JP2023135115A - Vehicle control device - Google Patents

Vehicle control device Download PDF

Info

Publication number
JP2023135115A
JP2023135115A JP2022040157A JP2022040157A JP2023135115A JP 2023135115 A JP2023135115 A JP 2023135115A JP 2022040157 A JP2022040157 A JP 2022040157A JP 2022040157 A JP2022040157 A JP 2022040157A JP 2023135115 A JP2023135115 A JP 2023135115A
Authority
JP
Japan
Prior art keywords
road surface
control
vehicle
route
switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022040157A
Other languages
Japanese (ja)
Inventor
俊 丸山
Takashi Maruyama
隆宏 岡野
Takahiro Okano
亨 高島
Kyo Takashima
駿 溝尾
Shun Mizoo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2022040157A priority Critical patent/JP2023135115A/en
Publication of JP2023135115A publication Critical patent/JP2023135115A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

To provide a vehicle control device capable of switching a control mode from manual operation control to automatic operation control taking into consideration a road surface state with improved appropriateness.SOLUTION: A vehicle control device capable of switching between automatic operation control and manual operation control comprises: a route difference determination section 11 which determines whether or not a route difference between a target travel route and a current travel route of an own vehicle is less than a predetermined switchover threshold; an automatic operation execution section 12 which executes the automatic operation control by switching a control mode from the manual operation control to the automatic operation control when receiving an instruction to switch the control mode from the manual operation control to the automatic operation control with the route difference less than the switchover threshold; a road surface determination section 13 which determines a current travel road surface state; and a threshold change section 14 which changes the switchover threshold on the basis of a determination result of the road surface determination section.SELECTED DRAWING: Figure 1

Description

本発明は、車両制御装置に関する。 The present invention relates to a vehicle control device.

車両制御装置は、例えば運転者の操作に応じて、制御モードを手動運転制御から自動運転制御に切り替え可能に構成されている。この切り替えの条件として、自動運転制御で用いられる目標走行経路と実際の走行経路との間の経路差が所定の閾値未満であることが設定されている。これは、経路差が大きい状態で制御モードが自動運転制御に切り替わると、転舵角の急激な制御により、車両の挙動が乱れる可能性があるためである。そこで、例えば特開2018-172050号公報には、経路差が閾値以上である場合、自動運転制御に切り替えた後に、徐々に経路差が小さくなるように舵角を制御する操舵制御装置が開示されている。これにより、車両を目標走行経路に滑らかに追従させることが可能となる。 The vehicle control device is configured to be able to switch the control mode from manual driving control to automatic driving control, for example, in response to a driver's operation. As a condition for this switching, it is set that the route difference between the target travel route used in automatic driving control and the actual travel route is less than a predetermined threshold value. This is because if the control mode is switched to automatic driving control in a state where the route difference is large, the behavior of the vehicle may be disturbed due to abrupt control of the steering angle. Therefore, for example, Japanese Patent Application Laid-Open No. 2018-172050 discloses a steering control device that controls the steering angle so that the route difference gradually decreases after switching to automatic driving control when the route difference is equal to or greater than a threshold value. ing. This allows the vehicle to smoothly follow the target travel route.

特開2018-172050号公報Japanese Patent Application Publication No. 2018-172050

ところで、車両の挙動は、車両が走行している路面(走行路面)の影響を受ける。悪路走行時は、良路走行時に比べて、車両の挙動が乱れやすい。したがって、例えば、良路では車両の挙動の乱れが生じない経路差であっても、悪路では車両の挙動の乱れが生じる可能性がある。道路が未舗装路である場合や積雪している場合、車両の走行により路面状態が悪化する可能性が比較的高く、悪路が多くなりやすい。このような観点において、上記装置には、改良の余地がある。
本発明の目的は、路面状態を考慮して、より適切に制御モードを手動運転制御から自動運転制御に切り替えることができる車両制御装置を提供することである。
By the way, the behavior of a vehicle is influenced by the road surface (driving road surface) on which the vehicle is running. When driving on a rough road, the behavior of the vehicle is more likely to be disturbed than when driving on a good road. Therefore, for example, even if the route difference does not cause disturbance in the vehicle's behavior on a good road, it may cause disturbance in the vehicle's behavior on a bad road. When a road is unpaved or covered with snow, there is a relatively high possibility that the road surface condition will worsen due to vehicle travel, and the number of rough roads is likely to increase. From this point of view, there is room for improvement in the above device.
An object of the present invention is to provide a vehicle control device that can more appropriately switch the control mode from manual driving control to automatic driving control in consideration of road surface conditions.

本発明の車両制御装置は、目標走行経路を取得し、実際の自車両の走行経路と前記目標走行経路との差がなくなるように自車両を制御する自動運転制御と、運転者の操作に基づいて自車両を制御する手動運転制御とを切り替え可能に構成された車両制御装置であって、前記目標走行経路と現在の自車両の走行経路との間の経路差が所定の切替閾値未満であるか否かを判定する経路差判定部と、制御モードを前記手動運転制御から前記自動運転制御に切り替える指令を受けた場合、前記経路差が前記切替閾値未満であれば、前記制御モードを前記手動運転制御から前記自動運転制御に切り替えて、前記自動運転制御を実行する自動運転実行部と、現在の走行路面の状態を判定する路面判定部と、前記路面判定部の判定結果に基づいて、前記切替閾値を変更する閾値変更部と、を備える。 The vehicle control device of the present invention includes automatic driving control that acquires a target driving route and controls the own vehicle so that there is no difference between the actual driving route of the own vehicle and the target driving route, and based on the driver's operation. A vehicle control device configured to be able to switch between manual driving control and manual driving control for controlling the host vehicle, wherein a route difference between the target travel route and the current travel route of the host vehicle is less than a predetermined switching threshold. a route difference determination unit that determines whether an automatic driving execution unit that switches from driving control to the automatic driving control and executes the automatic driving control; a road surface determination unit that determines the state of the current road surface; A threshold value changing unit that changes the switching threshold value.

本発明によれば、走行路面の状態に応じて、制御モードの切り替えのための切替閾値が変更される。これにより、路面状態に適した切替閾値を設定することができる。例えば、本発明によれば、良路では切替閾値を大きくして自動運転制御への切り替えを許可しやすくし、悪路では切替閾値を小さくして自動運転制御への切り替えを禁止しやすくすることが可能となる。このように、本発明によれば、路面状態を考慮して、より適切に制御モードを手動運転制御から自動運転制御に切り替えることができる。 According to the present invention, the switching threshold for switching the control mode is changed depending on the state of the road surface. Thereby, a switching threshold suitable for the road surface condition can be set. For example, according to the present invention, on a good road, the switching threshold value can be increased to make it easier to permit switching to automatic driving control, and on a bad road, the switching threshold value can be lowered to make it easier to prohibit switching to automatic driving control. becomes possible. As described above, according to the present invention, the control mode can be more appropriately switched from manual driving control to automatic driving control in consideration of the road surface condition.

本実施形態の車両制御装置の構成図である。FIG. 1 is a configuration diagram of a vehicle control device according to the present embodiment. 本実施形態の経路差(逸脱度)を説明するための概念図である。It is a conceptual diagram for explaining the route difference (deviation degree) of this embodiment. 本実施形態の管制システムの概念図である。It is a conceptual diagram of the control system of this embodiment. 本実施形態の切替閾値を説明するための概念図である。FIG. 2 is a conceptual diagram for explaining a switching threshold according to the present embodiment. 本実施形態の制御モードの切り替え処理の一例を示すフローチャートである。7 is a flowchart illustrating an example of control mode switching processing according to the present embodiment.

以下、本発明を実施するための形態として、本発明の一実施形態である車両制御装置1を、図を参照しつつ詳しく説明する。なお、本発明は、下記実施例の他、当業者の知識に基づいて種々の変更、改良を施した種々の形態で実施することができる。 EMBODIMENT OF THE INVENTION Hereinafter, as a form for carrying out the present invention, a vehicle control device 1 which is one embodiment of the present invention will be described in detail with reference to the drawings. In addition to the following embodiments, the present invention can be implemented in various forms with various modifications and improvements based on the knowledge of those skilled in the art.

本実施形態の車両制御装置1は、少なくとも1つのプロセッサと少なくとも1つのメモリを備える電子制御ユニット(ECU)又はコンピュータ(例えば車載コンピュータ)である。メモリには、各種プログラムや各種データが記憶されている。プロセッサは、メモリからプログラムを読み出して実行し、各種演算・制御を実行する。車両内の通信は、CAN(car area network or controllable area network)によって行われる。 The vehicle control device 1 of this embodiment is an electronic control unit (ECU) or a computer (for example, a vehicle-mounted computer) including at least one processor and at least one memory. The memory stores various programs and various data. The processor reads a program from memory and executes it to perform various calculations and controls. Communication within a vehicle is performed by CAN (car area network or controllable area network).

車両制御装置1は、目標走行経路を取得し、実際の自車両の走行経路と目標走行経路との差がなくなるように自車両を制御する自動運転制御と、運転者の操作に基づいて自車両を制御する手動運転制御とを切り替え可能に構成されている。つまり、車両制御装置1は、制御モードを手動運転制御から自動運転制御に切り替えることができる。 The vehicle control device 1 performs automatic driving control that acquires a target driving route and controls the own vehicle so that there is no difference between the actual driving route of the own vehicle and the target driving route, and controls the own vehicle based on the driver's operation. It is configured so that it can be switched between manual operation control and manual operation control. That is, the vehicle control device 1 can switch the control mode from manual driving control to automatic driving control.

目標走行経路は、例えば自車両の位置情報、地図データ、及び目的地の情報に基づいて演算される。自車両の位置情報は、例えばGNSS(Global Navigation Satellite System:全球測位衛星システム)の測位データである。目標走行経路の演算は、車両制御装置1で行われてもよいし、他の装置(例えば他の車載ECU又は車外の管制システム9等)で行われた後に車両制御装置1に送信されてもよい。なお、自動運転制御は、自車両の駆動力、制動力、及び転舵角を制御する制御でもよいし、転舵角(操舵)のみを制御する制御でもよい。制御における転舵角の目標値である目標転舵角は、目標走行経路(例えば目標走行経路の曲率等)に基づいて演算される。 The target travel route is calculated based on, for example, location information of the own vehicle, map data, and destination information. The position information of the own vehicle is, for example, positioning data of GNSS (Global Navigation Satellite System). The calculation of the target travel route may be performed by the vehicle control device 1, or may be performed by another device (for example, another in-vehicle ECU or a control system 9 outside the vehicle) and then transmitted to the vehicle control device 1. good. Note that the automatic driving control may be control that controls the driving force, braking force, and steering angle of the own vehicle, or may be control that only controls the steering angle (steering). The target steering angle, which is a target value of the steering angle in the control, is calculated based on the target travel route (for example, the curvature of the target travel route, etc.).

車両制御装置1は、機能として、経路差判定部11と、自動運転実行部12と、路面判定部13と、閾値変更部14と、を備えている。経路差判定部11は、目標走行経路と現在の自車両の走行経路との間の経路差が所定の切替閾値未満であるか否かを判定する。換言すると、経路差判定部11は、目標走行経路に対する現在の自車両の走行経路の逸脱度が所定の切替閾値未満であるか否かを判定する。制御モードの切り替え処理は、例えば運転者の切替操作(例えばスイッチ操作等)に基づいて実行される。運転者の切替操作により、車両制御装置1に切り替え指令が送信される。なお、経路差判定部11は、運転者の操作の有無にかかわらず、経路差に関する演算を実行してもよい。 The vehicle control device 1 includes a route difference determination section 11, an automatic driving execution section 12, a road surface determination section 13, and a threshold value change section 14 as functions. The route difference determination unit 11 determines whether the route difference between the target travel route and the current travel route of the host vehicle is less than a predetermined switching threshold. In other words, the route difference determination unit 11 determines whether the degree of deviation of the current travel route of the host vehicle from the target travel route is less than a predetermined switching threshold. The control mode switching process is executed, for example, based on a driver's switching operation (for example, a switch operation, etc.). A switching command is transmitted to the vehicle control device 1 by the driver's switching operation. Note that the route difference determination unit 11 may perform calculations regarding the route difference regardless of whether or not there is an operation by the driver.

経路差判定部11は、自車両の位置情報に基づいて、自車両の走行経路(例えば道路上における自車両の位置)を演算する。経路差判定部11は、例えば、現在と過去の自車両の位置から走行経路を演算してもよい。また、経路差判定部11は、自車両の走行経路として、現在の自車両の位置と自車両の状態(向き)を演算してもよい。経路差判定部11は、GNSSの測位データに基づいて自車両の位置を認識してもよいし、さらに周辺監視装置5の検出結果も利用して自車両の位置を認識してもよい。 The route difference determination unit 11 calculates the travel route of the own vehicle (for example, the position of the own vehicle on the road) based on the position information of the own vehicle. For example, the route difference determination unit 11 may calculate the travel route from the current and past positions of the host vehicle. Further, the route difference determination unit 11 may calculate the current position of the own vehicle and the state (orientation) of the own vehicle as the traveling route of the own vehicle. The route difference determination unit 11 may recognize the position of the own vehicle based on GNSS positioning data, or may further recognize the position of the own vehicle using the detection result of the surrounding monitoring device 5.

周辺監視装置5は、自車両の周辺を監視する装置であって、例えばライダー(LiDAR:Light Detection and Ranging, or Laser Imaging Detection and Ranging)を含んで構成されている。本実施形態の周辺監視装置5は、例えば、1つ以上のライダー、自車両の周辺を撮像する1つ以上のカメラ、及び自車両と自車両周辺の物体との距離を測定する1つ以上のレーダーを備えている。周辺監視装置5は、自車両と周辺の物体(例えば障害物や他の車両等)との位置関係を演算するために、自車両と自車両周辺の物体との距離を測定するための装置ともいえる。例えば、周辺監視装置5の検出結果と3次元地図データとに基づいて、より精度の良い自己位置の演算が可能となる。目標走行経路や自車両の位置は、周辺監視装置5の検出結果に基づいて、適宜演算され更新されてもよい。 The surroundings monitoring device 5 is a device that monitors the surroundings of the host vehicle, and includes, for example, a lidar (LiDAR: Light Detection and Ranging, or Laser Imaging Detection and Ranging). The surroundings monitoring device 5 of this embodiment includes, for example, one or more lidar, one or more cameras that capture images of the surroundings of the own vehicle, and one or more cameras that measure the distance between the own vehicle and objects around the own vehicle. It is equipped with a radar. The surroundings monitoring device 5 is also a device for measuring the distance between the own vehicle and objects around the own vehicle in order to calculate the positional relationship between the own vehicle and surrounding objects (for example, obstacles, other vehicles, etc.). I can say that. For example, based on the detection results of the surrounding monitoring device 5 and three-dimensional map data, it is possible to calculate the self-position with higher accuracy. The target travel route and the position of the own vehicle may be calculated and updated as appropriate based on the detection results of the surrounding monitoring device 5.

経路差判定部11は、例えば運転者のスイッチ操作により自動運転制御への切り替え指令(要求)を受けた際、目標走行経路と現在の自車両の走行経路との経路差を演算し、経路差と切替閾値とを比較する。経路差判定部11は、例えば、現在の自車両の位置と目標走行経路との最小離間距離に基づく値を、経路差として演算する。上記のように、経路差は、目標走行経路に対する自車両の走行経路の逸脱度に相当する。図2に示すように、逸脱度は、例えば、目標走行経路上の最小離間距離Zとなる点における目標走行経路の接線L1と、自車両の進行方向に平行な直線L2とが為す角度を偏角θと称すると、偏角θと最小離間距離Zとの関数で表すことができる。 For example, when receiving a command (request) to switch to automatic driving control by a driver's switch operation, the route difference determination unit 11 calculates the route difference between the target travel route and the current travel route of the own vehicle, and determines the route difference. and the switching threshold. The route difference determining unit 11 calculates, for example, a value based on the minimum separation distance between the current position of the host vehicle and the target travel route as the route difference. As described above, the route difference corresponds to the degree of deviation of the travel route of the host vehicle from the target travel route. As shown in FIG. 2, the degree of deviation is, for example, the angle between the tangent L1 of the target travel route at the point of the minimum separation distance Z on the target travel route and the straight line L2 parallel to the traveling direction of the own vehicle. The angle θ can be expressed as a function of the argument angle θ and the minimum separation distance Z.

自動運転実行部12は、制御モードを手動運転制御から自動運転制御に切り替える指令を受けた場合、経路差が切替閾値未満であれば、制御モードを手動運転制御から自動運転制御に切り替えて、自動運転制御を実行する。自動運転実行部12は、自動運転制御として、自車両の位置と目標走行経路に基づいて車両の駆動力、制動力、及び転舵角を制御する。例えば、自動操舵制御では、車両を目標走行経路に追従させるための追従制御が行われ、手動操舵制御から自動操舵制御への切り替えの際には、車両を目標走行経路に復帰させるための自動操舵が行われる。例えば、転舵角の指令値は、所定の応答性をもって実際の走行経路を目標走行経路に収束させるように計算される。 When the automatic driving execution unit 12 receives a command to switch the control mode from manual driving control to automatic driving control, if the route difference is less than the switching threshold, the automatic driving execution unit 12 switches the control mode from manual driving control to automatic driving control, and switches the control mode from manual driving control to automatic driving control. Execute operational control. The automatic driving execution unit 12 controls the driving force, braking force, and steering angle of the vehicle as automatic driving control based on the position of the own vehicle and the target travel route. For example, in automatic steering control, tracking control is performed to make the vehicle follow a target driving route, and when switching from manual steering control to automatic steering control, automatic steering is performed to return the vehicle to the target driving route. will be held. For example, the command value of the steering angle is calculated to cause the actual travel route to converge to the target travel route with a predetermined responsiveness.

自動運転実行部12は、制御モードを手動運転制御から自動運転制御に切り替える指令を受けた場合、経路差が切替閾値以上であれば、手動運転制御から自動運転制御への切り替えを禁止する。この場合、運転者の切替操作によっても、制御モードは手動運転制御で維持される。なお、自動運転実行部12は、経路差が切替閾値以上である場合、手動運転制御から自動運転制御に切り替えた後に、所定の応答性(通常時の応答性)よりも遅い応答性で、経路差が小さくなるように自動運転制御を実行してもよい(以下「徐変処理」ともいう)。自動運転実行部12は、転舵角を徐々に(ゆっくりと)目標転舵角に近づける。自動運転実行部12は、徐変処理において、転舵角の指令値を、実際の転舵角が目標転舵角に緩やかに近づくように、徐々に変化させる。 When the automatic driving execution unit 12 receives a command to switch the control mode from manual driving control to automatic driving control, if the route difference is greater than or equal to the switching threshold, the automatic driving execution unit 12 prohibits switching from manual driving control to automatic driving control. In this case, the control mode is maintained as manual driving control also by the driver's switching operation. Note that when the route difference is greater than or equal to the switching threshold, the automatic driving execution unit 12 changes the route with a response that is slower than a predetermined response (normal response) after switching from manual operation control to automatic operation control. Automatic operation control may be executed to reduce the difference (hereinafter also referred to as "gradual change processing"). The automatic driving execution unit 12 gradually (slowly) approaches the turning angle to the target turning angle. In the gradual change process, the automatic driving execution unit 12 gradually changes the command value of the turning angle so that the actual turning angle gradually approaches the target turning angle.

路面判定部13は、現在の走行路面の状態を判定する。本実施形態の路面判定部13は、走行路面が所定の轍又は凹凸路面を有する悪路であるか否かを判定する。路面判定の具体例について説明する。 The road surface determination unit 13 determines the current state of the road surface on which the vehicle is traveling. The road surface determination unit 13 of this embodiment determines whether the road surface the vehicle is traveling on is a rough road having predetermined ruts or uneven road surfaces. A specific example of road surface determination will be explained.

(路面判定の第1例)
路面判定部13は、目標走行経路又は目標転舵角に基づいて設定された、実転舵角に対する基準となる制御量を基準値として記憶している。制御量は、車両制御装置1が転舵モータ2に供給する制御電流の電流値(以下「アシスト電流値」ともいう)である。アシスト電流値は、電流センサ2aにより検出される。
(First example of road surface judgment)
The road surface determination unit 13 stores, as a reference value, a control amount that is set based on the target travel route or the target turning angle and is a reference for the actual turning angle. The control amount is a current value of a control current (hereinafter also referred to as "assist current value") that the vehicle control device 1 supplies to the steering motor 2. The assist current value is detected by the current sensor 2a.

転舵モータ2は、転舵輪(ここでは前輪)に転舵する力(以下「転舵アシスト力」ともいう)を付与する電気モータである。基準値は、目標走行経路又は目標転舵角に対応して予め設定されており、実転舵角に対して規範となるアシスト電流値であるといえる。換言すると、基準値は、車両が舗装路を走行している際における、実転舵角に対するアシスト電流値に相当する。 The steering motor 2 is an electric motor that applies a steering force (hereinafter also referred to as "steering assist force") to a steered wheel (here, a front wheel). The reference value is set in advance in correspondence with the target travel route or the target turning angle, and can be said to be an assist current value that becomes a standard for the actual turning angle. In other words, the reference value corresponds to the assist current value for the actual steering angle when the vehicle is traveling on a paved road.

路面判定部13は、前輪の実転舵角に対する実際の制御量の情報を取得する。路面判定部13は、実転舵角の時系列データとアシスト電流値の時系列データとを記憶する。路面判定部13は、自動運転制御中、基準値に対する実制御量の偏差である対基準偏差が所定の偏差閾値を超えた場合、路面に所定の轍又は凹凸ありと判定する。つまり、この場合、路面判定部13は、走行路面が悪路であると判定する。 The road surface determination unit 13 acquires information on the actual control amount for the actual steering angle of the front wheels. The road surface determination unit 13 stores time-series data of actual steering angles and time-series data of assist current values. During automatic driving control, the road surface determination unit 13 determines that the road surface has predetermined ruts or irregularities when the reference deviation, which is the deviation of the actual control amount from the reference value, exceeds a predetermined deviation threshold. That is, in this case, the road surface determination unit 13 determines that the road surface on which the vehicle is traveling is a rough road.

路面判定部13には、凹凸がない路面での実転舵角に対するアシスト電流値が基準値として設定されている。路面判定部13は、互いに同じ実転舵角に対するアシスト電流値である、基準値と軌道関連値(実制御量)との差を演算し、演算結果(対基準偏差)と偏差閾値とを比較する。 In the road surface determination section 13, an assist current value corresponding to an actual steering angle on a road surface without unevenness is set as a reference value. The road surface determination unit 13 calculates the difference between a reference value and a trajectory-related value (actual control amount), which are assist current values for the same actual steering angle, and compares the calculation result (deviation from the standard) with a deviation threshold. do.

自動運転実行部12は、例えばフィードバック制御により、実転舵角と目標転舵角との差が小さくなるように、アシスト電流値を設定する。したがって、自動運転実行部12は、路面の凹凸により実転舵角と目標転舵角との差が小さくならないと、アシスト電流値を大きくして、転舵アシスト力を大きくする。車両が轍を横切ろうとした場合、車両が平面状の路面を旋回している場合と比較して、転舵に対する路面抵抗が大きくなり、実転舵角に対するアシスト電流値は大きくなる。つまり、目標走行経路及び目標転舵角を達成させるにあたり、路面状態に応じてアシスト電流値及び転舵アシスト力に差が発生する。路面判定部13は、この原理を利用して路面状態を判定する。 The automatic driving execution unit 12 sets the assist current value using feedback control, for example, so that the difference between the actual turning angle and the target turning angle becomes small. Therefore, if the difference between the actual steering angle and the target steering angle does not become small due to the unevenness of the road surface, the automatic driving execution unit 12 increases the assist current value to increase the steering assist force. When the vehicle attempts to cross a rut, the road surface resistance to steering becomes greater than when the vehicle is turning on a flat road surface, and the assist current value relative to the actual steering angle becomes greater. That is, when achieving the target travel route and target turning angle, a difference occurs in the assist current value and the turning assist force depending on the road surface condition. The road surface determination unit 13 determines the road surface condition using this principle.

路面判定部13は、対基準偏差が偏差閾値以下である場合、凹凸なし(良路)と判定し、対基準偏差が偏差閾値を超えている場合、轍又は凹凸路面あり(悪路)と判定する。偏差閾値は、例えば大きめの轍を想定して設定されている。なお、路面の判定要素は、アシスト電流値でなく、転舵アシスト力(転舵モータ2のトルク)であってもよい。アシスト電流値と転舵アシスト力とは相関関係にある。転舵アシスト力を凹凸の判定要素とする場合、制御量は、制御電流が印加されることで生じる転舵モータ2が前輪を転舵する力(トルク)に相当する値といえる。 If the deviation from the standard is less than or equal to the deviation threshold, the road surface determination unit 13 determines that the road has no unevenness (good road), and if the deviation from the standard exceeds the deviation threshold, it determines that there are ruts or uneven road surface (bad road). do. The deviation threshold is set assuming, for example, large ruts. Note that the road surface determination factor may be the steering assist force (torque of the steering motor 2) instead of the assist current value. There is a correlation between the assist current value and the steering assist force. When the steering assist force is used as a determining factor for unevenness, the control amount can be said to be a value corresponding to the force (torque) with which the steering motor 2 steers the front wheels when a control current is applied.

(路面判定の第2例)
路面判定部13は、例えば、車輪速度センサ31により検出された車輪速度に基づいて、路面状態を判定してもよい。車両が悪路(所定の轍又は凹凸がある路面)を走行している際、舗装路を走行している際と比較して、各車輪の車輪速度は変動しやすい。したがって、路面判定部13は、例えば、所定時間内に、車輪速度の微分値が所定閾値を超えた回数が、所定の回数閾値以上となった場合、路面が悪路であると判定する。また、路面判定部13は、所定時間内に、車輪速度の時間差分値(一定時間毎の変化量)が所定閾値を超えた回数が所定の回数閾値以上となった場合、路面が悪路であると判定する。例えば、回数閾値が10回であり、所定時間内に、右前輪で5回、左前輪で1回、右後輪で1回、左後輪で3回、微分値又は時間差分値に関して上記状況が検出された場合、路面判定部13は、路面が悪路であると判定する。
(Second example of road surface judgment)
The road surface determination unit 13 may determine the road surface condition based on the wheel speed detected by the wheel speed sensor 31, for example. When a vehicle is traveling on a rough road (a road surface with predetermined ruts or uneven surfaces), the wheel speed of each wheel is more likely to fluctuate than when the vehicle is traveling on a paved road. Therefore, the road surface determination unit 13 determines that the road surface is a rough road, for example, when the number of times the differential value of the wheel speed exceeds the predetermined threshold value within a predetermined time period is equal to or greater than the predetermined number of times threshold value. In addition, the road surface determination unit 13 determines that the road surface is a rough road if the number of times that the time difference value of the wheel speed (the amount of change at each fixed time period) exceeds a predetermined threshold value within a predetermined time period is equal to or greater than a predetermined number of times threshold value. It is determined that there is. For example, if the number of times threshold is 10 times, and within a predetermined time, the right front wheel is used 5 times, the left front wheel is used once, the right rear wheel is used once, and the left rear wheel is used 3 times, the above situation regarding the differential value or time difference value. If detected, the road surface determining unit 13 determines that the road surface is a rough road.

(路面判定の第3例)
路面判定部13は、例えば、転舵モータ2に供給される制御電流のアシスト電流値(電流センサ2aの検出値)に基づいて、路面状態を判定してもよい。車両が悪路を走行している際、凹凸による車輪への入力が変動し、舗装路を走行している際と比較して、アシスト電流値は頻繁に変化する。したがって、路面判定部13は、例えば、所定時間内に、アシスト電流値の変化量が所定閾値以上となった回数が所定の回数閾値以上となった場合、路面が悪路であると判定する。なお、路面判定部13は、アシスト電流値に替えて、転舵アシスト力に基づいて路面状態を判定してもよい。
(Third example of road surface judgment)
The road surface determination unit 13 may determine the road surface condition, for example, based on the assist current value (detected value of the current sensor 2a) of the control current supplied to the steering motor 2. When a vehicle is traveling on a rough road, the input to the wheels due to unevenness varies, and the assist current value changes more frequently than when the vehicle is traveling on a paved road. Therefore, the road surface determination unit 13 determines that the road surface is a rough road, for example, when the number of times the amount of change in the assist current value becomes equal to or greater than a predetermined threshold value within a predetermined time period becomes equal to or greater than a predetermined number of times threshold value. Note that the road surface determination unit 13 may determine the road surface condition based on the steering assist force instead of the assist current value.

(路面判定の第4例)
路面判定部13は、例えば、サスペンションストロークセンサ32により検出されたサスペンションストロークに基づいて、路面状態を判定してもよい。車両が悪路を走行している際、舗装路を走行している際と比較して、サスペンションストロークは頻繁に変化する。したがって、路面判定部13は、例えば、所定時間内に、サスペンションストロークの変化量が所定閾値を超えた回数が、所定の回数閾値以上になった場合、路面が悪路であると判定する。
(Fourth example of road surface judgment)
The road surface determination unit 13 may determine the road surface condition based on the suspension stroke detected by the suspension stroke sensor 32, for example. When a vehicle is traveling on a rough road, the suspension stroke changes more frequently than when the vehicle is traveling on a paved road. Therefore, the road surface determination unit 13 determines that the road surface is a rough road, for example, when the number of times the amount of change in the suspension stroke exceeds the predetermined threshold value within a predetermined time period is equal to or greater than the predetermined number of times threshold value.

サスペンション装置は、例えば電子制御サスペンションであって、サスペンションストロークを保持しようとする保持制御を実行可能に構成されている。電子制御サスペンションの例としては、電子制御によって、ショックアブソーバの減衰力を調整するものや、空気圧又は油圧により硬さを調整するもの等が挙げられる。悪路において、保持制御は比較的頻繁に作動し、その制御量(例えば供給電流値)は比較的多く変動する。そこで、路面判定部13は、例えば保持制御における制御量に基づいて、制御量の変化量が所定閾値を超えた回数が所定の回数閾値以上になった場合、路面が悪路であると判定してもよい。 The suspension device is, for example, an electronically controlled suspension, and is configured to be able to perform holding control to maintain the suspension stroke. Examples of electronically controlled suspensions include those that use electronic control to adjust the damping force of a shock absorber, and those that use pneumatic or hydraulic pressure to adjust stiffness. On rough roads, the holding control operates relatively frequently, and its control amount (for example, the supplied current value) fluctuates relatively widely. Therefore, the road surface determination unit 13 determines that the road surface is a rough road when the number of times the amount of change in the control amount exceeds a predetermined threshold is equal to or greater than a predetermined number of times, based on the control amount in the holding control, for example. It's okay.

(路面判定の第5例)
また、路面判定部13は、上下加速度センサ33により検出された自車両の上下方向の加速度(以下「上下加速度」ともいう)に基づいて、路面状態を判定してもよい。この場合、路面判定部13は、例えば、所定時間内に、上下加速度が所定閾値を超えた回数が所定の回数閾値以上になった場合、路面が悪路であると判定する。判定要素は、上下加速度に限らず、同様の原理で、ロールレートセンサ34の検出値(ロールレート)や、ピッチレートセンサ35の検出値(ピッチレート)等であってもよい。
(Fifth example of road surface judgment)
Further, the road surface determination unit 13 may determine the road surface condition based on the vertical acceleration of the own vehicle (hereinafter also referred to as "vertical acceleration") detected by the vertical acceleration sensor 33. In this case, the road surface determination unit 13 determines that the road surface is a rough road, for example, when the number of times the vertical acceleration exceeds the predetermined threshold value within a predetermined time period is equal to or greater than the predetermined number of times threshold value. The determination element is not limited to the vertical acceleration, but may also be the detection value of the roll rate sensor 34 (roll rate), the detection value of the pitch rate sensor 35 (pitch rate), etc. based on the same principle.

(路面判定の第6例)
路面判定部13は、カメラ36により検出された乗員(例えば乗員の頭部)の揺れに基づいて、路面状態を判定してもよい。この場合、路面判定部13は、例えば、所定時間内に、乗員の揺れ量(例えば乗員の頭部の揺れ量)が所定閾値を超えた回数が、所定の回数閾値以上になった場合、路面が悪路であると判定する。また、路面判定部13は、圧力センサ37により検出されたシート(座席)に加わる圧力に基づいて、路面状態を判定してもよい。この場合、路面判定部13は、例えば、所定時間内に、圧力の変化量が所定閾値を超えた回数が回数閾値以上になった場合、路面が悪路であると判定する。路面判定部13は、所定時間内に、乗員の揺れ量及び圧力の変化量の少なくとも一方が、対応する所定閾値を超えた回数が、回数閾値以上になった場合、路面が悪路であると判定してもよい。車両の悪路走行時において、比較的、乗員の揺れ量は大きく且つ頻繁となり、シートに加わる圧力の変化量も大きく且つその変化も頻繁となる。上記のような路面判定で用いられる各種センサ及び装置2a、31~37は、車両の挙動又は乗員の挙動を検出する挙動検出装置であるといえる。
(6th example of road surface judgment)
The road surface determination unit 13 may determine the road surface condition based on the shaking of the occupant (for example, the occupant's head) detected by the camera 36. In this case, the road surface determination unit 13 determines whether the road surface is is determined to be a bad road. Further, the road surface determination unit 13 may determine the road surface condition based on the pressure applied to the seat detected by the pressure sensor 37. In this case, the road surface determination unit 13 determines that the road surface is a rough road, for example, when the number of times the amount of change in pressure exceeds a predetermined threshold value within a predetermined time period is equal to or greater than the number threshold value. The road surface determining unit 13 determines that the road surface is rough if the number of times that at least one of the amount of shaking of the occupant and the amount of change in pressure exceeds the corresponding predetermined threshold within a predetermined time is equal to or greater than the number threshold. You may judge. When the vehicle is traveling on rough roads, the amount of shaking of the occupant is relatively large and frequent, and the amount of change in the pressure applied to the seat is also large and frequent. The various sensors and devices 2a, 31 to 37 used in road surface determination as described above can be said to be behavior detection devices that detect the behavior of the vehicle or the behavior of the occupant.

(路面判定の第7例)
図3に示すように、路面判定部13は、例えば、車内のメモリ等に記憶された路面情報又は車外の管制システム9等に記憶された路面情報を取得し、現在の走行路面の状態を判定してもよい。例えば、車両制御装置1は、路面判定部13の判定結果を地図データと関連付けて記憶(すなわち地図上で路面判定位置が分かるように記憶)してもよいし、当該判定結果を管制システム9に送信してもよい。
(7th example of road surface judgment)
As shown in FIG. 3, the road surface determination unit 13 acquires, for example, road surface information stored in a memory inside the vehicle, or road surface information stored in a control system 9, etc. outside the vehicle, and determines the state of the current road surface. You may. For example, the vehicle control device 1 may store the determination result of the road surface determination unit 13 in association with map data (that is, store the determination result so that the road surface determination position can be seen on the map), or the vehicle control device 1 may store the determination result of the road surface determination section 13 in association with map data (that is, store the determination result so that the road surface determination position can be seen on the map), or the vehicle control device 1 may store the determination result of the road surface determination section 13 in association with map data (that is, store the determination result so that the road surface determination position can be seen on the map), or may store the determination result of the road surface determination section 13 in association with map data (that is, store the determination result so that the road surface determination position can be seen on the map). You can also send it.

管制システム9は、例えば、サーバとして機能するコンピュータであって、車外の施設内に配置されている。管制システム9は、複数の車両と無線通信機及び通信ネットワークを介して通信可能に構成されている。管制システム9は、例えば、複数の車両から路面情報を取得し、地図データと関連付けて記憶する。管制システム9は、例えば、自車両の位置情報及び路面状態の判定結果(例えば最新の判定結果)に基づいて、目標走行経路上の道路の路面情報(例えば現在の走行路面及び/又は今後走行する走行路面の情報)を、車両制御装置1が設けられた各車両に送信する。この構成によれば、予め悪路での走行の有無が判定できる。なお、道路が整地された場合に、その情報が管制システム9に送信され、路面情報が更新されるように構成されてもよい。 The control system 9 is, for example, a computer that functions as a server, and is placed in a facility outside the vehicle. The control system 9 is configured to be able to communicate with a plurality of vehicles via a wireless communication device and a communication network. For example, the control system 9 acquires road surface information from a plurality of vehicles and stores it in association with map data. For example, the control system 9 uses road surface information of the road on the target travel route (for example, the current road surface and/or the road surface on which the vehicle will be traveling in the future) based on the position information of the host vehicle and the determination result of the road surface condition (for example, the latest determination result). information on the driving road surface) is transmitted to each vehicle equipped with the vehicle control device 1. According to this configuration, it is possible to determine in advance whether or not the vehicle is traveling on a rough road. Note that when a road is leveled, the information may be transmitted to the control system 9 and the road surface information may be updated.

(切替閾値の変更)
閾値変更部14は、路面判定部13の判定結果に基づいて、制御モードを手動運転制御から自動運転制御に切り替えるための切替閾値を変更する。本実施形態の閾値変更部14は、路面判定部13により走行路面が悪路でないと判定されている場合、切替閾値を所定値(例えば初期値)に設定し、路面判定部13により走行路面が悪路であると判定されている場合、切替閾値を所定値よりも小さい値に設定する。
(Change of switching threshold)
The threshold value changing unit 14 changes the switching threshold value for switching the control mode from manual driving control to automatic driving control based on the determination result of the road surface determining unit 13. The threshold changing unit 14 of the present embodiment sets the switching threshold to a predetermined value (for example, an initial value) when the road surface determining unit 13 determines that the driving road surface is not a rough road. If it is determined that the road is rough, the switching threshold is set to a value smaller than a predetermined value.

切替閾値が小さいほど制御モードの切り替えは禁止されやすい。換言すると、切替閾値が大きいほど制御モードの切り替えは許可されやすい。走行路面が悪路である場合、走行路面が良路である場合(通常時)と比較して、車両の挙動が乱れやすい。したがって、走行路面が悪路であるほど、制御モードの切り替えが禁止されやすくなることが好ましい。これにより、挙動が乱れる経路差で切り替えが許可されることを抑制することができる。 The smaller the switching threshold value is, the more likely it is that switching of the control mode will be prohibited. In other words, the larger the switching threshold value is, the more likely switching of the control mode is permitted. When the road surface is rough, the behavior of the vehicle is more likely to be disturbed than when the road surface is good (normal conditions). Therefore, it is preferable that the worse the road surface is, the more likely it is that switching of the control mode will be prohibited. Thereby, it is possible to prevent switching from being permitted due to a route difference that would disrupt behavior.

例えば図4に示すように、車両制御装置1によれば、同じ経路差Xでも、良路を走行している車両C1に対しては経路差Xが切替閾値未満であるため切り替えが許可され、悪路を走行している車両C2に対しては経路差Xが切替閾値以上であるため切り替えが禁止される。 For example, as shown in FIG. 4, according to the vehicle control device 1, even if the route difference X is the same, switching is permitted for the vehicle C1 traveling on a good road because the route difference X is less than the switching threshold, Switching is prohibited for vehicle C2 traveling on a rough road because route difference X is greater than or equal to the switching threshold.

なお、路面判定部13が、走行路面を、例えば、良路、小悪路、悪路のように3段階以上で評価する場合、閾値変更部14は、当該評価に応じて切替閾値を変更してもよい。例えば、閾値変更部14は、走行路面が良路である場合に切替閾値を第1所定値に設定し、走行路面が小悪路である場合に切替閾値を第1所定値よりも小さい第2所定値に設定し、走行路面が悪路である場合に切替閾値を第2所定値よりも小さい第3所定値に設定してもよい。また、例えば、閾値変更部14は、走行路面が良路である場合に切替閾値を初期値よりも大きくし、走行路面が小悪路である場合に切替閾値を初期値に設定し、走行路面が悪路である場合に切替閾値を初期値よりも小さくしてもよい。 Note that when the road surface determination section 13 evaluates the driving road surface in three or more stages, such as good road, slightly bad road, and bad road, the threshold value changing section 14 changes the switching threshold according to the evaluation. It's okay. For example, the threshold changing unit 14 sets the switching threshold to a first predetermined value when the road surface is a good road, and sets the switching threshold to a second predetermined value smaller than the first predetermined value when the road surface is a slightly rough road. The switching threshold may be set to a predetermined value, and when the road surface is rough, the switching threshold may be set to a third predetermined value smaller than the second predetermined value. For example, the threshold changing unit 14 sets the switching threshold to be larger than the initial value when the driving road surface is a good road, sets the switching threshold to the initial value when the driving road surface is a slightly rough road, and sets the switching threshold to the initial value when the driving road surface is a slightly rough road. The switching threshold may be set smaller than the initial value when the road is rough.

制御モードを手動運転制御から自動運転制御に切り替える切り替え処理の流れの一例について、図5を参照して説明する。運転者により制御モードを自動運転制御に切り替える操作(例えばスイッチ操作)がなされた場合、すなわち切り替え指令を受けた場合、車両制御装置1は、自動運転制御中であるか否かを判定する(S1)。制御モードが自動運転制御である場合(S1:Yes)、車両制御装置1は、自動運転制御を継続する。 An example of the flow of a switching process for switching the control mode from manual operation control to automatic operation control will be described with reference to FIG. 5. When the driver performs an operation (for example, a switch operation) to switch the control mode to automatic driving control, that is, when a switching command is received, the vehicle control device 1 determines whether automatic driving control is in progress (S1 ). When the control mode is automatic driving control (S1: Yes), vehicle control device 1 continues automatic driving control.

制御モードが自動運転制御でない場合(S1:No)すなわち制御モードが手動運転制御である場合、車両制御装置1は、現在の走行経路と目標走行経路との経路差を演算する(S2)。車両制御装置1は、例えば上記第1例~第7例のような路面判定を実行し(S3)、走行路面が悪路であるか否かを判定する(S4)。現在の走行路面が悪路である場合(S4:Yes)、車両制御装置1は切替閾値を初期値よりも小さくする(S5)。現在の走行路面が悪路でない場合(S4:No)、車両制御装置1は切替閾値を初期値に設定する(S6)。続いて、車両制御装置1は、経路差が切替閾値未満であるか否かを判定する(S7)。 When the control mode is not automatic driving control (S1: No), that is, when the control mode is manual driving control, the vehicle control device 1 calculates the route difference between the current driving route and the target driving route (S2). The vehicle control device 1 executes the road surface determination as in the first to seventh examples described above (S3), and determines whether the road surface on which the vehicle is traveling is a rough road (S4). If the current road surface is a rough road (S4: Yes), the vehicle control device 1 makes the switching threshold smaller than the initial value (S5). If the current road surface is not a rough road (S4: No), the vehicle control device 1 sets the switching threshold to the initial value (S6). Subsequently, the vehicle control device 1 determines whether the route difference is less than the switching threshold (S7).

経路差が切替閾値未満である場合(S7:Yes)、車両制御装置1は、制御モードの切り替えを許可し(S8)、自動運転制御を開始する(S9)。経路差が切替閾値以上である場合(S7:No)、車両制御装置1は、制御モードの切り替えを禁止し(S10)、手動運転制御を継続する(S11)。なお、経路差が切替閾値以上である場合(S7:No)、車両制御装置1は、S10及びS11に替えて、自動運転制御における徐変処理を開始してもよい。 If the route difference is less than the switching threshold (S7: Yes), the vehicle control device 1 permits switching of the control mode (S8) and starts automatic driving control (S9). If the route difference is equal to or greater than the switching threshold (S7: No), the vehicle control device 1 prohibits switching of the control mode (S10) and continues manual driving control (S11). Note that when the route difference is equal to or greater than the switching threshold (S7: No), the vehicle control device 1 may start a gradual change process in automatic driving control instead of S10 and S11.

また、例えば、車両制御装置1は、運転者のスイッチ操作の有無にかかわらず、切り替えに関する判定処理(S1~S8、S10)を所定時間毎に実行してもよい。例えば車両制御装置1が手動運転制御中に常時切り替えの可否を判定しておくことで、運転者のスイッチ操作に対して応答性良く制御モードを切り替えることができる。このように、車両制御装置1は、手動運転制御中、車両状態が切り替え許可状態と切り替え禁止状態(又は徐変開始状態)の何れの状態であるかを、所定時間毎に(常時)判定してもよい。車両制御装置1は、制御モードの自動運転制御に切り替える指令を受ける前でも後でも、路面判定と経路差判定を実行することができる。 Further, for example, the vehicle control device 1 may execute the determination process regarding switching (S1 to S8, S10) at predetermined time intervals regardless of whether or not the driver operates the switch. For example, if the vehicle control device 1 constantly determines whether switching is possible during manual driving control, the control mode can be switched with good responsiveness to the driver's switch operation. In this way, during manual driving control, the vehicle control device 1 determines at predetermined time intervals (at all times) whether the vehicle state is in the switching permission state or the switching prohibition state (or gradual change start state). It's okay. The vehicle control device 1 can perform road surface determination and route difference determination both before and after receiving a command to switch the control mode to automatic driving control.

(本実施形態の効果)
本実施形態によれば、走行路面の状態に応じて、制御モードの切り替えのための切替閾値が変更される。これにより、路面状態に適した切替閾値を設定することができる。本実施形態によれば、悪路走行時には、切替閾値が相対的に小さくなることで、自動運転制御への切り替えが禁止されやすくなる。これにより、制御モードの切り替えに伴う車両挙動の乱れの発生は抑制される。このように、本実施形態によれば、路面状態を考慮して、より適切に制御モードを手動運転制御から自動運転制御に切り替えることができる。
(Effects of this embodiment)
According to this embodiment, the switching threshold for switching the control mode is changed depending on the state of the road surface. Thereby, a switching threshold suitable for the road surface condition can be set. According to the present embodiment, when the vehicle is traveling on a rough road, the switching threshold becomes relatively small, so that switching to automatic driving control is more likely to be prohibited. This suppresses the occurrence of disturbances in vehicle behavior due to switching of control modes. In this manner, according to the present embodiment, the control mode can be more appropriately switched from manual driving control to automatic driving control in consideration of the road surface condition.

本実施形態によれば、路面判定部13は、自車両の挙動又は乗員の挙動を検出する挙動検出装置の検出結果に基づいて、走行路面の状態を判定する。挙動検出装置は、車輪を転舵する転舵モータ2に供給される電流を検出する電流センサ2a、車輪速度センサ31、サスペンションストロークセンサ32、上下加速度センサ33、ロールレートセンサ34、ピッチレートセンサ35、乗員の挙動を検出するカメラ36、及び乗員の座席に設けられた圧力センサ37の少なくとも1つである。路面判定部13は、目標走行経路に基づいて設定された実転舵角に対する転舵モータ2の基準となる制御量を基準値として予め記憶し、実転舵角に対する転舵モータ2の実際の制御量を検出し、基準値に対する実際の制御量の偏差である対基準偏差に基づいて、走行路面の状態を判定してもよい。このように、各種センサ等の検出値に基づいて、路面状態を判定することで、現在の路面状態を直接的に検出することができる。また、路面判定部13は、複数の車両から路面情報を取得する管制システム9から送信された路面情報に基づいて、走行路面の状態を判定してもよい。複数の車両の検出データに基づく蓄積データを利用することで、路面判定部13は、現在の走行路面だけでなく、将来走行する走行路面の状態も予め判定することができる。 According to the present embodiment, the road surface determination unit 13 determines the state of the road surface on which the vehicle is traveling based on the detection result of the behavior detection device that detects the behavior of the own vehicle or the behavior of the occupant. The behavior detection device includes a current sensor 2a that detects the current supplied to the steering motor 2 that steers the wheels, a wheel speed sensor 31, a suspension stroke sensor 32, a vertical acceleration sensor 33, a roll rate sensor 34, and a pitch rate sensor 35. , a camera 36 that detects the occupant's behavior, and a pressure sensor 37 provided in the occupant's seat. The road surface determination unit 13 stores in advance a reference control amount of the steering motor 2 with respect to the actual steering angle set based on the target travel route as a reference value, and calculates the actual control amount of the steering motor 2 with respect to the actual steering angle. The control amount may be detected, and the state of the road surface may be determined based on a deviation from a reference value, which is a deviation of the actual control amount from a reference value. In this way, the current road surface condition can be directly detected by determining the road surface condition based on the detected values of various sensors and the like. Further, the road surface determination unit 13 may determine the state of the road surface on which the vehicle is traveling based on road surface information transmitted from the control system 9 that acquires road surface information from a plurality of vehicles. By using accumulated data based on detection data of a plurality of vehicles, the road surface determination unit 13 can determine in advance the state of not only the current road surface but also the road surface on which the vehicle will be traveling in the future.

(その他)
本発明は、上記実施形態に限られない。例えば、閾値変更部14は、走行路面の凹凸の度合い(悪路の度合い)に応じて、切替閾値を変更してもよい。つまり、路面判定部13は、例えば上記複数の路面判定の例における検出値に基づいて、走行路面の凹凸レベルを判定してもよい。路面判定部13は、例えば、車輪速度の変化量の大小に応じて凹凸レベルを決定してもよい。例えば路面判定の第2例において、車輪速度の変化量が所定の第2閾値(第2閾値>所定閾値)を超えた回数が、回数閾値以上となった場合、走行路面が凹凸レベル2(レベル数が大きいほど大きな凹凸の路面を意味する)の悪路であると判定する。閾値変更部14は、走行路面が凹凸レベル2の悪路であると判定された場合、凹凸レベル1の悪路と判定された場合よりも、切替閾値の減少度を大きくする。つまり、この場合、閾値変更部14は、切替閾値をより小さい値に変更する。これにより、より荒れた道路では、制御モードの自動運転制御への切り替えは禁止されやすくなり、車両挙動の乱れ発生は抑制される。このように、路面判定部13は、走行路面の凹凸レベルを演算し、閾値変更部14は、凹凸レベルに応じて切替閾値を変更してもよい。なお、凹凸レベルは、例えば、車輪速度の基準値との差、又は車輪速度の微分値(加速度)の基準値との差が大きいほど大きくなるように演算されてもよい。
(others)
The present invention is not limited to the above embodiments. For example, the threshold value changing unit 14 may change the switching threshold value depending on the degree of unevenness of the driving road surface (degree of rough road). That is, the road surface determination unit 13 may determine the unevenness level of the traveling road surface, for example, based on the detected values in the plurality of road surface determination examples described above. The road surface determination unit 13 may determine the unevenness level depending on the amount of change in wheel speed, for example. For example, in the second example of road surface determination, if the number of times the amount of change in wheel speed exceeds a predetermined second threshold (second threshold>predetermined threshold) is equal to or greater than the number threshold, the driving road surface is at unevenness level 2 (level 2). The higher the number, the more uneven the road surface.) It is determined that the road is rough. When the driving road surface is determined to be a rough road with unevenness level 2, the threshold value changing unit 14 increases the degree of reduction of the switching threshold value than when it is determined that the driving road surface is a rough road with unevenness level 1. That is, in this case, the threshold value changing unit 14 changes the switching threshold value to a smaller value. As a result, switching the control mode to automatic driving control is more likely to be prohibited on rougher roads, and the occurrence of disturbances in vehicle behavior is suppressed. In this way, the road surface determining section 13 may calculate the unevenness level of the traveling road surface, and the threshold value changing section 14 may change the switching threshold according to the unevenness level. Note that the level of unevenness may be calculated such that, for example, the larger the difference between the wheel speed and the reference value or the difference between the differential value (acceleration) of the wheel speed and the reference value is, the larger the unevenness level becomes.

自車両の位置の演算は、GPSデータに基づいて行われてもよい。挙動検出装置は、上記以外であってもよく、例えば転舵モータ2の回転角センサ、ヨーレートセンサ、前後加速度センサ、又は横加速度センサ等であってもよい。 The position of the own vehicle may be calculated based on GPS data. The behavior detection device may be other than the above, and may be, for example, a rotation angle sensor of the steering motor 2, a yaw rate sensor, a longitudinal acceleration sensor, a lateral acceleration sensor, or the like.

1…車両制御装置、11…経路差判定部、12…自動運転実行部、13…路面判定部、14…閾値変更部、2…転舵モータ、2a…電流センサ、31…車輪速度センサ、32…サスペンションストロークセンサ、33…上下加速度センサ、34…ロールレートセンサ、35…ピッチレートセンサ、36…カメラ、37…圧力センサ、9…管制システム。 DESCRIPTION OF SYMBOLS 1...Vehicle control device, 11...Route difference determination unit, 12...Automatic driving execution unit, 13...Road surface determination unit, 14...Threshold value changing unit, 2...Steering motor, 2a...Current sensor, 31...Wheel speed sensor, 32 ... Suspension stroke sensor, 33... Vertical acceleration sensor, 34... Roll rate sensor, 35... Pitch rate sensor, 36... Camera, 37... Pressure sensor, 9... Control system.

Claims (9)

目標走行経路を取得し、実際の自車両の走行経路と前記目標走行経路との差がなくなるように自車両を制御する自動運転制御と、運転者の操作に基づいて自車両を制御する手動運転制御とを切り替え可能に構成された車両制御装置であって、
前記目標走行経路と現在の自車両の走行経路との間の経路差が所定の切替閾値未満であるか否かを判定する経路差判定部と、
制御モードを前記手動運転制御から前記自動運転制御に切り替える指令を受けた場合、前記経路差が前記切替閾値未満であれば、前記制御モードを前記手動運転制御から前記自動運転制御に切り替えて、前記自動運転制御を実行する自動運転実行部と、
現在の走行路面の状態を判定する路面判定部と、
前記路面判定部の判定結果に基づいて、前記切替閾値を変更する閾値変更部と、
を備える、車両制御装置。
Automatic driving control that acquires a target driving route and controls the own vehicle so that there is no difference between the actual driving route of the own vehicle and the target driving route, and manual driving that controls the own vehicle based on the driver's operations. A vehicle control device configured to be able to switch between control and control,
a route difference determination unit that determines whether a route difference between the target travel route and the current travel route of the host vehicle is less than a predetermined switching threshold;
When receiving a command to switch the control mode from the manual operation control to the automatic operation control, if the route difference is less than the switching threshold, switch the control mode from the manual operation control to the automatic operation control, and an automatic operation execution unit that executes automatic operation control;
a road surface determination unit that determines the condition of the current road surface;
a threshold changing unit that changes the switching threshold based on the determination result of the road surface determining unit;
A vehicle control device comprising:
前記路面判定部は、前記走行路面が所定の轍又は凹凸路面を有する悪路であるか否かを判定し、
前記閾値変更部は、
前記路面判定部により前記走行路面が前記悪路でないと判定されている場合、前記切替閾値を所定値に設定し、
前記路面判定部により前記走行路面が前記悪路であると判定されている場合、前記切替閾値を前記所定値よりも小さい値に設定する、
請求項1に記載の車両制御装置。
The road surface determining unit determines whether the traveling road surface is a rough road having predetermined ruts or uneven road surfaces;
The threshold value changing unit is
If the road surface determining unit determines that the driving road surface is not the rough road, setting the switching threshold to a predetermined value;
If the road surface determining unit determines that the road surface is the rough road, setting the switching threshold to a value smaller than the predetermined value;
The vehicle control device according to claim 1.
前記自動運転実行部は、前記制御モードを前記手動運転制御から前記自動運転制御に切り替える指令を受けた場合、前記経路差が前記切替閾値以上であれば、前記手動運転制御から前記自動運転制御への切り替えを禁止する、
請求項1又は2に記載の車両制御装置。
When the automatic driving execution unit receives a command to switch the control mode from the manual driving control to the automatic driving control, if the route difference is greater than or equal to the switching threshold, the automatic driving execution unit switches the control mode from the manual driving control to the automatic driving control. prohibit switching of
The vehicle control device according to claim 1 or 2.
前記自動運転実行部は、前記制御モードを前記手動運転制御から前記自動運転制御に切り替える指令を受けた場合、
前記経路差が前記切替閾値未満であれば、所定の応答性で、前記経路差が小さくなるように前記自動運転制御を実行し、
前記経路差が前記切替閾値以上であれば、前記手動運転制御から前記自動運転制御に切り替えた後に、前記所定の応答性よりも遅い応答性で、前記経路差が小さくなるように前記自動運転制御を実行する、
請求項1又は2に記載の車両制御装置。
When the automatic driving execution unit receives a command to switch the control mode from the manual driving control to the automatic driving control,
If the route difference is less than the switching threshold, the automatic driving control is executed with predetermined responsiveness so that the route difference becomes small;
If the route difference is greater than or equal to the switching threshold, after switching from the manual operation control to the automatic operation control, the automatic operation control is performed so that the route difference is reduced with a response that is slower than the predetermined response. execute,
The vehicle control device according to claim 1 or 2.
前記路面判定部は、自車両の挙動又は乗員の挙動を検出する挙動検出装置の検出結果に基づいて、前記走行路面の状態を判定する、
請求項1~4の何れか一項に記載の車両制御装置。
The road surface determining unit determines the state of the traveling road surface based on a detection result of a behavior detection device that detects the behavior of the host vehicle or the behavior of the occupant.
The vehicle control device according to any one of claims 1 to 4.
前記挙動検出装置は、車輪を転舵する転舵モータに供給される電流を検出する電流センサ、車輪速度センサ、サスペンションストロークセンサ、上下方向の加速度を検出する上下加速度センサ、ロールレートセンサ、ピッチレートセンサ、乗員の挙動を検出するカメラ、及び乗員の座席に設けられた圧力センサの少なくとも1つである、
請求項5に記載の車両制御装置。
The behavior detection device includes a current sensor that detects current supplied to a steering motor that steers wheels, a wheel speed sensor, a suspension stroke sensor, a vertical acceleration sensor that detects acceleration in the vertical direction, a roll rate sensor, and a pitch rate sensor. at least one of a sensor, a camera that detects the behavior of the occupant, and a pressure sensor provided in the occupant's seat;
The vehicle control device according to claim 5.
車輪を転舵する転舵モータを備え、
前記路面判定部は、前記目標走行経路に基づいて設定された実転舵角に対する前記転舵モータの基準となる制御量を基準値として予め記憶し、前記実転舵角に対する前記転舵モータの実際の制御量を検出し、前記基準値に対する前記実際の制御量の偏差である対基準偏差に基づいて、前記走行路面の状態を判定する、
請求項1~5の何れか一項に記載の車両制御装置。
Equipped with a steering motor that steers the wheels,
The road surface determination section stores in advance a reference control amount of the steering motor with respect to the actual steering angle set based on the target travel route as a reference value, and determines the control amount of the steering motor with respect to the actual steering angle. detecting an actual control amount and determining the state of the road surface based on a reference deviation that is a deviation of the actual control amount from the reference value;
The vehicle control device according to any one of claims 1 to 5.
前記路面判定部は、複数の車両から路面情報を取得する管制システムから送信された路面情報に基づいて、前記走行路面の状態を判定する、
請求項1~7の何れか一項に記載の車両制御装置。
The road surface determination unit determines the state of the traveling road surface based on road surface information transmitted from a control system that acquires road surface information from a plurality of vehicles.
The vehicle control device according to any one of claims 1 to 7.
前記路面判定部は、前記走行路面の凹凸レベルを演算し、
前記閾値変更部は、前記凹凸レベルに応じて前記切替閾値を変更する、
請求項1~8の何れか一項に記載の車両制御装置。
The road surface determination unit calculates the unevenness level of the traveling road surface,
The threshold value changing unit changes the switching threshold according to the unevenness level.
The vehicle control device according to any one of claims 1 to 8.
JP2022040157A 2022-03-15 2022-03-15 Vehicle control device Pending JP2023135115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022040157A JP2023135115A (en) 2022-03-15 2022-03-15 Vehicle control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022040157A JP2023135115A (en) 2022-03-15 2022-03-15 Vehicle control device

Publications (1)

Publication Number Publication Date
JP2023135115A true JP2023135115A (en) 2023-09-28

Family

ID=88144087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022040157A Pending JP2023135115A (en) 2022-03-15 2022-03-15 Vehicle control device

Country Status (1)

Country Link
JP (1) JP2023135115A (en)

Similar Documents

Publication Publication Date Title
US10429848B2 (en) Automatic driving system
CN101674965B (en) Vehicle behavior controller
US7363135B2 (en) Steering haptic feedback system for vehicle active safety
EP2106989B1 (en) Vehicle device for preventing the leaving of the driving lane
US10106167B2 (en) Control system and method for determining an irregularity of a road surface
JP2021503402A (en) How to control the steering system of a vehicle
US20210214001A1 (en) An apparatus and a method for controlling steering
JP6748619B2 (en) Vehicle control device, vehicle control method, and vehicle control system
EP3883840B1 (en) Steering assist method and apparatus
US20230037472A1 (en) Vehicle control system and method
JP2020506837A (en) Reduction of lateral position deviation while changing lanes
CN114364590A (en) Device for predictive control of the movement of a motor vehicle
US20220266903A1 (en) Vehicle control method, vehicle control system, and vehicle
US11345343B2 (en) Controller and method for controlling the driving direction of a vehicle
US20080275607A1 (en) Method for Operating an Active Chassis System
JP7173371B2 (en) Driving support device override determination method and driving support device
JP7268990B2 (en) Vehicle automatic steering controller
JP2023135115A (en) Vehicle control device
GB2574393A (en) An apparatus and a method for controlling steering
US12030569B2 (en) Apparatus and a method for controlling steering
GB2574392A (en) An apparatus and a method for controlling steering
US20230256989A1 (en) Vehicle control device
KR102548057B1 (en) Method and control device for lateral guidance of a vehicle during subsequent driving
GB2615203A (en) Vehicle control system and method
JP2024000226A (en) Moving-body control system and moving-body control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240411