WO2019244522A1 - Steering control device - Google Patents

Steering control device Download PDF

Info

Publication number
WO2019244522A1
WO2019244522A1 PCT/JP2019/019384 JP2019019384W WO2019244522A1 WO 2019244522 A1 WO2019244522 A1 WO 2019244522A1 JP 2019019384 W JP2019019384 W JP 2019019384W WO 2019244522 A1 WO2019244522 A1 WO 2019244522A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
steering control
lane
lane width
distance
Prior art date
Application number
PCT/JP2019/019384
Other languages
French (fr)
Japanese (ja)
Inventor
こずえ 小林
安井 博文
吉修 遠藤
Original Assignee
日野自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日野自動車株式会社 filed Critical 日野自動車株式会社
Publication of WO2019244522A1 publication Critical patent/WO2019244522A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/10Path keeping
    • B60W30/12Lane keeping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems

Definitions

  • the present disclosure relates to a steering control device.
  • Patent Document 1 a technology of executing lane keeping assist control when a lane width exceeds a predetermined threshold is known (for example, Patent Document 1).
  • the vehicle In the steering control for traveling a vehicle along a target trajectory, when there are various factors that change the straightness of the vehicle, the vehicle travels (meanders) in a state where there is a certain amount of lateral position variation with respect to the target trajectory. .
  • the influence of the factors tends to appear, and the straightness of the vehicle tends to change. Therefore, it is desired to appropriately execute the steering control.
  • the present disclosure has an object to provide a steering control device capable of appropriately executing steering control for causing a vehicle to travel along a target locus according to a change in straightness of the vehicle.
  • a steering control device is a steering control device that performs steering control for causing a vehicle to travel along a target trajectory based on a detection result of a vehicle-mounted external sensor, and includes a lane width of a lane in which the vehicle travels.
  • a lane width recognition unit for recognizing a vehicle, a distance recognition unit for recognizing a distance between a reference line along the lane and the vehicle, and a fluctuation index calculation unit for calculating a fluctuation index representing a lateral position fluctuation of the vehicle in the lane based on the distance.
  • a lane width threshold calculation unit that calculates a lane width threshold that is a threshold of the lane width serving as a reference for permission / prohibition of the execution of the steering control, and the lane width is greater than the lane width threshold.
  • a steering control unit that executes the steering control when the steering angle is large.
  • the fluctuation index calculating unit calculates the fluctuation index representing the lateral position fluctuation of the vehicle in the lane.
  • the lane width threshold calculation unit calculates a lane width threshold, which is a threshold of the lane width as a criterion for permitting or rejecting the execution of the steering control, based on the variation index and the vehicle width of the vehicle.
  • the lane width threshold value can be calculated in consideration of the lateral position fluctuation generated according to the change in the straightness of the vehicle. Therefore, by using the appropriate lane width threshold value according to the change in the straightness, it is possible to appropriately execute the steering control for causing the vehicle to travel along the target trajectory according to the change in the straightness of the vehicle.
  • the variation index calculating unit may calculate a standard deviation of the distance recognized by the distance recognizing unit at the latest predetermined traveling time or the latest predetermined traveling distance as the variation index. . In this case, it is possible to calculate the lane width threshold according to the straightness of the latest vehicle.
  • the steering control device further includes a weight distribution change recognition unit that recognizes a change in the weight distribution in the vehicle, and the fluctuation index calculation unit calculates an initial value of the fluctuation index based on the change in the weight distribution. May be.
  • the fluctuation index calculation unit calculates an initial value of the fluctuation index based on the change in the weight distribution. May be.
  • FIG. 1 is a schematic configuration diagram of a steering control device according to the embodiment.
  • FIG. 2 is a schematic plan view for explaining an example of the steering control.
  • FIG. 3 is a flowchart illustrating the steering control process.
  • FIG. 4 is a flowchart illustrating an execution permission / prohibition determination process of the steering control.
  • FIG. 5 is a flowchart illustrating a process of initializing a variation index.
  • FIG. 1 is a schematic configuration diagram of the steering control device according to the embodiment.
  • FIG. 2 is a schematic plan view for explaining an example of the steering control.
  • a steering control device 10 according to the present embodiment is mounted on a large-sized vehicle M such as a truck, a tractor, or a bus, and is a device that automatically performs steering control of the vehicle M.
  • the steering control device 10 may constitute a part of an automatic driving device that automatically performs driving including speed control, for example.
  • the steering control device 10 executes the steering control of the vehicle M so that the vehicle M automatically runs along the set target trajectory.
  • the steering control refers to control for causing the vehicle M to travel along a target trajectory based on a detection result of an external sensor such as the vehicle-mounted camera 1 or the like.
  • the target trajectory can be generated by the ECU 4 by an existing method based on, for example, the external environment detected by the camera 1 and the like and the map information in the map database. Note that the target trajectory here is not a trajectory from the current position of the vehicle M but a trajectory that the vehicle M should travel (ideal). Therefore, the current position of the vehicle M may be shifted from the target locus.
  • the target trajectory may be, for example, a position represented by a coordinate system based on the vehicle M, or a position represented by latitude and longitude.
  • the traveling of the vehicle M is controlled by the steering control device 10 so as to automatically travel along the target locus T (see FIG. 2).
  • the direction Fr indicates the front of the vehicle M
  • the direction Rr indicates the rear of the vehicle M
  • the direction R indicates the right side of the vehicle M
  • the direction L indicates the left side of the vehicle M.
  • the steering control device 10 includes a camera (external sensor) 1, an input unit 2, a weight sensor 3, an ECU [Electronic Control Unit] 4, and a steering actuator 5.
  • the ECU 4 is an electronic control unit having a CPU [Central Processing Unit], a ROM [Read Only Memory], a RAM [Random Access Memory], a CAN [Controller Area Network] communication circuit, and the like.
  • the ECU 4 loads programs stored in the ROM into the RAM and executes the programs loaded into the RAM with the CPU to realize various functions.
  • the ECU 4 may include a plurality of electronic control units.
  • the camera 1, the input unit 2, the weight sensor 3, and the steering actuator 5 are connected to the ECU 4 via a CAN communication circuit.
  • the camera 1 is an imaging device that captures an image of an external situation of the vehicle M.
  • the camera 1 is provided, for example, behind the windshield of the vehicle M.
  • the external situation includes a captured image obtained by capturing an area in front of and on the side of the vehicle M in the lane R in which the vehicle M travels.
  • the captured images of the lane R include the captured images of the division lines (reference lines) W1 and W2 extending along the lane R.
  • the division lines W1 and W2 are, for example, solid white or yellow lines that define the lane R.
  • the division lines W1 and W2 are not limited to solid lines, and may be a broken line used as a lane center line, a wide broken line provided at a branch portion of a road, or the like.
  • the division lines W1 and W2 may be in a form according to the regulations of each country or region.
  • the camera 1 transmits information of the captured images of the front and side of the vehicle M to the ECU 4.
  • the camera 1 may
  • the input unit 2 receives an input operation by a driver of the vehicle M.
  • the input unit 2 may be, for example, a physical switch or lever provided in a driver's seat, or a button on a touch panel display of a navigation system (not shown).
  • the input operation here is an operation for adjusting a reference (a lane width threshold value described later) as to whether execution of the steering control is permitted or not (details will be described later).
  • the input unit 2 transmits information on the received input operation to the ECU 4.
  • the weight sensor 3 is a detection device that detects the weight of the load on the vehicle M.
  • the weight sensor 3 includes, for example, a plurality of sensors so as to detect the weight distribution of the load on the vehicle M.
  • the weight sensor 3 is provided at a plurality of positions on a bed of the truck or a bed of a trailer towed by the trailer, and detects a weight distribution of the load placed on the bed.
  • the weight distribution includes at least the right and left weight distributions of the vehicle M.
  • the weight distribution may include the weight distribution on the front side and the rear side of the vehicle M.
  • the weight sensor 3 may indirectly detect the weight of the load of the vehicle M based on, for example, a load applied to the suspension of the vehicle M.
  • the weight sensor 3 may detect the weight of the load using various other existing methods.
  • the weight of the load may include the weight of the occupant of the vehicle M.
  • the weight sensor 3 transmits information on the weight of the load detected by the vehicle M to the ECU 4.
  • the steering actuator 5 is an actuator that changes the steering angle of the vehicle M based on a control signal from the ECU 4.
  • the steering actuator 5 may be configured by, for example, an assist motor of an electric power steering system.
  • the ECU 4 includes a lane width recognition unit 11, a weight distribution change recognition unit 12, a distance recognition unit 13, a variation index calculation unit 14, a lane width threshold calculation unit 15, a control permission determination unit 16, a steering amount calculation unit 17, and a steering control unit. 18 is provided.
  • the lane width recognition unit 11 recognizes the lane width L of the lane R on which the vehicle M travels based on the image captured by the camera 1.
  • the lane width recognition unit 11 recognizes the distance between the lane markings W1 and W2 in the captured image as the lane width L by, for example, an existing method.
  • the weight distribution change recognition unit 12 recognizes a change in the weight distribution based on the weight detected by the weight sensor 3.
  • the weight distribution change recognizing unit 12 may calculate the right and left weights of the vehicle M based on, for example, the weight of the load on the right side of the vehicle M (right weight) and the weight of the load on the left side of the vehicle M (left weight). Recognize changes in distribution.
  • the weight distribution change recognition unit 12 recognizes the absolute value of the weight difference between the right weight and the left weight as the magnitude of the change in the weight distribution. Note that the weight distribution change recognition unit 12 may recognize a change in the weight distribution before and after the vehicle M, or may recognize a change in the weight distribution before and after the vehicle M in a combined manner.
  • the distance recognition unit 13 recognizes the distance d between the lane line W1 of the lane R in which the vehicle M runs and the vehicle M based on the image captured by the camera 1.
  • the distance recognizing unit 13 uses, for example, an existing method, an inner edge of the lane marking W1 (the center side of the lane R), a predetermined position of the vehicle M (eg, an end of the vehicle body closer to the lane marking W1), Is recognized.
  • the predetermined position of the vehicle M may be another position such as the mounting position of the camera 1.
  • the fluctuation index calculating unit 14 calculates a fluctuation index based on the distance d recognized by the distance recognizing unit 13.
  • the variation index is an index indicating the amount of variation (lateral position variation) of the position of the vehicle M in the lane R in the lane width direction.
  • the lateral position fluctuation means the magnitude of meandering of the vehicle M in the lane R.
  • the magnitude of the meandering here can be regarded as a change in the lateral position of the vehicle M with respect to the lane marking W1.
  • the change index for example, the standard deviation ⁇ of the distance d recognized by the distance recognition unit 13 can be used.
  • the variation index calculating unit 14 calculates, as a variation index, the standard deviation ⁇ of the distance d recognized by the distance recognizing unit 13 at the latest predetermined travel time or the latest predetermined travel distance.
  • the latest predetermined travel time is any travel time in the range of 10 seconds to 40 seconds, and may be, for example, 20 seconds or 30 seconds.
  • the latest predetermined traveling distance is an arbitrary traveling distance within a range of 1 km to 5 km, and may be, for example, 2 km.
  • the travel time and travel distance may be, for example, the time and distance during which the vehicle M continuously travels at a predetermined speed (for example, 10 km / h) or more.
  • the fluctuation index calculation unit 14 calculates the initial value of the fluctuation index based on the change in the weight distribution, and initializes the fluctuation index. For example, when the vehicle M is a truck or a tractor, when the vehicle M is a truck or a tractor, the weight difference between the right side weight and the left side weight is smaller than a predetermined threshold value by loading or unloading the load on the bed of the vehicle M. In the case of a large change, the change index is initialized. For example, when the vehicle M is a bus, the variation index calculation unit 14 initializes the variation index when the weight difference between the right weight and the left weight changes more than a predetermined threshold due to getting on and off the occupant of the vehicle M. As the initial value of the variation index, for example, a value (for example, 3.5 m) corresponding to a preset general lane width can be used.
  • the lane width threshold calculator 15 calculates the lane width threshold Lth based on the standard deviation ⁇ , the vehicle width wm of the vehicle M, and the input operation received by the input unit 2.
  • the lane width threshold value Lth is a threshold value of the lane width L which is a criterion of whether or not to execute the steering control.
  • the lane width threshold calculator 15 calculates the lane width threshold Lth by summing a value obtained by multiplying the standard deviation ⁇ by a predetermined coefficient, the vehicle width wm of the vehicle M, and the allowance ⁇ .
  • the predetermined coefficient of the standard deviation ⁇ for example, a real number of 2 or more (for example, 2 or 3) can be used.
  • the allowance ⁇ is an adjustment term for adjusting the lane width threshold Lth by the driver's intention.
  • the lane width threshold calculator 15 calculates the margin ⁇ in accordance with the input operation received by the input unit 2.
  • the lane width threshold calculator 15 may calculate the margin ⁇ stepwise according to, for example, the on / off operation of the input unit 2 or the number of operations, or may set the margin ⁇ in accordance with a set value directly input to the input unit 2.
  • the margin ⁇ may be calculated.
  • the control permission determination unit 16 determines whether or not to permit the execution of the steering control based on the lane width L and the lane width threshold Lth. Specifically, the control permission determination unit 16 determines that the execution of the steering control is permitted when the lane width L is larger than the lane width threshold Lth. When the lane width L is equal to or smaller than the lane width threshold Lth, the control permission determination unit 16 determines that the execution of the steering control is not permitted.
  • the steering amount calculation unit 17 calculates the steering amount of the vehicle M based on the target trajectory T and the current position (vehicle position) of the vehicle M.
  • the steering amount here is a steering amount of the vehicle M for causing the vehicle M to travel along the target locus T.
  • the vehicle position can be recognized by the ECU 4 using various existing methods.
  • the vehicle position may be, for example, a position represented by a coordinate system based on the vehicle M, or a position represented by latitude and longitude.
  • the steering control unit 18 performs the steering control based on the determination result of the control permission determination unit 16 and the steering amount calculated by the steering amount calculation unit 17.
  • the steering control unit 18 sets the steering angle of the steered wheels of the vehicle M to the steering amount calculated by the steering amount calculating unit 17. And outputs a control signal to the steering actuator 5.
  • the traveling locus of the vehicle M approaches the target locus T.
  • FIG. 3 is a flowchart illustrating the steering control process.
  • FIG. 4 is a flowchart illustrating an execution permission / prohibition determination process of the steering control.
  • the steering control device 10 executes a steering control process shown in FIG.
  • the ECU 4 generates a target trajectory in S11.
  • the ECU 4 recognizes the vehicle position in S12.
  • the steering amount is calculated by the steering amount calculation unit 17 in S13.
  • the steering amount calculator 17 calculates the steering amount of the vehicle M based on the target trajectory T and the vehicle position.
  • the ECU 4 determines whether or not to permit execution of the steering control.
  • the ECU 4 performs an execution permission / prohibition determination process of the steering control of FIG. 4 as specifically described later.
  • the ECU 4 executes the steering control by the steering control unit 18 in S16.
  • the steering control unit 18 calculates the steering angle of the steered wheels of the vehicle M by the steering amount calculated by the steering amount calculation unit 17.
  • a control signal is output to the steering actuator 5 so as to obtain the amount.
  • the ECU 4 ends the processing in FIG.
  • the steering control unit 18 does not execute the steering control when the steering amount calculation unit 17 determines that the execution of the steering control is not permitted (S15: NO).
  • the lane width recognition unit 11 recognizes the lane width L in S21.
  • the lane width recognition unit 11 recognizes the lane width L of the lane R on which the vehicle M travels based on the image captured by the camera 1.
  • step S22 the ECU 4 uses the distance recognition unit 13 to recognize the distance d between the lane marking W1 and the vehicle M.
  • the distance recognition unit 13 recognizes a distance d between the lane line W1 of the lane R in which the vehicle M travels and the vehicle M based on the captured image captured by the camera 1.
  • the ECU 4 causes the fluctuation index calculation unit 14 to calculate a fluctuation index.
  • the variation index calculating unit 14 calculates, as a variation index, a standard deviation ⁇ of the distance d recognized by the distance recognizing unit 13 in the latest predetermined travel time or the latest predetermined travel distance.
  • the ECU 4 calculates the lane width threshold Lth by the lane width threshold calculator 15 in S24.
  • the lane width threshold calculator 15 calculates the lane width threshold Lth by summing a value obtained by multiplying the standard deviation ⁇ by a predetermined coefficient, the vehicle width wm of the vehicle M, and the allowance ⁇ .
  • the ECU 4 uses the control permission determination unit 16 to determine whether the lane width L is larger than the lane width threshold Lth in S25.
  • the control permission determining unit 16 determines that the lane width L is larger than the lane width threshold Lth (S25: YES)
  • the ECU 4 permits the control permission determining unit 16 to execute the steering control in S26.
  • the control permission determining unit 16 determines that the lane width L is smaller than the lane width threshold Lth (S25: NO)
  • the ECU 4 disables the execution of the steering control by the control permission determining unit 16 in S27. I do. After that, the ECU 4 proceeds to the process of S15 in FIG.
  • FIG. 5 is a flowchart illustrating a process of initializing a variation index.
  • the steering control device 10 executes the initialization process of the variation index shown in FIG. 5, for example, when the vehicle M is stopped or when the control system of the vehicle M is started (for example, when the engine is started).
  • the ECU 4 uses the weight distribution change recognition unit 12 to recognize a change in the weight distribution.
  • the weight distribution change recognition unit 12 recognizes the absolute value of the weight difference between the right weight and the left weight as the magnitude of the change in the weight distribution.
  • step S32 the ECU 4 determines whether or not the magnitude of the change in the weight distribution is greater than a threshold value by the variation index calculator 14.
  • the ECU 4 initializes the variation index by the variation index calculation unit 14 in S33.
  • the variation index calculation unit 14 sets the variation index to, for example, 3.5 m.
  • the ECU 4 does not initialize the variation index and ends the processing in FIG.
  • the variation index calculation unit 14 calculates the standard deviation ⁇ as a variation index representing the lateral position variation of the vehicle M in the lane R.
  • the lane width threshold value calculation unit 15 calculates a lane width threshold value Lth, which is a threshold value of the lane width L as a criterion for permitting or rejecting the execution of the steering control, based on the standard deviation ⁇ , the vehicle width wm of the vehicle M, and the allowance ⁇ . Is done.
  • Lth is a threshold value of the lane width L as a criterion for permitting or rejecting the execution of the steering control, based on the standard deviation ⁇ , the vehicle width wm of the vehicle M, and the allowance ⁇ . Is done.
  • the lane width threshold Lth it is possible to calculate the lane width threshold Lth in consideration of the lateral position variation generated according to the change in the straightness of the vehicle M (change in the meandering degree of the vehicle M). Therefore, by using the appropriate lane width threshold Lth according to the change in
  • the variation index calculating unit 14 calculates the standard deviation ⁇ of the distance recognized by the distance recognizing unit 13 at the latest predetermined traveling time or the latest predetermined traveling distance as a variation index. As a result, the lane width threshold Lth according to the straightness of the latest vehicle M can be calculated.
  • the steering control device 10 includes a weight distribution change recognition unit 12 that recognizes a change in the weight distribution in the vehicle M.
  • the variation index calculator 14 calculates an initial value of the standard deviation ⁇ based on the change in the weight distribution. Thereby, the lane width threshold Lth according to the change in the straightness of the vehicle M due to the change in the weight distribution can be calculated.
  • the steering control can be executed using the appropriate lane width threshold Lth according to the change in the weight distribution.
  • the camera 1 is provided as the external sensor.
  • a laser radar may be provided in addition to or instead of the camera 1.
  • the lane width L and the lane markings W1, W2 can be recognized by various existing methods based on the position information of the plurality of measurement points detected by the laser radar.
  • the distance recognized by the distance recognition unit 13 is the distance d between the lane marking W1 and the vehicle M, but may be the distance between the lane marking W2 and the vehicle M, or both distances. It may be. Further, for example, when one of the lane markings W1 and W2 is a wide dashed line provided at a branch portion of the road, the distance recognition unit 13 recognizes the distance using the other of the lane markings W1 and W2. Is also good.
  • the lane markings W1 and W2 are illustrated as the reference lines along the lane R, but the present invention is not limited to this.
  • the virtual line may be a center line of the lane R (a virtual line extending at an intermediate position between the lane markings W1 and W2) or a virtual line extending on a side surface of a structure (guard rail, curbstone, etc.) on the side of the lane R. There may be.
  • the variation index calculation unit 14 uses the distance d recognized by the distance recognition unit 13 in the latest predetermined travel time or the latest predetermined travel distance in order to calculate the standard deviation ⁇ . Not limited. For example, the distance d recognized by the distance recognition unit 13 in the past may be used.
  • the variation index calculation unit 14 calculates the standard deviation ⁇ of the distance d as the variation index, but is not limited to this.
  • the variation index calculating unit 14 calculates a maximum value, an average value, a median value, a mode value, and the like of the distance d recognized by the distance recognizing unit 13 in the latest predetermined travel time or the latest predetermined travel distance as a variation index. May be.
  • the variation index calculation unit 14 initializes the variation index based on the change in the weight distribution, but does not necessarily need to be based on the change in the weight distribution. For example, when the vehicle M has been stopped for a certain period of time, or when the control system of the vehicle M has been started (for example, when the engine is started), the fluctuation index calculation unit 14 does not depend on the change in the weight distribution. May be initialized.
  • the margin ⁇ is variable as an adjustment term for adjustment by the driver's intention, but may be a fixed value.
  • the margin ⁇ may be zero.
  • the control permission determination unit 16 determines whether or not to execute the steering control according to whether or not the lane width L is larger than the lane width threshold Lth. In the determination, a certain hysteresis may be set. For example, after the lane width L becomes larger than the lane width threshold Lth, the control permission determination unit 16 determines whether the steering control is to be performed when a predetermined delay time has elapsed since the lane width L became equal to or less than the lane width threshold Lth. It may be determined that execution is not permitted. In this case, the lane width threshold calculator 15 may set a predetermined delay time based on the variation index. For example, when the variation index is large (when the meandering of the vehicle M is large), the lane width threshold value calculation unit 15 may set the predetermined delay time to be shorter than when the variation index is small. Good.
  • the vehicle M is exemplified by a large vehicle such as a truck, a tractor, or a bus, but the vehicle M is not limited to these.
  • the vehicle M may be a medium-sized car, a small car, and a mini car.
  • the vehicle M whose straightness changes due to various factors can be a target.
  • Various factors that change the straightness include, for example, the characteristics of the tires of the vehicle M (such as the structure of ribs, studless and mixed tires, or the amount of air), and the aging of the underbody (for example, rubber bushes).
  • the road surface condition of the lane R (such as the presence or absence of a rut or unevenness).
  • the variation index calculation unit 14 may initialize the variation index using a change in the various factors described above as a trigger.

Abstract

This steering control device performs steering control for allowing a vehicle to travel along a target locus on the basis of detection results from a vehicle-mounted external sensor. This steering control device comprises: a lane width recognition unit that recognizes the lane width of the lane in which the vehicle is travelling; a distance recognition unit that recognizes the distance between a reference line extending along the lane and the vehicle; a variation index calculation unit that, based on the distance, calculates a variation index representing variations in the lateral position of the vehicle in the lane; a lane width threshold value calculation unit that calculates a lane width threshold value, which is a criterion for whether to allow or disallow execution of steering control, on the basis of the variation index and the vehicle width; and a steering control unit that executes steering control if the lane width is larger than the lane width threshold value.

Description

操舵制御装置Steering control device
 本開示は、操舵制御装置に関する。 The present disclosure relates to a steering control device.
 従来、操舵制御装置に関する技術として、車線幅が所定の閾値を超えている場合に車線維持支援制御を実行する技術が知られている(例えば特許文献1)。 Conventionally, as a technology related to a steering control device, a technology of executing lane keeping assist control when a lane width exceeds a predetermined threshold is known (for example, Patent Document 1).
特開2010-18207号公報JP 2010-18207 A
 目標軌跡に沿って車両を走行させる操舵制御では、車両の直進性を変化させる種々の要因が存在する場合、目標軌跡に対してある程度の横位置の変動がある状態で車両が走行(蛇行)する。例えば大型の商用車等の車両にあっては、要因の影響が現れ易く、車両の直進性に変化が生じ易い傾向があるため、操舵制御を適切に実行することが望まれる。 In the steering control for traveling a vehicle along a target trajectory, when there are various factors that change the straightness of the vehicle, the vehicle travels (meanders) in a state where there is a certain amount of lateral position variation with respect to the target trajectory. . For example, in a vehicle such as a large commercial vehicle, the influence of the factors tends to appear, and the straightness of the vehicle tends to change. Therefore, it is desired to appropriately execute the steering control.
 本開示は、目標軌跡に沿って車両を走行させる操舵制御を車両の直進性の変化に応じて適切に実行することが可能となる操舵制御装置を提供することを目的とする。 The present disclosure has an object to provide a steering control device capable of appropriately executing steering control for causing a vehicle to travel along a target locus according to a change in straightness of the vehicle.
 本開示の一形態に係る操舵制御装置は、車載の外部センサの検出結果に基づいて目標軌跡に沿って車両を走行させる操舵制御を行う操舵制御装置であって、車両が走行する車線の車線幅を認識する車線幅認識部と、車線に沿う基準線と車両との距離を認識する距離認識部と、距離に基づいて、車線における車両の横位置変動を表す変動指標を算出する変動指標算出部と、変動指標と車両の車幅とに基づいて、操舵制御の実行の許否の基準となる車線幅の閾値である車線幅閾値を算出する車線幅閾値算出部と、車線幅が車線幅閾値よりも大きい場合に操舵制御を実行する操舵制御部と、を備える。 A steering control device according to an embodiment of the present disclosure is a steering control device that performs steering control for causing a vehicle to travel along a target trajectory based on a detection result of a vehicle-mounted external sensor, and includes a lane width of a lane in which the vehicle travels. A lane width recognition unit for recognizing a vehicle, a distance recognition unit for recognizing a distance between a reference line along the lane and the vehicle, and a fluctuation index calculation unit for calculating a fluctuation index representing a lateral position fluctuation of the vehicle in the lane based on the distance. And, based on the variation index and the vehicle width of the vehicle, a lane width threshold calculation unit that calculates a lane width threshold that is a threshold of the lane width serving as a reference for permission / prohibition of the execution of the steering control, and the lane width is greater than the lane width threshold. And a steering control unit that executes the steering control when the steering angle is large.
 本開示の一形態に係る操舵制御装置では、変動指標算出部により、車線における車両の横位置変動を表す変動指標が算出される。車線幅閾値算出部により、変動指標と車両の車幅とに基づいて、操舵制御の実行の許否の基準となる車線幅の閾値である車線幅閾値が算出される。これにより、車両の直進性の変化に応じて生じる横位置変動が考慮された車線幅閾値を算出することができる。したがって、直進性の変化に応じた適切な車線幅閾値を用いることで、目標軌跡に沿って車両を走行させる操舵制御を車両の直進性の変化に応じて適切に実行することが可能となる。 で は In the steering control device according to an embodiment of the present disclosure, the fluctuation index calculating unit calculates the fluctuation index representing the lateral position fluctuation of the vehicle in the lane. The lane width threshold calculation unit calculates a lane width threshold, which is a threshold of the lane width as a criterion for permitting or rejecting the execution of the steering control, based on the variation index and the vehicle width of the vehicle. As a result, the lane width threshold value can be calculated in consideration of the lateral position fluctuation generated according to the change in the straightness of the vehicle. Therefore, by using the appropriate lane width threshold value according to the change in the straightness, it is possible to appropriately execute the steering control for causing the vehicle to travel along the target trajectory according to the change in the straightness of the vehicle.
 本開示の一形態に係る操舵制御装置では、変動指標算出部は、直近の所定走行時間又は直近の所定走行距離において距離認識部で認識された距離の標準偏差を変動指標として算出してもよい。この場合、直近の車両の直進性に応じた車線幅閾値を算出することができる。 In the steering control device according to an embodiment of the present disclosure, the variation index calculating unit may calculate a standard deviation of the distance recognized by the distance recognizing unit at the latest predetermined traveling time or the latest predetermined traveling distance as the variation index. . In this case, it is possible to calculate the lane width threshold according to the straightness of the latest vehicle.
 本開示の一形態に係る操舵制御装置は、車両における重量分布の変化を認識する重量分布変化認識部を更に備え、変動指標算出部は、重量分布の変化に基づいて変動指標の初期値を算出してもよい。この場合、重量分布の変化に伴う車両の直進性の変化に応じた車線幅閾値を算出することができる。よって、例えば停車中に重量分布が変化した車両が走行する場合であっても、重量分布の変化に応じた適切な車線幅閾値を用いて操舵制御を実行することができる。 The steering control device according to an embodiment of the present disclosure further includes a weight distribution change recognition unit that recognizes a change in the weight distribution in the vehicle, and the fluctuation index calculation unit calculates an initial value of the fluctuation index based on the change in the weight distribution. May be. In this case, it is possible to calculate the lane width threshold according to the change in the straightness of the vehicle due to the change in the weight distribution. Therefore, for example, even when a vehicle whose weight distribution has changed while the vehicle is stopped travels, steering control can be performed using an appropriate lane width threshold value according to the change in weight distribution.
 本開示によれば、目標軌跡に沿って車両を走行させる操舵制御を車両の直進性に応じて適切に実行することが可能となる。 According to the present disclosure, it is possible to appropriately execute the steering control for causing the vehicle to travel along the target locus according to the straightness of the vehicle.
図1は、実施形態の操舵制御装置の概略構成図である。FIG. 1 is a schematic configuration diagram of a steering control device according to the embodiment. 図2は、操舵制御の一例を説明するための概略平面図である。FIG. 2 is a schematic plan view for explaining an example of the steering control. 図3は、操舵制御処理を例示するフローチャートである。FIG. 3 is a flowchart illustrating the steering control process. 図4は、操舵制御の実行許否判定処理を例示するフローチャートである。FIG. 4 is a flowchart illustrating an execution permission / prohibition determination process of the steering control. 図5は、変動指標の初期化処理を例示するフローチャートである。FIG. 5 is a flowchart illustrating a process of initializing a variation index.
 以下、本開示の実施形態について図面を参照しながら説明する。なお、以下の説明において同一の要素には同一の符号を付し、重複する説明を省略する。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In the following description, the same elements will be denoted by the same reference symbols, without redundant description.
 図1は、実施形態の操舵制御装置の概略構成図である。図2は、操舵制御の一例を説明するための概略平面図である。図1に示されるように、本実施形態の操舵制御装置10は、トラック、トラクター、又はバス等の大型の車両Mに搭載されており、車両Mの操舵制御を自動で行う装置である。操舵制御装置10は、例えば速度制御を含む運転を自動で行う自動運転装置の一部を構成していてもよい。 FIG. 1 is a schematic configuration diagram of the steering control device according to the embodiment. FIG. 2 is a schematic plan view for explaining an example of the steering control. As shown in FIG. 1, a steering control device 10 according to the present embodiment is mounted on a large-sized vehicle M such as a truck, a tractor, or a bus, and is a device that automatically performs steering control of the vehicle M. The steering control device 10 may constitute a part of an automatic driving device that automatically performs driving including speed control, for example.
 操舵制御装置10は、設定された目標軌跡に沿って車両Mが自動で走行するように車両Mの操舵制御を実行する。操舵制御とは、車載のカメラ1等の外部センサの検出結果に基づいて、目標軌跡に沿って車両Mを走行させる制御を意味する。目標軌跡は、例えばカメラ1等で検出した外部環境及び地図データベースの地図情報等に基づいて、既存の手法によりECU4により生成され得る。なお、ここでの目標軌跡は、車両Mの現在の位置からの軌跡では無く、車両Mが走行すべき(理想とする)軌跡である。そのため、車両Mの現在の位置が、目標軌跡からずれていることがある。目標軌跡は、例えば、車両Mを基準とする座標系によって表された位置であってもよく、緯度経度によって表された位置であってもよい。これにより、車両Mは、目標軌跡Tに沿って自動で走行するように操舵制御装置10によって走行が制御される(図2参照)。なお、図2において、方向Frは車両Mの前方を示し、方向Rrは車両Mの後方を示し、方向Rは車両Mの右側を示し、方向Lは車両Mの左側を示している。 The steering control device 10 executes the steering control of the vehicle M so that the vehicle M automatically runs along the set target trajectory. The steering control refers to control for causing the vehicle M to travel along a target trajectory based on a detection result of an external sensor such as the vehicle-mounted camera 1 or the like. The target trajectory can be generated by the ECU 4 by an existing method based on, for example, the external environment detected by the camera 1 and the like and the map information in the map database. Note that the target trajectory here is not a trajectory from the current position of the vehicle M but a trajectory that the vehicle M should travel (ideal). Therefore, the current position of the vehicle M may be shifted from the target locus. The target trajectory may be, for example, a position represented by a coordinate system based on the vehicle M, or a position represented by latitude and longitude. Thus, the traveling of the vehicle M is controlled by the steering control device 10 so as to automatically travel along the target locus T (see FIG. 2). 2, the direction Fr indicates the front of the vehicle M, the direction Rr indicates the rear of the vehicle M, the direction R indicates the right side of the vehicle M, and the direction L indicates the left side of the vehicle M.
 図1に示されるように、操舵制御装置10は、カメラ(外部センサ)1、入力部2、重量センサ3、ECU[Electronic Control Unit]4、及び操舵アクチュエータ5を備えている。ECU4は、CPU[Central Processing Unit]、ROM[Read Only Memory]、RAM[Random Access Memory]、CAN[Controller Area Network]通信回路等を有する電子制御ユニットである。ECU4では、ROMに記憶されているプログラムをRAMにロードし、RAMにロードされたプログラムをCPUで実行することにより各種の機能を実現する。ECU4は、複数の電子制御ユニットから構成されていてもよい。ECU4には、CAN通信回路を介して、カメラ1、入力部2、重量センサ3、及び操舵アクチュエータ5が接続されている。 1, the steering control device 10 includes a camera (external sensor) 1, an input unit 2, a weight sensor 3, an ECU [Electronic Control Unit] 4, and a steering actuator 5. The ECU 4 is an electronic control unit having a CPU [Central Processing Unit], a ROM [Read Only Memory], a RAM [Random Access Memory], a CAN [Controller Area Network] communication circuit, and the like. The ECU 4 loads programs stored in the ROM into the RAM and executes the programs loaded into the RAM with the CPU to realize various functions. The ECU 4 may include a plurality of electronic control units. The camera 1, the input unit 2, the weight sensor 3, and the steering actuator 5 are connected to the ECU 4 via a CAN communication circuit.
 カメラ1は、車両Mの外部状況を撮像する撮像機器である。カメラ1は、一例として、車両Mのフロントガラスの裏側に設けられている。外部状況には、車両Mが走行する車線Rにおける車両Mの前方及び側方の範囲を撮像した撮像画像が含まれる。車線Rの撮像画像には、車線Rに沿って延在する区画線(基準線)W1,W2の撮像画像が含まれる。区画線W1,W2は、例えば車線Rを区画する白色又は黄色の実線である。区画線W1,W2は、実線に限定されず、車線中央線として用いられる破線、道路の分岐部に設けられる幅広の破線等であってもよい。区画線W1,W2は、各国又は地域の法規等に応じた態様であってもよい。カメラ1は、撮像した車両Mの前方及び側方の撮像画像の情報をECU4へ送信する。カメラ1は、車両Mの後方を更に撮像してもよい。 The camera 1 is an imaging device that captures an image of an external situation of the vehicle M. The camera 1 is provided, for example, behind the windshield of the vehicle M. The external situation includes a captured image obtained by capturing an area in front of and on the side of the vehicle M in the lane R in which the vehicle M travels. The captured images of the lane R include the captured images of the division lines (reference lines) W1 and W2 extending along the lane R. The division lines W1 and W2 are, for example, solid white or yellow lines that define the lane R. The division lines W1 and W2 are not limited to solid lines, and may be a broken line used as a lane center line, a wide broken line provided at a branch portion of a road, or the like. The division lines W1 and W2 may be in a form according to the regulations of each country or region. The camera 1 transmits information of the captured images of the front and side of the vehicle M to the ECU 4. The camera 1 may further image the rear of the vehicle M.
 入力部2は、車両Mの運転者による入力操作を受け付ける。入力部2は、例えば、運転席に設けられた物理的なスイッチ又はレバー等であってもよいし、ナビゲーションシステム(不図示)のタッチパネルディスプレイ上のボタン等であってもよい。ここでの入力操作は、操舵制御の実行が許可されるか否かの基準(後述の車線幅閾値)を運転者の意思で調整するための操作である(詳しくは後述)。入力部2は、受け付けた入力操作の情報をECU4に送信する。 The input unit 2 receives an input operation by a driver of the vehicle M. The input unit 2 may be, for example, a physical switch or lever provided in a driver's seat, or a button on a touch panel display of a navigation system (not shown). The input operation here is an operation for adjusting a reference (a lane width threshold value described later) as to whether execution of the steering control is permitted or not (details will be described later). The input unit 2 transmits information on the received input operation to the ECU 4.
 重量センサ3は、車両Mの積載物の重量を検出する検出機器である。重量センサ3は、車両Mにおける積載物の重量分布を検出できるように、例えば複数のセンサで構成されている。重量センサ3は、例えば車両Mがトラック又はトラクターの場合、当該トラックの荷台又はトレーラが牽引するトレーラの荷台における複数の位置に設けられ、荷台に載置された積載物の重量分布を検出する。重量分布は、車両Mの右側及び左側の重量分布を少なくとも含んでいる。重量分布は、車両Mの前側及び後側の重量分布を含んでいてもよい。 The weight sensor 3 is a detection device that detects the weight of the load on the vehicle M. The weight sensor 3 includes, for example, a plurality of sensors so as to detect the weight distribution of the load on the vehicle M. For example, when the vehicle M is a truck or a tractor, the weight sensor 3 is provided at a plurality of positions on a bed of the truck or a bed of a trailer towed by the trailer, and detects a weight distribution of the load placed on the bed. The weight distribution includes at least the right and left weight distributions of the vehicle M. The weight distribution may include the weight distribution on the front side and the rear side of the vehicle M.
 重量センサ3は、例えば車両Mのサスペンションに加わる荷重等に基づいて間接的に車両Mの積載物の重量を検出してもよい。重量センサ3は、その他、既存の種々の手法により、積載物の重量を検出してもよい。積載物の重量には、車両Mの乗員の重量が含まれていてもよい。重量センサ3は、車両Mの検出した積載物の重量の情報をECU4へ送信する。 The weight sensor 3 may indirectly detect the weight of the load of the vehicle M based on, for example, a load applied to the suspension of the vehicle M. The weight sensor 3 may detect the weight of the load using various other existing methods. The weight of the load may include the weight of the occupant of the vehicle M. The weight sensor 3 transmits information on the weight of the load detected by the vehicle M to the ECU 4.
 操舵アクチュエータ5は、ECU4からの制御信号に基づいて、車両Mの操舵角を変化させるアクチュエータである。操舵アクチュエータ5は、例えば、電動パワーステアリングシステムのアシストモータ等によって構成されていてもよい。 The steering actuator 5 is an actuator that changes the steering angle of the vehicle M based on a control signal from the ECU 4. The steering actuator 5 may be configured by, for example, an assist motor of an electric power steering system.
 次に、ECU4の機能的構成について説明する。ECU4は、車線幅認識部11、重量分布変化認識部12、距離認識部13、変動指標算出部14、車線幅閾値算出部15、制御許可判定部16、操舵量算出部17、及び操舵制御部18を備えている。 Next, the functional configuration of the ECU 4 will be described. The ECU 4 includes a lane width recognition unit 11, a weight distribution change recognition unit 12, a distance recognition unit 13, a variation index calculation unit 14, a lane width threshold calculation unit 15, a control permission determination unit 16, a steering amount calculation unit 17, and a steering control unit. 18 is provided.
 車線幅認識部11は、カメラ1で撮像された撮像画像に基づいて、車両Mが走行する車線Rの車線幅Lを認識する。車線幅認識部11は、例えば既存の手法により、撮像画像における区画線W1,W2の間の距離を車線幅Lとして認識する。 The lane width recognition unit 11 recognizes the lane width L of the lane R on which the vehicle M travels based on the image captured by the camera 1. The lane width recognition unit 11 recognizes the distance between the lane markings W1 and W2 in the captured image as the lane width L by, for example, an existing method.
 重量分布変化認識部12は、重量センサ3で検出された重量に基づいて、重量分布の変化を認識する。重量分布変化認識部12は、例えば、車両Mの右側の積載物の重量(右側重量)と、車両Mの左側の積載物の重量(左側重量)と、に基づいて、車両Mの左右の重量分布の変化を認識する。重量分布変化認識部12は、右側重量と左側重量との重量差の絶対値を、重量分布の変化の大きさとして認識する。なお、重量分布変化認識部12は、車両Mの前後の重量分布の変化を認識してもよいし、車両Mの前後左右の重量分布の変化を複合的に認識してもよい。 The weight distribution change recognition unit 12 recognizes a change in the weight distribution based on the weight detected by the weight sensor 3. The weight distribution change recognizing unit 12 may calculate the right and left weights of the vehicle M based on, for example, the weight of the load on the right side of the vehicle M (right weight) and the weight of the load on the left side of the vehicle M (left weight). Recognize changes in distribution. The weight distribution change recognition unit 12 recognizes the absolute value of the weight difference between the right weight and the left weight as the magnitude of the change in the weight distribution. Note that the weight distribution change recognition unit 12 may recognize a change in the weight distribution before and after the vehicle M, or may recognize a change in the weight distribution before and after the vehicle M in a combined manner.
 距離認識部13は、カメラ1で撮像された撮像画像に基づいて、車両Mが走行する車線Rの区画線W1と車両Mとの距離dを認識する。距離認識部13は、例えば既存の手法により、区画線W1における内側(車線Rの中央側)の縁部と、車両Mの所定位置(例えば区画線W1に近い方の車体の端部)と、の距離dを認識する。車両Mの所定位置は、カメラ1の搭載位置等、その他の位置であってもよい。 The distance recognition unit 13 recognizes the distance d between the lane line W1 of the lane R in which the vehicle M runs and the vehicle M based on the image captured by the camera 1. The distance recognizing unit 13 uses, for example, an existing method, an inner edge of the lane marking W1 (the center side of the lane R), a predetermined position of the vehicle M (eg, an end of the vehicle body closer to the lane marking W1), Is recognized. The predetermined position of the vehicle M may be another position such as the mounting position of the camera 1.
 変動指標算出部14は、距離認識部13で認識した距離dに基づいて、変動指標を算出する。変動指標は、車線Rにおける車線幅方向の車両Mの位置の変動量(横位置変動)を表す指標である。横位置変動は、車線Rにおける車両Mの蛇行の大きさを意味する。ここでの蛇行の大きさは、区画線W1に対する車両Mの横位置の変動として捉えることができる。変動指標としては、例えば、距離認識部13で認識された距離dの標準偏差σを用いることができる。 The fluctuation index calculating unit 14 calculates a fluctuation index based on the distance d recognized by the distance recognizing unit 13. The variation index is an index indicating the amount of variation (lateral position variation) of the position of the vehicle M in the lane R in the lane width direction. The lateral position fluctuation means the magnitude of meandering of the vehicle M in the lane R. The magnitude of the meandering here can be regarded as a change in the lateral position of the vehicle M with respect to the lane marking W1. As the change index, for example, the standard deviation σ of the distance d recognized by the distance recognition unit 13 can be used.
 変動指標算出部14は、一例として、直近の所定走行時間又は直近の所定走行距離において距離認識部13で認識された距離dの標準偏差σを、変動指標として算出する。直近の所定走行時間は、10秒~40秒の範囲内の任意の走行時間であり、例えば、20秒又は30秒とすることができる。直近の所定走行距離は、1km~5kmの範囲内の任意の走行距離であり、例えば、2kmとすることができる。走行時間及び走行距離は、例えば、車両Mが所定速度(例えば10km/h)以上で継続して走行している時間及び距離とすることができる。 As an example, the variation index calculating unit 14 calculates, as a variation index, the standard deviation σ of the distance d recognized by the distance recognizing unit 13 at the latest predetermined travel time or the latest predetermined travel distance. The latest predetermined travel time is any travel time in the range of 10 seconds to 40 seconds, and may be, for example, 20 seconds or 30 seconds. The latest predetermined traveling distance is an arbitrary traveling distance within a range of 1 km to 5 km, and may be, for example, 2 km. The travel time and travel distance may be, for example, the time and distance during which the vehicle M continuously travels at a predetermined speed (for example, 10 km / h) or more.
 変動指標算出部14は、重量分布の変化に基づいて、変動指標の初期値を算出し、変動指標を初期化する。変動指標算出部14は、例えば車両Mがトラック又はトラクターの場合、車両Mの荷台の積載物の積込み又は荷卸しを行ったことにより、右側重量と左側重量との重量差が所定の閾値よりも大きく変化した場合、変動指標を初期化する。変動指標算出部14は、例えば車両Mがバスの場合、車両Mの乗員の乗り降りにより、右側重量と左側重量との重量差が所定の閾値よりも大きく変化した場合、変動指標を初期化する。変動指標の初期値としては、例えば、予め設定された一般的な車線幅に相当する値(例えば3.5m)とすることができる。 The fluctuation index calculation unit 14 calculates the initial value of the fluctuation index based on the change in the weight distribution, and initializes the fluctuation index. For example, when the vehicle M is a truck or a tractor, when the vehicle M is a truck or a tractor, the weight difference between the right side weight and the left side weight is smaller than a predetermined threshold value by loading or unloading the load on the bed of the vehicle M. In the case of a large change, the change index is initialized. For example, when the vehicle M is a bus, the variation index calculation unit 14 initializes the variation index when the weight difference between the right weight and the left weight changes more than a predetermined threshold due to getting on and off the occupant of the vehicle M. As the initial value of the variation index, for example, a value (for example, 3.5 m) corresponding to a preset general lane width can be used.
 車線幅閾値算出部15は、標準偏差σと車両Mの車幅wmと入力部2で受け付けた入力操作とに基づいて、車線幅閾値Lthを算出する。車線幅閾値Lthは、操舵制御の実行の許否の基準となる車線幅Lの閾値である。車線幅閾値算出部15は、一例として、標準偏差σに所定係数を乗じた値と、車両Mの車幅wmと、余裕量αとを総和することで、車線幅閾値Lthを算出する。標準偏差σの所定係数としては、例えば、2以上の実数(例えば、2又は3)を用いることができる。余裕量αは、車線幅閾値Lthを運転者の意思で調整するための調整項である。 The lane width threshold calculator 15 calculates the lane width threshold Lth based on the standard deviation σ, the vehicle width wm of the vehicle M, and the input operation received by the input unit 2. The lane width threshold value Lth is a threshold value of the lane width L which is a criterion of whether or not to execute the steering control. As an example, the lane width threshold calculator 15 calculates the lane width threshold Lth by summing a value obtained by multiplying the standard deviation σ by a predetermined coefficient, the vehicle width wm of the vehicle M, and the allowance α. As the predetermined coefficient of the standard deviation σ, for example, a real number of 2 or more (for example, 2 or 3) can be used. The allowance α is an adjustment term for adjusting the lane width threshold Lth by the driver's intention.
 車線幅閾値算出部15は、入力部2で受け付けた入力操作に応じて、余裕量αを算出する。車線幅閾値算出部15は、例えば、入力部2のオンオフ操作又は操作回数等に応じて余裕量αを段階的に算出してもよいし、入力部2に直接入力された設定値に応じて余裕量αを算出してもよい。 The lane width threshold calculator 15 calculates the margin α in accordance with the input operation received by the input unit 2. The lane width threshold calculator 15 may calculate the margin α stepwise according to, for example, the on / off operation of the input unit 2 or the number of operations, or may set the margin α in accordance with a set value directly input to the input unit 2. The margin α may be calculated.
 制御許可判定部16は、車線幅Lと車線幅閾値Lthとに基づいて、操舵制御の実行を許可するか否かを判定する。具体的には、制御許可判定部16は、車線幅Lが車線幅閾値Lthよりも大きい場合に、操舵制御の実行を許可すると判定する。制御許可判定部16は、車線幅Lが車線幅閾値Lth以下である場合に、操舵制御の実行を不許可とすると判定する。 The control permission determination unit 16 determines whether or not to permit the execution of the steering control based on the lane width L and the lane width threshold Lth. Specifically, the control permission determination unit 16 determines that the execution of the steering control is permitted when the lane width L is larger than the lane width threshold Lth. When the lane width L is equal to or smaller than the lane width threshold Lth, the control permission determination unit 16 determines that the execution of the steering control is not permitted.
 操舵量算出部17は、目標軌跡Tと車両Mの現在の位置(車両位置)とに基づいて、車両Mの操舵量を算出する。ここでの操舵量は、目標軌跡Tに沿って車両Mを走行させるための車両Mの操舵量である。車両位置は、既存の種々の方法を用いてECU4により認識され得る。車両位置は、例えば、車両Mを基準とする座標系によって表された位置であってもよく、緯度経度によって表された位置であってもよい。 The steering amount calculation unit 17 calculates the steering amount of the vehicle M based on the target trajectory T and the current position (vehicle position) of the vehicle M. The steering amount here is a steering amount of the vehicle M for causing the vehicle M to travel along the target locus T. The vehicle position can be recognized by the ECU 4 using various existing methods. The vehicle position may be, for example, a position represented by a coordinate system based on the vehicle M, or a position represented by latitude and longitude.
 操舵制御部18は、制御許可判定部16の判定結果と、操舵量算出部17で算出された操舵量とに基づいて、操舵制御を実行する。操舵制御部18は、操舵量算出部17により操舵制御の実行を許可すると判定された場合に、車両Mの操舵輪の操舵角が、操舵量算出部17で算出された操舵量となるように、操舵アクチュエータ5に制御信号を出力する。これにより、車両Mの走行軌跡は、目標軌跡Tに近付けられる。 The steering control unit 18 performs the steering control based on the determination result of the control permission determination unit 16 and the steering amount calculated by the steering amount calculation unit 17. When the steering amount calculating unit 17 determines that the execution of the steering control is permitted, the steering control unit 18 sets the steering angle of the steered wheels of the vehicle M to the steering amount calculated by the steering amount calculating unit 17. And outputs a control signal to the steering actuator 5. As a result, the traveling locus of the vehicle M approaches the target locus T.
[ECUによる処理]
 次に、ECU4による処理の一例について、図3~図5を参照して説明する。図3は、操舵制御処理を例示するフローチャートである。図4は、操舵制御の実行許否判定処理を例示するフローチャートである。操舵制御装置10は、例えば車両Mの走行中に、図3に示される操舵制御処理を実行する。
[Process by ECU]
Next, an example of a process performed by the ECU 4 will be described with reference to FIGS. FIG. 3 is a flowchart illustrating the steering control process. FIG. 4 is a flowchart illustrating an execution permission / prohibition determination process of the steering control. The steering control device 10 executes a steering control process shown in FIG.
 図3に示されるように、ECU4は、S11において、目標軌跡の生成を行う。ECU4は、S12において、車両位置の認識を行う。ECU4は、S13において、操舵量算出部17により、操舵量の算出を行う。操舵量算出部17は、目標軌跡Tと車両位置とに基づいて、車両Mの操舵量を算出する。 ECUAs shown in FIG. 3, the ECU 4 generates a target trajectory in S11. The ECU 4 recognizes the vehicle position in S12. In S13, the steering amount is calculated by the steering amount calculation unit 17 in S13. The steering amount calculator 17 calculates the steering amount of the vehicle M based on the target trajectory T and the vehicle position.
 ECU4は、S14において、操舵制御の実行許否の判定を行う。ECU4は、具体的には後述するように、図4の操舵制御の実行許否判定処理を行う。 (4) In S14, the ECU 4 determines whether or not to permit execution of the steering control. The ECU 4 performs an execution permission / prohibition determination process of the steering control of FIG. 4 as specifically described later.
 ECU4は、S15において、操舵制御の実行が許可された場合、S16において、操舵制御部18により、操舵制御の実行を行う。操舵制御部18は、操舵量算出部17により操舵制御の実行を許可すると判定された場合に(S15:YES)、車両Mの操舵輪の操舵角が、操舵量算出部17で算出された操舵量となるように、操舵アクチュエータ5に制御信号を出力する。 If the execution of the steering control is permitted in S15, the ECU 4 executes the steering control by the steering control unit 18 in S16. When the steering amount calculation unit 17 determines that the execution of the steering control is permitted (S15: YES), the steering control unit 18 calculates the steering angle of the steered wheels of the vehicle M by the steering amount calculated by the steering amount calculation unit 17. A control signal is output to the steering actuator 5 so as to obtain the amount.
 一方、ECU4は、S15において、操舵制御の実行が不許可とされた場合、図3の処理を終了する。操舵制御部18は、操舵量算出部17により操舵制御の実行を不許可とすると判定された場合に(S15:NO)、操舵制御を実行しない。 On the other hand, if the execution of the steering control is not permitted in S15, the ECU 4 ends the processing in FIG. The steering control unit 18 does not execute the steering control when the steering amount calculation unit 17 determines that the execution of the steering control is not permitted (S15: NO).
 次に、操舵制御の実行許否の判定処理について説明する。図4に示されるように、ECU4は、S21において、車線幅認識部11により、車線幅Lの認識を行う。車線幅認識部11は、カメラ1で撮像された撮像画像に基づいて、車両Mが走行する車線Rの車線幅Lを認識する。 Next, a description will be given of a process of determining whether to permit execution of steering control. As shown in FIG. 4, in S21, the lane width recognition unit 11 recognizes the lane width L in S21. The lane width recognition unit 11 recognizes the lane width L of the lane R on which the vehicle M travels based on the image captured by the camera 1.
 ECU4は、S22において、距離認識部13により、区画線W1と車両Mとの距離dの認識を行う。距離認識部13は、カメラ1で撮像された撮像画像に基づいて、車両Mが走行する車線Rの区画線W1と車両Mとの距離dを認識する。 In step S22, the ECU 4 uses the distance recognition unit 13 to recognize the distance d between the lane marking W1 and the vehicle M. The distance recognition unit 13 recognizes a distance d between the lane line W1 of the lane R in which the vehicle M travels and the vehicle M based on the captured image captured by the camera 1.
 ECU4は、S23において、変動指標算出部14により、変動指標の算出を行う。変動指標算出部14は、直近の所定走行時間又は直近の所定走行距離において距離認識部13で認識された距離dの標準偏差σを、変動指標として算出する。 (4) In S23, the ECU 4 causes the fluctuation index calculation unit 14 to calculate a fluctuation index. The variation index calculating unit 14 calculates, as a variation index, a standard deviation σ of the distance d recognized by the distance recognizing unit 13 in the latest predetermined travel time or the latest predetermined travel distance.
 ECU4は、S24において、車線幅閾値算出部15により、車線幅閾値Lthの算出を行う。車線幅閾値算出部15は、標準偏差σに所定係数を乗じた値と、車両Mの車幅wmと、余裕量αとを総和することで、車線幅閾値Lthを算出する。 The ECU 4 calculates the lane width threshold Lth by the lane width threshold calculator 15 in S24. The lane width threshold calculator 15 calculates the lane width threshold Lth by summing a value obtained by multiplying the standard deviation σ by a predetermined coefficient, the vehicle width wm of the vehicle M, and the allowance α.
 ECU4は、S25において、制御許可判定部16により、車線幅Lが車線幅閾値Lthよりも大きいか否かの判定を行う。ECU4は、制御許可判定部16により車線幅Lが車線幅閾値Lthよりも大きいと判定された場合(S25:YES)、S26において、制御許可判定部16により、操舵制御の実行の許可を行う。一方、ECU4は、制御許可判定部16により車線幅Lが車線幅閾値Lth未満であると判定された場合(S25:NO)、S27において、制御許可判定部16により、操舵制御の実行の不許可を行う。ECU4は、その後、図3のS15の処理に移行する。 The ECU 4 uses the control permission determination unit 16 to determine whether the lane width L is larger than the lane width threshold Lth in S25. When the control permission determining unit 16 determines that the lane width L is larger than the lane width threshold Lth (S25: YES), the ECU 4 permits the control permission determining unit 16 to execute the steering control in S26. On the other hand, when the control permission determining unit 16 determines that the lane width L is smaller than the lane width threshold Lth (S25: NO), the ECU 4 disables the execution of the steering control by the control permission determining unit 16 in S27. I do. After that, the ECU 4 proceeds to the process of S15 in FIG.
 次に、変動指標の初期化処理について説明する。図5は、変動指標の初期化処理を例示するフローチャートである。操舵制御装置10は、例えば車両Mの停車中、又は、車両Mの制御システムの起動時(例えばエンジン始動時)に、図5に示される変動指標の初期化処理を実行する。 Next, the process of initializing the fluctuation index will be described. FIG. 5 is a flowchart illustrating a process of initializing a variation index. The steering control device 10 executes the initialization process of the variation index shown in FIG. 5, for example, when the vehicle M is stopped or when the control system of the vehicle M is started (for example, when the engine is started).
 図5に示されるように、ECU4は、S31において、重量分布変化認識部12により、重量分布の変化の認識を行う。重量分布変化認識部12は、右側重量と左側重量との重量差の絶対値を、重量分布の変化の大きさとして認識する。 ECUAs shown in FIG. 5, in S31, the ECU 4 uses the weight distribution change recognition unit 12 to recognize a change in the weight distribution. The weight distribution change recognition unit 12 recognizes the absolute value of the weight difference between the right weight and the left weight as the magnitude of the change in the weight distribution.
 ECU4は、S32において、変動指標算出部14により、重量分布の変化の大きさが閾値よりも大きいか否かの判定を行う。ECU4は、重量分布の変化の大きさが閾値よりも大きいと判定された場合(S32:YES)、S33において、変動指標算出部14により、変動指標の初期化を行う。変動指標算出部14は、変動指標を例えば3.5mに設定する。一方、ECU4は、重量分布の変化の大きさが閾値以下であると判定された場合(S32:NO)、変動指標の初期化を行わず、図5の処理を終了する。 In step S32, the ECU 4 determines whether or not the magnitude of the change in the weight distribution is greater than a threshold value by the variation index calculator 14. When it is determined that the magnitude of the change in the weight distribution is greater than the threshold (S32: YES), the ECU 4 initializes the variation index by the variation index calculation unit 14 in S33. The variation index calculation unit 14 sets the variation index to, for example, 3.5 m. On the other hand, when it is determined that the magnitude of the change in the weight distribution is equal to or smaller than the threshold value (S32: NO), the ECU 4 does not initialize the variation index and ends the processing in FIG.
[作用及び効果]
 以上説明したように、操舵制御装置10では、変動指標算出部14により、車線Rにおける車両Mの横位置変動を表す変動指標として、標準偏差σが算出される。車線幅閾値算出部15により、標準偏差σと車両Mの車幅wmと余裕量αとに基づいて、操舵制御の実行の許否の基準となる車線幅Lの閾値である車線幅閾値Lthが算出される。これにより、車両Mの直進性の変化(車両Mの蛇行度合いの変化)に応じて生じる横位置変動が考慮された車線幅閾値Lthを算出することができる。したがって、直進性の変化に応じた適切な車線幅閾値Lthを用いることで、目標軌跡Tに沿って車両Mを走行させる操舵制御を車両Mの直進性の変化に応じて適切に実行することが可能となる。
[Action and effect]
As described above, in the steering control device 10, the variation index calculation unit 14 calculates the standard deviation σ as a variation index representing the lateral position variation of the vehicle M in the lane R. The lane width threshold value calculation unit 15 calculates a lane width threshold value Lth, which is a threshold value of the lane width L as a criterion for permitting or rejecting the execution of the steering control, based on the standard deviation σ, the vehicle width wm of the vehicle M, and the allowance α. Is done. Thus, it is possible to calculate the lane width threshold Lth in consideration of the lateral position variation generated according to the change in the straightness of the vehicle M (change in the meandering degree of the vehicle M). Therefore, by using the appropriate lane width threshold Lth according to the change in the straightness, it is possible to appropriately execute the steering control for causing the vehicle M to travel along the target trajectory T according to the change in the straightness of the vehicle M. It becomes possible.
 操舵制御装置10では、変動指標算出部14は、直近の所定走行時間又は直近の所定走行距離において距離認識部13で認識された距離の標準偏差σを変動指標として算出する。これにより、直近の車両Mの直進性に応じた車線幅閾値Lthを算出することができる。 In the steering control device 10, the variation index calculating unit 14 calculates the standard deviation σ of the distance recognized by the distance recognizing unit 13 at the latest predetermined traveling time or the latest predetermined traveling distance as a variation index. As a result, the lane width threshold Lth according to the straightness of the latest vehicle M can be calculated.
 操舵制御装置10は、車両Mにおける重量分布の変化を認識する重量分布変化認識部12を備えている。変動指標算出部14は、重量分布の変化に基づいて標準偏差σの初期値を算出する。これにより、重量分布の変化に伴う車両Mの直進性の変化に応じた車線幅閾値Lthを算出することができる。よって、例えば停車中に重量分布が変化した車両Mが走行する場合であっても、重量分布の変化に応じた適切な車線幅閾値Lthを用いて操舵制御を実行することができる。 The steering control device 10 includes a weight distribution change recognition unit 12 that recognizes a change in the weight distribution in the vehicle M. The variation index calculator 14 calculates an initial value of the standard deviation σ based on the change in the weight distribution. Thereby, the lane width threshold Lth according to the change in the straightness of the vehicle M due to the change in the weight distribution can be calculated. Thus, for example, even when the vehicle M whose weight distribution has changed while the vehicle is stopped travels, the steering control can be executed using the appropriate lane width threshold Lth according to the change in the weight distribution.
[変形例]
 以上、本開示に係る実施形態について説明したが、本開示は、上述した各実施形態に限られるものではない。
[Modification]
The embodiments according to the present disclosure have been described above, but the present disclosure is not limited to the above-described embodiments.
 例えば、上記実施形態では、外部センサとしてカメラ1を備えていたが、例えば、カメラ1に加えて又はカメラ1に代えて、レーザレーダを備えていてもよい。この場合、レーザレーダで検出した複数の測定点の位置情報に基づいて、既存の種々の手法により、車線幅L及び区画線W1,W2を認識することができる。 For example, in the above-described embodiment, the camera 1 is provided as the external sensor. However, for example, a laser radar may be provided in addition to or instead of the camera 1. In this case, the lane width L and the lane markings W1, W2 can be recognized by various existing methods based on the position information of the plurality of measurement points detected by the laser radar.
 上記実施形態では、距離認識部13が認識する距離は、区画線W1と車両Mとの距離dであったが、区画線W2と車両Mとの距離であってもよいし、これら両方の距離であってもよい。また、例えば区画線W1,W2の何れか一方が道路の分岐部に設けられる幅広の破線である場合には、距離認識部13は、区画線W1,W2の他方を用いて距離を認識してもよい。 In the above embodiment, the distance recognized by the distance recognition unit 13 is the distance d between the lane marking W1 and the vehicle M, but may be the distance between the lane marking W2 and the vehicle M, or both distances. It may be. Further, for example, when one of the lane markings W1 and W2 is a wide dashed line provided at a branch portion of the road, the distance recognition unit 13 recognizes the distance using the other of the lane markings W1 and W2. Is also good.
 上記実施形態では、車線Rに沿う基準線として、区画線W1,W2を例示したが、これに限定されない。例えば、車線Rの中心線(区画線W1,W2の中間位置に延びる仮想線)であってもよいし、車線Rの側部の構造物(ガードレール、縁石等)の側面上に延びる仮想線であってもよい。 In the above embodiment, the lane markings W1 and W2 are illustrated as the reference lines along the lane R, but the present invention is not limited to this. For example, the virtual line may be a center line of the lane R (a virtual line extending at an intermediate position between the lane markings W1 and W2) or a virtual line extending on a side surface of a structure (guard rail, curbstone, etc.) on the side of the lane R. There may be.
 上記実施形態では、変動指標算出部14は、標準偏差σを算出するために、直近の所定走行時間又は直近の所定走行距離において距離認識部13で認識された距離dを用いたが、これに限定されない。例えば、更に過去に距離認識部13で認識された距離dが用いられてもよい。 In the above embodiment, the variation index calculation unit 14 uses the distance d recognized by the distance recognition unit 13 in the latest predetermined travel time or the latest predetermined travel distance in order to calculate the standard deviation σ. Not limited. For example, the distance d recognized by the distance recognition unit 13 in the past may be used.
 上記実施形態では、変動指標算出部14は、距離dの標準偏差σを変動指標として算出したが、これに限定されない。例えば、変動指標算出部14は、直近の所定走行時間又は直近の所定走行距離において距離認識部13で認識された距離dの最大値、平均値、中央値、最頻値等を変動指標として算出してもよい。 In the above embodiment, the variation index calculation unit 14 calculates the standard deviation σ of the distance d as the variation index, but is not limited to this. For example, the variation index calculating unit 14 calculates a maximum value, an average value, a median value, a mode value, and the like of the distance d recognized by the distance recognizing unit 13 in the latest predetermined travel time or the latest predetermined travel distance as a variation index. May be.
 上記実施形態では、変動指標算出部14は、重量分布の変化に基づいて、変動指標を初期化したが、必ずしも重量分布の変化に基づかなくてもよい。例えば、変動指標算出部14は、車両Mが一定時間の停車をした場合、又は、車両Mの制御システムが起動された場合(例えばエンジン始動時)に、重量分布の変化によらず、変動指標を初期化してもよい。 In the above embodiment, the variation index calculation unit 14 initializes the variation index based on the change in the weight distribution, but does not necessarily need to be based on the change in the weight distribution. For example, when the vehicle M has been stopped for a certain period of time, or when the control system of the vehicle M has been started (for example, when the engine is started), the fluctuation index calculation unit 14 does not depend on the change in the weight distribution. May be initialized.
 上記実施形態では、余裕量αは、運転者の意思で調整するための調整項として可変であったが、固定値であってもよい。また、余裕量αは、0であってもよい。 で は In the above embodiment, the margin α is variable as an adjustment term for adjustment by the driver's intention, but may be a fixed value. The margin α may be zero.
 上記実施形態では、制御許可判定部16は、車線幅Lが車線幅閾値Lthよりも大きいか否かに応じて、操舵制御の実行の許否を判定したが、例えば、操舵制御の実行の許否の判定において、一定のヒステリシスを設定してもよい。例えば、制御許可判定部16は、車線幅Lが車線幅閾値Lthよりも大きくなった後、車線幅Lが車線幅閾値Lth以下となってから所定のディレイ時間が経過した場合に、操舵制御の実行を不許可とすると判定してもよい。この場合、車線幅閾値算出部15が、変動指標に基づいて所定のディレイ時間を設定してもよい。例えば、車線幅閾値算出部15は、変動指標が大きい場合(車両Mの蛇行の大きさが大きい場合)には、変動指標が小さい場合と比較して、所定のディレイ時間を小さく設定してもよい。 In the above-described embodiment, the control permission determination unit 16 determines whether or not to execute the steering control according to whether or not the lane width L is larger than the lane width threshold Lth. In the determination, a certain hysteresis may be set. For example, after the lane width L becomes larger than the lane width threshold Lth, the control permission determination unit 16 determines whether the steering control is to be performed when a predetermined delay time has elapsed since the lane width L became equal to or less than the lane width threshold Lth. It may be determined that execution is not permitted. In this case, the lane width threshold calculator 15 may set a predetermined delay time based on the variation index. For example, when the variation index is large (when the meandering of the vehicle M is large), the lane width threshold value calculation unit 15 may set the predetermined delay time to be shorter than when the variation index is small. Good.
 上記実施形態では、車両Mとして、トラック、トラクター、又はバス等の大型の車両を例示したが、車両Mは、これらに限定されない。車両Mは、中型自動車、小型自動車、及び軽自動車であってもよい。要は、種々の要因によって直進性が変化する車両Mが、対象となり得る。なお、直進性を変化させる種々の要因としては、例えば、車両Mのタイヤの特性(リブ、スタッドレス、ミックスタイヤ等の構造、又はエアの量等)、足回り(例えばゴムブッシュ等)の経年劣化、及び、車線Rの路面状況(轍、凹凸の有無等)などが挙げられる。なお、変動指標算出部14は、上記した種々の要因の変化をトリガとして、変動指標を初期化してもよい。 In the above embodiment, the vehicle M is exemplified by a large vehicle such as a truck, a tractor, or a bus, but the vehicle M is not limited to these. The vehicle M may be a medium-sized car, a small car, and a mini car. In short, the vehicle M whose straightness changes due to various factors can be a target. Various factors that change the straightness include, for example, the characteristics of the tires of the vehicle M (such as the structure of ribs, studless and mixed tires, or the amount of air), and the aging of the underbody (for example, rubber bushes). , And the road surface condition of the lane R (such as the presence or absence of a rut or unevenness). Note that the variation index calculation unit 14 may initialize the variation index using a change in the various factors described above as a trigger.
 1…カメラ(外部センサ)、2…入力部、3…重量センサ、4…ECU、5…操舵アクチュエータ、10…操舵制御装置、11…車線幅認識部、12…重量分布変化認識部、13…距離認識部、14…変動指標算出部、15…車線幅閾値算出部、16…制御許可判定部、17…操舵量算出部、18…操舵制御部、d…距離、L…車線幅、Lth…車線幅閾値、M…車両、R…車線、T…目標軌跡、W1,W2…区画線(基準線)、wm…車幅、α…余裕量、σ…標準偏差。 DESCRIPTION OF SYMBOLS 1 ... Camera (external sensor), 2 ... Input part, 3 ... Weight sensor, 4 ... ECU, 5 ... Steering actuator, 10 ... Steering control device, 11 ... Lane width recognition part, 12 ... Weight distribution change recognition part, 13 ... Distance recognition unit, 14: variation index calculation unit, 15: lane width threshold calculation unit, 16: control permission determination unit, 17: steering amount calculation unit, 18: steering control unit, d: distance, L: lane width, Lth ... Lane width threshold, M: vehicle, R: lane, T: target locus, W1, W2: lane marking (reference line), wm: vehicle width, α: margin, σ: standard deviation.

Claims (3)

  1.  車載の外部センサの検出結果に基づいて目標軌跡に沿って車両を走行させる操舵制御を行う操舵制御装置であって、
     前記車両が走行する車線の車線幅を認識する車線幅認識部と、
     前記車線に沿う基準線と前記車両との距離を認識する距離認識部と、
     前記距離に基づいて、前記車線における前記車両の横位置変動を表す変動指標を算出する変動指標算出部と、
     前記変動指標と前記車両の車幅とに基づいて、前記操舵制御の実行の許否の基準となる前記車線幅の閾値である車線幅閾値を算出する車線幅閾値算出部と、
     前記車線幅が前記車線幅閾値よりも大きい場合に前記操舵制御を実行する操舵制御部と、を備える、操舵制御装置。
    A steering control device that performs steering control to cause the vehicle to travel along a target trajectory based on a detection result of an on-board external sensor,
    A lane width recognition unit that recognizes a lane width of a lane in which the vehicle travels,
    A distance recognition unit that recognizes a distance between the reference line and the vehicle along the lane,
    A variation index calculating unit configured to calculate a variation index representing a lateral position variation of the vehicle in the lane based on the distance;
    A lane width threshold calculation unit that calculates a lane width threshold that is a threshold of the lane width that is a reference for permission / prohibition of the execution of the steering control, based on the variation index and the vehicle width of the vehicle;
    A steering control unit configured to execute the steering control when the lane width is larger than the lane width threshold.
  2.  前記変動指標算出部は、直近の所定走行時間又は直近の所定走行距離において前記距離認識部で認識された前記距離の標準偏差を前記変動指標として算出する、請求項1に記載の操舵制御装置。 2. The steering control device according to claim 1, wherein the variation index calculation unit calculates, as the variation index, a standard deviation of the distance recognized by the distance recognition unit during a latest predetermined travel time or a latest predetermined travel distance. 3.
  3.  前記車両における重量分布の変化を認識する重量分布変化認識部を更に備え、
     前記変動指標算出部は、前記重量分布の変化に基づいて前記変動指標の初期値を算出する、請求項1又は2に記載の操舵制御装置。
    The vehicle further includes a weight distribution change recognition unit that recognizes a change in weight distribution in the vehicle,
    The steering control device according to claim 1, wherein the variation index calculation unit calculates an initial value of the variation index based on a change in the weight distribution.
PCT/JP2019/019384 2018-06-18 2019-05-15 Steering control device WO2019244522A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018115444A JP7023801B2 (en) 2018-06-18 2018-06-18 Steering control device
JP2018-115444 2018-06-18

Publications (1)

Publication Number Publication Date
WO2019244522A1 true WO2019244522A1 (en) 2019-12-26

Family

ID=68982797

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/019384 WO2019244522A1 (en) 2018-06-18 2019-05-15 Steering control device

Country Status (2)

Country Link
JP (1) JP7023801B2 (en)
WO (1) WO2019244522A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7279307B2 (en) * 2018-06-29 2023-05-23 マツダ株式会社 Vehicle control device and vehicle control method
JP7301225B2 (en) * 2020-05-27 2023-06-30 三菱電機株式会社 vehicle steering system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004168192A (en) * 2002-11-20 2004-06-17 Nissan Motor Co Ltd Lane departure prevention device
JP2005346269A (en) * 2004-06-01 2005-12-15 Toyota Motor Corp Lane deviation warning device
JP2016090274A (en) * 2014-10-30 2016-05-23 トヨタ自動車株式会社 Alarm apparatus, alarm system, and portable terminal
JP2018177120A (en) * 2017-04-19 2018-11-15 トヨタ自動車株式会社 Automatic drive system
JP2019111980A (en) * 2017-12-25 2019-07-11 トヨタ自動車株式会社 Vehicle control system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4730406B2 (en) * 2008-07-11 2011-07-20 トヨタ自動車株式会社 Driving support control device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004168192A (en) * 2002-11-20 2004-06-17 Nissan Motor Co Ltd Lane departure prevention device
JP2005346269A (en) * 2004-06-01 2005-12-15 Toyota Motor Corp Lane deviation warning device
JP2016090274A (en) * 2014-10-30 2016-05-23 トヨタ自動車株式会社 Alarm apparatus, alarm system, and portable terminal
JP2018177120A (en) * 2017-04-19 2018-11-15 トヨタ自動車株式会社 Automatic drive system
JP2019111980A (en) * 2017-12-25 2019-07-11 トヨタ自動車株式会社 Vehicle control system

Also Published As

Publication number Publication date
JP7023801B2 (en) 2022-02-22
JP2019217853A (en) 2019-12-26

Similar Documents

Publication Publication Date Title
US10583835B2 (en) Method for automatically adapting acceleration in a motor vehicle
US10429848B2 (en) Automatic driving system
EP1818231B1 (en) Vehicle control system
EP2106989B1 (en) Vehicle device for preventing the leaving of the driving lane
JP6384949B2 (en) Vehicle driving support device
US11247676B2 (en) Method for automatically adjusting the speed of a motorcycle
US10569781B2 (en) Traveling assistance apparatus
US20170101102A1 (en) Vehicle Safety System
US20150336587A1 (en) Driving assist device
KR20190118947A (en) Apparatus and method for controlling drive of vehicle
US10150474B2 (en) Reducing lateral position deviation during an automated lane change
US9969394B2 (en) Distance regulating system, motor vehicle and computer program product
US20180056745A1 (en) Methods And Systems To Calculate And Store GPS Coordinates Of Location-Based Features
WO2019244522A1 (en) Steering control device
US20210078604A1 (en) Automatic driving control apparatus for vehicle
JP2017117192A (en) Drive support apparatus
US11267488B2 (en) Automatic driving control apparatus for vehicle
US11738749B2 (en) Methods, systems, and apparatuses for scenario-based path and intervention adaptation for lane-keeping assist systems
US10392051B2 (en) Vehicle driving assist apparatus
KR20170067282A (en) Lane keeping assist method for vehicle
CN115771518A (en) System and method for determining whether a vehicle is in an understeer or oversteer condition
CN113753069A (en) Automatic driving control method and device
US11772648B2 (en) Lane keep assistance based on rate of departure
WO2023054196A1 (en) Vehicle control device
JP2023135115A (en) Vehicle control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19822201

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19822201

Country of ref document: EP

Kind code of ref document: A1