WO2019244526A1 - Compressor - Google Patents

Compressor Download PDF

Info

Publication number
WO2019244526A1
WO2019244526A1 PCT/JP2019/019530 JP2019019530W WO2019244526A1 WO 2019244526 A1 WO2019244526 A1 WO 2019244526A1 JP 2019019530 W JP2019019530 W JP 2019019530W WO 2019244526 A1 WO2019244526 A1 WO 2019244526A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame
housing
compressor
heat
thermal conductivity
Prior art date
Application number
PCT/JP2019/019530
Other languages
French (fr)
Japanese (ja)
Inventor
雅史 山下
遊 杉本
江原 俊行
忠資 堀田
恭弘 沖
智貴 方田
雅至 井ノ上
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112019003077.9T priority Critical patent/DE112019003077B4/en
Priority to CN201980040161.4A priority patent/CN112313414A/en
Publication of WO2019244526A1 publication Critical patent/WO2019244526A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/02Lubrication
    • F04B39/0223Lubrication characterised by the compressor type
    • F04B39/023Hermetic compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/26Refrigerants with particular properties, e.g. HFC-134a
    • F04C2210/261Carbon dioxide (CO2)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/02Light metals
    • F05C2201/021Aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/90Alloys not otherwise provided for
    • F05C2201/903Aluminium alloy, e.g. AlCuMgPb F34,37
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2251/00Material properties
    • F05C2251/04Thermal properties
    • F05C2251/048Heat transfer

Definitions

  • the present disclosure relates to a compressor mounted on an air conditioner, a hot water supply, a refrigerator, and the like, and particularly relates to improvement of reliability in which lubrication of a sliding contact portion is improved by heat radiation.
  • a compressor that compresses a working medium includes a housing, a motor unit provided inside the housing, a compression mechanism unit that compresses the working medium, a movable shaft that transmits a driving force of the motor unit to the compression mechanism unit, A frame having a bearing portion for rotatably supporting the movable shaft is provided.
  • the compression mechanism section includes a orbiting scroll that performs a revolving motion by receiving a torque of a movable shaft, a fixed scroll that forms a compression chamber together with the orbiting scroll, and the like.
  • a lubricating oil is applied to the sliding contact portion of the sliding contact portion between the bearing portion of the frame and the movable shaft to ensure reliability without causing seizure or abnormal wear. Is supplied.
  • DLC is an abbreviation for Diamond-Like Carbon.
  • Patent Document 2 in order to suppress the temperature rise of the sliding contact portion, the sliding contact portion is formed. There is disclosed a method of increasing the surface area of the frame and providing a heat radiating portion for increasing the heat radiating area.
  • a part that generates heat inside the compressor is: An electric motor, a sliding portion of the compressor section, and a compression chamber for compressing the working medium. From the viewpoint of reliability, better reliability can be ensured by radiating the heat to the outside of the compressor early. In particular, it is important to secure an oil film of the lubricant in order to ensure the reliability of the sliding contact part of the compressor unit. Therefore, it is necessary to lower the temperature of the sliding contact part and keep the viscosity of the lubricant high. It becomes important.
  • Patent Document 1 The structure described in Patent Document 1 described above has excellent wear resistance of the DLC, so that the reliability of the sliding contact portion can be improved.
  • DLC coating requires additional steps and DLC itself is expensive, which is disadvantageous in terms of cost.
  • the oil film forming property is improved by reducing the heat of the sliding contact portion by heat radiation and preventing the viscosity of the lubricant from lowering. Reliability can be improved without the need.
  • the amount of heat transfer is determined by the temperature difference and the surface area of the heat transfer portion, particularly when the inside of the housing is a high-pressure dome, the temperature inside the housing is high, so that the frame having the sliding contact portion and the inside of the housing are not easily connected. Temperature difference is reduced, and heat dissipation is suppressed, which is disadvantageous.
  • the heat radiating portion of the sliding contact portion is inside the housing of the compressor and radiates heat to the vicinity of the sliding contact portion for which reliability is to be improved, there is a concern that heat dissipation may be reduced, and a component having the sliding contact portion Increasing the surface area is not an effective method for lowering the temperature of the sliding contact portion.
  • the present disclosure improves the oil film forming property of the lubricant in the sliding contact portion by radiating heat around the sliding contact portion such as frictional heat and compression heat generated in the sliding contact portion to the outside of the compression mechanism and the compressor. It is an object of the present invention to provide a compressor capable of improving reliability.
  • a compressor that compresses and discharges a working medium
  • a housing constituting a pressure-resistant container,
  • a motor section housed in a motor room formed inside the housing,
  • a frame provided inside the housing and abutting or fixed to an inner wall of the housing,
  • a compression mechanism section that is arranged on the opposite side of the motor section with respect to the frame inside the housing and forms a compression chamber in which a volume change for compressing the working medium is performed;
  • a movable member that rotatably slidably contacts a bearing portion provided on the frame and transmits torque generated by the electric motor portion to the compression mechanism portion,
  • the thermal conductivity of at least one of the housing and the frame is higher than the thermal conductivity of the movable member and higher than the thermal conductivity of at least one component constituting the compression mechanism.
  • one aspect of the present disclosure is a configuration in which the thermal conductivity of at least one of the housing and the frame is higher than the thermal conductivity of the movable member. Therefore, heat around the sliding contact portion, such as frictional heat and compression heat generated at the sliding portion between the bearing portion of the frame and the movable member, can be efficiently transferred from the frame to the housing. Since the housing has a large heat radiation area exposed to the outside of the compressor, when heat is efficiently transferred from the frame to the housing, the heat radiation from the housing to the outside of the compressor is improved.
  • one aspect of the present disclosure is a configuration in which the thermal conductivity of a component configuring the compression mechanism is lower than the thermal conductivity of at least one of the housing and the frame. Therefore, the heat of compression of the working medium generated in the compression chamber is insulated by the components constituting the compression mechanism, and the heat transfer to the housing and the frame is suppressed. Therefore, the gas temperature due to the compression is hardly transferred to the housing and the frame, and the discharge gas is discharged from the compressor in a high temperature state.
  • a high-temperature and high-pressure discharge gas temperature can be discharged to a heat pump device system at a high temperature, and the heat pump capacity can be maintained and improved. Therefore, it is possible to achieve both improvement in reliability and improvement in capacity maintenance.
  • a compressor that compresses and discharges a working medium
  • a housing constituting a pressure-resistant container,
  • a motor section housed in a motor room formed inside the housing,
  • a frame provided inside the housing and abutting or fixed to an inner wall of the housing,
  • a compression mechanism section that is arranged on the opposite side of the motor section with respect to the frame inside the housing and forms a compression chamber in which a volume change for compressing the working medium is performed;
  • a movable member that rotatably slidably contacts a bearing portion provided on the frame and transmits torque generated by the electric motor portion to the compression mechanism portion,
  • the thermal conductivity of the housing and the frame is higher than the thermal conductivity of the movable member,
  • the thermal conductivity of the frame is higher than the thermal conductivity of at least one component constituting the compression mechanism.
  • another aspect of the present disclosure is a configuration in which the thermal conductivity of the housing and the frame is higher than the thermal conductivity of the movable member. Therefore, the frictional heat generated in the sliding portion between the bearing portion and the movable member of the frame and the heat around the sliding contact portion can be efficiently transferred from the sliding portion to the housing through the frame to the housing. Since the housing has a large heat radiation area exposed to the outside of the compressor, when heat is efficiently transferred from the frame to the housing, the heat radiation from the housing to the outside of the compressor is improved.
  • another aspect of the present disclosure is a configuration in which the thermal conductivity of a component configuring the compression mechanism is lower than the thermal conductivity of the frame. Therefore, the heat of compression of the working medium generated in the compression chamber is insulated by the components constituting the compression mechanism, and the heat transfer to the frame is suppressed. Therefore, since the gas temperature due to the compression is not easily transferred to the frame, the discharge gas is discharged from the compressor in a high temperature state. As a result, in a heat pump cycle that has been increasingly used in recent years, a high-temperature and high-pressure discharge gas temperature can be discharged to a heat pump device system at a high temperature, and the heat pump capacity can be maintained and improved. Therefore, it is possible to achieve both improvement in reliability and improvement in capacity maintenance.
  • the present embodiment is a compressor that draws a working medium from a refrigeration cycle (not shown), and performs compression and discharge.
  • the compressor is a scroll-type electric motor compressor, which compresses a working medium sucked from a housing 1 constituting a pressure-resistant container and an intake unit 11 provided inside the housing 1 and provided in a part of the housing 1. And a motor unit 3 serving as a driving force source of the compressor unit 2.
  • the compressor is of a horizontal type in which a housing 1, a compressor unit 2, and an electric motor unit 3 are arranged in a lateral direction (that is, a direction intersecting with the direction of gravity).
  • An oil separator 4 that separates refrigerant and oil from the working medium compressed by the compressor unit 2 is provided outside the compressor unit 2.
  • the electric motor unit 3 includes a stator motor 301 fixed to the inner wall of the housing 1 and a rotor motor 302 that rotates and moves inside a radial direction of the stator motor 301.
  • the motor unit 3 is housed in a motor room 10 formed inside the housing 1.
  • a frame 5 having a bearing unit and a compression mechanism unit 6 that forms the compressor unit 2 with the frame 5 as a part are arranged.
  • the compressor unit 2 is rotatably slidably in contact with a bearing unit provided on the frame 5, and a movable shaft as a movable member that transmits a movable force (ie, torque) generated by the electric motor unit 3 to the compression mechanism unit 6.
  • the bearing portion of the frame 5 constitutes a sliding portion 501 between the frame 5 and the movable shaft 7.
  • the frame 5 is provided inside the housing 1 and is in contact with or fixed to the inner wall of the housing 1.
  • the compression mechanism 6 is disposed inside the housing 1 on the side opposite to the electric motor 3 with respect to the frame 5.
  • the compression mechanism 6 forms a compression chamber in which a volume change for compressing the working medium is performed.
  • the compression mechanism unit 6 is a component that forms a compression chamber, and a orbiting scroll 601 and a component that is arranged on the opposite surface of the orbiting scroll 601 to form a fixed member of the compression mechanism unit 6 and that forms a compression chamber together with the orbiting scroll 601.
  • a fixed scroll 602 serving as a reference.
  • Both the orbiting scroll 601 and the fixed scroll 602 have disk-shaped substrate portions 603 and 604.
  • the two substrate parts 603 and 604 are arranged so as to face each other.
  • a cylindrical boss 605 into which the lower end of the movable shaft 7 is inserted is formed at the center of the substrate 603 of the orbiting scroll 601.
  • the lower end of the movable shaft 7 is an eccentric portion 701 eccentric with respect to the rotation center of the movable shaft 7. Therefore, the eccentric portion 701 of the movable shaft 7 is inserted into the orbiting scroll 601.
  • a rotation preventing mechanism 8 for preventing the orbiting scroll 601 from rotating around the eccentric portion 701 is provided between the orbiting scroll 601 and the frame 5. For this reason, when the movable shaft 7 rotates, the orbiting scroll 601 does not rotate around the eccentric part 701 but revolves around the rotation center of the movable shaft 7 while revolving.
  • the orbiting scroll 601 is orbitally driven by the movable shaft 7. As the orbiting scroll 601 turns, the volume of the compression chamber formed by the orbiting scroll 601 and the fixed scroll 602 repeatedly expands and contracts, whereby the working medium is sucked and compressed.
  • the oil separator 4 separates the refrigerant and the oil from the working medium discharged from the compressor unit 2 and plays a role of returning the separated oil to the inside of the housing 1. Further, a part of the oil returns to the inside of the housing 1 through the lubricating passage to be supplied to each sliding contact portion.
  • the oil separated by the oil separator 4 is stored in the oil storage chamber 9, passes through a lubrication path (not shown) in the compression mechanism 6, and is supplied to the boss 605 of the orbiting scroll 601, and further, the movable shaft 7 and is supplied to each sliding contact portion through a lubrication path 702 formed inside.
  • the compressor of the present embodiment radiates heat around the sliding contact portion 501 such as frictional heat and compression heat generated in the sliding contact portion 501 between the frame 5 and the movable shaft 7 to the outside of the compression mechanism portion 6 and the compressor.
  • a decrease in the viscosity of the lubricant due to an increase in the temperature of the lubricant in the sliding contact portion 501 is suppressed, and the oil film forming property is improved. Therefore, in the compressor of the present embodiment, the heat conductivity of at least one of the housing 1 and the frame 5 is higher than that of the movable shaft 7 of the movable member, and the components constituting the compression mechanism 6 are replaced by the housing 1 and the frame. 5 is a member having a lower thermal conductivity than at least one of the members.
  • the housing 1 When the housing 1 has a higher thermal conductivity than the movable shaft 7, the heat of the frame 5 heated by the heat around the sliding contact portion 501 such as frictional heat and compression heat generated by the movable shaft 7 moves to the housing 1. Easier to do. Since the housing 1 is a pressure-resistant container constituting the outer shell of the compressor, the surface thereof is in contact with the outside air, so that the heat obtained from the frame 5 can be radiated to the outside air, and the heat of the housing 1 is reduced. be able to. Accordingly, the heat of the frame 5 can be radiated to the outside air through the housing 1 by transferring the heat of the frame 5 to the housing 1, so that the heat of the frame 5 can also be reduced.
  • heat around the sliding contact portion 501 such as frictional heat and compression heat generated in the sliding contact portion 501 of the movable shaft 7 can be reduced. Therefore, it is possible to prevent the temperature of the lubricant from increasing at the sliding contact portion 501 and lowering the viscosity of the lubricant, and it is possible to secure an oil film at the sliding contact portion 501. Is reduced, and the reliability can be improved.
  • the component forming the compression chamber is a member having a lower thermal conductivity than at least one of the housing 1 and the frame 5, the gas temperature generated by the heat of the compression of the working medium is not transferred to the frame 5.
  • the gas temperature can be maintained at a high temperature. For this reason, it is possible to prevent the discharge temperature of the working medium after compression from decreasing.
  • a high-temperature and high-pressure discharge gas temperature can be discharged to a heat pump device system at a high temperature, so that the heat pump capacity can be maintained and improved.
  • the housing 1 and the frame 5 are made of an aluminum-based material having a high thermal conductivity (for example, a thermal conductivity of about 100 to 200 W / mK in a 20 ° C. atmosphere).
  • the movable shaft 7 of the movable member is made of an iron-based member (for example, having a thermal conductivity of about 10 to 50 W / mK in a 20 ° C. atmosphere) having a lower thermal conductivity than an aluminum-based member. Accordingly, heat transfer from the frame 5 to the housing 1 around the sliding contact portion 501, such as frictional heat and compression heat generated in the sliding contact portion 501, can be increased, and heat radiation to the outside of the compressor can be improved. .
  • the orbiting scroll 601 constituting the compression chamber is made of an iron-based member having a lower thermal conductivity than the aluminum-based member of the housing 1 and the frame 5.
  • the gas temperature generated by the heat due to the compression of the working medium can be suppressed from being transmitted to the frame 5 through the orbiting scroll 601, and the gas temperature can be maintained at a high temperature. Therefore, particularly in a heat pump cycle whose use has been increasing in recent years, it is possible to discharge the gas at a high temperature to the heat pump device system without lowering the temperature of the high-temperature and high-pressure discharge gas, so that the heat pump capacity can be maintained and improved. Therefore, it is possible to achieve both improvement in reliability and improvement in capacity maintenance. Further, by making the frame 5 of an aluminum-based material, it is possible to reduce the weight of the entire compressor.
  • the aluminum-based members forming the housing 1 and the frame 5 are aluminum or an alloy containing aluminum as a base.
  • the iron-based member forming the movable shaft 7 and the orbiting scroll 601 is iron or an alloy containing iron as a base.
  • the thermal conductivity of the movable shaft 7 can be set to 50% or less of the thermal conductivity of at least one of the housing 1 and the frame 5.
  • the thermal conductivity of the movable shaft 7 and the orbiting scroll 601 can be set to 50% or less of the thermal conductivity of at least one of the housing 1 and the frame 5.
  • At least one of the housing 1 and the frame 5 is made of a member having a higher thermal conductivity than the movable shaft 7.
  • At least one component constituting the compression mechanism 6 is made of a member having a lower thermal conductivity than at least one of the housing 1 and the frame 5.
  • the thermal conductivity of at least one of the housing 1 and the frame 5 is higher than that of the movable shaft 7, heat around the sliding contact portion 501 such as frictional heat and compression heat generated in the sliding contact portion 501 is transferred from the frame 5 to the housing 5. 1 can be transferred with high efficiency. Since the housing 1 has a large heat dissipation area exposed to the outside of the compressor, when the amount of heat transfer from the frame 5 to the housing 1 increases, the heat dissipation from the housing 1 to the outside of the compressor improves.
  • At least one component of the compression mechanism 6 has a lower thermal conductivity than at least one of the housing 1 and the frame 5. Therefore, the compression heat of the working medium generated in the compression chamber is insulated by the components constituting the compression mechanism, and the heat transfer to the housing 1 and the frame 5 is suppressed. Therefore, the gas temperature due to the compression is difficult to transfer to the housing 1 and the frame 5, and the discharge gas is discharged from the compressor in a high temperature state.
  • a high-temperature and high-pressure discharge gas temperature can be discharged to a heat pump device system at a high temperature, and the heat pump capacity can be maintained and improved. Therefore, it is possible to achieve both improvement in reliability and improvement in capacity maintenance.
  • the housing 1 and the frame 5 are made of a member having higher thermal conductivity than the movable shaft 7, and at least one component constituting the compression mechanism 6 is the frame 5. It is composed of a member having a lower thermal conductivity than that of the first embodiment.
  • the thermal conductivity between the housing 1 and the frame 5 is higher than the thermal conductivity of the movable shaft 7, heat around the sliding contact portion 501 such as frictional heat and compression heat generated in the sliding contact portion 501 is reduced by the frame. 5, the heat transfer to the housing 1 having a large heat radiation area can be increased. Therefore, heat is transferred from the compression mechanism 6 to the housing 1, and the heat radiation from the housing 1 to the outside of the compressor is further improved.
  • At least one component constituting the compression mechanism 6 uses a material having a lower heat transfer coefficient than the frame 5, and the gas temperature due to the compression is not transferred to the frame 5. , Can maintain high temperature.
  • a high-temperature and high-pressure discharge gas temperature can be discharged to a heat pump device system at a high temperature, and the heat pump capacity can be maintained and improved. Therefore, it is possible to achieve both improvement in reliability and improvement in capacity maintenance.
  • the thermal conductivity of the movable shaft 7 is 50% or less of the thermal conductivity of at least one of the housing 1 and the frame 5.
  • the thermal conductivity of the orbiting scroll 601 arranged on the frame 5 side of the components constituting the compression mechanism 6 is 50% or less of the thermal conductivity of at least one of the housing 1 and the frame 5.
  • heat around the sliding contact portion such as frictional heat and compression heat generated at the sliding contact portion with the movable shaft 7, can transfer heat to the housing 1 or the frame 5 more than the movable shaft 7.
  • the heat transfer coefficient of the orbiting scroll 601 disposed on the frame 5 side among the components constituting the compression mechanism 6 is small, the heat of the compression heat generated in the compression chamber is transferred to at least one of the frame 5 and the housing 1. The moving amount can be reduced.
  • the material of the housing 1 and the frame 5 is aluminum or an alloy containing aluminum as a base.
  • the material of the orbiting scroll 601 and the movable shaft 7 which are arranged on the frame 5 side among the components constituting the compression mechanism 6 is iron or an alloy having iron as a base.
  • a plurality of embodiments described below show the contact portions 101 and 502 between the housing 1 and the frame 5 with respect to the first embodiment, and the other configurations are the same as those in the first embodiment. Only the parts different from the first embodiment will be described.
  • the compressor of the second embodiment is different from the first embodiment in the configuration of the part where the frame 5 and the housing 1 are in contact or fixed. That is, the portions indicated as the contact portions by arrows in FIG. 2 have the following configurations (1) and (2) regarding the surface roughness (that is, surface roughness) of the contact portions 101 and 502. ing.
  • the contact portion 101 with the frame 5 has a smaller surface roughness than the surface not in contact with the frame 5. Therefore, the contact area between the housing 1 and the frame 5 can be secured even with a weak contact force.
  • the contact area refers to an area where two members are actually in contact with each other. Since a large contact area between the frame 5 and the housing 1 is ensured, heat transfer around the sliding contact portion 501 such as frictional heat and compression heat generated in the sliding contact portion 501 from the frame 5 to the housing 1 can be increased. I can do it.
  • the contact portion 101 with the frame 5 has a smaller surface roughness than the surface that does not contact with the frame 5 may be referred to as “first requirement”.
  • the contact portion 502 with the housing 1 has a smaller surface roughness than the surface not in contact with the housing 1. Also in this case, since the contact area can be secured even with a weak contact force, the same effect as the first requirement (1) can be obtained. Further, in the case of the first requirement of the above (1), when the inner diameter of the housing 1 is constant, the surface roughness is changed between the surface of the contact portion 101 and the surface that does not contact, so that it is necessary to change the processing method. Therefore, the cost may increase. On the other hand, in the frame 5, the surface roughness may be adjusted when finishing the contact portion 502, and there is no need to change or add a processing method, so that the frame 5 can be configured without increasing the cost. . In the following description, the fact that the surface roughness of the contact portion 502 of the frame 5 that contacts the housing 1 is smaller than that of the surface that does not contact the housing 1 may be referred to as a “second requirement”. .
  • means for shrink-fitting the housing 1 and the frame 5 there are means for shrink-fitting the housing 1 and the frame 5, means for welding, means for fixing with a bolt, and the like.
  • the compressor according to the second embodiment described above satisfies at least one of the above-described first and second requirements.
  • the surface roughness of the contact surfaces of the contact portions 101 and 502 is small and is in a good state, so that the contact area between the housing 1 and the frame 5 can be steadily secured even with a weak contact force.
  • the heat transfer from the frame 5 to the housing 1 can be increased.
  • a third embodiment will be described with reference to FIG.
  • a difference between the first embodiment and the second embodiment is that a step 110 is provided at an inner peripheral portion of the housing 1.
  • the step 110 provided in the housing 1 abuts on the surface of the frame 5 on the side of the motor section 3. Or it can be fixed. Therefore, since the heat of the frame 5 can be transferred to the housing 1 through the step 110, the heat dissipation of the frame 5 is improved.
  • heat around the sliding contact portion 501 such as frictional heat and compression heat generated in the sliding contact portion 501, can be reduced, and a decrease in the viscosity of the lubricant due to an increase in the temperature of the lubricant in the sliding contact portion 501 is suppressed. It is possible to secure oil film. Therefore, seizure and abnormal wear in the sliding contact portion 501 are reduced, and reliability can be improved.
  • the step portion 110 can be used as the contact portions 101 and 502 for fixing the compressor unit 2 to the housing 1.
  • FIGS. 7 and 8 show an example in which the intake path 14 is provided in the housing 1.
  • FIG. 8 shows an example in which the intake path 14 is provided in the stator motor 301. In each drawing, the flow of the intake gas flowing into the electric motor room 10 from the intake path 14 is indicated by an arrow A.
  • the surface of the step portion 110 forming the intake path 14 on the electric motor unit 3 side has a tapered shape 1101, or as shown in FIG. 10, a tapered portion 3012 is provided on the coil end 3011 of the stator motor 301. It is also possible to implement at least one of the provisions. This makes it easier to guide the intake gas toward the frame 5, so that the heat of the frame 5 can be further cooled.
  • heat around the sliding contact portion 501 such as frictional heat and compression heat generated in the sliding contact portion 501, can be reduced, and it is possible to suppress a decrease in the viscosity of the lubricant due to an increase in the temperature of the lubricant, and to secure an oil film. Is possible, and the seizure and abnormal wear in the sliding contact portion 501 are reduced, and the reliability can be improved.
  • the means for abutting or fixing includes means for fixing the compressor unit 2 with bolts at the step 110, and means for sandwiching the compressor unit 2 between the step 110 and other members. is there.
  • the step 110 is provided at the inner peripheral portion of the housing 1.
  • the step portion 110 is provided with contact portions 101 and 502 that can contact or fix the step portion 110 of the housing 1 at least at a part of the end face of the frame 5 on the electric motor unit 3 side.
  • the area from the step 110 to the electric motor 3 is larger than the contact area between the frame 5 and the step 110.
  • the heat radiation area of the inner peripheral surface of the housing 1 is increased, so that the heat transmitted to the frame 5 out of the heat around the sliding contact portion 501 such as frictional heat and compression heat generated in the sliding contact portion 501 is reduced. Heat transfer into the inside can be increased.
  • FIG. 11 a fourth embodiment is shown in FIG. 11, and a modified example thereof is shown in FIG.
  • the fourth embodiment and its modifications are based on the second embodiment or the third embodiment.
  • the fourth embodiment and its modification are different in that the surface roughness of the housing 1 and the frame 5 are different from each other, or that the hardness of the housing 1 and the material of the frame 5 are different from each other, or that the housing 1 and the frame 5 are different. 5 are different from each other in that the surface roughness and the hardness of the material are different from each other.
  • the contact portions 101 and 502 that come into contact with each other have different surface roughness, and when the housing 1 and the frame 5 are held with a strong contact force, the contact force becomes locally strong. A contact portion having a weak contact force with the contact portion is generated. Then, the heat transfer at the interface can be improved at the contact portion where the contact force is locally strong. Further, when the hardness of the housing 1 and the hardness of the frame 5 are different from each other, in the abutting portions 101 and 502, the member on the lower hardness side is easily adapted to the state of the contact surface of the member on the higher hardness side. Therefore, the contact area can be further increased, so that the heat transfer can be increased, and the heat dissipation can be improved. In addition, since the contact force is improved, free vibration of the frame 5 due to rotation fluctuation of the movable shaft 7 and vibration generated during the compression stroke can be reduced, so that vibration of the entire compressor can be reduced.
  • the means for abutting or fixing includes welding, pinching, and bolt fixing means.
  • the bolt fixing has a fixing force of 4 t or more.
  • FIG. 13 is an image diagram for explaining familiarity.
  • the first member 20 shown in FIG. 13 has higher hardness than the second member 30.
  • the surface roughness of the contact surface 21 of the first member 20 is larger than the surface roughness of the contact surface 31 of the second member 30.
  • One of the first member 20 and the second member 30 corresponds to the housing 1, and the other corresponds to the frame 5.
  • the contact surface 31 of the low hardness second member 30 is brought into contact with the high hardness first member 20. Elastic deformation occurs so as to conform to the state of the surface 21, and the contact area increases.
  • the compressor changes the surface roughness between the housing 1 and the frame 5 at the contact portions 101 and 502, or reduces the hardness of the material between the housing 1 and the frame 5. It does at least one of the changes. Accordingly, when the compressor unit 2 is held with a strong contact force, the hardness and the surface roughness of the housing 1 and the frame 5 are changed to locally strong contact at the contact portions 101 and 502. A contact portion having a weak contact force with the portion is generated, and the heat transfer property of the interface is improved by a locally strong contact portion. In addition, elastic deformation occurs at a locally strong contact portion, and microscopically, undulation occurs at the contact surface of the contact portion, and the contact area increases. Therefore, heat transfer increases because the contact area can be increased.
  • the heat radiation area on the inner periphery of the housing 1 increases, and the temperature rise near the sliding contact portion 501 and the sliding contact portion 501 such as frictional heat and compression heat generated in the sliding contact portion 501 can be reduced.
  • a decrease in the viscosity of the lubricant due to an increase in the temperature of the lubricant can be suppressed, and an oil film can be secured. Therefore, seizure and abnormal wear in the sliding contact portion 501 are reduced, and reliability can be improved.
  • FIG. 14 shows a fifth embodiment
  • FIG. 15 shows a first modification
  • FIG. 16 shows a second modification.
  • the intake unit 11 is arranged near the electric motor unit 3.
  • the intake gas is applied to the frame 5.
  • the frame 5 can be cooled.
  • the frame 5 When the frame 5 is cooled by the intake gas, the heat transfer from the frame 5 into the electric motor room 10 increases, and the intake gas is heated, so that the density of the intake gas decreases and the intake air in the compression chamber is reduced. There is a concern that the mass will decrease and the volume efficiency will decrease. However, since the temperature of the entire compression chamber can be reduced, there is a possibility that the compression efficiency of the compressor can be improved. Also, in the present embodiment, as a component forming the compression chamber, a material having a lower heat transfer coefficient than at least one of the housing 1 and the frame 5 is used. Therefore, in a heat pump cycle that has been increasingly used in recent years, a high-temperature and high-pressure discharge gas temperature can be discharged to a heat pump device system at a high temperature, and the heat pump capacity can be maintained and improved.
  • the electric motor room 10 of the housing 1 has the intake pressure.
  • the intake unit 11 is provided so as to supply a working medium to a space between the electric motor unit 3 and the frame 5 in the electric motor room 10.
  • the protrusions 12 are provided on the housing 1 as heat radiating portions.
  • One or more protrusions 12 are provided on the outer wall of the housing.
  • the contact portions 101 and 502 between the housing 1 and the frame 5 and at least a part of the protruding portion 12 are provided at positions overlapping the direction perpendicular to the rotation axis of the movable shaft 7. Therefore, the projections 12 can serve as radiation fins at the contact portions 101 and 502 where heat transfer is large, and the heat radiation of the entire housing 1 can be further improved.
  • the amount of heat transfer to the outside can be increased, and the heat radiation of the entire housing 1 can be improved. Can be further improved. Therefore, it is possible to reduce heat around the sliding contact portion 501 such as frictional heat and compression heat generated in the sliding contact portion 501, and it is possible to secure an oil film of the lubricant in the sliding contact portion 501. And the abrasion and abnormal abrasion in the above are reduced, and the reliability can be improved.
  • connection part with the outside which holds and fixes the compressor
  • organic material connection parts such as rubber
  • it may be used depending on the ambient temperature.
  • the hardness of the equipment changes, and the spring constant changes.
  • the exciting force of the air conditioner for holding and fixing the compressor on the outdoor unit or the gantry of the vehicle changes, and the noise generated from the gantry changes, which may increase the noise level. Therefore, by forming the protrusion 12 as a part of the connection portion with the outside, the temperature of the connection portion component becomes a stable temperature equivalent to that of the protrusion 12, so that a constant spring constant is obtained and the vibration force applied to the gantry is increased. Becomes stable.
  • the connecting part is made of an organic material
  • long-term reliability may be insufficient at a high temperature.
  • the organic material since the internal material has a low-pressure specification, the organic material has a high-pressure side. Since a high temperature can be suppressed, the reliability does not decrease significantly.
  • the protrusion 12 is provided on the outer wall of the housing 1 as a heat radiating part.
  • One or more protrusions 12 are provided on the outer wall of the housing.
  • the contact portions 101 and 502 between the housing 1 and the frame 5 and at least a part of the protrusion 12 are provided so as to overlap in a direction perpendicular to the rotation axis of the movable shaft 7. This can be rephrased as that the contact portions 101 and 502 between the housing 1 and the frame 5 and at least a part of the protrusion 12 are provided so as to overlap with each other at the axial position of the frame 5.
  • the housing 1 is positioned at a position where heat transfer from the frame 5 in the housing 1 is large. Can increase the heat radiation area.
  • the heat radiation of the entire housing 1 can be further improved, and the temperature rise near the sliding contact portion 501 and the sliding contact portion 501 such as frictional heat and compression heat generated in the sliding contact portion 501 can be reduced. Therefore, a decrease in the viscosity of the lubricant due to an increase in the temperature of the lubricant in the sliding contact portion 501 can be suppressed, and an oil film can be secured. Therefore, seizure and abnormal wear in the sliding contact portion 501 are reduced, and reliability can be improved.
  • At least one of the protrusions 12 forms a part of a connection portion for holding and fixing the compressor to an external member, so that heat radiation to the external member is also reduced. Possible and increase the amount of heat transfer.
  • the influence of the ambient temperature on the temperature of the connection part is reduced, and the temperature of the connection part can be set to a stable temperature equivalent to that of the protruding portion 12, so that the spring constant of the organic material connection part can be reduced. It can be stabilized.
  • a seventh embodiment will be described with reference to FIG.
  • the thrust load generated by the compression of the working medium by the compression mechanism 6 is applied between the frame 5 and the orbiting scroll 601 as compared with the first to sixth embodiments described above.
  • the thrust bearing member 13 is provided as a separate member.
  • the thrust bearing member 13 is composed of two thrust bearing members 131 and 132, but the number of thrust bearing members 13 may be one or more.
  • an interface is formed between the orbiting scroll 601 and the frame 5, so that the compression heat generated in the compression chamber is swirled. The transfer of heat from the scroll 601 to the frame 5 can be divided.
  • the sliding contact portion 501 can reduce the influence of the compression heat on the lubricant.
  • one of the plurality of thrust bearing members 13 has a substantially annular sliding contact surface at a portion that comes into sliding contact with the other. By forming a groove between the substantially annular sliding contact surfaces, the oil film forming property on the sliding contact surface can be improved, and the reliability can be further improved.
  • the thrust bearing member 13 is disposed between the frame 5 and the compression mechanism 6. Thereby, since the heat radiation can be improved while further improving the reliability of the movable shaft 7, the seizure and abnormal wear in the sliding contact portion 501 are reduced, and the reliability can be improved. Then, by forming the thrust bearing member 13 as a separate member, an interface is formed between the compression chamber and the thrust bearing member 13, so that the compression heat generated in the compression chamber can be divided, and the influence of the compression heat can be reduced. In addition, the fixing method of the thrust bearing member 13 is given a degree of freedom in the thrust direction with the components constituting the compression chamber, so that the influence of the interface can be increased and the heat insulating property can be secured. Thereby, the influence of the heat of compression can be minimized, and the reliability can be improved.
  • the eighth embodiment differs from the first to seventh embodiments in that the working medium is carbon dioxide. Since carbon dioxide generally has a low heat transfer coefficient, when the electric motor room 10 has an intake pressure, the amount of heat transfer of the frame 5 to the intake gas becomes small. However, there is an advantage that high-temperature heating can be performed with high efficiency by operating in a cycle in which the high pressure side is in a supercritical state. Therefore, in a heat pump cycle whose use is increasing year by year, it is possible to discharge a high-temperature and high-pressure discharge gas temperature to a heat pump device system at a high temperature, and it is possible to maintain and improve the heat pump capacity.
  • the working medium is carbon dioxide. Since carbon dioxide generally has a low heat transfer coefficient, when the electric motor room 10 has an intake pressure, the amount of heat transfer of the frame 5 to the intake gas becomes small.
  • high-temperature heating can be performed with high efficiency by operating in a cycle in which the high pressure side is in a supercritical state. Therefore, in a heat pump cycle whose use is increasing year
  • the reliability of the sliding contact portion 501 can be improved. Therefore, it is possible to achieve both improvement in reliability and improvement in capacity maintenance.
  • the compressor according to the eighth embodiment described above is employed in a refrigeration cycle using carbon dioxide as a working medium. Even when carbon dioxide having a relatively small heat transfer coefficient is used as the working medium, heat around the sliding contact portion 501 such as frictional heat and compression heat generated in the sliding contact portion 501 is transferred from the frame 5 to the housing 1 having a large surface area. Thus, heat can be sufficiently radiated from the housing 1 to the outside. Therefore, reliability such as seizure resistance and wear resistance of the movable shaft 7 can be improved.
  • the compressor adopts the scroll type compression mechanism 6.
  • the compression mechanism 6 may be a vane type or a rotary type. May be adopted.
  • the oil separator 4 only needs to have a function of separating the lubricating oil from the compressed refrigerant, and may be disposed inside the compressor unit 2.
  • the present disclosure is not limited to the above-described embodiment, and can be appropriately modified.
  • the above embodiments are not irrelevant to each other, and can be appropriately combined unless a combination is clearly not possible.
  • elements constituting the embodiments are not necessarily essential, unless otherwise clearly indicated as essential or in principle considered to be clearly essential.
  • No. in each of the above embodiments, when a numerical value such as the number, numerical value, amount, range, or the like of the constituent elements of the exemplary embodiment is mentioned, it is particularly limited to a specific number when it is clearly stated that it is essential and in principle The number is not limited to the specific number unless otherwise specified.
  • a compressor that compresses and discharges a working medium includes a housing, an electric motor unit, a frame, a compression mechanism unit, and a movable member.
  • the housing constitutes a pressure vessel.
  • the motor unit is housed in a motor room formed inside the housing.
  • the frame is provided inside the housing and abuts or is fixed on an inner wall of the housing.
  • the compression mechanism is disposed inside the housing on the opposite side to the electric motor with respect to the frame, and forms a compression chamber in which a volume change for compressing the working medium is performed.
  • the movable member rotatably slides on a bearing provided on the frame, and transmits torque generated by the electric motor to the compression mechanism.
  • the thermal conductivity of at least one of the housing and the frame is higher than the thermal conductivity of the movable member, and higher than the thermal conductivity of at least one component constituting the compression mechanism.
  • a compressor that compresses and discharges a working medium includes a housing, an electric motor unit, a frame, a compression mechanism unit, and a movable member.
  • the housing constitutes a pressure vessel.
  • the motor unit is housed in a motor room formed inside the housing.
  • the frame is provided inside the housing and abuts or is fixed on an inner wall of the housing.
  • the compression mechanism is disposed inside the housing on the opposite side to the electric motor with respect to the frame, and forms a compression chamber in which a volume change for compressing the working medium is performed.
  • the movable member rotatably slides on a bearing provided on the frame, and transmits torque generated by the electric motor to the compression mechanism.
  • the heat conductivity of the housing and the frame is higher than the heat conductivity of the movable member, and the heat conductivity of the frame is higher than the heat conductivity of at least one component constituting the compression mechanism.
  • the thermal conductivity of the movable member is 50% or less of the thermal conductivity of at least one of the housing and the frame.
  • the components arranged on the frame side have a thermal conductivity of 50% or less of the thermal conductivity of at least one of the housing and the frame.
  • the thermal conductivity between the housing and the frame is higher than that of the movable member, heat around the sliding contact portion, such as frictional heat and compression heat generated at the sliding contact portion, is transferred to the frame, and the housing having a large heat radiation area. Heat transfer can be increased. Therefore, heat is transferred from the compression mechanism to the housing, and the heat radiation from the housing to the outside of the compressor is further improved.
  • a material having a smaller heat transfer coefficient than that of the frame or the housing is used for a component close to the frame, and the gas temperature due to the compression is reduced by at least one of the frame and the housing.
  • the amount of heat transfer to the substrate can be reduced. Therefore, heat radiation can be suppressed, and the gas temperature can be maintained at a high temperature.
  • a high-temperature and high-pressure discharge gas temperature can be discharged to a heat pump device system at a high temperature, and the heat pump capacity can be maintained and improved. Therefore, it is possible to achieve both improvement in reliability and improvement in capacity maintenance.
  • the housing and the frame are made of aluminum or an alloy based on aluminum.
  • the components arranged on the frame side and the movable member are iron or an alloy based on iron.
  • the surface roughness of the part of the housing that is in contact with or fixed to the frame is smaller than the surface roughness of at least a part of the housing that is not in contact with or fixed to the frame.
  • Smallness is called a first requirement.
  • the second requirement is that the surface roughness of a portion of the frame that is in contact with or fixed to the housing is smaller than the surface roughness of at least a portion of the frame that is not in contact with or fixed to the housing.
  • a step portion is provided in the inner peripheral portion of the housing, and at least a part of the end face of the frame on the motor portion side is provided with a contact portion capable of contacting or fixing the step portion of the housing.
  • the area from the step to the motor is larger than the contact area between the frame and the step.
  • the heat dissipating area on the inner periphery of the housing is increased, and of the heat, such as frictional heat and compression heat generated in the sliding contact portion, around the sliding contact portion, the heat transferred to the frame also increases the heat transfer into the motor chamber. It becomes possible.
  • a difference between the surface roughness of the housing and the surface roughness of the frame at a position where the housing and the frame are in contact with or fixed to each other is called a surface roughness requirement.
  • the difference between the hardness and the hardness of the frame is called a hardness requirement.
  • the compressor satisfies at least one of the surface roughness requirement and the hardness requirement.
  • the heat dissipating area on the inner periphery of the housing is increased, so that the temperature rise in the sliding contact portion and the vicinity of the sliding contact portion such as frictional heat and compression heat generated in the sliding contact portion can be reduced, and the temperature rise of the lubricant in the sliding contact portion
  • the contact force can be improved, the free vibration of the frame is limited, so that the vibration can be reduced.
  • the compressor further includes an intake unit that supplies a working medium to a space between the motor unit and the frame in the motor room.
  • the compressor further includes a projection provided on an outer wall of the housing.
  • the housing is provided with a projection as a heat radiating portion on the outer peripheral portion of the housing, and one or more protrusions are provided such that the projection of the heat radiating portion overlaps at least a part of the projection at the axial position of the frame.
  • the heat radiation area of the housing at a position in the housing where heat transfer from the frame is large. Can be increased.
  • the heat radiation of the entire housing can be further improved, so that the temperature rise near the sliding contact portion and the vicinity of the sliding contact portion such as frictional heat and compression heat generated at the sliding contact portion can be reduced. Therefore, a decrease in the viscosity of the lubricant due to a rise in the temperature of the lubricant in the sliding contact portion can be suppressed, and an oil film can be secured. Therefore, seizure and abnormal wear at the sliding contact portion are reduced, and reliability can be improved.
  • At least one of the protrusions is used to fix the compressor to a member external to the compressor.
  • heat can be dissipated to the connection member, and the amount of heat transfer increases.
  • the influence of the ambient temperature on the temperature of the connection part can be reduced, and the temperature of the connection part can be stabilized, so that the spring constant of the connection part made of an organic material can be stabilized.
  • an organic material-based component such as rubber is used for a connection portion with the outside that holds and fixes the compressor.
  • the exciting force of the air conditioner for holding and fixing the compressor on the outdoor unit or the gantry of the vehicle changes, and the noise generated from the gantry changes, which may increase the noise level. Therefore, by making the protruding part a part of the connecting part with the outside, the temperature of the connecting part becomes stable temperature equivalent to that of the protruding part, so it has a constant spring constant and stable excitation force to the gantry I do. For this reason, conventionally, when the connection parts are made of an organic material, long-term reliability may not be sufficient at high temperatures, but in the present embodiment, since the internal material has a low pressure specification, the organic material has a high-pressure side. Since a high temperature can be suppressed, the reliability does not decrease significantly.
  • the compressor further includes a thrust bearing member disposed between the frame and the compression mechanism.
  • a thrust bearing member disposed between the frame and the compression mechanism.
  • the compressor is employed in a refrigeration cycle using carbon dioxide as a working medium. According to this, even when carbon dioxide having a relatively small heat transfer coefficient is used as the working medium, heat around the sliding contact portion such as frictional heat and compression heat generated at the sliding contact portion is transferred from the frame to the housing having a large surface area. As a result, heat can be sufficiently radiated from the housing to the outside. Therefore, reliability such as seizure resistance and abrasion resistance of the movable member can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressor (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

A housing (1) constitutes a pressure-resistant container. An electric motor section (3) is contained in an electric motor chamber (10) formed inside the housing (1). A frame (5) is provided inside the housing (1) and is in contact with or affixed to the inner wall of the housing (1). The compression mechanism section (6) is disposed inside the housing (1) on the opposite side of the frame (5) from the electric motor section (3) and forms a compression chamber in which a volume change for compressing an operating medium is performed. A movable member (7) is in rotatable sliding contact with a bearing section (50) provided to the frame (5), and transmits torque generated by the electric motor section (3) to the compression mechanism section (6). The thermal conductivity of the housing (1) and/or the frame (5) is higher than that of the movable member (7) and is also higher than that of at least one part which constitutes the compression mechanism section (6).

Description

圧縮機Compressor 関連出願への相互参照Cross-reference to related application
 本出願は、2018年6月20日に出願された日本特許出願番号2018-117309号に基づくもので、ここにその記載内容が参照により組み入れられる。 This application is based on Japanese Patent Application No. 2018-117309 filed on June 20, 2018, the disclosure of which is incorporated herein by reference.
 本開示は、空調・給湯・冷凍機などに搭載される圧縮機に関するものであり、特に放熱により摺接部の潤滑性を改善した信頼性向上に関するものである。 The present disclosure relates to a compressor mounted on an air conditioner, a hot water supply, a refrigerator, and the like, and particularly relates to improvement of reliability in which lubrication of a sliding contact portion is improved by heat radiation.
 従来、作動媒体を圧縮する圧縮機は、ハウジングと、ハウジングの内側に設けられる電動機部と、作動媒体を圧縮する圧縮機構部と、電動機部の駆動力を圧縮機構部に伝える可動軸と、その可動軸を回転可能に支持する軸受け部を有するフレームなどを備えている。圧縮機構部は、可動軸のトルクを受けて公転運動を行う旋回スクロールと、その旋回スクロールと共に圧縮室を形成する固定スクロール等により構成されている。この種の圧縮機では、フレームが有する軸受け部と可動軸とが摺接する摺接部で、焼き付や異常摩耗を生じさせることなく、信頼性を確保するため、その摺接部に対し潤滑油を供給できる構造となっている。 Conventionally, a compressor that compresses a working medium includes a housing, a motor unit provided inside the housing, a compression mechanism unit that compresses the working medium, a movable shaft that transmits a driving force of the motor unit to the compression mechanism unit, A frame having a bearing portion for rotatably supporting the movable shaft is provided. The compression mechanism section includes a orbiting scroll that performs a revolving motion by receiving a torque of a movable shaft, a fixed scroll that forms a compression chamber together with the orbiting scroll, and the like. In this type of compressor, a lubricating oil is applied to the sliding contact portion of the sliding contact portion between the bearing portion of the frame and the movable shaft to ensure reliability without causing seizure or abnormal wear. Is supplied.
 摺接部の焼き付や異常摩耗を抑制するためには、耐摩耗性を向上する方法と摺接部で流体潤滑域に至るような油膜形成性を向上する方法がある。油膜形成性は、潤滑剤の粘度と摺速、荷重、合成面粗さが関係している。
 摺接部における耐焼き付性や耐摩耗性を向上するために、特許文献1に記載されるような摺接部へのDLCコーティングを実施する方法が示されている。なお、DLCはDiamond-Like Carbonの略である。
In order to suppress the seizure and abnormal wear of the sliding contact portion, there are a method of improving the wear resistance and a method of improving the oil film forming property to reach the fluid lubrication region in the sliding contact portion. The oil film forming property is related to the viscosity of the lubricant, the sliding speed, the load, and the combined surface roughness.
In order to improve seizure resistance and abrasion resistance in the sliding contact portion, a method of performing DLC coating on the sliding contact portion as described in Patent Document 1 is disclosed. DLC is an abbreviation for Diamond-Like Carbon.
 また、油膜が薄くなり摺動部で焼き付や異常摩耗が生じて信頼性が低下することを抑制するために、特許文献2では、摺接部の温度上昇の抑制のため、摺接部を有するフレームの表面積を増大させ、放熱面積を増加させる放熱部を設ける方法が示されている。 Further, in order to prevent the oil film from becoming thin and causing seizure or abnormal wear in the sliding portion to reduce the reliability, in Patent Document 2, in order to suppress the temperature rise of the sliding contact portion, the sliding contact portion is formed. There is disclosed a method of increasing the surface area of the frame and providing a heat radiating portion for increasing the heat radiating area.
特開2009-287483号公報JP 2009-287483 A 特開2012-97575号公報JP 2012-97575 A
 空調機器で使用される作動媒体を低圧状態から高圧状態に圧縮する圧縮機部と、その圧縮機部の駆動源である電動機部を内蔵する圧縮機において、圧縮機の内部で発熱する部位は、電動機と、圧縮機部の摺接部と、作動媒体の圧縮を行う圧縮室である。信頼性の観点からは、それらの熱は、早期に圧縮機外へ放熱した方が良好な信頼性を確保できる。特に圧縮機部の摺接部における信頼性確保には、潤滑剤の油膜を確保することが重要であるため、その摺接部の温度を下げ、潤滑剤の粘度を高い状態で保持することが重要となる。 In a compressor unit that compresses a working medium used in an air conditioner from a low-pressure state to a high-pressure state, and a compressor that incorporates a motor unit that is a driving source of the compressor unit, a part that generates heat inside the compressor is: An electric motor, a sliding portion of the compressor section, and a compression chamber for compressing the working medium. From the viewpoint of reliability, better reliability can be ensured by radiating the heat to the outside of the compressor early. In particular, it is important to secure an oil film of the lubricant in order to ensure the reliability of the sliding contact part of the compressor unit. Therefore, it is necessary to lower the temperature of the sliding contact part and keep the viscosity of the lubricant high. It becomes important.
 また、圧縮機において、近年利用が増加しているヒートポンプサイクルのヒートポンプ能力の維持向上は、ユーザ目線での対応として欠くことが出来ない事項である。 維持 In the compressor, the maintenance and improvement of the heat pump capacity of the heat pump cycle, which has been increasingly used in recent years, is an indispensable item from the viewpoint of the user.
 上述した特許文献1に記載の構造は、DLCの耐摩耗性が優れるため、摺接部の信頼性が向上できる。しかしながら、DLCコーティングを実施する工数が別途必要であり、またDLC自体も高価であるためコスト面で不利になる。 構造 The structure described in Patent Document 1 described above has excellent wear resistance of the DLC, so that the reliability of the sliding contact portion can be improved. However, DLC coating requires additional steps and DLC itself is expensive, which is disadvantageous in terms of cost.
 これに対して、特許文献2に記載の構造では、摺接部の熱を放熱により低減し、潤滑剤の粘度低下を防ぐことで油膜形成性の向上が図られており、別途工数を必要とせずに信頼性の向上ができる。 On the other hand, in the structure described in Patent Document 2, the oil film forming property is improved by reducing the heat of the sliding contact portion by heat radiation and preventing the viscosity of the lubricant from lowering. Reliability can be improved without the need.
 しかしながら、熱移動量は、温度差と熱移動部の表面積で決まるため、特にハウジングの内部が高圧ドームの場合は、ハウジングの内部の温度が高いため、摺接部を有するフレームとハウジングの内部との温度差が少なくなり、放熱性が抑制されて不利となる。 However, since the amount of heat transfer is determined by the temperature difference and the surface area of the heat transfer portion, particularly when the inside of the housing is a high-pressure dome, the temperature inside the housing is high, so that the frame having the sliding contact portion and the inside of the housing are not easily connected. Temperature difference is reduced, and heat dissipation is suppressed, which is disadvantageous.
 そして、摺接部の放熱先が圧縮機のハウジングの内部であり、信頼性を向上させたい摺接部近傍に放熱しているため、放熱性が低下する懸念があり、摺接部を有する部品の表面積の増加は、摺接部の温度を下げるには有効な方法とは言えない。 Since the heat radiating portion of the sliding contact portion is inside the housing of the compressor and radiates heat to the vicinity of the sliding contact portion for which reliability is to be improved, there is a concern that heat dissipation may be reduced, and a component having the sliding contact portion Increasing the surface area is not an effective method for lowering the temperature of the sliding contact portion.
 本開示は、摺接部で生じた摩擦熱および圧縮熱など摺接部周辺の熱を圧縮機構および圧縮機の外に放熱することで、摺接部における潤滑剤の油膜形成性を向上して、信頼性の向上が可能な圧縮機を提供することを目的としている。 The present disclosure improves the oil film forming property of the lubricant in the sliding contact portion by radiating heat around the sliding contact portion such as frictional heat and compression heat generated in the sliding contact portion to the outside of the compression mechanism and the compressor. It is an object of the present invention to provide a compressor capable of improving reliability.
 本開示の1つの観点によれば、
 作動媒体を圧縮して吐き出す圧縮機において、
 耐圧容器を構成するハウジングと、
 ハウジングの内側に形成される電動機室に収容される電動機部と、
 ハウジングの内側に設けられ、ハウジングの内壁に当接または固定されるフレームと、
 ハウジングの内側でフレームに対して電動機部とは反対側に配置され、作動媒体を圧縮するための容積変化が行われる圧縮室を形成する圧縮機構部と、
 フレームに設けられた軸受け部に回転自在に摺接し、電動機部で発生したトルクを圧縮機構部へ伝達する可動部材と、を備え、
 ハウジングおよびフレームの少なくとも一方の熱伝導率は、可動部材の熱伝導率より高く、圧縮機構部を構成する少なくとも一つの部品の熱伝導率より高い。
According to one aspect of the present disclosure,
In a compressor that compresses and discharges a working medium,
A housing constituting a pressure-resistant container,
A motor section housed in a motor room formed inside the housing,
A frame provided inside the housing and abutting or fixed to an inner wall of the housing,
A compression mechanism section that is arranged on the opposite side of the motor section with respect to the frame inside the housing and forms a compression chamber in which a volume change for compressing the working medium is performed;
A movable member that rotatably slidably contacts a bearing portion provided on the frame and transmits torque generated by the electric motor portion to the compression mechanism portion,
The thermal conductivity of at least one of the housing and the frame is higher than the thermal conductivity of the movable member and higher than the thermal conductivity of at least one component constituting the compression mechanism.
 これによれば、本開示の1つの観点は、ハウジングおよびフレームの少なくとも一方の熱伝導率が、可動部材の熱伝導率よりも高い構成である。そのため、フレームの軸受け部と可動部材との摺動部で生じた摩擦熱や圧縮熱など摺接部周辺の熱を、フレームからハウジングへ高効率に熱移動させることが可能となる。ハウジングは圧縮機の外部に露出する放熱面積が大きいので、フレームからハウジングに熱が高効率に移動すると、そのハウジングから圧縮機の外部への放熱性が向上する。 According to this, one aspect of the present disclosure is a configuration in which the thermal conductivity of at least one of the housing and the frame is higher than the thermal conductivity of the movable member. Therefore, heat around the sliding contact portion, such as frictional heat and compression heat generated at the sliding portion between the bearing portion of the frame and the movable member, can be efficiently transferred from the frame to the housing. Since the housing has a large heat radiation area exposed to the outside of the compressor, when heat is efficiently transferred from the frame to the housing, the heat radiation from the housing to the outside of the compressor is improved.
 その結果、摺接部や摺接部付近での温度上昇を低減でき、摺接部の潤滑剤の加熱による潤滑剤の粘度低下の抑制が可能となり、油膜確保が可能となり、摺接部における焼き付や異常摩耗が低減されて信頼性が向上できる。また、摺接部での信頼性が向上することで、動力損失を低減できるため、サイクル全体の効率を向上または維持が可能となる。 As a result, it is possible to reduce the temperature rise in the sliding contact portion and in the vicinity of the sliding contact portion, it is possible to suppress the decrease in the viscosity of the lubricant due to the heating of the lubricant in the sliding contact portion, it is possible to secure an oil film, and it is possible to secure the burning in the sliding contact portion. Adhesion and abnormal wear are reduced, and reliability can be improved. Further, since the power loss can be reduced by improving the reliability of the sliding contact portion, the efficiency of the entire cycle can be improved or maintained.
 さらに、本開示の1つの観点は、圧縮機構部を構成する部品の熱伝導率が、ハウジングおよびフレームの少なくとも一方の熱伝導率よりも低い構成である。そのため、圧縮室で生じる作動媒体の圧縮熱は、圧縮機構部を構成する部品により断熱され、ハウジングおよびフレームへの伝熱が抑制される。したがって、圧縮によるガス温度は、ハウジングおよびフレームへ伝熱しにくいため、吐出ガスは圧縮機から高温状態で吐き出される。これにより、近年利用が増加しているヒートポンプサイクルでは、高温高圧の吐出ガス温度を高温のままヒートポンプ機器システムへ吐出することが出来、ヒートポンプ能力の維持向上が可能である。従って、信頼性向上と能力維持向上の両立が可能となる。 Further, one aspect of the present disclosure is a configuration in which the thermal conductivity of a component configuring the compression mechanism is lower than the thermal conductivity of at least one of the housing and the frame. Therefore, the heat of compression of the working medium generated in the compression chamber is insulated by the components constituting the compression mechanism, and the heat transfer to the housing and the frame is suppressed. Therefore, the gas temperature due to the compression is hardly transferred to the housing and the frame, and the discharge gas is discharged from the compressor in a high temperature state. As a result, in a heat pump cycle that has been increasingly used in recent years, a high-temperature and high-pressure discharge gas temperature can be discharged to a heat pump device system at a high temperature, and the heat pump capacity can be maintained and improved. Therefore, it is possible to achieve both improvement in reliability and improvement in capacity maintenance.
 また、本開示の別の観点によれば、
 作動媒体を圧縮して吐き出す圧縮機において、
 耐圧容器を構成するハウジングと、
 ハウジングの内側に形成される電動機室に収容される電動機部と、
 ハウジングの内側に設けられ、ハウジングの内壁に当接または固定されるフレームと、
 ハウジングの内側でフレームに対して電動機部とは反対側に配置され、作動媒体を圧縮するための容積変化が行われる圧縮室を形成する圧縮機構部と、
 フレームに設けられた軸受け部に回転自在に摺接し、電動機部で発生したトルクを圧縮機構部へ伝達する可動部材と、を備え、
 ハウジングおよびフレームの熱伝導率は、可動部材の熱伝導率より高く、
 フレームの熱伝導率は、圧縮機構部を構成する少なくとも一つの部品の熱伝導率より高い。
Also, according to another aspect of the present disclosure,
In a compressor that compresses and discharges a working medium,
A housing constituting a pressure-resistant container,
A motor section housed in a motor room formed inside the housing,
A frame provided inside the housing and abutting or fixed to an inner wall of the housing,
A compression mechanism section that is arranged on the opposite side of the motor section with respect to the frame inside the housing and forms a compression chamber in which a volume change for compressing the working medium is performed;
A movable member that rotatably slidably contacts a bearing portion provided on the frame and transmits torque generated by the electric motor portion to the compression mechanism portion,
The thermal conductivity of the housing and the frame is higher than the thermal conductivity of the movable member,
The thermal conductivity of the frame is higher than the thermal conductivity of at least one component constituting the compression mechanism.
 これによれば、本開示の別の観点は、ハウジングおよびフレームの熱伝導率が、可動部材の熱伝導率よりも高い構成である。そのため、フレームの軸受け部と可動部材との摺動部で生じた摩擦熱や摺接部周辺の熱を、摺動部からフレームを介してハウジングへ高効率に熱移動させることが可能となる。ハウジングは圧縮機の外部に露出する放熱面積が大きいので、フレームからハウジングに熱が高効率に移動すると、そのハウジングから圧縮機の外部への放熱性が向上する。 According to this, another aspect of the present disclosure is a configuration in which the thermal conductivity of the housing and the frame is higher than the thermal conductivity of the movable member. Therefore, the frictional heat generated in the sliding portion between the bearing portion and the movable member of the frame and the heat around the sliding contact portion can be efficiently transferred from the sliding portion to the housing through the frame to the housing. Since the housing has a large heat radiation area exposed to the outside of the compressor, when heat is efficiently transferred from the frame to the housing, the heat radiation from the housing to the outside of the compressor is improved.
 その結果、摺接部や摺接部付近での温度上昇を低減でき、摺接部の潤滑剤の加熱による潤滑剤の粘度低下の抑制が可能となり、油膜確保が可能となり、摺接部における焼き付や異常摩耗が低減されて信頼性が向上できる。また、摺接部での信頼性が向上することで、動力損失を低減できるため、サイクル全体の効率を向上または維持が可能となる。 As a result, it is possible to reduce the temperature rise in the sliding contact portion and in the vicinity of the sliding contact portion, it is possible to suppress the decrease in the viscosity of the lubricant due to the heating of the lubricant in the sliding contact portion, it is possible to secure an oil film, and it is possible to secure the burning in the sliding contact portion. Adhesion and abnormal wear are reduced, and reliability can be improved. Further, since the power loss can be reduced by improving the reliability of the sliding contact portion, the efficiency of the entire cycle can be improved or maintained.
 さらに、本開示の別の観点は、圧縮機構部を構成する部品の熱伝導率が、フレームの熱伝導率よりも低い構成である。そのため、圧縮室で生じる作動媒体の圧縮熱は、圧縮機構部を構成する部品により断熱され、フレームへの伝熱が抑制される。したがって、圧縮によるガス温度は、フレームへ伝熱されにくいため、吐出ガスは圧縮機から高温状態で吐き出される。これにより、近年利用が増加しているヒートポンプサイクルでは、高温高圧の吐出ガス温度を高温のままヒートポンプ機器システムへ吐出することが出来、ヒートポンプ能力の維持向上が可能である。従って、信頼性向上と能力維持向上の両立が可能となる。 Further, another aspect of the present disclosure is a configuration in which the thermal conductivity of a component configuring the compression mechanism is lower than the thermal conductivity of the frame. Therefore, the heat of compression of the working medium generated in the compression chamber is insulated by the components constituting the compression mechanism, and the heat transfer to the frame is suppressed. Therefore, since the gas temperature due to the compression is not easily transferred to the frame, the discharge gas is discharged from the compressor in a high temperature state. As a result, in a heat pump cycle that has been increasingly used in recent years, a high-temperature and high-pressure discharge gas temperature can be discharged to a heat pump device system at a high temperature, and the heat pump capacity can be maintained and improved. Therefore, it is possible to achieve both improvement in reliability and improvement in capacity maintenance.
 なお、各構成要素等に付された括弧付きの参照符号は、その構成要素等と後述する実施形態に記載の具体的な構成要素等との対応関係の一例を示すものである。 Note that reference numerals in parentheses attached to the respective components and the like indicate an example of the correspondence between the components and the like and specific components and the like described in the embodiments described later.
第1実施形態に係る圧縮機の断面図である。It is a sectional view of a compressor concerning a 1st embodiment. 第2実施形態に係る圧縮機の一部を示す断面図である。It is a sectional view showing a part of compressor concerning a 2nd embodiment. 第2実施形態に係る圧縮機の一部を示す断面図である。It is a sectional view showing a part of compressor concerning a 2nd embodiment. 第2実施形態に係る圧縮機の一部を示す断面図である。It is a sectional view showing a part of compressor concerning a 2nd embodiment. 第3実施形態に係る圧縮機の一部を示す断面図である。It is a sectional view showing a part of compressor concerning a 3rd embodiment. 第3実施形態の変形例1に係る圧縮機の一部を示す断面図である。It is a sectional view showing a part of compressor concerning modification 1 of a 3rd embodiment. 第3実施形態の変形例2に係る圧縮機の一部を示す断面図である。It is sectional drawing which shows a part of compressor which concerns on the modification 2 of 3rd Embodiment. 第3実施形態の変形例3に係る圧縮機の一部を示す断面図である。It is sectional drawing which shows a part of compressor which concerns on the modification 3 of 3rd Embodiment. 第3実施形態の変形例4に係る圧縮機の一部を示す断面図である。It is sectional drawing which shows a part of compressor which concerns on the modification 4 of 3rd Embodiment. 第3実施形態の変形例5に係る圧縮機の一部を示す断面図である。It is sectional drawing which shows a part of compressor which concerns on the modification 5 of 3rd Embodiment. 第4実施形態に係る圧縮機の一部を示す断面図である。It is a sectional view showing some compressors concerning a 4th embodiment. 第4実施形態の変形例に係る圧縮機の一部を示す断面図である。It is a sectional view showing a part of compressor concerning a modification of a 4th embodiment. 第4実施形態およびその変形例において、なじみを説明するためのイメージ図である。It is an image figure for explaining familiarity in a 4th embodiment and its modification. 第5実施形態に係る圧縮機の一部を示す断面図である。It is a sectional view showing a part of compressor concerning a 5th embodiment. 第5実施形態の変形例1に係る圧縮機の一部を示す断面図である。It is sectional drawing which shows a part of compressor which concerns on the modification 1 of 5th Embodiment. 第5実施形態の変形例2に係る圧縮機の一部を示す断面図である。It is sectional drawing which shows a part of compressor which concerns on the modification 2 of 5th Embodiment. 第6実施形態に係る圧縮機の断面図である。It is a sectional view of the compressor concerning a 6th embodiment. 第7実施形態に係る圧縮機の一部を示す断面図である。It is sectional drawing which shows some compressors concerning 7th Embodiment.
 以下、本開示の実施形態について図面を参照しつつ説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付し、その説明を省略する。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In the following embodiments, portions that are the same or equivalent are denoted by the same reference numerals, and description thereof is omitted.
 (第1実施形態)
 第1実施形態について図面を参照しつつ説明する。
(1st Embodiment)
A first embodiment will be described with reference to the drawings.
 <圧縮機の構成>
 本実施形態について、図1を用いて説明する。本実施形態は、作動媒体を図示しない冷凍サイクルより吸気し、圧縮、吐出を行う圧縮機である。
<Structure of compressor>
This embodiment will be described with reference to FIG. The present embodiment is a compressor that draws a working medium from a refrigeration cycle (not shown), and performs compression and discharge.
 圧縮機は、スクロール型の電動機圧縮機であり、耐圧容器を構成するハウジング1と、ハウジング1の内部に設置されハウジング1の一部に設けた吸気部11から吸気した作動媒体を圧縮する圧縮機部2と、その圧縮機部2の駆動力源となる電動機部3とを備える。圧縮機は、ハウジング1と圧縮機部2と電動機部3を横方向(すなわち、重力方向に対して交差する方向)に配置した横置きタイプになっている。圧縮機部2の外側には、圧縮機部2で圧縮された作動媒体から冷媒と油を分離する油分離器4が設置されている。 The compressor is a scroll-type electric motor compressor, which compresses a working medium sucked from a housing 1 constituting a pressure-resistant container and an intake unit 11 provided inside the housing 1 and provided in a part of the housing 1. And a motor unit 3 serving as a driving force source of the compressor unit 2. The compressor is of a horizontal type in which a housing 1, a compressor unit 2, and an electric motor unit 3 are arranged in a lateral direction (that is, a direction intersecting with the direction of gravity). An oil separator 4 that separates refrigerant and oil from the working medium compressed by the compressor unit 2 is provided outside the compressor unit 2.
 電動機部3は、ハウジング1の内壁に固定されるステータモータ301と、そのステータモータ301の径内側で回転運動するロータモータ302を含んで構成されている。電動機部3は、ハウジング1の内側に形成される電動機室10に収容されている。 The electric motor unit 3 includes a stator motor 301 fixed to the inner wall of the housing 1 and a rotor motor 302 that rotates and moves inside a radial direction of the stator motor 301. The motor unit 3 is housed in a motor room 10 formed inside the housing 1.
 圧縮機部2では、軸受け部を有するフレーム5と、フレーム5を一部とし、圧縮機部2を形成する圧縮機構部6が配置されている。また、圧縮機部2は、フレーム5に設けられた軸受け部に回転自在に摺接し、圧縮機構部6へ電動機部3で発生した可動力(すなわち、トルク)を伝達する可動部材としての可動軸7を有している。なお、フレーム5の軸受け部は、フレーム5と可動軸7との摺接部501を構成している。 In the compressor unit 2, a frame 5 having a bearing unit and a compression mechanism unit 6 that forms the compressor unit 2 with the frame 5 as a part are arranged. The compressor unit 2 is rotatably slidably in contact with a bearing unit provided on the frame 5, and a movable shaft as a movable member that transmits a movable force (ie, torque) generated by the electric motor unit 3 to the compression mechanism unit 6. 7. The bearing portion of the frame 5 constitutes a sliding portion 501 between the frame 5 and the movable shaft 7.
 フレーム5は、ハウジング1の内側に設けられ、ハウジング1の内壁に当接または固定されている。圧縮機構部6はハウジング1の内側でフレーム5に対して電動機部3とは反対側に配置されている。そして、圧縮機構部6は、作動媒体を圧縮するための容積変化が行われる圧縮室を形成している。 The frame 5 is provided inside the housing 1 and is in contact with or fixed to the inner wall of the housing 1. The compression mechanism 6 is disposed inside the housing 1 on the side opposite to the electric motor 3 with respect to the frame 5. The compression mechanism 6 forms a compression chamber in which a volume change for compressing the working medium is performed.
 また、圧縮機構部6は、圧縮室を形成する部品としての旋回スクロール601と、旋回スクロール601の対面に配置されて圧縮機構部6の固定部材をなし、旋回スクロール601とともに圧縮室を構成する部品としての固定スクロール602とを備えている。旋回スクロール601および固定スクロール602はいずれも、円板状の基板部603、604を有している。両基板部603、604は互いに対向するように配置されている。旋回スクロール601の基板部603の中心部には、可動軸7の下端部が挿入される円筒状のボス部605が形成されている。可動軸7の下端部は、可動軸7の回転中心に対して偏心した偏心部701になっている。したがって、旋回スクロール601には、可動軸7の偏心部701が挿入されていることになる。 Further, the compression mechanism unit 6 is a component that forms a compression chamber, and a orbiting scroll 601 and a component that is arranged on the opposite surface of the orbiting scroll 601 to form a fixed member of the compression mechanism unit 6 and that forms a compression chamber together with the orbiting scroll 601. And a fixed scroll 602 serving as a reference. Both the orbiting scroll 601 and the fixed scroll 602 have disk-shaped substrate portions 603 and 604. The two substrate parts 603 and 604 are arranged so as to face each other. A cylindrical boss 605 into which the lower end of the movable shaft 7 is inserted is formed at the center of the substrate 603 of the orbiting scroll 601. The lower end of the movable shaft 7 is an eccentric portion 701 eccentric with respect to the rotation center of the movable shaft 7. Therefore, the eccentric portion 701 of the movable shaft 7 is inserted into the orbiting scroll 601.
 さらに旋回スクロール601およびフレーム5の間には、旋回スクロール601が偏心部701周りに自転することを防止する自転防止機構8が設けられている。このため、可動軸7が回転すると旋回スクロール601は偏心部701周りに自転することなく、可動軸7の回転中心を公転中心として旋回しながら公転運動する。 Further, between the orbiting scroll 601 and the frame 5, a rotation preventing mechanism 8 for preventing the orbiting scroll 601 from rotating around the eccentric portion 701 is provided. For this reason, when the movable shaft 7 rotates, the orbiting scroll 601 does not rotate around the eccentric part 701 but revolves around the rotation center of the movable shaft 7 while revolving.
 旋回スクロール601は、可動軸7により旋回駆動される。旋回スクロール601の旋回とともに、旋回スクロール601と固定スクロール602の両スクロールによって形成された圧縮室の体積が拡大と縮小を繰り返すことで、作動媒体が吸入され圧縮される。 The orbiting scroll 601 is orbitally driven by the movable shaft 7. As the orbiting scroll 601 turns, the volume of the compression chamber formed by the orbiting scroll 601 and the fixed scroll 602 repeatedly expands and contracts, whereby the working medium is sucked and compressed.
 圧縮された作動媒体は、圧縮機部2の作動媒体の吐出口606から、油分離器4の流入口401に至る。 作 動 The compressed working medium flows from the working medium discharge port 606 of the compressor unit 2 to the inflow port 401 of the oil separator 4.
 油分離器4は、圧縮機部2から吐出された作動媒体から冷媒と油を分離するものであり、分離された油をハウジング1の内部に戻す役割を果たす。また油の一部は、各摺接部に供給するため潤滑通路を通じてハウジング1の内部に戻る。 The oil separator 4 separates the refrigerant and the oil from the working medium discharged from the compressor unit 2 and plays a role of returning the separated oil to the inside of the housing 1. Further, a part of the oil returns to the inside of the housing 1 through the lubricating passage to be supplied to each sliding contact portion.
 油分離器4で分離された油は、貯油室9で蓄えられた後、圧縮機構部6内の図示しない潤滑経路を通過して、旋回スクロール601のボス部605に供給され、さらに、可動軸7の内部に形成された潤滑経路702を通過して、各摺接部に供給される。 The oil separated by the oil separator 4 is stored in the oil storage chamber 9, passes through a lubrication path (not shown) in the compression mechanism 6, and is supplied to the boss 605 of the orbiting scroll 601, and further, the movable shaft 7 and is supplied to each sliding contact portion through a lubrication path 702 formed inside.
 次に、本実施形態に係る構成について詳細に説明する。 Next, the configuration according to the present embodiment will be described in detail.
 本実施形態の圧縮機は、フレーム5と可動軸7の摺接部501で生じた摩擦熱および圧縮熱など摺接部501周辺の熱を圧縮機構部6および圧縮機の外に放熱することで、摺接部501の潤滑剤の温度上昇による潤滑剤の粘度低下を抑制し油膜形成性を向上している。そのため、本実施形態の圧縮機は、ハウジング1とフレーム5の少なくとも一方の熱伝導率を可動部材の可動軸7よりも高くし、そして、圧縮機構部6を構成する部品を、ハウジング1とフレーム5の少なくとも一方よりも熱伝導率の低い部材としている。 The compressor of the present embodiment radiates heat around the sliding contact portion 501 such as frictional heat and compression heat generated in the sliding contact portion 501 between the frame 5 and the movable shaft 7 to the outside of the compression mechanism portion 6 and the compressor. In addition, a decrease in the viscosity of the lubricant due to an increase in the temperature of the lubricant in the sliding contact portion 501 is suppressed, and the oil film forming property is improved. Therefore, in the compressor of the present embodiment, the heat conductivity of at least one of the housing 1 and the frame 5 is higher than that of the movable shaft 7 of the movable member, and the components constituting the compression mechanism 6 are replaced by the housing 1 and the frame. 5 is a member having a lower thermal conductivity than at least one of the members.
 これにより、フレーム5が可動軸7よりも熱伝導率が高い場合は、可動軸7で生じた摩擦熱および圧縮熱など摺接部501周辺の熱がフレーム5に移動しやすくなる。フレーム5に熱が移動することで、フレーム5の表面を利用して、放熱することが可能となる。従って、可動軸7で生じた摩擦熱および圧縮熱など摺接部501周辺の熱を下げることができる。 Accordingly, when the frame 5 has a higher thermal conductivity than the movable shaft 7, heat around the sliding contact portion 501, such as frictional heat and compression heat generated by the movable shaft 7, easily moves to the frame 5. By transferring the heat to the frame 5, heat can be dissipated using the surface of the frame 5. Therefore, heat around the sliding contact portion 501 such as frictional heat and compression heat generated in the movable shaft 7 can be reduced.
 また、ハウジング1が可動軸7よりも熱伝導率が高い場合は、可動軸7で生じた摩擦熱および圧縮熱など摺接部501周辺の熱によって温められたフレーム5の熱がハウジング1に移動しやすくなる。そして、ハウジング1は圧縮機の外殻を構成する耐圧容器であるため、表面が外気と接しているので、フレーム5から得た熱を外気に放熱することが可能となり、ハウジング1の熱を下げることができる。これにより、フレーム5の熱はハウジング1に熱移動することでハウジング1を通じて外気へ放熱することが可能となるため、フレーム5の熱も下げることできる。従って、可動軸7の摺接部501で生じた摩擦熱および圧縮熱など摺接部501周辺の熱を下げることできる。故に、摺接部501で潤滑剤の温度が上昇して潤滑剤の粘度が低下することを抑制可能となり、摺接部501での油膜確保ができるため、摺接部501における焼き付や異常摩耗が低減されて信頼性が向上できる。 When the housing 1 has a higher thermal conductivity than the movable shaft 7, the heat of the frame 5 heated by the heat around the sliding contact portion 501 such as frictional heat and compression heat generated by the movable shaft 7 moves to the housing 1. Easier to do. Since the housing 1 is a pressure-resistant container constituting the outer shell of the compressor, the surface thereof is in contact with the outside air, so that the heat obtained from the frame 5 can be radiated to the outside air, and the heat of the housing 1 is reduced. be able to. Accordingly, the heat of the frame 5 can be radiated to the outside air through the housing 1 by transferring the heat of the frame 5 to the housing 1, so that the heat of the frame 5 can also be reduced. Therefore, heat around the sliding contact portion 501 such as frictional heat and compression heat generated in the sliding contact portion 501 of the movable shaft 7 can be reduced. Therefore, it is possible to prevent the temperature of the lubricant from increasing at the sliding contact portion 501 and lowering the viscosity of the lubricant, and it is possible to secure an oil film at the sliding contact portion 501. Is reduced, and the reliability can be improved.
 そして、圧縮室を構成する部品がハウジング1とフレーム5の少なくとも一方よりも熱伝導率の低い部材のときは、作動媒体の圧縮による熱で生じたガス温度が、フレーム5へ伝熱されないため、ガス温度を高温で維持できる。そのため圧縮後の作動媒体の吐出温度が低下することを防ぐことができる。これにより、近年利用が増加しているヒートポンプサイクルでは、高温高圧の吐出ガス温度を高温のままヒートポンプ機器システムへ吐出することができるため、ヒートポンプ能力の維持向上が可能となる。 When the component forming the compression chamber is a member having a lower thermal conductivity than at least one of the housing 1 and the frame 5, the gas temperature generated by the heat of the compression of the working medium is not transferred to the frame 5. The gas temperature can be maintained at a high temperature. For this reason, it is possible to prevent the discharge temperature of the working medium after compression from decreasing. As a result, in a heat pump cycle whose use is increasing in recent years, a high-temperature and high-pressure discharge gas temperature can be discharged to a heat pump device system at a high temperature, so that the heat pump capacity can be maintained and improved.
 さらに本実施形態では、ハウジング1とフレーム5を熱伝導率の高いアルミ系(例えば、20℃雰囲気において熱伝導率が約100~200W/mK)の素材で構成している。また、可動部材の可動軸7をアルミ系と比較して熱伝導率の低い鉄系(例えば、20℃雰囲気において熱伝導率が約10~50W/mK)の部材で構成している。これにより、フレーム5からハウジング1へ、摺接部501で生じた摩擦熱や圧縮熱など摺接部501周辺の熱移動を大きくすることが出来るため、圧縮機の外への放熱性が向上できる。 In the present embodiment, the housing 1 and the frame 5 are made of an aluminum-based material having a high thermal conductivity (for example, a thermal conductivity of about 100 to 200 W / mK in a 20 ° C. atmosphere). The movable shaft 7 of the movable member is made of an iron-based member (for example, having a thermal conductivity of about 10 to 50 W / mK in a 20 ° C. atmosphere) having a lower thermal conductivity than an aluminum-based member. Accordingly, heat transfer from the frame 5 to the housing 1 around the sliding contact portion 501, such as frictional heat and compression heat generated in the sliding contact portion 501, can be increased, and heat radiation to the outside of the compressor can be improved. .
 加えて、本実施形態では、圧縮室を構成する部品の旋回スクロール601をハウジング1やフレーム5のアルミ系と比較して熱伝導率の低い鉄系の部材で構成している。これにより、作動媒体の圧縮による熱で生じたガス温度が、旋回スクロール601を通じてフレーム5へ伝熱することを抑制できるため、ガス温度を高温に維持できる。そのため、特に近年利用が増加しているヒートポンプサイクルにおいて、高温高圧の吐出ガス温度を低下させることなく高温のままヒートポンプ機器システムへ吐出することができるので、ヒートポンプ能力の維持向上が可能となる。従って、信頼性向上と能力維持向上の両立が可能となる。さらには、フレーム5をアルミ系の素材とすることで、コンプレッサ全体の軽量化に繋げることが出来る。 In addition, in the present embodiment, the orbiting scroll 601 constituting the compression chamber is made of an iron-based member having a lower thermal conductivity than the aluminum-based member of the housing 1 and the frame 5. Thereby, the gas temperature generated by the heat due to the compression of the working medium can be suppressed from being transmitted to the frame 5 through the orbiting scroll 601, and the gas temperature can be maintained at a high temperature. Therefore, particularly in a heat pump cycle whose use has been increasing in recent years, it is possible to discharge the gas at a high temperature to the heat pump device system without lowering the temperature of the high-temperature and high-pressure discharge gas, so that the heat pump capacity can be maintained and improved. Therefore, it is possible to achieve both improvement in reliability and improvement in capacity maintenance. Further, by making the frame 5 of an aluminum-based material, it is possible to reduce the weight of the entire compressor.
 なお、ハウジング1とフレーム5を構成するアルミ系の部材とは、アルミニウムまたはアルミニウムを母体とした合金である。また、可動軸7と旋回スクロール601を構成する鉄系の部材とは、鉄または鉄を母体とした合金である。これにより、可動軸7の熱伝導率を、ハウジング1およびフレーム5の少なくとも一方の熱伝導率の50%以下とすることが可能である。また、可動軸7と旋回スクロール601の熱伝導率を、ハウジング1およびフレーム5の少なくとも一方の熱伝導率の50%以下とすることが可能である。 The aluminum-based members forming the housing 1 and the frame 5 are aluminum or an alloy containing aluminum as a base. The iron-based member forming the movable shaft 7 and the orbiting scroll 601 is iron or an alloy containing iron as a base. Thereby, the thermal conductivity of the movable shaft 7 can be set to 50% or less of the thermal conductivity of at least one of the housing 1 and the frame 5. Further, the thermal conductivity of the movable shaft 7 and the orbiting scroll 601 can be set to 50% or less of the thermal conductivity of at least one of the housing 1 and the frame 5.
 以上説明した第1実施形態の圧縮機は、次の作用効果を奏する。
 (1)第1実施形態では、ハウジング1とフレーム5の少なくとも一方は、可動軸7よりも熱伝導率の高い部材で構成されている。そして、圧縮機構部6を構成する少なくとも一つの部品は、ハウジング1とフレーム5の少なくとも一方よりも熱伝導率の低い部材で構成されている。
The compressor of the first embodiment described above has the following operational effects.
(1) In the first embodiment, at least one of the housing 1 and the frame 5 is made of a member having a higher thermal conductivity than the movable shaft 7. At least one component constituting the compression mechanism 6 is made of a member having a lower thermal conductivity than at least one of the housing 1 and the frame 5.
 これにより、ハウジング1とフレーム5の少なくとも一方の熱伝導率が可動軸7よりも高いため、摺接部501で生じた摩擦熱および圧縮熱など摺接部501周辺の熱を、フレーム5からハウジング1へ高効率に伝熱させることが可能となる。ハウジング1は圧縮機の外部に露出する放熱面積が大きいので、フレーム5からハウジング1への伝熱量が増大すると、そのハウジング1から圧縮機の外部への放熱性が向上する。 Since the thermal conductivity of at least one of the housing 1 and the frame 5 is higher than that of the movable shaft 7, heat around the sliding contact portion 501 such as frictional heat and compression heat generated in the sliding contact portion 501 is transferred from the frame 5 to the housing 5. 1 can be transferred with high efficiency. Since the housing 1 has a large heat dissipation area exposed to the outside of the compressor, when the amount of heat transfer from the frame 5 to the housing 1 increases, the heat dissipation from the housing 1 to the outside of the compressor improves.
 その結果、摺接部501や摺接部501付近での温度上昇を低減でき、摺接部501の潤滑剤の加熱による潤滑剤の粘度低下の抑制が可能となり、油膜確保が可能となり、摺接部501における焼き付や異常摩耗が低減されて信頼性が向上できる。また、摺接部501での信頼性が向上することで、動力損失を低減できるため、サイクル全体の効率を向上または維持が可能となる。 As a result, it is possible to reduce the temperature rise in the sliding contact portion 501 and the vicinity of the sliding contact portion 501, to suppress the decrease in the viscosity of the lubricant due to the heating of the lubricant in the sliding contact portion 501, to secure the oil film, and to make the sliding contact possible. Seizure and abnormal wear in the portion 501 are reduced, and reliability can be improved. Further, since the power loss can be reduced by improving the reliability of the sliding contact portion 501, the efficiency of the entire cycle can be improved or maintained.
 さらに、第1実施形態では、圧縮機構部6を構成する少なくとも一つの部品の熱伝導率が、ハウジング1およびフレーム5の少なくとも一方の熱伝導率よりも低い構成である。そのため、圧縮室で生じる作動媒体の圧縮熱は、圧縮機構部を構成する部品により断熱され、ハウジング1およびフレーム5への伝熱が抑制される。したがって、圧縮によるガス温度は、ハウジング1およびフレーム5へ伝熱しにくいため、吐出ガスは圧縮機から高温状態で吐き出される。これにより、近年利用が増加しているヒートポンプサイクルでは、高温高圧の吐出ガス温度を高温のままヒートポンプ機器システムへ吐出することが出来、ヒートポンプ能力の維持向上が可能である。従って、信頼性向上と能力維持向上の両立が可能となる。 Furthermore, in the first embodiment, at least one component of the compression mechanism 6 has a lower thermal conductivity than at least one of the housing 1 and the frame 5. Therefore, the compression heat of the working medium generated in the compression chamber is insulated by the components constituting the compression mechanism, and the heat transfer to the housing 1 and the frame 5 is suppressed. Therefore, the gas temperature due to the compression is difficult to transfer to the housing 1 and the frame 5, and the discharge gas is discharged from the compressor in a high temperature state. As a result, in a heat pump cycle that has been increasingly used in recent years, a high-temperature and high-pressure discharge gas temperature can be discharged to a heat pump device system at a high temperature, and the heat pump capacity can be maintained and improved. Therefore, it is possible to achieve both improvement in reliability and improvement in capacity maintenance.
 (2)第1実施形態では、ハウジング1とフレーム5は、可動軸7よりも熱伝導率の高い部材で構成されており、そして、圧縮機構部6を構成する少なくとも一つの部品は、フレーム5よりも熱伝導率が低い部材で構成されている。 (2) In the first embodiment, the housing 1 and the frame 5 are made of a member having higher thermal conductivity than the movable shaft 7, and at least one component constituting the compression mechanism 6 is the frame 5. It is composed of a member having a lower thermal conductivity than that of the first embodiment.
 これによれば、ハウジング1とフレーム5の熱伝導率が可動軸7の熱伝導率よりも高いため、摺接部501で生じた摩擦熱および圧縮熱など摺接部501周辺の熱は、フレーム5に伝熱し、放熱面積の大きいハウジング1への熱移動を大きくすることが可能となる。そのため、圧縮機構部6からハウジング1へ熱が移動し、ハウジング1から圧縮機の外部への放熱性が一層向上する。 According to this, since the thermal conductivity between the housing 1 and the frame 5 is higher than the thermal conductivity of the movable shaft 7, heat around the sliding contact portion 501 such as frictional heat and compression heat generated in the sliding contact portion 501 is reduced by the frame. 5, the heat transfer to the housing 1 having a large heat radiation area can be increased. Therefore, heat is transferred from the compression mechanism 6 to the housing 1, and the heat radiation from the housing 1 to the outside of the compressor is further improved.
 さらに、第1実施形態では、圧縮機構部6を構成する少なくとも一つの部品は、フレーム5よりも熱伝達率の低い材料を使用しており、圧縮によるガス温度は、フレーム5へ伝熱されず、高温を維持できる。これにより、近年利用が増加しているヒートポンプサイクルでは、高温高圧の吐出ガス温度を高温のままヒートポンプ機器システムへ吐出することが出来、ヒートポンプ能力の維持向上が可能である。従って、信頼性向上と能力維持向上の両立が可能となる。 Furthermore, in the first embodiment, at least one component constituting the compression mechanism 6 uses a material having a lower heat transfer coefficient than the frame 5, and the gas temperature due to the compression is not transferred to the frame 5. , Can maintain high temperature. As a result, in a heat pump cycle that has been increasingly used in recent years, a high-temperature and high-pressure discharge gas temperature can be discharged to a heat pump device system at a high temperature, and the heat pump capacity can be maintained and improved. Therefore, it is possible to achieve both improvement in reliability and improvement in capacity maintenance.
 (3)第1実施形態では、可動軸7の熱伝導率は、ハウジング1およびフレーム5の少なくとも一方の熱伝導率の50%以下である。また、圧縮機構部6を構成する部品のうちフレーム5側に配置される旋回スクロール601の熱伝導率は、ハウジング1およびフレーム5の少なくとも一方の熱伝導率の50%以下である。 (3) In the first embodiment, the thermal conductivity of the movable shaft 7 is 50% or less of the thermal conductivity of at least one of the housing 1 and the frame 5. The thermal conductivity of the orbiting scroll 601 arranged on the frame 5 side of the components constituting the compression mechanism 6 is 50% or less of the thermal conductivity of at least one of the housing 1 and the frame 5.
 これにより、可動軸7との摺接部で生じた摩擦熱および圧縮熱など摺接部周辺の熱は、可動軸7よりもハウジング1またはフレーム5への熱移動を一層大きく出来る。 Accordingly, heat around the sliding contact portion, such as frictional heat and compression heat generated at the sliding contact portion with the movable shaft 7, can transfer heat to the housing 1 or the frame 5 more than the movable shaft 7.
 そして、圧縮機構部6を構成する部品のうちフレーム5側に配置される旋回スクロール601の熱伝達率が小さいことから、圧縮室で生じた圧縮熱のフレーム5またはハウジング1の少なくとも一方への熱移動量を小さくすることが出来る。 Since the heat transfer coefficient of the orbiting scroll 601 disposed on the frame 5 side among the components constituting the compression mechanism 6 is small, the heat of the compression heat generated in the compression chamber is transferred to at least one of the frame 5 and the housing 1. The moving amount can be reduced.
 (4)第1実施形態では、ハウジング1とフレーム5の素材は、アルミニウムまたはアルミニウムを母体とした合金である。そして、圧縮機構部6を構成する部品のうちフレーム5側に配置される旋回スクロール601および可動軸7の素材は、鉄または鉄を母体とした合金である。 (4) In the first embodiment, the material of the housing 1 and the frame 5 is aluminum or an alloy containing aluminum as a base. The material of the orbiting scroll 601 and the movable shaft 7 which are arranged on the frame 5 side among the components constituting the compression mechanism 6 is iron or an alloy having iron as a base.
 これにより、可動軸7よりもハウジング1とフレーム5の熱伝導率を高くすることが可能となる。そのため、可動軸7との摺接部501で生じた摩擦熱および圧縮熱など摺接部501周辺の熱は、可動軸7よりもハウジング1またはフレーム5への熱移動を一層大きく出来る。そして、旋回スクロール601を鉄系の素材とすることで、熱伝達率を小さくすることができ、圧縮室で生じた圧縮熱のフレーム5またはハウジング1の少なくとも一方への熱移動量を小さくすることが出来る。 This makes it possible to make the thermal conductivity of the housing 1 and the frame 5 higher than that of the movable shaft 7. Therefore, heat around the sliding contact portion 501 such as frictional heat and compression heat generated in the sliding contact portion 501 with the movable shaft 7 can transfer heat to the housing 1 or the frame 5 more than the movable shaft 7. By using the iron-based material for the orbiting scroll 601, the heat transfer coefficient can be reduced, and the heat transfer amount of the compression heat generated in the compression chamber to at least one of the frame 5 and the housing 1 can be reduced. Can be done.
 (第2実施形態)
 次に第2実施形態について図2~図4を用いて説明する。
(2nd Embodiment)
Next, a second embodiment will be described with reference to FIGS.
 以下に説明する複数の実施形態は、第1実施形態に対して、ハウジング1とフレーム5の当接部位101、502について示したものであり、その他については、第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。 A plurality of embodiments described below show the contact portions 101 and 502 between the housing 1 and the frame 5 with respect to the first embodiment, and the other configurations are the same as those in the first embodiment. Only the parts different from the first embodiment will be described.
 第2実施形態の圧縮機は、第1実施形態に対して、フレーム5とハウジング1が当接または固定されている部位の構成が相違している。すなわち、図2で矢印により当接部として示した部位において、当接部位101、502の面粗度(すなわち、表面粗さ)に関し、次に示す(1)と(2)の構成を有している。 圧 縮 The compressor of the second embodiment is different from the first embodiment in the configuration of the part where the frame 5 and the housing 1 are in contact or fixed. That is, the portions indicated as the contact portions by arrows in FIG. 2 have the following configurations (1) and (2) regarding the surface roughness (that is, surface roughness) of the contact portions 101 and 502. ing.
 (1)図3に示すように、ハウジング1において、フレーム5との当接部位101がフレーム5と当接しない面よりも面粗度が小さくなっている。そのため、ハウジング1とフレーム5が弱い当接力でも接触面積を確保できる。なお、本明細書において、接触面積とは、2つの部材が実際に接触している面積をいう。そして、フレーム5とハウジング1との接触面積が大きく確保されるので、フレーム5からハウジング1へ摺接部501で生じた摩擦熱や圧縮熱など摺接部501周辺の熱移動を大きくすることが出来る。そのため、摺接部501で潤滑剤の温度が上昇して潤滑剤の粘度が低下することが抑制可能となり、摺接部501での油膜確保ができるため、摺接部501における焼き付や異常摩耗が低減されて信頼性が向上できる。なお、以下の説明では、ハウジング1において、フレーム5との当接部位101がフレーム5と当接しない面よりも面粗度が小さくなっていることを「第1要件」と呼ぶことがある。 (1) As shown in FIG. 3, in the housing 1, the contact portion 101 with the frame 5 has a smaller surface roughness than the surface not in contact with the frame 5. Therefore, the contact area between the housing 1 and the frame 5 can be secured even with a weak contact force. In this specification, the contact area refers to an area where two members are actually in contact with each other. Since a large contact area between the frame 5 and the housing 1 is ensured, heat transfer around the sliding contact portion 501 such as frictional heat and compression heat generated in the sliding contact portion 501 from the frame 5 to the housing 1 can be increased. I can do it. Therefore, it is possible to suppress a decrease in the viscosity of the lubricant due to an increase in the temperature of the lubricant in the sliding contact portion 501, and to secure an oil film in the sliding contact portion 501. Is reduced, and the reliability can be improved. In the following description, in the housing 1, the fact that the contact portion 101 with the frame 5 has a smaller surface roughness than the surface that does not contact with the frame 5 may be referred to as “first requirement”.
 (2)図4に示すように、フレーム5において、ハウジング1との当接部位502がハウジング1と当接しない面よりも、面粗度が小さくなっている。この場合にも、弱い当接力でも接触面積が確保できるため、上記(1)の第1要件と同様の効果が得られる。また、上記(1)の第1要件の場合はハウジング1の内径が一定の時には、当接部位101の面と当接しない面とで面粗度を変えるため、加工方法を変更する必要が生じるため、コストアップする可能性がある。これに対し、フレーム5においては当接部位502を仕上げるときに面粗度を調整すればよく、加工方法の変更や追加を実施する必要がないためコストアップは生じることなく、構成することができる。なお、以下の説明では、フレーム5において、ハウジング1との当接部位502がハウジング1と当接しない面よりも、面粗度が小さくなっていることを「第2要件」と呼ぶことがある。 (2) As shown in FIG. 4, in the frame 5, the contact portion 502 with the housing 1 has a smaller surface roughness than the surface not in contact with the housing 1. Also in this case, since the contact area can be secured even with a weak contact force, the same effect as the first requirement (1) can be obtained. Further, in the case of the first requirement of the above (1), when the inner diameter of the housing 1 is constant, the surface roughness is changed between the surface of the contact portion 101 and the surface that does not contact, so that it is necessary to change the processing method. Therefore, the cost may increase. On the other hand, in the frame 5, the surface roughness may be adjusted when finishing the contact portion 502, and there is no need to change or add a processing method, so that the frame 5 can be configured without increasing the cost. . In the following description, the fact that the surface roughness of the contact portion 502 of the frame 5 that contacts the housing 1 is smaller than that of the surface that does not contact the housing 1 may be referred to as a “second requirement”. .
 第2実施形態での当接または固定する手段としては、ハウジング1とフレーム5を焼嵌めする手段や溶接する手段、またはボルトで固定する手段などがある。 As means for abutting or fixing in the second embodiment, there are means for shrink-fitting the housing 1 and the frame 5, means for welding, means for fixing with a bolt, and the like.
 以上説明した第2実施形態の圧縮機は、上述した第1要件および第2要件の少なくとも一方の要件を満たしているものである。これにより、当接部位101、502の当接面の面粗度が小さく良い状態になっていることで、弱い当接力でも着実にハウジング1とフレーム5の当接面積を確保することが可能となり、フレーム5からハウジング1への熱移動を大きくすることが出来る。 The compressor according to the second embodiment described above satisfies at least one of the above-described first and second requirements. Thereby, the surface roughness of the contact surfaces of the contact portions 101 and 502 is small and is in a good state, so that the contact area between the housing 1 and the frame 5 can be steadily secured even with a weak contact force. The heat transfer from the frame 5 to the housing 1 can be increased.
 その結果、摺接部501で生じた摩擦熱および圧縮熱など摺接部501周辺の熱による温度上昇を低減でき、潤滑剤への加熱による潤滑剤の粘度低下の抑制が可能となり、油膜確保が可能となる。したがって、摺接部501における焼き付や異常摩耗が低減されて信頼性が向上できる。また、サイクル全体の効率を向上できるだけではなく、当接部位101、502のみの面粗度向上であり、大きなコストアップなしに対応可能である。 As a result, a rise in temperature due to heat around the sliding contact portion 501 such as frictional heat and compression heat generated in the sliding contact portion 501 can be reduced, and a decrease in the viscosity of the lubricant due to heating of the lubricant can be suppressed, and an oil film can be secured. It becomes possible. Therefore, seizure and abnormal wear in the sliding contact portion 501 are reduced, and reliability can be improved. In addition, not only can the efficiency of the entire cycle be improved, but also the surface roughness of only the contact portions 101 and 502 can be improved, so that it is possible to cope without a significant increase in cost.
 (第3実施形態)
 続いて第3実施形態について図5を用いて説明する。第3実施形態では、ハウジング1の内周部位に段差部110を設けていることが第1実施形態と第2実施形態との相違点である。図5のように「電動機部3の外径」<「圧縮機部2の外径」の関係のとき、ハウジング1に設けた段差部110では、フレーム5の電動機部3側の面と当接または固定できる構成となっている。そのため、フレーム5の熱を段差部110を通じてハウジング1に熱移動することが可能となるため、フレーム5の放熱性が向上する。そのため、摺接部501で生じた摩擦熱や圧縮熱など摺接部501周辺の熱を低減できて、摺接部501で潤滑剤の温度が上昇して潤滑剤の粘度が低下することが抑制可能となり、油膜確保が可能となる。したがって、摺接部501における焼き付や異常摩耗が低減されて信頼性が向上できる。
(Third embodiment)
Next, a third embodiment will be described with reference to FIG. In the third embodiment, a difference between the first embodiment and the second embodiment is that a step 110 is provided at an inner peripheral portion of the housing 1. As shown in FIG. 5, when “the outer diameter of the motor section 3” <“the outer diameter of the compressor section 2”, the step 110 provided in the housing 1 abuts on the surface of the frame 5 on the side of the motor section 3. Or it can be fixed. Therefore, since the heat of the frame 5 can be transferred to the housing 1 through the step 110, the heat dissipation of the frame 5 is improved. Therefore, heat around the sliding contact portion 501, such as frictional heat and compression heat generated in the sliding contact portion 501, can be reduced, and a decrease in the viscosity of the lubricant due to an increase in the temperature of the lubricant in the sliding contact portion 501 is suppressed. It is possible to secure oil film. Therefore, seizure and abnormal wear in the sliding contact portion 501 are reduced, and reliability can be improved.
 さらに、フレーム5と段差部110を当接または固定できるため、圧縮機部2をハウジング1に固定する当接部位101、502として段差部110を使用することが可能となる。 Furthermore, since the frame 5 and the step portion 110 can be abutted or fixed, the step portion 110 can be used as the contact portions 101 and 502 for fixing the compressor unit 2 to the housing 1.
 (第3実施形態の変形例1)
 また、図6のように電動機部3とフレーム5との間で、段差部110を設けることで、電動機部3の外径と圧縮機部2の外径の関係に影響することなく、ハウジング1と圧縮機部2とを当接または固定することが可能となる。そして、フレーム5と段差部110の当接面積よりも、段差部110とハウジング1の電動機室10における段差部110から電動機部3までの面積の方が大きくなるような構成をとることができる。
(Modification 1 of Third Embodiment)
In addition, as shown in FIG. 6, by providing the step portion 110 between the electric motor portion 3 and the frame 5, the housing 1 is not affected by the relationship between the outer diameter of the electric motor portion 3 and the outer diameter of the compressor portion 2. And the compressor unit 2 can be contacted or fixed. Then, it is possible to adopt a configuration in which the area from the step portion 110 to the motor section 3 in the motor room 10 of the housing 1 is larger than the contact area between the frame 5 and the step portion 110.
 (第3実施形態の変形例2、3)
 その上、図7および図8のように、ハウジング1またはステータモータ301の少なくとも一方に吸気経路14を設けることで、段差部110及びフレーム5の表面に吸気ガスを当てることが可能となり、フレーム5の熱を冷却することが可能となる。なお、図7は、ハウジング1に吸気経路14を設けた例を示している。図8は、ステータモータ301に吸気経路14を設けた例を示している。そして、各図面では、吸気経路14から電動機室10内に流入する吸気ガスの流れを矢印Aで示している。
( Modifications 2 and 3 of the third embodiment)
In addition, as shown in FIGS. 7 and 8, by providing the intake path 14 in at least one of the housing 1 and the stator motor 301, the intake gas can be applied to the step 110 and the surface of the frame 5. Can be cooled. FIG. 7 shows an example in which the intake path 14 is provided in the housing 1. FIG. 8 shows an example in which the intake path 14 is provided in the stator motor 301. In each drawing, the flow of the intake gas flowing into the electric motor room 10 from the intake path 14 is indicated by an arrow A.
 (第3実施形態の変形例4、5)
 加えて、図9のように吸気経路14を形成する段差部110の電動機部3側の面をテーパ形状1101とすること、又は図10のようにステータモータ301のコイルエンド3011にテーパ部3012を設けることの少なくとも一方を実施することも可能である。これにより、吸気ガスをフレーム5に向けて導きやすくなるため、フレーム5の熱を一層冷却することが可能となる。そのため、摺接部501で生じた摩擦熱や圧縮熱など摺接部501周辺の熱を低減できて、潤滑剤の温度が上昇して潤滑剤の粘度が低下することが抑制可能となり、油膜確保が可能となり、摺接部501における焼き付や異常摩耗が低減されて信頼性が向上できる。
( Modifications 4 and 5 of Third Embodiment)
In addition, as shown in FIG. 9, the surface of the step portion 110 forming the intake path 14 on the electric motor unit 3 side has a tapered shape 1101, or as shown in FIG. 10, a tapered portion 3012 is provided on the coil end 3011 of the stator motor 301. It is also possible to implement at least one of the provisions. This makes it easier to guide the intake gas toward the frame 5, so that the heat of the frame 5 can be further cooled. Therefore, heat around the sliding contact portion 501, such as frictional heat and compression heat generated in the sliding contact portion 501, can be reduced, and it is possible to suppress a decrease in the viscosity of the lubricant due to an increase in the temperature of the lubricant, and to secure an oil film. Is possible, and the seizure and abnormal wear in the sliding contact portion 501 are reduced, and the reliability can be improved.
 第3実施形態およびその変形例において、当接または固定する手段としては、段差部110で圧縮機部2をボルトによって固定する手段や、圧縮機部2を段差部110とその他部材で挟み込む手段がある。 In the third embodiment and its modifications, the means for abutting or fixing includes means for fixing the compressor unit 2 with bolts at the step 110, and means for sandwiching the compressor unit 2 between the step 110 and other members. is there.
 以上説明した第3実施形態およびその変形例では、ハウジング1の内周部位に段差部110を設けている。その段差部110に、フレーム5の電動機部3側の端面の少なくとも一部でハウジング1の段差部110に当接または固定できる当接部位101、502を設けている。そして、フレーム5と段差部110との当接面積よりも、段差部110から電動機部3までの面積の方が大きくなるように構成されている。 In the third embodiment and its modification described above, the step 110 is provided at the inner peripheral portion of the housing 1. The step portion 110 is provided with contact portions 101 and 502 that can contact or fix the step portion 110 of the housing 1 at least at a part of the end face of the frame 5 on the electric motor unit 3 side. The area from the step 110 to the electric motor 3 is larger than the contact area between the frame 5 and the step 110.
 これにより、ハウジング1内周面の放熱面積が大きくなるので、摺接部501で生じた摩擦熱および圧縮熱など摺接部501周辺の熱のうち、フレーム5に伝達された熱について電動機室10内への熱移動も大きくすることが可能となる。 As a result, the heat radiation area of the inner peripheral surface of the housing 1 is increased, so that the heat transmitted to the frame 5 out of the heat around the sliding contact portion 501 such as frictional heat and compression heat generated in the sliding contact portion 501 is reduced. Heat transfer into the inside can be increased.
 また、電動機部3から段差部110への熱移動を小さくすることができるので、フレーム5から段差部110への熱移動が電動機部3の発熱により妨げられることを低減できる。 (4) Since the heat transfer from the motor unit 3 to the step 110 can be reduced, the heat transfer from the frame 5 to the step 110 can be prevented from being hindered by the heat generated by the motor 3.
 (第4実施形態およびその変形例)
 次に、第4実施形態を図11に示し、その変形例を図12に示す。第4実施形態およびその変形例は、第2実施形態または第3実施形態を前提とした形態となっている。そして、第4実施形態およびその変形例は、ハウジング1とフレーム5の互いの面粗度が異なる点、または、ハウジング1とフレーム5の互いの素材の硬度が異なる点、または、ハウジング1とフレーム5の互いの面粗度および素材の硬度が異なる点が相違点である。
(4th Embodiment and its modification)
Next, a fourth embodiment is shown in FIG. 11, and a modified example thereof is shown in FIG. The fourth embodiment and its modifications are based on the second embodiment or the third embodiment. The fourth embodiment and its modification are different in that the surface roughness of the housing 1 and the frame 5 are different from each other, or that the hardness of the housing 1 and the material of the frame 5 are different from each other, or that the housing 1 and the frame 5 are different. 5 are different from each other in that the surface roughness and the hardness of the material are different from each other.
 ハウジング1とフレーム5において、互いに当接する当接部位101、502の面粗度が異なり、強い当接力でハウジング1とフレーム5が保持されている場合には、局部的に強力な当接力となる当接部と弱い当接力となる当接部が発生する。そして、局部的に強力な当接力となる当接部で界面の伝熱性が向上することが可能となる。また、ハウジング1とフレーム5において、互いの硬度が異なる場合には、当接部位101、502において、硬度が低い側の部材が硬度の高い側の部材の当接面の状態になじみやすくなる。そのため、接触面積をより大きくすることが可能となるため、熱移動も大きくすることが可能となり、放熱性が向上できる。加えて、当接力が向上することによって、可動軸7の回転変動や圧縮行程で生じた振動によるフレーム5の自由振動も低減できるため、圧縮機全体の振動低減も可能となる。 In the housing 1 and the frame 5, the contact portions 101 and 502 that come into contact with each other have different surface roughness, and when the housing 1 and the frame 5 are held with a strong contact force, the contact force becomes locally strong. A contact portion having a weak contact force with the contact portion is generated. Then, the heat transfer at the interface can be improved at the contact portion where the contact force is locally strong. Further, when the hardness of the housing 1 and the hardness of the frame 5 are different from each other, in the abutting portions 101 and 502, the member on the lower hardness side is easily adapted to the state of the contact surface of the member on the higher hardness side. Therefore, the contact area can be further increased, so that the heat transfer can be increased, and the heat dissipation can be improved. In addition, since the contact force is improved, free vibration of the frame 5 due to rotation fluctuation of the movable shaft 7 and vibration generated during the compression stroke can be reduced, so that vibration of the entire compressor can be reduced.
 第4実施形態およびその変形例において、当接または固定する手段としては、溶接や挟み込み、ボルト固定の手段があり、一例として、ボルト固定では、4t以上の固定力とする。 に お い て In the fourth embodiment and its modifications, the means for abutting or fixing includes welding, pinching, and bolt fixing means. For example, the bolt fixing has a fixing force of 4 t or more.
 なお、図13は、なじみを説明するためのイメージ図である。図13に示す第1の部材20は、第2の部材30よりも硬度が高いものとする。また、第1の部材20の当接面21の面粗度は、第2の部材30の当接面31の面粗度より大きいものとする。第1の部材20と第2の部材30は、いずれか一方がハウジング1に相当するものであり、他方がフレーム5に相当するものである。この場合、第1の部材20と第2の部材30とを所定の力で押し当てると、硬度が低い第2の部材30の当接面31が、硬度の高い第1の部材20の当接面21の状態になじむように弾性変形が発生し、接触面積が増加することになる。 FIG. 13 is an image diagram for explaining familiarity. The first member 20 shown in FIG. 13 has higher hardness than the second member 30. The surface roughness of the contact surface 21 of the first member 20 is larger than the surface roughness of the contact surface 31 of the second member 30. One of the first member 20 and the second member 30 corresponds to the housing 1, and the other corresponds to the frame 5. In this case, when the first member 20 and the second member 30 are pressed against each other with a predetermined force, the contact surface 31 of the low hardness second member 30 is brought into contact with the high hardness first member 20. Elastic deformation occurs so as to conform to the state of the surface 21, and the contact area increases.
 以上説明した第4実施形態およびその変形例において、圧縮機は、当接部位101、502においてハウジング1とフレーム5とで面粗度を変える、または、ハウジング1とフレーム5とで素材の硬度を変えることの少なくともいずれかを行うものである。これにより、強い当接力で圧縮機部2が保持されている場合には、ハウジング1とフレーム5の硬度や面粗度を変えることで当接部位101、502において、局部的な強力な当接部と弱い当接力の当接部が発生し、局部的な強力な当接部で界面の伝熱性が向上する。また、局部的な強力な当接部で弾性変形が発生し、ミクロ的にみると当接部の当接面にうねりが発生し、接触面積が増加することになる。従って、接触面積を増加できるため熱の移動が増加する。その結果、ハウジング1内周の放熱面積が大きくなり、摺接部501で生じた摩擦熱および圧縮熱など摺接部501や摺接部501付近での温度上昇を低減でき、摺接部501の潤滑剤の温度上昇による潤滑剤の粘度低下が抑制可能となり、油膜確保が可能となる。したがって、摺接部501における焼き付や異常摩耗が低減されて信頼性が向上できる。 In the fourth embodiment and the modifications thereof described above, the compressor changes the surface roughness between the housing 1 and the frame 5 at the contact portions 101 and 502, or reduces the hardness of the material between the housing 1 and the frame 5. It does at least one of the changes. Accordingly, when the compressor unit 2 is held with a strong contact force, the hardness and the surface roughness of the housing 1 and the frame 5 are changed to locally strong contact at the contact portions 101 and 502. A contact portion having a weak contact force with the portion is generated, and the heat transfer property of the interface is improved by a locally strong contact portion. In addition, elastic deformation occurs at a locally strong contact portion, and microscopically, undulation occurs at the contact surface of the contact portion, and the contact area increases. Therefore, heat transfer increases because the contact area can be increased. As a result, the heat radiation area on the inner periphery of the housing 1 increases, and the temperature rise near the sliding contact portion 501 and the sliding contact portion 501 such as frictional heat and compression heat generated in the sliding contact portion 501 can be reduced. A decrease in the viscosity of the lubricant due to an increase in the temperature of the lubricant can be suppressed, and an oil film can be secured. Therefore, seizure and abnormal wear in the sliding contact portion 501 are reduced, and reliability can be improved.
 加えて、当接力を向上することが可能となることで、フレーム5の自由振動が制限されるので振動低減も可能となる。 In addition, since the contact force can be improved, free vibration of the frame 5 is limited, so that vibration can be reduced.
 (第5実施形態およびその変形例1、2)
 第5実施形態を図14に示し、その変形例1を図15に示し、変形例2を図16に示す。第5実施形態およびその変形例1、2では、吸気部11を電動機部3の近傍に配置する構成としている。フレーム5の径方向外側の表面位置と、吸気部11の開口部の少なくとも一部とが、可動軸7の回転軸に垂直な方向に重なる位置にある場合には、フレーム5に吸気ガスを当てることが可能となり、フレーム5を冷やすことができる。そのため、摺接部501で生じた摩擦熱や圧縮熱など摺接部501周辺の熱を下げることが可能となるため、摺接部501での潤滑剤の油膜確保ができるため、摺接部501における焼き付や異常摩耗が低減されて信頼性が向上できる。
(Fifth Embodiment and Modified Examples 1 and 2)
FIG. 14 shows a fifth embodiment, FIG. 15 shows a first modification, and FIG. 16 shows a second modification. In the fifth embodiment and its first and second modifications, the intake unit 11 is arranged near the electric motor unit 3. When the surface position on the radially outer side of the frame 5 and at least a part of the opening of the intake section 11 are in a position overlapping in a direction perpendicular to the rotation axis of the movable shaft 7, the intake gas is applied to the frame 5. And the frame 5 can be cooled. Therefore, it is possible to reduce heat around the sliding contact portion 501 such as frictional heat and compression heat generated in the sliding contact portion 501, and it is possible to secure an oil film of the lubricant in the sliding contact portion 501. And the abrasion and abnormal abrasion in the above are reduced, and the reliability can be improved.
 吸気ガスによってフレーム5を冷やす場合には、フレーム5から電動機室10内への熱移動が大きくなるとともに、吸気ガスが加熱されることになり、吸気ガスの密度が低下して、圧縮室の吸気質量が下がり、体積効率が低下することが懸念される。しかしながら、圧縮室全体の温度を下げることが可能となるため、圧縮機としては、圧縮効率を向上させることが出来る可能性がある。また、本実施形態においても、圧縮室を形成する部品は、ハウジング1またはフレーム5の少なくとも一方よりも熱伝達率の低い材料を使用している。そのため、近年利用が増加しているヒートポンプサイクルでは、高温高圧の吐出ガス温度を高温のままヒートポンプ機器システムへ吐出することが出来、ヒートポンプ能力の維持向上が可能である。 When the frame 5 is cooled by the intake gas, the heat transfer from the frame 5 into the electric motor room 10 increases, and the intake gas is heated, so that the density of the intake gas decreases and the intake air in the compression chamber is reduced. There is a concern that the mass will decrease and the volume efficiency will decrease. However, since the temperature of the entire compression chamber can be reduced, there is a possibility that the compression efficiency of the compressor can be improved. Also, in the present embodiment, as a component forming the compression chamber, a material having a lower heat transfer coefficient than at least one of the housing 1 and the frame 5 is used. Therefore, in a heat pump cycle that has been increasingly used in recent years, a high-temperature and high-pressure discharge gas temperature can be discharged to a heat pump device system at a high temperature, and the heat pump capacity can be maintained and improved.
 以上説明した第5実施形態の圧縮機は、ハウジング1の電動機室10は、吸気圧となっている。吸気部11は、電動機室10のうち電動機部3とフレーム5との間の空間に作動媒体を供給するように設けられている。 は In the compressor according to the fifth embodiment described above, the electric motor room 10 of the housing 1 has the intake pressure. The intake unit 11 is provided so as to supply a working medium to a space between the electric motor unit 3 and the frame 5 in the electric motor room 10.
 これにより、電動機室10のうちフレーム5の電動機室10側の近傍周囲温度とフレーム5のうち電動機室10側の面の温度を下げることが可能となる。そのため、電動機室10のうちフレーム5の電動機室10側の近傍周囲温度と、フレーム5の温度との温度差を大きくすることで、フレーム5から電動機室10への熱移動を促進し、電動機室10への熱移動も大きくすることが出来る。 This makes it possible to lower the ambient temperature near the frame 5 of the motor room 10 and the temperature of the surface of the frame 5 near the motor room 10. Therefore, by increasing the temperature difference between the ambient temperature near the frame 5 side of the motor room 10 and the temperature of the frame 5 in the motor room 10, heat transfer from the frame 5 to the motor room 10 is promoted, and The heat transfer to 10 can also be increased.
 その結果、電動機室10内からハウジング1への熱移動が増加し、ハウジング1全体の放熱性が一層向上できる。そのため、摺接部501で生じた摩擦熱および圧縮熱など摺接部501や摺接部501付近での温度上昇を低減でき、摺接部501の潤滑剤の温度上昇による潤滑剤の粘度低下が抑制可能となり、油膜確保が可能となる。したがって、摺接部501における焼き付や異常摩耗が低減されて信頼性が向上できる。 As a result, heat transfer from the interior of the motor room 10 to the housing 1 increases, and the heat radiation of the entire housing 1 can be further improved. Therefore, it is possible to reduce temperature rise near the sliding contact portion 501 and the sliding contact portion 501 such as frictional heat and compression heat generated in the sliding contact portion 501, and decrease in viscosity of the lubricant due to the temperature rise of the lubricant in the sliding contact portion 501. It is possible to suppress the oil film and secure the oil film. Therefore, seizure and abnormal wear in the sliding contact portion 501 are reduced, and reliability can be improved.
 (第6実施形態)
 続いて第6実施形態について図17を用いて説明する。第6実施形態では、ハウジング1に突起部12を放熱部位として設けている。突起部12は、ハウジングの外壁に1つ以上設けられている。そして、ハウジング1とフレーム5との当接部位101、502と、突起部12の少なくとも一部とは、可動軸7の回転軸に垂直な方向に重なる位置に設けられている。そのため、熱移動の大きい当接部位101、502の箇所で突起部12が放熱フィンの役割を果たすことが可能となり、ハウジング1全体の放熱性が一層向上できる。
(Sixth embodiment)
Next, a sixth embodiment will be described with reference to FIG. In the sixth embodiment, the protrusions 12 are provided on the housing 1 as heat radiating portions. One or more protrusions 12 are provided on the outer wall of the housing. The contact portions 101 and 502 between the housing 1 and the frame 5 and at least a part of the protruding portion 12 are provided at positions overlapping the direction perpendicular to the rotation axis of the movable shaft 7. Therefore, the projections 12 can serve as radiation fins at the contact portions 101 and 502 where heat transfer is large, and the heat radiation of the entire housing 1 can be further improved.
 さらに、突起部12の1つ以上を、圧縮機を保持固定する外部との接続部位の一部とすることで、外部への熱移動量を増加することが可能となり、ハウジング1全体の放熱性がさらに向上できる。そのため、摺接部501で生じた摩擦熱や圧縮熱など摺接部501周辺の熱を下げることが可能となるため、摺接部501での潤滑剤の油膜確保ができるため、摺接部501における焼き付や異常摩耗が低減されて信頼性が向上できる。 Further, by making at least one of the protrusions 12 as a part of a connection portion with the outside for holding and fixing the compressor, the amount of heat transfer to the outside can be increased, and the heat radiation of the entire housing 1 can be improved. Can be further improved. Therefore, it is possible to reduce heat around the sliding contact portion 501 such as frictional heat and compression heat generated in the sliding contact portion 501, and it is possible to secure an oil film of the lubricant in the sliding contact portion 501. And the abrasion and abnormal abrasion in the above are reduced, and the reliability can be improved.
 圧縮機を保持固定する外部との接続部位には、通常ではゴムなどの有機材系の接続部位部品を使用する場合があるが、ゴムなどの有機材を採用した場合には、周囲温度により有機材の硬度が変化し、バネ定数が変化することになる。これにより、圧縮機を保持固定する空調機の室外機や車両などの架台への加振力が変化し、架台から発生する騒音が変化することで騒音大となるおそれがある。そこで、突起部12を外部との接続部位の一部となすことで、接続部位部品の温度が突起部12と同等の安定した温度になるため、一定のバネ定数となり、架台への加振力が安定する。そのため、従来では接続部位部品が有機材の場合は、高温になると長期信頼性が不足することもあるが、本実施形態では、内部低圧仕様となっているため、有機材が高圧側のような高温に至ることを抑制できるため、大きな信頼性低下とはならない。 For the connection part with the outside which holds and fixes the compressor, there are cases where organic material connection parts such as rubber are usually used.However, when organic material such as rubber is adopted, it may be used depending on the ambient temperature. The hardness of the equipment changes, and the spring constant changes. As a result, the exciting force of the air conditioner for holding and fixing the compressor on the outdoor unit or the gantry of the vehicle changes, and the noise generated from the gantry changes, which may increase the noise level. Therefore, by forming the protrusion 12 as a part of the connection portion with the outside, the temperature of the connection portion component becomes a stable temperature equivalent to that of the protrusion 12, so that a constant spring constant is obtained and the vibration force applied to the gantry is increased. Becomes stable. For this reason, conventionally, when the connecting part is made of an organic material, long-term reliability may be insufficient at a high temperature.However, in the present embodiment, since the internal material has a low-pressure specification, the organic material has a high-pressure side. Since a high temperature can be suppressed, the reliability does not decrease significantly.
 以上説明した第6実施形態の圧縮機は、ハウジング1の外壁に、突起部12を放熱部位として設けている。突起部12は、ハウジングの外壁に1つ以上設けられている。そして、ハウジング1とフレーム5との当接部位101、502と、突起部12の少なくとも一部とは、可動軸7の回転軸に垂直な方向に視て重なるように設けられている。なお、このことは、フレーム5の軸方向位置においてハウジング1とフレーム5との当接部位101、502と、突起部12の少なくとも一部とが重なるように設けられていると言い換えることもできる。 圧 縮 In the compressor of the sixth embodiment described above, the protrusion 12 is provided on the outer wall of the housing 1 as a heat radiating part. One or more protrusions 12 are provided on the outer wall of the housing. The contact portions 101 and 502 between the housing 1 and the frame 5 and at least a part of the protrusion 12 are provided so as to overlap in a direction perpendicular to the rotation axis of the movable shaft 7. This can be rephrased as that the contact portions 101 and 502 between the housing 1 and the frame 5 and at least a part of the protrusion 12 are provided so as to overlap with each other at the axial position of the frame 5.
 これにより、突起部12によりハウジング1の放熱面積を大きくすることが可能となる。さらに、フレーム5の軸方向位置において当接部位101、502と、突起部12の少なくとも一部とが重なるようにすることで、ハウジング1のうちフレーム5からの熱移動が大きくなる位置においてハウジング1の放熱面積を大きくすることが可能となる。 Thus, it is possible to increase the heat radiation area of the housing 1 by the protrusions 12. Further, by making the contact portions 101 and 502 and at least a part of the protruding portion 12 overlap at the axial position of the frame 5, the housing 1 is positioned at a position where heat transfer from the frame 5 in the housing 1 is large. Can increase the heat radiation area.
 その結果、ハウジング1全体の放熱性が一層向上できるため、摺接部501で生じた摩擦熱および圧縮熱など摺接部501や摺接部501付近での温度上昇を低減できる。そのため、摺接部501の潤滑剤の温度上昇による潤滑剤の粘度低下を抑制することが可能となり、油膜の確保が可能となる。したがって、摺接部501における焼き付や異常摩耗が低減され、信頼性を向上することができる。 結果 As a result, the heat radiation of the entire housing 1 can be further improved, and the temperature rise near the sliding contact portion 501 and the sliding contact portion 501 such as frictional heat and compression heat generated in the sliding contact portion 501 can be reduced. Therefore, a decrease in the viscosity of the lubricant due to an increase in the temperature of the lubricant in the sliding contact portion 501 can be suppressed, and an oil film can be secured. Therefore, seizure and abnormal wear in the sliding contact portion 501 are reduced, and reliability can be improved.
 また、第6実施形態の圧縮機は、突起部12の少なくとも1つは、圧縮機を外部の部材に保持固定するための接続部位の一部をなすことで、その外部の部材への放熱も可能であり、熱移動量が増加する。そして、接続部位部品の温度に対する周囲温度の影響を少なくし、接続部位部品の温度を突起部12と同等の安定した温度にすることが出来ることで、有機材系の接続部位部品のバネ定数を安定化させることが出来る。 In the compressor according to the sixth embodiment, at least one of the protrusions 12 forms a part of a connection portion for holding and fixing the compressor to an external member, so that heat radiation to the external member is also reduced. Possible and increase the amount of heat transfer. The influence of the ambient temperature on the temperature of the connection part is reduced, and the temperature of the connection part can be set to a stable temperature equivalent to that of the protruding portion 12, so that the spring constant of the organic material connection part can be reduced. It can be stabilized.
 (第7実施形態)
 第7実施形態について図18を用いて説明する。第7実施形態では、上記に示した第1実施形態から第6実施形態に対して、フレーム5と旋回スクロール601との間に、圧縮機構部6で作動媒体の圧縮で発生したスラスト荷重を受けるスラスト軸受け部材13を別部材として設けていることが相違点である。なお、図18では、スラスト軸受け部材13は、2枚のスラスト軸受け部材131、132により構成されているが、スラスト軸受け部材13の枚数は1つまたは複数としてもよい。第1~第6実施形態のそれぞれの効果に加えて、スラスト軸受け部材13を別部材として設けることで、旋回スクロール601とフレーム5の間に界面ができるため、圧縮室で発生した圧縮熱が旋回スクロール601からフレーム5へ伝熱することを分断できる。そのため、摺接部501で圧縮熱による潤滑剤への影響を低減できる。さらに、スラスト軸受け部材13を複数で構成した場合、その複数のスラスト軸受け部材13のうち一方は、他方と摺接触する部位において、略円環状の摺接面を有している。略円環状の摺接面間には、溝部を形成することで、摺接面での油膜形成性を向上することができ、信頼性をさらに向上することができる。
(Seventh embodiment)
A seventh embodiment will be described with reference to FIG. In the seventh embodiment, the thrust load generated by the compression of the working medium by the compression mechanism 6 is applied between the frame 5 and the orbiting scroll 601 as compared with the first to sixth embodiments described above. The difference is that the thrust bearing member 13 is provided as a separate member. In FIG. 18, the thrust bearing member 13 is composed of two thrust bearing members 131 and 132, but the number of thrust bearing members 13 may be one or more. In addition to the effects of the first to sixth embodiments, by providing the thrust bearing member 13 as a separate member, an interface is formed between the orbiting scroll 601 and the frame 5, so that the compression heat generated in the compression chamber is swirled. The transfer of heat from the scroll 601 to the frame 5 can be divided. Therefore, the sliding contact portion 501 can reduce the influence of the compression heat on the lubricant. Further, when a plurality of thrust bearing members 13 are configured, one of the plurality of thrust bearing members 13 has a substantially annular sliding contact surface at a portion that comes into sliding contact with the other. By forming a groove between the substantially annular sliding contact surfaces, the oil film forming property on the sliding contact surface can be improved, and the reliability can be further improved.
 以上説明した第7実施形態は、フレーム5と圧縮機構部6との間にスラスト軸受け部材13を配置している。これにより、可動軸7の信頼性を一層向上しつつ放熱性を向上できるため、摺接部501における焼き付や異常摩耗が低減されて信頼性が向上できる。そして、スラスト軸受け部材13を別部材とすることで、圧縮室とスラスト軸受け部材13の間に界面が出来、圧縮室で発生する圧縮熱を分断可能であり、圧縮熱の影響を軽減できる。また、スラスト軸受け部材13の固定方法を圧縮室を構成する部品とスラスト方向で自由度を与えることで界面の影響を大きく出来、断熱性を確保できる。これにより、圧縮熱の影響が最小限化出来、信頼性が向上できる。 は In the seventh embodiment described above, the thrust bearing member 13 is disposed between the frame 5 and the compression mechanism 6. Thereby, since the heat radiation can be improved while further improving the reliability of the movable shaft 7, the seizure and abnormal wear in the sliding contact portion 501 are reduced, and the reliability can be improved. Then, by forming the thrust bearing member 13 as a separate member, an interface is formed between the compression chamber and the thrust bearing member 13, so that the compression heat generated in the compression chamber can be divided, and the influence of the compression heat can be reduced. In addition, the fixing method of the thrust bearing member 13 is given a degree of freedom in the thrust direction with the components constituting the compression chamber, so that the influence of the interface can be increased and the heat insulating property can be secured. Thereby, the influence of the heat of compression can be minimized, and the reliability can be improved.
 (第8実施形態)
 第8実施形態では、上記に示した第1実施形態から第7実施形態に対して、作動媒体を二酸化炭素とするものである。二酸化炭素は一般的に熱伝達率が低いため、電動機室10が吸気圧の場合には、吸気ガスへフレーム5などの熱移動量が小さくなってしまう。しかしながら、高圧側を超臨界状態とするサイクルで運転することにより、高効率で高温の加熱を行えるメリットがある。そのため、年利用が増加しているヒートポンプサイクルで、高温高圧の吐出ガス温度を高温のままヒートポンプ機器システムへ吐出することが可能であり、ヒートポンプ能力の維持向上が可能である。
(Eighth embodiment)
The eighth embodiment differs from the first to seventh embodiments in that the working medium is carbon dioxide. Since carbon dioxide generally has a low heat transfer coefficient, when the electric motor room 10 has an intake pressure, the amount of heat transfer of the frame 5 to the intake gas becomes small. However, there is an advantage that high-temperature heating can be performed with high efficiency by operating in a cycle in which the high pressure side is in a supercritical state. Therefore, in a heat pump cycle whose use is increasing year by year, it is possible to discharge a high-temperature and high-pressure discharge gas temperature to a heat pump device system at a high temperature, and it is possible to maintain and improve the heat pump capacity.
 さらに、本実施形態では、第1実施形態から第7実施形態で説明したように、フレーム5またはハウジング1により放熱性が向上しているため、摺接部501の信頼性は向上できる。従って、信頼性向上と能力維持向上の両立が可能となる。 Further, in the present embodiment, as described in the first to seventh embodiments, since the heat dissipation is improved by the frame 5 or the housing 1, the reliability of the sliding contact portion 501 can be improved. Therefore, it is possible to achieve both improvement in reliability and improvement in capacity maintenance.
 以上説明した第8実施形態の圧縮機は、作動媒体として二酸化炭素が用いられる冷凍サイクルに採用されるものである。熱伝達率の比較的小さい二酸化炭素を作動媒体とした場合でも、摺接部501で生じた摩擦熱および圧縮熱など摺接部501周辺の熱はフレーム5から表面積の大きいハウジング1へ熱移動して、ハウジング1から外部に十分に放熱することが出来る。そのため、可動軸7の耐焼き付性や耐摩耗性などの信頼性を向上することができる。 The compressor according to the eighth embodiment described above is employed in a refrigeration cycle using carbon dioxide as a working medium. Even when carbon dioxide having a relatively small heat transfer coefficient is used as the working medium, heat around the sliding contact portion 501 such as frictional heat and compression heat generated in the sliding contact portion 501 is transferred from the frame 5 to the housing 1 having a large surface area. Thus, heat can be sufficiently radiated from the housing 1 to the outside. Therefore, reliability such as seizure resistance and wear resistance of the movable shaft 7 can be improved.
 (他の実施形態)
 上記の各実施形態では、圧縮機はスクロール型の圧縮機構部6を採用したものについて説明したが、本開示はこれに限定されるものではなく、例えばベーン型やロータリ型などの圧縮機構部6を採用してもよい。また、油分離器4は圧縮された冷媒から潤滑油を分離する機能を備えていればよく、圧縮機部2の内側に配置されてもよい。
(Other embodiments)
In each of the embodiments described above, the compressor adopts the scroll type compression mechanism 6. However, the present disclosure is not limited to this, and for example, the compression mechanism 6 may be a vane type or a rotary type. May be adopted. Further, the oil separator 4 only needs to have a function of separating the lubricating oil from the compressed refrigerant, and may be disposed inside the compressor unit 2.
 本開示は上記した実施形態に限定されるものではなく、適宜変更が可能である。また、上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。また、上記各実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではない。また、上記各実施形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の形状、位置関係等に限定される場合等を除き、その形状、位置関係等に限定されるものではない。 The present disclosure is not limited to the above-described embodiment, and can be appropriately modified. The above embodiments are not irrelevant to each other, and can be appropriately combined unless a combination is clearly not possible. In each of the above embodiments, it is needless to say that elements constituting the embodiments are not necessarily essential, unless otherwise clearly indicated as essential or in principle considered to be clearly essential. No. In each of the above embodiments, when a numerical value such as the number, numerical value, amount, range, or the like of the constituent elements of the exemplary embodiment is mentioned, it is particularly limited to a specific number when it is clearly stated that it is essential and in principle The number is not limited to the specific number unless otherwise specified. Further, in each of the above embodiments, when referring to the shape of components and the like, the positional relationship, and the like, unless otherwise specified and in principle limited to a specific shape, positional relationship, etc., the shape, It is not limited to a positional relationship or the like.
 (まとめ)
 上述の実施形態の一部または全部で示された第1の観点によれば、作動媒体を圧縮して吐き出す圧縮機は、ハウジング、電動機部、フレーム、圧縮機構部および可動部材を備える。ハウジングは、耐圧容器を構成する。電動機部は、ハウジングの内側に形成される電動機室に収容される。フレームは、ハウジングの内側に設けられ、ハウジングの内壁に当接または固定される。圧縮機構部は、ハウジングの内側でフレームに対して電動機部とは反対側に配置され、作動媒体を圧縮するための容積変化が行われる圧縮室を形成する。可動部材は、フレームに設けられた軸受け部に回転自在に摺接し、電動機部で発生したトルクを圧縮機構部へ伝達する。そして、ハウジングおよびフレームの少なくとも一方の熱伝導率は、可動部材の熱伝導率より高く、圧縮機構部を構成する少なくとも一つの部品の熱伝導率より高い。
(Summary)
According to a first aspect described in part or all of the above-described embodiments, a compressor that compresses and discharges a working medium includes a housing, an electric motor unit, a frame, a compression mechanism unit, and a movable member. The housing constitutes a pressure vessel. The motor unit is housed in a motor room formed inside the housing. The frame is provided inside the housing and abuts or is fixed on an inner wall of the housing. The compression mechanism is disposed inside the housing on the opposite side to the electric motor with respect to the frame, and forms a compression chamber in which a volume change for compressing the working medium is performed. The movable member rotatably slides on a bearing provided on the frame, and transmits torque generated by the electric motor to the compression mechanism. The thermal conductivity of at least one of the housing and the frame is higher than the thermal conductivity of the movable member, and higher than the thermal conductivity of at least one component constituting the compression mechanism.
 第2の観点によれば、作動媒体を圧縮して吐き出す圧縮機は、ハウジング、電動機部、フレーム、圧縮機構部および可動部材を備える。ハウジングは、耐圧容器を構成する。電動機部は、ハウジングの内側に形成される電動機室に収容される。フレームは、ハウジングの内側に設けられ、ハウジングの内壁に当接または固定される。圧縮機構部は、ハウジングの内側でフレームに対して電動機部とは反対側に配置され、作動媒体を圧縮するための容積変化が行われる圧縮室を形成する。可動部材は、フレームに設けられた軸受け部に回転自在に摺接し、電動機部で発生したトルクを圧縮機構部へ伝達する。そして、ハウジングおよびフレームの熱伝導率は、可動部材の熱伝導率より高く、フレームの熱伝導率は、圧縮機構部を構成する少なくとも一つの部品の熱伝導率より高い。 According to a second aspect, a compressor that compresses and discharges a working medium includes a housing, an electric motor unit, a frame, a compression mechanism unit, and a movable member. The housing constitutes a pressure vessel. The motor unit is housed in a motor room formed inside the housing. The frame is provided inside the housing and abuts or is fixed on an inner wall of the housing. The compression mechanism is disposed inside the housing on the opposite side to the electric motor with respect to the frame, and forms a compression chamber in which a volume change for compressing the working medium is performed. The movable member rotatably slides on a bearing provided on the frame, and transmits torque generated by the electric motor to the compression mechanism. The heat conductivity of the housing and the frame is higher than the heat conductivity of the movable member, and the heat conductivity of the frame is higher than the heat conductivity of at least one component constituting the compression mechanism.
 第3の観点によれば、可動部材の熱伝導率は、ハウジングおよびフレームの少なくとも一方の熱伝導率の50%以下である。圧縮機構部を構成する部品のうちフレーム側に配置される部品の熱伝導率は、ハウジングおよびフレームの少なくとも一方の熱伝導率の50%以下である。 According to the third aspect, the thermal conductivity of the movable member is 50% or less of the thermal conductivity of at least one of the housing and the frame. Among the components constituting the compression mechanism, the components arranged on the frame side have a thermal conductivity of 50% or less of the thermal conductivity of at least one of the housing and the frame.
 これによれば、ハウジングとフレームの熱伝導率が可動部材よりも高いため、摺接部で生じた摩擦熱および圧縮熱など摺接部周辺の熱は、フレームに伝熱し、放熱面積の大きいハウジングへ熱移動を大きくすることが可能となる。したがって、圧縮機構部からハウジングへ熱が移動し、ハウジングから圧縮機の外部への放熱性が一層向上する。 According to this, since the thermal conductivity between the housing and the frame is higher than that of the movable member, heat around the sliding contact portion, such as frictional heat and compression heat generated at the sliding contact portion, is transferred to the frame, and the housing having a large heat radiation area. Heat transfer can be increased. Therefore, heat is transferred from the compression mechanism to the housing, and the heat radiation from the housing to the outside of the compressor is further improved.
 さらに第3の観点では、圧縮室を構成する部品のうちフレームに近い部品の熱伝達率が、フレームまたはハウジングよりも小さい材料を使用しており、圧縮によるガス温度が、フレームまたはハウジングの少なくとも一方への熱移動量を小さくすることが出来る。そのため、放熱を抑制することが可能となり、ガス温度を高温に維持することが出来る。これにより、近年利用が増加しているヒートポンプサイクルでは、高温高圧の吐出ガス温度を高温のままヒートポンプ機器システムへ吐出することが出来、ヒートポンプ能力の維持向上が可能である。従って、信頼性向上と能力維持向上の両立が可能となる。 Further, in a third aspect, of the components constituting the compression chamber, a material having a smaller heat transfer coefficient than that of the frame or the housing is used for a component close to the frame, and the gas temperature due to the compression is reduced by at least one of the frame and the housing. The amount of heat transfer to the substrate can be reduced. Therefore, heat radiation can be suppressed, and the gas temperature can be maintained at a high temperature. As a result, in a heat pump cycle that has been increasingly used in recent years, a high-temperature and high-pressure discharge gas temperature can be discharged to a heat pump device system at a high temperature, and the heat pump capacity can be maintained and improved. Therefore, it is possible to achieve both improvement in reliability and improvement in capacity maintenance.
 第4の観点によれば、ハウジングおよびフレームは、アルミニウムまたはアルミニウムを母体とした合金である。圧縮機構部を構成する部品のうちフレーム側に配置される部品および可動部材は、鉄または鉄を母体とした合金である。 According to a fourth aspect, the housing and the frame are made of aluminum or an alloy based on aluminum. Of the components constituting the compression mechanism, the components arranged on the frame side and the movable member are iron or an alloy based on iron.
 これにより、可動部材よりもハウジングとフレームの熱伝導率を高くすることが可能となる。その結果、可動部材との摺接部で生じた摩擦熱および圧縮熱など摺接部周辺の熱は、可動部材よりも熱伝導率の高いフレームおよびハウジングへ伝熱することが出来るため、熱移動を一層大きく出来る。そして、圧縮室を構成する部品のうちフレームに近い部品を鉄系の素材とすることで、熱伝達率が小さくすることができる。そのため、圧縮室で生じた圧縮によるガス温度が、フレームまたはハウジングの少なくとも一方への熱移動量を小さくすることが出来ため、放熱を抑制することが可能となり、ガス温度を高温に維持することが出来る。これにより、近年利用が増加しているヒートポンプサイクルでは、高温高圧の吐出ガス温度を高温のままヒートポンプ機器システムへ吐出することが出来、ヒートポンプ能力の維持向上が可能である。従って、信頼性向上と能力維持向上の両立が可能となる。 This makes it possible to make the thermal conductivity of the housing and the frame higher than that of the movable member. As a result, heat around the sliding contact portion, such as frictional heat and compression heat generated at the sliding contact portion with the movable member, can be transferred to the frame and the housing having higher thermal conductivity than the movable member. Can be made even larger. The heat transfer coefficient can be reduced by using the iron-based material as the component close to the frame among the components constituting the compression chamber. Therefore, the gas temperature due to the compression generated in the compression chamber can reduce the amount of heat transfer to at least one of the frame and the housing, so that heat radiation can be suppressed, and the gas temperature can be maintained at a high temperature. I can do it. As a result, in a heat pump cycle that has been increasingly used in recent years, a high-temperature and high-pressure discharge gas temperature can be discharged to a heat pump device system at a high temperature, and the heat pump capacity can be maintained and improved. Therefore, it is possible to achieve both improvement in reliability and improvement in capacity maintenance.
 第5の観点によれば、ハウジングのうちフレームに当接または固定されている部位の面粗度が、ハウジングのうちフレームに当接または固定されていない部位の少なくとも一部の面粗度よりも小さいことを第1要件と呼ぶ。また、フレームのうちハウジングに当接または固定されている部位の面粗度が、フレームのうちハウジングに当接または固定されていない部位の少なくとも一部の面粗度よりも小さいことを第2要件と呼ぶ。このとき、圧縮機は、第1要件および第2要件の少なくとも一方の要件を満たしている。 According to the fifth aspect, the surface roughness of the part of the housing that is in contact with or fixed to the frame is smaller than the surface roughness of at least a part of the housing that is not in contact with or fixed to the frame. Smallness is called a first requirement. The second requirement is that the surface roughness of a portion of the frame that is in contact with or fixed to the housing is smaller than the surface roughness of at least a portion of the frame that is not in contact with or fixed to the housing. Call. At this time, the compressor satisfies at least one of the first requirement and the second requirement.
 これにより、弱い当接力でも着実に当接面積の確保が可能となり、フレームからハウジングへの熱移動を大きくすることが可能となる。その結果、摺接部で生じた摩擦熱および圧縮熱など摺接部周辺の熱による温度上昇を低減でき、潤滑剤への加熱による潤滑剤の粘度低下の抑制が可能となり、油膜確保が可能となり、摺接部における焼き付や異常摩耗が低減されて信頼性が向上できる。また、サイクル全体の効率を向上できるだけではなく、当接部位のみの面粗度向上であり、大きなコストアップなしに対応可能である。 This makes it possible to steadily secure the contact area even with a weak contact force, and to increase the heat transfer from the frame to the housing. As a result, it is possible to reduce temperature rise due to heat around the sliding contact portion such as frictional heat and compression heat generated at the sliding contact portion, and it is possible to suppress a decrease in the viscosity of the lubricant due to heating of the lubricant, and it is possible to secure an oil film. In addition, seizure and abnormal wear at the sliding contact portion are reduced, and the reliability can be improved. In addition, not only the efficiency of the entire cycle can be improved, but also the surface roughness of only the contact portion can be improved, so that it is possible to cope without a large increase in cost.
 第6の観点によれば、ハウジングの内周部位に段差部が設けられ、フレームの電動機部側の端面の少なくとも一部にハウジングの段差部とを当接または固定できる当接部位が設けられている。そして、フレームと段差部の当接面積よりも、段差部から電動機部までの面積の方が大きくなるように構成されている。 According to the sixth aspect, a step portion is provided in the inner peripheral portion of the housing, and at least a part of the end face of the frame on the motor portion side is provided with a contact portion capable of contacting or fixing the step portion of the housing. I have. The area from the step to the motor is larger than the contact area between the frame and the step.
 これにより、ハウジング内周の放熱面積が大きくなり、摺接部で生じた摩擦熱および圧縮熱など摺接部周辺の熱のうち、フレームに伝達された熱について電動機室内への熱移動も大きくすることが可能となる。 As a result, the heat dissipating area on the inner periphery of the housing is increased, and of the heat, such as frictional heat and compression heat generated in the sliding contact portion, around the sliding contact portion, the heat transferred to the frame also increases the heat transfer into the motor chamber. It becomes possible.
 第7の観点によれば、ハウジングとフレームとが当接または固定されている箇所において、ハウジングの面粗度とフレームの面粗度とが異なっていることを面粗度要件と呼び、ハウジングの硬度とフレームの硬度とが異なっていることを硬度要件と呼ぶ。このとき、圧縮機は、面粗度要件および硬度要件の少なくとも一方の要件を満たしている。 According to the seventh aspect, a difference between the surface roughness of the housing and the surface roughness of the frame at a position where the housing and the frame are in contact with or fixed to each other is called a surface roughness requirement. The difference between the hardness and the hardness of the frame is called a hardness requirement. At this time, the compressor satisfies at least one of the surface roughness requirement and the hardness requirement.
 これにより、強い当接力で圧縮機部が保持されている場合には、ハウジングとフレームの硬度や面粗度を変えることで当接部位において、局部的な強力な当接部と弱い当接力の当接部が発生し、局部的な強力な当接部で界面の伝熱性が向上する。また、局部的な強力な当接部で弾性変形が発生し、ミクロ的にみると当接部の当接面にうねりが発生し、当接面積が増加することになる。従って、当接面積を増加できるため熱の移動が増加する。その結果、ハウジング内周の放熱面積が大きくなり、摺接部で生じた摩擦熱および圧縮熱など摺接部や摺接部付近での温度上昇を低減でき、摺接部の潤滑剤の温度上昇による潤滑剤の粘度低下が抑制可能となり、油膜確保が可能となる。したがって、摺接部における焼き付や異常摩耗が低減されて信頼性が向上できる。 Thereby, when the compressor section is held with a strong contact force, the hardness and the surface roughness of the housing and the frame are changed so that the local strong contact portion and the weak contact force are formed at the contact portion. A contact portion is generated, and the heat transfer property of the interface is improved by a locally strong contact portion. Further, elastic deformation occurs at a locally strong contact portion, and microscopically, undulation occurs at the contact surface of the contact portion, and the contact area increases. Therefore, since the contact area can be increased, heat transfer increases. As a result, the heat dissipating area on the inner periphery of the housing is increased, so that the temperature rise in the sliding contact portion and the vicinity of the sliding contact portion such as frictional heat and compression heat generated in the sliding contact portion can be reduced, and the temperature rise of the lubricant in the sliding contact portion This makes it possible to suppress a decrease in the viscosity of the lubricant due to this, and to secure an oil film. Therefore, seizure and abnormal wear at the sliding contact portion are reduced, and reliability can be improved.
 加えて、当接力を向上することが可能となることで、フレームの自由振動が制限されるので振動低減も可能となる。 In addition, since the contact force can be improved, the free vibration of the frame is limited, so that the vibration can be reduced.
 第8の観点によれば、圧縮機は、電動機室のうち電動機部とフレームとの間の空間に作動媒体を供給する吸気部をさらに備える。 According to the eighth aspect, the compressor further includes an intake unit that supplies a working medium to a space between the motor unit and the frame in the motor room.
 これにより、ハウジングの電動機室の圧力を吸気圧とし、圧縮機の外部からの吸気位置を電動機部の周辺とすることで、電動機室のうちフレームの電動機室側の近傍周囲温度を下げることが可能となる。したがって、電動機室のうちフレームの電動機室側の近傍周囲温度と、フレームの温度との温度差を大きくし、フレームから電動機室への伝熱を促進し、フレームから電動機室への熱移動も大きくすることが可能となる。 This makes it possible to reduce the ambient temperature near the motor room side of the frame in the motor room by setting the pressure in the motor room of the housing as the intake pressure and the position of the intake from the outside of the compressor near the motor unit. It becomes. Therefore, the temperature difference between the ambient temperature near the frame of the motor room and the temperature of the frame in the motor room is increased, heat transfer from the frame to the motor room is promoted, and heat transfer from the frame to the motor room is also increased. It is possible to do.
 その結果、電動機室内からハウジングへの熱移動が増加し、ハウジング全体の放熱性が一層向上できる。そのため、摺接部で生じた摩擦熱および圧縮熱など摺接部や摺接部付近での温度上昇を低減でき、摺接部の潤滑剤の温度上昇による潤滑剤の粘度低下が抑制可能となり、油膜確保が可能となる。したがって、摺接部における焼き付や異常摩耗が低減されて信頼性が向上できる。 As a result, heat transfer from the motor room to the housing increases, and the heat radiation of the entire housing can be further improved. Therefore, it is possible to reduce the temperature rise near the sliding contact portion and the sliding contact portion such as frictional heat and compression heat generated in the sliding contact portion, and it is possible to suppress the decrease in the viscosity of the lubricant due to the temperature rise of the lubricant in the sliding contact portion, An oil film can be secured. Therefore, seizure and abnormal wear at the sliding contact portion are reduced, and reliability can be improved.
 なお、フレームから電動機室内への熱移動を大きくすると吸気ガスが加熱されることになり、圧縮室の吸気質量が低下し、体積効率が低下することが懸念される。しかしながら、圧縮室全体の温度を下げることが可能となるので、圧縮機としては、圧縮効率を向上させることが出来る可能性がある。 す る と If heat transfer from the frame to the motor chamber is increased, the intake gas is heated, and there is a concern that the intake mass of the compression chamber is reduced and the volume efficiency is reduced. However, since the temperature of the entire compression chamber can be reduced, the compression efficiency of the compressor may be improved.
 第9の観点によれば、圧縮機は、ハウジングの外壁に設けられる突起部をさらに備える。そして、ハウジングとフレームとが当接または固定される箇所と、突起部とは、可動部材の回転軸に垂直な方向に重なる位置に設けられている。 According to the ninth aspect, the compressor further includes a projection provided on an outer wall of the housing. The portion where the housing and the frame are in contact with or fixed to each other, and the protrusion are provided at positions overlapping the direction perpendicular to the rotation axis of the movable member.
 これにより、ハウジングの外周部に放熱部位として突起部を設けて、放熱部位の突起部がフレームの軸方向位置において突起部の少なくとも一部が重なるように突起部を1つ以上設けることで、ハウジングの放熱面積を大きくすることが可能となる。さらにフレームの軸方向位置においてハウジングとフレームとの当接部位と、突起部の少なくとも一部とが重なるようにすることで、ハウジングのうちフレームからの熱移動が大きくなる位置において、ハウジングの放熱面積を大きくすることが可能となる。 Accordingly, the housing is provided with a projection as a heat radiating portion on the outer peripheral portion of the housing, and one or more protrusions are provided such that the projection of the heat radiating portion overlaps at least a part of the projection at the axial position of the frame. Can increase the heat radiation area. Furthermore, by making the contact portion between the housing and the frame overlap at least a part of the protrusion at the axial position of the frame, the heat radiation area of the housing at a position in the housing where heat transfer from the frame is large. Can be increased.
 その結果、ハウジング全体の放熱性が一層向上できるため、摺接部で生じた摩擦熱および圧縮熱など摺接部や摺接部付近での温度上昇を低減できる。したがって、摺接部の潤滑剤の温度上昇による潤滑剤の粘度低下が抑制可能となり、油膜確保が可能となる。したがって、摺接部における焼き付や異常摩耗が低減されて信頼性が向上できる。 As a result, the heat radiation of the entire housing can be further improved, so that the temperature rise near the sliding contact portion and the vicinity of the sliding contact portion such as frictional heat and compression heat generated at the sliding contact portion can be reduced. Therefore, a decrease in the viscosity of the lubricant due to a rise in the temperature of the lubricant in the sliding contact portion can be suppressed, and an oil film can be secured. Therefore, seizure and abnormal wear at the sliding contact portion are reduced, and reliability can be improved.
 第10の観点によれば、突起部の少なくとも1つは、圧縮機の外部の部材に圧縮機を固定するために用いられる。これにより、接続部材への放熱も可能であり、熱移動量が増加する。そして、接続部位部品の温度に対する周囲温度の影響を少なくさせ、続部位部品の温度を安定させることが出来ることで、有機材の接続部位部品のバネ定数を安定化させることが出来る。そして、圧縮機を保持固定する外部との接続部位には、通常ゴムなどの有機材系の部品を使用する場合がある。接続部位部品に有機材を採用した場合には、周囲温度により有機材の硬度が変化し、バネ定数が変化することになる。これにより、圧縮機を保持固定する空調機の室外機や車両などの架台への加振力が変化し、架台から発生する騒音が変化することで騒音大となるおそれがある。そこで、突起部を外部との接続部位の一部となすことで、接続部位部品の温度が突起部と同等の安定した温度になるため、一定のバネ定数となり、架台への加振力が安定する。そのため、従来では接続部位部品が有機材の場合は、高温になると長期信頼性が足りないこともあるが、本実施形態では、内部低圧仕様となっているため、有機材が高圧側のような高温に至ることを抑制できるため、大きな信頼性低下とはならない。 According to a tenth aspect, at least one of the protrusions is used to fix the compressor to a member external to the compressor. Thereby, heat can be dissipated to the connection member, and the amount of heat transfer increases. The influence of the ambient temperature on the temperature of the connection part can be reduced, and the temperature of the connection part can be stabilized, so that the spring constant of the connection part made of an organic material can be stabilized. In some cases, an organic material-based component such as rubber is used for a connection portion with the outside that holds and fixes the compressor. When an organic material is used for the connection part, the hardness of the organic material changes depending on the ambient temperature, and the spring constant changes. As a result, the exciting force of the air conditioner for holding and fixing the compressor on the outdoor unit or the gantry of the vehicle changes, and the noise generated from the gantry changes, which may increase the noise level. Therefore, by making the protruding part a part of the connecting part with the outside, the temperature of the connecting part becomes stable temperature equivalent to that of the protruding part, so it has a constant spring constant and stable excitation force to the gantry I do. For this reason, conventionally, when the connection parts are made of an organic material, long-term reliability may not be sufficient at high temperatures, but in the present embodiment, since the internal material has a low pressure specification, the organic material has a high-pressure side. Since a high temperature can be suppressed, the reliability does not decrease significantly.
 第11の観点によれば、圧縮機は、フレームと圧縮機構部との間に配置されるスラスト軸受け部材をさらに備える。これにより、可動部位の信頼性を一層向上しつつ放熱性を向上できるため、摺接部における焼き付や異常摩耗が低減されて信頼性が向上できる。そして、スラスト軸受け部材を別部材とすることで、圧縮室とスラスト軸受け部材の間に界面が出来、圧縮室で発生する圧縮熱を分断可能であり、圧縮熱の影響を軽減できる。また、スラスト軸受け部材の固定方法を圧縮室を構成する部品とスラスト方向で自由度を与えることで界面の影響を大きく出来、断熱性を確保できる。これにより、圧縮熱の影響が最小限化出来、信頼性が向上できる。 According to the eleventh aspect, the compressor further includes a thrust bearing member disposed between the frame and the compression mechanism. Thereby, since the heat radiation can be improved while further improving the reliability of the movable portion, the seizure and abnormal wear in the sliding contact portion are reduced, and the reliability can be improved. Then, by forming the thrust bearing member as a separate member, an interface is formed between the compression chamber and the thrust bearing member, the compression heat generated in the compression chamber can be divided, and the influence of the compression heat can be reduced. In addition, the method of fixing the thrust bearing member is given a degree of freedom in the thrust direction with the components constituting the compression chamber, so that the influence of the interface can be increased and the heat insulation can be secured. Thereby, the influence of the heat of compression can be minimized, and the reliability can be improved.
 第12の観点によれば、圧縮機は、作動媒体としての二酸化炭素が用いられる冷凍サイクルに採用される。これによれば、熱伝達率の比較的小さい二酸化炭素を作動媒体とした場合でも、摺接部で生じた摩擦熱および圧縮熱など摺接部周辺の熱はフレームから表面積の大きいハウジングへ熱移動して、ハウジングから外部に十分に放熱することが可能となる。そのため、可動部材の耐焼き付性や耐摩耗性などの信頼性を向上することができる。 According to the twelfth aspect, the compressor is employed in a refrigeration cycle using carbon dioxide as a working medium. According to this, even when carbon dioxide having a relatively small heat transfer coefficient is used as the working medium, heat around the sliding contact portion such as frictional heat and compression heat generated at the sliding contact portion is transferred from the frame to the housing having a large surface area. As a result, heat can be sufficiently radiated from the housing to the outside. Therefore, reliability such as seizure resistance and abrasion resistance of the movable member can be improved.
 なお、第3~第12の観点に記載した構成は、第1の観点の構成と第2の観点の構成のいずれにも組み合わせることが可能である。 Note that the configurations described in the third to twelfth aspects can be combined with any of the configurations of the first aspect and the second aspect.

Claims (12)

  1.  作動媒体を圧縮して吐き出す圧縮機において、
     耐圧容器を構成するハウジング(1)と、
     前記ハウジングの内側に形成される電動機室(10)に収容される電動機部(3)と、
     前記ハウジングの内側に設けられ、前記ハウジングの内壁に当接または固定されるフレーム(5)と、
     前記ハウジングの内側で前記フレームに対して前記電動機部とは反対側に配置され、作動媒体を圧縮するための容積変化が行われる圧縮室を形成する圧縮機構部(6)と、
     前記フレームに設けられた軸受け部(501)に回転自在に摺接し、前記電動機部で発生したトルクを前記圧縮機構部へ伝達する可動部材(7)と、を備え、
     前記ハウジングおよび前記フレームの少なくとも一方の熱伝導率は、前記可動部材の熱伝導率より高く、前記圧縮機構部を構成する少なくとも一つの部品の熱伝導率より高い、圧縮機。
    In a compressor that compresses and discharges a working medium,
    A housing (1) constituting a pressure-resistant container;
    A motor unit (3) housed in a motor room (10) formed inside the housing;
    A frame (5) provided inside the housing and abutting or fixed to an inner wall of the housing;
    A compression mechanism part (6) disposed on the opposite side of the electric motor part with respect to the frame inside the housing and forming a compression chamber in which a volume change for compressing a working medium is performed;
    A movable member (7) rotatably slidingly contacting a bearing portion (501) provided on the frame and transmitting torque generated by the electric motor portion to the compression mechanism portion;
    The compressor, wherein a thermal conductivity of at least one of the housing and the frame is higher than a thermal conductivity of the movable member and higher than a thermal conductivity of at least one component constituting the compression mechanism.
  2.  作動媒体を圧縮して吐き出す圧縮機において、
     耐圧容器を構成するハウジング(1)と、
     前記ハウジングの内側に形成される電動機室(10)に収容される電動機部(3)と、
     前記ハウジングの内側に設けられ、前記ハウジングの内壁に当接または固定されるフレーム(5)と、
     前記ハウジングの内側で前記フレームに対して前記電動機部とは反対側に配置され、作動媒体を圧縮するための容積変化が行われる圧縮室を形成する圧縮機構部(6)と、
     前記フレームに設けられた軸受け部(501)に回転自在に摺接し、前記電動機部で発生したトルクを前記圧縮機構部へ伝達する可動部材(7)と、を備え、
     前記ハウジングおよび前記フレームの熱伝導率は、前記可動部材の熱伝導率より高く、
     前記フレームの熱伝導率は、前記圧縮機構部を構成する少なくとも一つの部品の熱伝導率より高い、圧縮機。
    In a compressor that compresses and discharges a working medium,
    A housing (1) constituting a pressure-resistant container;
    A motor unit (3) housed in a motor room (10) formed inside the housing;
    A frame (5) provided inside the housing and abutting or fixed to an inner wall of the housing;
    A compression mechanism part (6) disposed on the opposite side of the electric motor part with respect to the frame inside the housing and forming a compression chamber in which a volume change for compressing a working medium is performed;
    A movable member (7) rotatably slidingly contacting a bearing portion (501) provided on the frame and transmitting torque generated by the electric motor portion to the compression mechanism portion;
    The thermal conductivity of the housing and the frame is higher than the thermal conductivity of the movable member,
    The compressor, wherein a thermal conductivity of the frame is higher than a thermal conductivity of at least one component constituting the compression mechanism.
  3.  前記可動部材の熱伝導率は、前記ハウジングおよび前記フレームの少なくとも一方の熱伝導率の50%以下であり、
     前記圧縮機構部を構成する部品(601、602)のうち前記フレーム側に配置される部品(601)の熱伝導率は、前記ハウジングおよび前記フレームの少なくとも一方の熱伝導率の50%以下である、請求項1または2に記載の圧縮機。
    A thermal conductivity of the movable member is 50% or less of a thermal conductivity of at least one of the housing and the frame;
    Of the components (601, 602) constituting the compression mechanism, the component (601) arranged on the frame side has a thermal conductivity of 50% or less of the thermal conductivity of at least one of the housing and the frame. The compressor according to claim 1 or 2.
  4.  前記ハウジングおよび前記フレームは、アルミニウムまたはアルミニウムを母体とした合金であり、
     前記圧縮機構部を構成する部品のうち前記フレーム側に配置される部品および前記可動部材は、鉄または鉄を母体とした合金である、請求項1ないし3のいずれか1つに記載の圧縮機。
    The housing and the frame are aluminum or an alloy based on aluminum,
    The compressor according to any one of claims 1 to 3, wherein a component disposed on the frame side and the movable member among components configuring the compression mechanism unit are iron or an alloy having iron as a base. .
  5.  前記ハウジングのうち前記フレームに当接または固定されている部位(101)の面粗度が、前記ハウジングのうち前記フレームに当接または固定されていない部位の少なくとも一部の面粗度よりも小さいことを第1要件と呼び、
     前記フレームのうち前記ハウジングに当接または固定されている部位(502)の面粗度が、前記フレームのうち前記ハウジングに当接または固定されていない部位の少なくとも一部の面粗度よりも小さいことを第2要件と呼ぶとき、
     前記第1要件および前記第2要件の少なくとも一方の要件を満たしている、請求項1ないし4のいずれか1つに記載の圧縮機。
    The surface roughness of a part (101) of the housing that is in contact with or fixed to the frame is smaller than the surface roughness of at least a part of the part of the housing that is not in contact with or fixed to the frame. This is called the first requirement,
    The surface roughness of a portion (502) of the frame that is in contact with or fixed to the housing is smaller than the surface roughness of at least a portion of the frame that is not in contact with or fixed to the housing. When this is called the second requirement,
    The compressor according to any one of claims 1 to 4, wherein at least one of the first requirement and the second requirement is satisfied.
  6.  前記ハウジングの内周部位に段差部(110)が設けられ、前記フレームの前記電動機部側の端面の少なくとも一部に前記段差部とを当接または固定できる当接部位(101、502)が設けられ、前記フレームと前記段差部の当接面積よりも、前記段差部から前記電動機部までの面積の方が大きくなるように構成されている、請求項1ないし5のいずれか1つに記載の圧縮機。 A step portion (110) is provided on an inner peripheral portion of the housing, and contact portions (101, 502) are provided on at least a part of an end face of the frame on the side of the electric motor portion so that the step portion can contact or be fixed to the step portion. The structure according to any one of claims 1 to 5, wherein an area from the step portion to the electric motor portion is larger than a contact area between the frame and the step portion. Compressor.
  7.  前記ハウジングと前記フレームとが当接または固定されている箇所において、前記ハウジングの面粗度と前記フレームの面粗度とが異なっていることを面粗度要件と呼び、前記ハウジングの硬度と前記フレームの硬度とが異なっていることを硬度要件と呼ぶとき、前記面粗度要件および前記硬度要件の少なくとも一方の要件を満たしている、請求項5または6に記載の圧縮機。 At a place where the housing and the frame are in contact with or fixed to each other, a difference between the surface roughness of the housing and the surface roughness of the frame is referred to as a surface roughness requirement. The compressor according to claim 5, wherein at least one of the surface roughness requirement and the hardness requirement is satisfied when the difference in hardness of the frame is referred to as a hardness requirement.
  8.  前記電動機室のうち前記電動機部と前記フレームとの間の空間に作動媒体を供給する吸気部(11)をさらに備える、請求項1ないし7のいずれか1つに記載の圧縮機。 The compressor according to any one of claims 1 to 7, further comprising an intake unit (11) that supplies a working medium to a space between the motor unit and the frame in the motor room.
  9.  前記ハウジングの外壁に設けられる突起部(12)をさらに備え、
     前記ハウジングと前記フレームとが当接または固定される箇所と、前記突起部とは、前記可動部材の回転軸に垂直な方向に重なる位置に設けられている、請求項1ないし8のいずれか1つに記載の圧縮機。
    A projection (12) provided on an outer wall of the housing,
    9. The device according to claim 1, wherein the portion where the housing and the frame are in contact with or fixed to each other and the protrusion are provided at positions overlapping in a direction perpendicular to a rotation axis of the movable member. 10. The compressor according to any one of the above.
  10.  前記突起部の少なくとも1つは、前記圧縮機の外部の部材に前記圧縮機を固定するために用いられる、請求項9に記載の圧縮機。 The compressor according to claim 9, wherein at least one of the protrusions is used for fixing the compressor to a member external to the compressor.
  11.  前記フレームと前記圧縮機構部との間に配置されるスラスト軸受け部材(13)をさらに備える、請求項1ないし10のいずれか1つに記載の圧縮機。 The compressor according to any one of claims 1 to 10, further comprising a thrust bearing member (13) disposed between the frame and the compression mechanism.
  12.  作動媒体としての二酸化炭素が用いられる冷凍サイクルに採用される、請求項1ないし11のいずれか1つに記載の圧縮機。 The compressor according to any one of claims 1 to 11, wherein the compressor is employed in a refrigeration cycle using carbon dioxide as a working medium.
PCT/JP2019/019530 2018-06-20 2019-05-16 Compressor WO2019244526A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112019003077.9T DE112019003077B4 (en) 2018-06-20 2019-05-16 compressor
CN201980040161.4A CN112313414A (en) 2018-06-20 2019-05-16 Compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018117309A JP2019218910A (en) 2018-06-20 2018-06-20 Compressor
JP2018-117309 2018-06-20

Publications (1)

Publication Number Publication Date
WO2019244526A1 true WO2019244526A1 (en) 2019-12-26

Family

ID=68982846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/019530 WO2019244526A1 (en) 2018-06-20 2019-05-16 Compressor

Country Status (4)

Country Link
JP (1) JP2019218910A (en)
CN (1) CN112313414A (en)
DE (1) DE112019003077B4 (en)
WO (1) WO2019244526A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7524837B2 (en) 2021-06-21 2024-07-30 株式会社デンソー Fluid Machinery

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06330866A (en) * 1993-05-21 1994-11-29 Daikin Ind Ltd Scroll compressor
JP2009024663A (en) * 2007-07-23 2009-02-05 Sanden Corp Scroll fluid machine
JP2009174407A (en) * 2008-01-24 2009-08-06 Panasonic Corp Scroll compressor
JP2009191141A (en) * 2008-02-13 2009-08-27 Furukawa Electric Co Ltd:The Heat conductive composition, heat conductive sheet and heat dissipator
JP2011204653A (en) * 2010-03-26 2011-10-13 Toshiba Lighting & Technology Corp Lamp device, socket device, and lighting system
JP2013181523A (en) * 2012-03-05 2013-09-12 Mitsubishi Heavy Ind Ltd Electric compressor
JP2016037861A (en) * 2014-08-05 2016-03-22 株式会社豊田自動織機 Motor compressor

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR920010733B1 (en) * 1988-06-28 1992-12-14 마쯔시다덴기산교 가부시기가이샤 Scroll compressor
US5286179A (en) 1992-02-20 1994-02-15 Arthur D. Little, Inc. Thermal isolation arrangement for scroll fluid device
US7878777B2 (en) * 2006-08-25 2011-02-01 Denso Corporation Scroll compressor having grooved thrust bearing
CN101205908B (en) * 2006-12-20 2011-09-07 乐金电子(天津)电器有限公司 Bearing arrangement of scroll compressor
JP2009243373A (en) * 2008-03-31 2009-10-22 Denso Corp Thrust bearing for compressor
JP2009287483A (en) 2008-05-30 2009-12-10 Hitachi Appliances Inc Refrigerant compressor
JP5288941B2 (en) * 2008-08-19 2013-09-11 株式会社日本自動車部品総合研究所 Scroll compressor
CN201466815U (en) * 2009-04-24 2010-05-12 上海昌盛电器厂 Motor
CN106968950B (en) 2010-03-31 2020-02-07 纳博特斯克汽车零部件有限公司 Vacuum pump
JP2012097575A (en) 2010-10-29 2012-05-24 Daikin Industries Ltd Scroll type compressor
JP2013126298A (en) * 2011-12-14 2013-06-24 Yamada Electric Ind Co Ltd Rotary electric machine
CN104334883B (en) 2012-05-21 2017-04-26 纳薄特斯克汽车零部件有限公司 Vacuum pump
CN105830314B (en) 2013-12-16 2019-01-22 三菱电机株式会社 Electromechanically integrated driving device and its manufacturing method
CN107575383B (en) * 2017-09-04 2023-06-06 珠海格力节能环保制冷技术研究中心有限公司 Back pressure cavity structure and vortex compressor with same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06330866A (en) * 1993-05-21 1994-11-29 Daikin Ind Ltd Scroll compressor
JP2009024663A (en) * 2007-07-23 2009-02-05 Sanden Corp Scroll fluid machine
JP2009174407A (en) * 2008-01-24 2009-08-06 Panasonic Corp Scroll compressor
JP2009191141A (en) * 2008-02-13 2009-08-27 Furukawa Electric Co Ltd:The Heat conductive composition, heat conductive sheet and heat dissipator
JP2011204653A (en) * 2010-03-26 2011-10-13 Toshiba Lighting & Technology Corp Lamp device, socket device, and lighting system
JP2013181523A (en) * 2012-03-05 2013-09-12 Mitsubishi Heavy Ind Ltd Electric compressor
JP2016037861A (en) * 2014-08-05 2016-03-22 株式会社豊田自動織機 Motor compressor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7524837B2 (en) 2021-06-21 2024-07-30 株式会社デンソー Fluid Machinery

Also Published As

Publication number Publication date
DE112019003077T5 (en) 2021-03-18
DE112019003077B4 (en) 2024-04-11
JP2019218910A (en) 2019-12-26
CN112313414A (en) 2021-02-02

Similar Documents

Publication Publication Date Title
JP4805984B2 (en) Expander integrated compressor
JP2005054803A (en) Small-sized rotary compressor
US20160312780A1 (en) Compressor having counterweight assembly
JP6042530B2 (en) Scroll compressor
US11136977B2 (en) Compressor having Oldham keys
WO2015025416A1 (en) Rotary machine and refrigeration cycle device
WO2019244526A1 (en) Compressor
JP6057535B2 (en) Refrigerant compressor
WO2016075768A1 (en) Scroll compressor
JP4843446B2 (en) Gas compressor
JP2023071508A (en) Hermetic rotary compressor
JP7017240B2 (en) Scroll compressor
JP5864883B2 (en) Scroll compressor
JP6598881B2 (en) Scroll compressor
JP6132567B2 (en) Scroll compressor
JP7191246B2 (en) Scroll compressor and refrigeration cycle equipment
JP7515248B2 (en) Rotary Compressor
WO2024176346A1 (en) Scroll compressor
WO2024116308A1 (en) Compressor and refrigeration cycle device
JP2023129036A (en) Compressor and refrigeration cycle device
JP7206929B2 (en) electric compressor
JP2014227919A (en) Compressor
KR101992586B1 (en) Compressor and refrigeration cycle unit
JP2023141488A (en) scroll compressor
JP4995290B2 (en) Design method of scroll compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19822550

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19822550

Country of ref document: EP

Kind code of ref document: A1