding unit 7 and the outside of the apparatus, Is provided.
  • the heat treatment apparatus 1 includes a control unit 3 that controls each operation mechanism provided in the halogen heating unit 4, the flash heating unit 5, and the chamber 6 to execute the heat treatment of the semiconductor wafer W.
  • the chamber 6 is configured by mounting a quartz chamber window above and below a cylindrical chamber side 61.
  • the chamber side portion 61 has a substantially cylindrical shape with an open top and bottom, an upper chamber window 63 is mounted and closed on an upper opening, and a lower chamber window 64 is mounted and closed on a lower opening.
  • the upper chamber window 63 that forms the ceiling of the chamber 6 is a disk-shaped member formed of quartz, and functions as a quartz window that transmits flash light emitted from the flash heating unit 5 into the chamber 6.
  • the lower chamber window 64 constituting the floor of the chamber 6 is also a disc-shaped member formed of quartz, and functions as a quartz window for transmitting light from the halogen heating unit 4 into the chamber 6.
  • Reflection ring 68 is attached to the upper part of the inner wall surface of chamber side part 61, and reflection ring 69 is attached to the lower part.
  • the reflection rings 68 and 69 are both formed in an annular shape.
  • the upper reflecting ring 68 is mounted by being fitted from above the chamber side 61.
  • the lower reflective ring 69 is mounted by being fitted from below the chamber side 61 and fastened with screws (not shown). That is, the reflection rings 68 and 69 are both detachably attached to the chamber side 61.
  • the space inside the chamber 6, that is, the space surrounded by the upper chamber window 63, the lower chamber window 64, the chamber side 61, and the reflection rings 68 and 69 is defined as the heat treatment space 65.
  • a concave portion 62 is formed on the inner wall surface of the chamber 6. That is, a concave portion 62 is formed which is surrounded by a central portion of the inner wall surface of the chamber side portion 61 where the reflection rings 68 and 69 are not mounted, a lower end surface of the reflection ring 68, and an upper end surface of the reflection ring 69. .
  • the concave portion 62 is formed in an annular shape along the horizontal direction on the inner wall surface of the chamber 6 and surrounds the holding portion 7 that holds the semiconductor wafer W.
  • the chamber side 61 and the reflection rings 68 and 69 are formed of a metal material (for example, stainless steel) having excellent strength and heat resistance.
  • a transfer opening (furnace opening) 66 for carrying the semiconductor wafer W in and out of the chamber 6 is formed in the chamber side 61.
  • the transport opening 66 can be opened and closed by a gate valve 185.
  • the transport opening 66 is connected to the outer peripheral surface of the recess 62 in communication. For this reason, when the gate valve 185 opens the transfer opening 66, the semiconductor wafer W is loaded into the heat treatment space 65 from the transfer opening 66 through the concave portion 62 and unloaded from the heat treatment space 65. It can be performed.
  • the gate valve 185 closes the transfer opening 66, the heat treatment space 65 in the chamber 6 becomes a closed space.
  • a gas supply hole 81 for supplying a processing gas to the heat treatment space 65 is formed in an upper portion of an inner wall of the chamber 6.
  • the gas supply hole 81 is formed at a position above the concave portion 62, and may be provided on the reflection ring 68.
  • the gas supply hole 81 is connected to a gas supply pipe 83 through a buffer space 82 formed in an annular shape inside the side wall of the chamber 6.
  • the gas supply pipe 83 is connected to a processing gas supply source 85.
  • a valve 84 is inserted in the middle of the gas supply pipe 83. When the valve 84 is opened, the processing gas is supplied from the processing gas supply source 85 to the buffer space 82.
  • the processing gas flowing into the buffer space 82 flows so as to expand in the buffer space 82 having a smaller fluid resistance than the gas supply hole 81 and is supplied from the gas supply hole 81 into the heat treatment space 65.
  • an inert gas such as nitrogen (N 2 ), a reactive gas such as hydrogen (H 2 ), ammonia (NH 3 ), or a mixed gas obtained by mixing them can be used.
  • nitrogen gas nitrogen gas
  • a gas exhaust hole 86 for exhausting the gas in the heat treatment space 65 is formed in the lower portion of the inner wall of the chamber 6.
  • the gas exhaust hole 86 is formed at a position lower than the concave portion 62, and may be provided on the reflection ring 69.
  • the gas exhaust hole 86 is connected to a gas exhaust pipe 88 via a buffer space 87 formed in an annular shape inside the side wall of the chamber 6.
  • the gas exhaust pipe 88 is connected to the exhaust part 190.
  • a valve 89 is inserted in the middle of the gas exhaust pipe 88. When the valve 89 is opened, the gas in the heat treatment space 65 is discharged from the gas exhaust hole 86 to the gas exhaust pipe 88 via the buffer space 87.
  • a plurality of gas supply holes 81 and gas exhaust holes 86 may be provided along the circumferential direction of the chamber 6, or may be slit-shaped.
  • a gas exhaust pipe 191 for discharging gas in the heat treatment space 65 is also connected to the end of the transfer opening 66.
  • the gas exhaust pipe 191 is connected to an exhaust unit 190 via a valve 192. By opening the valve 192, the gas in the chamber 6 is exhausted through the transfer opening 66.
  • an exhaust utility of a factory where the vacuum pump and the heat treatment apparatus 1 are installed can be used.
  • a vacuum pump is employed as the exhaust unit 190
  • the valve 84 is closed, and the atmosphere in the heat treatment space 65, which is a closed space, is exhausted without supplying any gas from the gas supply hole 81, the inside of the chamber 6 becomes a vacuum atmosphere.
  • the pressure can be reduced.
  • the inside of the chamber 6 can be depressurized to a pressure lower than the atmospheric pressure by performing the exhaust without supplying the gas from the gas supply hole 81. .
  • FIG. 2 is a perspective view showing the overall appearance of the holding unit 7.
  • the holding section 7 includes a base ring 71, a connecting section 72, and a susceptor 74.
  • the base ring 71, the connecting portion 72, and the susceptor 74 are all formed of quartz. That is, the entire holding portion 7 is formed of quartz.
  • the base ring 71 is an arc-shaped quartz member in which a part is omitted from the ring shape.
  • the missing portion is provided to prevent interference between a transfer arm 11 of the transfer mechanism 10 described below and the base ring 71.
  • the base ring 71 is supported on the wall surface of the chamber 6 by being placed on the bottom surface of the concave portion 62 (see FIG. 1).
  • a plurality of connecting portions 72 (four in this embodiment) are erected on the upper surface of the base ring 71 along the circumferential direction of the ring shape.
  • the connecting portion 72 is also a quartz member, and is fixed to the base ring 71 by welding.
  • FIG. 3 is a plan view of the susceptor 74.
  • FIG. 4 is a sectional view of the susceptor 74.
  • the susceptor 74 includes a holding plate 75, a guide ring 76, and a plurality of substrate support pins 77.
  • the holding plate 75 is a substantially circular plate-shaped member formed of quartz. The diameter of the holding plate 75 is larger than the diameter of the semiconductor wafer W. That is, the holding plate 75 has a larger planar size than the semiconductor wafer W.
  • a guide ring 76 is provided on the periphery of the upper surface of the holding plate 75.
  • the guide ring 76 is an annular member having an inner diameter larger than the diameter of the semiconductor wafer W. For example, when the diameter of the semiconductor wafer W is ⁇ 300 mm, the inner diameter of the guide ring 76 is ⁇ 320 mm.
  • the inner circumference of the guide ring 76 has a tapered surface that widens upward from the holding plate 75.
  • the guide ring 76 is formed of the same quartz as the holding plate 75.
  • the guide ring 76 may be welded to the upper surface of the holding plate 75, or may be fixed to the holding plate 75 by a separately processed pin or the like. Alternatively, the holding plate 75 and the guide ring 76 may be processed as an integral member.
  • a portion of the upper surface of the holding plate 75 inside the guide ring 76 is a flat holding surface 75a for holding the semiconductor wafer W.
  • a plurality of substrate support pins 77 are erected on the holding surface 75a of the holding plate 75. In the present embodiment, a total of twelve substrate support pins 77 are erected every 30 ° along the circumference of the outer circumference of the holding surface 75a (the inner circumference of the guide ring 76).
  • the diameter of the circle on which the twelve substrate support pins 77 are arranged is smaller than the diameter of the semiconductor wafer W.
  • Each substrate support pin 77 is formed of quartz.
  • the plurality of substrate support pins 77 may be provided on the upper surface of the holding plate 75 by welding, or may be processed integrally with the holding plate 75.
  • the four connecting portions 72 erected on the base ring 71 and the peripheral edge of the holding plate 75 of the susceptor 74 are fixed by welding. That is, the susceptor 74 and the base ring 71 are fixedly connected by the connecting portion 72.
  • the holder 7 is mounted on the chamber 6.
  • the holding plate 75 of the susceptor 74 is in a horizontal posture (a posture in which the normal line coincides with the vertical direction). That is, the holding surface 75a of the holding plate 75 is a horizontal plane.
  • the semiconductor wafer W carried into the chamber 6 is placed and held in a horizontal posture on the susceptor 74 of the holding unit 7 mounted on the chamber 6.
  • the semiconductor wafer W is supported by twelve substrate support pins 77 erected on the holding plate 75 and held by the susceptor 74. More precisely, the upper ends of the twelve substrate support pins 77 contact the lower surface of the semiconductor wafer W to support the semiconductor wafer W. Since the height of the twelve substrate support pins 77 (the distance from the upper end of the substrate support pins 77 to the holding surface 75a of the holding plate 75) is uniform, the semiconductor wafer W is placed in a horizontal posture by the twelve substrate support pins 77. Can be supported.
  • the semiconductor wafer W is supported by the plurality of substrate support pins 77 at a predetermined distance from the holding surface 75a of the holding plate 75.
  • the thickness of the guide ring 76 is larger than the height of the substrate support pins 77. Therefore, the horizontal displacement of the semiconductor wafer W supported by the plurality of substrate support pins 77 is prevented by the guide ring 76.
  • the holding plate 75 of the susceptor 74 has an opening 78 penetrating vertically.
  • the opening 78 is provided so that the radiation thermometer 120 (see FIG. 1) receives radiation light (infrared light) emitted from the lower surface of the semiconductor wafer W. That is, the radiation thermometer 120 receives light emitted from the lower surface of the semiconductor wafer W through the opening 78, and the temperature of the semiconductor wafer W is measured by a separate detector.
  • the holding plate 75 of the susceptor 74 is provided with four through holes 79 through which the lift pins 12 of the transfer mechanism 10, which will be described later, pass through for transferring the semiconductor wafer W.
  • FIG. 5 is a plan view of the transfer mechanism 10.
  • FIG. 6 is a side view of the transfer mechanism 10.
  • the transfer mechanism 10 includes two transfer arms 11.
  • the transfer arm 11 is formed in a circular arc shape along the generally annular concave portion 62.
  • Each transfer arm 11 is provided with two lift pins 12 standing upright.
  • the transfer arm 11 and the lift pins 12 are formed of quartz.
  • Each transfer arm 11 is rotatable by a horizontal moving mechanism 13.
  • the horizontal moving mechanism 13 moves the pair of transfer arms 11 to a transfer operation position (solid line position in FIG. 5) where the semiconductor wafer W is transferred to the holding unit 7 and the semiconductor wafer W held by the holding unit 7.
  • the horizontal movement is performed between a retracted position (a position indicated by a two-dot chain line in FIG. 5) that does not overlap in a plan view.
  • the horizontal moving mechanism 13 may be configured to rotate each transfer arm 11 by an individual motor, or may be rotated by a single motor using a link mechanism to link
  • the pair of transfer arms 11 is moved up and down by the elevating mechanism 14 together with the horizontal moving mechanism 13.
  • the lifting mechanism 14 raises the pair of transfer arms 11 at the transfer operation position, a total of four lift pins 12 pass through the through holes 79 (see FIGS. 2 and 3) formed in the susceptor 74, and The upper end of 12 protrudes from the upper surface of susceptor 74.
  • the elevating mechanism 14 lowers the pair of transfer arms 11 at the transfer operation position, pulls out the lift pins 12 from the through holes 79, and moves the horizontal transfer mechanism 13 to open the pair of transfer arms 11, The transfer arm 11 moves to the retreat position.
  • the retracted position of the pair of transfer arms 11 is immediately above the base ring 71 of the holding unit 7.
  • the retreat position of the transfer arm 11 is inside the concave portion 62. It should be noted that an exhaust mechanism (not shown) is also provided near the portion where the driving section (the horizontal moving mechanism 13 and the elevating mechanism 14) of the transfer mechanism 10 is provided. Is discharged to the outside of the chamber 6.
  • the heat treatment apparatus 1 has three radiation thermometers 120, 130, and 140.
  • the radiation thermometer 120 measures the temperature of the semiconductor wafer W through the opening 78 provided in the susceptor 74.
  • the radiation thermometer 130 detects infrared light emitted from the quartz susceptor 74 and measures the temperature of the susceptor 74.
  • the radiation thermometer 140 detects infrared light emitted from the lower chamber window 64 and measures the temperature of the lower chamber window 64.
  • the radiation thermometers 120, 130, and 140 are provided diagonally below the semiconductor wafer W, the susceptor 74, and the lower chamber window 64, which are the measurement objects.
  • the angle between each optical axis of the radiation thermometers 120, 130, and 140 and the object to be measured is smaller than 90 °. This is to prevent the radiation thermometers 120, 130, and 140 from blocking light irradiation from the halogen lamp HL and the flash lamp FL.
  • the temperature measurement by the radiation thermometers 120, 130, and 140 will be described in further detail later.
  • the flash heating unit 5 provided above the chamber 6 is provided inside the housing 51 so as to cover a plurality of (30 in this embodiment) xenon flash lamps FL and a light source above the light source. And a reflector 52 provided. Further, a lamp light emission window 53 is mounted on the bottom of the housing 51 of the flash heating unit 5.
  • the lamp light emission window 53 constituting the floor of the flash heating unit 5 is a plate-shaped quartz window formed of quartz. When the flash heating unit 5 is installed above the chamber 6, the lamp light emission window 53 faces the upper chamber window 63.
  • the flash lamp FL irradiates the heat treatment space 65 with flash light from above the chamber 6 through the lamp light emission window 53 and the upper chamber window 63.
  • Each of the plurality of flash lamps FL is a rod-shaped lamp having a long cylindrical shape, and has a longitudinal direction along the main surface of the semiconductor wafer W held by the holding unit 7 (that is, along the horizontal direction). They are arranged in a plane so as to be parallel to each other. Therefore, the plane formed by the arrangement of the flash lamps FL is also a horizontal plane.
  • the xenon flash lamp FL has a rod-shaped glass tube (discharge tube) in which xenon gas is sealed and an anode and a cathode connected to a condenser are disposed at both ends thereof, and is provided on the outer peripheral surface of the glass tube. And a trigger electrode. Since xenon gas is electrically an insulator, electricity does not flow in a glass tube in a normal state even if charges are stored in a capacitor. However, when a high voltage is applied to the trigger electrode to break the insulation, the electricity stored in the capacitor flows instantaneously into the glass tube, and light is emitted by excitation of xenon atoms or molecules at that time.
  • the flash lamp FL In such a xenon flash lamp FL, electrostatic energy previously stored in a condenser is converted into an extremely short light pulse of 0.1 to 100 milliseconds. It has a feature that it can emit extremely strong light compared to a light source. That is, the flash lamp FL is a pulsed lamp that emits light instantaneously in a very short time of less than one second. The light emission time of the flash lamp FL can be adjusted by the coil constant of a lamp power supply that supplies power to the flash lamp FL.
  • the reflector 52 is provided above the plurality of flash lamps FL so as to cover the entirety thereof.
  • the basic function of the reflector 52 is to reflect flash light emitted from the plurality of flash lamps FL to the heat treatment space 65 side.
  • the reflector 52 is made of an aluminum alloy plate, and its surface (the surface facing the flash lamp FL) is roughened by blasting.
  • the halogen heater 4 provided below the chamber 6 has a plurality of (in this embodiment, 40) halogen lamps HL inside the housing 41.
  • the halogen heater 4 is a light irradiator that heats the semiconductor wafer W by irradiating the heat treatment space 65 from below the chamber 6 through the lower chamber window 64 with a plurality of halogen lamps HL.
  • FIG. 7 is a plan view showing an arrangement of a plurality of halogen lamps HL.
  • the forty halogen lamps HL are arranged in two upper and lower stages. Twenty halogen lamps HL are arranged in an upper stage near the holding unit 7 and 20 halogen lamps HL are arranged in a lower stage farther from the holding unit 7 than the upper stage.
  • Each of the halogen lamps HL is a rod-shaped lamp having a long cylindrical shape.
  • the 20 halogen lamps HL in the upper and lower rows are arranged so that their respective longitudinal directions are parallel to each other along the main surface of the semiconductor wafer W held by the holding section 7 (that is, along the horizontal direction). I have. Therefore, the plane formed by the arrangement of the halogen lamps HL in both the upper and lower stages is a horizontal plane.
  • the arrangement density of the halogen lamps HL is higher in a region facing the peripheral portion than in a region facing the center of the semiconductor wafer W held by the holding portion 7 in both the upper stage and the lower stage. I have. That is, in both upper and lower stages, the arrangement pitch of the halogen lamps HL is shorter at the periphery than at the center of the lamp array. For this reason, it is possible to irradiate a larger amount of light to the peripheral portion of the semiconductor wafer W where the temperature is likely to decrease during heating by light irradiation from the halogen heating unit 4.
  • a lamp group composed of the upper halogen lamps HL and a lamp group composed of the lower halogen lamps HL are arranged so as to intersect in a grid pattern. That is, a total of 40 halogen lamps HL are arranged such that the longitudinal direction of the 20 halogen lamps HL arranged in the upper stage and the longitudinal direction of the 20 halogen lamps HL arranged in the lower stage are orthogonal to each other. I have.
  • the halogen lamp HL is a filament type light source that emits light by incandescent the filament by energizing the filament disposed inside the glass tube.
  • a gas in which a trace amount of a halogen element (iodine, bromine, or the like) is introduced into an inert gas such as nitrogen or argon is sealed inside the glass tube.
  • a halogen element iodine, bromine, or the like
  • the halogen lamp HL has a characteristic that it has a longer life and can continuously emit strong light as compared with a normal incandescent lamp. That is, the halogen lamp HL is a continuous lighting lamp that continuously emits light for at least one second.
  • the halogen lamp HL is a rod-shaped lamp, it has a long life, and by arranging the halogen lamp HL along the horizontal direction, the radiation efficiency to the upper semiconductor wafer W becomes excellent.
  • a reflector 43 is provided below the two-stage halogen lamp HL (FIG. 1).
  • the reflector 43 reflects light emitted from the plurality of halogen lamps HL to the heat treatment space 65 side.
  • the control unit 3 controls the various operation mechanisms described above provided in the heat treatment apparatus 1.
  • the configuration of the control unit 3 as hardware is the same as that of a general computer. That is, the control unit 3 includes a CPU which is a circuit for performing various arithmetic processing, a ROM which is a read-only memory for storing a basic program, a RAM which is a readable and writable memory for storing various information, and control software and data. It has a magnetic disk for storing.
  • the processing in the heat treatment apparatus 1 proceeds when the CPU of the control unit 3 executes a predetermined processing program.
  • the heat treatment apparatus 1 prevents an excessive rise in temperature of the halogen heating unit 4, the flash heating unit 5, and the chamber 6 due to heat energy generated from the halogen lamp HL and the flash lamp FL during the heat treatment of the semiconductor wafer W. Therefore, it has various cooling structures.
  • a water cooling tube (not shown) is provided on the wall of the chamber 6.
  • the halogen heating unit 4 and the flash heating unit 5 have an air cooling structure for forming a gas flow therein and discharging heat. Air is also supplied to the gap between the upper chamber window 63 and the lamp light emission window 53 to cool the flash heating unit 5 and the upper chamber window 63.
  • the processing operation in the heat treatment apparatus 1 will be described.
  • the procedure of the heat treatment for the semiconductor wafer W to be processed will be described.
  • the semiconductor wafer W to be processed is a semiconductor substrate to which impurities (ions) are added by an ion implantation method.
  • the activation of the impurities is performed by heat treatment (annealing) of flash light irradiation by the heat treatment apparatus 1.
  • the processing procedure of the semiconductor wafer W described below proceeds by the control unit 3 controlling each operation mechanism of the heat treatment apparatus 1.
  • the valve 84 for air supply is opened, and the valves 89 and 192 for exhaust are opened, and supply and exhaust of the inside of the chamber 6 are started.
  • nitrogen gas is supplied from the gas supply hole 81 to the heat treatment space 65.
  • the valve 89 is opened, the gas in the chamber 6 is exhausted from the gas exhaust hole 86. Thereby, the nitrogen gas supplied from the upper part of the heat treatment space 65 in the chamber 6 flows downward, and is exhausted from the lower part of the heat treatment space 65.
  • the gate valve 185 is opened to open the transfer opening 66, and the semiconductor wafer W to be processed is carried into the heat treatment space 65 in the chamber 6 through the transfer opening 66 by the transfer robot outside the apparatus.
  • the atmosphere outside the apparatus may be involved when the semiconductor wafer W is loaded, but since the nitrogen gas is continuously supplied to the chamber 6, the nitrogen gas flows out from the transfer opening 66, and Entrapment of an external atmosphere can be minimized.
  • the semiconductor wafer W carried in by the transfer robot advances to a position immediately above the holding unit 7 and stops. Then, the pair of transfer arms 11 of the transfer mechanism 10 move horizontally from the retracted position to the transfer operation position and rise, so that the lift pins 12 protrude from the upper surface of the holding plate 75 of the susceptor 74 through the through holes 79. To receive the semiconductor wafer W. At this time, the lift pins 12 rise above the upper ends of the substrate support pins 77.
  • the transfer robot exits the heat treatment space 65, and the transfer opening 66 is closed by the gate valve 185.
  • the semiconductor wafer W is transferred from the transfer mechanism 10 to the susceptor 74 of the holding unit 7 and is held from below in a horizontal posture.
  • the semiconductor wafer W is supported by a plurality of substrate support pins 77 erected on a holding plate 75 and held by a susceptor 74. Further, the semiconductor wafer W is held by the holding unit 7 with the surface on which the pattern is formed and the impurities are implanted facing upward.
  • a predetermined gap is formed between the back surface (the main surface opposite to the front surface) of the semiconductor wafer W supported by the plurality of substrate support pins 77 and the holding surface 75a of the holding plate 75.
  • the pair of transfer arms 11 that have descended to below the susceptor 74 are retracted by the horizontal moving mechanism 13 to the retracted position, that is, to the inside of the recess 62.
  • the 40 halogen lamps HL of the halogen heating unit 4 are simultaneously turned on to perform preliminary heating (assist heating). ) Is started.
  • the halogen light emitted from the halogen lamp HL passes through the lower chamber window 64 and the susceptor 74 formed of quartz, and irradiates the lower surface of the semiconductor wafer W.
  • the semiconductor wafer W is preheated and the temperature rises. Since the transfer arm 11 of the transfer mechanism 10 is retracted inside the concave portion 62, it does not hinder the heating by the halogen lamp HL.
  • the temperature of the semiconductor wafer W is measured by the radiation thermometer 120. That is, the radiation thermometer 120 receives infrared light radiated from the lower surface of the semiconductor wafer W held by the susceptor 74 through the opening 78, and measures the temperature of the wafer during temperature rise. The measured temperature of the semiconductor wafer W is transmitted to the control unit 3.
  • the control unit 3 controls the output of the halogen lamp HL while monitoring whether or not the temperature of the semiconductor wafer W heated by the irradiation of light from the halogen lamp HL has reached a predetermined preheating temperature T1.
  • the control unit 3 performs feedback control of the output of the halogen lamp HL based on the value measured by the radiation thermometer 120 so that the temperature of the semiconductor wafer W becomes the preheating temperature T1.
  • the preheating temperature T1 is about 200 ° C. to 800 ° C., and preferably about 350 ° C. to 600 ° C. (600 ° C. in the present embodiment) at which there is no risk that impurities added to the semiconductor wafer W are diffused by heat. .
  • the control unit 3 After the temperature of the semiconductor wafer W reaches the preheating temperature T1, the control unit 3 temporarily maintains the semiconductor wafer W at the preheating temperature T1. Specifically, when the temperature of the semiconductor wafer W measured by the radiation thermometer 120 reaches the preheating temperature T1, the control unit 3 adjusts the output of the halogen lamp HL to substantially reduce the temperature of the semiconductor wafer W to the preheating temperature. The heating temperature T1 is maintained.
  • the flash lamp FL of the flash heating unit 5 irradiates the surface of the semiconductor wafer W held by the susceptor 74 with flash light. At this time, a part of the flash light radiated from the flash lamp FL goes directly into the chamber 6, and another part is once reflected by the reflector 52 and then goes into the chamber 6. The flash heating of the semiconductor wafer W is performed by the irradiation.
  • the surface temperature of the semiconductor wafer W can be increased in a short time. That is, the flash light emitted from the flash lamp FL is converted into a light pulse in which the electrostatic energy previously stored in the condenser is extremely short, and the irradiation time is extremely short, from about 0.1 millisecond to about 100 milliseconds. It is a strong flash. Then, the surface temperature of the semiconductor wafer W, which is flash-heated by irradiating the flash light from the flash lamp FL, instantaneously rose to a processing temperature T2 of 1000 ° C. or more, and the impurities implanted into the semiconductor wafer W were activated.
  • a processing temperature T2 1000 ° C. or more
  • the surface temperature of the semiconductor wafer W can be raised and lowered in a very short time, it is possible to activate the impurities while suppressing diffusion of the impurities injected into the semiconductor wafer W due to heat. Can be. Since the time required for activating the impurity is extremely shorter than the time required for thermal diffusion, the activation is performed even in a short time in which diffusion of about 0.1 to 100 milliseconds does not occur. Complete.
  • the halogen lamp HL is turned off after a lapse of a predetermined time.
  • the temperature of the semiconductor wafer W rapidly drops from the preheating temperature T1.
  • the temperature of the semiconductor wafer W during the temperature decrease is measured by the radiation thermometer 120, and the measurement result is transmitted to the control unit 3.
  • the control unit 3 monitors whether the temperature of the semiconductor wafer W has dropped to a predetermined temperature based on the measurement result of the radiation thermometer 120.
  • the pair of transfer arms 11 of the transfer mechanism 10 move horizontally again from the retreat position to the transfer operation position and rise, so that the lift pins 12
  • the semiconductor wafer W protruding from the upper surface of the semiconductor wafer 74 and having undergone the heat treatment is received from the susceptor 74.
  • the transfer opening 66 closed by the gate valve 185 is opened, and the semiconductor wafer W placed on the lift pins 12 is carried out by a transfer robot outside the apparatus, and the semiconductor wafer W is heated in the heat treatment apparatus 1. Is completed.
  • the temperature of the semiconductor wafer W is measured by the radiation thermometer 120 mainly to control the output of the halogen lamp HL.
  • the temperature of the quartz susceptor 74 is measured by the radiation thermometer 130, and the temperature of the lower chamber window 64, which is a quartz window, is measured by the radiation thermometer 140.
  • the temperatures of the susceptor 74 and the lower chamber window 64 need not be measured during the heat treatment of the semiconductor wafer W, but may be measured when the susceptor 74 and the like are preheated before the semiconductor wafer W is loaded into the chamber 6. You may do it.
  • the radiation thermometers 120, 130, and 140 receive infrared light emitted from the semiconductor wafer W, the susceptor 74, and the lower chamber window 64, respectively, and measure the temperature of the measurement target from the intensity. However, since the main surface of the semiconductor wafer W and the surface of the quartz member are mirror surfaces, infrared light emitted from the periphery is reflected, and the reflected light reaches the radiation thermometers 120, 130, and 140. That is, the radiation thermometers 120, 130, and 140 receive not only the infrared light radiated from the measurement target but also the reflected light reflected by the measurement target, so that a measurement error occurs. .
  • the radiation thermometer 130 receives infrared light emitted from the inner wall surface of the chamber 6 and reflected on the surface of the susceptor 74 in addition to infrared light emitted from the susceptor 74. In this case, accurate temperature measurement of the susceptor 74 is hindered.
  • FIG. 8 is a diagram schematically illustrating measurement of the temperature of the susceptor 74 by the radiation thermometer 130.
  • the radiation thermometer 130 is provided obliquely below the quartz susceptor 74. More precisely, the radiation thermometer 130 is provided at a position along the traveling direction of the reflected light of light incident at the Brewster angle theta B on the surface of the susceptor 74. Brewster angle theta B, the reflectance of p-polarized light at the interface between different refractive index material is the angle of incidence becomes zero.
  • the reflection angle of the light incident at the Brewster angle theta B becomes Brewster angle theta B.
  • the radiation thermometer 130 as the angle between the normal of the optical axis and the susceptor 74 of the radiation thermometer 130 is Brewster angle theta B is installed.
  • a polarizing element 135 is provided between the susceptor 74 and the radiation thermometer 130.
  • the polarizing element 135 is an element that transmits only light polarized in a specific direction.
  • the polarizing element 135 selectively transmits only p-polarized light and reflects s-polarized light. Note that p-polarized light is polarized light whose electric field oscillates in the plane of incidence, and s-polarized light is polarized light whose electric field oscillates perpendicular to the plane of incidence.
  • FIG. 9 is a diagram showing the angle adjustment of the polarizing element 135 by the angle adjustment mechanism 137.
  • the optical axis of the reflected light of light incident at the Brewster angle theta B on the surface of the susceptor 74 is perpendicular to the paper surface.
  • the operator of the heat treatment apparatus 1 uses the angle adjustment mechanism 137 to adjust the rotation angle of the polarizing element 135 in the direction indicated by the arrow AR9 in FIG.
  • Such angle adjustment of the polarizing element 135 is performed as fine adjustment for correcting a machine difference.
  • the reflected light of light incident on the surface of the susceptor 74 at Brewster's angle theta B does not contain p-polarized light .
  • infrared light (light indicated by a broken line in FIG. 8) emitted from the susceptor 74 itself can be regarded as a combined light of p-polarized light and s-polarized light. That is, p-polarized light and s-polarized light are mixed in the infrared light emitted from the susceptor 74.
  • a polarizing element 135 for selectively passing only p-polarized light is provided.
  • Infrared light emitted from the reflective light and the susceptor 74 itself of the light incident at the Brewster angle theta B on the surface of the susceptor 74 is incident both the polarization element 135.
  • the reflected light of light incident at the Brewster angle theta B on the surface of the susceptor 74 because it does not include p-polarized light, the reflected light can not pass through the polarizing element 135 to pass the p-polarized light only . That is, the reflected light from the susceptor 74 is shielded by the polarizing element 135.
  • the p-polarized light and the s-polarized light are mixed in the infrared light emitted from the susceptor 74 itself, the p-polarized light can reach the radiation thermometer 130 through the polarizing element 135. That is, the radiation thermometer 130 can receive the infrared light radiated from the susceptor 74 itself and passed through the polarizing element 135.
  • a radiation thermometer 130 in position along the traveling direction of the reflected light of light incident at the Brewster angle theta B on the surface of the susceptor 74, p-polarized light between the susceptor 74 and the radiation thermometer 130
  • the radiation thermometer 130 can receive only the infrared light emitted from the susceptor 74 itself by cutting the reflected light.
  • the radiation thermometer 130 can accurately measure the temperature of the susceptor 74, which is the measurement target, while eliminating the influence of the reflected light.
  • the temperature measurement by the radiation thermometers 120 and 140 is also the same. That is, provided with a radiation thermometer 120 in position along the traveling direction of the reflected light of light incident at the Brewster angle theta B on the main surface of the held semiconductor wafer W on the susceptor 74, the semiconductor wafer W and the radiation thermometer
  • the radiation thermometer 120 can receive only infrared light emitted from the semiconductor wafer W itself by cutting the reflected light. Accordingly, the radiation thermometer 120 can accurately measure the temperature of the semiconductor wafer W as the measurement target while eliminating the influence of the reflected light.
  • the radiation thermometer 140 in position along the traveling direction of the reflected light of light incident at the Brewster angle theta B on the surface of the lower chamber window 64 is quartz window, the radiation temperature and the lower chamber window 64 By providing a polarizing element that allows only p-polarized light to pass therethrough, the reflected light can be cut and the infrared thermometer 140 can receive only infrared light emitted from the lower chamber window 64 itself. it can. Accordingly, the radiation thermometer 140 can accurately measure the temperature of the lower chamber window 64, which is the measurement target, while eliminating the influence of the reflected light.
  • the temperature of a structure provided in the chamber 6 other than the susceptor 74 such as the upper chamber window 63 and the lower chamber window 64 may be measured by a radiation thermometer.
  • the upper chamber window 63 radiation thermometer By providing a polarizing element that allows only p-polarized light to pass through, the reflected light can be cut and only the infrared light emitted from the upper chamber window 63 itself can be received by the radiation thermometer.
  • the radiation thermometer can accurately measure the temperature of the measurement object while eliminating the influence of the reflected light.
  • the flash heating unit 5 is provided with 30 flash lamps FL, but the present invention is not limited to this, and the number of flash lamps FL can be any number.
  • the flash lamp FL is not limited to a xenon flash lamp, but may be a krypton flash lamp.
  • the number of halogen lamps HL provided in the halogen heating unit 4 is not limited to 40 but may be any number.
  • the preheating of the semiconductor wafer W is performed using the filament type halogen lamp HL as a continuous lighting lamp that emits light continuously for 1 second or more.
  • the preliminary heating may be performed using a discharge type arc lamp (for example, a xenon arc lamp) as a continuous lighting lamp instead of the halogen lamp HL.
  • the substrate to be processed by the heat treatment apparatus 1 is not limited to a semiconductor wafer, but may be a glass substrate used for a flat panel display such as a liquid crystal display device or a substrate for a solar cell.
  • the temperature of the glass substrate or the like may be measured by a radiation thermometer using the technique according to the present invention.
  • heat treatment of the high dielectric constant gate insulating film (High-k film), bonding of metal and silicon, or crystallization of polysilicon may be performed.

Abstract

According to the present invention, a radiation thermometer is provided at a location along the traveling direction of reflection light reflected from the surface of a susceptor of quartz after being incident at Brewster's angle thereon. Also, a polarization element that only transmits p-polarized light is provided between the susceptor and the radiation thermometer. The p-polarized light is not included in the reflection light reflected from the surface of the susceptor after being incident at Brewster's angle thereon. Meanwhile, the p-polarized light and s-polarized light are mixed in infrared light radiated from the susceptor. Thus, it is possible to block the reflection light by means of the polarization element and have the radiation thermometer receive only the infrared light radiated from the susceptor. The radiation thermometer can accurately measure the temperature of the susceptor without being affected by the reflection light.

Description

熱処理装置Heat treatment equipment
 本発明は、半導体ウェハー等の薄板状精密電子基板(以下、単に「基板」と称する)に光を照射することによって該基板を加熱する熱処理装置に関する。 {Circle over (1)} The present invention relates to a heat treatment apparatus that heats a thin precision electronic substrate (hereinafter, simply referred to as “substrate”) such as a semiconductor wafer by irradiating the substrate with light.
 半導体デバイスの製造プロセスにおいて、極めて短時間で半導体ウェハーを加熱するフラッシュランプアニール(FLA)が注目されている。フラッシュランプアニールは、キセノンフラッシュランプ(以下、単に「フラッシュランプ」とするときにはキセノンフラッシュランプを意味する)を使用して半導体ウェハーの表面にフラッシュ光を照射することにより、半導体ウェハーの表面のみを極めて短時間(数ミリ秒以下)に昇温させる熱処理技術である。 フ ラ ッ シ ュ In a semiconductor device manufacturing process, flash lamp annealing (FLA), which heats a semiconductor wafer in an extremely short time, has attracted attention. Flash lamp annealing uses a xenon flash lamp (hereinafter simply referred to as a xenon flash lamp) to irradiate the surface of a semiconductor wafer with flash light, thereby extremely exposing only the surface of the semiconductor wafer. This is a heat treatment technology that raises the temperature in a short time (several milliseconds or less).
 キセノンフラッシュランプの放射分光分布は紫外域から近赤外域であり、従来のハロゲンランプよりも波長が短く、シリコンの半導体ウェハーの基礎吸収帯とほぼ一致している。よって、キセノンフラッシュランプから半導体ウェハーにフラッシュ光を照射したときには、透過光が少なく半導体ウェハーを急速に昇温することが可能である。また、数ミリ秒以下の極めて短時間のフラッシュ光照射であれば、半導体ウェハーの表面近傍のみを選択的に昇温できることも判明している。 (4) The emission spectral distribution of the xenon flash lamp is from the ultraviolet region to the near infrared region, the wavelength is shorter than that of the conventional halogen lamp, and almost coincides with the basic absorption band of a silicon semiconductor wafer. Therefore, when the semiconductor wafer is irradiated with flash light from the xenon flash lamp, the transmitted light is small and the temperature of the semiconductor wafer can be rapidly raised. In addition, it has been found that when the flash light is irradiated for a very short time of several milliseconds or less, only the vicinity of the surface of the semiconductor wafer can be selectively heated.
 このようなフラッシュランプアニールは、極短時間の加熱が必要とされる処理、例えば典型的には半導体ウェハーに注入された不純物の活性化に利用される。イオン注入法によって不純物が注入された半導体ウェハーの表面にフラッシュランプからフラッシュ光を照射すれば、当該半導体ウェハーの表面を極短時間だけ活性化温度にまで昇温することができ、不純物を深く拡散させることなく、不純物活性化のみを実行することができるのである。 (4) Such flash lamp annealing is used for a process requiring heating for an extremely short time, for example, activation of impurities typically implanted into a semiconductor wafer. By irradiating the surface of the semiconductor wafer into which impurities are implanted by the ion implantation method with flash light from a flash lamp, the surface of the semiconductor wafer can be heated to the activation temperature for a very short time, and the impurities can be diffused deeply. Without activation, only impurity activation can be performed.
 特許文献1には、チャンバーの下方に配置されたハロゲンランプによって半導体ウェハーを予備加熱した後、チャンバーの上方に配置されたフラッシュランプから半導体ウェハーの表面にフラッシュ光を照射するフラッシュランプアニール装置が開示されている。また、特許文献1のフラッシュランプアニール装置においては、半導体ウェハーの処理を行う前にハロゲンランプによって半導体ウェハーを保持する石英のサセプタを予熱している。 Patent Literature 1 discloses a flash lamp annealing apparatus that preheats a semiconductor wafer with a halogen lamp disposed below a chamber, and then irradiates a flash light onto a surface of the semiconductor wafer from a flash lamp disposed above the chamber. Have been. Further, in the flash lamp annealing apparatus disclosed in Patent Document 1, a quartz susceptor holding a semiconductor wafer is preheated by a halogen lamp before processing the semiconductor wafer.
 フラッシュランプアニール装置に限らず、熱処理装置では加熱対象となる半導体ウェハーの温度を測定することが重要となる。典型的には、放射温度計を用いて非接触にて半導体ウェハーの温度を測定する。引用文献1にも、半導体ウェハーの温度を測定する放射温度計が開示されるとともに、サセプタの温度を測定する放射温度計も開示されている。 限 ら It is important to measure the temperature of the semiconductor wafer to be heated not only in the flash lamp annealing apparatus but also in the heat treatment apparatus. Typically, the temperature of a semiconductor wafer is measured in a non-contact manner using a radiation thermometer. Patent Document 1 discloses a radiation thermometer that measures the temperature of a semiconductor wafer, and also discloses a radiation thermometer that measures the temperature of a susceptor.
特開2017-92102号公報JP-A-2017-92102
 放射温度計は、測定対象物から放射される赤外光を受光し、その強度から測定対象物の温度を測定する。ところが、半導体ウェハーの主面や石英のサセプタの表面は鏡面となっているため、周辺部材から放射された赤外光を反射する。そして、放射温度計は、測定対象物から放射される赤外光に加えて、そのような反射された赤外光も受光することとなるため、反射光に起因した測定誤差が生じる。特に、放射温度計の光軸と測定対象物とのなす角度が小さい場合には、測定対象物からの放射光に比して反射光の成分の割合が高くなり、温度測定の誤差がさらに大きくなる。 A radiation thermometer receives infrared light radiated from a measuring object and measures the temperature of the measuring object from the intensity. However, since the main surface of the semiconductor wafer and the surface of the quartz susceptor are mirror surfaces, they reflect infrared light emitted from peripheral members. The radiation thermometer also receives such reflected infrared light in addition to the infrared light radiated from the measurement object, so that a measurement error due to the reflected light occurs. In particular, when the angle between the optical axis of the radiation thermometer and the object to be measured is small, the ratio of the reflected light component becomes higher than the light emitted from the object to be measured, and the error in the temperature measurement is further increased Become.
 本発明は、上記課題に鑑みてなされたものであり、反射光の影響を排除して測定対象物の温度を正確に測定することができる熱処理装置を提供することを目的とする。 The present invention has been made in view of the above problems, and has as its object to provide a heat treatment apparatus that can accurately measure the temperature of an object to be measured by eliminating the influence of reflected light.
 上記課題を解決するため、この発明の第1の態様は、基板に光を照射することによって該基板を加熱する熱処理装置において、基板を収容するチャンバーと、前記基板に光を照射する光照射部と、前記チャンバーに設けられた構造物の温度を測定する放射温度計と、前記構造物と前記放射温度計との間に設けられた偏光素子と、を備え、前記放射温度計は、前記構造物の表面にブリュースター角で入射した光の反射光の進行方向に沿った位置に設けられ、前記偏光素子は、p偏光のみを通過させる。 In order to solve the above problems, a first aspect of the present invention is a heat treatment apparatus for heating a substrate by irradiating the substrate with light, wherein a chamber for accommodating the substrate and a light irradiating unit for irradiating the substrate with light are provided. And a radiation thermometer for measuring the temperature of a structure provided in the chamber, and a polarizing element provided between the structure and the radiation thermometer, wherein the radiation thermometer has the structure The polarizing element is provided at a position along the traveling direction of the reflected light of the light incident on the surface of the object at a Brewster angle, and the polarizing element transmits only p-polarized light.
 また、第2の態様は、第1の態様に係る熱処理装置において、前記構造物は、前記チャンバー内にて前記基板を保持する石英のサセプタである。 According to a second aspect, in the heat treatment apparatus according to the first aspect, the structure is a quartz susceptor that holds the substrate in the chamber.
 また、第3の態様は、第1の態様に係る熱処理装置において、前記構造物は、前記チャンバーに設けられた石英窓である。 According to a third aspect, in the heat treatment apparatus according to the first aspect, the structure is a quartz window provided in the chamber.
 また、第4の態様は、基板に光を照射することによって該基板を加熱する熱処理装置において、基板を収容するチャンバーと、前記チャンバー内にて前記基板を保持するサセプタと、前記基板に光を照射する光照射部と、前記基板の温度を測定する放射温度計と、前記基板と前記放射温度計との間に設けられた偏光素子と、を備え、前記放射温度計は、前記基板の主面にブリュースター角で入射した光の反射光の進行方向に沿った位置に設けられ、前記偏光素子は、p偏光のみを通過させる。 According to a fourth aspect, in a heat treatment apparatus for heating a substrate by irradiating the substrate with light, a chamber accommodating the substrate, a susceptor holding the substrate in the chamber, and applying light to the substrate. A light irradiating unit for irradiating, a radiation thermometer for measuring the temperature of the substrate, and a polarizing element provided between the substrate and the radiation thermometer, wherein the radiation thermometer is a main component of the substrate. The polarizing element is provided at a position along the traveling direction of the reflected light of the light incident on the surface at the Brewster angle, and the polarizing element transmits only p-polarized light.
 また、第5の態様は、第1から第4のいずれかの態様に係る熱処理装置において、前記反射光の光軸に対する前記偏光素子の回転角度を調整する角度調整機構をさらに備える。 According to a fifth aspect, in the heat treatment apparatus according to any one of the first to fourth aspects, an angle adjustment mechanism for adjusting a rotation angle of the polarizing element with respect to an optical axis of the reflected light is further provided.
 第1から第3および第5の態様に係る熱処理装置によれば、構造物の表面にブリュースター角で入射した光の反射光の進行方向に沿った位置に放射温度計が設けられ、構造物と放射温度計との間にp偏光のみを通過させる偏光素子が設けられるため、当該反射光を遮光して構造物自体から放射された赤外光のみを放射温度計に受光させることができ、反射光の影響を排除して測定対象物の温度を正確に測定することができる。 According to the heat treatment apparatuses according to the first to third and fifth aspects, the radiation thermometer is provided at a position along the traveling direction of the reflected light of the light incident on the surface of the structure at Brewster's angle, Since a polarizing element that transmits only p-polarized light is provided between the radiation thermometer and the radiation thermometer, the radiation thermometer can receive only infrared light emitted from the structure itself by blocking the reflected light, The temperature of the measurement object can be accurately measured by eliminating the influence of the reflected light.
 第4および第5の態様に係る熱処理装置によれば、基板の主面にブリュースター角で入射した光の反射光の進行方向に沿った位置に放射温度計が設けられ、基板と放射温度計との間にp偏光のみを通過させる偏光素子が設けられるため、当該反射光を遮光して基板自体から放射された赤外光のみを放射温度計に受光させることができ、反射光の影響を排除して測定対象物の温度を正確に測定することができる。 According to the heat treatment apparatuses of the fourth and fifth aspects, the radiation thermometer is provided at a position along the traveling direction of the reflected light of the light incident on the main surface of the substrate at the Brewster angle, and the substrate and the radiation thermometer are provided. Since a polarizing element that passes only p-polarized light is provided between the substrate and the substrate, the reflected light is blocked, and only the infrared light emitted from the substrate itself can be received by the radiation thermometer. The temperature of the object to be measured can be accurately measured by excluding it.
本発明に係る熱処理装置の構成を示す縦断面図である。It is a longitudinal section showing the composition of the heat treatment equipment concerning the present invention. 保持部の全体外観を示す斜視図である。It is a perspective view which shows the whole external appearance of a holding part. サセプタの平面図である。It is a top view of a susceptor. サセプタの断面図である。It is sectional drawing of a susceptor. 移載機構の平面図である。It is a top view of a transfer mechanism. 移載機構の側面図である。It is a side view of a transfer mechanism. 複数のハロゲンランプの配置を示す平面図である。It is a top view showing arrangement of a plurality of halogen lamps. 放射温度計によるサセプタの温度測定を模式的に示す図である。It is a figure which shows typically the temperature measurement of a susceptor by a radiation thermometer. 角度調整機構による偏光素子の角度調整を示す図である。It is a figure showing angle adjustment of a polarizing element by an angle adjustment mechanism.
 以下、図面を参照しつつ本発明の実施の形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 図1は、本発明に係る熱処理装置1の構成を示す縦断面図である。図1の熱処理装置1は、基板として円板形状の半導体ウェハーWに対してフラッシュ光照射を行うことによってその半導体ウェハーWを加熱するフラッシュランプアニール装置である。処理対象となる半導体ウェハーWのサイズは特に限定されるものではないが、例えばφ300mmやφ450mmである(本実施形態ではφ300mm)。熱処理装置1に搬入される前の半導体ウェハーWには不純物が注入されており、熱処理装置1による加熱処理によって注入された不純物の活性化処理が実行される。なお、図1および以降の各図においては、理解容易のため、必要に応じて各部の寸法や数を誇張または簡略化して描いている。 FIG. 1 is a longitudinal sectional view showing the configuration of the heat treatment apparatus 1 according to the present invention. The heat treatment apparatus 1 in FIG. 1 is a flash lamp annealing apparatus that heats a semiconductor wafer W having a disc shape as a substrate by irradiating the semiconductor wafer W with flash light. The size of the semiconductor wafer W to be processed is not particularly limited, but is, for example, φ300 mm or φ450 mm (φ300 mm in the present embodiment). Impurities have been implanted into the semiconductor wafer W before being loaded into the heat treatment apparatus 1, and activation processing of the impurities implanted by the heat treatment by the heat treatment apparatus 1 is performed. Note that, in FIG. 1 and each of the following drawings, the dimensions and the numbers of the respective parts are exaggerated or simplified as necessary for easy understanding.
 熱処理装置1は、半導体ウェハーWを収容するチャンバー6と、複数のフラッシュランプFLを内蔵するフラッシュ加熱部5と、複数のハロゲンランプHLを内蔵するハロゲン加熱部4と、を備える。チャンバー6の上側にフラッシュ加熱部5が設けられるとともに、下側にハロゲン加熱部4が設けられている。また、熱処理装置1は、チャンバー6の内部に、半導体ウェハーWを水平姿勢に保持する保持部7と、保持部7と装置外部との間で半導体ウェハーWの受け渡しを行う移載機構10と、を備える。さらに、熱処理装置1は、ハロゲン加熱部4、フラッシュ加熱部5およびチャンバー6に設けられた各動作機構を制御して半導体ウェハーWの熱処理を実行させる制御部3を備える。 The heat treatment apparatus 1 includes a chamber 6 for accommodating a semiconductor wafer W, a flash heating unit 5 containing a plurality of flash lamps FL, and a halogen heating unit 4 containing a plurality of halogen lamps HL. A flash heating unit 5 is provided above the chamber 6, and a halogen heating unit 4 is provided below the chamber 6. The heat treatment apparatus 1 further includes a holding unit 7 that holds the semiconductor wafer W in a horizontal position inside the chamber 6, a transfer mechanism 10 that transfers the semiconductor wafer W between the holding unit 7 and the outside of the apparatus, Is provided. Further, the heat treatment apparatus 1 includes a control unit 3 that controls each operation mechanism provided in the halogen heating unit 4, the flash heating unit 5, and the chamber 6 to execute the heat treatment of the semiconductor wafer W.
 チャンバー6は、筒状のチャンバー側部61の上下に石英製のチャンバー窓を装着して構成されている。チャンバー側部61は上下が開口された概略筒形状を有しており、上側開口には上側チャンバー窓63が装着されて閉塞され、下側開口には下側チャンバー窓64が装着されて閉塞されている。チャンバー6の天井部を構成する上側チャンバー窓63は、石英により形成された円板形状部材であり、フラッシュ加熱部5から出射されたフラッシュ光をチャンバー6内に透過する石英窓として機能する。また、チャンバー6の床部を構成する下側チャンバー窓64も、石英により形成された円板形状部材であり、ハロゲン加熱部4からの光をチャンバー6内に透過する石英窓として機能する。 The chamber 6 is configured by mounting a quartz chamber window above and below a cylindrical chamber side 61. The chamber side portion 61 has a substantially cylindrical shape with an open top and bottom, an upper chamber window 63 is mounted and closed on an upper opening, and a lower chamber window 64 is mounted and closed on a lower opening. ing. The upper chamber window 63 that forms the ceiling of the chamber 6 is a disk-shaped member formed of quartz, and functions as a quartz window that transmits flash light emitted from the flash heating unit 5 into the chamber 6. The lower chamber window 64 constituting the floor of the chamber 6 is also a disc-shaped member formed of quartz, and functions as a quartz window for transmitting light from the halogen heating unit 4 into the chamber 6.
 また、チャンバー側部61の内側の壁面の上部には反射リング68が装着され、下部には反射リング69が装着されている。反射リング68,69は、ともに円環状に形成されている。上側の反射リング68は、チャンバー側部61の上側から嵌め込むことによって装着される。一方、下側の反射リング69は、チャンバー側部61の下側から嵌め込んで図示省略のビスで留めることによって装着される。すなわち、反射リング68,69は、ともに着脱自在にチャンバー側部61に装着されるものである。チャンバー6の内側空間、すなわち上側チャンバー窓63、下側チャンバー窓64、チャンバー側部61および反射リング68,69によって囲まれる空間が熱処理空間65として規定される。 反射 Reflection ring 68 is attached to the upper part of the inner wall surface of chamber side part 61, and reflection ring 69 is attached to the lower part. The reflection rings 68 and 69 are both formed in an annular shape. The upper reflecting ring 68 is mounted by being fitted from above the chamber side 61. On the other hand, the lower reflective ring 69 is mounted by being fitted from below the chamber side 61 and fastened with screws (not shown). That is, the reflection rings 68 and 69 are both detachably attached to the chamber side 61. The space inside the chamber 6, that is, the space surrounded by the upper chamber window 63, the lower chamber window 64, the chamber side 61, and the reflection rings 68 and 69 is defined as the heat treatment space 65.
 チャンバー側部61に反射リング68,69が装着されることによって、チャンバー6の内壁面に凹部62が形成される。すなわち、チャンバー側部61の内壁面のうち反射リング68,69が装着されていない中央部分と、反射リング68の下端面と、反射リング69の上端面とで囲まれた凹部62が形成される。凹部62は、チャンバー6の内壁面に水平方向に沿って円環状に形成され、半導体ウェハーWを保持する保持部7を囲繞する。チャンバー側部61および反射リング68,69は、強度と耐熱性に優れた金属材料(例えば、ステンレススチール)にて形成されている。 凹 部 By attaching the reflection rings 68 and 69 to the chamber side 61, a concave portion 62 is formed on the inner wall surface of the chamber 6. That is, a concave portion 62 is formed which is surrounded by a central portion of the inner wall surface of the chamber side portion 61 where the reflection rings 68 and 69 are not mounted, a lower end surface of the reflection ring 68, and an upper end surface of the reflection ring 69. . The concave portion 62 is formed in an annular shape along the horizontal direction on the inner wall surface of the chamber 6 and surrounds the holding portion 7 that holds the semiconductor wafer W. The chamber side 61 and the reflection rings 68 and 69 are formed of a metal material (for example, stainless steel) having excellent strength and heat resistance.
 また、チャンバー側部61には、チャンバー6に対して半導体ウェハーWの搬入および搬出を行うための搬送開口部(炉口)66が形設されている。搬送開口部66は、ゲートバルブ185によって開閉可能とされている。搬送開口部66は凹部62の外周面に連通接続されている。このため、ゲートバルブ185が搬送開口部66を開放しているときには、搬送開口部66から凹部62を通過して熱処理空間65への半導体ウェハーWの搬入および熱処理空間65からの半導体ウェハーWの搬出を行うことができる。また、ゲートバルブ185が搬送開口部66を閉鎖するとチャンバー6内の熱処理空間65が密閉空間とされる。 {Circle around (6)} A transfer opening (furnace opening) 66 for carrying the semiconductor wafer W in and out of the chamber 6 is formed in the chamber side 61. The transport opening 66 can be opened and closed by a gate valve 185. The transport opening 66 is connected to the outer peripheral surface of the recess 62 in communication. For this reason, when the gate valve 185 opens the transfer opening 66, the semiconductor wafer W is loaded into the heat treatment space 65 from the transfer opening 66 through the concave portion 62 and unloaded from the heat treatment space 65. It can be performed. When the gate valve 185 closes the transfer opening 66, the heat treatment space 65 in the chamber 6 becomes a closed space.
 また、チャンバー6の内壁上部には熱処理空間65に処理ガスを供給するガス供給孔81が形設されている。ガス供給孔81は、凹部62よりも上側位置に形設されており、反射リング68に設けられていても良い。ガス供給孔81はチャンバー6の側壁内部に円環状に形成された緩衝空間82を介してガス供給管83に連通接続されている。ガス供給管83は処理ガス供給源85に接続されている。また、ガス供給管83の経路途中にはバルブ84が介挿されている。バルブ84が開放されると、処理ガス供給源85から緩衝空間82に処理ガスが送給される。緩衝空間82に流入した処理ガスは、ガス供給孔81よりも流体抵抗の小さい緩衝空間82内を拡がるように流れてガス供給孔81から熱処理空間65内へと供給される。処理ガスとしては、例えば窒素(N)等の不活性ガス、または、水素(H)、アンモニア(NH)等の反応性ガス、或いはそれらを混合した混合ガスを用いることができる(本実施形態では窒素ガス)。 Further, a gas supply hole 81 for supplying a processing gas to the heat treatment space 65 is formed in an upper portion of an inner wall of the chamber 6. The gas supply hole 81 is formed at a position above the concave portion 62, and may be provided on the reflection ring 68. The gas supply hole 81 is connected to a gas supply pipe 83 through a buffer space 82 formed in an annular shape inside the side wall of the chamber 6. The gas supply pipe 83 is connected to a processing gas supply source 85. A valve 84 is inserted in the middle of the gas supply pipe 83. When the valve 84 is opened, the processing gas is supplied from the processing gas supply source 85 to the buffer space 82. The processing gas flowing into the buffer space 82 flows so as to expand in the buffer space 82 having a smaller fluid resistance than the gas supply hole 81 and is supplied from the gas supply hole 81 into the heat treatment space 65. As the processing gas, for example, an inert gas such as nitrogen (N 2 ), a reactive gas such as hydrogen (H 2 ), ammonia (NH 3 ), or a mixed gas obtained by mixing them can be used. In the embodiment, nitrogen gas).
 一方、チャンバー6の内壁下部には熱処理空間65内の気体を排気するガス排気孔86が形設されている。ガス排気孔86は、凹部62よりも下側位置に形設されており、反射リング69に設けられていても良い。ガス排気孔86はチャンバー6の側壁内部に円環状に形成された緩衝空間87を介してガス排気管88に連通接続されている。ガス排気管88は排気部190に接続されている。また、ガス排気管88の経路途中にはバルブ89が介挿されている。バルブ89が開放されると、熱処理空間65の気体がガス排気孔86から緩衝空間87を経てガス排気管88へと排出される。なお、ガス供給孔81およびガス排気孔86は、チャンバー6の周方向に沿って複数設けられていても良いし、スリット状のものであっても良い。 On the other hand, a gas exhaust hole 86 for exhausting the gas in the heat treatment space 65 is formed in the lower portion of the inner wall of the chamber 6. The gas exhaust hole 86 is formed at a position lower than the concave portion 62, and may be provided on the reflection ring 69. The gas exhaust hole 86 is connected to a gas exhaust pipe 88 via a buffer space 87 formed in an annular shape inside the side wall of the chamber 6. The gas exhaust pipe 88 is connected to the exhaust part 190. A valve 89 is inserted in the middle of the gas exhaust pipe 88. When the valve 89 is opened, the gas in the heat treatment space 65 is discharged from the gas exhaust hole 86 to the gas exhaust pipe 88 via the buffer space 87. Note that a plurality of gas supply holes 81 and gas exhaust holes 86 may be provided along the circumferential direction of the chamber 6, or may be slit-shaped.
 また、搬送開口部66の先端にも熱処理空間65内の気体を排出するガス排気管191が接続されている。ガス排気管191はバルブ192を介して排気部190に接続されている。バルブ192を開放することによって、搬送開口部66を介してチャンバー6内の気体が排気される。 {Circle around (2)} A gas exhaust pipe 191 for discharging gas in the heat treatment space 65 is also connected to the end of the transfer opening 66. The gas exhaust pipe 191 is connected to an exhaust unit 190 via a valve 192. By opening the valve 192, the gas in the chamber 6 is exhausted through the transfer opening 66.
 排気部190としては、真空ポンプや熱処理装置1が設置される工場の排気ユーティリティを用いることができる。排気部190として真空ポンプを採用し、バルブ84を閉止してガス供給孔81から何らのガス供給を行うことなく密閉空間である熱処理空間65の雰囲気を排気すると、チャンバー6内を真空雰囲気にまで減圧することができる。また、排気部190として真空ポンプを用いていない場合であっても、ガス供給孔81からガス供給を行うことなく排気を行うことにより、チャンバー6内を大気圧未満の気圧に減圧することができる。 (4) As the exhaust unit 190, an exhaust utility of a factory where the vacuum pump and the heat treatment apparatus 1 are installed can be used. When a vacuum pump is employed as the exhaust unit 190, the valve 84 is closed, and the atmosphere in the heat treatment space 65, which is a closed space, is exhausted without supplying any gas from the gas supply hole 81, the inside of the chamber 6 becomes a vacuum atmosphere. The pressure can be reduced. Further, even when a vacuum pump is not used as the exhaust unit 190, the inside of the chamber 6 can be depressurized to a pressure lower than the atmospheric pressure by performing the exhaust without supplying the gas from the gas supply hole 81. .
 図2は、保持部7の全体外観を示す斜視図である。保持部7は、基台リング71、連結部72およびサセプタ74を備えて構成される。基台リング71、連結部72およびサセプタ74はいずれも石英にて形成されている。すなわち、保持部7の全体が石英にて形成されている。 FIG. 2 is a perspective view showing the overall appearance of the holding unit 7. The holding section 7 includes a base ring 71, a connecting section 72, and a susceptor 74. The base ring 71, the connecting portion 72, and the susceptor 74 are all formed of quartz. That is, the entire holding portion 7 is formed of quartz.
 基台リング71は円環形状から一部が欠落した円弧形状の石英部材である。この欠落部分は、後述する移載機構10の移載アーム11と基台リング71との干渉を防ぐために設けられている。基台リング71は凹部62の底面に載置されることによって、チャンバー6の壁面に支持されることとなる(図1参照)。基台リング71の上面に、その円環形状の周方向に沿って複数の連結部72(本実施形態では4個)が立設される。連結部72も石英の部材であり、溶接によって基台リング71に固着される。 The base ring 71 is an arc-shaped quartz member in which a part is omitted from the ring shape. The missing portion is provided to prevent interference between a transfer arm 11 of the transfer mechanism 10 described below and the base ring 71. The base ring 71 is supported on the wall surface of the chamber 6 by being placed on the bottom surface of the concave portion 62 (see FIG. 1). A plurality of connecting portions 72 (four in this embodiment) are erected on the upper surface of the base ring 71 along the circumferential direction of the ring shape. The connecting portion 72 is also a quartz member, and is fixed to the base ring 71 by welding.
 サセプタ74は基台リング71に設けられた4個の連結部72によって支持される。図3は、サセプタ74の平面図である。また、図4は、サセプタ74の断面図である。サセプタ74は、保持プレート75、ガイドリング76および複数の基板支持ピン77を備える。保持プレート75は、石英にて形成された略円形の平板状部材である。保持プレート75の直径は半導体ウェハーWの直径よりも大きい。すなわち、保持プレート75は、半導体ウェハーWよりも大きな平面サイズを有する。 The susceptor 74 is supported by four connecting portions 72 provided on the base ring 71. FIG. 3 is a plan view of the susceptor 74. FIG. 4 is a sectional view of the susceptor 74. The susceptor 74 includes a holding plate 75, a guide ring 76, and a plurality of substrate support pins 77. The holding plate 75 is a substantially circular plate-shaped member formed of quartz. The diameter of the holding plate 75 is larger than the diameter of the semiconductor wafer W. That is, the holding plate 75 has a larger planar size than the semiconductor wafer W.
 保持プレート75の上面周縁部にガイドリング76が設置されている。ガイドリング76は、半導体ウェハーWの直径よりも大きな内径を有する円環形状の部材である。例えば、半導体ウェハーWの直径がφ300mmの場合、ガイドリング76の内径はφ320mmである。ガイドリング76の内周は、保持プレート75から上方に向けて広くなるようなテーパ面とされている。ガイドリング76は、保持プレート75と同様の石英にて形成される。ガイドリング76は、保持プレート75の上面に溶着するようにしても良いし、別途加工したピンなどによって保持プレート75に固定するようにしても良い。或いは、保持プレート75とガイドリング76とを一体の部材として加工するようにしても良い。 ガ イ ド A guide ring 76 is provided on the periphery of the upper surface of the holding plate 75. The guide ring 76 is an annular member having an inner diameter larger than the diameter of the semiconductor wafer W. For example, when the diameter of the semiconductor wafer W is φ300 mm, the inner diameter of the guide ring 76 is φ320 mm. The inner circumference of the guide ring 76 has a tapered surface that widens upward from the holding plate 75. The guide ring 76 is formed of the same quartz as the holding plate 75. The guide ring 76 may be welded to the upper surface of the holding plate 75, or may be fixed to the holding plate 75 by a separately processed pin or the like. Alternatively, the holding plate 75 and the guide ring 76 may be processed as an integral member.
 保持プレート75の上面のうちガイドリング76よりも内側の領域が半導体ウェハーWを保持する平面状の保持面75aとされる。保持プレート75の保持面75aには、複数の基板支持ピン77が立設されている。本実施形態においては、保持面75aの外周円(ガイドリング76の内周円)と同心円の周上に沿って30°毎に計12個の基板支持ピン77が立設されている。12個の基板支持ピン77を配置した円の径(対向する基板支持ピン77間の距離)は半導体ウェハーWの径よりも小さく、半導体ウェハーWの径がφ300mmであればφ270mm~φ280mm(本実施形態ではφ270mm)である。それぞれの基板支持ピン77は石英にて形成されている。複数の基板支持ピン77は、保持プレート75の上面に溶接によって設けるようにしても良いし、保持プレート75と一体に加工するようにしても良い。 領域 A portion of the upper surface of the holding plate 75 inside the guide ring 76 is a flat holding surface 75a for holding the semiconductor wafer W. A plurality of substrate support pins 77 are erected on the holding surface 75a of the holding plate 75. In the present embodiment, a total of twelve substrate support pins 77 are erected every 30 ° along the circumference of the outer circumference of the holding surface 75a (the inner circumference of the guide ring 76). The diameter of the circle on which the twelve substrate support pins 77 are arranged (the distance between the opposing substrate support pins 77) is smaller than the diameter of the semiconductor wafer W. If the diameter of the semiconductor wafer W is φ300 mm, φ270 mm to φ280 mm (this embodiment) (Φ270 mm in the form). Each substrate support pin 77 is formed of quartz. The plurality of substrate support pins 77 may be provided on the upper surface of the holding plate 75 by welding, or may be processed integrally with the holding plate 75.
 図2に戻り、基台リング71に立設された4個の連結部72とサセプタ74の保持プレート75の周縁部とが溶接によって固着される。すなわち、サセプタ74と基台リング71とは連結部72によって固定的に連結されている。このような保持部7の基台リング71がチャンバー6の壁面に支持されることによって、保持部7がチャンバー6に装着される。保持部7がチャンバー6に装着された状態においては、サセプタ74の保持プレート75は水平姿勢(法線が鉛直方向と一致する姿勢)となる。すなわち、保持プレート75の保持面75aは水平面となる。 Returning to FIG. 2, the four connecting portions 72 erected on the base ring 71 and the peripheral edge of the holding plate 75 of the susceptor 74 are fixed by welding. That is, the susceptor 74 and the base ring 71 are fixedly connected by the connecting portion 72. By supporting the base ring 71 of the holder 7 on the wall surface of the chamber 6, the holder 7 is mounted on the chamber 6. When the holding unit 7 is mounted on the chamber 6, the holding plate 75 of the susceptor 74 is in a horizontal posture (a posture in which the normal line coincides with the vertical direction). That is, the holding surface 75a of the holding plate 75 is a horizontal plane.
 チャンバー6に搬入された半導体ウェハーWは、チャンバー6に装着された保持部7のサセプタ74の上に水平姿勢にて載置されて保持される。このとき、半導体ウェハーWは保持プレート75上に立設された12個の基板支持ピン77によって支持されてサセプタ74に保持される。より厳密には、12個の基板支持ピン77の上端部が半導体ウェハーWの下面に接触して当該半導体ウェハーWを支持する。12個の基板支持ピン77の高さ(基板支持ピン77の上端から保持プレート75の保持面75aまでの距離)は均一であるため、12個の基板支持ピン77によって半導体ウェハーWを水平姿勢に支持することができる。 The semiconductor wafer W carried into the chamber 6 is placed and held in a horizontal posture on the susceptor 74 of the holding unit 7 mounted on the chamber 6. At this time, the semiconductor wafer W is supported by twelve substrate support pins 77 erected on the holding plate 75 and held by the susceptor 74. More precisely, the upper ends of the twelve substrate support pins 77 contact the lower surface of the semiconductor wafer W to support the semiconductor wafer W. Since the height of the twelve substrate support pins 77 (the distance from the upper end of the substrate support pins 77 to the holding surface 75a of the holding plate 75) is uniform, the semiconductor wafer W is placed in a horizontal posture by the twelve substrate support pins 77. Can be supported.
 また、半導体ウェハーWは複数の基板支持ピン77によって保持プレート75の保持面75aから所定の間隔を隔てて支持されることとなる。基板支持ピン77の高さよりもガイドリング76の厚さの方が大きい。従って、複数の基板支持ピン77によって支持された半導体ウェハーWの水平方向の位置ずれはガイドリング76によって防止される。 {Circle around (1)} The semiconductor wafer W is supported by the plurality of substrate support pins 77 at a predetermined distance from the holding surface 75a of the holding plate 75. The thickness of the guide ring 76 is larger than the height of the substrate support pins 77. Therefore, the horizontal displacement of the semiconductor wafer W supported by the plurality of substrate support pins 77 is prevented by the guide ring 76.
 また、図2および図3に示すように、サセプタ74の保持プレート75には、上下に貫通して開口部78が形成されている。開口部78は、放射温度計120(図1参照)が半導体ウェハーWの下面から放射される放射光(赤外光)を受光するために設けられている。すなわち、放射温度計120が開口部78を介して半導体ウェハーWの下面から放射された光を受光し、別置のディテクタによってその半導体ウェハーWの温度が測定される。さらに、サセプタ74の保持プレート75には、後述する移載機構10のリフトピン12が半導体ウェハーWの受け渡しのために貫通する4個の貫通孔79が穿設されている。 {Circle around (2)} As shown in FIGS. 2 and 3, the holding plate 75 of the susceptor 74 has an opening 78 penetrating vertically. The opening 78 is provided so that the radiation thermometer 120 (see FIG. 1) receives radiation light (infrared light) emitted from the lower surface of the semiconductor wafer W. That is, the radiation thermometer 120 receives light emitted from the lower surface of the semiconductor wafer W through the opening 78, and the temperature of the semiconductor wafer W is measured by a separate detector. Further, the holding plate 75 of the susceptor 74 is provided with four through holes 79 through which the lift pins 12 of the transfer mechanism 10, which will be described later, pass through for transferring the semiconductor wafer W.
 図5は、移載機構10の平面図である。また、図6は、移載機構10の側面図である。移載機構10は、2本の移載アーム11を備える。移載アーム11は、概ね円環状の凹部62に沿うような円弧形状とされている。それぞれの移載アーム11には2本のリフトピン12が立設されている。移載アーム11およびリフトピン12は石英にて形成されている。各移載アーム11は水平移動機構13によって回動可能とされている。水平移動機構13は、一対の移載アーム11を保持部7に対して半導体ウェハーWの移載を行う移載動作位置(図5の実線位置)と保持部7に保持された半導体ウェハーWと平面視で重ならない退避位置(図5の二点鎖線位置)との間で水平移動させる。水平移動機構13としては、個別のモータによって各移載アーム11をそれぞれ回動させるものであっても良いし、リンク機構を用いて1個のモータによって一対の移載アーム11を連動させて回動させるものであっても良い。 FIG. 5 is a plan view of the transfer mechanism 10. FIG. 6 is a side view of the transfer mechanism 10. The transfer mechanism 10 includes two transfer arms 11. The transfer arm 11 is formed in a circular arc shape along the generally annular concave portion 62. Each transfer arm 11 is provided with two lift pins 12 standing upright. The transfer arm 11 and the lift pins 12 are formed of quartz. Each transfer arm 11 is rotatable by a horizontal moving mechanism 13. The horizontal moving mechanism 13 moves the pair of transfer arms 11 to a transfer operation position (solid line position in FIG. 5) where the semiconductor wafer W is transferred to the holding unit 7 and the semiconductor wafer W held by the holding unit 7. The horizontal movement is performed between a retracted position (a position indicated by a two-dot chain line in FIG. 5) that does not overlap in a plan view. The horizontal moving mechanism 13 may be configured to rotate each transfer arm 11 by an individual motor, or may be rotated by a single motor using a link mechanism to link a pair of transfer arms 11. It may be moved.
 また、一対の移載アーム11は、昇降機構14によって水平移動機構13とともに昇降移動される。昇降機構14が一対の移載アーム11を移載動作位置にて上昇させると、計4本のリフトピン12がサセプタ74に穿設された貫通孔79(図2,3参照)を通過し、リフトピン12の上端がサセプタ74の上面から突き出る。一方、昇降機構14が一対の移載アーム11を移載動作位置にて下降させてリフトピン12を貫通孔79から抜き取り、水平移動機構13が一対の移載アーム11を開くように移動させると各移載アーム11が退避位置に移動する。一対の移載アーム11の退避位置は、保持部7の基台リング71の直上である。基台リング71は凹部62の底面に載置されているため、移載アーム11の退避位置は凹部62の内側となる。なお、移載機構10の駆動部(水平移動機構13および昇降機構14)が設けられている部位の近傍にも図示省略の排気機構が設けられており、移載機構10の駆動部周辺の雰囲気がチャンバー6の外部に排出されるように構成されている。 (4) The pair of transfer arms 11 is moved up and down by the elevating mechanism 14 together with the horizontal moving mechanism 13. When the lifting mechanism 14 raises the pair of transfer arms 11 at the transfer operation position, a total of four lift pins 12 pass through the through holes 79 (see FIGS. 2 and 3) formed in the susceptor 74, and The upper end of 12 protrudes from the upper surface of susceptor 74. On the other hand, when the elevating mechanism 14 lowers the pair of transfer arms 11 at the transfer operation position, pulls out the lift pins 12 from the through holes 79, and moves the horizontal transfer mechanism 13 to open the pair of transfer arms 11, The transfer arm 11 moves to the retreat position. The retracted position of the pair of transfer arms 11 is immediately above the base ring 71 of the holding unit 7. Since the base ring 71 is placed on the bottom surface of the concave portion 62, the retreat position of the transfer arm 11 is inside the concave portion 62. It should be noted that an exhaust mechanism (not shown) is also provided near the portion where the driving section (the horizontal moving mechanism 13 and the elevating mechanism 14) of the transfer mechanism 10 is provided. Is discharged to the outside of the chamber 6.
 図1に示すように、熱処理装置1は3つの放射温度計120,130,140を有する。上述した通り、放射温度計120は、サセプタ74に設けられた開口部78を介して半導体ウェハーWの温度を測定する。放射温度計130は、石英のサセプタ74から放射された赤外光を検知してサセプタ74の温度を測定する。一方、放射温度計140は、下側チャンバー窓64から放射された赤外光を検知して下側チャンバー窓64の温度を測定する。放射温度計120,130,140は、それぞれ測定対象物である半導体ウェハーW、サセプタ74および下側チャンバー窓64の斜め下方に設けられている。すなわち、放射温度計120,130,140のそれぞれの光軸と測定対象物とのなす角度は90°よりも小さい。これは、放射温度計120,130,140がハロゲンランプHLおよびフラッシュランプFLからの光照射を遮光しないようにするためである。なお、放射温度計120,130,140による温度測定については後にさらに詳述する。 熱処理 As shown in FIG. 1, the heat treatment apparatus 1 has three radiation thermometers 120, 130, and 140. As described above, the radiation thermometer 120 measures the temperature of the semiconductor wafer W through the opening 78 provided in the susceptor 74. The radiation thermometer 130 detects infrared light emitted from the quartz susceptor 74 and measures the temperature of the susceptor 74. On the other hand, the radiation thermometer 140 detects infrared light emitted from the lower chamber window 64 and measures the temperature of the lower chamber window 64. The radiation thermometers 120, 130, and 140 are provided diagonally below the semiconductor wafer W, the susceptor 74, and the lower chamber window 64, which are the measurement objects. That is, the angle between each optical axis of the radiation thermometers 120, 130, and 140 and the object to be measured is smaller than 90 °. This is to prevent the radiation thermometers 120, 130, and 140 from blocking light irradiation from the halogen lamp HL and the flash lamp FL. In addition, the temperature measurement by the radiation thermometers 120, 130, and 140 will be described in further detail later.
 チャンバー6の上方に設けられたフラッシュ加熱部5は、筐体51の内側に、複数本(本実施形態では30本)のキセノンフラッシュランプFLからなる光源と、その光源の上方を覆うように設けられたリフレクタ52と、を備えて構成される。また、フラッシュ加熱部5の筐体51の底部にはランプ光放射窓53が装着されている。フラッシュ加熱部5の床部を構成するランプ光放射窓53は、石英により形成された板状の石英窓である。フラッシュ加熱部5がチャンバー6の上方に設置されることにより、ランプ光放射窓53が上側チャンバー窓63と対向することとなる。フラッシュランプFLはチャンバー6の上方からランプ光放射窓53および上側チャンバー窓63を介して熱処理空間65にフラッシュ光を照射する。 The flash heating unit 5 provided above the chamber 6 is provided inside the housing 51 so as to cover a plurality of (30 in this embodiment) xenon flash lamps FL and a light source above the light source. And a reflector 52 provided. Further, a lamp light emission window 53 is mounted on the bottom of the housing 51 of the flash heating unit 5. The lamp light emission window 53 constituting the floor of the flash heating unit 5 is a plate-shaped quartz window formed of quartz. When the flash heating unit 5 is installed above the chamber 6, the lamp light emission window 53 faces the upper chamber window 63. The flash lamp FL irradiates the heat treatment space 65 with flash light from above the chamber 6 through the lamp light emission window 53 and the upper chamber window 63.
 複数のフラッシュランプFLは、それぞれが長尺の円筒形状を有する棒状ランプであり、それぞれの長手方向が保持部7に保持される半導体ウェハーWの主面に沿って(つまり水平方向に沿って)互いに平行となるように平面状に配列されている。よって、フラッシュランプFLの配列によって形成される平面も水平面である。 Each of the plurality of flash lamps FL is a rod-shaped lamp having a long cylindrical shape, and has a longitudinal direction along the main surface of the semiconductor wafer W held by the holding unit 7 (that is, along the horizontal direction). They are arranged in a plane so as to be parallel to each other. Therefore, the plane formed by the arrangement of the flash lamps FL is also a horizontal plane.
 キセノンフラッシュランプFLは、その内部にキセノンガスが封入されその両端部にコンデンサーに接続された陽極および陰極が配設された棒状のガラス管(放電管)と、該ガラス管の外周面上に付設されたトリガー電極とを備える。キセノンガスは電気的には絶縁体であることから、コンデンサーに電荷が蓄積されていたとしても通常の状態ではガラス管内に電気は流れない。しかしながら、トリガー電極に高電圧を印加して絶縁を破壊した場合には、コンデンサーに蓄えられた電気がガラス管内に瞬時に流れ、そのときのキセノンの原子あるいは分子の励起によって光が放出される。このようなキセノンフラッシュランプFLにおいては、予めコンデンサーに蓄えられていた静電エネルギーが0.1ミリセカンドないし100ミリセカンドという極めて短い光パルスに変換されることから、ハロゲンランプHLの如き連続点灯の光源に比べて極めて強い光を照射し得るという特徴を有する。すなわち、フラッシュランプFLは、1秒未満の極めて短い時間で瞬間的に発光するパルス発光ランプである。なお、フラッシュランプFLの発光時間は、フラッシュランプFLに電力供給を行うランプ電源のコイル定数によって調整することができる。 The xenon flash lamp FL has a rod-shaped glass tube (discharge tube) in which xenon gas is sealed and an anode and a cathode connected to a condenser are disposed at both ends thereof, and is provided on the outer peripheral surface of the glass tube. And a trigger electrode. Since xenon gas is electrically an insulator, electricity does not flow in a glass tube in a normal state even if charges are stored in a capacitor. However, when a high voltage is applied to the trigger electrode to break the insulation, the electricity stored in the capacitor flows instantaneously into the glass tube, and light is emitted by excitation of xenon atoms or molecules at that time. In such a xenon flash lamp FL, electrostatic energy previously stored in a condenser is converted into an extremely short light pulse of 0.1 to 100 milliseconds. It has a feature that it can emit extremely strong light compared to a light source. That is, the flash lamp FL is a pulsed lamp that emits light instantaneously in a very short time of less than one second. The light emission time of the flash lamp FL can be adjusted by the coil constant of a lamp power supply that supplies power to the flash lamp FL.
 また、リフレクタ52は、複数のフラッシュランプFLの上方にそれら全体を覆うように設けられている。リフレクタ52の基本的な機能は、複数のフラッシュランプFLから出射されたフラッシュ光を熱処理空間65の側に反射するというものである。リフレクタ52はアルミニウム合金板にて形成されており、その表面(フラッシュランプFLに臨む側の面)はブラスト処理により粗面化加工が施されている。 (4) The reflector 52 is provided above the plurality of flash lamps FL so as to cover the entirety thereof. The basic function of the reflector 52 is to reflect flash light emitted from the plurality of flash lamps FL to the heat treatment space 65 side. The reflector 52 is made of an aluminum alloy plate, and its surface (the surface facing the flash lamp FL) is roughened by blasting.
 チャンバー6の下方に設けられたハロゲン加熱部4は、筐体41の内側に複数本(本実施形態では40本)のハロゲンランプHLを内蔵している。ハロゲン加熱部4は、複数のハロゲンランプHLによってチャンバー6の下方から下側チャンバー窓64を介して熱処理空間65への光照射を行って半導体ウェハーWを加熱する光照射部である。 The halogen heater 4 provided below the chamber 6 has a plurality of (in this embodiment, 40) halogen lamps HL inside the housing 41. The halogen heater 4 is a light irradiator that heats the semiconductor wafer W by irradiating the heat treatment space 65 from below the chamber 6 through the lower chamber window 64 with a plurality of halogen lamps HL.
 図7は、複数のハロゲンランプHLの配置を示す平面図である。40本のハロゲンランプHLは上下2段に分けて配置されている。保持部7に近い上段に20本のハロゲンランプHLが配設されるとともに、上段よりも保持部7から遠い下段にも20本のハロゲンランプHLが配設されている。各ハロゲンランプHLは、長尺の円筒形状を有する棒状ランプである。上段、下段ともに20本のハロゲンランプHLは、それぞれの長手方向が保持部7に保持される半導体ウェハーWの主面に沿って(つまり水平方向に沿って)互いに平行となるように配列されている。よって、上段、下段ともにハロゲンランプHLの配列によって形成される平面は水平面である。 FIG. 7 is a plan view showing an arrangement of a plurality of halogen lamps HL. The forty halogen lamps HL are arranged in two upper and lower stages. Twenty halogen lamps HL are arranged in an upper stage near the holding unit 7 and 20 halogen lamps HL are arranged in a lower stage farther from the holding unit 7 than the upper stage. Each of the halogen lamps HL is a rod-shaped lamp having a long cylindrical shape. The 20 halogen lamps HL in the upper and lower rows are arranged so that their respective longitudinal directions are parallel to each other along the main surface of the semiconductor wafer W held by the holding section 7 (that is, along the horizontal direction). I have. Therefore, the plane formed by the arrangement of the halogen lamps HL in both the upper and lower stages is a horizontal plane.
 また、図7に示すように、上段、下段ともに保持部7に保持される半導体ウェハーWの中央部に対向する領域よりも周縁部に対向する領域におけるハロゲンランプHLの配設密度が高くなっている。すなわち、上下段ともに、ランプ配列の中央部よりも周縁部の方がハロゲンランプHLの配設ピッチが短い。このため、ハロゲン加熱部4からの光照射による加熱時に温度低下が生じやすい半導体ウェハーWの周縁部により多い光量の照射を行うことができる。 Further, as shown in FIG. 7, the arrangement density of the halogen lamps HL is higher in a region facing the peripheral portion than in a region facing the center of the semiconductor wafer W held by the holding portion 7 in both the upper stage and the lower stage. I have. That is, in both upper and lower stages, the arrangement pitch of the halogen lamps HL is shorter at the periphery than at the center of the lamp array. For this reason, it is possible to irradiate a larger amount of light to the peripheral portion of the semiconductor wafer W where the temperature is likely to decrease during heating by light irradiation from the halogen heating unit 4.
 また、上段のハロゲンランプHLからなるランプ群と下段のハロゲンランプHLからなるランプ群とが格子状に交差するように配列されている。すなわち、上段に配置された20本のハロゲンランプHLの長手方向と下段に配置された20本のハロゲンランプHLの長手方向とが互いに直交するように計40本のハロゲンランプHLが配設されている。 {Also, a lamp group composed of the upper halogen lamps HL and a lamp group composed of the lower halogen lamps HL are arranged so as to intersect in a grid pattern. That is, a total of 40 halogen lamps HL are arranged such that the longitudinal direction of the 20 halogen lamps HL arranged in the upper stage and the longitudinal direction of the 20 halogen lamps HL arranged in the lower stage are orthogonal to each other. I have.
 ハロゲンランプHLは、ガラス管内部に配設されたフィラメントに通電することでフィラメントを白熱化させて発光させるフィラメント方式の光源である。ガラス管の内部には、窒素やアルゴン等の不活性ガスにハロゲン元素(ヨウ素、臭素等)を微量導入した気体が封入されている。ハロゲン元素を導入することによって、フィラメントの折損を抑制しつつフィラメントの温度を高温に設定することが可能となる。したがって、ハロゲンランプHLは、通常の白熱電球に比べて寿命が長くかつ強い光を連続的に照射できるという特性を有する。すなわち、ハロゲンランプHLは少なくとも1秒以上連続して発光する連続点灯ランプである。また、ハロゲンランプHLは棒状ランプであるため長寿命であり、ハロゲンランプHLを水平方向に沿わせて配置することにより上方の半導体ウェハーWへの放射効率が優れたものとなる。 The halogen lamp HL is a filament type light source that emits light by incandescent the filament by energizing the filament disposed inside the glass tube. A gas in which a trace amount of a halogen element (iodine, bromine, or the like) is introduced into an inert gas such as nitrogen or argon is sealed inside the glass tube. By introducing a halogen element, it is possible to set the temperature of the filament to a high temperature while suppressing breakage of the filament. Therefore, the halogen lamp HL has a characteristic that it has a longer life and can continuously emit strong light as compared with a normal incandescent lamp. That is, the halogen lamp HL is a continuous lighting lamp that continuously emits light for at least one second. Further, since the halogen lamp HL is a rod-shaped lamp, it has a long life, and by arranging the halogen lamp HL along the horizontal direction, the radiation efficiency to the upper semiconductor wafer W becomes excellent.
 また、ハロゲン加熱部4の筐体41内にも、2段のハロゲンランプHLの下側にリフレクタ43が設けられている(図1)。リフレクタ43は、複数のハロゲンランプHLから出射された光を熱処理空間65の側に反射する。 {Circle around (2)} In the housing 41 of the halogen heating unit 4, a reflector 43 is provided below the two-stage halogen lamp HL (FIG. 1). The reflector 43 reflects light emitted from the plurality of halogen lamps HL to the heat treatment space 65 side.
 制御部3は、熱処理装置1に設けられた上記の種々の動作機構を制御する。制御部3のハードウェアとしての構成は一般的なコンピュータと同様である。すなわち、制御部3は、各種演算処理を行う回路であるCPU、基本プログラムを記憶する読み出し専用のメモリであるROM、各種情報を記憶する読み書き自在のメモリであるRAMおよび制御用ソフトウェアやデータなどを記憶しておく磁気ディスクを備えている。制御部3のCPUが所定の処理プログラムを実行することによって熱処理装置1における処理が進行する。 The control unit 3 controls the various operation mechanisms described above provided in the heat treatment apparatus 1. The configuration of the control unit 3 as hardware is the same as that of a general computer. That is, the control unit 3 includes a CPU which is a circuit for performing various arithmetic processing, a ROM which is a read-only memory for storing a basic program, a RAM which is a readable and writable memory for storing various information, and control software and data. It has a magnetic disk for storing. The processing in the heat treatment apparatus 1 proceeds when the CPU of the control unit 3 executes a predetermined processing program.
 上記の構成以外にも熱処理装置1は、半導体ウェハーWの熱処理時にハロゲンランプHLおよびフラッシュランプFLから発生する熱エネルギーによるハロゲン加熱部4、フラッシュ加熱部5およびチャンバー6の過剰な温度上昇を防止するため、様々な冷却用の構造を備えている。例えば、チャンバー6の壁体には水冷管(図示省略)が設けられている。また、ハロゲン加熱部4およびフラッシュ加熱部5は、内部に気体流を形成して排熱する空冷構造とされている。また、上側チャンバー窓63とランプ光放射窓53との間隙にも空気が供給され、フラッシュ加熱部5および上側チャンバー窓63を冷却する。 In addition to the above-described configuration, the heat treatment apparatus 1 prevents an excessive rise in temperature of the halogen heating unit 4, the flash heating unit 5, and the chamber 6 due to heat energy generated from the halogen lamp HL and the flash lamp FL during the heat treatment of the semiconductor wafer W. Therefore, it has various cooling structures. For example, a water cooling tube (not shown) is provided on the wall of the chamber 6. Further, the halogen heating unit 4 and the flash heating unit 5 have an air cooling structure for forming a gas flow therein and discharging heat. Air is also supplied to the gap between the upper chamber window 63 and the lamp light emission window 53 to cool the flash heating unit 5 and the upper chamber window 63.
 次に、熱処理装置1における処理動作について説明する。まず、処理対象となる半導体ウェハーWに対する熱処理の手順について説明する。ここで処理対象となる半導体ウェハーWはイオン注入法により不純物(イオン)が添加された半導体基板である。その不純物の活性化が熱処理装置1によるフラッシュ光照射加熱処理(アニール)により実行される。以下に説明する半導体ウェハーWの処理手順は、制御部3が熱処理装置1の各動作機構を制御することにより進行する。 Next, the processing operation in the heat treatment apparatus 1 will be described. First, the procedure of the heat treatment for the semiconductor wafer W to be processed will be described. Here, the semiconductor wafer W to be processed is a semiconductor substrate to which impurities (ions) are added by an ion implantation method. The activation of the impurities is performed by heat treatment (annealing) of flash light irradiation by the heat treatment apparatus 1. The processing procedure of the semiconductor wafer W described below proceeds by the control unit 3 controlling each operation mechanism of the heat treatment apparatus 1.
 まず、給気のためのバルブ84が開放されるとともに、排気用のバルブ89,192が開放されてチャンバー6内に対する給排気が開始される。バルブ84が開放されると、ガス供給孔81から熱処理空間65に窒素ガスが供給される。また、バルブ89が開放されると、ガス排気孔86からチャンバー6内の気体が排気される。これにより、チャンバー6内の熱処理空間65の上部から供給された窒素ガスが下方へと流れ、熱処理空間65の下部から排気される。 {Circle around (1)} First, the valve 84 for air supply is opened, and the valves 89 and 192 for exhaust are opened, and supply and exhaust of the inside of the chamber 6 are started. When the valve 84 is opened, nitrogen gas is supplied from the gas supply hole 81 to the heat treatment space 65. When the valve 89 is opened, the gas in the chamber 6 is exhausted from the gas exhaust hole 86. Thereby, the nitrogen gas supplied from the upper part of the heat treatment space 65 in the chamber 6 flows downward, and is exhausted from the lower part of the heat treatment space 65.
 また、バルブ192が開放されることによって、搬送開口部66からもチャンバー6内の気体が排気される。さらに、図示省略の排気機構によって移載機構10の駆動部周辺の雰囲気も排気される。なお、熱処理装置1における半導体ウェハーWの熱処理時には窒素ガスが熱処理空間65に継続的に供給されており、その供給量は処理工程に応じて適宜変更される。 {Circle around (2)} By opening the valve 192, the gas in the chamber 6 is exhausted from the transfer opening 66 as well. Further, the atmosphere around the drive section of the transfer mechanism 10 is also exhausted by an exhaust mechanism not shown. In the heat treatment of the semiconductor wafer W in the heat treatment apparatus 1, the nitrogen gas is continuously supplied to the heat treatment space 65, and the supply amount is appropriately changed according to the treatment process.
 続いて、ゲートバルブ185が開いて搬送開口部66が開放され、装置外部の搬送ロボットにより搬送開口部66を介して処理対象となる半導体ウェハーWがチャンバー6内の熱処理空間65に搬入される。このときには、半導体ウェハーWの搬入にともなって装置外部の雰囲気を巻き込むおそれがあるが、チャンバー6には窒素ガスが供給され続けているため、搬送開口部66から窒素ガスが流出して、そのような外部雰囲気の巻き込みを最小限に抑制することができる。 (4) Subsequently, the gate valve 185 is opened to open the transfer opening 66, and the semiconductor wafer W to be processed is carried into the heat treatment space 65 in the chamber 6 through the transfer opening 66 by the transfer robot outside the apparatus. At this time, there is a possibility that the atmosphere outside the apparatus may be involved when the semiconductor wafer W is loaded, but since the nitrogen gas is continuously supplied to the chamber 6, the nitrogen gas flows out from the transfer opening 66, and Entrapment of an external atmosphere can be minimized.
 搬送ロボットによって搬入された半導体ウェハーWは保持部7の直上位置まで進出して停止する。そして、移載機構10の一対の移載アーム11が退避位置から移載動作位置に水平移動して上昇することにより、リフトピン12が貫通孔79を通ってサセプタ74の保持プレート75の上面から突き出て半導体ウェハーWを受け取る。このとき、リフトピン12は基板支持ピン77の上端よりも上方にまで上昇する。 (4) The semiconductor wafer W carried in by the transfer robot advances to a position immediately above the holding unit 7 and stops. Then, the pair of transfer arms 11 of the transfer mechanism 10 move horizontally from the retracted position to the transfer operation position and rise, so that the lift pins 12 protrude from the upper surface of the holding plate 75 of the susceptor 74 through the through holes 79. To receive the semiconductor wafer W. At this time, the lift pins 12 rise above the upper ends of the substrate support pins 77.
 半導体ウェハーWがリフトピン12に載置された後、搬送ロボットが熱処理空間65から退出し、ゲートバルブ185によって搬送開口部66が閉鎖される。そして、一対の移載アーム11が下降することにより、半導体ウェハーWは移載機構10から保持部7のサセプタ74に受け渡されて水平姿勢にて下方より保持される。半導体ウェハーWは、保持プレート75上に立設された複数の基板支持ピン77によって支持されてサセプタ74に保持される。また、半導体ウェハーWは、パターン形成がなされて不純物が注入された表面を上面として保持部7に保持される。複数の基板支持ピン77によって支持された半導体ウェハーWの裏面(表面とは反対側の主面)と保持プレート75の保持面75aとの間には所定の間隔が形成される。サセプタ74の下方にまで下降した一対の移載アーム11は水平移動機構13によって退避位置、すなわち凹部62の内側に退避する。 After the semiconductor wafer W is placed on the lift pins 12, the transfer robot exits the heat treatment space 65, and the transfer opening 66 is closed by the gate valve 185. When the pair of transfer arms 11 is lowered, the semiconductor wafer W is transferred from the transfer mechanism 10 to the susceptor 74 of the holding unit 7 and is held from below in a horizontal posture. The semiconductor wafer W is supported by a plurality of substrate support pins 77 erected on a holding plate 75 and held by a susceptor 74. Further, the semiconductor wafer W is held by the holding unit 7 with the surface on which the pattern is formed and the impurities are implanted facing upward. A predetermined gap is formed between the back surface (the main surface opposite to the front surface) of the semiconductor wafer W supported by the plurality of substrate support pins 77 and the holding surface 75a of the holding plate 75. The pair of transfer arms 11 that have descended to below the susceptor 74 are retracted by the horizontal moving mechanism 13 to the retracted position, that is, to the inside of the recess 62.
 半導体ウェハーWが石英にて形成された保持部7のサセプタ74によって水平姿勢にて下方より保持された後、ハロゲン加熱部4の40本のハロゲンランプHLが一斉に点灯して予備加熱(アシスト加熱)が開始される。ハロゲンランプHLから出射されたハロゲン光は、石英にて形成された下側チャンバー窓64およびサセプタ74を透過して半導体ウェハーWの下面に照射される。ハロゲンランプHLからの光照射を受けることによって半導体ウェハーWが予備加熱されて温度が上昇する。なお、移載機構10の移載アーム11は凹部62の内側に退避しているため、ハロゲンランプHLによる加熱の障害となることは無い。 After the semiconductor wafer W is held in a horizontal posture from below by the susceptor 74 of the holding unit 7 made of quartz, the 40 halogen lamps HL of the halogen heating unit 4 are simultaneously turned on to perform preliminary heating (assist heating). ) Is started. The halogen light emitted from the halogen lamp HL passes through the lower chamber window 64 and the susceptor 74 formed of quartz, and irradiates the lower surface of the semiconductor wafer W. Upon receiving light irradiation from the halogen lamp HL, the semiconductor wafer W is preheated and the temperature rises. Since the transfer arm 11 of the transfer mechanism 10 is retracted inside the concave portion 62, it does not hinder the heating by the halogen lamp HL.
 ハロゲンランプHLによる予備加熱を行うときには、半導体ウェハーWの温度が放射温度計120によって測定されている。すなわち、サセプタ74に保持された半導体ウェハーWの下面から開口部78を介して放射された赤外光を放射温度計120が受光して昇温中のウェハー温度を測定する。測定された半導体ウェハーWの温度は制御部3に伝達される。制御部3は、ハロゲンランプHLからの光照射によって昇温する半導体ウェハーWの温度が所定の予備加熱温度T1に到達したか否かを監視しつつ、ハロゲンランプHLの出力を制御する。すなわち、制御部3は、放射温度計120による測定値に基づいて、半導体ウェハーWの温度が予備加熱温度T1となるようにハロゲンランプHLの出力をフィードバック制御する。予備加熱温度T1は、半導体ウェハーWに添加された不純物が熱により拡散する恐れのない、200℃ないし800℃程度、好ましくは350℃ないし600℃程度とされる(本実施の形態では600℃)。 (4) When performing preliminary heating by the halogen lamp HL, the temperature of the semiconductor wafer W is measured by the radiation thermometer 120. That is, the radiation thermometer 120 receives infrared light radiated from the lower surface of the semiconductor wafer W held by the susceptor 74 through the opening 78, and measures the temperature of the wafer during temperature rise. The measured temperature of the semiconductor wafer W is transmitted to the control unit 3. The control unit 3 controls the output of the halogen lamp HL while monitoring whether or not the temperature of the semiconductor wafer W heated by the irradiation of light from the halogen lamp HL has reached a predetermined preheating temperature T1. That is, the control unit 3 performs feedback control of the output of the halogen lamp HL based on the value measured by the radiation thermometer 120 so that the temperature of the semiconductor wafer W becomes the preheating temperature T1. The preheating temperature T1 is about 200 ° C. to 800 ° C., and preferably about 350 ° C. to 600 ° C. (600 ° C. in the present embodiment) at which there is no risk that impurities added to the semiconductor wafer W are diffused by heat. .
 半導体ウェハーWの温度が予備加熱温度T1に到達した後、制御部3は半導体ウェハーWをその予備加熱温度T1に暫時維持する。具体的には、放射温度計120によって測定される半導体ウェハーWの温度が予備加熱温度T1に到達した時点にて制御部3がハロゲンランプHLの出力を調整し、半導体ウェハーWの温度をほぼ予備加熱温度T1に維持している。 (4) After the temperature of the semiconductor wafer W reaches the preheating temperature T1, the control unit 3 temporarily maintains the semiconductor wafer W at the preheating temperature T1. Specifically, when the temperature of the semiconductor wafer W measured by the radiation thermometer 120 reaches the preheating temperature T1, the control unit 3 adjusts the output of the halogen lamp HL to substantially reduce the temperature of the semiconductor wafer W to the preheating temperature. The heating temperature T1 is maintained.
 半導体ウェハーWの温度が予備加熱温度T1に到達して所定時間が経過した時点にてフラッシュ加熱部5のフラッシュランプFLがサセプタ74に保持された半導体ウェハーWの表面にフラッシュ光照射を行う。このとき、フラッシュランプFLから放射されるフラッシュ光の一部は直接にチャンバー6内へと向かい、他の一部は一旦リフレクタ52により反射されてからチャンバー6内へと向かい、これらのフラッシュ光の照射により半導体ウェハーWのフラッシュ加熱が行われる。 (4) When a predetermined time has elapsed after the temperature of the semiconductor wafer W has reached the preheating temperature T1, the flash lamp FL of the flash heating unit 5 irradiates the surface of the semiconductor wafer W held by the susceptor 74 with flash light. At this time, a part of the flash light radiated from the flash lamp FL goes directly into the chamber 6, and another part is once reflected by the reflector 52 and then goes into the chamber 6. The flash heating of the semiconductor wafer W is performed by the irradiation.
 フラッシュ加熱は、フラッシュランプFLからのフラッシュ光(閃光)照射により行われるため、半導体ウェハーWの表面温度を短時間で上昇することができる。すなわち、フラッシュランプFLから照射されるフラッシュ光は、予めコンデンサーに蓄えられていた静電エネルギーが極めて短い光パルスに変換された、照射時間が0.1ミリセカンド以上100ミリセカンド以下程度の極めて短く強い閃光である。そして、フラッシュランプFLからのフラッシュ光照射によりフラッシュ加熱される半導体ウェハーWの表面温度は、瞬間的に1000℃以上の処理温度T2まで上昇し、半導体ウェハーWに注入された不純物が活性化された後、表面温度が急速に下降する。このように、熱処理装置1では、半導体ウェハーWの表面温度を極めて短時間で昇降することができるため、半導体ウェハーWに注入された不純物の熱による拡散を抑制しつつ不純物の活性化を行うことができる。なお、不純物の活性化に必要な時間はその熱拡散に必要な時間に比較して極めて短いため、0.1ミリセカンドないし100ミリセカンド程度の拡散が生じない短時間であっても活性化は完了する。 (4) Since the flash heating is performed by flash light (flash light) irradiation from the flash lamp FL, the surface temperature of the semiconductor wafer W can be increased in a short time. That is, the flash light emitted from the flash lamp FL is converted into a light pulse in which the electrostatic energy previously stored in the condenser is extremely short, and the irradiation time is extremely short, from about 0.1 millisecond to about 100 milliseconds. It is a strong flash. Then, the surface temperature of the semiconductor wafer W, which is flash-heated by irradiating the flash light from the flash lamp FL, instantaneously rose to a processing temperature T2 of 1000 ° C. or more, and the impurities implanted into the semiconductor wafer W were activated. Later, the surface temperature drops rapidly. As described above, in the heat treatment apparatus 1, since the surface temperature of the semiconductor wafer W can be raised and lowered in a very short time, it is possible to activate the impurities while suppressing diffusion of the impurities injected into the semiconductor wafer W due to heat. Can be. Since the time required for activating the impurity is extremely shorter than the time required for thermal diffusion, the activation is performed even in a short time in which diffusion of about 0.1 to 100 milliseconds does not occur. Complete.
 フラッシュ加熱処理が終了した後、所定時間経過後にハロゲンランプHLが消灯する。これにより、半導体ウェハーWが予備加熱温度T1から急速に降温する。降温中の半導体ウェハーWの温度は放射温度計120によって測定され、その測定結果は制御部3に伝達される。制御部3は、放射温度計120の測定結果より半導体ウェハーWの温度が所定温度まで降温したか否かを監視する。そして、半導体ウェハーWの温度が所定以下にまで降温した後、移載機構10の一対の移載アーム11が再び退避位置から移載動作位置に水平移動して上昇することにより、リフトピン12がサセプタ74の上面から突き出て熱処理後の半導体ウェハーWをサセプタ74から受け取る。続いて、ゲートバルブ185により閉鎖されていた搬送開口部66が開放され、リフトピン12上に載置された半導体ウェハーWが装置外部の搬送ロボットにより搬出され、熱処理装置1における半導体ウェハーWの加熱処理が完了する。 (4) After the completion of the flash heating process, the halogen lamp HL is turned off after a lapse of a predetermined time. As a result, the temperature of the semiconductor wafer W rapidly drops from the preheating temperature T1. The temperature of the semiconductor wafer W during the temperature decrease is measured by the radiation thermometer 120, and the measurement result is transmitted to the control unit 3. The control unit 3 monitors whether the temperature of the semiconductor wafer W has dropped to a predetermined temperature based on the measurement result of the radiation thermometer 120. Then, after the temperature of the semiconductor wafer W falls to a predetermined temperature or less, the pair of transfer arms 11 of the transfer mechanism 10 move horizontally again from the retreat position to the transfer operation position and rise, so that the lift pins 12 The semiconductor wafer W protruding from the upper surface of the semiconductor wafer 74 and having undergone the heat treatment is received from the susceptor 74. Subsequently, the transfer opening 66 closed by the gate valve 185 is opened, and the semiconductor wafer W placed on the lift pins 12 is carried out by a transfer robot outside the apparatus, and the semiconductor wafer W is heated in the heat treatment apparatus 1. Is completed.
 半導体ウェハーWの熱処理時には、主にハロゲンランプHLの出力を制御するために半導体ウェハーWの温度が放射温度計120によって測定されている。また、石英のサセプタ74の温度が放射温度計130によって測定されるとともに、石英窓である下側チャンバー窓64の温度が放射温度計140によって測定される。サセプタ74および下側チャンバー窓64の温度は、必ずしも半導体ウェハーWの熱処理中に測定される必要はなく、半導体ウェハーWをチャンバー6の搬入する前にサセプタ74等を予熱するときに測定されるようにしても良い。 (4) During the heat treatment of the semiconductor wafer W, the temperature of the semiconductor wafer W is measured by the radiation thermometer 120 mainly to control the output of the halogen lamp HL. The temperature of the quartz susceptor 74 is measured by the radiation thermometer 130, and the temperature of the lower chamber window 64, which is a quartz window, is measured by the radiation thermometer 140. The temperatures of the susceptor 74 and the lower chamber window 64 need not be measured during the heat treatment of the semiconductor wafer W, but may be measured when the susceptor 74 and the like are preheated before the semiconductor wafer W is loaded into the chamber 6. You may do it.
 放射温度計120,130,140は、それぞれ半導体ウェハーW、サセプタ74および下側チャンバー窓64から放射された赤外光を受光し、その強度から測定対象物の温度を測定する。ところが、半導体ウェハーWの主面や石英部材の表面は鏡面とされているため、周辺から放射された赤外光を反射し、その反射光は放射温度計120,130,140に到達する。すなわち、放射温度計120,130,140は、測定対象物から放射される赤外光に加えて、測定対象物で反射された反射光をも受光することとなるため、測定誤差が生じるのである。例えば、放射温度計130は、サセプタ74から放射される赤外光に加えて、チャンバー6の内壁面等から放射されてサセプタ74の表面で反射された赤外光をも受光することとなるため、サセプタ74の正確な温度測定に支障が生じるのである。 The radiation thermometers 120, 130, and 140 receive infrared light emitted from the semiconductor wafer W, the susceptor 74, and the lower chamber window 64, respectively, and measure the temperature of the measurement target from the intensity. However, since the main surface of the semiconductor wafer W and the surface of the quartz member are mirror surfaces, infrared light emitted from the periphery is reflected, and the reflected light reaches the radiation thermometers 120, 130, and 140. That is, the radiation thermometers 120, 130, and 140 receive not only the infrared light radiated from the measurement target but also the reflected light reflected by the measurement target, so that a measurement error occurs. . For example, the radiation thermometer 130 receives infrared light emitted from the inner wall surface of the chamber 6 and reflected on the surface of the susceptor 74 in addition to infrared light emitted from the susceptor 74. In this case, accurate temperature measurement of the susceptor 74 is hindered.
 このため、本実施形態では、以下のようにして放射温度計による温度測定を行っている。図8は、放射温度計130によるサセプタ74の温度測定を模式的に示す図である。放射温度計130は、石英のサセプタ74の斜め下方に設けられている。より正確には、放射温度計130は、サセプタ74の表面にブリュースター角θで入射した光の反射光の進行方向に沿った位置に設けられている。ブリュースター角θは、屈折率の異なる物質の界面においてp偏光の反射率が0となる入射角である。入射角と反射角とは等しいため、ブリュースター角θで入射した光の反射角もブリュースター角θとなる。換言すれば、放射温度計130の光軸とサセプタ74の法線とのなす角度がブリュースター角θとなるように放射温度計130は設置されている。 For this reason, in this embodiment, the temperature is measured by the radiation thermometer as follows. FIG. 8 is a diagram schematically illustrating measurement of the temperature of the susceptor 74 by the radiation thermometer 130. The radiation thermometer 130 is provided obliquely below the quartz susceptor 74. More precisely, the radiation thermometer 130 is provided at a position along the traveling direction of the reflected light of light incident at the Brewster angle theta B on the surface of the susceptor 74. Brewster angle theta B, the reflectance of p-polarized light at the interface between different refractive index material is the angle of incidence becomes zero. Since equal to the incident angle and the reflection angle, also the reflection angle of the light incident at the Brewster angle theta B becomes Brewster angle theta B. In other words, the radiation thermometer 130 as the angle between the normal of the optical axis and the susceptor 74 of the radiation thermometer 130 is Brewster angle theta B is installed.
 また、サセプタ74と放射温度計130との間には偏光素子135が設けられている。偏光素子135は、特定の方向に偏光した光のみを通過させる素子である。偏光素子135としては、例えば多数のアルミニウムワイヤーを平行に配列したワイヤーグリッド偏光素子を用いることができる。偏光素子135は、選択的にp偏光の光のみを透過し、s偏光の光を反射する。なお、p偏光は入射面内で電界が振動する偏光であり、s偏光は入射面と垂直に電界が振動する偏光である。 (4) A polarizing element 135 is provided between the susceptor 74 and the radiation thermometer 130. The polarizing element 135 is an element that transmits only light polarized in a specific direction. As the polarizing element 135, for example, a wire grid polarizing element in which many aluminum wires are arranged in parallel can be used. The polarizing element 135 selectively transmits only p-polarized light and reflects s-polarized light. Note that p-polarized light is polarized light whose electric field oscillates in the plane of incidence, and s-polarized light is polarized light whose electric field oscillates perpendicular to the plane of incidence.
 さらに、サセプタ74の表面にブリュースター角θで入射して放射温度計130に向かう反射光の光軸に対する偏光素子135の回転角度を調整する角度調整機構137が設けられている。図9は、角度調整機構137による偏光素子135の角度調整を示す図である。図9において、サセプタ74の表面にブリュースター角θで入射した光の反射光の光軸は紙面に垂直である。熱処理装置1のオペレータは、角度調整機構137を用いて図9の矢印AR9に示す方向に偏光素子135の回転角度を調整する。このような偏光素子135の角度調整は、機差を是正するための微調整として行う。 Furthermore, the angle adjustment mechanism 137 for adjusting the rotation angle of the polarizing element 135 with respect to the optical axis of the reflected light is incident at Brewster angle theta B on the surface of the susceptor 74 toward the radiation thermometer 130 is provided. FIG. 9 is a diagram showing the angle adjustment of the polarizing element 135 by the angle adjustment mechanism 137. 9, the optical axis of the reflected light of light incident at the Brewster angle theta B on the surface of the susceptor 74 is perpendicular to the paper surface. The operator of the heat treatment apparatus 1 uses the angle adjustment mechanism 137 to adjust the rotation angle of the polarizing element 135 in the direction indicated by the arrow AR9 in FIG. Such angle adjustment of the polarizing element 135 is performed as fine adjustment for correcting a machine difference.
 図8に戻り、サセプタ74の表面にブリュースター角θで入射した光の反射光(図8にてサセプタ74から放射温度計130に向かう直線で示す光)にはp偏光が含まれていない。一方、サセプタ74自体から放射された赤外光(図8にて波線で示す光)はp偏光とs偏光との合成光として捉えることができる。すなわち、サセプタ74から放射された赤外光には、p偏光とs偏光とが混在している。 Returning to FIG. 8, the reflected light of light incident on the surface of the susceptor 74 at Brewster's angle theta B (light indicated by the straight line extending from the susceptor 74 to the radiation thermometer 130 in FIG. 8) does not contain p-polarized light . On the other hand, infrared light (light indicated by a broken line in FIG. 8) emitted from the susceptor 74 itself can be regarded as a combined light of p-polarized light and s-polarized light. That is, p-polarized light and s-polarized light are mixed in the infrared light emitted from the susceptor 74.
 サセプタ74と放射温度計130との間には、p偏光のみを選択的に通過させる偏光素子135が設けられている。サセプタ74の表面にブリュースター角θで入射した光の反射光およびサセプタ74自体から放射された赤外光は、ともに偏光素子135に入射する。このとき、サセプタ74の表面にブリュースター角θで入射した光の反射光にはp偏光が含まれていないため、当該反射光はp偏光のみを通過させる偏光素子135を通過することはできない。つまり、サセプタ74からの反射光は偏光素子135によって遮光されるのである。一方、サセプタ74自体から放射された赤外光にはp偏光とs偏光とが混在しているため、そのp偏光は偏光素子135を通過して放射温度計130に到達することができる。すなわち、放射温度計130は、サセプタ74自体から放射されて偏光素子135を通過した赤外光を受光することができるのである。 Between the susceptor 74 and the radiation thermometer 130, a polarizing element 135 for selectively passing only p-polarized light is provided. Infrared light emitted from the reflective light and the susceptor 74 itself of the light incident at the Brewster angle theta B on the surface of the susceptor 74 is incident both the polarization element 135. At this time, the reflected light of light incident at the Brewster angle theta B on the surface of the susceptor 74 because it does not include p-polarized light, the reflected light can not pass through the polarizing element 135 to pass the p-polarized light only . That is, the reflected light from the susceptor 74 is shielded by the polarizing element 135. On the other hand, since the p-polarized light and the s-polarized light are mixed in the infrared light emitted from the susceptor 74 itself, the p-polarized light can reach the radiation thermometer 130 through the polarizing element 135. That is, the radiation thermometer 130 can receive the infrared light radiated from the susceptor 74 itself and passed through the polarizing element 135.
 このように、サセプタ74の表面にブリュースター角θで入射した光の反射光の進行方向に沿った位置に放射温度計130を設けるとともに、サセプタ74と放射温度計130との間にp偏光のみを通過させる偏光素子135を設けることにより、当該反射光をカットしてサセプタ74自体から放射された赤外光のみを放射温度計130に受光させることができる。その結果、放射温度計130は、反射光の影響を排除して測定対象物であるサセプタ74の温度を正確に測定することができる。 Thus, provided with a radiation thermometer 130 in position along the traveling direction of the reflected light of light incident at the Brewster angle theta B on the surface of the susceptor 74, p-polarized light between the susceptor 74 and the radiation thermometer 130 By providing the polarizing element 135 that transmits only the reflected light, the radiation thermometer 130 can receive only the infrared light emitted from the susceptor 74 itself by cutting the reflected light. As a result, the radiation thermometer 130 can accurately measure the temperature of the susceptor 74, which is the measurement target, while eliminating the influence of the reflected light.
 以上は、放射温度計130によるサセプタ74の温度測定についての説明であったが、放射温度計120,140による温度測定も同様である。すなわち、サセプタ74に保持された半導体ウェハーWの主面にブリュースター角θで入射した光の反射光の進行方向に沿った位置に放射温度計120を設けるとともに、半導体ウェハーWと放射温度計120との間にp偏光のみを通過させる偏光素子を設けることにより、当該反射光をカットして半導体ウェハーW自体から放射された赤外光のみを放射温度計120に受光させることができる。これにより、放射温度計120は、反射光の影響を排除して測定対象物である半導体ウェハーWの温度を正確に測定することができる。 In the above, the measurement of the temperature of the susceptor 74 by the radiation thermometer 130 has been described, but the temperature measurement by the radiation thermometers 120 and 140 is also the same. That is, provided with a radiation thermometer 120 in position along the traveling direction of the reflected light of light incident at the Brewster angle theta B on the main surface of the held semiconductor wafer W on the susceptor 74, the semiconductor wafer W and the radiation thermometer By providing a polarizing element that allows only p-polarized light to pass therethrough, the radiation thermometer 120 can receive only infrared light emitted from the semiconductor wafer W itself by cutting the reflected light. Accordingly, the radiation thermometer 120 can accurately measure the temperature of the semiconductor wafer W as the measurement target while eliminating the influence of the reflected light.
 また、石英窓である下側チャンバー窓64の表面にブリュースター角θで入射した光の反射光の進行方向に沿った位置に放射温度計140を設けるとともに、下側チャンバー窓64と放射温度計140との間にp偏光のみを通過させる偏光素子を設けることにより、当該反射光をカットして下側チャンバー窓64自体から放射された赤外光のみを放射温度計140に受光させることができる。これにより、放射温度計140は、反射光の影響を排除して測定対象物である下側チャンバー窓64の温度を正確に測定することができる。 Further, it provided with the radiation thermometer 140 in position along the traveling direction of the reflected light of light incident at the Brewster angle theta B on the surface of the lower chamber window 64 is quartz window, the radiation temperature and the lower chamber window 64 By providing a polarizing element that allows only p-polarized light to pass therethrough, the reflected light can be cut and the infrared thermometer 140 can receive only infrared light emitted from the lower chamber window 64 itself. it can. Accordingly, the radiation thermometer 140 can accurately measure the temperature of the lower chamber window 64, which is the measurement target, while eliminating the influence of the reflected light.
 以上、本発明の実施の形態について説明したが、この発明はその趣旨を逸脱しない限りにおいて上述したもの以外に種々の変更を行うことが可能である。例えば、上側チャンバー窓63等のサセプタ74および下側チャンバー窓64以外のチャンバー6に設けられた構造物の温度を放射温度計によって測定するようにしても良い。この場合も、石英窓である上側チャンバー窓63の表面にブリュースター角θで入射した光の反射光の進行方向に沿った位置に放射温度計を設けるとともに、上側チャンバー窓63と放射温度計との間にp偏光のみを通過させる偏光素子を設けることにより、当該反射光をカットして上側チャンバー窓63自体から放射された赤外光のみを放射温度計に受光させることができる。これにより、放射温度計は、反射光の影響を排除して測定対象物の温度を正確に測定することができる。 Although the embodiments of the present invention have been described above, various changes other than those described above can be made in the present invention without departing from the gist thereof. For example, the temperature of a structure provided in the chamber 6 other than the susceptor 74 such as the upper chamber window 63 and the lower chamber window 64 may be measured by a radiation thermometer. Again, it provided with a radiation thermometer at a position along the traveling direction of the reflected light of light incident on the surface of the upper chamber window 63 is quartz window Brewster angle theta B, the upper chamber window 63 radiation thermometer By providing a polarizing element that allows only p-polarized light to pass through, the reflected light can be cut and only the infrared light emitted from the upper chamber window 63 itself can be received by the radiation thermometer. Thus, the radiation thermometer can accurately measure the temperature of the measurement object while eliminating the influence of the reflected light.
 また、上記実施形態においては、フラッシュ加熱部5に30本のフラッシュランプFLを備えるようにしていたが、これに限定されるものではなく、フラッシュランプFLの本数は任意の数とすることができる。また、フラッシュランプFLはキセノンフラッシュランプに限定されるものではなく、クリプトンフラッシュランプであっても良い。また、ハロゲン加熱部4に備えるハロゲンランプHLの本数も40本に限定されるものではなく、任意の数とすることができる。 Further, in the above embodiment, the flash heating unit 5 is provided with 30 flash lamps FL, but the present invention is not limited to this, and the number of flash lamps FL can be any number. . The flash lamp FL is not limited to a xenon flash lamp, but may be a krypton flash lamp. Further, the number of halogen lamps HL provided in the halogen heating unit 4 is not limited to 40 but may be any number.
 また、上記実施形態においては、1秒以上連続して発光する連続点灯ランプとしてフィラメント方式のハロゲンランプHLを用いて半導体ウェハーWの予備加熱を行っていたが、これに限定されるものではなく、ハロゲンランプHLに代えて放電型のアークランプ(例えば、キセノンアークランプ)を連続点灯ランプとして用いて予備加熱を行うようにしても良い。 Further, in the above-described embodiment, the preheating of the semiconductor wafer W is performed using the filament type halogen lamp HL as a continuous lighting lamp that emits light continuously for 1 second or more. However, the present invention is not limited to this. The preliminary heating may be performed using a discharge type arc lamp (for example, a xenon arc lamp) as a continuous lighting lamp instead of the halogen lamp HL.
 また、熱処理装置1によって処理対象となる基板は半導体ウェハーに限定されるものではなく、液晶表示装置などのフラットパネルディスプレイに用いるガラス基板や太陽電池用の基板であっても良い。この場合、本発明に係る技術を用いてガラス基板等の温度を放射温度計によって測定するようにしても良い。また、熱処理装置1では、高誘電率ゲート絶縁膜(High-k膜)の熱処理、金属とシリコンとの接合、或いはポリシリコンの結晶化を行うようにしても良い。 The substrate to be processed by the heat treatment apparatus 1 is not limited to a semiconductor wafer, but may be a glass substrate used for a flat panel display such as a liquid crystal display device or a substrate for a solar cell. In this case, the temperature of the glass substrate or the like may be measured by a radiation thermometer using the technique according to the present invention. Further, in the heat treatment apparatus 1, heat treatment of the high dielectric constant gate insulating film (High-k film), bonding of metal and silicon, or crystallization of polysilicon may be performed.
 1 熱処理装置
 3 制御部
 4 ハロゲン加熱部
 5 フラッシュ加熱部
 6 チャンバー
 7 保持部
 10 移載機構
 63 上側チャンバー窓
 64 下側チャンバー窓
 65 熱処理空間
 74 サセプタ
 75 保持プレート
 77 基板支持ピン
 120,130,140 放射温度計
 135 偏光素子
 137 角度調整機構
 FL フラッシュランプ
 HL ハロゲンランプ
 W 半導体ウェハー
Reference Signs List 1 heat treatment apparatus 3 control unit 4 halogen heating unit 5 flash heating unit 6 chamber 7 holding unit 10 transfer mechanism 63 upper chamber window 64 lower chamber window 65 heat treatment space 74 susceptor 75 holding plate 77 substrate support pins 120, 130, 140 radiation Thermometer 135 Polarizing element 137 Angle adjustment mechanism FL Flash lamp HL Halogen lamp W Semiconductor wafer

Claims (5)

  1.  基板に光を照射することによって該基板を加熱する熱処理装置であって、
     基板を収容するチャンバーと、
     前記基板に光を照射する光照射部と、
     前記チャンバーに設けられた構造物の温度を測定する放射温度計と、
     前記構造物と前記放射温度計との間に設けられた偏光素子と、
    を備え、
     前記放射温度計は、前記構造物の表面にブリュースター角で入射した光の反射光の進行方向に沿った位置に設けられ、
     前記偏光素子は、p偏光のみを通過させる熱処理装置。
    A heat treatment apparatus that heats the substrate by irradiating the substrate with light,
    A chamber for accommodating the substrate;
    A light irradiation unit that irradiates the substrate with light,
    A radiation thermometer for measuring the temperature of the structure provided in the chamber,
    A polarizing element provided between the structure and the radiation thermometer,
    With
    The radiation thermometer is provided at a position along a traveling direction of reflected light of light incident on the surface of the structure at a Brewster angle,
    A heat treatment apparatus, wherein the polarizing element passes only p-polarized light.
  2.  請求項1記載の熱処理装置において、
     前記構造物は、前記チャンバー内にて前記基板を保持する石英のサセプタである熱処理装置。
    The heat treatment apparatus according to claim 1,
    The heat treatment apparatus, wherein the structure is a quartz susceptor that holds the substrate in the chamber.
  3.  請求項1記載の熱処理装置において、
     前記構造物は、前記チャンバーに設けられた石英窓である熱処理装置。
    The heat treatment apparatus according to claim 1,
    The heat treatment apparatus, wherein the structure is a quartz window provided in the chamber.
  4.  基板に光を照射することによって該基板を加熱する熱処理装置であって、
     基板を収容するチャンバーと、
     前記チャンバー内にて前記基板を保持するサセプタと、
     前記基板に光を照射する光照射部と、
     前記基板の温度を測定する放射温度計と、
     前記基板と前記放射温度計との間に設けられた偏光素子と、
    を備え、
     前記放射温度計は、前記基板の主面にブリュースター角で入射した光の反射光の進行方向に沿った位置に設けられ、
     前記偏光素子は、p偏光のみを通過させる熱処理装置。
    A heat treatment apparatus that heats the substrate by irradiating the substrate with light,
    A chamber for accommodating the substrate;
    A susceptor for holding the substrate in the chamber;
    A light irradiation unit that irradiates the substrate with light,
    A radiation thermometer for measuring the temperature of the substrate,
    A polarizing element provided between the substrate and the radiation thermometer,
    With
    The radiation thermometer is provided at a position along a traveling direction of reflected light of light incident on the main surface of the substrate at a Brewster angle,
    A heat treatment apparatus, wherein the polarizing element passes only p-polarized light.
  5.  請求項1から請求項4のいずれかに記載の熱処理装置において、
     前記反射光の光軸に対する前記偏光素子の回転角度を調整する角度調整機構をさらに備える熱処理装置。
    The heat treatment apparatus according to any one of claims 1 to 4,
    A heat treatment apparatus further comprising an angle adjustment mechanism for adjusting a rotation angle of the polarizing element with respect to an optical axis of the reflected light.
PCT/JP2019/021245 2018-06-20 2019-05-29 Heat treatment device WO2019244583A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018116648A JP7011980B2 (en) 2018-06-20 2018-06-20 Heat treatment equipment
JP2018-116648 2018-06-20

Publications (1)

Publication Number Publication Date
WO2019244583A1 true WO2019244583A1 (en) 2019-12-26

Family

ID=68982868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/021245 WO2019244583A1 (en) 2018-06-20 2019-05-29 Heat treatment device

Country Status (3)

Country Link
JP (1) JP7011980B2 (en)
TW (1) TWI706447B (en)
WO (1) WO2019244583A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0933352A (en) * 1995-07-24 1997-02-07 Kawasaki Steel Corp Method for measuring radiation temperature and radiation thermometer
JPH11329993A (en) * 1998-05-15 1999-11-30 Dainippon Screen Mfg Co Ltd Device and method for board processing
JP2008028355A (en) * 2006-06-20 2008-02-07 Shin Etsu Handotai Co Ltd Silicon wafer manufacturing method, and silicon wafer manufactured by the method
JP2008235858A (en) * 2007-02-20 2008-10-02 National Institute Of Advanced Industrial & Technology Method of measuring semiconductor surface temperature, and device therefor
JP2008541133A (en) * 2005-05-16 2008-11-20 ウルトラテック インク Mirror surface remote temperature measuring method and apparatus
JP2014143298A (en) * 2013-01-24 2014-08-07 Dainippon Screen Mfg Co Ltd Thermal treatment apparatus and thermal treatment method
JP2017017275A (en) * 2015-07-06 2017-01-19 株式会社Screenホールディングス Heat treatment method and heat treatment device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6970644B2 (en) * 2000-12-21 2005-11-29 Mattson Technology, Inc. Heating configuration for use in thermal processing chambers
TWI673482B (en) * 2016-05-24 2019-10-01 美商應用材料股份有限公司 System, processing chamber, and method for non-contact temperature measurement by dual-wavelength shift in brewster's angle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0933352A (en) * 1995-07-24 1997-02-07 Kawasaki Steel Corp Method for measuring radiation temperature and radiation thermometer
JPH11329993A (en) * 1998-05-15 1999-11-30 Dainippon Screen Mfg Co Ltd Device and method for board processing
JP2008541133A (en) * 2005-05-16 2008-11-20 ウルトラテック インク Mirror surface remote temperature measuring method and apparatus
JP2008028355A (en) * 2006-06-20 2008-02-07 Shin Etsu Handotai Co Ltd Silicon wafer manufacturing method, and silicon wafer manufactured by the method
JP2008235858A (en) * 2007-02-20 2008-10-02 National Institute Of Advanced Industrial & Technology Method of measuring semiconductor surface temperature, and device therefor
JP2014143298A (en) * 2013-01-24 2014-08-07 Dainippon Screen Mfg Co Ltd Thermal treatment apparatus and thermal treatment method
JP2017017275A (en) * 2015-07-06 2017-01-19 株式会社Screenホールディングス Heat treatment method and heat treatment device

Also Published As

Publication number Publication date
JP2019220566A (en) 2019-12-26
TW202002013A (en) 2020-01-01
TWI706447B (en) 2020-10-01
JP7011980B2 (en) 2022-01-27

Similar Documents

Publication Publication Date Title
JP7041594B2 (en) Heat treatment equipment
JP2017017277A (en) Heat treatment device and heat treatment method
JP6863780B2 (en) Heat treatment method and heat treatment equipment
JP6647892B2 (en) Susceptor and heat treatment equipment for heat treatment
KR20230098523A (en) Heat treatment method and heat treatment apparatus
JP6720033B2 (en) Heat treatment equipment
KR102609897B1 (en) Heat treatment method
KR102514880B1 (en) Thermal processing apparatus
JP6770915B2 (en) Heat treatment equipment
JP6847610B2 (en) Heat treatment equipment
JP2019057613A (en) Heat treatment apparatus
WO2019244583A1 (en) Heat treatment device
JP7013259B2 (en) Heat treatment equipment and heat treatment method
JP2021136376A (en) Heat treatment method
JP6637321B2 (en) Susceptor and heat treatment equipment for heat treatment
JP2020136307A (en) Heat treatment method and thermal treatment apparatus
JP7377653B2 (en) Heat treatment method and heat treatment equipment
JP7300365B2 (en) Heat treatment equipment
WO2019244584A1 (en) Heat treatment device and heat treatment method
JP2018133424A (en) Thermal treatment apparatus
JP6791693B2 (en) Heat treatment equipment
JP2019216287A (en) Heat treatment device and heat treatment method
JP2024006279A (en) Thermal treatment device
JP2019165149A (en) Heat treatment device and heat treatment method
JP2020096065A (en) Heat treatment method and heat treatment apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19822700

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19822700

Country of ref document: EP

Kind code of ref document: A1