WO2019244584A1 - Heat treatment device and heat treatment method - Google Patents

Heat treatment device and heat treatment method Download PDF

Info

Publication number
WO2019244584A1
WO2019244584A1 PCT/JP2019/021251 JP2019021251W WO2019244584A1 WO 2019244584 A1 WO2019244584 A1 WO 2019244584A1 JP 2019021251 W JP2019021251 W JP 2019021251W WO 2019244584 A1 WO2019244584 A1 WO 2019244584A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat treatment
semiconductor wafer
substrate
reflectance
unit
Prior art date
Application number
PCT/JP2019/021251
Other languages
French (fr)
Japanese (ja)
Inventor
青山 敬幸
Original Assignee
株式会社Screenホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Screenホールディングス filed Critical 株式会社Screenホールディングス
Publication of WO2019244584A1 publication Critical patent/WO2019244584A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation

Definitions

  • the present invention relates to a heat treatment apparatus and a heat treatment method for heating a thin precision electronic substrate such as a semiconductor wafer (hereinafter simply referred to as a “substrate”) by irradiating the substrate with flash light.
  • a thin precision electronic substrate such as a semiconductor wafer (hereinafter simply referred to as a “substrate”)
  • Flash lamp annealing uses a xenon flash lamp (hereinafter simply referred to as a xenon flash lamp) to irradiate the surface of a semiconductor wafer with flash light, thereby extremely exposing only the surface of the semiconductor wafer.
  • a xenon flash lamp hereinafter simply referred to as a xenon flash lamp
  • the emission spectral distribution of the xenon flash lamp is from the ultraviolet region to the near infrared region, the wavelength is shorter than that of the conventional halogen lamp, and almost coincides with the basic absorption band of a silicon semiconductor wafer. Therefore, when the semiconductor wafer is irradiated with flash light from the xenon flash lamp, the transmitted light is small and the temperature of the semiconductor wafer can be rapidly raised. In addition, it has been found that when the flash light is irradiated for a very short time of several milliseconds or less, only the vicinity of the surface of the semiconductor wafer can be selectively heated.
  • Such flash lamp annealing is used for a process requiring heating for an extremely short time, for example, activation of impurities typically implanted into a semiconductor wafer.
  • activation of impurities typically implanted into a semiconductor wafer By irradiating the surface of the semiconductor wafer into which impurities are implanted by the ion implantation method with flash light from a flash lamp, the surface of the semiconductor wafer can be heated to the activation temperature for a very short time, and the impurities can be diffused deeply. Without activation, only impurity activation can be performed.
  • Patent Literature 1 discloses a technique in which the reflectance of a semiconductor wafer to be processed is measured before heat treatment, and a voltage applied to a flash lamp is calculated based on the measured reflectance. In the technique disclosed in Patent Literature 1, the reflectivity of the semiconductor wafer is measured before the semiconductor wafer is carried into a processing chamber for performing flash light irradiation.
  • the reflectivity of a semiconductor wafer differs depending on the properties of the wafer surface and the film formed on the wafer surface. Therefore, by measuring the reflectivity of the semiconductor wafer before loading the semiconductor wafer into the processing chamber, it is possible to check in advance that a nonstandard semiconductor wafer is loaded. However, conventionally, before carrying the semiconductor wafer into the processing chamber, only the reflectance of the semiconductor wafer was measured. Therefore, it was not possible to confirm whether the normal heating process was performed by the reflectance measurement. .
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a heat treatment apparatus and a heat treatment method that can easily confirm whether a normal heat treatment has been performed.
  • a first aspect of the present invention is directed to a heat treatment apparatus for heating a substrate by irradiating the substrate with flash light, wherein the processing chamber accommodates the substrate; A flash lamp for irradiating the substrate with flash light to heat the substrate; and a reflectance measuring unit for measuring a reflectance of the substrate after being heated by the flash light irradiation from the flash lamp.
  • the reflectivity measuring unit also measures the reflectivity of the substrate before irradiating flash light from the flash lamp.
  • a third aspect is the heat treatment apparatus according to the first or second aspect, further comprising an indexer section for loading an unprocessed substrate into the apparatus and unloading a processed substrate outside the apparatus.
  • the rate measuring unit is provided on a substrate transfer path from the processing chamber to the indexer unit.
  • a cooling chamber for cooling the substrate after heating is provided in the transport path, and the reflectance measuring unit is provided in the cooling chamber.
  • the heat treatment apparatus based on the reflectance of the substrate measured by the reflectance measuring unit, the heat treatment of the substrate is performed normally. It further includes a determining unit that determines whether or not the heating process has been performed, and a warning issuing unit that issues a warning when the determining unit determines that the heating process of the substrate is not performed normally.
  • the heat treatment apparatus further includes a storage unit that stores the reflectance of the substrate measured by the reflectance measurement unit.
  • the emission intensity of the flash lamp is adjusted by artificial intelligence based on the reflectance of the plurality of substrates stored in the storage unit.
  • the continuous lighting lamp irradiates the substrate with light before irradiating the substrate with flash light before irradiating the substrate with flash light from the flash lamp. Is further provided.
  • an irradiation step of irradiating the substrate housed in the processing chamber with flash light from a flash lamp to heat the substrate A post-processing reflectance measurement step of measuring the reflectance of the substrate after the irradiation step.
  • a pre-processing reflectance measurement step of measuring a reflectance of the substrate before the irradiation step is further provided.
  • the heat treatment of the substrate is performed normally based on the reflectance of the substrate measured in the post-processing reflectance measurement step.
  • the method further includes a determining step of determining whether or not the heating process has been performed, and a warning issuing step of issuing a warning when it is determined in the determining step that the heating processing of the substrate is not performed normally.
  • a storage step of storing the reflectance of the substrate measured in the post-processing reflectance measurement step in a storage unit is provided. Further prepare.
  • a thirteenth aspect is the heat treatment method according to the twelfth aspect, further comprising an adjusting step of adjusting the light emission intensity of the flash lamp based on the reflectance of the plurality of substrates accumulated in the storage unit.
  • the emission intensity of the flash lamp is adjusted by artificial intelligence in the adjusting step.
  • the substrate is preliminarily heated by irradiating the substrate with light from a continuous lighting lamp before irradiating flash light from the flash lamp.
  • the method further includes a preheating step to be performed.
  • the heat treatment apparatus since the reflectance of the substrate after being heated by the irradiation of the flash light from the flash lamp is measured, a normal value is determined based on the reflectance of the heated substrate. Whether the heat treatment has been performed can be easily confirmed.
  • the emission intensity of the flash lamp is adjusted by artificial intelligence based on the reflectance of the plurality of substrates stored in the storage unit, the reflectance of the heated substrate is also reduced.
  • the light emission intensity of the flash lamp can be adjusted to an appropriate value in consideration of the above.
  • the reflectance of the substrate is measured after the irradiation step of irradiating the substrate with flash light from a flash lamp to heat the substrate. It is possible to easily confirm whether the normal heat treatment has been performed based on the above.
  • the emission intensity of the flash lamp is adjusted based on the reflectances of the plurality of substrates accumulated in the storage unit.
  • the light emission intensity of the flash lamp can be adjusted to an appropriate value in consideration of the above.
  • FIG. 1 is a plan view showing a heat treatment apparatus 100 according to the present invention
  • FIG. 2 is a front view thereof.
  • the heat treatment apparatus 100 is a flash lamp annealing apparatus that irradiates a disk-shaped semiconductor wafer W as a substrate with flash light and heats the semiconductor wafer W.
  • the size of the semiconductor wafer W to be processed is not particularly limited, but is, for example, ⁇ 300 mm or ⁇ 450 mm.
  • Impurities have been implanted into the semiconductor wafer W before being loaded into the heat treatment apparatus 100, and activation processing of the impurities implanted by the heat treatment by the heat treatment apparatus 100 is executed. Note that, in FIG.
  • FIGS. 1 to 3 an XYZ orthogonal coordinate system is used in which the Z-axis direction is a vertical direction and the XY plane is a horizontal plane in order to clarify the directional relationship.
  • the heat treatment apparatus 100 includes an indexer unit 101 for loading an unprocessed semiconductor wafer W into the apparatus from outside and unloading the processed semiconductor wafer W from the apparatus. Alignment unit 230 for positioning the semiconductor wafer W, two cooling units 130 and 140 for cooling the semiconductor wafer W after the heat treatment, a heat treatment unit 160 for performing a flash heat treatment on the semiconductor wafer W, and cooling units 130 and 140 and A transfer robot 150 that transfers the semiconductor wafer W to the heat treatment unit 160 is provided.
  • the heat treatment apparatus 100 includes a control unit 3 that controls the operation mechanism and the transfer robot 150 provided in each of the above-described processing units to advance the flash heating processing of the semiconductor wafer W.
  • the indexer unit 101 includes a load port 110 on which a plurality of carriers C (two in the present embodiment) are placed side by side, an unprocessed semiconductor wafer W from each carrier C, and a semiconductor wafer processed on each carrier C. And a delivery robot 120 for storing W.
  • the carrier C containing the unprocessed semiconductor wafer W is transported by an automatic guided vehicle (AGV, OHT) or the like and placed on the load port 110, and the carrier C containing the processed semiconductor wafer W is an unmanned transport vehicle. From the load port 110.
  • AGV automatic guided vehicle
  • the load port 110 is configured so that the carrier C can be moved up and down as shown by an arrow CU in FIG. 2 so that the delivery robot 120 can take in and out an arbitrary semiconductor wafer W with respect to the carrier C. ing.
  • a carrier C in addition to a FOUP (front opening unified pod) for storing the semiconductor wafer W in an enclosed space, a SMIF (Standard Mechanical Inter Interface) pod or an OC (open) for exposing the stored semiconductor wafer W to the outside air. cassette).
  • FOUP front opening unified pod
  • SMIF Standard Mechanical Inter Interface
  • OC open
  • the delivery robot 120 is capable of sliding as shown by an arrow 120S in FIG. 1, turning and raising and lowering as shown by an arrow 120R in FIG. Thereby, the transfer robot 120 transfers the semiconductor wafer W to and from the two carriers C, and transfers the semiconductor wafer W to the alignment unit 230 and the two cooling units 130 and 140.
  • the transfer of the semiconductor wafer W to / from the carrier C by the delivery robot 120 is performed by sliding the hand 121 and moving the carrier C up and down.
  • the delivery of the semiconductor wafer W between the delivery robot 120 and the alignment unit 230 or the cooling units 130 and 140 is performed by sliding the hand 121 and moving the delivery robot 120 up and down.
  • the alignment unit 230 is provided to be connected to the side of the indexer unit 101 along the Y-axis direction.
  • the alignment unit 230 is a processing unit that rotates the semiconductor wafer W in a horizontal plane and directs the semiconductor wafer W to an appropriate direction for flash heating.
  • the alignment unit 230 includes a mechanism for supporting and rotating the semiconductor wafer W in a horizontal position and a notch or an orientation flat formed on a peripheral portion of the semiconductor wafer W inside an alignment chamber 231 that is a housing made of an aluminum alloy. Is provided by providing a mechanism for optically detecting (not shown).
  • the delivery of the semiconductor wafer W to the alignment unit 230 is performed by the delivery robot 120.
  • the semiconductor wafer W is transferred from the transfer robot 120 to the alignment chamber 231 such that the center of the wafer is located at a predetermined position.
  • the alignment unit 230 adjusts the direction of the semiconductor wafer W by rotating the semiconductor wafer W around a vertical axis around the center of the semiconductor wafer W received from the indexer unit 101 as a center of rotation and optically detecting notches and the like. I do.
  • the semiconductor wafer W whose orientation has been adjusted is taken out of the alignment chamber 231 by the delivery robot 120.
  • a transfer chamber 170 that houses the transfer robot 150 is provided as a transfer space for the semiconductor wafer W by the transfer robot 150.
  • the processing chamber 6 of the heat treatment unit 160, the first cool chamber 131 of the cooling unit 130, and the second cool chamber 141 of the cooling unit 140 are connected to three sides of the transfer chamber 170.
  • the heat treatment section 160 which is a main part of the heat treatment apparatus 100, is a substrate processing section that irradiates flash light (flash light) from the xenon flash lamp FL onto the pre-heated semiconductor wafer W to perform a flash heat treatment.
  • flash light flash light
  • the two cooling units 130 and 140 have substantially the same configuration.
  • Each of the cooling units 130 and 140 includes a metal cooling plate and a quartz plate placed on the upper surface thereof in the first cool chamber 131 and the second cool chamber 141, which are aluminum alloy housings, respectively. (All are not shown).
  • the cooling plate is adjusted to a normal temperature (about 23 ° C.) by a Peltier device or a constant-temperature water circulation.
  • the semiconductor wafer W that has been subjected to the flash heat treatment in the heat treatment unit 160 is carried into the first cool chamber 131 or the second cool chamber 141, placed on the quartz plate, and cooled.
  • the first cool chamber 131 and the second cool chamber 141 are both connected between the indexer unit 101 and the transfer chamber 170.
  • the first cool chamber 131 and the second cool chamber 141 two openings for carrying in and out the semiconductor wafer W are formed.
  • the opening connected to the indexer unit 101 can be opened and closed by a gate valve 181.
  • the opening of the first cool chamber 131 connected to the transfer chamber 170 can be opened and closed by a gate valve 183. That is, the first cool chamber 131 and the indexer unit 101 are connected via the gate valve 181, and the first cool chamber 131 and the transfer chamber 170 are connected via the gate valve 183.
  • the gate valve 181 When the semiconductor wafer W is transferred between the indexer unit 101 and the first cool chamber 131, the gate valve 181 is opened. Further, when the semiconductor wafer W is transferred between the first cool chamber 131 and the transfer chamber 170, the gate valve 183 is opened. When the gate valve 181 and the gate valve 183 are closed, the inside of the first cool chamber 131 is a closed space.
  • the opening connected to the indexer unit 101 can be opened and closed by a gate valve 182.
  • an opening of the second cool chamber 141 connected to the transfer chamber 170 can be opened and closed by a gate valve 184. That is, the second cool chamber 141 and the indexer unit 101 are connected via the gate valve 182, and the second cool chamber 141 and the transfer chamber 170 are connected via the gate valve 184.
  • the gate valve 182 When the semiconductor wafer W is transferred between the indexer unit 101 and the second cool chamber 141, the gate valve 182 is opened. Further, when the semiconductor wafer W is transferred between the second cool chamber 141 and the transfer chamber 170, the gate valve 184 is opened. When the gate valve 182 and the gate valve 184 are closed, the inside of the second cool chamber 141 is a closed space.
  • a reflectivity measuring section 135 for measuring the reflectivity of the surface of the semiconductor wafer W mounted and supported on the quartz plate, and a reflectivity measurement section, respectively.
  • a part 145 is provided. Both the reflectivity measuring units 135 and 145 irradiate the surface of the semiconductor wafer W with light, receive the reflected light reflected on the surface, and determine the semiconductor based on the intensity of the irradiated light and the intensity of the received reflected light. The reflectance of the surface of the wafer W is measured. More specifically, the reflectance measuring units 135 and 145 calculate the reflectance of the semiconductor wafer W by dividing the intensity of the received reflected light by the intensity of the irradiated light.
  • the cooling units 130 and 140 further include a gas supply mechanism for supplying clean nitrogen gas to the first cool chamber 131 and the second cool chamber 141 and an exhaust mechanism for exhausting the atmosphere in the chambers. These gas supply mechanism and exhaust mechanism may be capable of switching the flow rate in two stages. Further, the transfer chamber 170 and the alignment chamber 231 are also supplied with a nitrogen gas from the gas supply unit, and the atmosphere inside them is exhausted by the exhaust unit.
  • the transfer robot 150 provided in the transfer chamber 170 is capable of turning around an axis along the vertical direction as indicated by an arrow 150R.
  • the transfer robot 150 has two link mechanisms composed of a plurality of arm segments. Transfer hands 151a and 151b that hold the semiconductor wafer W are provided at the ends of the two link mechanisms. These transport hands 151a and 151b are vertically spaced at a predetermined pitch, and can be independently slid linearly in the same horizontal direction by a link mechanism.
  • the transfer robot 150 moves up and down the base provided with the two link mechanisms, thereby moving the two transfer hands 151a and 151b up and down while being separated by a predetermined pitch.
  • both transfer hands 151a and 151b are used. It turns so as to face the transfer partner, and then moves up and down (or during the turn), and is located at a height at which one of the transfer hands transfers the semiconductor wafer W to the transfer partner. Then, the transfer hand 151a (151b) is linearly slid in the horizontal direction to transfer the semiconductor wafer W to and from the transfer partner.
  • the transfer of the semiconductor wafer W between the transfer robot 150 and the transfer robot 120 can be performed via the cooling units 130 and 140. That is, the first cool chamber 131 of the cooling unit 130 and the second cool chamber 141 of the cooling unit 140 also function as a path for transferring the semiconductor wafer W between the transfer robot 150 and the transfer robot 120. . Specifically, the transfer of the semiconductor wafer W is performed when one of the transfer robot 150 and the transfer robot 120 receives the semiconductor wafer W transferred to the first cool chamber 131 or the second cool chamber 141 by the other.
  • the gate valves 181 and 182 are provided between the first cool chamber 131 and the second cool chamber 141 and the indexer unit 101, respectively.
  • Gate valves 183 and 184 are provided between the transfer chamber 170 and the first cool chamber 131 and the second cool chamber 141, respectively.
  • a gate valve 185 is provided between the transfer chamber 170 and the processing chamber 6 of the heat treatment section 160.
  • FIG. 3 is a longitudinal sectional view showing the configuration of the heat treatment section 160.
  • the heat treatment section 160 includes a processing chamber 6 that accommodates the semiconductor wafer W and performs a heat treatment, a flash lamp house 5 that contains a plurality of flash lamps FL, and a halogen lamp house 4 that contains a plurality of halogen lamps HL. Prepare.
  • a flash lamp house 5 is provided above the processing chamber 6, and a halogen lamp house 4 is provided below.
  • the heat treatment unit 160 includes a holding unit 7 that holds the semiconductor wafer W in a horizontal position inside the processing chamber 6 and a transfer mechanism 10 that transfers the semiconductor wafer W between the holding unit 7 and the transfer robot 150.
  • the processing chamber 6 is configured by mounting a quartz chamber window above and below a cylindrical chamber side 61.
  • the chamber side portion 61 has a substantially cylindrical shape with an open top and bottom, an upper chamber window 63 is mounted and closed on an upper opening, and a lower chamber window 64 is mounted and closed on a lower opening.
  • the upper chamber window 63 that forms the ceiling of the processing chamber 6 is a disk-shaped member formed of quartz, and functions as a quartz window that transmits flash light emitted from the flash lamp FL into the processing chamber 6.
  • the lower chamber window 64 constituting the floor of the processing chamber 6 is also a disc-shaped member formed of quartz, and functions as a quartz window for transmitting light from the halogen lamp HL into the processing chamber 6.
  • Reflection ring 68 is attached to the upper part of the inner wall surface of chamber side part 61, and reflection ring 69 is attached to the lower part.
  • the reflection rings 68 and 69 are both formed in an annular shape.
  • the upper reflecting ring 68 is mounted by being fitted from above the chamber side 61.
  • the lower reflective ring 69 is mounted by being fitted from below the chamber side 61 and fastened with screws (not shown). That is, the reflection rings 68 and 69 are both detachably attached to the chamber side 61.
  • the space inside the processing chamber 6, that is, the space surrounded by the upper chamber window 63, the lower chamber window 64, the chamber side 61, and the reflection rings 68 and 69 is defined as the heat treatment space 65.
  • a concave portion 62 is formed on the inner wall surface of the processing chamber 6. That is, a concave portion 62 is formed which is surrounded by a central portion of the inner wall surface of the chamber side portion 61 where the reflection rings 68 and 69 are not mounted, a lower end surface of the reflection ring 68, and an upper end surface of the reflection ring 69. .
  • the concave portion 62 is formed in an annular shape along the horizontal direction on the inner wall surface of the processing chamber 6 and surrounds the holding portion 7 that holds the semiconductor wafer W.
  • the chamber side 61 and the reflection rings 68 and 69 are formed of a metal material (for example, stainless steel) having excellent strength and heat resistance.
  • a transfer opening (furnace opening) 66 for carrying in and out the semiconductor wafer W to and from the processing chamber 6 is formed in the chamber side 61.
  • the transport opening 66 can be opened and closed by a gate valve 185.
  • the transport opening 66 is connected to the outer peripheral surface of the recess 62 in communication. For this reason, when the gate valve 185 opens the transfer opening 66, the semiconductor wafer W is loaded into the heat treatment space 65 from the transfer opening 66 through the concave portion 62 and unloaded from the heat treatment space 65. It can be performed.
  • the gate valve 185 closes the transfer opening 66, the heat treatment space 65 in the processing chamber 6 becomes a closed space.
  • a gas supply hole 81 for supplying a processing gas to the heat treatment space 65 is formed in an upper portion of an inner wall of the processing chamber 6.
  • the gas supply hole 81 is formed at a position above the concave portion 62, and may be provided on the reflection ring 68.
  • the gas supply hole 81 is connected to a gas supply pipe 83 through a buffer space 82 formed in an annular shape inside the side wall of the processing chamber 6.
  • the gas supply pipe 83 is connected to a processing gas supply source 85.
  • a valve 84 is inserted in the middle of the gas supply pipe 83. When the valve 84 is opened, the processing gas is supplied from the processing gas supply source 85 to the buffer space 82.
  • the processing gas flowing into the buffer space 82 flows so as to expand in the buffer space 82 having a smaller fluid resistance than the gas supply hole 81 and is supplied from the gas supply hole 81 into the heat treatment space 65.
  • an inert gas such as nitrogen (N 2 ) or a reactive gas such as hydrogen (H 2 ) or ammonia (NH 3 ) can be used (nitrogen in the present embodiment).
  • a gas exhaust hole 86 for exhausting the gas in the heat treatment space 65 is formed in the lower portion of the inner wall of the processing chamber 6.
  • the gas exhaust hole 86 is formed at a position lower than the concave portion 62, and may be provided on the reflection ring 69.
  • the gas exhaust hole 86 is connected to a gas exhaust pipe 88 via a buffer space 87 formed in an annular shape inside the side wall of the processing chamber 6.
  • the gas exhaust pipe 88 is connected to an exhaust mechanism 190.
  • a valve 89 is inserted in the middle of the gas exhaust pipe 88. When the valve 89 is opened, the gas in the heat treatment space 65 is discharged from the gas exhaust hole 86 to the gas exhaust pipe 88 via the buffer space 87.
  • a plurality of gas supply holes 81 and gas exhaust holes 86 may be provided along the circumferential direction of the processing chamber 6, or may be slit-shaped. Further, the processing gas supply source 85 and the exhaust mechanism 190 may be a mechanism provided in the heat treatment apparatus 100 or a utility of a factory where the heat treatment apparatus 100 is installed.
  • a gas exhaust pipe 191 for discharging gas in the heat treatment space 65 is also connected to the end of the transfer opening 66.
  • the gas exhaust pipe 191 is connected to an exhaust mechanism 190 via a valve 192. By opening the valve 192, the gas in the processing chamber 6 is exhausted through the transfer opening 66.
  • FIG. 4 is a perspective view showing the overall appearance of the holding unit 7.
  • the holding section 7 includes a base ring 71, a connecting section 72, and a susceptor 74.
  • the base ring 71, the connecting portion 72, and the susceptor 74 are all formed of quartz. That is, the entire holding portion 7 is formed of quartz.
  • the base ring 71 is an arc-shaped quartz member in which a part is omitted from the ring shape.
  • the missing portion is provided to prevent interference between a transfer arm 11 of the transfer mechanism 10 described below and the base ring 71.
  • the base ring 71 is supported on the wall surface of the processing chamber 6 by being placed on the bottom surface of the concave portion 62 (see FIG. 3).
  • a plurality of connecting portions 72 (four in this embodiment) are erected on the upper surface of the base ring 71 along the circumferential direction of the ring shape.
  • the connecting portion 72 is also a quartz member, and is fixed to the base ring 71 by welding.
  • FIG. 5 is a plan view of the susceptor 74.
  • FIG. 6 is a sectional view of the susceptor 74.
  • the susceptor 74 includes a holding plate 75, a guide ring 76, and a plurality of substrate support pins 77.
  • the holding plate 75 is a substantially circular plate-shaped member formed of quartz. The diameter of the holding plate 75 is larger than the diameter of the semiconductor wafer W. That is, the holding plate 75 has a larger planar size than the semiconductor wafer W.
  • a guide ring 76 is provided on the periphery of the upper surface of the holding plate 75.
  • the guide ring 76 is an annular member having an inner diameter larger than the diameter of the semiconductor wafer W. For example, when the diameter of the semiconductor wafer W is ⁇ 300 mm, the inner diameter of the guide ring 76 is ⁇ 320 mm.
  • the inner circumference of the guide ring 76 has a tapered surface that widens upward from the holding plate 75.
  • the guide ring 76 is formed of the same quartz as the holding plate 75.
  • the guide ring 76 may be welded to the upper surface of the holding plate 75, or may be fixed to the holding plate 75 by a separately processed pin or the like. Alternatively, the holding plate 75 and the guide ring 76 may be processed as an integral member.
  • a portion of the upper surface of the holding plate 75 inside the guide ring 76 is a flat holding surface 75a for holding the semiconductor wafer W.
  • a plurality of substrate support pins 77 are erected on the holding surface 75a of the holding plate 75. In the present embodiment, a total of twelve substrate support pins 77 are erected every 30 ° along the circumference of the outer circumference of the holding surface 75a (the inner circumference of the guide ring 76).
  • the diameter of the circle on which the twelve substrate support pins 77 are arranged is smaller than the diameter of the semiconductor wafer W.
  • Each substrate support pin 77 is formed of quartz.
  • the plurality of substrate support pins 77 may be provided on the upper surface of the holding plate 75 by welding, or may be processed integrally with the holding plate 75.
  • the four connecting portions 72 erected on the base ring 71 and the peripheral portion of the holding plate 75 of the susceptor 74 are fixed by welding. That is, the susceptor 74 and the base ring 71 are fixedly connected by the connecting portion 72.
  • the holder 7 is mounted on the processing chamber 6.
  • the holding plate 75 of the susceptor 74 is in a horizontal posture (a posture in which a normal line coincides with a vertical direction). That is, the holding surface 75a of the holding plate 75 is a horizontal plane.
  • the semiconductor wafer W carried into the processing chamber 6 is placed and held in a horizontal posture on the susceptor 74 of the holding unit 7 mounted on the processing chamber 6.
  • the semiconductor wafer W is supported by twelve substrate support pins 77 erected on the holding plate 75 and held by the susceptor 74. More precisely, the upper ends of the twelve substrate support pins 77 contact the lower surface of the semiconductor wafer W to support the semiconductor wafer W. Since the height of the twelve substrate support pins 77 (the distance from the upper end of the substrate support pins 77 to the holding surface 75a of the holding plate 75) is uniform, the semiconductor wafer W is placed in a horizontal posture by the twelve substrate support pins 77. Can be supported.
  • the semiconductor wafer W is supported by the plurality of substrate support pins 77 at a predetermined distance from the holding surface 75a of the holding plate 75.
  • the thickness of the guide ring 76 is larger than the height of the substrate support pins 77. Therefore, the horizontal displacement of the semiconductor wafer W supported by the plurality of substrate support pins 77 is prevented by the guide ring 76.
  • the holding plate 75 of the susceptor 74 has an opening 78 penetrating vertically.
  • the opening 78 is provided for the radiation thermometer 20 (see FIG. 3) to receive radiation (infrared light) emitted from the lower surface of the semiconductor wafer W held by the susceptor 74. That is, the radiation thermometer 20 receives light emitted from the lower surface of the semiconductor wafer W held by the susceptor 74 through the opening 78, and the temperature of the semiconductor wafer W is measured by a separate detector.
  • the holding plate 75 of the susceptor 74 is provided with four through holes 79 through which the lift pins 12 of the transfer mechanism 10, which will be described later, pass through for transferring the semiconductor wafer W.
  • FIG. 7 is a plan view of the transfer mechanism 10.
  • FIG. 8 is a side view of the transfer mechanism 10.
  • the transfer mechanism 10 includes two transfer arms 11.
  • the transfer arm 11 is formed in a circular arc shape along the generally annular concave portion 62.
  • Each transfer arm 11 is provided with two lift pins 12 standing upright.
  • Each transfer arm 11 is rotatable by a horizontal moving mechanism 13.
  • the horizontal movement mechanism 13 moves the pair of transfer arms 11 to a transfer operation position (solid line position in FIG. 7) where the semiconductor wafer W is transferred to the holding unit 7 and the semiconductor wafer W held by the holding unit 7. It is moved horizontally between a retracted position (a position indicated by a two-dot chain line in FIG. 7) which does not overlap in a plan view.
  • the horizontal moving mechanism 13 may be configured to rotate each transfer arm 11 by an individual motor, or may be rotated by a single motor using a link mechanism to link a pair of transfer arms 11. It may be moved.
  • the pair of transfer arms 11 is moved up and down by the elevating mechanism 14 together with the horizontal moving mechanism 13.
  • the lifting mechanism 14 raises the pair of transfer arms 11 at the transfer operation position, a total of four lift pins 12 pass through the through holes 79 (see FIGS. 4 and 5) formed in the susceptor 74, and The upper end of 12 protrudes from the upper surface of susceptor 74.
  • the elevating mechanism 14 lowers the pair of transfer arms 11 at the transfer operation position, pulls out the lift pins 12 from the through holes 79, and moves the horizontal transfer mechanism 13 to open the pair of transfer arms 11, The transfer arm 11 moves to the retreat position.
  • the retracted position of the pair of transfer arms 11 is immediately above the base ring 71 of the holding unit 7.
  • the retreat position of the transfer arm 11 is inside the concave portion 62. It should be noted that an exhaust mechanism (not shown) is also provided near the portion where the driving section (the horizontal moving mechanism 13 and the elevating mechanism 14) of the transfer mechanism 10 is provided. Is discharged to the outside of the processing chamber 6.
  • the flash lamp house 5 provided above the processing chamber 6 includes a light source including a plurality of (30 in the present embodiment) xenon flash lamps FL and a light source of the light source inside the housing 51. And a reflector 52 provided so as to cover the upper side.
  • a lamp light emission window 53 is mounted on the bottom of the housing 51 of the flash lamp house 5.
  • the lamp light emission window 53 constituting the floor of the flash lamp house 5 is a plate-shaped quartz window formed of quartz.
  • the flash lamp FL irradiates the heat treatment space 65 with flash light from above the processing chamber 6 through the lamp light emission window 53 and the upper chamber window 63.
  • Each of the plurality of flash lamps FL is a rod-shaped lamp having a long cylindrical shape, and has a longitudinal direction along the main surface of the semiconductor wafer W held by the holding unit 7 (that is, along the horizontal direction). They are arranged in a plane so as to be parallel to each other. Therefore, the plane formed by the arrangement of the flash lamps FL is also a horizontal plane.
  • the xenon flash lamp FL has a rod-shaped glass tube (discharge tube) in which xenon gas is sealed and an anode and a cathode connected to a condenser are disposed at both ends thereof, and is provided on the outer peripheral surface of the glass tube. And a trigger electrode. Since xenon gas is electrically an insulator, electricity does not flow in a glass tube in a normal state even if charges are stored in a capacitor. However, when a high voltage is applied to the trigger electrode to break the insulation, the electricity stored in the capacitor flows instantaneously into the glass tube, and light is emitted by excitation of xenon atoms or molecules at that time.
  • the flash lamp FL In such a xenon flash lamp FL, electrostatic energy previously stored in a condenser is converted into an extremely short light pulse of 0.1 to 100 milliseconds. It has a feature that it can emit extremely strong light compared to a light source. That is, the flash lamp FL is a pulsed lamp that emits light instantaneously in a very short time of less than one second. The light emission time of the flash lamp FL can be adjusted by the coil constant of a lamp power supply that supplies power to the flash lamp FL.
  • the reflector 52 is provided above the plurality of flash lamps FL so as to cover the entirety thereof.
  • the basic function of the reflector 52 is to reflect flash light emitted from the plurality of flash lamps FL to the heat treatment space 65 side.
  • the reflector 52 is made of an aluminum alloy plate, and its surface (the surface facing the flash lamp FL) is roughened by blasting.
  • the halogen lamp house 4 provided below the processing chamber 6 has a plurality of (40 in this embodiment) halogen lamps HL inside the housing 41.
  • the plurality of halogen lamps HL irradiate the heat treatment space 65 with light from below the processing chamber 6 through the lower chamber window 64.
  • FIG. 9 is a plan view showing an arrangement of a plurality of halogen lamps HL.
  • 20 halogen lamps HL are provided in each of the upper and lower two stages.
  • Each of the halogen lamps HL is a rod-shaped lamp having a long cylindrical shape.
  • the 20 halogen lamps HL in the upper and lower rows are arranged so that their respective longitudinal directions are parallel to each other along the main surface of the semiconductor wafer W held by the holding section 7 (that is, along the horizontal direction). I have. Therefore, the plane formed by the arrangement of the halogen lamps HL in both the upper and lower stages is a horizontal plane.
  • the arrangement density of the halogen lamps HL is higher in a region facing the peripheral portion than in a region facing the center of the semiconductor wafer W held by the holding portion 7 in both the upper stage and the lower stage. I have. That is, in both upper and lower stages, the arrangement pitch of the halogen lamps HL is shorter at the periphery than at the center of the lamp array. For this reason, it is possible to irradiate a larger amount of light to the peripheral portion of the semiconductor wafer W where the temperature is likely to decrease during heating by light irradiation from the halogen lamp HL.
  • a lamp group composed of the upper halogen lamps HL and a lamp group composed of the lower halogen lamps HL are arranged so as to intersect in a grid pattern. That is, a total of 40 halogen lamps HL are arranged such that the longitudinal direction of each of the upper halogen lamps HL is orthogonal to the longitudinal direction of each of the lower halogen lamps HL.
  • the halogen lamp HL is a filament type light source that emits light by incandescent the filament by energizing the filament disposed inside the glass tube.
  • a gas in which a trace amount of a halogen element (iodine, bromine, or the like) is introduced into an inert gas such as nitrogen or argon is sealed inside the glass tube.
  • a halogen element iodine, bromine, or the like
  • the halogen lamp HL has a characteristic that it has a longer life and can continuously emit strong light as compared with a normal incandescent lamp. That is, the halogen lamp HL is a continuous lighting lamp that continuously emits light for at least one second.
  • the halogen lamp HL is a rod-shaped lamp, it has a long life, and by arranging the halogen lamp HL along the horizontal direction, the radiation efficiency to the upper semiconductor wafer W becomes excellent.
  • a reflector 43 is provided below the two-stage halogen lamp HL (FIG. 3).
  • the reflector 43 reflects light emitted from the plurality of halogen lamps HL to the heat treatment space 65 side.
  • the heat treatment unit 160 prevents the halogen lamp house 4, the flash lamp house 5, and the processing chamber 6 from excessively rising in temperature due to heat energy generated from the halogen lamp HL and the flash lamp FL during the heat treatment of the semiconductor wafer W.
  • various cooling structures are provided.
  • a water cooling tube (not shown) is provided on the wall of the processing chamber 6.
  • the halogen lamp house 4 and the flash lamp house 5 have an air cooling structure for forming a gas flow therein and discharging heat. Air is also supplied to the gap between the upper chamber window 63 and the lamp light emission window 53 to cool the flash lamp house 5 and the upper chamber window 63.
  • FIG. 10 is a functional block diagram of the control unit 3 of the heat treatment apparatus 100.
  • the configuration of the control unit 3 as hardware is the same as that of a general computer. That is, the control unit 3 includes a CPU which is a circuit for performing various arithmetic processing, a ROM which is a read-only memory for storing a basic program, a RAM which is a readable and writable memory for storing various information, and control software and data. It has a magnetic disk for storing.
  • the processing in the heat treatment apparatus 100 proceeds when the CPU of the control unit 3 executes a predetermined processing program.
  • the control unit 3 is shown in the indexer unit 101 in FIG. 1, the control unit 3 is not limited to this, and the control unit 3 can be arranged at an arbitrary position in the heat treatment apparatus 100.
  • the reflectance measuring units 135 and 145 provided in the first cool chamber 131 and the second cool chamber 141 are electrically connected to the control unit 3, and the semiconductor wafer measured by the reflectance measuring units 135 and 145 is used.
  • the reflectance of the surface of W is transmitted to the control unit 3.
  • the control unit 3 includes a determination unit 31 and a warning notification unit 32.
  • the determination unit 31 and the warning issuance unit 32 are function processing units realized by the CPU of the control unit 3 executing a predetermined processing program. The processing contents of the determining unit 31 and the warning issuing unit 32 will be further described later.
  • the input unit 33 and the display unit 34 are connected to the control unit 3.
  • the input unit 33 is a device for the operator of the heat treatment apparatus 100 to input various commands and parameters to the control unit 3.
  • the control unit 3 displays various information on the display unit 34.
  • the operator can also set the conditions of the processing recipe describing the processing procedure and the processing conditions of the semiconductor wafer W from the input unit 33 while checking the display contents of the display unit 34.
  • a touch panel having both functions may be used.
  • a liquid crystal touch panel provided on the outer wall of the heat treatment apparatus 100 is employed.
  • the control unit 3 of the heat treatment apparatus 100 is connected to a host computer 90 of a higher rank via a LAN line or the like.
  • the host computer 90 also has the same hardware configuration as a general computer.
  • the reflectance of the surface of the semiconductor wafer W measured by the reflectance measuring units 135 and 145 is further transmitted from the control unit 3 to the host computer 90 and stored in the storage unit 91 of the host computer 90.
  • the control units 3 of the plurality of heat treatment apparatuses 100 may be connected to the host computer 90, and the reflectance of the semiconductor wafer W measured by the plurality of heat treatment apparatuses 100 may be stored in the storage unit 91. .
  • the semiconductor wafer W to be processed is a semiconductor substrate to which impurities (ions) are added by an ion implantation method. Activation of the impurities is performed by flash light irradiation heat treatment (annealing) by the heat treatment apparatus 100.
  • annealing flash light irradiation heat treatment
  • a plurality of unprocessed semiconductor wafers W into which impurities have been implanted are placed in the load port 110 of the indexer unit 101 in a state of being accommodated in the carrier C.
  • the delivery robot 120 takes out the unprocessed semiconductor wafers W one by one from the carrier C and carries them into the alignment chamber 231 of the alignment unit 230.
  • the alignment chamber 231 the direction of the semiconductor wafer W is adjusted by rotating the semiconductor wafer W around a vertical axis in a horizontal plane with the center thereof as a center of rotation and optically detecting notches or the like.
  • the delivery robot 120 of the indexer unit 101 takes out the semiconductor wafer W whose orientation has been adjusted from the alignment chamber 231 and carries it into the first cool chamber 131 of the cooling unit 130 or the second cool chamber 141 of the cooling unit 140.
  • the reflectance measuring unit 135 measures the reflectance of the surface of the semiconductor wafer W.
  • the reflectance measuring unit 145 measures the reflectance of the surface of the semiconductor wafer W.
  • the reflectance measuring units 135 and 145 measure the reflectance of the semiconductor wafer W before the heat treatment.
  • the reflectance of the semiconductor wafer W measured by the reflectance measuring units 135 and 145 is transmitted from the control unit 3 to the host computer 90 and stored in the storage unit 91 as the reflectance before heating.
  • the semiconductor wafer W carried into the first cool chamber 131 or the second cool chamber 141 is carried out to the transfer chamber 170 by the transfer robot 150.
  • the first cool chamber 131 and the second cool chamber 141 are transferred to the semiconductor wafer. It functions as a path for delivery of W.
  • the transfer robot 150 taking out the semiconductor wafer W turns so as to face the heat treatment unit 160. Subsequently, the gate valve 185 opens the space between the processing chamber 6 and the transfer chamber 170, and the transfer robot 150 loads the unprocessed semiconductor wafer W into the processing chamber 6. At this time, if the preceding semiconductor wafer W subjected to the heat treatment is present in the processing chamber 6, the semiconductor wafer W after the heat treatment is taken out by one of the transport hands 151a and 151b, and then the unprocessed semiconductor wafer W is taken out. W is carried into the processing chamber 6 and the wafer is replaced. After that, the gate valve 185 closes the space between the processing chamber 6 and the transfer chamber 170.
  • the semiconductor wafer W carried into the processing chamber 6 is preheated by the halogen lamp HL, and then is subjected to flash heating by irradiation with flash light from the flash lamp FL.
  • the activation of the impurities implanted in the semiconductor wafer W is performed by the flash heat treatment.
  • the gate valve 185 opens the processing chamber 6 and the transfer chamber 170 again, and the transfer robot 150 unloads the semiconductor wafer W after the flash heat treatment from the process chamber 6 to the transfer chamber 170. .
  • the transfer robot 150 taking out the semiconductor wafer W turns so as to face the first cool chamber 131 or the second cool chamber 141 from the processing chamber 6. Further, the gate valve 185 closes the space between the processing chamber 6 and the transfer chamber 170.
  • the transfer robot 150 carries the semiconductor wafer W after the heat treatment into the first cool chamber 131 of the cooling unit 130 or the second cool chamber 141 of the cooling unit 140.
  • the semiconductor wafer W has passed through the first cool chamber 131 before the heat treatment, it is carried into the first cool chamber 131 even after the heat treatment, and has passed through the second cool chamber 141 before the heat treatment.
  • the wafer is carried into the second cool chamber 141 even after the heat treatment.
  • a cooling process of the semiconductor wafer W after the flash heating process is performed. Since the temperature of the entire semiconductor wafer W at the time of being unloaded from the processing chamber 6 of the heat treatment unit 160 is relatively high, the semiconductor wafer W is cooled to near normal temperature in the first cool chamber 131 or the second cool chamber 141. is there.
  • the reflectance of the semiconductor wafer W after the heating process is measured.
  • the reflectance measuring unit 135 measures the reflectance of the surface of the semiconductor wafer W.
  • the reflectance measuring unit 145 measures the reflectance of the surface of the semiconductor wafer W.
  • the reflectance measuring units 135 and 145 measure the reflectance of the semiconductor wafer W after the heat treatment.
  • the reflectance of the semiconductor wafer W measured by the reflectance measuring units 135 and 145 is transmitted from the control unit 3 to the host computer 90, and stored in the storage unit 91 as the reflectance after heating.
  • the delivery robot 120 After the predetermined cooling processing time has elapsed, the delivery robot 120 unloads the cooled semiconductor wafer W from the first cool chamber 131 or the second cool chamber 141 and returns it to the carrier C. When a predetermined number of processed semiconductor wafers W are stored in the carrier C, the carrier C is unloaded from the load port 110 of the indexer unit 101.
  • the air supply valve 84 Prior to the loading of the semiconductor wafer W into the processing chamber 6, the air supply valve 84 is opened, and the exhaust valves 89 and 192 are opened to start the supply and exhaust of the processing chamber 6.
  • the valve 84 nitrogen gas is supplied from the gas supply hole 81 to the heat treatment space 65.
  • the valve 89 When the valve 89 is opened, the gas in the processing chamber 6 is exhausted from the gas exhaust hole 86.
  • the nitrogen gas supplied from the upper part of the heat treatment space 65 in the processing chamber 6 flows downward, and is exhausted from the lower part of the heat treatment space 65.
  • the gate valve 185 is opened to open the transfer opening 66, and the transfer robot 150 loads the semiconductor wafer W to be processed into the heat treatment space 65 in the processing chamber 6 through the transfer opening 66.
  • the transfer robot 150 advances and stops the transfer hand 151a (or the transfer hand 151b) holding the unprocessed semiconductor wafer W to a position immediately above the holding unit 7.
  • the pair of transfer arms 11 of the transfer mechanism 10 move horizontally from the retracted position to the transfer operation position and rise, so that the lift pins 12 protrude from the upper surface of the holding plate 75 of the susceptor 74 through the through holes 79.
  • the lift pins 12 rise above the upper ends of the substrate support pins 77.
  • the transfer robot 150 moves the transfer hand 151a out of the heat treatment space 65, and the transfer opening 66 is closed by the gate valve 185.
  • the semiconductor wafer W is transferred from the transfer mechanism 10 to the susceptor 74 of the holding unit 7 and is held from below in a horizontal posture.
  • the semiconductor wafer W is supported by a plurality of substrate support pins 77 erected on a holding plate 75 and held by a susceptor 74. Further, the semiconductor wafer W is held by the holding unit 7 with the surface on which the pattern is formed and the impurities are implanted facing upward.
  • a predetermined gap is formed between the back surface (the main surface opposite to the front surface) of the semiconductor wafer W supported by the plurality of substrate support pins 77 and the holding surface 75a of the holding plate 75.
  • the pair of transfer arms 11 that have descended to below the susceptor 74 are retracted by the horizontal moving mechanism 13 to the retracted position, that is, to the inside of the recess 62.
  • the forty halogen lamps HL are turned on all at once, and preheating (assisting heating) is started.
  • the halogen light emitted from the halogen lamp HL passes through the lower chamber window 64 and the susceptor 74 formed of quartz and is irradiated from the lower surface of the semiconductor wafer W.
  • the semiconductor wafer W is preheated and the temperature rises. Since the transfer arm 11 of the transfer mechanism 10 is retracted inside the concave portion 62, it does not hinder the heating by the halogen lamp HL.
  • the temperature of the semiconductor wafer W is measured by the radiation thermometer 20. That is, the radiation thermometer 20 receives infrared light radiated from the lower surface of the semiconductor wafer W held by the susceptor 74 via the opening 78, and measures the temperature of the wafer during temperature rise. The measured temperature of the semiconductor wafer W is transmitted to the control unit 3.
  • the control unit 3 controls the output of the halogen lamp HL while monitoring whether or not the temperature of the semiconductor wafer W heated by the irradiation of light from the halogen lamp HL has reached a predetermined preheating temperature T1.
  • control unit 3 performs feedback control of the output of the halogen lamp HL based on the value measured by the radiation thermometer 20 so that the temperature of the semiconductor wafer W becomes the preheating temperature T1.
  • the preheating temperature T1 is set to about 600 ° C. to 800 ° C. (700 ° C. in the present embodiment) at which there is no possibility that impurities added to the semiconductor wafer W are diffused by heat.
  • the control unit 3 After the temperature of the semiconductor wafer W reaches the preheating temperature T1, the control unit 3 temporarily maintains the semiconductor wafer W at the preheating temperature T1. Specifically, when the temperature of the semiconductor wafer W measured by the radiation thermometer 20 reaches the preheating temperature T1, the control unit 3 adjusts the output of the halogen lamp HL to substantially reduce the temperature of the semiconductor wafer W to the preheating temperature. The heating temperature T1 is maintained.
  • the entire semiconductor wafer W is uniformly heated to the preheating temperature T1.
  • the temperature of the peripheral portion of the semiconductor wafer W where heat radiation tends to occur tends to be lower than that of the central portion, but the arrangement density of the halogen lamp HL in the halogen lamp house 4 is:
  • the region facing the peripheral portion is higher than the region facing the center of the semiconductor wafer W. Therefore, the amount of light applied to the peripheral portion of the semiconductor wafer W where heat is likely to be generated increases, and the in-plane temperature distribution of the semiconductor wafer W in the preheating stage can be made uniform.
  • the flash lamp FL irradiates the surface of the semiconductor wafer W with flash light. At this time, a part of the flash light emitted from the flash lamp FL goes directly into the processing chamber 6, and another part is once reflected by the reflector 52 and then goes into the processing chamber 6. Flash heating of the semiconductor wafer W is performed by light irradiation.
  • the surface temperature of the semiconductor wafer W can be increased in a short time. That is, the flash light emitted from the flash lamp FL is converted into a light pulse in which the electrostatic energy previously stored in the condenser is extremely short, and the irradiation time is extremely short, from about 0.1 millisecond to about 100 milliseconds. It is a strong flash. Then, the surface temperature of the semiconductor wafer W, which is flash-heated by irradiating the flash light from the flash lamp FL, instantaneously rose to a processing temperature T2 of 1000 ° C. or more, and the impurities implanted into the semiconductor wafer W were activated.
  • a processing temperature T2 1000 ° C. or more
  • the surface temperature of the semiconductor wafer W can be raised and lowered in a very short time, the impurity can be activated while suppressing diffusion of the impurity injected into the semiconductor wafer W due to heat. Since the time required for activating the impurity is extremely shorter than the time required for thermal diffusion, the activation is performed even in a short time in which diffusion of about 0.1 to 100 milliseconds does not occur. Complete.
  • the halogen lamp HL is turned off after a lapse of a predetermined time.
  • the temperature of the semiconductor wafer W rapidly drops from the preheating temperature T1.
  • the temperature of the semiconductor wafer W during the temperature decrease is measured by the radiation thermometer 20, and the measurement result is transmitted to the control unit 3.
  • the control unit 3 monitors whether the temperature of the semiconductor wafer W has dropped to a predetermined temperature based on the measurement result of the radiation thermometer 20.
  • the pair of transfer arms 11 of the transfer mechanism 10 move horizontally again from the retreat position to the transfer operation position and rise, so that the lift pins 12
  • the semiconductor wafer W protruding from the upper surface of the semiconductor wafer 74 and having undergone the heat treatment is received from the susceptor 74.
  • the transfer opening 66 closed by the gate valve 185 is opened, and the processed semiconductor wafer W placed on the lift pins 12 is unloaded by the transfer hand 151b (or the transfer hand 151a) of the transfer robot 150. You.
  • the transfer robot 150 advances the transfer hand 151b to a position immediately below the semiconductor wafer W pushed up by the lift pins 12, and stops the transfer.
  • the transfer robot 150 withdraws the transfer hand 151b from the processing chamber 6 and unloads the processed semiconductor wafer W.
  • the first cool chamber 131 and the second cool chamber 141 are provided with reflectivity measuring units 135 and 145 for measuring the reflectivity of the surface of the semiconductor wafer W.
  • the semiconductor wafer W before the heat treatment is always transferred from the indexer unit 101 to the processing chamber 6 through the first cool chamber 131 or the second cool chamber 141.
  • the semiconductor wafer W after the heat treatment is always returned from the processing chamber 6 to the indexer unit 101 through the first cool chamber 131 or the second cool chamber 141. That is, the first cool chamber 131 and the second cool chamber 141 are provided on a transfer path of the semiconductor wafer W connecting the indexer unit 101 and the processing chamber 6, and the reflectance measurement units 135 and 145 are provided on the transfer path. It is provided.
  • the reflectance measuring units 135 and 145 are configured to transmit the semiconductor wafer W from the indexer unit 101 to the processing chamber 6 on the outward path and the semiconductor wafer W from the processing chamber 6 to the indexer unit 101 on the transport path. It can be considered that both are provided on the return route.
  • the reflectivity measuring units 135 and 145 can measure the reflectivity of the semiconductor wafer W before the heat treatment before being carried into the processing chamber 6, and can also measure the reflectivity after the heat treatment after being carried out from the processing chamber 6. The reflectance of the semiconductor wafer W can also be measured. Then, the reflectivity measuring units 135 and 145 measure the reflectivity of the semiconductor wafer W before the heat treatment by flash light irradiation, and transmit the measured reflectivity to the control unit 3. The reflectance of the semiconductor wafer W before the heat treatment is transmitted from the control unit 3 to the host computer 90 and stored in the storage unit 91 as the reflectance before heating (FIG. 10).
  • the reflectivity measuring units 135 and 145 measure the reflectivity of the semiconductor wafer W after the heat treatment by flash light irradiation, and transmit the measured reflectivity to the control unit 3.
  • the reflectance of the semiconductor wafer W after the heat treatment is transmitted from the control unit 3 to the host computer 90 and stored in the storage unit 91 as the reflectance after heating.
  • the reflectance of the semiconductor wafer W after the heat treatment falls within a substantially constant range according to the type of film formed on the semiconductor wafer W and the processing content. For example, in the case of forming a nickel silicide by irradiating a flash light to a silicon semiconductor wafer W on which a thin film of nickel (Ni) is formed to form nickel silicide, heating is performed if the processing is performed normally.
  • the reflectance of the semiconductor wafer W after the processing has a substantially constant value. Therefore, whether or not the heat treatment of the semiconductor wafer W has been performed normally can be confirmed based on the reflectance of the semiconductor wafer W after the heat treatment.
  • the determination unit 31 of the control unit 3 determines whether or not the reflectance of the semiconductor wafer W after the heat treatment falls within a range set in advance according to the type of the semiconductor wafer W and the processing content. I do. When the reflectance of the semiconductor wafer W after the heat treatment falls within the range, the determination unit 31 determines that the heat treatment of the semiconductor wafer W has been performed normally. On the other hand, when the reflectance of the semiconductor wafer W after the heat treatment is out of the range, the determination unit 31 determines that the heat treatment of the semiconductor wafer W is not normally performed.
  • the determination unit 31 determines whether or not the heating processing of the semiconductor wafer W has been performed normally based on the reflectance of the semiconductor wafer W after the heating processing.
  • the warning issuing unit 32 issues a warning on the display unit 34 that a processing abnormality has occurred.
  • the light emission intensity of the flash lamp FL during flash light irradiation it is preferable to adjust the light emission intensity of the flash lamp FL during flash light irradiation according to the reflectance of the surface of the semiconductor wafer W. If the reflectance of the semiconductor wafer W is low (that is, if the absorptance is high) to raise the temperature of the surface of the semiconductor wafer W to a predetermined temperature at the time of irradiating the flash light, the emission intensity of the flash lamp FL may be small. Conversely, if the reflectance of the semiconductor wafer W is high (that is, if the absorptance is low), it is necessary to increase the light emission intensity of the flash lamp FL.
  • the light emission intensity of the flash lamp FL (specifically, the voltage applied to the flash lamp FL) is determined based on the reflectance of the semiconductor wafer W before the heat treatment measured by the reflectance measurement units 135 and 145. ) Can be adjusted.
  • the semiconductor wafer W is preliminarily heated by the halogen lamp HL before flash light irradiation from the flash lamp FL is performed. And it turned out that the reflectance of the surface of the semiconductor wafer W changes at the time of preliminary heating depending on the content of the heat treatment. For example, when preheating is performed by irradiating light from a halogen lamp HL to a semiconductor wafer W whose surface has become an amorphous layer by ion implantation, the amorphous layer is crystallized and the reflectance of the semiconductor wafer W changes.
  • the reflectivity of the semiconductor wafer W changes in the preheating stage, even if the reflectivity of the semiconductor wafer W before the heat treatment before being loaded into the processing chamber 6 is measured, the reflectivity is based only on the reflectivity before heating. Adjusting the emission intensity of the flash lamp FL causes the flash lamp FL to emit light with an incorrect emission intensity. As a result, the surface of the semiconductor wafer W cannot be heated to an appropriate target temperature during flash light irradiation.
  • the flash lamp FL is determined based on both the reflectance of the semiconductor wafer W before the heat treatment (reflectance before heating) and the reflectance of the semiconductor wafer W after the heat treatment (reflectance after heating).
  • the emission intensity is determined. This operation may be performed, for example, when determining the heating conditions before processing the lot. Note that a lot is a set of semiconductor wafers W to be processed with the same contents under the same conditions.
  • the reflectance before heating and the reflectance after heating are weighted in accordance with the degree to which the reflectance of the semiconductor wafer W changes in the preheating stage, and the reflectance for determining the emission intensity is obtained (for example, weighting). Calculate the average). For example, when performing a heat treatment on a semiconductor wafer W whose surface is an amorphous layer by ion implantation, as described above, the reflectance of the semiconductor wafer W greatly changes in the preheating stage. In such a case, since the reflectance of the semiconductor wafer W at the time when the flash lamp FL emits light is close to the reflectance after heating, the reflectance for heating is determined by weighting the reflectance after heating. .
  • the reflectance of the semiconductor wafer W does not change significantly in the preheating stage, and nickel silicide is irradiated during flash light irradiation. Once formed, the reflectance changes.
  • the reflectance before heating is determined by weighting the reflectance before heating. .
  • the emission intensity of the flash lamp FL is adjusted based on the reflectance after heating in addition to the reflectance before heating, even if the reflectance of the surface of the semiconductor wafer W changes during preheating or flash light irradiation.
  • the emission intensity of the flash lamp FL can be determined to an appropriate value.
  • the surface of the semiconductor wafer W can be heated to a desired target temperature during flash light irradiation.
  • the accuracy of the adjustment of the light emission intensity of the flash lamp FL increases as the number of data of the base reflectance before heating and the reflectance after heating increases. Therefore, in the present embodiment, the reflectance before heating and the reflectance after heating of a plurality of semiconductor wafers W processed in the past are stored in the storage unit 91.
  • the reflectance before heating and the reflectance after heating obtained by the plurality of heat treatment apparatuses 100 may be stored in the storage unit 91.
  • the light emission intensity of the flash lamp FL can be adjusted with higher accuracy.
  • an artificial intelligence (AI) function is implemented in the host computer 90, and a large amount of data on the reflectance before heating and the reflectance after heating stored in the storage unit 91 are analyzed using the artificial intelligence to determine an appropriate reflectance. It is preferable to adjust the light emission intensity of the flash lamp FL.
  • the reflectance measuring units 135 and 145 are provided in the first cool chamber 131 and the second cool chamber 141, but the present invention is not limited to this.
  • a crab reflectance measuring section may be provided.
  • the reflectance measuring unit may be provided in the transfer chamber 170 or may be provided in the indexer unit 101.
  • the reflectivity measurement unit may be provided in the alignment chamber 231.
  • a dedicated reflectance measurement chamber for measuring the reflectance may be provided in the heat treatment apparatus 100.
  • the semiconductor wafer W before the heat treatment and the semiconductor wafer W after the heat treatment are respectively transported to a reflectance measurement chamber, and the reflectance before heating and the reflectance after heating are measured.
  • the reflectance measurement unit is provided as described above.
  • Whether or not the heat treatment of the semiconductor wafer W has been performed normally may be determined based on both the reflectance before heating and the reflectance after heating. In this case, if the difference between the reflectance before heating and the reflectance after heating falls within a predetermined range, the determination unit 31 determines that the heating process of the semiconductor wafer W has been performed normally and deviates from the range. If it is determined that the heat treatment of the semiconductor wafer W is not performed normally.
  • the flash lamp house 5 is provided with 30 flash lamps FL.
  • the present invention is not limited to this, and the number of flash lamps FL can be any number.
  • the flash lamp FL is not limited to a xenon flash lamp, but may be a krypton flash lamp.
  • the number of halogen lamps HL provided in the halogen lamp house 4 is not limited to 40 but may be any number.
  • the preheating of the semiconductor wafer W is performed using the filament type halogen lamp HL as a continuous lighting lamp that emits light continuously for 1 second or more.
  • the preliminary heating may be performed using a discharge type arc lamp (for example, a xenon arc lamp) as a continuous lighting lamp instead of the halogen lamp HL.
  • the substrate to be processed by the heat treatment apparatus 100 is not limited to a semiconductor wafer, but may be a glass substrate used for a flat panel display such as a liquid crystal display device or a substrate for a solar cell.
  • control unit 4 halogen lamp house 5 flash lamp house 6 processing chamber 7 holding unit 10 transfer mechanism 31 determination unit 32 warning issuing unit 65 heat treatment space 90 host computer 91 storage unit 100 heat treatment device 101 indexer units 130, 140 cooling unit 131 First cool chamber 141 Second cool chamber 135, 145 Reflectivity measuring unit 150 Transfer robot 160 Heat treatment unit 230 Alignment unit FL Flash lamp HL Halogen lamp W Semiconductor wafer

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Toxicology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

According to the present invention, a semiconductor wafer is subjected to flash heat treatment by pre-heating the semiconductor wafer and irradiating the semiconductor wafer with flash light in a heat treatment part. A reflectance measurement unit is provided in a forward path of the semiconductor wafer returning from the heat treatment part to an indexer part, and the reflectance of the semiconductor wafer after the heat treatment is measured. In the case where the reflectance of the semiconductor wafer after the heat treatment falls within a preset prescribed range, it is determined that the heat treatment of the semiconductor wafer has been normally performed. Meanwhile, in the case where the reflectance deviates from the prescribed range, it is determined that the heat treatment of the semiconductor wafer should not be normally performed. When it is determined that the heat treatment is not normally performed, a warning is issued.

Description

熱処理装置および熱処理方法Heat treatment apparatus and heat treatment method
 本発明は、半導体ウェハー等の薄板状精密電子基板(以下、単に「基板」と称する)にフラッシュ光を照射することによって該基板を加熱する熱処理装置および熱処理方法に関する。 The present invention relates to a heat treatment apparatus and a heat treatment method for heating a thin precision electronic substrate such as a semiconductor wafer (hereinafter simply referred to as a “substrate”) by irradiating the substrate with flash light.
 半導体デバイスの製造プロセスにおいて、極めて短時間で半導体ウェハーを加熱するフラッシュランプアニール(FLA)が注目されている。フラッシュランプアニールは、キセノンフラッシュランプ(以下、単に「フラッシュランプ」とするときにはキセノンフラッシュランプを意味する)を使用して半導体ウェハーの表面にフラッシュ光を照射することにより、半導体ウェハーの表面のみを極めて短時間(数ミリ秒以下)に昇温させる熱処理技術である。 フ ラ ッ シ ュ In a semiconductor device manufacturing process, flash lamp annealing (FLA), which heats a semiconductor wafer in an extremely short time, has attracted attention. Flash lamp annealing uses a xenon flash lamp (hereinafter simply referred to as a xenon flash lamp) to irradiate the surface of a semiconductor wafer with flash light, thereby extremely exposing only the surface of the semiconductor wafer. This is a heat treatment technology that raises the temperature in a short time (several milliseconds or less).
 キセノンフラッシュランプの放射分光分布は紫外域から近赤外域であり、従来のハロゲンランプよりも波長が短く、シリコンの半導体ウェハーの基礎吸収帯とほぼ一致している。よって、キセノンフラッシュランプから半導体ウェハーにフラッシュ光を照射したときには、透過光が少なく半導体ウェハーを急速に昇温することが可能である。また、数ミリ秒以下の極めて短時間のフラッシュ光照射であれば、半導体ウェハーの表面近傍のみを選択的に昇温できることも判明している。 (4) The emission spectral distribution of the xenon flash lamp is from the ultraviolet region to the near infrared region, the wavelength is shorter than that of the conventional halogen lamp, and almost coincides with the basic absorption band of a silicon semiconductor wafer. Therefore, when the semiconductor wafer is irradiated with flash light from the xenon flash lamp, the transmitted light is small and the temperature of the semiconductor wafer can be rapidly raised. In addition, it has been found that when the flash light is irradiated for a very short time of several milliseconds or less, only the vicinity of the surface of the semiconductor wafer can be selectively heated.
 このようなフラッシュランプアニールは、極短時間の加熱が必要とされる処理、例えば典型的には半導体ウェハーに注入された不純物の活性化に利用される。イオン注入法によって不純物が注入された半導体ウェハーの表面にフラッシュランプからフラッシュ光を照射すれば、当該半導体ウェハーの表面を極短時間だけ活性化温度にまで昇温することができ、不純物を深く拡散させることなく、不純物活性化のみを実行することができるのである。 (4) Such flash lamp annealing is used for a process requiring heating for an extremely short time, for example, activation of impurities typically implanted into a semiconductor wafer. By irradiating the surface of the semiconductor wafer into which impurities are implanted by the ion implantation method with flash light from a flash lamp, the surface of the semiconductor wafer can be heated to the activation temperature for a very short time, and the impurities can be diffused deeply. Without activation, only impurity activation can be performed.
 フラッシュランプアニールでは、極めて照射時間の短いフラッシュ光を照射して瞬間的に半導体ウェハーを昇温するため、ウェハー温度を測定しながらフラッシュランプの発光強度をリアルタイムでフィードバック制御することはできない。このため、半導体ウェハーの表面が所定の目標温度にまで適切に昇温するように、予めフラッシュランプの発光強度を調整しておく必要がある。特許文献1には、加熱処理前に処理対象となる半導体ウェハーの反射率を測定し、その測定した反射率に基づいてフラッシュランプへの印加電圧を算定する技術が開示されている。特許文献1に開示の技術においては、フラッシュ光照射を行う処理チャンバーに半導体ウェハーを搬入する前に、当該半導体ウェハーの反射率を測定している。 In flash lamp annealing, since the semiconductor wafer is instantaneously heated by irradiating flash light with an extremely short irradiation time, it is not possible to feedback-control the emission intensity of the flash lamp in real time while measuring the wafer temperature. For this reason, it is necessary to adjust the light emission intensity of the flash lamp in advance so that the surface of the semiconductor wafer appropriately rises to a predetermined target temperature. Patent Literature 1 discloses a technique in which the reflectance of a semiconductor wafer to be processed is measured before heat treatment, and a voltage applied to a flash lamp is calculated based on the measured reflectance. In the technique disclosed in Patent Literature 1, the reflectivity of the semiconductor wafer is measured before the semiconductor wafer is carried into a processing chamber for performing flash light irradiation.
特開2011-204741号公報JP 2011-204741 A
 ところで、半導体ウェハーの反射率は、ウェハー表面の性状やウェハー表面に形成されている膜によって異なる。従って、処理チャンバーに半導体ウェハーを搬入する前に、当該半導体ウェハーの反射率を測定することによって、規格外の半導体ウェハーが搬入されるのを事前にチェックすることができる。しかし、従来は、処理チャンバーに半導体ウェハーを搬入する前に、当該半導体ウェハーの反射率を測定するのみであったため、正常な加熱処理が行われたかを反射率測定によって確認することはできなかった。 By the way, the reflectivity of a semiconductor wafer differs depending on the properties of the wafer surface and the film formed on the wafer surface. Therefore, by measuring the reflectivity of the semiconductor wafer before loading the semiconductor wafer into the processing chamber, it is possible to check in advance that a nonstandard semiconductor wafer is loaded. However, conventionally, before carrying the semiconductor wafer into the processing chamber, only the reflectance of the semiconductor wafer was measured. Therefore, it was not possible to confirm whether the normal heating process was performed by the reflectance measurement. .
 本発明は、上記課題に鑑みてなされたものであり、正常な加熱処理が行われたかを簡易に確認することができる熱処理装置および熱処理方法を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a heat treatment apparatus and a heat treatment method that can easily confirm whether a normal heat treatment has been performed.
 上記課題を解決するため、この発明の第1の態様は、基板にフラッシュ光を照射することによって該基板を加熱する熱処理装置において、基板を収容する処理チャンバーと、前記処理チャンバーに収容された前記基板にフラッシュ光を照射して加熱するフラッシュランプと、前記フラッシュランプからのフラッシュ光照射によって加熱された後の前記基板の反射率を測定する反射率測定部と、を備える。 In order to solve the above-described problems, a first aspect of the present invention is directed to a heat treatment apparatus for heating a substrate by irradiating the substrate with flash light, wherein the processing chamber accommodates the substrate; A flash lamp for irradiating the substrate with flash light to heat the substrate; and a reflectance measuring unit for measuring a reflectance of the substrate after being heated by the flash light irradiation from the flash lamp.
 また、第2の態様は、第1の態様に係る熱処理装置において、前記反射率測定部は、前記フラッシュランプからフラッシュ光を照射する前の前記基板の反射率も測定する。 According to a second aspect, in the heat treatment apparatus according to the first aspect, the reflectivity measuring unit also measures the reflectivity of the substrate before irradiating flash light from the flash lamp.
 また、第3の態様は、第1または第2の態様に係る熱処理装置において、未処理の基板を装置内に搬入するとともに処理済みの基板を装置外に搬出するインデクサ部をさらに備え、前記反射率測定部は、前記処理チャンバーから前記インデクサ部に至る基板の搬送経路に設けられる。 Further, a third aspect is the heat treatment apparatus according to the first or second aspect, further comprising an indexer section for loading an unprocessed substrate into the apparatus and unloading a processed substrate outside the apparatus. The rate measuring unit is provided on a substrate transfer path from the processing chamber to the indexer unit.
 また、第4の態様は、第3の態様に係る熱処理装置において、前記搬送経路には、加熱後の基板を冷却する冷却チャンバーが設置され、前記反射率測定部は、前記冷却チャンバーに設けられる。 According to a fourth aspect, in the heat treatment apparatus according to the third aspect, a cooling chamber for cooling the substrate after heating is provided in the transport path, and the reflectance measuring unit is provided in the cooling chamber. .
 また、第5の態様は、第1から第4のいずれかの態様に係る熱処理装置において、前記反射率測定部によって測定された前記基板の反射率に基づいて、前記基板の加熱処理が正常に行われたか否かを判定する判定部と、前記判定部によって前記基板の加熱処理が正常に行われていないと判定されたときに警告を発報する警告発報部と、をさらに備える。 According to a fifth aspect, in the heat treatment apparatus according to any one of the first to fourth aspects, based on the reflectance of the substrate measured by the reflectance measuring unit, the heat treatment of the substrate is performed normally. It further includes a determining unit that determines whether or not the heating process has been performed, and a warning issuing unit that issues a warning when the determining unit determines that the heating process of the substrate is not performed normally.
 また、第6の態様は、第1から第5のいずれかの態様に係る熱処理装置において、前記反射率測定部によって測定された前記基板の反射率を記憶する記憶部をさらに備える。 According to a sixth aspect, in the heat treatment apparatus according to any one of the first to fifth aspects, the heat treatment apparatus further includes a storage unit that stores the reflectance of the substrate measured by the reflectance measurement unit.
 また、第7の態様は、第6の態様に係る熱処理装置において、前記記憶部に蓄積された複数の基板の反射率に基づいて人工知能により前記フラッシュランプの発光強度を調整する。 According to a seventh aspect, in the heat treatment apparatus according to the sixth aspect, the emission intensity of the flash lamp is adjusted by artificial intelligence based on the reflectance of the plurality of substrates stored in the storage unit.
 また、第8の態様は、第1から第7のいずれかの態様に係る熱処理装置において、前記フラッシュランプからフラッシュ光を照射する前に前記基板に光を照射して予備加熱を行う連続点灯ランプをさらに備える。 According to an eighth aspect, in the heat treatment apparatus according to any one of the first to seventh aspects, the continuous lighting lamp irradiates the substrate with light before irradiating the substrate with flash light before irradiating the substrate with flash light from the flash lamp. Is further provided.
 また、第9の態様は、基板にフラッシュ光を照射することによって該基板を加熱する熱処理方法において、処理チャンバーに収容された基板にフラッシュランプからフラッシュ光を照射して加熱する照射工程と、前記照射工程の後に前記基板の反射率を測定する処理後反射率測定工程と、を備える。 In a ninth aspect, in a heat treatment method of heating a substrate by irradiating the substrate with flash light, an irradiation step of irradiating the substrate housed in the processing chamber with flash light from a flash lamp to heat the substrate, A post-processing reflectance measurement step of measuring the reflectance of the substrate after the irradiation step.
 また、第10の態様は、第9の態様に係る熱処理方法において、前記照射工程の前に前記基板の反射率を測定する処理前反射率測定工程をさらに備える。 According to a tenth aspect, in the heat treatment method according to the ninth aspect, a pre-processing reflectance measurement step of measuring a reflectance of the substrate before the irradiation step is further provided.
 また、第11の態様は、第9または第10の態様に係る熱処理方法において、前記処理後反射率測定工程にて測定された前記基板の反射率に基づいて、前記基板の加熱処理が正常に行われたか否かを判定する判定工程と、前記判定工程にて前記基板の加熱処理が正常に行われていないと判定されたときに警告を発報する警告発報工程と、をさらに備える。 According to an eleventh aspect, in the heat treatment method according to the ninth or tenth aspect, the heat treatment of the substrate is performed normally based on the reflectance of the substrate measured in the post-processing reflectance measurement step. The method further includes a determining step of determining whether or not the heating process has been performed, and a warning issuing step of issuing a warning when it is determined in the determining step that the heating processing of the substrate is not performed normally.
 また、第12の態様は、第9から第11のいずれかの態様に係る熱処理方法において、前記処理後反射率測定工程にて測定された前記基板の反射率を記憶部に格納する記憶工程をさらに備える。 In a twelfth aspect, in the heat treatment method according to any one of the ninth to eleventh aspects, a storage step of storing the reflectance of the substrate measured in the post-processing reflectance measurement step in a storage unit is provided. Further prepare.
 また、第13の態様は、第12の態様に係る熱処理方法において、前記記憶部に蓄積された複数の基板の反射率に基づいて前記フラッシュランプの発光強度を調整する調整工程をさらに備える。 A thirteenth aspect is the heat treatment method according to the twelfth aspect, further comprising an adjusting step of adjusting the light emission intensity of the flash lamp based on the reflectance of the plurality of substrates accumulated in the storage unit.
 また、第14の態様は、第13の態様に係る熱処理方法において、前記調整工程では、人工知能により前記フラッシュランプの発光強度を調整する。 According to a fourteenth aspect, in the heat treatment method according to the thirteenth aspect, the emission intensity of the flash lamp is adjusted by artificial intelligence in the adjusting step.
 また、第15の態様は、第9から第14のいずれかの態様に係る熱処理方法において、前記フラッシュランプからフラッシュ光を照射する前に連続点灯ランプから前記基板に光を照射して予備加熱を行う予備加熱工程をさらに備える。 According to a fifteenth aspect, in the heat treatment method according to any one of the ninth to fourteenth aspects, the substrate is preliminarily heated by irradiating the substrate with light from a continuous lighting lamp before irradiating flash light from the flash lamp. The method further includes a preheating step to be performed.
 第1から第8の態様に係る熱処理装置によれば、フラッシュランプからのフラッシュ光照射によって加熱された後の基板の反射率を測定するため、その加熱後の基板の反射率に基づいて正常な加熱処理が行われたかを簡易に確認することができる。 According to the heat treatment apparatus according to the first to eighth aspects, since the reflectance of the substrate after being heated by the irradiation of the flash light from the flash lamp is measured, a normal value is determined based on the reflectance of the heated substrate. Whether the heat treatment has been performed can be easily confirmed.
 特に、第7の態様に係る熱処理装置によれば、記憶部に蓄積された複数の基板の反射率に基づいて人工知能によりフラッシュランプの発光強度を調整するため、加熱後の基板の反射率も考慮してフラッシュランプの発光強度を適正な値に調整することができる。 In particular, according to the heat treatment apparatus of the seventh aspect, since the emission intensity of the flash lamp is adjusted by artificial intelligence based on the reflectance of the plurality of substrates stored in the storage unit, the reflectance of the heated substrate is also reduced. The light emission intensity of the flash lamp can be adjusted to an appropriate value in consideration of the above.
 第9から第15の態様に係る熱処理方法によれば、基板にフラッシュランプからフラッシュ光を照射して加熱する照射工程の後に基板の反射率を測定するため、その加熱後の基板の反射率に基づいて正常な加熱処理が行われたかを簡易に確認することができる。 According to the heat treatment method according to the ninth to fifteenth aspects, the reflectance of the substrate is measured after the irradiation step of irradiating the substrate with flash light from a flash lamp to heat the substrate. It is possible to easily confirm whether the normal heat treatment has been performed based on the above.
 特に、第13および第14の態様に係る熱処理方法によれば、記憶部に蓄積された複数の基板の反射率に基づいてフラッシュランプの発光強度を調整するため、加熱後の基板の反射率も考慮してフラッシュランプの発光強度を適正な値に調整することができる。 In particular, according to the heat treatment methods according to the thirteenth and fourteenth aspects, the emission intensity of the flash lamp is adjusted based on the reflectances of the plurality of substrates accumulated in the storage unit. The light emission intensity of the flash lamp can be adjusted to an appropriate value in consideration of the above.
本発明に係る熱処理装置を示す平面図である。It is a top view which shows the heat processing apparatus which concerns on this invention. 図1の熱処理装置の正面図である。It is a front view of the heat processing apparatus of FIG. 熱処理部の構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the structure of a heat processing part. 保持部の全体外観を示す斜視図である。It is a perspective view which shows the whole external appearance of a holding part. サセプタの平面図である。It is a top view of a susceptor. サセプタの断面図である。It is sectional drawing of a susceptor. 移載機構の平面図である。It is a top view of a transfer mechanism. 移載機構の側面図である。It is a side view of a transfer mechanism. 複数のハロゲンランプの配置を示す平面図である。It is a top view showing arrangement of a plurality of halogen lamps. 熱処理装置の制御部の機能ブロック図である。It is a functional block diagram of the control part of a heat treatment apparatus.
 以下、図面を参照しつつ本発明の実施の形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 まず、本発明に係る熱処理装置100の全体概略構成について説明する。図1は、本発明に係る熱処理装置100を示す平面図であり、図2はその正面図である。熱処理装置100は基板として円板形状の半導体ウェハーWにフラッシュ光を照射してその半導体ウェハーWを加熱するフラッシュランプアニール装置である。処理対象となる半導体ウェハーWのサイズは特に限定されるものではないが、例えばφ300mmやφ450mmである。熱処理装置100に搬入される前の半導体ウェハーWには不純物が注入されており、熱処理装置100による加熱処理によって注入された不純物の活性化処理が実行される。なお、図1および以降の各図においては、理解容易のため、必要に応じて各部の寸法や数を誇張または簡略化して描いている。また、図1~図3の各図においては、それらの方向関係を明確にするためZ軸方向を鉛直方向とし、XY平面を水平面とするXYZ直交座標系を付している。 First, the overall schematic configuration of the heat treatment apparatus 100 according to the present invention will be described. FIG. 1 is a plan view showing a heat treatment apparatus 100 according to the present invention, and FIG. 2 is a front view thereof. The heat treatment apparatus 100 is a flash lamp annealing apparatus that irradiates a disk-shaped semiconductor wafer W as a substrate with flash light and heats the semiconductor wafer W. The size of the semiconductor wafer W to be processed is not particularly limited, but is, for example, φ300 mm or φ450 mm. Impurities have been implanted into the semiconductor wafer W before being loaded into the heat treatment apparatus 100, and activation processing of the impurities implanted by the heat treatment by the heat treatment apparatus 100 is executed. Note that, in FIG. 1 and each of the following drawings, the dimensions and the numbers of the respective parts are exaggerated or simplified as necessary for easy understanding. In addition, in each of FIGS. 1 to 3, an XYZ orthogonal coordinate system is used in which the Z-axis direction is a vertical direction and the XY plane is a horizontal plane in order to clarify the directional relationship.
 図1および図2に示すように、熱処理装置100は、未処理の半導体ウェハーWを外部から装置内に搬入するとともに処理済みの半導体ウェハーWを装置外に搬出するためのインデクサ部101、未処理の半導体ウェハーWの位置決めを行うアライメント部230、加熱処理後の半導体ウェハーWの冷却を行う2つの冷却部130,140、半導体ウェハーWにフラッシュ加熱処理を施す熱処理部160並びに冷却部130,140および熱処理部160に対して半導体ウェハーWの受け渡しを行う搬送ロボット150を備える。また、熱処理装置100は、上記の各処理部に設けられた動作機構および搬送ロボット150を制御して半導体ウェハーWのフラッシュ加熱処理を進行させる制御部3を備える。 As shown in FIGS. 1 and 2, the heat treatment apparatus 100 includes an indexer unit 101 for loading an unprocessed semiconductor wafer W into the apparatus from outside and unloading the processed semiconductor wafer W from the apparatus. Alignment unit 230 for positioning the semiconductor wafer W, two cooling units 130 and 140 for cooling the semiconductor wafer W after the heat treatment, a heat treatment unit 160 for performing a flash heat treatment on the semiconductor wafer W, and cooling units 130 and 140 and A transfer robot 150 that transfers the semiconductor wafer W to the heat treatment unit 160 is provided. In addition, the heat treatment apparatus 100 includes a control unit 3 that controls the operation mechanism and the transfer robot 150 provided in each of the above-described processing units to advance the flash heating processing of the semiconductor wafer W.
 インデクサ部101は、複数のキャリアC(本実施形態では2個)を並べて載置するロードポート110と、各キャリアCから未処理の半導体ウェハーWを取り出すとともに、各キャリアCに処理済みの半導体ウェハーWを収納する受渡ロボット120とを備えている。未処理の半導体ウェハーWを収容したキャリアCは無人搬送車(AGV、OHT)等によって搬送されてロードポート110に載置されるともに、処理済みの半導体ウェハーWを収容したキャリアCは無人搬送車によってロードポート110から持ち去られる。 The indexer unit 101 includes a load port 110 on which a plurality of carriers C (two in the present embodiment) are placed side by side, an unprocessed semiconductor wafer W from each carrier C, and a semiconductor wafer processed on each carrier C. And a delivery robot 120 for storing W. The carrier C containing the unprocessed semiconductor wafer W is transported by an automatic guided vehicle (AGV, OHT) or the like and placed on the load port 110, and the carrier C containing the processed semiconductor wafer W is an unmanned transport vehicle. From the load port 110.
 また、ロードポート110においては、受渡ロボット120がキャリアCに対して任意の半導体ウェハーWの出し入れを行うことができるように、キャリアCが図2の矢印CUにて示す如く昇降移動可能に構成されている。なお、キャリアCの形態としては、半導体ウェハーWを密閉空間に収納するFOUP(front opening unified pod)の他に、SMIF(Standard Mechanical Inter Face)ポッドや収納した半導体ウェハーWを外気に曝すOC(open cassette)であっても良い。 The load port 110 is configured so that the carrier C can be moved up and down as shown by an arrow CU in FIG. 2 so that the delivery robot 120 can take in and out an arbitrary semiconductor wafer W with respect to the carrier C. ing. In addition, as a form of the carrier C, in addition to a FOUP (front opening unified pod) for storing the semiconductor wafer W in an enclosed space, a SMIF (Standard Mechanical Inter Interface) pod or an OC (open) for exposing the stored semiconductor wafer W to the outside air. cassette).
 また、受渡ロボット120は、図1の矢印120Sにて示すようなスライド移動、矢印120Rにて示すような旋回動作および昇降動作が可能とされている。これにより、受渡ロボット120は、2つのキャリアCに対して半導体ウェハーWの出し入れを行うとともに、アライメント部230および2つの冷却部130,140に対して半導体ウェハーWの受け渡しを行う。受渡ロボット120によるキャリアCに対する半導体ウェハーWの出し入れは、ハンド121のスライド移動、および、キャリアCの昇降移動により行われる。また、受渡ロボット120とアライメント部230または冷却部130,140との半導体ウェハーWの受け渡しは、ハンド121のスライド移動、および、受渡ロボット120の昇降動作によって行われる。 The delivery robot 120 is capable of sliding as shown by an arrow 120S in FIG. 1, turning and raising and lowering as shown by an arrow 120R in FIG. Thereby, the transfer robot 120 transfers the semiconductor wafer W to and from the two carriers C, and transfers the semiconductor wafer W to the alignment unit 230 and the two cooling units 130 and 140. The transfer of the semiconductor wafer W to / from the carrier C by the delivery robot 120 is performed by sliding the hand 121 and moving the carrier C up and down. The delivery of the semiconductor wafer W between the delivery robot 120 and the alignment unit 230 or the cooling units 130 and 140 is performed by sliding the hand 121 and moving the delivery robot 120 up and down.
 アライメント部230は、Y軸方向に沿ったインデクサ部101の側方に接続されて設けられている。アライメント部230は、半導体ウェハーWを水平面内で回転させてフラッシュ加熱に適切な向きに向ける処理部である。アライメント部230は、アルミニウム合金製の筐体であるアライメントチャンバー231の内部に、半導体ウェハーWを水平姿勢に支持して回転させる機構、および、半導体ウェハーWの周縁部に形成されたノッチやオリフラ等を光学的に検出する機構などを設けて構成される(いずれも図示省略)。 The alignment unit 230 is provided to be connected to the side of the indexer unit 101 along the Y-axis direction. The alignment unit 230 is a processing unit that rotates the semiconductor wafer W in a horizontal plane and directs the semiconductor wafer W to an appropriate direction for flash heating. The alignment unit 230 includes a mechanism for supporting and rotating the semiconductor wafer W in a horizontal position and a notch or an orientation flat formed on a peripheral portion of the semiconductor wafer W inside an alignment chamber 231 that is a housing made of an aluminum alloy. Is provided by providing a mechanism for optically detecting (not shown).
 アライメント部230への半導体ウェハーWの受け渡しは受渡ロボット120によって行われる。受渡ロボット120からアライメントチャンバー231へはウェハー中心が所定の位置に位置するように半導体ウェハーWが渡される。アライメント部230では、インデクサ部101から受け取った半導体ウェハーWの中心部を回転中心として鉛直方向軸まわりで半導体ウェハーWを回転させ、ノッチ等を光学的に検出することによって半導体ウェハーWの向きを調整する。向き調整の終了した半導体ウェハーWは受渡ロボット120によってアライメントチャンバー231から取り出される。 The delivery of the semiconductor wafer W to the alignment unit 230 is performed by the delivery robot 120. The semiconductor wafer W is transferred from the transfer robot 120 to the alignment chamber 231 such that the center of the wafer is located at a predetermined position. The alignment unit 230 adjusts the direction of the semiconductor wafer W by rotating the semiconductor wafer W around a vertical axis around the center of the semiconductor wafer W received from the indexer unit 101 as a center of rotation and optically detecting notches and the like. I do. The semiconductor wafer W whose orientation has been adjusted is taken out of the alignment chamber 231 by the delivery robot 120.
 搬送ロボット150による半導体ウェハーWの搬送空間として搬送ロボット150を収容する搬送チャンバー170が設けられている。その搬送チャンバー170の三方に熱処理部160の処理チャンバー6、冷却部130の第1クールチャンバー131および冷却部140の第2クールチャンバー141が連通接続されている。 (4) A transfer chamber 170 that houses the transfer robot 150 is provided as a transfer space for the semiconductor wafer W by the transfer robot 150. The processing chamber 6 of the heat treatment unit 160, the first cool chamber 131 of the cooling unit 130, and the second cool chamber 141 of the cooling unit 140 are connected to three sides of the transfer chamber 170.
 熱処理装置100の主要部である熱処理部160は、予備加熱を行った半導体ウェハーWにキセノンフラッシュランプFLからの閃光(フラッシュ光)を照射してフラッシュ加熱処理を行う基板処理部である。熱処理部160の詳細な構成についてはさらに後述する。 (4) The heat treatment section 160, which is a main part of the heat treatment apparatus 100, is a substrate processing section that irradiates flash light (flash light) from the xenon flash lamp FL onto the pre-heated semiconductor wafer W to perform a flash heat treatment. The detailed configuration of the heat treatment unit 160 will be further described later.
 2つの冷却部130,140は、概ね同様の構成を備える。冷却部130,140はそれぞれ、アルミニウム合金製の筐体である第1クールチャンバー131,第2クールチャンバー141の内部に、金属製の冷却プレートと、その上面に載置された石英板とを備える(いずれも図示省略)。当該冷却プレートは、ペルチェ素子または恒温水循環によって常温(約23℃)に温調されている。熱処理部160にてフラッシュ加熱処理が施された半導体ウェハーWは、第1クールチャンバー131または第2クールチャンバー141に搬入されて当該石英板に載置されて冷却される。 The two cooling units 130 and 140 have substantially the same configuration. Each of the cooling units 130 and 140 includes a metal cooling plate and a quartz plate placed on the upper surface thereof in the first cool chamber 131 and the second cool chamber 141, which are aluminum alloy housings, respectively. (All are not shown). The cooling plate is adjusted to a normal temperature (about 23 ° C.) by a Peltier device or a constant-temperature water circulation. The semiconductor wafer W that has been subjected to the flash heat treatment in the heat treatment unit 160 is carried into the first cool chamber 131 or the second cool chamber 141, placed on the quartz plate, and cooled.
 第1クールチャンバー131および第2クールチャンバー141はともに、インデクサ部101と搬送チャンバー170との間にて、それらの双方に接続されている。第1クールチャンバー131および第2クールチャンバー141には、半導体ウェハーWを搬入出するための2つの開口が形設されている。第1クールチャンバー131の2つの開口のうちインデクサ部101に接続される開口はゲートバルブ181によって開閉可能とされている。一方、第1クールチャンバー131の搬送チャンバー170に接続される開口はゲートバルブ183によって開閉可能とされている。すなわち、第1クールチャンバー131とインデクサ部101とはゲートバルブ181を介して接続され、第1クールチャンバー131と搬送チャンバー170とはゲートバルブ183を介して接続されている。 The first cool chamber 131 and the second cool chamber 141 are both connected between the indexer unit 101 and the transfer chamber 170. In the first cool chamber 131 and the second cool chamber 141, two openings for carrying in and out the semiconductor wafer W are formed. Of the two openings of the first cool chamber 131, the opening connected to the indexer unit 101 can be opened and closed by a gate valve 181. On the other hand, the opening of the first cool chamber 131 connected to the transfer chamber 170 can be opened and closed by a gate valve 183. That is, the first cool chamber 131 and the indexer unit 101 are connected via the gate valve 181, and the first cool chamber 131 and the transfer chamber 170 are connected via the gate valve 183.
 インデクサ部101と第1クールチャンバー131との間で半導体ウェハーWの受け渡しを行う際には、ゲートバルブ181が開放される。また、第1クールチャンバー131と搬送チャンバー170との間で半導体ウェハーWの受け渡しを行う際には、ゲートバルブ183が開放される。ゲートバルブ181およびゲートバルブ183が閉鎖されているときには、第1クールチャンバー131の内部が密閉空間となる。 When the semiconductor wafer W is transferred between the indexer unit 101 and the first cool chamber 131, the gate valve 181 is opened. Further, when the semiconductor wafer W is transferred between the first cool chamber 131 and the transfer chamber 170, the gate valve 183 is opened. When the gate valve 181 and the gate valve 183 are closed, the inside of the first cool chamber 131 is a closed space.
 また、第2クールチャンバー141の2つの開口のうちインデクサ部101に接続される開口はゲートバルブ182によって開閉可能とされている。一方、第2クールチャンバー141の搬送チャンバー170に接続される開口はゲートバルブ184によって開閉可能とされている。すなわち、第2クールチャンバー141とインデクサ部101とはゲートバルブ182を介して接続され、第2クールチャンバー141と搬送チャンバー170とはゲートバルブ184を介して接続されている。 開口 Of the two openings of the second cool chamber 141, the opening connected to the indexer unit 101 can be opened and closed by a gate valve 182. On the other hand, an opening of the second cool chamber 141 connected to the transfer chamber 170 can be opened and closed by a gate valve 184. That is, the second cool chamber 141 and the indexer unit 101 are connected via the gate valve 182, and the second cool chamber 141 and the transfer chamber 170 are connected via the gate valve 184.
 インデクサ部101と第2クールチャンバー141との間で半導体ウェハーWの受け渡しを行う際には、ゲートバルブ182が開放される。また、第2クールチャンバー141と搬送チャンバー170との間で半導体ウェハーWの受け渡しを行う際には、ゲートバルブ184が開放される。ゲートバルブ182およびゲートバルブ184が閉鎖されているときには、第2クールチャンバー141の内部が密閉空間となる。 When the semiconductor wafer W is transferred between the indexer unit 101 and the second cool chamber 141, the gate valve 182 is opened. Further, when the semiconductor wafer W is transferred between the second cool chamber 141 and the transfer chamber 170, the gate valve 184 is opened. When the gate valve 182 and the gate valve 184 are closed, the inside of the second cool chamber 141 is a closed space.
 また、第1クールチャンバー131および第2クールチャンバー141には、それぞれ上記の石英板に載置されて支持されている半導体ウェハーWの表面の反射率を測定する反射率測定部135および反射率測定部145が設けられている。反射率測定部135,145はともに、半導体ウェハーWの表面に光を照射するとともに、当該表面にて反射された反射光を受光し、照射した光の強度と受光した反射光の強度とから半導体ウェハーWの表面の反射率を測定する。より具体的には、反射率測定部135,145は、受光した反射光の強度を照射した光の強度で除することによって半導体ウェハーWの反射率を算定する。 In the first cool chamber 131 and the second cool chamber 141, a reflectivity measuring section 135 for measuring the reflectivity of the surface of the semiconductor wafer W mounted and supported on the quartz plate, and a reflectivity measurement section, respectively. A part 145 is provided. Both the reflectivity measuring units 135 and 145 irradiate the surface of the semiconductor wafer W with light, receive the reflected light reflected on the surface, and determine the semiconductor based on the intensity of the irradiated light and the intensity of the received reflected light. The reflectance of the surface of the wafer W is measured. More specifically, the reflectance measuring units 135 and 145 calculate the reflectance of the semiconductor wafer W by dividing the intensity of the received reflected light by the intensity of the irradiated light.
 さらに、冷却部130,140はそれぞれ、第1クールチャンバー131,第2クールチャンバー141に清浄な窒素ガスを供給するガス供給機構とチャンバー内の雰囲気を排気する排気機構とを備える。これらのガス供給機構および排気機構は、流量を2段階に切り換え可能とされていても良い。また、搬送チャンバー170およびアライメントチャンバー231にもガス供給部から窒素ガスが供給されるとともに、それらの内部の雰囲気が排気部によって排気される。 The cooling units 130 and 140 further include a gas supply mechanism for supplying clean nitrogen gas to the first cool chamber 131 and the second cool chamber 141 and an exhaust mechanism for exhausting the atmosphere in the chambers. These gas supply mechanism and exhaust mechanism may be capable of switching the flow rate in two stages. Further, the transfer chamber 170 and the alignment chamber 231 are also supplied with a nitrogen gas from the gas supply unit, and the atmosphere inside them is exhausted by the exhaust unit.
 搬送チャンバー170に設けられた搬送ロボット150は、鉛直方向に沿った軸を中心に矢印150Rにて示すように旋回可能とされる。搬送ロボット150は、複数のアームセグメントからなる2つのリンク機構を有し、それら2つのリンク機構の先端にはそれぞれ半導体ウェハーWを保持する搬送ハンド151a,151bが設けられている。これらの搬送ハンド151a,151bは上下に所定のピッチだけ隔てて配置され、リンク機構によりそれぞれ独立して同一水平方向に直線的にスライド移動可能とされている。また、搬送ロボット150は、2つのリンク機構が設けられるベースを昇降移動することにより、所定のピッチだけ離れた状態のまま2つの搬送ハンド151a,151bを昇降移動させる。 (4) The transfer robot 150 provided in the transfer chamber 170 is capable of turning around an axis along the vertical direction as indicated by an arrow 150R. The transfer robot 150 has two link mechanisms composed of a plurality of arm segments. Transfer hands 151a and 151b that hold the semiconductor wafer W are provided at the ends of the two link mechanisms. These transport hands 151a and 151b are vertically spaced at a predetermined pitch, and can be independently slid linearly in the same horizontal direction by a link mechanism. In addition, the transfer robot 150 moves up and down the base provided with the two link mechanisms, thereby moving the two transfer hands 151a and 151b up and down while being separated by a predetermined pitch.
 搬送ロボット150が第1クールチャンバー131、第2クールチャンバー141または熱処理部160の処理チャンバー6を受け渡し相手として半導体ウェハーWの受け渡し(出し入れ)を行う際には、まず、両搬送ハンド151a,151bが受け渡し相手と対向するように旋回し、その後(または旋回している間に)昇降移動していずれかの搬送ハンドが受け渡し相手と半導体ウェハーWを受け渡しする高さに位置する。そして、搬送ハンド151a(151b)を水平方向に直線的にスライド移動させて受け渡し相手と半導体ウェハーWの受け渡しを行う。 When the transfer robot 150 transfers (puts in and out) the semiconductor wafer W as a transfer partner with the first cool chamber 131, the second cool chamber 141, or the processing chamber 6 of the heat treatment unit 160, first, both transfer hands 151a and 151b are used. It turns so as to face the transfer partner, and then moves up and down (or during the turn), and is located at a height at which one of the transfer hands transfers the semiconductor wafer W to the transfer partner. Then, the transfer hand 151a (151b) is linearly slid in the horizontal direction to transfer the semiconductor wafer W to and from the transfer partner.
 搬送ロボット150と受渡ロボット120との半導体ウェハーWの受け渡しは冷却部130,140を介して行うことができる。すなわち、冷却部130の第1クールチャンバー131および冷却部140の第2クールチャンバー141は、搬送ロボット150と受渡ロボット120との間で半導体ウェハーWを受け渡すためのパスとしても機能するものである。具体的には、搬送ロボット150または受渡ロボット120のうちの一方が第1クールチャンバー131または第2クールチャンバー141に渡した半導体ウェハーWを他方が受け取ることによって半導体ウェハーWの受け渡しが行われる。 (4) The transfer of the semiconductor wafer W between the transfer robot 150 and the transfer robot 120 can be performed via the cooling units 130 and 140. That is, the first cool chamber 131 of the cooling unit 130 and the second cool chamber 141 of the cooling unit 140 also function as a path for transferring the semiconductor wafer W between the transfer robot 150 and the transfer robot 120. . Specifically, the transfer of the semiconductor wafer W is performed when one of the transfer robot 150 and the transfer robot 120 receives the semiconductor wafer W transferred to the first cool chamber 131 or the second cool chamber 141 by the other.
 上述したように、第1クールチャンバー131および第2クールチャンバー141とインデクサ部101との間にはそれぞれゲートバルブ181,182が設けられている。また、搬送チャンバー170と第1クールチャンバー131および第2クールチャンバー141との間にはそれぞれゲートバルブ183,184が設けられている。さらに、搬送チャンバー170と熱処理部160の処理チャンバー6との間にはゲートバルブ185が設けられている。熱処理装置100内にて半導体ウェハーWが搬送される際には、適宜これらのゲートバルブが開閉される。 As described above, the gate valves 181 and 182 are provided between the first cool chamber 131 and the second cool chamber 141 and the indexer unit 101, respectively. Gate valves 183 and 184 are provided between the transfer chamber 170 and the first cool chamber 131 and the second cool chamber 141, respectively. Further, a gate valve 185 is provided between the transfer chamber 170 and the processing chamber 6 of the heat treatment section 160. When the semiconductor wafer W is transferred in the heat treatment apparatus 100, these gate valves are opened and closed appropriately.
 次に、熱処理部160の構成について説明する。図3は、熱処理部160の構成を示す縦断面図である。熱処理部160は、半導体ウェハーWを収容して加熱処理を行う処理チャンバー6と、複数のフラッシュランプFLを内蔵するフラッシュランプハウス5と、複数のハロゲンランプHLを内蔵するハロゲンランプハウス4と、を備える。処理チャンバー6の上側にフラッシュランプハウス5が設けられるとともに、下側にハロゲンランプハウス4が設けられている。また、熱処理部160は、処理チャンバー6の内部に、半導体ウェハーWを水平姿勢に保持する保持部7と、保持部7と搬送ロボット150との間で半導体ウェハーWの受け渡しを行う移載機構10と、を備える。 Next, the configuration of the heat treatment unit 160 will be described. FIG. 3 is a longitudinal sectional view showing the configuration of the heat treatment section 160. The heat treatment section 160 includes a processing chamber 6 that accommodates the semiconductor wafer W and performs a heat treatment, a flash lamp house 5 that contains a plurality of flash lamps FL, and a halogen lamp house 4 that contains a plurality of halogen lamps HL. Prepare. A flash lamp house 5 is provided above the processing chamber 6, and a halogen lamp house 4 is provided below. Further, the heat treatment unit 160 includes a holding unit 7 that holds the semiconductor wafer W in a horizontal position inside the processing chamber 6 and a transfer mechanism 10 that transfers the semiconductor wafer W between the holding unit 7 and the transfer robot 150. And
 処理チャンバー6は、筒状のチャンバー側部61の上下に石英製のチャンバー窓を装着して構成されている。チャンバー側部61は上下が開口された概略筒形状を有しており、上側開口には上側チャンバー窓63が装着されて閉塞され、下側開口には下側チャンバー窓64が装着されて閉塞されている。処理チャンバー6の天井部を構成する上側チャンバー窓63は、石英により形成された円板形状部材であり、フラッシュランプFLから出射されたフラッシュ光を処理チャンバー6内に透過する石英窓として機能する。また、処理チャンバー6の床部を構成する下側チャンバー窓64も、石英により形成された円板形状部材であり、ハロゲンランプHLからの光を処理チャンバー6内に透過する石英窓として機能する。 The processing chamber 6 is configured by mounting a quartz chamber window above and below a cylindrical chamber side 61. The chamber side portion 61 has a substantially cylindrical shape with an open top and bottom, an upper chamber window 63 is mounted and closed on an upper opening, and a lower chamber window 64 is mounted and closed on a lower opening. ing. The upper chamber window 63 that forms the ceiling of the processing chamber 6 is a disk-shaped member formed of quartz, and functions as a quartz window that transmits flash light emitted from the flash lamp FL into the processing chamber 6. Further, the lower chamber window 64 constituting the floor of the processing chamber 6 is also a disc-shaped member formed of quartz, and functions as a quartz window for transmitting light from the halogen lamp HL into the processing chamber 6.
 また、チャンバー側部61の内側の壁面の上部には反射リング68が装着され、下部には反射リング69が装着されている。反射リング68,69は、ともに円環状に形成されている。上側の反射リング68は、チャンバー側部61の上側から嵌め込むことによって装着される。一方、下側の反射リング69は、チャンバー側部61の下側から嵌め込んで図示省略のビスで留めることによって装着される。すなわち、反射リング68,69は、ともに着脱自在にチャンバー側部61に装着されるものである。処理チャンバー6の内側空間、すなわち上側チャンバー窓63、下側チャンバー窓64、チャンバー側部61および反射リング68,69によって囲まれる空間が熱処理空間65として規定される。 反射 Reflection ring 68 is attached to the upper part of the inner wall surface of chamber side part 61, and reflection ring 69 is attached to the lower part. The reflection rings 68 and 69 are both formed in an annular shape. The upper reflecting ring 68 is mounted by being fitted from above the chamber side 61. On the other hand, the lower reflective ring 69 is mounted by being fitted from below the chamber side 61 and fastened with screws (not shown). That is, the reflection rings 68 and 69 are both detachably attached to the chamber side 61. The space inside the processing chamber 6, that is, the space surrounded by the upper chamber window 63, the lower chamber window 64, the chamber side 61, and the reflection rings 68 and 69 is defined as the heat treatment space 65.
 チャンバー側部61に反射リング68,69が装着されることによって、処理チャンバー6の内壁面に凹部62が形成される。すなわち、チャンバー側部61の内壁面のうち反射リング68,69が装着されていない中央部分と、反射リング68の下端面と、反射リング69の上端面とで囲まれた凹部62が形成される。凹部62は、処理チャンバー6の内壁面に水平方向に沿って円環状に形成され、半導体ウェハーWを保持する保持部7を囲繞する。チャンバー側部61および反射リング68,69は、強度と耐熱性に優れた金属材料(例えば、ステンレススチール)にて形成されている。 凹 部 By attaching the reflection rings 68 and 69 to the chamber side 61, a concave portion 62 is formed on the inner wall surface of the processing chamber 6. That is, a concave portion 62 is formed which is surrounded by a central portion of the inner wall surface of the chamber side portion 61 where the reflection rings 68 and 69 are not mounted, a lower end surface of the reflection ring 68, and an upper end surface of the reflection ring 69. . The concave portion 62 is formed in an annular shape along the horizontal direction on the inner wall surface of the processing chamber 6 and surrounds the holding portion 7 that holds the semiconductor wafer W. The chamber side 61 and the reflection rings 68 and 69 are formed of a metal material (for example, stainless steel) having excellent strength and heat resistance.
 また、チャンバー側部61には、処理チャンバー6に対して半導体ウェハーWの搬入および搬出を行うための搬送開口部(炉口)66が形設されている。搬送開口部66は、ゲートバルブ185によって開閉可能とされている。搬送開口部66は凹部62の外周面に連通接続されている。このため、ゲートバルブ185が搬送開口部66を開放しているときには、搬送開口部66から凹部62を通過して熱処理空間65への半導体ウェハーWの搬入および熱処理空間65からの半導体ウェハーWの搬出を行うことができる。また、ゲートバルブ185が搬送開口部66を閉鎖すると処理チャンバー6内の熱処理空間65が密閉空間とされる。 {Circle around (2)} A transfer opening (furnace opening) 66 for carrying in and out the semiconductor wafer W to and from the processing chamber 6 is formed in the chamber side 61. The transport opening 66 can be opened and closed by a gate valve 185. The transport opening 66 is connected to the outer peripheral surface of the recess 62 in communication. For this reason, when the gate valve 185 opens the transfer opening 66, the semiconductor wafer W is loaded into the heat treatment space 65 from the transfer opening 66 through the concave portion 62 and unloaded from the heat treatment space 65. It can be performed. When the gate valve 185 closes the transfer opening 66, the heat treatment space 65 in the processing chamber 6 becomes a closed space.
 また、処理チャンバー6の内壁上部には熱処理空間65に処理ガスを供給するガス供給孔81が形設されている。ガス供給孔81は、凹部62よりも上側位置に形設されており、反射リング68に設けられていても良い。ガス供給孔81は処理チャンバー6の側壁内部に円環状に形成された緩衝空間82を介してガス供給管83に連通接続されている。ガス供給管83は処理ガス供給源85に接続されている。また、ガス供給管83の経路途中にはバルブ84が介挿されている。バルブ84が開放されると、処理ガス供給源85から緩衝空間82に処理ガスが送給される。緩衝空間82に流入した処理ガスは、ガス供給孔81よりも流体抵抗の小さい緩衝空間82内を拡がるように流れてガス供給孔81から熱処理空間65内へと供給される。処理ガスとしては、窒素(N)等の不活性ガス、または、水素(H)、アンモニア(NH)等の反応性ガスを用いることができる(本実施形態では窒素)。 Further, a gas supply hole 81 for supplying a processing gas to the heat treatment space 65 is formed in an upper portion of an inner wall of the processing chamber 6. The gas supply hole 81 is formed at a position above the concave portion 62, and may be provided on the reflection ring 68. The gas supply hole 81 is connected to a gas supply pipe 83 through a buffer space 82 formed in an annular shape inside the side wall of the processing chamber 6. The gas supply pipe 83 is connected to a processing gas supply source 85. A valve 84 is inserted in the middle of the gas supply pipe 83. When the valve 84 is opened, the processing gas is supplied from the processing gas supply source 85 to the buffer space 82. The processing gas flowing into the buffer space 82 flows so as to expand in the buffer space 82 having a smaller fluid resistance than the gas supply hole 81 and is supplied from the gas supply hole 81 into the heat treatment space 65. As the processing gas, an inert gas such as nitrogen (N 2 ) or a reactive gas such as hydrogen (H 2 ) or ammonia (NH 3 ) can be used (nitrogen in the present embodiment).
 一方、処理チャンバー6の内壁下部には熱処理空間65内の気体を排気するガス排気孔86が形設されている。ガス排気孔86は、凹部62よりも下側位置に形設されており、反射リング69に設けられていても良い。ガス排気孔86は処理チャンバー6の側壁内部に円環状に形成された緩衝空間87を介してガス排気管88に連通接続されている。ガス排気管88は排気機構190に接続されている。また、ガス排気管88の経路途中にはバルブ89が介挿されている。バルブ89が開放されると、熱処理空間65の気体がガス排気孔86から緩衝空間87を経てガス排気管88へと排出される。なお、ガス供給孔81およびガス排気孔86は、処理チャンバー6の周方向に沿って複数設けられていても良いし、スリット状のものであっても良い。また、処理ガス供給源85および排気機構190は、熱処理装置100に設けられた機構であっても良いし、熱処理装置100が設置される工場のユーティリティであっても良い。 On the other hand, a gas exhaust hole 86 for exhausting the gas in the heat treatment space 65 is formed in the lower portion of the inner wall of the processing chamber 6. The gas exhaust hole 86 is formed at a position lower than the concave portion 62, and may be provided on the reflection ring 69. The gas exhaust hole 86 is connected to a gas exhaust pipe 88 via a buffer space 87 formed in an annular shape inside the side wall of the processing chamber 6. The gas exhaust pipe 88 is connected to an exhaust mechanism 190. A valve 89 is inserted in the middle of the gas exhaust pipe 88. When the valve 89 is opened, the gas in the heat treatment space 65 is discharged from the gas exhaust hole 86 to the gas exhaust pipe 88 via the buffer space 87. Note that a plurality of gas supply holes 81 and gas exhaust holes 86 may be provided along the circumferential direction of the processing chamber 6, or may be slit-shaped. Further, the processing gas supply source 85 and the exhaust mechanism 190 may be a mechanism provided in the heat treatment apparatus 100 or a utility of a factory where the heat treatment apparatus 100 is installed.
 また、搬送開口部66の先端にも熱処理空間65内の気体を排出するガス排気管191が接続されている。ガス排気管191はバルブ192を介して排気機構190に接続されている。バルブ192を開放することによって、搬送開口部66を介して処理チャンバー6内の気体が排気される。 {Circle around (2)} A gas exhaust pipe 191 for discharging gas in the heat treatment space 65 is also connected to the end of the transfer opening 66. The gas exhaust pipe 191 is connected to an exhaust mechanism 190 via a valve 192. By opening the valve 192, the gas in the processing chamber 6 is exhausted through the transfer opening 66.
 図4は、保持部7の全体外観を示す斜視図である。保持部7は、基台リング71、連結部72およびサセプタ74を備えて構成される。基台リング71、連結部72およびサセプタ74はいずれも石英にて形成されている。すなわち、保持部7の全体が石英にて形成されている。 FIG. 4 is a perspective view showing the overall appearance of the holding unit 7. The holding section 7 includes a base ring 71, a connecting section 72, and a susceptor 74. The base ring 71, the connecting portion 72, and the susceptor 74 are all formed of quartz. That is, the entire holding portion 7 is formed of quartz.
 基台リング71は円環形状から一部が欠落した円弧形状の石英部材である。この欠落部分は、後述する移載機構10の移載アーム11と基台リング71との干渉を防ぐために設けられている。基台リング71は凹部62の底面に載置されることによって、処理チャンバー6の壁面に支持されることとなる(図3参照)。基台リング71の上面に、その円環形状の周方向に沿って複数の連結部72(本実施形態では4個)が立設される。連結部72も石英の部材であり、溶接によって基台リング71に固着される。 The base ring 71 is an arc-shaped quartz member in which a part is omitted from the ring shape. The missing portion is provided to prevent interference between a transfer arm 11 of the transfer mechanism 10 described below and the base ring 71. The base ring 71 is supported on the wall surface of the processing chamber 6 by being placed on the bottom surface of the concave portion 62 (see FIG. 3). A plurality of connecting portions 72 (four in this embodiment) are erected on the upper surface of the base ring 71 along the circumferential direction of the ring shape. The connecting portion 72 is also a quartz member, and is fixed to the base ring 71 by welding.
 サセプタ74は基台リング71に設けられた4個の連結部72によって支持される。図5は、サセプタ74の平面図である。また、図6は、サセプタ74の断面図である。サセプタ74は、保持プレート75、ガイドリング76および複数の基板支持ピン77を備える。保持プレート75は、石英にて形成された略円形の平板状部材である。保持プレート75の直径は半導体ウェハーWの直径よりも大きい。すなわち、保持プレート75は、半導体ウェハーWよりも大きな平面サイズを有する。 The susceptor 74 is supported by four connecting portions 72 provided on the base ring 71. FIG. 5 is a plan view of the susceptor 74. FIG. 6 is a sectional view of the susceptor 74. The susceptor 74 includes a holding plate 75, a guide ring 76, and a plurality of substrate support pins 77. The holding plate 75 is a substantially circular plate-shaped member formed of quartz. The diameter of the holding plate 75 is larger than the diameter of the semiconductor wafer W. That is, the holding plate 75 has a larger planar size than the semiconductor wafer W.
 保持プレート75の上面周縁部にガイドリング76が設置されている。ガイドリング76は、半導体ウェハーWの直径よりも大きな内径を有する円環形状の部材である。例えば、半導体ウェハーWの直径がφ300mmの場合、ガイドリング76の内径はφ320mmである。ガイドリング76の内周は、保持プレート75から上方に向けて広くなるようなテーパ面とされている。ガイドリング76は、保持プレート75と同様の石英にて形成される。ガイドリング76は、保持プレート75の上面に溶着するようにしても良いし、別途加工したピンなどによって保持プレート75に固定するようにしても良い。或いは、保持プレート75とガイドリング76とを一体の部材として加工するようにしても良い。 ガ イ ド A guide ring 76 is provided on the periphery of the upper surface of the holding plate 75. The guide ring 76 is an annular member having an inner diameter larger than the diameter of the semiconductor wafer W. For example, when the diameter of the semiconductor wafer W is φ300 mm, the inner diameter of the guide ring 76 is φ320 mm. The inner circumference of the guide ring 76 has a tapered surface that widens upward from the holding plate 75. The guide ring 76 is formed of the same quartz as the holding plate 75. The guide ring 76 may be welded to the upper surface of the holding plate 75, or may be fixed to the holding plate 75 by a separately processed pin or the like. Alternatively, the holding plate 75 and the guide ring 76 may be processed as an integral member.
 保持プレート75の上面のうちガイドリング76よりも内側の領域が半導体ウェハーWを保持する平面状の保持面75aとされる。保持プレート75の保持面75aには、複数の基板支持ピン77が立設されている。本実施形態においては、保持面75aの外周円(ガイドリング76の内周円)と同心円の周上に沿って30°毎に計12個の基板支持ピン77が立設されている。12個の基板支持ピン77を配置した円の径(対向する基板支持ピン77間の距離)は半導体ウェハーWの径よりも小さく、半導体ウェハーWの径がφ300mmであればφ270mm~φ280mm(本実施形態ではφ270mm)である。それぞれの基板支持ピン77は石英にて形成されている。複数の基板支持ピン77は、保持プレート75の上面に溶接によって設けるようにしても良いし、保持プレート75と一体に加工するようにしても良い。 領域 A portion of the upper surface of the holding plate 75 inside the guide ring 76 is a flat holding surface 75a for holding the semiconductor wafer W. A plurality of substrate support pins 77 are erected on the holding surface 75a of the holding plate 75. In the present embodiment, a total of twelve substrate support pins 77 are erected every 30 ° along the circumference of the outer circumference of the holding surface 75a (the inner circumference of the guide ring 76). The diameter of the circle on which the twelve substrate support pins 77 are arranged (the distance between the opposing substrate support pins 77) is smaller than the diameter of the semiconductor wafer W. If the diameter of the semiconductor wafer W is φ300 mm, φ270 mm to φ280 mm (this embodiment) (Φ270 mm in the form). Each substrate support pin 77 is formed of quartz. The plurality of substrate support pins 77 may be provided on the upper surface of the holding plate 75 by welding, or may be processed integrally with the holding plate 75.
 図4に戻り、基台リング71に立設された4個の連結部72とサセプタ74の保持プレート75の周縁部とが溶接によって固着される。すなわち、サセプタ74と基台リング71とは連結部72によって固定的に連結されている。このような保持部7の基台リング71が処理チャンバー6の壁面に支持されることによって、保持部7が処理チャンバー6に装着される。保持部7が処理チャンバー6に装着された状態においては、サセプタ74の保持プレート75は水平姿勢(法線が鉛直方向と一致する姿勢)となる。すなわち、保持プレート75の保持面75aは水平面となる。 Returning to FIG. 4, the four connecting portions 72 erected on the base ring 71 and the peripheral portion of the holding plate 75 of the susceptor 74 are fixed by welding. That is, the susceptor 74 and the base ring 71 are fixedly connected by the connecting portion 72. By supporting the base ring 71 of the holder 7 on the wall surface of the processing chamber 6, the holder 7 is mounted on the processing chamber 6. When the holding unit 7 is mounted on the processing chamber 6, the holding plate 75 of the susceptor 74 is in a horizontal posture (a posture in which a normal line coincides with a vertical direction). That is, the holding surface 75a of the holding plate 75 is a horizontal plane.
 処理チャンバー6に搬入された半導体ウェハーWは、処理チャンバー6に装着された保持部7のサセプタ74の上に水平姿勢にて載置されて保持される。このとき、半導体ウェハーWは保持プレート75上に立設された12個の基板支持ピン77によって支持されてサセプタ74に保持される。より厳密には、12個の基板支持ピン77の上端部が半導体ウェハーWの下面に接触して当該半導体ウェハーWを支持する。12個の基板支持ピン77の高さ(基板支持ピン77の上端から保持プレート75の保持面75aまでの距離)は均一であるため、12個の基板支持ピン77によって半導体ウェハーWを水平姿勢に支持することができる。 The semiconductor wafer W carried into the processing chamber 6 is placed and held in a horizontal posture on the susceptor 74 of the holding unit 7 mounted on the processing chamber 6. At this time, the semiconductor wafer W is supported by twelve substrate support pins 77 erected on the holding plate 75 and held by the susceptor 74. More precisely, the upper ends of the twelve substrate support pins 77 contact the lower surface of the semiconductor wafer W to support the semiconductor wafer W. Since the height of the twelve substrate support pins 77 (the distance from the upper end of the substrate support pins 77 to the holding surface 75a of the holding plate 75) is uniform, the semiconductor wafer W is placed in a horizontal posture by the twelve substrate support pins 77. Can be supported.
 また、半導体ウェハーWは複数の基板支持ピン77によって保持プレート75の保持面75aから所定の間隔を隔てて支持されることとなる。基板支持ピン77の高さよりもガイドリング76の厚さの方が大きい。従って、複数の基板支持ピン77によって支持された半導体ウェハーWの水平方向の位置ずれはガイドリング76によって防止される。 {Circle around (1)} The semiconductor wafer W is supported by the plurality of substrate support pins 77 at a predetermined distance from the holding surface 75a of the holding plate 75. The thickness of the guide ring 76 is larger than the height of the substrate support pins 77. Therefore, the horizontal displacement of the semiconductor wafer W supported by the plurality of substrate support pins 77 is prevented by the guide ring 76.
 また、図4および図5に示すように、サセプタ74の保持プレート75には、上下に貫通して開口部78が形成されている。開口部78は、放射温度計20(図3参照)がサセプタ74に保持された半導体ウェハーWの下面から放射される放射光(赤外光)を受光するために設けられている。すなわち、放射温度計20が開口部78を介してサセプタ74に保持された半導体ウェハーWの下面から放射された光を受光し、別置のディテクタによってその半導体ウェハーWの温度が測定される。さらに、サセプタ74の保持プレート75には、後述する移載機構10のリフトピン12が半導体ウェハーWの受け渡しのために貫通する4個の貫通孔79が穿設されている。 4 and 5, the holding plate 75 of the susceptor 74 has an opening 78 penetrating vertically. The opening 78 is provided for the radiation thermometer 20 (see FIG. 3) to receive radiation (infrared light) emitted from the lower surface of the semiconductor wafer W held by the susceptor 74. That is, the radiation thermometer 20 receives light emitted from the lower surface of the semiconductor wafer W held by the susceptor 74 through the opening 78, and the temperature of the semiconductor wafer W is measured by a separate detector. Further, the holding plate 75 of the susceptor 74 is provided with four through holes 79 through which the lift pins 12 of the transfer mechanism 10, which will be described later, pass through for transferring the semiconductor wafer W.
 図7は、移載機構10の平面図である。また、図8は、移載機構10の側面図である。移載機構10は、2本の移載アーム11を備える。移載アーム11は、概ね円環状の凹部62に沿うような円弧形状とされている。それぞれの移載アーム11には2本のリフトピン12が立設されている。各移載アーム11は水平移動機構13によって回動可能とされている。水平移動機構13は、一対の移載アーム11を保持部7に対して半導体ウェハーWの移載を行う移載動作位置(図7の実線位置)と保持部7に保持された半導体ウェハーWと平面視で重ならない退避位置(図7の二点鎖線位置)との間で水平移動させる。水平移動機構13としては、個別のモータによって各移載アーム11をそれぞれ回動させるものであっても良いし、リンク機構を用いて1個のモータによって一対の移載アーム11を連動させて回動させるものであっても良い。 FIG. 7 is a plan view of the transfer mechanism 10. FIG. 8 is a side view of the transfer mechanism 10. The transfer mechanism 10 includes two transfer arms 11. The transfer arm 11 is formed in a circular arc shape along the generally annular concave portion 62. Each transfer arm 11 is provided with two lift pins 12 standing upright. Each transfer arm 11 is rotatable by a horizontal moving mechanism 13. The horizontal movement mechanism 13 moves the pair of transfer arms 11 to a transfer operation position (solid line position in FIG. 7) where the semiconductor wafer W is transferred to the holding unit 7 and the semiconductor wafer W held by the holding unit 7. It is moved horizontally between a retracted position (a position indicated by a two-dot chain line in FIG. 7) which does not overlap in a plan view. The horizontal moving mechanism 13 may be configured to rotate each transfer arm 11 by an individual motor, or may be rotated by a single motor using a link mechanism to link a pair of transfer arms 11. It may be moved.
 また、一対の移載アーム11は、昇降機構14によって水平移動機構13とともに昇降移動される。昇降機構14が一対の移載アーム11を移載動作位置にて上昇させると、計4本のリフトピン12がサセプタ74に穿設された貫通孔79(図4,5参照)を通過し、リフトピン12の上端がサセプタ74の上面から突き出る。一方、昇降機構14が一対の移載アーム11を移載動作位置にて下降させてリフトピン12を貫通孔79から抜き取り、水平移動機構13が一対の移載アーム11を開くように移動させると各移載アーム11が退避位置に移動する。一対の移載アーム11の退避位置は、保持部7の基台リング71の直上である。基台リング71は凹部62の底面に載置されているため、移載アーム11の退避位置は凹部62の内側となる。なお、移載機構10の駆動部(水平移動機構13および昇降機構14)が設けられている部位の近傍にも図示省略の排気機構が設けられており、移載機構10の駆動部周辺の雰囲気が処理チャンバー6の外部に排出されるように構成されている。 (4) The pair of transfer arms 11 is moved up and down by the elevating mechanism 14 together with the horizontal moving mechanism 13. When the lifting mechanism 14 raises the pair of transfer arms 11 at the transfer operation position, a total of four lift pins 12 pass through the through holes 79 (see FIGS. 4 and 5) formed in the susceptor 74, and The upper end of 12 protrudes from the upper surface of susceptor 74. On the other hand, when the elevating mechanism 14 lowers the pair of transfer arms 11 at the transfer operation position, pulls out the lift pins 12 from the through holes 79, and moves the horizontal transfer mechanism 13 to open the pair of transfer arms 11, The transfer arm 11 moves to the retreat position. The retracted position of the pair of transfer arms 11 is immediately above the base ring 71 of the holding unit 7. Since the base ring 71 is placed on the bottom surface of the concave portion 62, the retreat position of the transfer arm 11 is inside the concave portion 62. It should be noted that an exhaust mechanism (not shown) is also provided near the portion where the driving section (the horizontal moving mechanism 13 and the elevating mechanism 14) of the transfer mechanism 10 is provided. Is discharged to the outside of the processing chamber 6.
 図3に戻り、処理チャンバー6の上方に設けられたフラッシュランプハウス5は、筐体51の内側に、複数本(本実施形態では30本)のキセノンフラッシュランプFLからなる光源と、その光源の上方を覆うように設けられたリフレクタ52と、を備えて構成される。また、フラッシュランプハウス5の筐体51の底部にはランプ光放射窓53が装着されている。フラッシュランプハウス5の床部を構成するランプ光放射窓53は、石英により形成された板状の石英窓である。フラッシュランプハウス5が処理チャンバー6の上方に設置されることにより、ランプ光放射窓53が上側チャンバー窓63と相対向することとなる。フラッシュランプFLは処理チャンバー6の上方からランプ光放射窓53および上側チャンバー窓63を介して熱処理空間65にフラッシュ光を照射する。 Returning to FIG. 3, the flash lamp house 5 provided above the processing chamber 6 includes a light source including a plurality of (30 in the present embodiment) xenon flash lamps FL and a light source of the light source inside the housing 51. And a reflector 52 provided so as to cover the upper side. In addition, a lamp light emission window 53 is mounted on the bottom of the housing 51 of the flash lamp house 5. The lamp light emission window 53 constituting the floor of the flash lamp house 5 is a plate-shaped quartz window formed of quartz. When the flash lamp house 5 is installed above the processing chamber 6, the lamp light emission window 53 faces the upper chamber window 63. The flash lamp FL irradiates the heat treatment space 65 with flash light from above the processing chamber 6 through the lamp light emission window 53 and the upper chamber window 63.
 複数のフラッシュランプFLは、それぞれが長尺の円筒形状を有する棒状ランプであり、それぞれの長手方向が保持部7に保持される半導体ウェハーWの主面に沿って(つまり水平方向に沿って)互いに平行となるように平面状に配列されている。よって、フラッシュランプFLの配列によって形成される平面も水平面である。 Each of the plurality of flash lamps FL is a rod-shaped lamp having a long cylindrical shape, and has a longitudinal direction along the main surface of the semiconductor wafer W held by the holding unit 7 (that is, along the horizontal direction). They are arranged in a plane so as to be parallel to each other. Therefore, the plane formed by the arrangement of the flash lamps FL is also a horizontal plane.
 キセノンフラッシュランプFLは、その内部にキセノンガスが封入されその両端部にコンデンサーに接続された陽極および陰極が配設された棒状のガラス管(放電管)と、該ガラス管の外周面上に付設されたトリガー電極とを備える。キセノンガスは電気的には絶縁体であることから、コンデンサーに電荷が蓄積されていたとしても通常の状態ではガラス管内に電気は流れない。しかしながら、トリガー電極に高電圧を印加して絶縁を破壊した場合には、コンデンサーに蓄えられた電気がガラス管内に瞬時に流れ、そのときのキセノンの原子あるいは分子の励起によって光が放出される。このようなキセノンフラッシュランプFLにおいては、予めコンデンサーに蓄えられていた静電エネルギーが0.1ミリセカンドないし100ミリセカンドという極めて短い光パルスに変換されることから、ハロゲンランプHLの如き連続点灯の光源に比べて極めて強い光を照射し得るという特徴を有する。すなわち、フラッシュランプFLは、1秒未満の極めて短い時間で瞬間的に発光するパルス発光ランプである。なお、フラッシュランプFLの発光時間は、フラッシュランプFLに電力供給を行うランプ電源のコイル定数によって調整することができる。 The xenon flash lamp FL has a rod-shaped glass tube (discharge tube) in which xenon gas is sealed and an anode and a cathode connected to a condenser are disposed at both ends thereof, and is provided on the outer peripheral surface of the glass tube. And a trigger electrode. Since xenon gas is electrically an insulator, electricity does not flow in a glass tube in a normal state even if charges are stored in a capacitor. However, when a high voltage is applied to the trigger electrode to break the insulation, the electricity stored in the capacitor flows instantaneously into the glass tube, and light is emitted by excitation of xenon atoms or molecules at that time. In such a xenon flash lamp FL, electrostatic energy previously stored in a condenser is converted into an extremely short light pulse of 0.1 to 100 milliseconds. It has a feature that it can emit extremely strong light compared to a light source. That is, the flash lamp FL is a pulsed lamp that emits light instantaneously in a very short time of less than one second. The light emission time of the flash lamp FL can be adjusted by the coil constant of a lamp power supply that supplies power to the flash lamp FL.
 また、リフレクタ52は、複数のフラッシュランプFLの上方にそれら全体を覆うように設けられている。リフレクタ52の基本的な機能は、複数のフラッシュランプFLから出射されたフラッシュ光を熱処理空間65の側に反射するというものである。リフレクタ52はアルミニウム合金板にて形成されており、その表面(フラッシュランプFLに臨む側の面)はブラスト処理により粗面化加工が施されている。 (4) The reflector 52 is provided above the plurality of flash lamps FL so as to cover the entirety thereof. The basic function of the reflector 52 is to reflect flash light emitted from the plurality of flash lamps FL to the heat treatment space 65 side. The reflector 52 is made of an aluminum alloy plate, and its surface (the surface facing the flash lamp FL) is roughened by blasting.
 処理チャンバー6の下方に設けられたハロゲンランプハウス4は、筐体41の内側に複数本(本実施形態では40本)のハロゲンランプHLを内蔵している。複数のハロゲンランプHLは処理チャンバー6の下方から下側チャンバー窓64を介して熱処理空間65への光照射を行う。 ハ ロ ゲ ン The halogen lamp house 4 provided below the processing chamber 6 has a plurality of (40 in this embodiment) halogen lamps HL inside the housing 41. The plurality of halogen lamps HL irradiate the heat treatment space 65 with light from below the processing chamber 6 through the lower chamber window 64.
 図9は、複数のハロゲンランプHLの配置を示す平面図である。本実施形態では、上下2段に各20本ずつのハロゲンランプHLが配設されている。各ハロゲンランプHLは、長尺の円筒形状を有する棒状ランプである。上段、下段ともに20本のハロゲンランプHLは、それぞれの長手方向が保持部7に保持される半導体ウェハーWの主面に沿って(つまり水平方向に沿って)互いに平行となるように配列されている。よって、上段、下段ともにハロゲンランプHLの配列によって形成される平面は水平面である。 FIG. 9 is a plan view showing an arrangement of a plurality of halogen lamps HL. In the present embodiment, 20 halogen lamps HL are provided in each of the upper and lower two stages. Each of the halogen lamps HL is a rod-shaped lamp having a long cylindrical shape. The 20 halogen lamps HL in the upper and lower rows are arranged so that their respective longitudinal directions are parallel to each other along the main surface of the semiconductor wafer W held by the holding section 7 (that is, along the horizontal direction). I have. Therefore, the plane formed by the arrangement of the halogen lamps HL in both the upper and lower stages is a horizontal plane.
 また、図9に示すように、上段、下段ともに保持部7に保持される半導体ウェハーWの中央部に対向する領域よりも周縁部に対向する領域におけるハロゲンランプHLの配設密度が高くなっている。すなわち、上下段ともに、ランプ配列の中央部よりも周縁部の方がハロゲンランプHLの配設ピッチが短い。このため、ハロゲンランプHLからの光照射による加熱時に温度低下が生じやすい半導体ウェハーWの周縁部により多い光量の照射を行うことができる。 Further, as shown in FIG. 9, the arrangement density of the halogen lamps HL is higher in a region facing the peripheral portion than in a region facing the center of the semiconductor wafer W held by the holding portion 7 in both the upper stage and the lower stage. I have. That is, in both upper and lower stages, the arrangement pitch of the halogen lamps HL is shorter at the periphery than at the center of the lamp array. For this reason, it is possible to irradiate a larger amount of light to the peripheral portion of the semiconductor wafer W where the temperature is likely to decrease during heating by light irradiation from the halogen lamp HL.
 また、上段のハロゲンランプHLからなるランプ群と下段のハロゲンランプHLからなるランプ群とが格子状に交差するように配列されている。すなわち、上段の各ハロゲンランプHLの長手方向と下段の各ハロゲンランプHLの長手方向とが直交するように計40本のハロゲンランプHLが配設されている。 {Also, a lamp group composed of the upper halogen lamps HL and a lamp group composed of the lower halogen lamps HL are arranged so as to intersect in a grid pattern. That is, a total of 40 halogen lamps HL are arranged such that the longitudinal direction of each of the upper halogen lamps HL is orthogonal to the longitudinal direction of each of the lower halogen lamps HL.
 ハロゲンランプHLは、ガラス管内部に配設されたフィラメントに通電することでフィラメントを白熱化させて発光させるフィラメント方式の光源である。ガラス管の内部には、窒素やアルゴン等の不活性ガスにハロゲン元素(ヨウ素、臭素等)を微量導入した気体が封入されている。ハロゲン元素を導入することによって、フィラメントの折損を抑制しつつフィラメントの温度を高温に設定することが可能となる。したがって、ハロゲンランプHLは、通常の白熱電球に比べて寿命が長くかつ強い光を連続的に照射できるという特性を有する。すなわち、ハロゲンランプHLは少なくとも1秒以上連続して発光する連続点灯ランプである。また、ハロゲンランプHLは棒状ランプであるため長寿命であり、ハロゲンランプHLを水平方向に沿わせて配置することにより上方の半導体ウェハーWへの放射効率が優れたものとなる。 The halogen lamp HL is a filament type light source that emits light by incandescent the filament by energizing the filament disposed inside the glass tube. A gas in which a trace amount of a halogen element (iodine, bromine, or the like) is introduced into an inert gas such as nitrogen or argon is sealed inside the glass tube. By introducing a halogen element, it is possible to set the temperature of the filament to a high temperature while suppressing breakage of the filament. Therefore, the halogen lamp HL has a characteristic that it has a longer life and can continuously emit strong light as compared with a normal incandescent lamp. That is, the halogen lamp HL is a continuous lighting lamp that continuously emits light for at least one second. Further, since the halogen lamp HL is a rod-shaped lamp, it has a long life, and by arranging the halogen lamp HL along the horizontal direction, the radiation efficiency to the upper semiconductor wafer W becomes excellent.
 また、ハロゲンランプハウス4の筐体41内にも、2段のハロゲンランプHLの下側にリフレクタ43が設けられている(図3)。リフレクタ43は、複数のハロゲンランプHLから出射された光を熱処理空間65の側に反射する。 {Circle around (2)} In the housing 41 of the halogen lamp house 4, a reflector 43 is provided below the two-stage halogen lamp HL (FIG. 3). The reflector 43 reflects light emitted from the plurality of halogen lamps HL to the heat treatment space 65 side.
 上記の構成以外にも熱処理部160は、半導体ウェハーWの熱処理時にハロゲンランプHLおよびフラッシュランプFLから発生する熱エネルギーによるハロゲンランプハウス4、フラッシュランプハウス5および処理チャンバー6の過剰な温度上昇を防止するため、様々な冷却用の構造を備えている。例えば、処理チャンバー6の壁体には水冷管(図示省略)が設けられている。また、ハロゲンランプハウス4およびフラッシュランプハウス5は、内部に気体流を形成して排熱する空冷構造とされている。また、上側チャンバー窓63とランプ光放射窓53との間隙にも空気が供給され、フラッシュランプハウス5および上側チャンバー窓63を冷却する。 In addition to the above-described configuration, the heat treatment unit 160 prevents the halogen lamp house 4, the flash lamp house 5, and the processing chamber 6 from excessively rising in temperature due to heat energy generated from the halogen lamp HL and the flash lamp FL during the heat treatment of the semiconductor wafer W. For this purpose, various cooling structures are provided. For example, a water cooling tube (not shown) is provided on the wall of the processing chamber 6. Further, the halogen lamp house 4 and the flash lamp house 5 have an air cooling structure for forming a gas flow therein and discharging heat. Air is also supplied to the gap between the upper chamber window 63 and the lamp light emission window 53 to cool the flash lamp house 5 and the upper chamber window 63.
 また、制御部3は、熱処理装置100に設けられた上記の種々の動作機構を制御する。図10は、熱処理装置100の制御部3の機能ブロック図である。制御部3のハードウェアとしての構成は一般的なコンピュータと同様である。すなわち、制御部3は、各種演算処理を行う回路であるCPU、基本プログラムを記憶する読み出し専用のメモリであるROM、各種情報を記憶する読み書き自在のメモリであるRAMおよび制御用ソフトウェアやデータなどを記憶しておく磁気ディスクを備えている。制御部3のCPUが所定の処理プログラムを実行することによって熱処理装置100における処理が進行する。なお、図1においては、インデクサ部101内に制御部3を示しているが、これに限定されるものではなく、制御部3は熱処理装置100内の任意の位置に配置することができる。 {Circle around (4)} The control unit 3 controls the above-described various operation mechanisms provided in the heat treatment apparatus 100. FIG. 10 is a functional block diagram of the control unit 3 of the heat treatment apparatus 100. The configuration of the control unit 3 as hardware is the same as that of a general computer. That is, the control unit 3 includes a CPU which is a circuit for performing various arithmetic processing, a ROM which is a read-only memory for storing a basic program, a RAM which is a readable and writable memory for storing various information, and control software and data. It has a magnetic disk for storing. The processing in the heat treatment apparatus 100 proceeds when the CPU of the control unit 3 executes a predetermined processing program. Although the control unit 3 is shown in the indexer unit 101 in FIG. 1, the control unit 3 is not limited to this, and the control unit 3 can be arranged at an arbitrary position in the heat treatment apparatus 100.
 また、第1クールチャンバー131および第2クールチャンバー141に設けられた反射率測定部135,145は制御部3と電気的に接続されており、反射率測定部135,145によって測定された半導体ウェハーWの表面の反射率は制御部3に伝達される。制御部3は、判定部31および警告発報部32を備える。判定部31および警告発報部32は、制御部3のCPUが所定の処理プログラムを実行することによって実現される機能処理部である。判定部31および警告発報部32の処理内容についてはさらに後述する。 Further, the reflectance measuring units 135 and 145 provided in the first cool chamber 131 and the second cool chamber 141 are electrically connected to the control unit 3, and the semiconductor wafer measured by the reflectance measuring units 135 and 145 is used. The reflectance of the surface of W is transmitted to the control unit 3. The control unit 3 includes a determination unit 31 and a warning notification unit 32. The determination unit 31 and the warning issuance unit 32 are function processing units realized by the CPU of the control unit 3 executing a predetermined processing program. The processing contents of the determining unit 31 and the warning issuing unit 32 will be further described later.
 制御部3には入力部33および表示部34が接続されている。入力部33は、熱処理装置100のオペレータが制御部3に種々のコマンドやパラメータを入力するための機器である。制御部3は、表示部34に種々の情報を表示する。オペレータは、表示部34の表示内容を確認しつつ、入力部33から半導体ウェハーWの処理手順および処理条件を記述した処理レシピの条件設定を行うこともできる。入力部33および表示部34としては、双方の機能を兼ね備えたタッチパネルを用いることもでき、本実施形態では熱処理装置100の外壁に設けられた液晶のタッチパネルを採用している。 The input unit 33 and the display unit 34 are connected to the control unit 3. The input unit 33 is a device for the operator of the heat treatment apparatus 100 to input various commands and parameters to the control unit 3. The control unit 3 displays various information on the display unit 34. The operator can also set the conditions of the processing recipe describing the processing procedure and the processing conditions of the semiconductor wafer W from the input unit 33 while checking the display contents of the display unit 34. As the input unit 33 and the display unit 34, a touch panel having both functions may be used. In the present embodiment, a liquid crystal touch panel provided on the outer wall of the heat treatment apparatus 100 is employed.
 また、本実施形態においては、熱処理装置100の制御部3がさらに上位のホストコンピュータ90にLAN回線等を介して接続されている。ホストコンピュータ90も一般的なコンピュータと同様のハードウェア構成を備える。反射率測定部135,145によって測定された半導体ウェハーWの表面の反射率は、制御部3からさらにホストコンピュータ90に伝達され、ホストコンピュータ90の記憶部91に格納される。ホストコンピュータ90には、複数台の熱処理装置100の制御部3が接続され、それら複数の熱処理装置100にて測定された半導体ウェハーWの反射率が記憶部91に蓄積されるようにしても良い。 In the present embodiment, the control unit 3 of the heat treatment apparatus 100 is connected to a host computer 90 of a higher rank via a LAN line or the like. The host computer 90 also has the same hardware configuration as a general computer. The reflectance of the surface of the semiconductor wafer W measured by the reflectance measuring units 135 and 145 is further transmitted from the control unit 3 to the host computer 90 and stored in the storage unit 91 of the host computer 90. The control units 3 of the plurality of heat treatment apparatuses 100 may be connected to the host computer 90, and the reflectance of the semiconductor wafer W measured by the plurality of heat treatment apparatuses 100 may be stored in the storage unit 91. .
 次に、本発明に係る熱処理装置100による半導体ウェハーWの処理動作について説明する。処理対象となる半導体ウェハーWはイオン注入法により不純物(イオン)が添加された半導体基板である。その不純物の活性化が熱処理装置100によるフラッシュ光照射加熱処理(アニール)により実行される。ここでは、熱処理装置100における大まかな半導体ウェハーWの搬送手順について説明した後、熱処理部160における半導体ウェハーWの加熱処理について説明する。 Next, the processing operation of the semiconductor wafer W by the heat treatment apparatus 100 according to the present invention will be described. The semiconductor wafer W to be processed is a semiconductor substrate to which impurities (ions) are added by an ion implantation method. Activation of the impurities is performed by flash light irradiation heat treatment (annealing) by the heat treatment apparatus 100. Here, after roughly describing the procedure for transporting the semiconductor wafer W in the heat treatment apparatus 100, the heat treatment of the semiconductor wafer W in the heat treatment unit 160 will be described.
 まず、不純物が注入された未処理の半導体ウェハーWがキャリアCに複数枚収容された状態でインデクサ部101のロードポート110に載置される。そして、受渡ロボット120がキャリアCから未処理の半導体ウェハーWを1枚ずつ取り出し、アライメント部230のアライメントチャンバー231に搬入する。アライメントチャンバー231では、半導体ウェハーWをその中心部を回転中心として水平面内にて鉛直方向軸まわりで回転させ、ノッチ等を光学的に検出することによって半導体ウェハーWの向きを調整する。 (1) First, a plurality of unprocessed semiconductor wafers W into which impurities have been implanted are placed in the load port 110 of the indexer unit 101 in a state of being accommodated in the carrier C. Then, the delivery robot 120 takes out the unprocessed semiconductor wafers W one by one from the carrier C and carries them into the alignment chamber 231 of the alignment unit 230. In the alignment chamber 231, the direction of the semiconductor wafer W is adjusted by rotating the semiconductor wafer W around a vertical axis in a horizontal plane with the center thereof as a center of rotation and optically detecting notches or the like.
 次に、インデクサ部101の受渡ロボット120がアライメントチャンバー231から向きの調整された半導体ウェハーWを取り出し、冷却部130の第1クールチャンバー131または冷却部140の第2クールチャンバー141に搬入する。未処理の半導体ウェハーWが第1クールチャンバー131に搬入されたときには、反射率測定部135が半導体ウェハーWの表面の反射率を測定する。一方、未処理の半導体ウェハーWが第2クールチャンバー141に搬入されたときには、反射率測定部145が半導体ウェハーWの表面の反射率を測定する。このときには、反射率測定部135,145は、加熱処理前の半導体ウェハーWの反射率を測定することとなる。反射率測定部135,145によって測定された半導体ウェハーWの反射率は制御部3からホストコンピュータ90に伝達され、加熱前反射率として記憶部91に格納される。 Next, the delivery robot 120 of the indexer unit 101 takes out the semiconductor wafer W whose orientation has been adjusted from the alignment chamber 231 and carries it into the first cool chamber 131 of the cooling unit 130 or the second cool chamber 141 of the cooling unit 140. When the unprocessed semiconductor wafer W is carried into the first cool chamber 131, the reflectance measuring unit 135 measures the reflectance of the surface of the semiconductor wafer W. On the other hand, when the unprocessed semiconductor wafer W is carried into the second cool chamber 141, the reflectance measuring unit 145 measures the reflectance of the surface of the semiconductor wafer W. At this time, the reflectance measuring units 135 and 145 measure the reflectance of the semiconductor wafer W before the heat treatment. The reflectance of the semiconductor wafer W measured by the reflectance measuring units 135 and 145 is transmitted from the control unit 3 to the host computer 90 and stored in the storage unit 91 as the reflectance before heating.
 第1クールチャンバー131または第2クールチャンバー141に搬入された半導体ウェハーWは搬送ロボット150によって搬送チャンバー170に搬出される。加熱処理前の半導体ウェハーWがインデクサ部101から第1クールチャンバー131または第2クールチャンバー141を経て搬送チャンバー170に移送される際には、第1クールチャンバー131および第2クールチャンバー141は半導体ウェハーWの受け渡しのためのパスとして機能するのである。 半導体 The semiconductor wafer W carried into the first cool chamber 131 or the second cool chamber 141 is carried out to the transfer chamber 170 by the transfer robot 150. When the semiconductor wafer W before the heat treatment is transferred from the indexer unit 101 to the transfer chamber 170 via the first cool chamber 131 or the second cool chamber 141, the first cool chamber 131 and the second cool chamber 141 are transferred to the semiconductor wafer. It functions as a path for delivery of W.
 半導体ウェハーWを取り出した搬送ロボット150は熱処理部160を向くように旋回する。続いて、ゲートバルブ185が処理チャンバー6と搬送チャンバー170との間を開放し、搬送ロボット150が未処理の半導体ウェハーWを処理チャンバー6に搬入する。このときに、先行する加熱処理済みの半導体ウェハーWが処理チャンバー6に存在している場合には、搬送ハンド151a,151bの一方によって加熱処理後の半導体ウェハーWを取り出してから未処理の半導体ウェハーWを処理チャンバー6に搬入してウェハー入れ替えを行う。その後、ゲートバルブ185が処理チャンバー6と搬送チャンバー170との間を閉鎖する。 (4) The transfer robot 150 taking out the semiconductor wafer W turns so as to face the heat treatment unit 160. Subsequently, the gate valve 185 opens the space between the processing chamber 6 and the transfer chamber 170, and the transfer robot 150 loads the unprocessed semiconductor wafer W into the processing chamber 6. At this time, if the preceding semiconductor wafer W subjected to the heat treatment is present in the processing chamber 6, the semiconductor wafer W after the heat treatment is taken out by one of the transport hands 151a and 151b, and then the unprocessed semiconductor wafer W is taken out. W is carried into the processing chamber 6 and the wafer is replaced. After that, the gate valve 185 closes the space between the processing chamber 6 and the transfer chamber 170.
 処理チャンバー6に搬入された半導体ウェハーWには、ハロゲンランプHLによって予備加熱が行われた後、フラッシュランプFLからのフラッシュ光照射によってフラッシュ加熱処理が行われる。このフラッシュ加熱処理により半導体ウェハーWに注入された不純物の活性化が行われる。 (4) The semiconductor wafer W carried into the processing chamber 6 is preheated by the halogen lamp HL, and then is subjected to flash heating by irradiation with flash light from the flash lamp FL. The activation of the impurities implanted in the semiconductor wafer W is performed by the flash heat treatment.
 フラッシュ加熱処理が終了した後、ゲートバルブ185が処理チャンバー6と搬送チャンバー170との間を再び開放し、搬送ロボット150が処理チャンバー6からフラッシュ加熱処理後の半導体ウェハーWを搬送チャンバー170に搬出する。半導体ウェハーWを取り出した搬送ロボット150は、処理チャンバー6から第1クールチャンバー131または第2クールチャンバー141に向くように旋回する。また、ゲートバルブ185が処理チャンバー6と搬送チャンバー170との間を閉鎖する。 After the completion of the flash heat treatment, the gate valve 185 opens the processing chamber 6 and the transfer chamber 170 again, and the transfer robot 150 unloads the semiconductor wafer W after the flash heat treatment from the process chamber 6 to the transfer chamber 170. . The transfer robot 150 taking out the semiconductor wafer W turns so as to face the first cool chamber 131 or the second cool chamber 141 from the processing chamber 6. Further, the gate valve 185 closes the space between the processing chamber 6 and the transfer chamber 170.
 その後、搬送ロボット150が加熱処理後の半導体ウェハーWを冷却部130の第1クールチャンバー131または冷却部140の第2クールチャンバー141に搬入する。このとき、当該半導体ウェハーWが加熱処理前に第1クールチャンバー131を通ってきている場合には加熱処理後にも第1クールチャンバー131に搬入され、加熱処理前に第2クールチャンバー141を通ってきている場合には加熱処理後にも第2クールチャンバー141に搬入される。第1クールチャンバー131または第2クールチャンバー141では、フラッシュ加熱処理後の半導体ウェハーWの冷却処理が行われる。熱処理部160の処理チャンバー6から搬出された時点での半導体ウェハーW全体の温度は比較的高温であるため、これを第1クールチャンバー131または第2クールチャンバー141にて常温近傍にまで冷却するのである。 Then, the transfer robot 150 carries the semiconductor wafer W after the heat treatment into the first cool chamber 131 of the cooling unit 130 or the second cool chamber 141 of the cooling unit 140. At this time, if the semiconductor wafer W has passed through the first cool chamber 131 before the heat treatment, it is carried into the first cool chamber 131 even after the heat treatment, and has passed through the second cool chamber 141 before the heat treatment. In this case, the wafer is carried into the second cool chamber 141 even after the heat treatment. In the first cool chamber 131 or the second cool chamber 141, a cooling process of the semiconductor wafer W after the flash heating process is performed. Since the temperature of the entire semiconductor wafer W at the time of being unloaded from the processing chamber 6 of the heat treatment unit 160 is relatively high, the semiconductor wafer W is cooled to near normal temperature in the first cool chamber 131 or the second cool chamber 141. is there.
 また、半導体ウェハーWの冷却処理と並行して、加熱処理後の半導体ウェハーWの反射率が測定される。加熱処理後の半導体ウェハーWが第1クールチャンバー131に搬入されたときには、反射率測定部135が半導体ウェハーWの表面の反射率を測定する。一方、加熱処理後の半導体ウェハーWが第2クールチャンバー141に搬入されたときには、反射率測定部145が半導体ウェハーWの表面の反射率を測定する。このときには、反射率測定部135,145は、加熱処理後の半導体ウェハーWの反射率を測定することとなる。反射率測定部135,145によって測定された半導体ウェハーWの反射率は制御部3からホストコンピュータ90に伝達され、加熱後反射率として記憶部91に格納される。 (4) In parallel with the cooling process of the semiconductor wafer W, the reflectance of the semiconductor wafer W after the heating process is measured. When the semiconductor wafer W after the heat treatment is carried into the first cool chamber 131, the reflectance measuring unit 135 measures the reflectance of the surface of the semiconductor wafer W. On the other hand, when the semiconductor wafer W after the heat treatment is carried into the second cool chamber 141, the reflectance measuring unit 145 measures the reflectance of the surface of the semiconductor wafer W. At this time, the reflectance measuring units 135 and 145 measure the reflectance of the semiconductor wafer W after the heat treatment. The reflectance of the semiconductor wafer W measured by the reflectance measuring units 135 and 145 is transmitted from the control unit 3 to the host computer 90, and stored in the storage unit 91 as the reflectance after heating.
 所定の冷却処理時間が経過した後、受渡ロボット120が冷却後の半導体ウェハーWを第1クールチャンバー131または第2クールチャンバー141から搬出し、キャリアCへと返却する。キャリアCに所定枚数の処理済み半導体ウェハーWが収容されると、そのキャリアCはインデクサ部101のロードポート110から搬出される。 After the predetermined cooling processing time has elapsed, the delivery robot 120 unloads the cooled semiconductor wafer W from the first cool chamber 131 or the second cool chamber 141 and returns it to the carrier C. When a predetermined number of processed semiconductor wafers W are stored in the carrier C, the carrier C is unloaded from the load port 110 of the indexer unit 101.
 熱処理部160におけるフラッシュ加熱処理について説明を続ける。処理チャンバー6への半導体ウェハーWの搬入に先立って、給気のためのバルブ84が開放されるとともに、排気用のバルブ89,192が開放されて処理チャンバー6内に対する給排気が開始される。バルブ84が開放されると、ガス供給孔81から熱処理空間65に窒素ガスが供給される。また、バルブ89が開放されると、ガス排気孔86から処理チャンバー6内の気体が排気される。これにより、処理チャンバー6内の熱処理空間65の上部から供給された窒素ガスが下方へと流れ、熱処理空間65の下部から排気される。 (4) The description of the flash heat treatment in the heat treatment section 160 will be continued. Prior to the loading of the semiconductor wafer W into the processing chamber 6, the air supply valve 84 is opened, and the exhaust valves 89 and 192 are opened to start the supply and exhaust of the processing chamber 6. When the valve 84 is opened, nitrogen gas is supplied from the gas supply hole 81 to the heat treatment space 65. When the valve 89 is opened, the gas in the processing chamber 6 is exhausted from the gas exhaust hole 86. Thus, the nitrogen gas supplied from the upper part of the heat treatment space 65 in the processing chamber 6 flows downward, and is exhausted from the lower part of the heat treatment space 65.
 また、バルブ192が開放されることによって、搬送開口部66からも処理チャンバー6内の気体が排気される。さらに、図示省略の排気機構によって移載機構10の駆動部周辺の雰囲気も排気される。なお、熱処理部160における半導体ウェハーWの熱処理時には窒素ガスが熱処理空間65に継続的に供給されており、その供給量は処理工程に応じて適宜変更される。 {Circle around (2)} By opening the valve 192, the gas in the processing chamber 6 is also exhausted from the transfer opening 66. Further, the atmosphere around the drive section of the transfer mechanism 10 is also exhausted by an exhaust mechanism not shown. During the heat treatment of the semiconductor wafer W in the heat treatment section 160, the nitrogen gas is continuously supplied to the heat treatment space 65, and the supply amount is appropriately changed according to the treatment process.
 続いて、ゲートバルブ185が開いて搬送開口部66が開放され、搬送ロボット150により搬送開口部66を介して処理対象となる半導体ウェハーWが処理チャンバー6内の熱処理空間65に搬入される。搬送ロボット150は、未処理の半導体ウェハーWを保持する搬送ハンド151a(または搬送ハンド151b)を保持部7の直上位置まで進出させて停止させる。そして、移載機構10の一対の移載アーム11が退避位置から移載動作位置に水平移動して上昇することにより、リフトピン12が貫通孔79を通ってサセプタ74の保持プレート75の上面から突き出て半導体ウェハーWを受け取る。このとき、リフトピン12は基板支持ピン77の上端よりも上方にまで上昇する。 Next, the gate valve 185 is opened to open the transfer opening 66, and the transfer robot 150 loads the semiconductor wafer W to be processed into the heat treatment space 65 in the processing chamber 6 through the transfer opening 66. The transfer robot 150 advances and stops the transfer hand 151a (or the transfer hand 151b) holding the unprocessed semiconductor wafer W to a position immediately above the holding unit 7. Then, the pair of transfer arms 11 of the transfer mechanism 10 move horizontally from the retracted position to the transfer operation position and rise, so that the lift pins 12 protrude from the upper surface of the holding plate 75 of the susceptor 74 through the through holes 79. To receive the semiconductor wafer W. At this time, the lift pins 12 rise above the upper ends of the substrate support pins 77.
 未処理の半導体ウェハーWがリフトピン12に載置された後、搬送ロボット150が搬送ハンド151aを熱処理空間65から退出させ、ゲートバルブ185によって搬送開口部66が閉鎖される。そして、一対の移載アーム11が下降することにより、半導体ウェハーWは移載機構10から保持部7のサセプタ74に受け渡されて水平姿勢にて下方より保持される。半導体ウェハーWは、保持プレート75上に立設された複数の基板支持ピン77によって支持されてサセプタ74に保持される。また、半導体ウェハーWは、パターン形成がなされて不純物が注入された表面を上面として保持部7に保持される。複数の基板支持ピン77によって支持された半導体ウェハーWの裏面(表面とは反対側の主面)と保持プレート75の保持面75aとの間には所定の間隔が形成される。サセプタ74の下方にまで下降した一対の移載アーム11は水平移動機構13によって退避位置、すなわち凹部62の内側に退避する。 (4) After the unprocessed semiconductor wafer W is placed on the lift pins 12, the transfer robot 150 moves the transfer hand 151a out of the heat treatment space 65, and the transfer opening 66 is closed by the gate valve 185. When the pair of transfer arms 11 is lowered, the semiconductor wafer W is transferred from the transfer mechanism 10 to the susceptor 74 of the holding unit 7 and is held from below in a horizontal posture. The semiconductor wafer W is supported by a plurality of substrate support pins 77 erected on a holding plate 75 and held by a susceptor 74. Further, the semiconductor wafer W is held by the holding unit 7 with the surface on which the pattern is formed and the impurities are implanted facing upward. A predetermined gap is formed between the back surface (the main surface opposite to the front surface) of the semiconductor wafer W supported by the plurality of substrate support pins 77 and the holding surface 75a of the holding plate 75. The pair of transfer arms 11 that have descended to below the susceptor 74 are retracted by the horizontal moving mechanism 13 to the retracted position, that is, to the inside of the recess 62.
 半導体ウェハーWが保持部7のサセプタ74によって水平姿勢にて下方より保持された後、40本のハロゲンランプHLが一斉に点灯して予備加熱(アシスト加熱)が開始される。ハロゲンランプHLから出射されたハロゲン光は、石英にて形成された下側チャンバー窓64およびサセプタ74を透過して半導体ウェハーWの下面から照射される。ハロゲンランプHLからの光照射を受けることによって半導体ウェハーWが予備加熱されて温度が上昇する。なお、移載機構10の移載アーム11は凹部62の内側に退避しているため、ハロゲンランプHLによる加熱の障害となることは無い。 (4) After the semiconductor wafer W is held from below by the susceptor 74 of the holding unit 7 in a horizontal posture, the forty halogen lamps HL are turned on all at once, and preheating (assisting heating) is started. The halogen light emitted from the halogen lamp HL passes through the lower chamber window 64 and the susceptor 74 formed of quartz and is irradiated from the lower surface of the semiconductor wafer W. Upon receiving light irradiation from the halogen lamp HL, the semiconductor wafer W is preheated and the temperature rises. Since the transfer arm 11 of the transfer mechanism 10 is retracted inside the concave portion 62, it does not hinder the heating by the halogen lamp HL.
 ハロゲンランプHLによる予備加熱を行うときには、半導体ウェハーWの温度が放射温度計20によって測定されている。すなわち、サセプタ74に保持された半導体ウェハーWの下面から開口部78を介して放射された赤外光を放射温度計20が受光して昇温中のウェハー温度を測定する。測定された半導体ウェハーWの温度は制御部3に伝達される。制御部3は、ハロゲンランプHLからの光照射によって昇温する半導体ウェハーWの温度が所定の予備加熱温度T1に到達したか否かを監視しつつ、ハロゲンランプHLの出力を制御する。すなわち、制御部3は、放射温度計20による測定値に基づいて、半導体ウェハーWの温度が予備加熱温度T1となるようにハロゲンランプHLの出力をフィードバック制御する。予備加熱温度T1は、半導体ウェハーWに添加された不純物が熱により拡散する恐れのない、600℃ないし800℃程度とされる(本実施の形態では700℃)。 (4) When performing preliminary heating by the halogen lamp HL, the temperature of the semiconductor wafer W is measured by the radiation thermometer 20. That is, the radiation thermometer 20 receives infrared light radiated from the lower surface of the semiconductor wafer W held by the susceptor 74 via the opening 78, and measures the temperature of the wafer during temperature rise. The measured temperature of the semiconductor wafer W is transmitted to the control unit 3. The control unit 3 controls the output of the halogen lamp HL while monitoring whether or not the temperature of the semiconductor wafer W heated by the irradiation of light from the halogen lamp HL has reached a predetermined preheating temperature T1. That is, the control unit 3 performs feedback control of the output of the halogen lamp HL based on the value measured by the radiation thermometer 20 so that the temperature of the semiconductor wafer W becomes the preheating temperature T1. The preheating temperature T1 is set to about 600 ° C. to 800 ° C. (700 ° C. in the present embodiment) at which there is no possibility that impurities added to the semiconductor wafer W are diffused by heat.
 半導体ウェハーWの温度が予備加熱温度T1に到達した後、制御部3は半導体ウェハーWをその予備加熱温度T1に暫時維持する。具体的には、放射温度計20によって測定される半導体ウェハーWの温度が予備加熱温度T1に到達した時点にて制御部3がハロゲンランプHLの出力を調整し、半導体ウェハーWの温度をほぼ予備加熱温度T1に維持している。 (4) After the temperature of the semiconductor wafer W reaches the preheating temperature T1, the control unit 3 temporarily maintains the semiconductor wafer W at the preheating temperature T1. Specifically, when the temperature of the semiconductor wafer W measured by the radiation thermometer 20 reaches the preheating temperature T1, the control unit 3 adjusts the output of the halogen lamp HL to substantially reduce the temperature of the semiconductor wafer W to the preheating temperature. The heating temperature T1 is maintained.
 このようなハロゲンランプHLによる予備加熱を行うことによって、半導体ウェハーWの全体を予備加熱温度T1に均一に昇温している。ハロゲンランプHLによる予備加熱の段階においては、より放熱が生じやすい半導体ウェハーWの周縁部の温度が中央部よりも低下する傾向にあるが、ハロゲンランプハウス4におけるハロゲンランプHLの配設密度は、半導体ウェハーWの中央部に対向する領域よりも周縁部に対向する領域の方が高くなっている。このため、放熱が生じやすい半導体ウェハーWの周縁部に照射される光量が多くなり、予備加熱段階における半導体ウェハーWの面内温度分布を均一なものとすることができる。 (4) By performing such preheating by the halogen lamp HL, the entire semiconductor wafer W is uniformly heated to the preheating temperature T1. In the stage of preheating by the halogen lamp HL, the temperature of the peripheral portion of the semiconductor wafer W where heat radiation tends to occur tends to be lower than that of the central portion, but the arrangement density of the halogen lamp HL in the halogen lamp house 4 is: The region facing the peripheral portion is higher than the region facing the center of the semiconductor wafer W. Therefore, the amount of light applied to the peripheral portion of the semiconductor wafer W where heat is likely to be generated increases, and the in-plane temperature distribution of the semiconductor wafer W in the preheating stage can be made uniform.
 半導体ウェハーWの温度が予備加熱温度T1に到達して所定時間が経過した時点にてフラッシュランプFLが半導体ウェハーWの表面にフラッシュ光照射を行う。このとき、フラッシュランプFLから放射されるフラッシュ光の一部は直接に処理チャンバー6内へと向かい、他の一部は一旦リフレクタ52により反射されてから処理チャンバー6内へと向かい、これらのフラッシュ光の照射により半導体ウェハーWのフラッシュ加熱が行われる。 (4) When a predetermined time has elapsed after the temperature of the semiconductor wafer W has reached the preheating temperature T1, the flash lamp FL irradiates the surface of the semiconductor wafer W with flash light. At this time, a part of the flash light emitted from the flash lamp FL goes directly into the processing chamber 6, and another part is once reflected by the reflector 52 and then goes into the processing chamber 6. Flash heating of the semiconductor wafer W is performed by light irradiation.
 フラッシュ加熱は、フラッシュランプFLからのフラッシュ光(閃光)照射により行われるため、半導体ウェハーWの表面温度を短時間で上昇することができる。すなわち、フラッシュランプFLから照射されるフラッシュ光は、予めコンデンサーに蓄えられていた静電エネルギーが極めて短い光パルスに変換された、照射時間が0.1ミリセカンド以上100ミリセカンド以下程度の極めて短く強い閃光である。そして、フラッシュランプFLからのフラッシュ光照射によりフラッシュ加熱される半導体ウェハーWの表面温度は、瞬間的に1000℃以上の処理温度T2まで上昇し、半導体ウェハーWに注入された不純物が活性化された後、表面温度が急速に下降する。このように、半導体ウェハーWの表面温度を極めて短時間で昇降することができるため、半導体ウェハーWに注入された不純物の熱による拡散を抑制しつつ不純物の活性化を行うことができる。なお、不純物の活性化に必要な時間はその熱拡散に必要な時間に比較して極めて短いため、0.1ミリセカンドないし100ミリセカンド程度の拡散が生じない短時間であっても活性化は完了する。 (4) Since the flash heating is performed by flash light (flash light) irradiation from the flash lamp FL, the surface temperature of the semiconductor wafer W can be increased in a short time. That is, the flash light emitted from the flash lamp FL is converted into a light pulse in which the electrostatic energy previously stored in the condenser is extremely short, and the irradiation time is extremely short, from about 0.1 millisecond to about 100 milliseconds. It is a strong flash. Then, the surface temperature of the semiconductor wafer W, which is flash-heated by irradiating the flash light from the flash lamp FL, instantaneously rose to a processing temperature T2 of 1000 ° C. or more, and the impurities implanted into the semiconductor wafer W were activated. Later, the surface temperature drops rapidly. As described above, since the surface temperature of the semiconductor wafer W can be raised and lowered in a very short time, the impurity can be activated while suppressing diffusion of the impurity injected into the semiconductor wafer W due to heat. Since the time required for activating the impurity is extremely shorter than the time required for thermal diffusion, the activation is performed even in a short time in which diffusion of about 0.1 to 100 milliseconds does not occur. Complete.
 フラッシュ加熱処理が終了した後、所定時間経過後にハロゲンランプHLが消灯する。これにより、半導体ウェハーWが予備加熱温度T1から急速に降温する。降温中の半導体ウェハーWの温度は放射温度計20によって測定され、その測定結果は制御部3に伝達される。制御部3は、放射温度計20の測定結果より半導体ウェハーWの温度が所定温度まで降温したか否かを監視する。そして、半導体ウェハーWの温度が所定以下にまで降温した後、移載機構10の一対の移載アーム11が再び退避位置から移載動作位置に水平移動して上昇することにより、リフトピン12がサセプタ74の上面から突き出て熱処理後の半導体ウェハーWをサセプタ74から受け取る。続いて、ゲートバルブ185により閉鎖されていた搬送開口部66が開放され、リフトピン12上に載置された処理後の半導体ウェハーWが搬送ロボット150の搬送ハンド151b(または搬送ハンド151a)により搬出される。搬送ロボット150は、搬送ハンド151bをリフトピン12によって突き上げられた半導体ウェハーWの直下位置にまで進出させて停止させる。そして、一対の移載アーム11が下降することにより、フラッシュ加熱後の半導体ウェハーWが搬送ハンド151bに渡されて載置される。その後、搬送ロボット150が搬送ハンド151bを処理チャンバー6から退出させて処理後の半導体ウェハーWを搬出する。 (4) After the completion of the flash heating process, the halogen lamp HL is turned off after a lapse of a predetermined time. As a result, the temperature of the semiconductor wafer W rapidly drops from the preheating temperature T1. The temperature of the semiconductor wafer W during the temperature decrease is measured by the radiation thermometer 20, and the measurement result is transmitted to the control unit 3. The control unit 3 monitors whether the temperature of the semiconductor wafer W has dropped to a predetermined temperature based on the measurement result of the radiation thermometer 20. Then, after the temperature of the semiconductor wafer W falls to a predetermined temperature or less, the pair of transfer arms 11 of the transfer mechanism 10 move horizontally again from the retreat position to the transfer operation position and rise, so that the lift pins 12 The semiconductor wafer W protruding from the upper surface of the semiconductor wafer 74 and having undergone the heat treatment is received from the susceptor 74. Subsequently, the transfer opening 66 closed by the gate valve 185 is opened, and the processed semiconductor wafer W placed on the lift pins 12 is unloaded by the transfer hand 151b (or the transfer hand 151a) of the transfer robot 150. You. The transfer robot 150 advances the transfer hand 151b to a position immediately below the semiconductor wafer W pushed up by the lift pins 12, and stops the transfer. Then, by lowering the pair of transfer arms 11, the semiconductor wafer W after the flash heating is transferred to the transfer hand 151b and mounted thereon. Thereafter, the transfer robot 150 withdraws the transfer hand 151b from the processing chamber 6 and unloads the processed semiconductor wafer W.
 本実施形態においては、第1クールチャンバー131および第2クールチャンバー141に半導体ウェハーWの表面の反射率を測定する反射率測定部135、145を設けている。上述した通り、加熱処理前の半導体ウェハーWはインデクサ部101から必ず第1クールチャンバー131または第2クールチャンバー141を通って処理チャンバー6に搬送される。また、加熱処理後の半導体ウェハーWは処理チャンバー6から必ず第1クールチャンバー131または第2クールチャンバー141を通ってインデクサ部101に戻される。すなわち、第1クールチャンバー131および第2クールチャンバー141は、インデクサ部101と処理チャンバー6とを結ぶ半導体ウェハーWの搬送経路に設置されており、当該搬送経路上に反射率測定部135,145が設けられているのである。より正確には、反射率測定部135、145は、インデクサ部101から処理チャンバー6に至る半導体ウェハーWの搬送経路の往路、および、処理チャンバー6からインデクサ部101に至る半導体ウェハーWの搬送経路の復路の双方に設けられているとみなすことができる。 In the present embodiment, the first cool chamber 131 and the second cool chamber 141 are provided with reflectivity measuring units 135 and 145 for measuring the reflectivity of the surface of the semiconductor wafer W. As described above, the semiconductor wafer W before the heat treatment is always transferred from the indexer unit 101 to the processing chamber 6 through the first cool chamber 131 or the second cool chamber 141. The semiconductor wafer W after the heat treatment is always returned from the processing chamber 6 to the indexer unit 101 through the first cool chamber 131 or the second cool chamber 141. That is, the first cool chamber 131 and the second cool chamber 141 are provided on a transfer path of the semiconductor wafer W connecting the indexer unit 101 and the processing chamber 6, and the reflectance measurement units 135 and 145 are provided on the transfer path. It is provided. To be more precise, the reflectance measuring units 135 and 145 are configured to transmit the semiconductor wafer W from the indexer unit 101 to the processing chamber 6 on the outward path and the semiconductor wafer W from the processing chamber 6 to the indexer unit 101 on the transport path. It can be considered that both are provided on the return route.
 従って、反射率測定部135,145は、処理チャンバー6に搬入される前に加熱処理前の半導体ウェハーWの反射率を測定することができるとともに、処理チャンバー6から搬出された後に加熱処理後の半導体ウェハーWの反射率を測定することもできる。そして、反射率測定部135,145は、フラッシュ光照射による加熱処理前の半導体ウェハーWの反射率を測定して制御部3に伝達する。加熱処理前の半導体ウェハーWの反射率は制御部3からホストコンピュータ90に送信されて加熱前反射率として記憶部91に蓄積される(図10)。また、反射率測定部135,145は、フラッシュ光照射による加熱処理後の半導体ウェハーWの反射率を測定して制御部3に伝達する。加熱処理後の半導体ウェハーWの反射率は制御部3からホストコンピュータ90に送信されて加熱後反射率として記憶部91に蓄積される。 Therefore, the reflectivity measuring units 135 and 145 can measure the reflectivity of the semiconductor wafer W before the heat treatment before being carried into the processing chamber 6, and can also measure the reflectivity after the heat treatment after being carried out from the processing chamber 6. The reflectance of the semiconductor wafer W can also be measured. Then, the reflectivity measuring units 135 and 145 measure the reflectivity of the semiconductor wafer W before the heat treatment by flash light irradiation, and transmit the measured reflectivity to the control unit 3. The reflectance of the semiconductor wafer W before the heat treatment is transmitted from the control unit 3 to the host computer 90 and stored in the storage unit 91 as the reflectance before heating (FIG. 10). Further, the reflectivity measuring units 135 and 145 measure the reflectivity of the semiconductor wafer W after the heat treatment by flash light irradiation, and transmit the measured reflectivity to the control unit 3. The reflectance of the semiconductor wafer W after the heat treatment is transmitted from the control unit 3 to the host computer 90 and stored in the storage unit 91 as the reflectance after heating.
 加熱処理後の半導体ウェハーWの反射率は、半導体ウェハーWに形成されている膜の種類や処理内容に応じて概ね一定の範囲内に収まる。例えば、ニッケル(Ni)の薄膜が成膜されたシリコンの半導体ウェハーWにフラッシュ光を照射して加熱することによってニッケルシリサイドを形成する処理であれば、その処理が正常に行われていれば加熱処理後の半導体ウェハーWの反射率は概ね一定の値となる。従って、加熱処理後の半導体ウェハーWの反射率に基づいて、半導体ウェハーWの加熱処理が正常に行われていたのか否かを確認することができる。具体的には、半導体ウェハーWの種類や処理内容に応じて予め設定されている範囲内に加熱処理後の半導体ウェハーWの反射率が収まっているか否かを制御部3の判定部31が判定する。加熱処理後の半導体ウェハーWの反射率が当該範囲内に収まっている場合には、判定部31は半導体ウェハーWの加熱処理が正常に行われたと判定する。一方、加熱処理後の半導体ウェハーWの反射率が当該範囲から外れている場合には、判定部31は半導体ウェハーWの加熱処理が正常に行われていないと判定する。 (4) The reflectance of the semiconductor wafer W after the heat treatment falls within a substantially constant range according to the type of film formed on the semiconductor wafer W and the processing content. For example, in the case of forming a nickel silicide by irradiating a flash light to a silicon semiconductor wafer W on which a thin film of nickel (Ni) is formed to form nickel silicide, heating is performed if the processing is performed normally. The reflectance of the semiconductor wafer W after the processing has a substantially constant value. Therefore, whether or not the heat treatment of the semiconductor wafer W has been performed normally can be confirmed based on the reflectance of the semiconductor wafer W after the heat treatment. Specifically, the determination unit 31 of the control unit 3 determines whether or not the reflectance of the semiconductor wafer W after the heat treatment falls within a range set in advance according to the type of the semiconductor wafer W and the processing content. I do. When the reflectance of the semiconductor wafer W after the heat treatment falls within the range, the determination unit 31 determines that the heat treatment of the semiconductor wafer W has been performed normally. On the other hand, when the reflectance of the semiconductor wafer W after the heat treatment is out of the range, the determination unit 31 determines that the heat treatment of the semiconductor wafer W is not normally performed.
 このように、判定部31は、加熱処理後の半導体ウェハーWの反射率に基づいて、半導体ウェハーWの加熱処理が正常に行われたか否かを判定する。そして、判定部31によって半導体ウェハーWの加熱処理が正常に行われていないと判定されたときには、警告発報部32が表示部34に処理異常が発生した旨の警告を発報する。このようにすれば、フラッシュ光照射によって加熱された後の半導体ウェハーWの反射率を測定するだけで、当該半導体ウェハーWに正常な加熱処理が行われたかを簡易に確認することができる。 As described above, the determination unit 31 determines whether or not the heating processing of the semiconductor wafer W has been performed normally based on the reflectance of the semiconductor wafer W after the heating processing. When the determining unit 31 determines that the heating process of the semiconductor wafer W is not performed normally, the warning issuing unit 32 issues a warning on the display unit 34 that a processing abnormality has occurred. With this configuration, it is possible to easily confirm whether or not the semiconductor wafer W has been properly subjected to the heat treatment only by measuring the reflectance of the semiconductor wafer W after being heated by the flash light irradiation.
 また、典型的には、半導体ウェハーWの表面の反射率に応じてフラッシュ光照射時におけるフラッシュランプFLの発光強度を調整するのが好ましい。フラッシュ光照射時に半導体ウェハーWの表面を所定温度昇温するのに、半導体ウェハーWの反射率が低ければ(つまり、吸収率が高ければ)、フラッシュランプFLの発光強度が小さくても足りる。逆に、半導体ウェハーWの反射率が高ければ(つまり、吸収率が低ければ)、フラッシュランプFLの発光強度も大きくする必要がある。これを実行する際に、反射率測定部135,145によって測定された加熱処理前の半導体ウェハーWの反射率に基づいてフラッシュランプFLの発光強度(具体的には、フラッシュランプFLへの印加電圧)を調整することが考えられる。 (4) Typically, it is preferable to adjust the light emission intensity of the flash lamp FL during flash light irradiation according to the reflectance of the surface of the semiconductor wafer W. If the reflectance of the semiconductor wafer W is low (that is, if the absorptance is high) to raise the temperature of the surface of the semiconductor wafer W to a predetermined temperature at the time of irradiating the flash light, the emission intensity of the flash lamp FL may be small. Conversely, if the reflectance of the semiconductor wafer W is high (that is, if the absorptance is low), it is necessary to increase the light emission intensity of the flash lamp FL. When this is performed, the light emission intensity of the flash lamp FL (specifically, the voltage applied to the flash lamp FL) is determined based on the reflectance of the semiconductor wafer W before the heat treatment measured by the reflectance measurement units 135 and 145. ) Can be adjusted.
 ところが、処理チャンバー6内ではフラッシュランプFLからフラッシュ光照射を行う前にハロゲンランプHLによる半導体ウェハーWの予備加熱を行っている。そして、加熱処理の内容によっては、予備加熱時に半導体ウェハーWの表面の反射率が変化することが判明した。例えば、イオン注入によって表面がアモルファス層となっている半導体ウェハーWにハロゲンランプHLから光を照射して予備加熱を行うと、そのアモルファス層が結晶化して半導体ウェハーWの反射率が変化する。予備加熱段階で半導体ウェハーWの反射率が変化すると、処理チャンバー6に搬入される前の加熱処理前の半導体ウェハーWの反射率を測定していたとしても、その加熱前反射率のみに基づいてフラッシュランプFLの発光強度を調整すると誤った発光強度にてフラッシュランプFLを発光させることとなる。その結果、フラッシュ光照射時に半導体ウェハーWの表面を適正な目標温度に加熱することができなくなる。 However, in the processing chamber 6, the semiconductor wafer W is preliminarily heated by the halogen lamp HL before flash light irradiation from the flash lamp FL is performed. And it turned out that the reflectance of the surface of the semiconductor wafer W changes at the time of preliminary heating depending on the content of the heat treatment. For example, when preheating is performed by irradiating light from a halogen lamp HL to a semiconductor wafer W whose surface has become an amorphous layer by ion implantation, the amorphous layer is crystallized and the reflectance of the semiconductor wafer W changes. When the reflectivity of the semiconductor wafer W changes in the preheating stage, even if the reflectivity of the semiconductor wafer W before the heat treatment before being loaded into the processing chamber 6 is measured, the reflectivity is based only on the reflectivity before heating. Adjusting the emission intensity of the flash lamp FL causes the flash lamp FL to emit light with an incorrect emission intensity. As a result, the surface of the semiconductor wafer W cannot be heated to an appropriate target temperature during flash light irradiation.
 そこで、本実施形態においては、加熱処理前の半導体ウェハーWの反射率(加熱前反射率)および加熱処理後の半導体ウェハーWの反射率(加熱後反射率)の双方に基づいてフラッシュランプFLの発光強度を決定するようにしている。この作業は、例えばロットの処理を行う前の加熱条件の条件出しを行う際に実行すれば良い。なお、ロットとは、同一条件にて同一内容の処理を行う対象となる1組の半導体ウェハーWである。 Therefore, in the present embodiment, the flash lamp FL is determined based on both the reflectance of the semiconductor wafer W before the heat treatment (reflectance before heating) and the reflectance of the semiconductor wafer W after the heat treatment (reflectance after heating). The emission intensity is determined. This operation may be performed, for example, when determining the heating conditions before processing the lot. Note that a lot is a set of semiconductor wafers W to be processed with the same contents under the same conditions.
 具体的には、予備加熱段階で半導体ウェハーWの反射率が変化する程度に応じて加熱前反射率および加熱後反射率に重み付けを行って発光強度決定のための反射率を求める(例えば、加重平均を算出する)。例えば、イオン注入によって表面がアモルファス層となっている半導体ウェハーWの加熱処理を行う場合には、上述の通り、予備加熱段階で半導体ウェハーWの反射率が大きく変化する。このような場合には、フラッシュランプFLが発光する時点での半導体ウェハーWの反射率は加熱後反射率に近いため、加熱後反射率に重みを付けて発光強度決定のための反射率を求める。一方、例えば、表面にニッケルの薄膜が成膜された半導体ウェハーWの加熱処理を行う場合には、予備加熱段階では半導体ウェハーWの反射率は大きくは変化せず、フラッシュ光照射時にニッケルシリサイドが形成されて反射率が変化する。このような場合には、フラッシュランプFLが発光する時点での半導体ウェハーWの反射率は加熱前反射率に近いため、加熱前反射率に重みを付けて発光強度決定のための反射率を求める。 Specifically, the reflectance before heating and the reflectance after heating are weighted in accordance with the degree to which the reflectance of the semiconductor wafer W changes in the preheating stage, and the reflectance for determining the emission intensity is obtained (for example, weighting). Calculate the average). For example, when performing a heat treatment on a semiconductor wafer W whose surface is an amorphous layer by ion implantation, as described above, the reflectance of the semiconductor wafer W greatly changes in the preheating stage. In such a case, since the reflectance of the semiconductor wafer W at the time when the flash lamp FL emits light is close to the reflectance after heating, the reflectance for heating is determined by weighting the reflectance after heating. . On the other hand, for example, when performing a heating process on a semiconductor wafer W having a nickel thin film formed on its surface, the reflectance of the semiconductor wafer W does not change significantly in the preheating stage, and nickel silicide is irradiated during flash light irradiation. Once formed, the reflectance changes. In such a case, since the reflectance of the semiconductor wafer W at the time when the flash lamp FL emits light is close to the reflectance before heating, the reflectance before heating is determined by weighting the reflectance before heating. .
 このように、加熱前反射率に加えて加熱後反射率に基づいてフラッシュランプFLの発光強度を調整すれば、予備加熱時またはフラッシュ光照射時に半導体ウェハーWの表面の反射率が変化したとしてもフラッシュランプFLの発光強度を適正な値に決定することができる。その結果、フラッシュ光照射時に半導体ウェハーWの表面を所望の目標温度に加熱することができる。 As described above, if the emission intensity of the flash lamp FL is adjusted based on the reflectance after heating in addition to the reflectance before heating, even if the reflectance of the surface of the semiconductor wafer W changes during preheating or flash light irradiation. The emission intensity of the flash lamp FL can be determined to an appropriate value. As a result, the surface of the semiconductor wafer W can be heated to a desired target temperature during flash light irradiation.
 このようなフラッシュランプFLの発光強度の調整は、基礎となる加熱前反射率および加熱後反射率のデータ数が多いほど精度が高まる。このため、本実施形態においては、過去に処理された複数の半導体ウェハーWの加熱前反射率および加熱後反射率を記憶部91に蓄積している。また、ホストコンピュータ90に複数の熱処理装置100が接続されている場合には、それら複数の熱処理装置100で得られた加熱前反射率および加熱後反射率を記憶部91に蓄積するようにすれば、フラッシュランプFLの発光強度をより高い精度で調整することが可能となる。 精度 The accuracy of the adjustment of the light emission intensity of the flash lamp FL increases as the number of data of the base reflectance before heating and the reflectance after heating increases. Therefore, in the present embodiment, the reflectance before heating and the reflectance after heating of a plurality of semiconductor wafers W processed in the past are stored in the storage unit 91. When a plurality of heat treatment apparatuses 100 are connected to the host computer 90, the reflectance before heating and the reflectance after heating obtained by the plurality of heat treatment apparatuses 100 may be stored in the storage unit 91. In addition, the light emission intensity of the flash lamp FL can be adjusted with higher accuracy.
 もっとも、記憶部91に蓄積されたデータ数が増えるにつれて、手作業で反射率を求めてフラッシュランプFLの発光強度を調整することが困難となる。そこで、ホストコンピュータ90に人工知能(AI)機能を実装し、人工知能を用いて記憶部91に蓄積された大量の加熱前反射率および加熱後反射率のデータを解析して適切な反射率を求めてフラッシュランプFLの発光強度を調整するのが好ましい。 However, as the number of data stored in the storage unit 91 increases, it becomes more difficult to manually adjust the light emission intensity of the flash lamp FL by calculating the reflectance. Therefore, an artificial intelligence (AI) function is implemented in the host computer 90, and a large amount of data on the reflectance before heating and the reflectance after heating stored in the storage unit 91 are analyzed using the artificial intelligence to determine an appropriate reflectance. It is preferable to adjust the light emission intensity of the flash lamp FL.
 以上、本発明の実施の形態について説明したが、この発明はその趣旨を逸脱しない限りにおいて上述したもの以外に種々の変更を行うことが可能である。例えば、上記実施形態においては、第1クールチャンバー131および第2クールチャンバー141に反射率測定部135、145を設けていたが、これに限定されるものではなく、半導体ウェハーWの搬送経路のいずれかに反射率測定部を設けるようにすれば良い。例えば、反射率測定部を搬送チャンバー170に設けるようにしても良いし、インデクサ部101に設けるようにしても良い。或いは、反射率測定部をアライメントチャンバー231に設けるようにしても良い。アライメントチャンバー231に反射率測定部を設けた場合には、加熱処理後の半導体ウェハーWをアライメントチャンバー231に搬送して加熱後反射率を測定するようにする。さらには、反射率を測定するために専用の反射率測定室を熱処理装置100に設けるようにしても良い。この場合、加熱処理前の半導体ウェハーWおよび加熱処理後の半導体ウェハーWをそれぞれ反射率測定室に搬送して加熱前反射率および加熱後反射率を測定する。要するに、処理チャンバー6に搬入される前に加熱処理前の半導体ウェハーWの反射率を測定するとともに、処理チャンバー6から搬出された後に加熱処理後の半導体ウェハーWの反射率を測定することができるように反射率測定部が設けられていれば良い。 Although the embodiments of the present invention have been described above, various changes other than those described above can be made in the present invention without departing from the spirit thereof. For example, in the above embodiment, the reflectance measuring units 135 and 145 are provided in the first cool chamber 131 and the second cool chamber 141, but the present invention is not limited to this. A crab reflectance measuring section may be provided. For example, the reflectance measuring unit may be provided in the transfer chamber 170 or may be provided in the indexer unit 101. Alternatively, the reflectivity measurement unit may be provided in the alignment chamber 231. When a reflectance measuring unit is provided in the alignment chamber 231, the semiconductor wafer W after the heat treatment is transported to the alignment chamber 231 to measure the reflectance after heating. Further, a dedicated reflectance measurement chamber for measuring the reflectance may be provided in the heat treatment apparatus 100. In this case, the semiconductor wafer W before the heat treatment and the semiconductor wafer W after the heat treatment are respectively transported to a reflectance measurement chamber, and the reflectance before heating and the reflectance after heating are measured. In short, it is possible to measure the reflectance of the semiconductor wafer W before the heat treatment before being carried into the processing chamber 6 and to measure the reflectance of the semiconductor wafer W after the heat treatment after being carried out of the processing chamber 6. It is sufficient that the reflectivity measurement unit is provided as described above.
 また、加熱前反射率および加熱後反射率の双方に基づいて、半導体ウェハーWの加熱処理が正常に行われたか否かを判定するようにしても良い。この場合、判定部31は、加熱前反射率と加熱後反射率との差分が所定の範囲内に収まっていれば半導体ウェハーWの加熱処理が正常に行われた判定し、当該範囲から外れているときには半導体ウェハーWの加熱処理が正常に行われていないと判定する。 {Circle around (4)} Whether or not the heat treatment of the semiconductor wafer W has been performed normally may be determined based on both the reflectance before heating and the reflectance after heating. In this case, if the difference between the reflectance before heating and the reflectance after heating falls within a predetermined range, the determination unit 31 determines that the heating process of the semiconductor wafer W has been performed normally and deviates from the range. If it is determined that the heat treatment of the semiconductor wafer W is not performed normally.
 また、フラッシュランプFLの発光強度を調整する際に、加熱前反射率および加熱後反射率に加えて、放射温度計によって測定した各種温度や光度計によって測定した光の強度を考慮するようにしても良い。このようにすれば、より高い精度にてフラッシュランプFLの発光強度を調整することができる。 When adjusting the emission intensity of the flash lamp FL, in addition to the reflectance before heating and the reflectance after heating, various temperatures measured by a radiation thermometer and the intensity of light measured by a photometer are taken into consideration. Is also good. This makes it possible to adjust the light emission intensity of the flash lamp FL with higher accuracy.
 また、上記実施形態においては、フラッシュランプハウス5に30本のフラッシュランプFLを備えるようにしていたが、これに限定されるものではなく、フラッシュランプFLの本数は任意の数とすることができる。また、フラッシュランプFLはキセノンフラッシュランプに限定されるものではなく、クリプトンフラッシュランプであっても良い。また、ハロゲンランプハウス4に備えるハロゲンランプHLの本数も40本に限定されるものではなく、任意の数とすることができる。 Further, in the above embodiment, the flash lamp house 5 is provided with 30 flash lamps FL. However, the present invention is not limited to this, and the number of flash lamps FL can be any number. . The flash lamp FL is not limited to a xenon flash lamp, but may be a krypton flash lamp. Further, the number of halogen lamps HL provided in the halogen lamp house 4 is not limited to 40 but may be any number.
 また、上記実施形態においては、1秒以上連続して発光する連続点灯ランプとしてフィラメント方式のハロゲンランプHLを用いて半導体ウェハーWの予備加熱を行っていたが、これに限定されるものではなく、ハロゲンランプHLに代えて放電型のアークランプ(例えば、キセノンアークランプ)を連続点灯ランプとして用いて予備加熱を行うようにしても良い。 Further, in the above-described embodiment, the preheating of the semiconductor wafer W is performed using the filament type halogen lamp HL as a continuous lighting lamp that emits light continuously for 1 second or more. However, the present invention is not limited to this. The preliminary heating may be performed using a discharge type arc lamp (for example, a xenon arc lamp) as a continuous lighting lamp instead of the halogen lamp HL.
 また、熱処理装置100によって処理対象となる基板は半導体ウェハーに限定されるものではなく、液晶表示装置などのフラットパネルディスプレイに用いるガラス基板や太陽電池用の基板であっても良い。 The substrate to be processed by the heat treatment apparatus 100 is not limited to a semiconductor wafer, but may be a glass substrate used for a flat panel display such as a liquid crystal display device or a substrate for a solar cell.
 3 制御部
 4 ハロゲンランプハウス
 5 フラッシュランプハウス
 6 処理チャンバー
 7 保持部
 10 移載機構
 31 判定部
 32 警告発報部
 65 熱処理空間
 90 ホストコンピュータ
 91 記憶部
 100 熱処理装置
 101 インデクサ部
 130,140 冷却部
 131 第1クールチャンバー
 141 第2クールチャンバー
 135,145 反射率測定部
 150 搬送ロボット
 160 熱処理部
 230 アライメント部
 FL フラッシュランプ
 HL ハロゲンランプ
 W 半導体ウェハー
REFERENCE SIGNS LIST 3 control unit 4 halogen lamp house 5 flash lamp house 6 processing chamber 7 holding unit 10 transfer mechanism 31 determination unit 32 warning issuing unit 65 heat treatment space 90 host computer 91 storage unit 100 heat treatment device 101 indexer units 130, 140 cooling unit 131 First cool chamber 141 Second cool chamber 135, 145 Reflectivity measuring unit 150 Transfer robot 160 Heat treatment unit 230 Alignment unit FL Flash lamp HL Halogen lamp W Semiconductor wafer

Claims (15)

  1.  基板にフラッシュ光を照射することによって該基板を加熱する熱処理装置であって、
     基板を収容する処理チャンバーと、
     前記処理チャンバーに収容された前記基板にフラッシュ光を照射して加熱するフラッシュランプと、
     前記フラッシュランプからのフラッシュ光照射によって加熱された後の前記基板の反射率を測定する反射率測定部と、
    を備える熱処理装置。
    A heat treatment apparatus that heats the substrate by irradiating the substrate with flash light,
    A processing chamber for accommodating the substrate;
    A flash lamp that irradiates the substrate housed in the processing chamber with flash light to heat the substrate,
    A reflectance measurement unit that measures the reflectance of the substrate after being heated by flash light irradiation from the flash lamp,
    A heat treatment apparatus comprising:
  2.  請求項1記載の熱処理装置において、
     前記反射率測定部は、前記フラッシュランプからフラッシュ光を照射する前の前記基板の反射率も測定する熱処理装置。
    The heat treatment apparatus according to claim 1,
    The heat treatment apparatus, wherein the reflectivity measuring unit also measures the reflectivity of the substrate before irradiating flash light from the flash lamp.
  3.  請求項1または請求項2記載の熱処理装置において、
     未処理の基板を装置内に搬入するとともに処理済みの基板を装置外に搬出するインデクサ部をさらに備え、
     前記反射率測定部は、前記処理チャンバーから前記インデクサ部に至る基板の搬送経路に設けられる熱処理装置。
    The heat treatment apparatus according to claim 1 or 2,
    An indexer unit for loading the unprocessed substrate into the apparatus and unloading the processed substrate outside the apparatus is further provided.
    The heat treatment apparatus, wherein the reflectance measuring unit is provided on a substrate transfer path from the processing chamber to the indexer unit.
  4.  請求項3記載の熱処理装置において、
     前記搬送経路には、加熱後の基板を冷却する冷却チャンバーが設置され、
     前記反射率測定部は、前記冷却チャンバーに設けられる熱処理装置。
    The heat treatment apparatus according to claim 3,
    In the transport path, a cooling chamber for cooling the heated substrate is installed,
    A heat treatment apparatus provided in the cooling chamber;
  5.  請求項1から請求項4のいずれかに記載の熱処理装置において、
     前記反射率測定部によって測定された前記基板の反射率に基づいて、前記基板の加熱処理が正常に行われたか否かを判定する判定部と、
     前記判定部によって前記基板の加熱処理が正常に行われていないと判定されたときに警告を発報する警告発報部と、
    をさらに備える熱処理装置。
    The heat treatment apparatus according to any one of claims 1 to 4,
    Based on the reflectance of the substrate measured by the reflectance measurement unit, a determination unit that determines whether the heat treatment of the substrate has been performed normally,
    A warning issuance unit that issues a warning when the determination unit determines that the heat treatment of the substrate is not performed normally,
    A heat treatment apparatus further comprising:
  6.  請求項1から請求項5のいずれかに記載の熱処理装置において、
     前記反射率測定部によって測定された前記基板の反射率を記憶する記憶部をさらに備える熱処理装置。
    The heat treatment apparatus according to any one of claims 1 to 5,
    The heat treatment apparatus further includes a storage unit that stores the reflectance of the substrate measured by the reflectance measurement unit.
  7.  請求項6記載の熱処理装置において、
     前記記憶部に蓄積された複数の基板の反射率に基づいて人工知能により前記フラッシュランプの発光強度を調整する熱処理装置。
    The heat treatment apparatus according to claim 6,
    A heat treatment apparatus for adjusting the emission intensity of the flash lamp by artificial intelligence based on the reflectance of the plurality of substrates stored in the storage unit.
  8.  請求項1から請求項7のいずれかに記載の熱処理装置において、
     前記フラッシュランプからフラッシュ光を照射する前に前記基板に光を照射して予備加熱を行う連続点灯ランプをさらに備える熱処理装置。
    The heat treatment apparatus according to any one of claims 1 to 7,
    A heat treatment apparatus further comprising a continuous lighting lamp for performing preheating by irradiating the substrate with light before irradiating flash light from the flash lamp.
  9.  基板にフラッシュ光を照射することによって該基板を加熱する熱処理方法であって、
     処理チャンバーに収容された基板にフラッシュランプからフラッシュ光を照射して加熱する照射工程と、
     前記照射工程の後に前記基板の反射率を測定する処理後反射率測定工程と、
    を備える熱処理方法。
    A heat treatment method of heating the substrate by irradiating the substrate with flash light,
    An irradiation step of irradiating a substrate housed in the processing chamber with a flash light from a flash lamp and heating the substrate;
    A post-processing reflectance measurement step of measuring the reflectance of the substrate after the irradiation step,
    A heat treatment method comprising:
  10.  請求項9記載の熱処理方法において、
     前記照射工程の前に前記基板の反射率を測定する処理前反射率測定工程をさらに備える熱処理方法。
    The heat treatment method according to claim 9,
    A heat treatment method further comprising a pre-processing reflectance measurement step of measuring a reflectance of the substrate before the irradiation step.
  11.  請求項9または請求項10記載の熱処理方法において、
     前記処理後反射率測定工程にて測定された前記基板の反射率に基づいて、前記基板の加熱処理が正常に行われたか否かを判定する判定工程と、
     前記判定工程にて前記基板の加熱処理が正常に行われていないと判定されたときに警告を発報する警告発報工程と、
    をさらに備える熱処理方法。
    In the heat treatment method according to claim 9 or 10,
    Based on the reflectance of the substrate measured in the reflectance measurement step after the processing, a determination step to determine whether the heat treatment of the substrate was performed normally,
    A warning issuance step of issuing a warning when it is determined in the determination step that the heat treatment of the substrate is not performed normally,
    A heat treatment method further comprising:
  12.  請求項9から請求項11のいずれかに記載の熱処理方法において、
     前記処理後反射率測定工程にて測定された前記基板の反射率を記憶部に格納する記憶工程をさらに備える熱処理方法。
    In the heat treatment method according to any one of claims 9 to 11,
    A heat treatment method further comprising a storage step of storing the reflectance of the substrate measured in the post-processing reflectance measurement step in a storage unit.
  13.  請求項12記載の熱処理方法において、
     前記記憶部に蓄積された複数の基板の反射率に基づいて前記フラッシュランプの発光強度を調整する調整工程をさらに備える熱処理方法。
    The heat treatment method according to claim 12,
    A heat treatment method further comprising an adjusting step of adjusting the emission intensity of the flash lamp based on the reflectance of the plurality of substrates stored in the storage unit.
  14.  請求項13記載の熱処理方法において、
     前記調整工程では、人工知能により前記フラッシュランプの発光強度を調整する熱処理方法。
    The heat treatment method according to claim 13,
    In the adjusting step, a heat treatment method for adjusting light emission intensity of the flash lamp by artificial intelligence.
  15.  請求項9から請求項14のいずれかに記載の熱処理方法において、
     前記フラッシュランプからフラッシュ光を照射する前に連続点灯ランプから前記基板に光を照射して予備加熱を行う予備加熱工程をさらに備える熱処理方法。
    In the heat treatment method according to any one of claims 9 to 14,
    A heat treatment method further comprising a preheating step of irradiating the substrate with light from a continuous lighting lamp to perform preheating before irradiating flash light from the flash lamp.
PCT/JP2019/021251 2018-06-20 2019-05-29 Heat treatment device and heat treatment method WO2019244584A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-116677 2018-06-20
JP2018116677A JP6975687B2 (en) 2018-06-20 2018-06-20 Heat treatment equipment

Publications (1)

Publication Number Publication Date
WO2019244584A1 true WO2019244584A1 (en) 2019-12-26

Family

ID=68983627

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/021251 WO2019244584A1 (en) 2018-06-20 2019-05-29 Heat treatment device and heat treatment method

Country Status (3)

Country Link
JP (1) JP6975687B2 (en)
TW (1) TWI725414B (en)
WO (1) WO2019244584A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000195462A (en) * 1998-12-22 2000-07-14 Eaton Corp Ion implantation device and ion implantation method
JP2003234288A (en) * 2002-02-07 2003-08-22 Sony Corp Polycrystal semiconductor film and manufacturing method, and manufacturing device for semiconductor element
JP2008288480A (en) * 2007-05-21 2008-11-27 Renesas Technology Corp Method for manufacturing semiconductor device
JP2011204741A (en) * 2010-03-24 2011-10-13 Dainippon Screen Mfg Co Ltd Applied voltage setting method, heat treatment method, and heat treatment apparatus
JP2017092099A (en) * 2015-11-04 2017-05-25 株式会社Screenホールディングス Heat treatment method and heat treatment apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102089873A (en) * 2008-05-16 2011-06-08 加拿大马特森技术有限公司 Workpiece breakage prevention method and apparatus
TWI566300B (en) * 2011-03-23 2017-01-11 斯克林集團公司 Heat treatment method and heat treatment apparatus for heating substrate by irradiating substrate with light

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000195462A (en) * 1998-12-22 2000-07-14 Eaton Corp Ion implantation device and ion implantation method
JP2003234288A (en) * 2002-02-07 2003-08-22 Sony Corp Polycrystal semiconductor film and manufacturing method, and manufacturing device for semiconductor element
JP2008288480A (en) * 2007-05-21 2008-11-27 Renesas Technology Corp Method for manufacturing semiconductor device
JP2011204741A (en) * 2010-03-24 2011-10-13 Dainippon Screen Mfg Co Ltd Applied voltage setting method, heat treatment method, and heat treatment apparatus
JP2017092099A (en) * 2015-11-04 2017-05-25 株式会社Screenホールディングス Heat treatment method and heat treatment apparatus

Also Published As

Publication number Publication date
TWI725414B (en) 2021-04-21
TW202002083A (en) 2020-01-01
JP2019220568A (en) 2019-12-26
JP6975687B2 (en) 2021-12-01

Similar Documents

Publication Publication Date Title
KR102048148B1 (en) Heat treatment apparatus and heat treatment method
JP2019220565A (en) Thermal treatment apparatus
JP7315331B2 (en) Heat treatment method and heat treatment apparatus
KR102225757B1 (en) Heat treatment method and heat treatment apparatus
KR102311153B1 (en) Heat treatment method and heat treatment apparatus
KR102240491B1 (en) Heat treatment method and heat treatment apparatus
JP6863780B2 (en) Heat treatment method and heat treatment equipment
KR102549304B1 (en) Heat treatment method and heat treatment apparatus
KR102303333B1 (en) Heat treatment method and heat treatment apparatus
TWI738120B (en) Heat treatment method and heat treatment apparatus
US20240282600A1 (en) Light irradiation type heat treatment method and heat treatment apparatus
US11876006B2 (en) Heat treatment method and heat treatment apparatus of light irradiation type
KR102180170B1 (en) Heat treatment method
WO2019146167A1 (en) Heat treatment apparatus and heat treatment method
WO2020166249A1 (en) Heat treatment method and heat treatment device
JP7211789B2 (en) Heat treatment method and heat treatment apparatus
WO2019244584A1 (en) Heat treatment device and heat treatment method
KR20200033729A (en) Heat treatment method and heat treatment apparatus
JP7294802B2 (en) Heat treatment method and heat treatment apparatus
JP7208100B2 (en) Heat treatment apparatus and heat treatment method
WO2019244583A1 (en) Heat treatment device
JP2019165149A (en) Heat treatment device and heat treatment method
JP2018098315A (en) Heat treatment method and heat treatment apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19823636

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19823636

Country of ref document: EP

Kind code of ref document: A1