WO2019244219A1 - Air conditioning system, air conditioning method, control device, and program - Google Patents

Air conditioning system, air conditioning method, control device, and program Download PDF

Info

Publication number
WO2019244219A1
WO2019244219A1 PCT/JP2018/023161 JP2018023161W WO2019244219A1 WO 2019244219 A1 WO2019244219 A1 WO 2019244219A1 JP 2018023161 W JP2018023161 W JP 2018023161W WO 2019244219 A1 WO2019244219 A1 WO 2019244219A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermal image
measuring device
air conditioner
heat
temperature
Prior art date
Application number
PCT/JP2018/023161
Other languages
French (fr)
Japanese (ja)
Inventor
遠藤 弘明
正裕 石原
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2020525100A priority Critical patent/JP6914442B2/en
Priority to PCT/JP2018/023161 priority patent/WO2019244219A1/en
Publication of WO2019244219A1 publication Critical patent/WO2019244219A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing

Definitions

  • the present invention relates to an air conditioning system, an air conditioning method, a control device, and a program.
  • air conditioning is performed based on a measuring device that measures one or more of temperature and humidity of an air-conditioned space, one or more of temperature and humidity measured by the measuring device, and a position of the measuring device.
  • a measuring device that measures one or more of temperature and humidity of an air-conditioned space, one or more of temperature and humidity measured by the measuring device, and a position of the measuring device.
  • Patent Document 1 A system including an air conditioner for conditioning air in a space is known (for example, see Patent Document 1).
  • the measurement device of this system detects the electromagnetic wave emitted from the air conditioner, it transmits information indicating the detection intensity of the electromagnetic wave to the air conditioner, and the air conditioner reduces the detection intensity represented by the received information. Based on this, the distance from the air conditioner to the measuring device is detected.
  • the detection intensity of the electromagnetic wave changes under the influence of the environment such as the number of people staying in the air-conditioned space and the staying position. For this reason, in the system disclosed in Patent Literature 1, the distance from the air conditioner to the measuring device cannot be accurately specified, and thus the position of the measuring device cannot be accurately specified.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide an air conditioning system capable of accurately specifying the position of a measuring device that measures one or more of the temperature and humidity of an air-conditioned space; An object of the present invention is to provide an air conditioning method, a control device, and a program.
  • a measuring device that includes a measuring unit that measures one or more of the temperature and the humidity of the air-conditioned space, and a heating unit that generates heat
  • a first air conditioner comprising: a first radiation sensor that measures radiant heat generated by heat generated by the heat generating unit; and a first thermal image generating unit that generates a first thermal image based on a measurement result of the first radiation sensor.
  • a second air conditioner comprising: a second radiation sensor that measures radiant heat generated by the heat generated by the heat generating unit; and a second thermal image generating unit that generates a second thermal image based on a measurement result of the second radiation sensor.
  • the position of the measurement device is specified and specified based on the first thermal image generated by the first thermal image generating means and the second thermal image generated by the second thermal image generating means.
  • a control device that controls the first air conditioner and the second air conditioner based on the position of the measurement device and any one or more of the temperature and the humidity measured by the measurement device. , Is provided.
  • the position of the measuring device that measures at least one of the temperature and the humidity of the conditioned space can be specified with high accuracy.
  • circuit diagram showing an example of a heating section 4 is a flowchart illustrating an example of a heat generation control process performed by the first measurement device.
  • FIG. 4 is a flowchart illustrating an example of a position specifying process performed by the control device.
  • Functional block diagram illustrating an example of a function of the control device FIG. 4 is a diagram illustrating an example of a pixel value table stored by a control device.
  • the figure showing an example of the installation status table stored by the control device The figure showing an example of the specific position table stored by the control device 4 is a flowchart illustrating an example of a detection process performed by the control device. Flow chart showing an example of a straight line specifying process executed by the control device Flow chart showing an example of an air conditioning control process executed by the control device. The figure showing the example of 1 structure of the air conditioning system which concerns on the modification 1 of embodiment. The figure showing an example of the 1st straight line, the 2nd straight line, and the 3rd straight line
  • the air conditioning system 1 shown in FIG. 1 is installed in, for example, an office building, and conditioned the air in an air conditioning space S such as an office space, a corridor, and a toilet.
  • an air conditioning space S such as an office space, a corridor, and a toilet.
  • the air conditioning system 1 uses a first measuring device 110 and a second measuring device 120 that measure the temperature and humidity of the air-conditioned space S, an outdoor unit 200 that heats or cools a refrigerant used for adjusting the temperature and humidity, and a refrigerant.
  • the air conditioner includes a first air conditioner (hereinafter, referred to as a first air conditioner) 210 and a second air conditioner (hereinafter, referred to as a second air conditioner) 220 that are indoor units that adjust the temperature and humidity of the air-conditioned space S.
  • the air-conditioning system 1 includes the temperature and the humidity measured by the first measuring device 110, the temperature and the humidity measured by the second measuring device 120, the positions of the first measuring device 110 and the second measuring device 120, And a control device 900 for controlling the first air conditioner 210 and the second air conditioner 220 based on
  • the first measuring device 110 is installed on, for example, a wall surface of an office space or a desk, and notifies the control device 900 of the installed position by emitting far-infrared rays due to heat generation. For this reason, the first measuring device 110 executes various programs including a program for controlling heat generation, a CPU (Central Processing Unit) 111 of FIG. 2, a ROM (Read Only Memory) 112 for storing various programs, and A flash memory 113 and a RAM (Random Access Memory) 114 used as a work area when executing various programs are provided.
  • a program for controlling heat generation a CPU (Central Processing Unit) 111 of FIG. 2
  • ROM Read Only Memory
  • a flash memory 113 and a RAM (Random Access Memory) 114 used as a work area when executing various programs are provided.
  • the first measuring device 110 includes the heat generating unit 115 shown in FIG. 3 that generates heat in accordance with a signal input from the CPU 111.
  • the heating unit 115 is an example of a heating unit according to the present invention.
  • the signals of the CPU 111 input to the heat generating unit 115 include a signal SH for instructing heat generation at the temperature TH, a signal SM for instructing heat generation at a temperature TM lower than the temperature TH, and heat generation at a temperature TL lower than the temperature TM. And a signal SS for instructing to stop heat generation.
  • Suitable temperature TH, temperature TM, and temperature TL can be experimentally determined by those skilled in the art.
  • the heating unit 115 includes a switch SW having a terminal P0 connected to the power supply PW, a terminal PH connected to the thermostat BH, a terminal PM connected to the thermostat BM, and a terminal PL connected to the thermostat BL.
  • the switch SW is connected to the CPU 111, and when a signal SH instructing heat generation at the temperature TH is input, connects the terminal P0 connected to the power supply PW to the terminal PH connected to the thermostat BH.
  • the switch SW connects the terminal P0 to the terminal PM when the signal SM is input, and connects the terminal P0 to the terminal PL when the signal SL is input. Further, when the signal SS instructing the stop of the heat generation is input, the switch SW opens the circuit without connecting the terminal P0 to any of the terminals PH, PM, and PL.
  • the heating unit 115 includes bimetal thermostats BH, BM, and BL each having one end connected to the switch SW and the other end connected to the heating wire R.
  • the temperature inside the heating section 115 is lower than the temperature TL, all of the thermostats BH, BM, and BL close the circuit.
  • the thermostats BH and BM close the circuit, and the thermostat BL opens the circuit.
  • the thermostat BH closes the circuit, and the thermostats BM and BL open the circuit.
  • all of the thermostats BH, BM, and BL open the circuit.
  • the heating unit 115 includes a heating wire R having one end connected to the thermostats BH, BM, and BL, and the other end connected to the power supply PW.
  • the heating wire R generates heat and generates far-infrared rays when the circuit is closed by the switch SW and at least one of the thermostats BH, BM, and BL.
  • the heating wire R stops generating heat when the switch SW opens the circuit or when all of the thermostats BH, BM, and BL open the circuit.
  • the heat generating section 115 when the signal SH instructing the heat generation at the temperature TH is input, the heat generating section 115 generates heat when the temperature of the heat generating section 115 becomes lower than the temperature TH, and when the temperature of the heat generating section 115 becomes higher than the temperature TH. Stop fever. For this reason, the heat generation state of the heat generation section 115 becomes a steady state in which the heat generation at the temperature TH continues after a sufficient time has elapsed from the input of the signal SH.
  • the waiting time required from the input of the signal SH until the heat generation state becomes the steady state can be determined by an experiment by a person skilled in the art, and the standby time determined by the experiment is stored in advance in the flash memory 113 shown in FIG. ing.
  • the heat generating section 115 generates heat at the temperature TM when the signal SM is input, and generates heat at the temperature TL when the signal SL is input.
  • the heat generation unit 115 stops generating heat when the signal SS for instructing the stop of heat generation is input, the temperature of the heat generation unit 115 becomes equal to room temperature after the elapse of the standby time.
  • the first measuring device 110 of FIG. 2 includes the measuring unit 116 having the temperature sensor 116a for measuring the temperature of the air-conditioned space S and the humidity sensor 116b for measuring the humidity of the air-conditioned space S shown in FIG.
  • the measuring unit 116 is separated from the heat generating unit 115 by a thermal insulator in order to accurately measure the temperature and humidity of the air-conditioned space S.
  • the heat insulator is described as a fibrous substance such as glass wool, calcium silicate, and ceramic fiber, but is not limited thereto. And the like.
  • the measuring unit 116 is an example of a measuring unit according to the present invention.
  • the first measuring device 110 transmits the measured temperature information indicating the temperature measured by the measuring unit 116 and the measured humidity information indicating the humidity in accordance with the short-range wireless communication standard BLE (Bluetooth Low Energy) to the control device. And a wireless communication circuit 117 for transmitting data to the wireless communication circuit 900.
  • BLE Bluetooth Low Energy
  • the first measuring device 110 includes a button 118 for inputting a signal according to a user operation to the CPU 111, a video card 119a for drawing an image based on a digital signal output from the CPU 111 and outputting an image signal, An LCD (Liquid Crystal Display) 119b for displaying an image in accordance with the image signal output from the video card 119a.
  • a button 118 for inputting a signal according to a user operation to the CPU 111
  • a video card 119a for drawing an image based on a digital signal output from the CPU 111 and outputting an image signal
  • An LCD (Liquid Crystal Display) 119b for displaying an image in accordance with the image signal output from the video card 119a.
  • the CPU 111 of the first measuring device 110 executes the heat generation control process of FIG. 4 for causing the heat generating portion 115 to generate heat according to a pattern representing identification information for identifying the first measuring device 110.
  • the heat generating unit 115 generates heat in accordance with the pattern representing the identification information.
  • the heat generating pattern by the first measuring device 110 (hereinafter, referred to as a first pattern) and the heat generating pattern by the second measuring device 120 (hereinafter, referred to as a second pattern). ) are different from each other.
  • the flash memory 113 of the first measuring device 110 previously stores the pattern table of FIG. 5 in which information indicating a heat generation pattern is stored in advance.
  • identification information represented by a heat generation pattern is associated with information indicating the first to N-th heat generation states (hereinafter, referred to as heat generation states) performed according to the heat generation pattern. Has been saved.
  • the heat generation state includes a symbol “strong” indicating a state of generating heat at the temperature TH, a symbol “medium” indicating a state of generating heat at the temperature TM, a symbol “weak” indicating a state of generating heat at the temperature TL, and It is represented by four types of symbols, "null", which represent a state in which no operation is performed. For this reason, 4 N ⁇ 1 kinds of identification information are represented by a pattern that generates heat N times.
  • the CPU 111 of the first measuring device 110 executes the heat generation control process at the timing when the power is turned on or when the wireless communication circuit 117 receives a command for executing the heat generation control process in FIG. To start.
  • the CPU 111 When the CPU 111 starts the heat generation control process, the CPU 111 acquires the communication address assigned to the wireless communication circuit 117, and uses the acquired communication address as the identification information of the first measuring device 110. This is because the communication address of the first measuring device 110 is usually different from the communication address of the second measuring device 120.
  • the CPU 111 acquires the first to N-th heat generation states associated with the identification information of the first measurement device 110 from the pattern table of FIG. 5, and generates heat in the obtained heat state.
  • the pattern is set as a first pattern (step S01).
  • the CPU 111 initializes a variable n representing the number of heat generation with a value “1” (step S02), and then determines whether the number of heat generation represented by the variable n is equal to or less than the number N of heat generation performed in the first pattern. It is determined whether or not it is (step S03).
  • the CPU 111 determines that the variable n is equal to or less than N (step S03; Yes)
  • the CPU 111 controls the heat generation unit 115 of FIG. 2 to generate heat in the n-th heat generation state acquired in step S01 (step S03).
  • the CPU 111 inputs a signal SH instructing heat generation at the temperature TH to the heat generation unit 115.
  • the CPU 111 starts measuring the elapsed time from when the heat generation is controlled in step S04 using, for example, a software timer. Thereafter, the CPU 111 reads the standby time stored in the flash memory 113, and determines whether the heating state of the heating unit 115 is in a steady state based on whether the elapsed time measured by the software timer has exceeded the standby time. Is determined (step S05). At this time, if the elapsed time does not exceed the standby time, the CPU 111 determines that it is not in the steady state (step S05; No), sleeps for a certain time, and then executes the process of step S05 again.
  • step S05 when determining that the CPU 111 is in the steady state because the elapsed time has exceeded the standby time (step S05; Yes), the CPU 111 generates heat generation number information indicating the number of heat generations and heat generation state information indicating the changed heat generation state. Are output to the wireless communication circuit 117 of FIG. 2 with the control device 900 as a destination (step S06). Next, the wireless communication circuit 117 transmits the heat generation frequency information and the heat generation state information to the control device 900.
  • the CPU 111 starts measuring the time during which the instructed heat generation state continues, for example, using a software timer.
  • the CPU 111 reads, for example, from the flash memory 113 a preset time set by the maintenance manager of the air-conditioning system 1 as the time for continuing the heat generation, and determines whether the measured heat generation duration exceeds the set time. It is determined whether or not it is (step S07). At this time, if the CPU 111 determines that the duration of the heat generation does not exceed the set time (step S07; No), the CPU 111 sleeps for a certain time and then executes the processing of step S07 again.
  • step S07 determines that the duration of heat generation has exceeded the set time (step S07; Yes)
  • the CPU 111 increases the variable n representing the number of heat generation by “1” (step S08), and then proceeds to step S03. Return and repeat the above process.
  • step S03 when the CPU 111 determines that all of the series of heat generation according to the first pattern has been performed because the variable n is larger than N (step S03; No), the CPU 111 ends the execution of the heat generation control process.
  • the CPU 111 of the first measuring device 110 measures the temperature and humidity of the air-conditioned space S after a lapse of the same length of time as the standby time stored in the flash memory 113 after the execution of the heat generation control process ends.
  • the execution of the temperature / humidity measurement process (not shown) is repeated at regular intervals. This is because the temperature of the first measuring device 110 is considered to be the same as the temperature of the air-conditioned space S if the time equal to or longer than the standby time has elapsed since the heat generation unit 115 finished generating heat.
  • the CPU 111 suspends the execution of the temperature and humidity measurement process that is repeated at a constant cycle. If the heat generating unit 115 starts generating heat, the temperature measured by the first measuring device 110 may be higher than the temperature of the air-conditioned space S, and the humidity measured by the first measuring device 110 is This is because the humidity may be lower than the humidity. After that, the CPU 111 restarts the execution of the temperature / humidity measurement process that is repeated at a constant cycle after a lapse of the standby time from the end of the execution of the heat generation control process.
  • the CPU 111 of the first measuring device 110 When the execution of the temperature / humidity measurement process is started, the CPU 111 of the first measuring device 110 generates measured temperature information based on the signal output from the temperature sensor 116a in FIG. 2, and performs measurement based on the signal output from the humidity sensor 116b. Generate humidity information. After that, the CPU 111 outputs the measured temperature information and the measured humidity information to the control device 900 as a destination and transmits the measured temperature information and the measured humidity information to the control device 900 after the wireless communication circuit 117 transmits the measured temperature information and the measured humidity information to the control device 900. The execution of the temperature and humidity measurement processing ends.
  • the second measuring device 120 has the same hardware as the first measuring device 110 and performs the same function as the first measuring device 110. That is, the second measuring device 120 includes a heating unit and a measuring unit (not shown) having the same configuration and functions as the heating unit 115 and the measuring unit 116 of the first measuring device 110. Similarly to the first measuring device 110, the second measuring device 120 executes the heat generation control process of FIG. 4 to cause the heat generating portion (not shown) to generate heat according to the second pattern representing the communication address of the second measuring device 120. .
  • the first air conditioner 210 of FIG. 1 generates a first thermal image that is a thermal image of the air-conditioned space S in which the first measuring device 110 and the second measuring device 120 are installed, and generates the generated first thermal image.
  • the information is transmitted to the control device 900 that specifies the positions of the first measuring device 110 and the second measuring device 120.
  • the first air conditioner 210 executes various programs including a program for controlling generation and transmission of the first thermal image, the CPU 211 in FIG. 6, a ROM 212 and a flash memory 213 storing various programs, and And a RAM 214 used as a work area when executing various programs.
  • the first air conditioner 210 includes a first radiation sensor 215 that generates a first thermal image representing the heat distribution of the air-conditioned space S based on the measurement result of the radiation heat. Since the first radiation sensor 215 measures radiant heat, for example, it is difficult or difficult to detect near-infrared rays emitted from an infrared LED (Light Emitting Diode) of a remote controller, but detects far-infrared rays emitted from a heat body. it can.
  • an infrared LED Light Emitting Diode
  • the first radiation sensor 215 includes a radiation heat measuring unit 251 having a lens 251a that transmits far infrared rays, and a thermopile array 251b that converts radiant heat generated by the far infrared rays transmitted through the lens 251a into an electric signal.
  • the radiation heat measuring unit 251 sets the optical axis of the lens 251a in the horizontal direction LA1 in which the angle formed with the positive direction of the Xw axis is ⁇ 1 in the world coordinate system XwYwZw in which the vertical direction shown in FIG. 7 is the positive direction of the Zw axis. It is installed for. That is, the installation direction of the optical axis of the lens 251a is the horizontal direction LA1.
  • thermopile array 251b is composed of Ny thermopile elements arranged in one column in the vertical direction corresponding to Ny pixels arranged in one column in the sub-scanning direction of the first thermal image shown in FIG.
  • thermopile element located at the center of the thermopile array 251b is arranged at a position overlapping the optical axis of the lens 251a.
  • the central element outputs an electric signal corresponding to radiant heat generated by far infrared rays coming from the horizontal direction LA1.
  • the thermopile element disposed one position higher than the center element has a position where the center of the lens 251a shown in FIG. 9 is installed (hereinafter, the installation position of the lens 251a).
  • An electric signal corresponding to radiant heat generated by far-infrared rays arriving from a direction lower than the horizontal direction LA1 by a step angle ⁇ from the horizontal direction LA1 is output.
  • the notch angle ⁇ is an angle determined by the focal length of the lens 251a and the size of the thermopile element in the vertical direction. That is, the notch angle ⁇ can be specified by a conventional calculation method using a right-angled triangle having an adjacent side having a length equal to the focal length and a paired side having a length equal to the size of the thermopile element.
  • thermopile elements arranged at positions i above the center element output an electric signal corresponding to radiant heat generated by far infrared rays arriving from a direction below the horizontal direction LA1 by a step angle ⁇ ⁇ i.
  • i is a natural number of 2 or more and (Ny-1) / 2 or less.
  • thermopile element disposed i positions below the central element outputs an electric signal corresponding to radiant heat generated by far infrared rays arriving from a direction above the horizontal direction LA1 by a step angle ⁇ ⁇ i. .
  • the first radiation sensor 215 in FIG. 6 includes a scanning unit 252 including a stepping motor (not shown) that scans the radiation heat measuring unit 215.
  • the scanning unit 252 adjusts the direction of the optical axis of the lens 251a without changing the installation position PA1 of the lens 251a while maintaining the light receiving surface of the thermopile array 251b perpendicular to the optical axis of the lens 251a in the scanning of the radiant heat measuring unit 215. Change to a different direction from before the change, while keeping it horizontal.
  • thermopile array 251b Before the scanning unit 252 changes the direction of the optical axis of the lens 251a from the horizontal direction LA1 in FIG. 7, the thermopile array 251b outputs an electric signal representing the first pixel column of the first thermal image.
  • the thermopile array 251b outputs an electric signal representing the second pixel column. Is output.
  • the thermopile array 251b outputs an electric signal representing the third pixel column.
  • the thermopile array 251b outputs an electric signal representing the fourth to Nxth pixel columns.
  • the scanning unit 252 returns the direction of the optical axis of the lens 251a to the horizontal direction LA1 before scanning.
  • the first air conditioner 210 in FIG. 6 includes a first thermal image generation circuit 216 that generates a first thermal image based on electric signals representing the first to Nxth pixel columns output from the thermopile array 251b. .
  • the first thermal image generation circuit 216 is an example of a first thermal image generation unit according to the present invention.
  • the first air conditioner 210 is connected to the communication cable C of FIG. 1, and transmits the first thermal image generated by the first radiation sensor 215 to the control device 900 and receives a command from the control device 900 by wire communication.
  • the circuit 217 is provided.
  • the first air conditioner 210 includes a fan 218 for circulating the air in the air-conditioned space S based on a command received from the control device 900, and a motor 219 for rotating the fan 218.
  • the CPU 211 of the first air conditioner 210 starts execution of an image generation process (not shown) for generating a first thermal image at a timing when the power is turned on.
  • the CPU 211 controls the first radiation sensor 215 to generate a first thermal image, and performs control to transmit the first thermal image generated by the first radiation sensor 215 to the control device 900. This is performed by the wired communication circuit 217.
  • the CPU 211 reads out from the flash memory 213 a preset interval set as a time interval for generating the first thermal image, for example, by the maintenance manager of the air conditioning system 1 of FIG.
  • the set interval is set to an interval shorter than the set time set for the first measuring device 110 and the second measuring device 120, as the time during which the first measuring device 110 and the second measuring device 120 continue to generate heat. This is because at least one first thermal image is generated after the first measuring device 110 and the second measuring device 120 change the state of heat generation and before changing the state of heat generation next time.
  • the CPU 211 When reading the set interval, the CPU 211 starts the timing using the software timer, then sleeps until the measured elapsed time becomes longer than the set interval, and then performs a process of performing control to generate the first thermal image. The above process is repeated.
  • the second air conditioner 220 of FIG. 1 includes the same hardware as the first air conditioner 210 and performs the same function as the first air conditioner 210. That is, the second air conditioner 220 includes a second radiation sensor (not shown) and a second thermal image generation circuit.
  • the second thermal image generation circuit is an example of a second thermal image generation unit according to the present invention.
  • the second radiation sensor included in the second air conditioner 220 is installed with its optical axis directed in the horizontal direction LA2 where the angle formed with the positive direction of the Xw axis shown in FIG. 7 is ⁇ 2. That is, the installation direction of the optical axis of the second radiation sensor is the horizontal direction LA2. Further, the direction of the optical axis of the second radiation sensor can be changed without changing the installation position PA2 of the lens provided in the second radiation sensor, while maintaining the horizontal position.
  • 1 is, for example, a centralized remote controller installed on the wall of the air-conditioned space S, and controls the first air conditioner 210 and the second air conditioner 220 according to a user operation.
  • control device 900 executes various programs including the air-conditioning control program, the CPU 901 in FIG. 10, the ROM 902 and the flash memory 903 for storing various programs, and the work area when executing the various programs.
  • RAM 904 to be used.
  • the control device 900 is connected to the wireless communication circuit 907a that wirelessly communicates with the first measuring device 110 and the second measuring device 120, and the communication cable C in FIG. 1, and communicates with the first air conditioner 210 and the second air conditioner 220.
  • the wireless communication circuit 907a is an example of a first communication unit according to the present invention
  • the wired communication circuit 907b is an example of a second communication unit according to the present invention.
  • the control device 900 includes a button 908 for inputting a signal according to a user operation, and a video card 909a and an LCD 909b having the same configuration and functions as the video card 119a and the LCD 119b shown in FIG.
  • Control device 900 may include a touch panel instead of button 908.
  • the CPU 901 of the control device 900 specifies the installation position of the first measurement device 110 or the second measurement device 120 that notifies the position by heat generation based on the first thermal image and the second thermal image. Execute the process.
  • the CPU 901 acquires the first thermal image and the second thermal image from the wired communication circuit 907b, and acquires the first thermal image and the second thermal image acquired by the acquiring unit 910 in FIG. 12 and the acquiring unit 910.
  • Function as a specifying unit 920 that specifies the installation positions of the first measuring device 110 and the second measuring device 120 based on the.
  • the obtaining unit 910 is an example of an obtaining unit according to the present invention
  • the specifying unit 920 is an example of a specifying unit according to the present invention.
  • the CPU 901 determines the installation positions of the first measuring device 110 and the second measuring device 120 specified by the specifying unit 920, and the temperature and the humidity measured by the first measuring device 110 and the second measuring device 120. Thus, it functions as the control unit 930 that controls the first air conditioner 210 and the second air conditioner 220.
  • the control unit 930 is an example of a control unit according to the present invention.
  • the flash memory 903 in FIG. 10 functions as an information storage unit 990 that stores information used in the position specifying process.
  • the information storage unit 990 stores the pixel value table of FIG. 13 in which information indicating a range of pixel values observed by an experiment that causes the first measuring device 110 and the second measuring device 120 to generate heat is stored in advance. .
  • the state of heat generation and the pixels of the pixels representing the first measurement device 110 and the second measurement device 120, which were observed in an experiment in which the first measurement device 110 and the second measurement device 120 generate heat in the state, are shown.
  • a record in which the minimum value and the maximum value are associated with each other is stored in advance.
  • the information storage unit 990 stores the detection result table of FIG. 14 in which information indicating the execution result of the detection processing using the pixel value table is stored.
  • the detection result table is a record in which identification information of the first measuring device 110 or the second measuring device 120 that has generated heat, information indicating the number of times of heat generation according to the pattern, and a heat generation state are associated with each other. Is saved.
  • a first pixel one or more coordinate values of a pixel (hereinafter, referred to as a first pixel) detected from the first thermal image using the pixel value table as a pixel having a pixel value corresponding to the heat generation state correspond. Attached and saved.
  • one or a plurality of coordinate values of a pixel (hereinafter, referred to as a second pixel) detected from the second thermal image as a pixel having a pixel value corresponding to the heat generation state is associated with the heat generation state of the record. Will be saved.
  • the information storage unit 990 stores in advance information indicating the installation status of the first air conditioner 210 that generated the first thermal image and the installation status of the second air conditioner 220 that generated the second thermal image. 15 is stored.
  • the vector indicating the arrival direction of the far infrared ray specified based on the first pixel and the second pixel is converted into the world coordinate system of FIG. 7 based on the installation state of the first air conditioner 210 and the installation state of the second air conditioner 220. This is for converting into a direction vector represented by XwYwZw.
  • the installation status table includes a communication address of the first air conditioner 210, an installation angle ⁇ 1 formed by the Xw axis in FIG. 7 and the installation direction LA1 of the optical axis of the first air conditioner 210, a step angle ⁇ of the optical axis, A record in which the coordinate values of the installation position PA1 of the first air conditioner 210 are associated with each other is stored in advance.
  • the communication address of the second air conditioner 220, the installation angle ⁇ 2 between the Xw axis in FIG. 7 and the installation direction LA2 of the optical axis of the second air conditioner 220, and the second air conditioner 220 The record in which the coordinate value of the installation position PA2 is associated with is stored in advance.
  • the information storage unit 990 stores information indicating the installation position of the first measuring device 110 (hereinafter, referred to as a specific position) and the specific position of the second measuring device 120 specified by the position specifying process.
  • the specific position table is stored.
  • the wireless communication circuit 907a in FIG. 10 receives the heat generation state information indicating the heat generation state of the “first measurement device 110”
  • the CPU 901 of the control device 900 specifies the installation position of the “first measurement device 110”. Then, the execution of the position specifying process of FIG. 11 is started.
  • the CPU 901 of the control device 900 receives the heat generation state information indicating the heat generation state by the “second measurement device 120”, the CPU 901 determines the position of the “second measurement device 120” by specifying the installation position. Start execution of specific processing.
  • the timing at which the first measuring device 110 transmits the heat generation state information and the timing at which the second measurement device 120 transmits the heat generation state information are not time-divided. Therefore, the CPU 901 of the control device 900 executes the position specifying process for specifying the position of the “first measuring device 110” and the position specifying process for specifying the position of the “second measuring device 120” in parallel. May be executed in some cases. However, in order to simplify the description, first, a position specifying process for specifying the installation position of the “first measuring device 110” will be described, and then a process for specifying the installation position of the “second measuring device 120” will be described. The position specifying process will be described.
  • the acquisition unit 910 sets the first pixel and the second pixel corresponding to the state of heat generation by the first measuring device 110.
  • the detection processing of FIG. 17 is performed (step S11).
  • the acquisition unit 910 acquires a communication address used by the wireless communication circuit 907a for communication with the first measurement device 110 as identification information of the first measurement device 110. Next, the acquisition unit 910 acquires the heat generation state information and the heat generation frequency information received by the wireless communication circuit 907a from the first measuring device 110 from the wireless communication circuit 907a (Step S21).
  • the acquiring unit 910 sleeps until the wired communication circuit 907b in FIG. 10 receives the first thermal image from the first air conditioner 210. Thereafter, when the wired communication circuit 907b receives the first thermal image, the acquiring unit 910 acquires the first thermal image from the wired communication circuit 907b (Step S22).
  • the specifying unit 920 based on the pixel value table in FIG. 13, stores information indicating the minimum value of the pixel value associated with the heat generation state information acquired in step S21 and information indicating the maximum value of the pixel value. get.
  • the identification unit 920 detects one or more pixels having a pixel value equal to or greater than the minimum value and equal to or less than the maximum value represented by the acquired information from the first thermal image acquired in step S22. Then, one or a plurality of detected pixels are specified as the first pixels (step S23).
  • Step S24 a second thermal image is obtained (step S24), and one or a plurality of second pixels corresponding to the state of heat generation are specified from the second thermal image. (Step S25).
  • the specifying unit 920 sets the Xc axis in which the main scanning direction of the first thermal image shown in FIG. 8 is the positive direction, the Yc axis in which the sub scanning direction is the positive direction, and The coordinate value of the camera coordinate system XcYc having the position of the origin Oc is specified for one or a plurality of first pixels and one or a plurality of second pixels.
  • the specifying unit 920 determines the identification information, the heat generation frequency information, and the heat generation state information of the first measuring device 110 acquired in step S21 of FIG. 17 and the one or more first heat measurement information specified in steps S23 and S25. A record in which the coordinate value of one pixel and the coordinate values of one or more second pixels are associated with each other. After that, the specifying unit 920 stores the generated record in the detection result table of FIG. 14 (Step S26).
  • the specifying unit 920 determines whether or not the number of times of heat represented by the information on the number of times of heat acquired in step S21 is the last number of times of heat generation N according to the pattern of heat generation (step S27). At this time, when the specifying unit 920 determines that the number of heat generations is not the last number of heat generations N and is in the middle of a series of heat generations according to the first pattern (Step S27; No), the above-described processing is repeated from Step S21.
  • the specifying unit 920 determines that a series of heat generations according to the first pattern is completed because the heat generation number is the last heat generation number N (step S27; Yes)
  • the detection unit 920 of FIG. A plurality of records in which the identification information obtained in step S21 is stored.
  • the specifying unit 920 calculates the coordinate values of one or more first pixels stored in common with the acquired records and the one or more second pixels stored in common with the records. And the coordinate value of. This is for specifying one or a plurality of first pixels and one or a plurality of second pixels that are commonly detected in the state of heat generation N times according to the first pattern (step S28 in FIG. 17).
  • step S28 when the specifying unit 920 specifies the coordinate values of the plurality of first pixels stored in common in the plurality of records, the specifying unit 920 specifies the smallest circle including all of the specified plurality of first pixels.
  • the pixel located at the center of the specified circle is specified as a first pixel representing the plurality of first pixels.
  • the present invention is not limited to this.
  • a pixel having a coordinate value closest to the average value of the coordinate values of the plurality of first pixels is specified as a first pixel representing the plurality of first pixels. Is also good.
  • step S28 the specifying unit 920 specifies a second pixel representing one or a plurality of second pixels commonly stored in a plurality of records. After that, the specifying unit 920 ends the execution of the detection processing.
  • the specifying unit 920 acquires the step angle ⁇ of the optical axis of the first radiation sensor 215 associated with the communication address of the first air conditioner 210 from the installation status table of FIG. .
  • the specifying unit 920 multiplies the Xc coordinate value of the first pixel IE11 by the step angle ⁇ .
  • the specifying unit 920 is the installation direction LA1 of the optical axis of the first air conditioner 210 before scanning illustrated in FIG. 7 and the far infrared rays from the first measurement device 110, and is represented by the first pixel IE11.
  • An arrival angle ⁇ xy11 formed between the arrival direction (hereinafter, referred to as a first direction) D11 of the far-infrared ray that has generated the radiant heat and the projection onto the XwYw plane is specified.
  • the specifying unit 920 acquires the installation angle ⁇ 1 representing the installation direction LA1 of the optical axis associated with the communication address of the first air conditioner 210 from the installation status table of FIG. After that, the specifying unit 920 specifies the vector of the world coordinate system XwYwZw representing the first direction D11 using the arrival angle ⁇ xy11 and the arrival angle ⁇ xz11 and the installation angle ⁇ 1 (step S31).
  • the specifying unit 920 acquires the coordinate value of the installation position PA1 of the first air conditioner 210 in the world coordinate system XwYwZw from the installation status table of FIG. 15 based on the communication address of the first air conditioner 210 (step S32). ).
  • the specifying unit 920 determines the first air conditioner based on the coordinate value indicating the installation position PA1 of the first air conditioner 210 acquired in step S32 and the vector indicating the first direction D11 specified in step S31.
  • An equation representing a first straight line L11 directed from the installation position PA1 in the first direction D11 which is a direction of arrival of far infrared rays is specified (step S33).
  • the specifying unit 920 specifies the equation representing the second straight line L21 that goes from the installation position PA2 of the second air conditioner 220 in the second direction D21 by executing the same processing as in steps S31 to S33.
  • the second direction D21 is the direction of arrival of the far infrared rays arriving from the first measuring device 110 to the second air conditioner 220 (steps S34 to S36).
  • the specifying unit 920 calculates the coordinate value of the intersection PM1 of the first straight line L11 and the second straight line L21 shown in FIG. It is specified using an equation representing the two straight lines L21.
  • the specifying unit 920 specifies the coordinate value of the specified intersection PM1 as the installation position of the first measuring device 110 (Step S13).
  • the specifying unit 920 stores the identification information of the first measuring device 110 acquired in step S11 and the information indicating the specific position of the first measuring device 110 in the specific position table of FIG. Later (step S14), the execution of the position identification processing ends.
  • the CPU 901 detects the first pixel corresponding to the state of heat generation by the second measuring device 120 from the first thermal image by executing the detection processing of FIG. 17, and removes the second pixel from the second thermal image. It is detected (step S11).
  • the specifying unit 920 specifies the equation representing the first straight line L12 from the installation position PA1 of the first air conditioner 210 in the first direction D12 by executing the straight line specifying process of FIG. 18 (Step S12).
  • the first direction D12 is the arrival direction of far-infrared rays arriving at the first air conditioner 210 from the second measuring device 120.
  • the specifying unit 920 specifies an equation representing a second straight line L22 that extends from the installation position PA2 of the second air conditioner 220 in the second direction D22.
  • the second direction D22 is an arrival direction of far-infrared rays arriving at the second air conditioner 220 from the second measuring device 120.
  • the specifying unit 920 specifies the coordinate value of the intersection PM2 between the first straight line L12 and the second straight line L22 illustrated in FIG. 7 and specifies the coordinate value of the specified intersection PM2 as the installation position of the second measuring device 120. (Step S13).
  • the specifying unit 920 stores the identification information of the second measuring device 120 acquired in step S11 and the information indicating the specific position of the second measuring device 120 in association with each other in the specific position table of FIG. Later (step S14), the execution of the position identification processing ends.
  • the CPU 901 determines a temperature set by the user (hereinafter, referred to as a set temperature) and a set humidity (hereinafter, set humidity). Is specified based on the input signal. After that, the CPU 901 stores the set temperature information indicating the set temperature and the set humidity information indicating the set humidity in the flash memory 903.
  • the CPU 901 sets the first air conditioner 210 and the second air conditioner The air conditioning control process of FIG.
  • the acquisition unit 910 in FIG. 12 acquires the measured temperature information and the measured humidity information from the wireless communication circuit 907a.
  • the acquiring unit 910 acquires a communication address used by the wireless communication circuit 907a to receive the measured temperature information and the measured humidity information as identification information of the first measuring device 110 or the second measuring device 120 (Step S41).
  • control unit 930 obtains information indicating the specific position associated with the identification information obtained in step S41 from the specific position table in FIG. 16 (step S42).
  • the control unit 930 also acquires the set temperature information and the set humidity information from the flash memory 903 shown in FIG. 10 (Step S43).
  • control unit 930 performs control to set the temperature and humidity at the specific position of the first measuring device 110 or the second measuring device 120 acquired in step S42 to the set temperature and the set humidity. , Based on the information indicating the specific position, and the set temperature information and the set humidity information.
  • the control unit 930 sends a command to the wired communication circuit 907b with the first air conditioner 210 and the second air conditioner 220 as destinations in order to perform the determined control on the first air conditioner 210 and the second air conditioner 220.
  • Output Step S44
  • the control unit 930 ends the execution of the air conditioning control process.
  • the heat generated by the first measuring device 110 is generated by the first measuring device 110, the first air conditioner 210 that generates the first thermal image, and the second air conditioner that generates the second thermal image.
  • the air is transmitted by radiation regardless of the number and position of the person and the object staying in the air-conditioned space.
  • the heat generated by the second measuring device 120 is also transmitted by radiation.
  • the air-conditioning system 1 is more accurate than the conventional technology in which the positions of the first measuring device 110 and the second measuring device 120 are specified based on the detection intensity of the electromagnetic wave. The position can be specified.
  • the attenuation due to the far-infrared distance is smaller than the attenuation due to the visible and near-infrared distance. For this reason, even if the distance from the first measuring device 110 and the second measuring device 120 to the first air conditioner 210 and the second air conditioner 220 is long, the air conditioning system 1 performs the first measurement by blinking the LED, for example.
  • the positions of the first measuring device 110 and the second measuring device 120 can be specified with higher accuracy than the conventional technology for detecting the positions of the device 110 and the second measuring device 120.
  • the air-conditioning system 1 can specify the positions of the first measuring device 110 and the second measuring device 120 with higher accuracy than in the related art.
  • the conventional air conditioning system only includes an air conditioner having a radiation sensor and a control device that controls the air conditioner based on a thermal image generated by the radiation sensor, control is performed by the conventional control device.
  • the air conditioning system 1 according to the present embodiment can be improved simply by installing the program of the device 900. For this reason, the conventional air conditioning system can be improved to the air conditioning system 1 according to the present embodiment at low cost.
  • control device 900 determines the installation position of first measurement device 110 based on the first thermal image generated by first air conditioner 210 and the second thermal image generated by second air conditioner 220. And the installation position of the second measuring device 120 is specified. Therefore, the maintenance manager of the air conditioning system 1 does not need to operate the control device 900 to input the installation position of the first measurement device 110 and the installation position of the second measurement device 120 to the control device 900.
  • first measuring device 110 generates heat according to the first pattern
  • control device 900 specifies a pixel having a pixel value corresponding to radiant heat generated according to the first pattern. For this reason, even if an object that generates heat exists in the air-conditioned space S other than the first measuring device 110, the control device 900 more reliably identifies the position of the first measuring device 110 based on the first pattern than before. it can.
  • the time interval at which the first air conditioner 210 generates the first thermal image and the time interval at which the second air conditioner 220 generates the second thermal image are determined by the first measuring device 110
  • the time interval for changing the heat generation state according to the first pattern and the time interval for the second measurement device 120 to change the heat generation state according to the second pattern are shorter.
  • the first air conditioner 210 and the second air conditioner 220 reflect all of the multiple heat generations according to the first pattern and all of the multiple heat generations according to the second pattern.
  • the image and the second thermal image can be generated more reliably than before.
  • the first measuring device 110 generates heat according to the first pattern for identifying the first measuring device 110
  • the second measuring device 120 generates heat according to the second pattern for identifying the second measuring device 120. I do. For this reason, even if the second measuring device 120 generates heat according to the second pattern while the first measuring device 110 generates heat according to the first pattern, the control device 900 generates a second signal based on the first pattern and the second pattern. The position of the first measuring device 110 and the position of the second measuring device 120 can be specified more reliably than before.
  • the first measuring device 110 generates heat according to the first pattern representing the communication address of the first measuring device 110
  • the second measuring device 120 generates the second pattern representing the communication address of the second measuring device 120.
  • Heat is generated according to two patterns. Therefore, the first measurement device 110 and the second measurement device 120 can generate heat in different patterns without setting a heat generation pattern in the first measurement device 110 and the second measurement device 120.
  • the air-conditioning system 1 includes the first measuring device 110 and the second measuring device 120, the first air conditioner 210 and the second air conditioner 220, and the control device 900 illustrated in FIG. did. Further, in the present embodiment, control device 900 determines first measurement device 110 and second measurement device 110 based on the first thermal image generated by first air conditioner 210 and the second thermal image generated by second air conditioner 210. It has been described that the position of the second measuring device 120 is specified.
  • the air-conditioning system 1 further includes a third air conditioner 230 illustrated in FIG. 20, and the control device 900 is further based on a third thermal image generated by the third air conditioner 230.
  • the positions of the first measuring device 110 and the second measuring device 120 may be specified.
  • the third air conditioner 230 has the same hardware configuration and functions as the first air conditioner 210. That is, the third air conditioner 230 includes a third radiation sensor (not shown) and a third thermal image generation circuit that generates a third thermal image based on the measurement result of the radiation heat by the third radiation sensor.
  • Control device 900 executes the same processing as steps S31 to S33 of the straight line specifying processing of FIG. 18 on the third thermal image generated by third air conditioner 230. Thereby, based on the third thermal image, control device 900 moves from installation position PA3 of third air conditioner 230 shown in FIG. 21 to arrival direction D31 of far-infrared rays arriving at installation position PA3 from first measurement device 110.
  • the heading third straight line L31 is specified.
  • control device 900 replaces step S13 in FIG. 11 with an intersection PM12 between the first straight line L11 and the second straight line L21, and an intersection PM13 between the first straight line L11 and the third straight line L31 shown in FIG.
  • a process for specifying an intersection PM23 between the second straight line L21 and the third straight line L31 is executed.
  • the controller 900 determines based on the coordinate values that the intersection PM12, the intersection PM13, and the intersection PM23 all match, the controller 900 specifies the intersection PM12 as the installation position of the first measuring device 110.
  • control device 900 determines that the intersections PM12, PM13, and PM23 do not all match, the control device 900 identifies the smallest circle CL including the intersections PM12, PM13, and PM23, and identifies the minimum circle CL.
  • the center position of the circle is specified as the installation position of the first measuring device 110.
  • control device 900 may use the average value of the coordinate values of the intersection PM12, the intersection PM13, and the intersection PM23 as the installation position of the first measurement device 110.
  • the control device 900 may specify the position of the center or the position of the center of gravity of the triangular inscribed circle defined by the intersection points PM12, PM13, and PM23 as the installation position of the first measurement device 110.
  • the number of air conditioners provided in the air conditioning system 1 is not limited to three, and the air conditioning system 1 may include four or more air conditioners.
  • control device 900 is not limited to specifying the positions of first measuring device 110 and second measuring device 120 based on three thermal images generated by three air conditioners.
  • the control device 900 may specify the positions of the first measuring device 110 and the second measuring device 120 based on four or more thermal images generated by four or more air conditioners.
  • the number of measuring devices provided in the air conditioning system 1 is not limited to two, and the air conditioning system 1 may include three or more measuring devices.
  • the control device 900 is not limited to specifying the positions of the two measurement devices, the first measurement device 110 and the second measurement device 120, based on the first thermal image and the second thermal image. Absent. The control device 900 may specify the positions of three or more measurement devices based on the first thermal image and the second thermal image.
  • the first measuring device 110 and the second measuring device 120 measure the temperature and the humidity, and measure both the measured temperature information indicating the measured temperature and the measured humidity information indicating the measured humidity.
  • control device 900 controls first air conditioner 210 and second air conditioner 220 based on both the measured temperature information and the measured humidity information, the present invention is not limited to this.
  • the first measuring device 110 and the second measuring device 120 may measure either one of the temperature and the humidity, and transmit either the measured temperature information or the measured humidity information to the control device 900.
  • Control device 900 may control one of first air conditioner 210 and second air conditioner 220 based on one of the measured temperature information and the measured humidity information.
  • control device 900 acquires the heat generation state information transmitted after the first measurement device 110 or the second measurement device 120 changes the heat generation state in step S21 of FIG. It has been described that the machine 210 sleeps until the first thermal image is transmitted.
  • control device 900 may transmit a command for transmitting the first thermal image to the first air conditioner 210 after acquiring the heat generation state information in step S21 of FIG. good. Similarly, after acquiring the heat generation state information, control device 900 may transmit a command for generating and transmitting the second thermal image to second air conditioner 220.
  • the control device 900 can reliably acquire the first thermal image and the second thermal image in which the first measuring device 110 or the second measuring device 120 that generates heat in the state after the change is reflected.
  • control device 900 has described that after acquiring the first thermal image in step S22 in FIG. 17, immediately execute the process in step S23 to identify the first pixel from the first thermal image. , But is not limited to this.
  • the control device 900 After acquiring the first thermal image in step S22, the control device 900 assigns a thermal image representing the user to the pixel of the first thermal image acquired this time, which is located at the same coordinate as the coordinate of the first pixel identified last time. It may be determined whether a lump is reflected. If the control device 900 determines that a thermal mass representing the user is being displayed, the process may return to step S22 and sleep until another first thermal image is received from the first air conditioner 210.
  • the control device 900 uses the identification information acquired in the current step S21 and the current heat generation frequency information from the detection result table in FIG. What is necessary is just to acquire the coordinate value of one or a plurality of first pixels associated with the information indicating the number of times one less than the number of times of the first pixel.
  • control device 900 determines, for example, a pixel having a pixel value corresponding to a temperature of 35 to 40 degrees Celsius, for example, by experiment. What is necessary is just to specify the pixels contained in the continuous area larger than the number.
  • the control device 900 assigns the user to the pixel of the currently acquired second thermal image located at the same coordinate as the coordinate of the second pixel identified last time. If it is determined that the thermal mass representing the image is displayed, the process may return to step S24 and sleep until another second thermal image is received from the second air conditioner 220.
  • control device 900 obtains the first pixel and the second pixel corresponding to the state of heat generation by the first measurement device 110 or the second measurement device 120 from the reacquired first thermal image and second thermal image. Two images can be specified more reliably.
  • control device 900 After executing the process of step S23 for specifying the first pixel from the first thermal image, control device 900 proceeds to step S24 without determining whether the first pixel is actually specified. It has been described that the above process is executed.
  • control device 900 may determine whether or not the first pixel is actually specified after executing step S23.
  • the process may return to step S22 and sleep until another first thermal image is received from the first air conditioner 210.
  • control device 900 may determine whether the second pixel is actually specified. If the control device 900 determines that the second pixel has not been actually specified, the process may return to step S ⁇ b> 24 and sleep until another second thermal image is received from the second air conditioner 220.
  • the heating section 115 of the first measuring device 110 has been described as being configured by the switch SW, the thermostats BH, BM, and BL, and the heating wire R in FIG. 3, but is not limited thereto. Not in translation.
  • the heating unit 115 of the first measuring device 110 has, instead of the configuration shown in FIG. 3, one end connected to the heating wire R connected to the power supply PW, one end connected to the heating wire R, and the other end connected to the power supply PW. And a not-shown MCU (Micro Controller Unit) that controls ON and OFF of the switch.
  • the heating unit 115 further includes a temperature sensor (not shown) installed around the heating wire R. The MCU opens and closes a switch based on a signal output from the temperature sensor and a signal output from the CPU 111. May be controlled.
  • a signal SH instructing heat generation at the temperature TH from the CPU 111 is input to the MCU, while a signal corresponding to a measured temperature less than the temperature TH is input from the temperature sensor, a signal for instructing ON (hereinafter, referred to as “signal”). , ON signal) to the switch.
  • the MCU outputs an OFF signal (hereinafter referred to as an OFF signal) while a signal corresponding to a measured temperature equal to or higher than the temperature TH is input from the temperature sensor. Is output to the switch.
  • the MCU outputs an ON signal while the signal corresponding to the measured temperature lower than the temperature TM is input, and receives the signal corresponding to the measured temperature equal to or higher than the temperature TM. During this time, an OFF signal is output.
  • the MCU outputs an ON signal while the signal corresponding to the measured temperature lower than the temperature TL is input, and receives the signal corresponding to the measured temperature equal to or higher than the temperature TL. During this time, an OFF signal is output.
  • the MCU After the signal SS for instructing the stop of heat generation is input, the MCU outputs an OFF signal until one of the signal SH, the signal SM, and the signal SL is input next.
  • the control device 900 After executing step S23 in FIG. 17, the control device 900 according to the present modification determines whether the first pixel corresponding to the heat generation state of the first measurement device 110 has been identified from the first thermal image. Is also good. If the control device 900 determines that the first pixel could not be specified, the control device 900 may transmit to the first measurement device 110 a command to correct the heat generation temperature and restart the heat generation according to the pattern.
  • the control device 900 may transmit to the first measurement device 110 a command to restart the heat generation.
  • the CPU 111 of the first measuring device 110 operates at the temperature TH + T when the signal SH is input, at the temperature TM + T when the signal SM is input, and at the temperature TM + L when the signal SL is input.
  • the MCU is controlled to generate heat from the heating wire R.
  • the control device 900 may transmit to the first measuring device 110 a command to restart the heat generation after reducing the heat generation temperature by T degrees Celsius.
  • the CPU 111 of the first measuring device 110 determines whether the temperature is TH-T when the signal SH is input, the temperature is TM-T when the signal SM is input, and the signal SL is input when the signal SM is input.
  • the MCU is controlled so that the heating wire R generates heat at the temperature TM-L. Thereafter, the CPU 111 of the first measuring device 110 executes the heat generation control process of FIG. 4 again.
  • control device 900 determines that the second pixel could not be specified after executing step S25 in FIG. 17, the control device 900 issues a command for correcting the heat generation temperature and re-starting heat generation according to the pattern. It may be transmitted to the measuring device 110.
  • the heat generating portion of the second measuring device 120 may include the heating wire R, a switch, an MCU, and a temperature sensor (not shown).
  • the control device 900 may transmit, to the second measuring device 120, a command to correct the heat generation temperature and to restart the heat generation according to the pattern.
  • the first measuring device 110 and the second measuring device 120 are described as generating heat in a pattern representing a communication address used for communication with the control device 900, but the present invention is not limited to this.
  • the control device 900 determines, for example, a heat generation pattern by the first measurement device 110 and a heat generation pattern by the second measurement device 120 at random, and determines the determined pattern by the first measurement device 110 and the second measurement device. It may be transmitted to the device 120.
  • control unit 930 of control device 900 has been described as controlling first air conditioner 210 and second air conditioner 220 based on the first thermal image and the second thermal image, but the present invention is not limited to this. Not necessarily.
  • the control unit 930 of the control device 900 generates heat at a temperature higher than the upper limit temperature set by the maintenance manager of the air conditioning system 1 based on the pixel value of the first thermal image and the pixel value of the second thermal image.
  • control for stopping heat generation may be performed on the first measuring device 110 and the second measuring device 120.
  • the upper limit temperature set by the maintenance manager may be any temperature as long as it is set to a temperature higher than the temperature Th which is the maximum value of the heat generation temperature according to the heat generation pattern.
  • the first measuring device 110 or the second measuring device 120 from continuously generating heat at a temperature higher than the upper limit temperature set by the maintenance manager due to, for example, a failure or an erroneous operation.
  • the control unit 930 of the control device 900 specifies the position of an object that generates heat at a temperature higher than the upper limit temperature (hereinafter, referred to as a high-temperature object) based on the first thermal image and the second thermal image, and Control for displaying the position of the object and a message indicating the presence of the high-temperature object may be performed on the LCD 909b in FIG.
  • the first measuring device 110 generates heat according to the first pattern for identifying the first measuring device 110
  • the second measuring device 120 generates heat according to the second pattern for identifying the second measuring device 120.
  • the first measuring device 110 includes a storage battery (not shown).
  • the CPU 111 determines that the storage amount of the storage battery is equal to or larger than the amount set by the maintenance manager of the air conditioning system 1, the CPU 111 generates heat according to the first pattern. May be instructed to the heat generating unit 115.
  • the CPU 111 of the first measuring device 110 determines that the storage amount of the storage battery is less than the set amount, the CPU 111 instructs the heat generation unit 115 to generate heat according to the shortened first pattern. Is also good.
  • the pattern obtained by shortening the first pattern may be, for example, a pattern that performs the first heat generation to the K-th heat generation according to the first pattern.
  • K is a natural number smaller than N.
  • the pattern obtained by shortening the first pattern may be, for example, a pattern that performs the (N ⁇ K + 1) th heat generation to the Nth heat generation according to the first pattern.
  • the CPU 111 of the first measuring device 110 may transmit, to the control device 900, information reporting the end of the heat generation according to the pattern after the heat generation according to the shortened pattern ends. Further, the CPU 111 of the first measuring device 110 may transmit information indicating the total number of times of heat generation according to the shortened pattern to the control device 900 before starting heat generation according to the shortened pattern.
  • the second measuring device 120 may generate heat in accordance with a shortened first pattern when the storage amount of the storage battery is less than a set amount.
  • control unit 930 of the control device 900 determines the position of the first measuring device 110 or the second measuring device 120 that generates heat in the shortened pattern, the identification information of the first measuring device 110 or the second measuring device 120, and the power storage. Control for displaying a message indicating a decrease in amount and displaying the message together may be performed on the LCD 909b in FIG.
  • the CPU 111 of the first measuring device 110 may cause the heat generating unit 115 to generate heat in a pattern in which the first pattern is further shortened as the amount of stored power of the battery decreases.
  • the first measuring device 110 generates heat in accordance with a pattern obtained by shortening the first pattern when the charged amount of the storage battery is less than the set amount, and the second measuring device 120 determines that the charged amount of the storage battery is When the amount is less than the set amount, heat is generated according to the pattern obtained by shortening the second pattern. Therefore, the first measuring device 110 and the second measuring device 120 can save power.
  • the first measuring device 110 and the second measuring device 120 have been described as being installed on, for example, a wall surface of an office space or a desk, but the present invention is not limited to this.
  • the first measuring device 110 and the second measuring device 120 may be, for example, remote controls carried by the user.
  • the present invention can be provided as a control device 900 having a configuration for realizing the functions according to the embodiment of the present invention and any one of the first to tenth modifications of the embodiment. Further, by applying the program, the existing control device 900 can be caused to function as the control device 900 according to any one of the embodiments and the first to tenth modifications of the embodiment of the present invention. That is, a program for realizing each functional configuration by the control device 900 exemplified in the embodiment of the present invention and any one of the modified examples 1 to 10 of the embodiment is stored in a computer (CPU or the like) for controlling the existing control device. ) Can be caused to function as the control device 900 according to the embodiment of the present invention and any of Modifications 1 to 10 of the embodiment.
  • the distribution method of such a program is arbitrary.
  • the program is stored in a recording medium such as a memory card, a CD-ROM (Compact Disc Read Only Memory), or a DVD-ROM (Digital Versatile Disk Read Only Memory) and distributed.
  • a recording medium such as a memory card, a CD-ROM (Compact Disc Read Only Memory), or a DVD-ROM (Digital Versatile Disk Read Only Memory) and distributed.
  • a communication medium such as the Internet.
  • the air conditioning method can be implemented using the air conditioning system 1.
  • the present invention is suitable for an air-conditioning communication system that harmonizes air in an air-conditioned space.
  • 1 air conditioning system 110 first measurement device, 111, 211, 901 CPU, 112, 212, 902 ROM, 113, 213, 903 flash memory, 114, 214, 904 RAM, 115 heating unit, 116 measurement unit, 116a temperature Sensor, 116b ⁇ humidity sensor, 117,907a ⁇ wireless communication circuit, 118,908 button, 119a, 909a video card, 119b, 909b LCD, 120 second measuring device, 200 outdoor unit, 210 first air conditioner, 215 first radiation sensor 216 ⁇ first thermal image generation circuit, 217,907b ⁇ wired communication circuit, 218 fan, 219 motor, 220 second air conditioner, 230 third air conditioner, 251 radiant heat measurement unit, 251a lens, 251b thermopile array, 252 Scanning unit, 900 control unit, 910 acquisition unit, 920 identification unit, 930 control unit, 990 information storage unit, C communication cable, CL circle, D11, D12, D21, D22, D31 arrival direction, IE

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

An air conditioning system (1) comprises: a first measurement device (110) that comprises a measuring unit to measure the temperature and/or the humidity of a space S to be air-conditioned, and a heat generating unit to generate heat; a first air conditioner (210) that comprises a first radiation sensor to measure radiant heat produced by the heat generated from a heat generation means, and a first thermal image generation circuit to generate a first thermal image on the basis of measurement results from the first radiation sensor; and a second air conditioner (220) that comprises a second radiation sensor to measure radiant heat produced by heat generation, and a second thermal image generation circuit to generate a second thermal image on the basis of the measurement results of the second radiation sensor. The air conditioning system (1) comprises a control device (900) that identifies the position of the first measurement device (110) on the basis of the first thermal image and the second thermal image, and that controls the first air conditioner (210) and the second air conditioner (220) on the basis of the identified position of the first measurement device and the temperature and/or humidity measured by the first measurement device.

Description

空気調和システム、空気調和方法、制御装置、及び、プログラムAir conditioning system, air conditioning method, control device, and program
 本発明は、空気調和システム、空気調和方法、制御装置、及び、プログラムに関する。 The present invention relates to an air conditioning system, an air conditioning method, a control device, and a program.
 従来から、空調空間の温度及び湿度のいずれか1つ以上を計測する計測装置と、計測装置で計測された温度及び湿度のいずれか1つ以上と、計測装置の位置と、に基づいて、空調空間の空気を調和させる空気調和機と、を備えるシステムが知られている(例えば、特許文献1参照)。このシステムの計測装置は、空気調和機から発せられた電磁波を検出すると、電磁波の検出強度を表す情報を空気調和機に送信し、空気調和機は、受信された情報で表される検出強度に基づいて、空気調和機から計測装置までの距離を検出する。 Conventionally, air conditioning is performed based on a measuring device that measures one or more of temperature and humidity of an air-conditioned space, one or more of temperature and humidity measured by the measuring device, and a position of the measuring device. 2. Description of the Related Art A system including an air conditioner for conditioning air in a space is known (for example, see Patent Document 1). When the measurement device of this system detects the electromagnetic wave emitted from the air conditioner, it transmits information indicating the detection intensity of the electromagnetic wave to the air conditioner, and the air conditioner reduces the detection intensity represented by the received information. Based on this, the distance from the air conditioner to the measuring device is detected.
国際公開第2012/101831号International Publication No. 2012/101831
 しかしながら、電磁波の検出強度は、例えば、空調空間に滞在する人の数及び滞在位置といった環境の影響を受けて変化する。このため、特許文献1に開示されたシステムでは、空気調和機から計測装置までの距離を精度良く特定できないため、計測装置の位置を精度良く特定できなかった。 However, the detection intensity of the electromagnetic wave changes under the influence of the environment such as the number of people staying in the air-conditioned space and the staying position. For this reason, in the system disclosed in Patent Literature 1, the distance from the air conditioner to the measuring device cannot be accurately specified, and thus the position of the measuring device cannot be accurately specified.
 本発明は、上記実情に鑑みてなされたものであり、その目的とするところは、空調空間の温度及び湿度のいずれか1つ以上を計測する計測装置の位置を精度良く特定できる空気調和システム、空気調和方法、制御装置、及び、プログラムを提供することにある。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an air conditioning system capable of accurately specifying the position of a measuring device that measures one or more of the temperature and humidity of an air-conditioned space; An object of the present invention is to provide an air conditioning method, a control device, and a program.
 上記目的を達成するため、本発明に係る空気調和システムは、
 空調空間の温度及び湿度のいずれか1つ以上を計測する計測手段と、発熱する発熱手段と、を備える計測装置と、
 前記発熱手段の発熱により生じる輻射熱を計測する第1輻射センサと、前記第1輻射センサの計測結果に基づいて第1熱画像を生成する第1熱画像生成手段と、を備える第1空気調和機と、
 前記発熱手段の前記発熱により生じる輻射熱を計測する第2輻射センサと、前記第2輻射センサの計測結果に基づいて第2熱画像を生成する第2熱画像生成手段と、を備える第2空気調和機と、
 前記第1熱画像生成手段で生成された前記第1熱画像と、前記第2熱画像生成手段で生成された前記第2熱画像と、に基づいて前記計測装置の位置を特定し、特定した前記計測装置の前記位置と、前記計測装置で計測された前記温度及び前記湿度のいずれか1つ以上と、に基づいて前記第1空気調和機及び前記第2空気調和機を制御する制御装置と、を備える。
In order to achieve the above object, the air conditioning system according to the present invention,
A measuring device that includes a measuring unit that measures one or more of the temperature and the humidity of the air-conditioned space, and a heating unit that generates heat,
A first air conditioner comprising: a first radiation sensor that measures radiant heat generated by heat generated by the heat generating unit; and a first thermal image generating unit that generates a first thermal image based on a measurement result of the first radiation sensor. When,
A second air conditioner comprising: a second radiation sensor that measures radiant heat generated by the heat generated by the heat generating unit; and a second thermal image generating unit that generates a second thermal image based on a measurement result of the second radiation sensor. Machine and
The position of the measurement device is specified and specified based on the first thermal image generated by the first thermal image generating means and the second thermal image generated by the second thermal image generating means. A control device that controls the first air conditioner and the second air conditioner based on the position of the measurement device and any one or more of the temperature and the humidity measured by the measurement device. , Is provided.
 本発明に係る空気調和システム、空気調和方法、制御装置、及び、プログラムによれば、空調空間の温度及び湿度のいずれか1つ以上を計測する計測装置の位置を精度良く特定できる。 According to the air conditioning system, the air conditioning method, the control device, and the program according to the present invention, the position of the measuring device that measures at least one of the temperature and the humidity of the conditioned space can be specified with high accuracy.
本発明の実施の形態に係る空気調和システムの一構成例を表す図The figure showing the example of 1 structure of the air conditioning system which concerns on embodiment of this invention. 第1計測装置のハードウェア構成の一例を表す図The figure showing an example of the hardware configuration of the first measuring device. 発熱部の一例を表す回路図Circuit diagram showing an example of a heating section 第1計測装置が実行する発熱制御処理の一例を表すフローチャート4 is a flowchart illustrating an example of a heat generation control process performed by the first measurement device. 第1計測装置が記憶するパターンテーブルの一例を表す図The figure showing an example of the pattern table which the 1st measuring device memorizes. 第1空気調和機のハードウェア構成の一例を表す図The figure showing an example of the hardware constitutions of a 1st air conditioner 第1輻射センサの光軸の設置方向の一例を表す図The figure showing an example of the installation direction of the optical axis of the first radiation sensor 第1熱画像の一例を表す図The figure showing an example of a 1st thermal image 第1輻射センサの光軸の刻み角度の一例を表す図The figure showing an example of the step angle of the optical axis of a 1st radiation sensor 制御装置のハードウェア構成の一例を表す図Diagram showing an example of a hardware configuration of a control device 制御装置が実行する位置特定処理の一例を表すフローチャート4 is a flowchart illustrating an example of a position specifying process performed by the control device. 制御装置が有する機能の一例を表す機能ブロック図Functional block diagram illustrating an example of a function of the control device 制御装置が記憶する画素値テーブルの一例を表す図FIG. 4 is a diagram illustrating an example of a pixel value table stored by a control device. 制御装置が記憶する検出結果テーブルの一例を表す図The figure showing an example of the detection result table stored by the control device. 制御装置が記憶する設置状況テーブルの一例を表す図The figure showing an example of the installation status table stored by the control device 制御装置が記憶する特定位置テーブルの一例を表す図The figure showing an example of the specific position table stored by the control device 制御装置が実行する検出処理の一例を表すフローチャート4 is a flowchart illustrating an example of a detection process performed by the control device. 制御装置が実行する直線特定処理の一例を表すフローチャートFlow chart showing an example of a straight line specifying process executed by the control device 制御装置が実行する空調制御処理の一例を表すフローチャートFlow chart showing an example of an air conditioning control process executed by the control device 実施の形態の変形例1に係る空気調和システムの一構成例を表す図The figure showing the example of 1 structure of the air conditioning system which concerns on the modification 1 of embodiment. 第1直線、第2直線、及び、第3直線の一例を表す図The figure showing an example of the 1st straight line, the 2nd straight line, and the 3rd straight line
(実施の形態)
 以下、本発明の実施の形態に係る空気調和システム1について、添付図面を参照しつつ説明する。
(Embodiment)
Hereinafter, an air conditioning system 1 according to an embodiment of the present invention will be described with reference to the accompanying drawings.
 図1に示す空気調和システム1は、例えば、オフィスビルに設置され、オフィススペース、廊下、及び、トイレ等の空調空間Sの空気を調和させる。 空 気 The air conditioning system 1 shown in FIG. 1 is installed in, for example, an office building, and conditioned the air in an air conditioning space S such as an office space, a corridor, and a toilet.
 空気調和システム1は、空調空間Sの温度及び湿度を計測する第1計測装置110及び第2計測装置120、温度及び湿度の調整に用いられる冷媒を加熱又は冷却する室外機200、冷媒を用いて空調空間Sの温度及び湿度を調整する室内機である第1空気調和機(以下、第1空調機という)210及び第2空気調和機(以下、第2空調機という)220、を備える。また、空気調和システム1は、第1計測装置110で計測された温度及び湿度、第2計測装置120で計測された温度及び湿度、並びに、第1計測装置110及び第2計測装置120の位置、に基づいて、第1空調機210及び第2空調機220を制御する制御装置900を備える。 The air conditioning system 1 uses a first measuring device 110 and a second measuring device 120 that measure the temperature and humidity of the air-conditioned space S, an outdoor unit 200 that heats or cools a refrigerant used for adjusting the temperature and humidity, and a refrigerant. The air conditioner includes a first air conditioner (hereinafter, referred to as a first air conditioner) 210 and a second air conditioner (hereinafter, referred to as a second air conditioner) 220 that are indoor units that adjust the temperature and humidity of the air-conditioned space S. In addition, the air-conditioning system 1 includes the temperature and the humidity measured by the first measuring device 110, the temperature and the humidity measured by the second measuring device 120, the positions of the first measuring device 110 and the second measuring device 120, And a control device 900 for controlling the first air conditioner 210 and the second air conditioner 220 based on
 第1計測装置110は、例えば、オフィススペースの壁面又はデスクに設置され、設置された位置を、発熱による遠赤外線を発することで制御装置900に知らせる。このため、第1計測装置110は、発熱を制御するプログラムを含んだ各種のプログラムを実行する、図2のCPU(Central Processing Unit)111、各種のプログラムを保存するROM(Read Only Memory)112及びフラッシュメモリ113、並びに、各種のプログラムの実行時にワークエリアとして使用されるRAM(Random Access Memory)114を備える。 The first measuring device 110 is installed on, for example, a wall surface of an office space or a desk, and notifies the control device 900 of the installed position by emitting far-infrared rays due to heat generation. For this reason, the first measuring device 110 executes various programs including a program for controlling heat generation, a CPU (Central Processing Unit) 111 of FIG. 2, a ROM (Read Only Memory) 112 for storing various programs, and A flash memory 113 and a RAM (Random Access Memory) 114 used as a work area when executing various programs are provided.
 また、第1計測装置110は、CPU111から入力される信号に従って発熱する、図3の発熱部115を備える。発熱部115は、本発明に係る発熱手段の一例である。 {Circle around (1)} The first measuring device 110 includes the heat generating unit 115 shown in FIG. 3 that generates heat in accordance with a signal input from the CPU 111. The heating unit 115 is an example of a heating unit according to the present invention.
 発熱部115に入力されるCPU111の信号は、温度THでの発熱を指示する信号SH、温度THよりも低い温度TMでの発熱を指示する信号SM、温度TMよりも低い温度TLでの発熱を指示する信号SL、及び、発熱の停止を指示する信号SSを含む。好適な温度TH、温度TM、及び、温度TLは、当業者が実験により決定できる。 The signals of the CPU 111 input to the heat generating unit 115 include a signal SH for instructing heat generation at the temperature TH, a signal SM for instructing heat generation at a temperature TM lower than the temperature TH, and heat generation at a temperature TL lower than the temperature TM. And a signal SS for instructing to stop heat generation. Suitable temperature TH, temperature TM, and temperature TL can be experimentally determined by those skilled in the art.
 発熱部115は、電源PWに接続された端子P0と、サーモスタットBHに接続された端子PH、サーモスタットBMに接続された端子PM、及び、サーモスタットBLに接続された端子PLと、を有するスイッチSWを備える。スイッチSWは、CPU111に接続されており、温度THでの発熱を指示する信号SHが入力されると、電源PWに接続された端子P0を、サーモスタットBHに接続された端子PHと接続させる。また、スイッチSWは、信号SMが入力されると端子P0を端子PMと接続させ、信号SLが入力されると端子P0を端子PLと接続させる。また、スイッチSWは、発熱の停止を指示する信号SSが入力されると、端子P0を端子PH、端子PM、及び端子PLのいずれとも接続させずに回路を開く。 The heating unit 115 includes a switch SW having a terminal P0 connected to the power supply PW, a terminal PH connected to the thermostat BH, a terminal PM connected to the thermostat BM, and a terminal PL connected to the thermostat BL. Prepare. The switch SW is connected to the CPU 111, and when a signal SH instructing heat generation at the temperature TH is input, connects the terminal P0 connected to the power supply PW to the terminal PH connected to the thermostat BH. The switch SW connects the terminal P0 to the terminal PM when the signal SM is input, and connects the terminal P0 to the terminal PL when the signal SL is input. Further, when the signal SS instructing the stop of the heat generation is input, the switch SW opens the circuit without connecting the terminal P0 to any of the terminals PH, PM, and PL.
 発熱部115は、一端をスイッチSWに接続され、他端を電熱線Rに接続されたバイメタル型のサーモスタットBH、BM、及び、BLを備える。発熱部115の内部の温度が温度TL未満であると、サーモスタットBH、BM、及び、BLのいずれもが回路を閉じる。また、発熱部115の内部の温度が温度TL以上かつ温度TM未満であると、サーモスタットBH及びBMは回路を閉じ、かつ、サーモスタットBLは回路を開く。さらに、発熱部115の内部の温度が温度TM以上かつ温度TH未満であると、サーモスタットBHは回路を閉じ、かつ、サーモスタットBM及びBLは回路を開く。またさらに、発熱部115の内部の温度が温度TH以上であると、サーモスタットBH、BM、及び、BLのいずれもが回路を開く。 (4) The heating unit 115 includes bimetal thermostats BH, BM, and BL each having one end connected to the switch SW and the other end connected to the heating wire R. When the temperature inside the heating section 115 is lower than the temperature TL, all of the thermostats BH, BM, and BL close the circuit. When the temperature inside the heat generating portion 115 is equal to or higher than the temperature TL and lower than the temperature TM, the thermostats BH and BM close the circuit, and the thermostat BL opens the circuit. Furthermore, when the temperature inside the heat generating portion 115 is equal to or higher than the temperature TM and lower than the temperature TH, the thermostat BH closes the circuit, and the thermostats BM and BL open the circuit. Further, when the temperature inside the heat generating section 115 is equal to or higher than the temperature TH, all of the thermostats BH, BM, and BL open the circuit.
 発熱部115は、一端をサーモスタットBH、BM、及び、BLに接続され、かつ、他端を電源PWに接続された電熱線Rを備える。電熱線Rは、スイッチSWと、サーモスタットBH、BM、及び、BLのいずれか1つ以上と、によって回路が閉じられている場合に発熱して遠赤外線を発生させる。これに対して、電熱線Rは、スイッチSWが回路を開いている場合、又は、サーモスタットBH、BM、及び、BLの全てが回路を開いている場合に発熱を停止する。 (4) The heating unit 115 includes a heating wire R having one end connected to the thermostats BH, BM, and BL, and the other end connected to the power supply PW. The heating wire R generates heat and generates far-infrared rays when the circuit is closed by the switch SW and at least one of the thermostats BH, BM, and BL. On the other hand, the heating wire R stops generating heat when the switch SW opens the circuit or when all of the thermostats BH, BM, and BL open the circuit.
 つまり、発熱部115は、温度THでの発熱を指示する信号SHが入力されると、発熱部115の温度が温度TH未満となれば発熱し、発熱部115の温度が温度TH以上となれば発熱を停止する。このため、発熱部115の発熱状態は、信号SHの入力から十分な時間が経過すると温度THで発熱し続ける定常状態となる。信号SHの入力から発熱状態が定常状態となるまでに要する待機時間は、当業者が実験により定めることができ、実験により定められた待機時間は、図2に示したフラッシュメモリ113に予め保存されている。 That is, when the signal SH instructing the heat generation at the temperature TH is input, the heat generating section 115 generates heat when the temperature of the heat generating section 115 becomes lower than the temperature TH, and when the temperature of the heat generating section 115 becomes higher than the temperature TH. Stop fever. For this reason, the heat generation state of the heat generation section 115 becomes a steady state in which the heat generation at the temperature TH continues after a sufficient time has elapsed from the input of the signal SH. The waiting time required from the input of the signal SH until the heat generation state becomes the steady state can be determined by an experiment by a person skilled in the art, and the standby time determined by the experiment is stored in advance in the flash memory 113 shown in FIG. ing.
 同様に、発熱部115は、信号SMが入力されると温度TMで発熱し、信号SLが入力されると温度TLで発熱する。また、発熱部115は、発熱の停止を指示する信号SSが入力されると発熱を停止するため、待機時間を経過すると、発熱部115の温度は、室温と同じになる。 Similarly, the heat generating section 115 generates heat at the temperature TM when the signal SM is input, and generates heat at the temperature TL when the signal SL is input. In addition, since the heat generation unit 115 stops generating heat when the signal SS for instructing the stop of heat generation is input, the temperature of the heat generation unit 115 becomes equal to room temperature after the elapse of the standby time.
 図2の第1計測装置110は、図1に示した空調空間Sの温度を計測する温度センサ116a及び空調空間Sの湿度を計測する湿度センサ116bを有する計測部116を備える。計測部116は、空調空間Sの温度及び湿度を正確に計測するため、熱絶縁体で発熱部115と隔てられている。本実施の形態では、熱絶縁体は、例えば、グラスウール、ケイ酸カルシウム及びセラミックファイバー等の繊維状物質であると説明するが、これに限定される訳では無く、ポリウレタンフォーム、バーキ及び積層板ライト等の多孔質物質であっても良い。計測部116は、本発明に係る計測手段の一例である。 第 The first measuring device 110 of FIG. 2 includes the measuring unit 116 having the temperature sensor 116a for measuring the temperature of the air-conditioned space S and the humidity sensor 116b for measuring the humidity of the air-conditioned space S shown in FIG. The measuring unit 116 is separated from the heat generating unit 115 by a thermal insulator in order to accurately measure the temperature and humidity of the air-conditioned space S. In the present embodiment, the heat insulator is described as a fibrous substance such as glass wool, calcium silicate, and ceramic fiber, but is not limited thereto. And the like. The measuring unit 116 is an example of a measuring unit according to the present invention.
 さらに、第1計測装置110は、近距離無線通信規格であるBLE(Bluetooth Low Energy)に従って、計測部116で計測された温度を表す計測温度情報、及び、湿度を表す計測湿度情報を、制御装置900へ送信する無線通信回路117を備える。 Further, the first measuring device 110 transmits the measured temperature information indicating the temperature measured by the measuring unit 116 and the measured humidity information indicating the humidity in accordance with the short-range wireless communication standard BLE (Bluetooth Low Energy) to the control device. And a wireless communication circuit 117 for transmitting data to the wireless communication circuit 900.
 また、第1計測装置110は、ユーザの操作に応じた信号をCPU111へ入力するボタン118と、CPU111から出力されたデジタル信号に基づいて画像を描画して画像信号を出力するビデオカード119aと、ビデオカード119aから出力された画像信号に従って画像を表示するLCD(Liquid Crystal Display)119bと、を備える。 In addition, the first measuring device 110 includes a button 118 for inputting a signal according to a user operation to the CPU 111, a video card 119a for drawing an image based on a digital signal output from the CPU 111 and outputting an image signal, An LCD (Liquid Crystal Display) 119b for displaying an image in accordance with the image signal output from the video card 119a.
 第1計測装置110のCPU111は、第1計測装置110を識別する識別情報を表すパターンに従って発熱部115を発熱させる、図4の発熱制御処理を実行する。識別情報を表すパターンに従って発熱部115を発熱させるのは、第1計測装置110による発熱のパターン(以下、第1パターンという)と、第2計測装置120による発熱のパターン(以下、第2パターンという)と、を互いに異なるパターンとするためである。 (4) The CPU 111 of the first measuring device 110 executes the heat generation control process of FIG. 4 for causing the heat generating portion 115 to generate heat according to a pattern representing identification information for identifying the first measuring device 110. The heat generating unit 115 generates heat in accordance with the pattern representing the identification information. The heat generating pattern by the first measuring device 110 (hereinafter, referred to as a first pattern) and the heat generating pattern by the second measuring device 120 (hereinafter, referred to as a second pattern). ) Are different from each other.
 第1計測装置110のフラッシュメモリ113は、発熱のパターンを表す情報が予め保存された、図5のパターンテーブルを予め記憶している。パターンテーブルには、発熱のパターンで表される識別情報と、当該発熱のパターンに従って行われる第1回目から第N回目までの発熱の状態(以下、発熱状態という)を表す情報と、が対応付けられて保存されている。 (5) The flash memory 113 of the first measuring device 110 previously stores the pattern table of FIG. 5 in which information indicating a heat generation pattern is stored in advance. In the pattern table, identification information represented by a heat generation pattern is associated with information indicating the first to N-th heat generation states (hereinafter, referred to as heat generation states) performed according to the heat generation pattern. Has been saved.
 パターンテーブルにおいて、発熱状態は、温度THで発熱する状態を表す記号「強」、温度TMで発熱する状態を表す記号「中」、温度TLで発熱する状態を表す記号「弱」、及び、発熱していない状態を表す記号「無」という4種類の記号で表される。このため、N回の発熱を行うパターンによって、4-1通りの識別情報が表される。 In the pattern table, the heat generation state includes a symbol “strong” indicating a state of generating heat at the temperature TH, a symbol “medium” indicating a state of generating heat at the temperature TM, a symbol “weak” indicating a state of generating heat at the temperature TL, and It is represented by four types of symbols, "null", which represent a state in which no operation is performed. For this reason, 4 N −1 kinds of identification information are represented by a pattern that generates heat N times.
 第1計測装置110のCPU111は、電源が投入されたタイミング、又は、図4の発熱制御処理の実行を命じるコマンドを、無線通信回路117が制御装置900から受信したタイミングで、発熱制御処理の実行を開始する。 The CPU 111 of the first measuring device 110 executes the heat generation control process at the timing when the power is turned on or when the wireless communication circuit 117 receives a command for executing the heat generation control process in FIG. To start.
 CPU111は、発熱制御処理を開始すると、無線通信回路117に割り当てられた通信アドレスを取得し、取得された通信アドレスを第1計測装置110の識別情報とする。第1計測装置110の通信アドレスは、第2計測装置120の通信アドレスと、通常、異なるからである。 When the CPU 111 starts the heat generation control process, the CPU 111 acquires the communication address assigned to the wireless communication circuit 117, and uses the acquired communication address as the identification information of the first measuring device 110. This is because the communication address of the first measuring device 110 is usually different from the communication address of the second measuring device 120.
 次に、CPU111は、図5のパターンテーブルから、第1計測装置110の識別情報と対応付けられた第1回目から第N回目までの発熱状態を取得し、取得された発熱状態で発熱を行うパターンを第1パターンとする(ステップS01)。 Next, the CPU 111 acquires the first to N-th heat generation states associated with the identification information of the first measurement device 110 from the pattern table of FIG. 5, and generates heat in the obtained heat state. The pattern is set as a first pattern (step S01).
 次に、CPU111は、発熱回数を表す変数nを値「1」で初期化した後に(ステップS02)、変数nで表される発熱回数が、第1パターンで行われる発熱回数N以下であるか否かを判別する(ステップS03)。 Next, the CPU 111 initializes a variable n representing the number of heat generation with a value “1” (step S02), and then determines whether the number of heat generation represented by the variable n is equal to or less than the number N of heat generation performed in the first pattern. It is determined whether or not it is (step S03).
 このとき、CPU111は、変数nがN以下であると判別すると(ステップS03;Yes)、ステップS01で取得した第n回目の発熱状態で発熱させる制御を、図2の発熱部115に行う(ステップS04)。例えば、第n回目の発熱状態が、記号「強」で表される温度THで発熱する状態であれば、CPU111は、温度THでの発熱を指示する信号SHを発熱部115に入力する。 At this time, when the CPU 111 determines that the variable n is equal to or less than N (step S03; Yes), the CPU 111 controls the heat generation unit 115 of FIG. 2 to generate heat in the n-th heat generation state acquired in step S01 (step S03). S04). For example, if the n-th heat generation state is a state in which heat is generated at a temperature TH represented by a symbol “strong”, the CPU 111 inputs a signal SH instructing heat generation at the temperature TH to the heat generation unit 115.
 次に、CPU111は、例えば、ソフトウェアタイマーを用いて、ステップS04で発熱の制御を行った時からの経過時間の計時を開始する。その後、CPU111は、フラッシュメモリ113に保存された待機時間を読み出し、ソフトウェアタイマーで計時する経過時間が待機時間を超えたか否かに基づいて、発熱部115の発熱状態が定常状態であるか否かを判別する(ステップS05)。このとき、CPU111は、経過時間が待機時間を超えていないため、定常状態でないと判別すると(ステップS05;No)、一定時間スリープした後に、再度ステップS05の処理を実行する。 Next, the CPU 111 starts measuring the elapsed time from when the heat generation is controlled in step S04 using, for example, a software timer. Thereafter, the CPU 111 reads the standby time stored in the flash memory 113, and determines whether the heating state of the heating unit 115 is in a steady state based on whether the elapsed time measured by the software timer has exceeded the standby time. Is determined (step S05). At this time, if the elapsed time does not exceed the standby time, the CPU 111 determines that it is not in the steady state (step S05; No), sleeps for a certain time, and then executes the process of step S05 again.
 これに対して、CPU111は、経過時間が待機時間を超えたため定常状態であると判別すると(ステップS05;Yes)、発熱回数を表す発熱回数情報と、変化後の発熱の状態を表す発熱状態情報と、を、制御装置900を宛先として、図2の無線通信回路117に出力する(ステップS06)。次に、無線通信回路117は、発熱回数情報と発熱状態情報とを制御装置900へ送信する。 On the other hand, when determining that the CPU 111 is in the steady state because the elapsed time has exceeded the standby time (step S05; Yes), the CPU 111 generates heat generation number information indicating the number of heat generations and heat generation state information indicating the changed heat generation state. Are output to the wireless communication circuit 117 of FIG. 2 with the control device 900 as a destination (step S06). Next, the wireless communication circuit 117 transmits the heat generation frequency information and the heat generation state information to the control device 900.
 その後、CPU111は、指示した発熱状態が継続している時間の計時を、例えば、ソフトウェアタイマーを用いて開始する。次に、CPU111は、例えば、空気調和システム1の保守管理者によって、発熱を継続させる時間として予め設定された設定時間をフラッシュメモリ113から読み出し、計時された発熱の継続時間が設定時間を超えたか否かを判別する(ステップS07)。このとき、CPU111は、発熱の継続時間が設定時間を超えていないと判別すると(ステップS07;No)、一定時間スリープした後に、再度ステップS07の処理を実行する。 (4) Thereafter, the CPU 111 starts measuring the time during which the instructed heat generation state continues, for example, using a software timer. Next, the CPU 111 reads, for example, from the flash memory 113 a preset time set by the maintenance manager of the air-conditioning system 1 as the time for continuing the heat generation, and determines whether the measured heat generation duration exceeds the set time. It is determined whether or not it is (step S07). At this time, if the CPU 111 determines that the duration of the heat generation does not exceed the set time (step S07; No), the CPU 111 sleeps for a certain time and then executes the processing of step S07 again.
 これに対して、CPU111は、発熱の継続時間が設定時間を超えたと判別すると(ステップS07;Yes)、発熱回数を表す変数nを値「1」増加させた後に(ステップS08)、ステップS03に戻り上記処理を繰り返す。 On the other hand, if the CPU 111 determines that the duration of heat generation has exceeded the set time (step S07; Yes), the CPU 111 increases the variable n representing the number of heat generation by “1” (step S08), and then proceeds to step S03. Return and repeat the above process.
 ステップS03において、CPU111は、変数nがNよりも大きいため、第1パターンに従った一連の発熱の全てを行ったと判別すると(ステップS03;No)、発熱制御処理の実行を終了する。 In step S03, when the CPU 111 determines that all of the series of heat generation according to the first pattern has been performed because the variable n is larger than N (step S03; No), the CPU 111 ends the execution of the heat generation control process.
 第1計測装置110のCPU111は、発熱制御処理の実行が終了してから、フラッシュメモリ113に保存された待機時間と同じ長さの時間が経過した後に、空調空間Sの温度及び湿度を計測する、不図示の温度湿度計測処理の実行を一定周期で繰り返す。発熱部115が発熱を終了してから待機時間以上の時間が経過していれば、第1計測装置110の温度は、空調空間Sの温度と同じ温度になっていると考えられるからである。 The CPU 111 of the first measuring device 110 measures the temperature and humidity of the air-conditioned space S after a lapse of the same length of time as the standby time stored in the flash memory 113 after the execution of the heat generation control process ends. The execution of the temperature / humidity measurement process (not shown) is repeated at regular intervals. This is because the temperature of the first measuring device 110 is considered to be the same as the temperature of the air-conditioned space S if the time equal to or longer than the standby time has elapsed since the heat generation unit 115 finished generating heat.
 また、CPU111は、発熱制御処理の実行が再開されると、一定周期で繰り返す温度湿度計測処理の実行を中断する。発熱部115が発熱を開始すれば、第1計測装置110が計測する温度は、空調空間Sの温度よりも高くなるおそれがあり、かつ、第1計測装置110が計測する湿度は、空調空間Sの湿度よりも低くなるおそれがあるからである。その後、CPU111は、発熱制御処理の実行が終了してから待機時間経過した後に、一定周期で繰り返す温度湿度計測処理の実行を再開する。 (4) When the execution of the heat generation control process is resumed, the CPU 111 suspends the execution of the temperature and humidity measurement process that is repeated at a constant cycle. If the heat generating unit 115 starts generating heat, the temperature measured by the first measuring device 110 may be higher than the temperature of the air-conditioned space S, and the humidity measured by the first measuring device 110 is This is because the humidity may be lower than the humidity. After that, the CPU 111 restarts the execution of the temperature / humidity measurement process that is repeated at a constant cycle after a lapse of the standby time from the end of the execution of the heat generation control process.
 温度湿度計測処理の実行を開始すると、第1計測装置110のCPU111は、図2の温度センサ116aが出力する信号に基づいて計測温度情報を生成し、湿度センサ116bが出力する信号に基づいて計測湿度情報を生成する。その後、CPU111は、制御装置900を宛先として計測温度情報及び計測湿度情報を無線通信回路117に出力した後に、無線通信回路117が計測温度情報及び計測湿度情報を制御装置900へ送信してから、温度湿度計測処理の実行を終了する。 When the execution of the temperature / humidity measurement process is started, the CPU 111 of the first measuring device 110 generates measured temperature information based on the signal output from the temperature sensor 116a in FIG. 2, and performs measurement based on the signal output from the humidity sensor 116b. Generate humidity information. After that, the CPU 111 outputs the measured temperature information and the measured humidity information to the control device 900 as a destination and transmits the measured temperature information and the measured humidity information to the control device 900 after the wireless communication circuit 117 transmits the measured temperature information and the measured humidity information to the control device 900. The execution of the temperature and humidity measurement processing ends.
 第2計測装置120は、第1計測装置110と同様のハードウェアを備え、第1計測装置110と同様の機能を発揮する。つまり、第2計測装置120は、第1計測装置110の発熱部115及び計測部116と同様の構成及び機能を有する、不図示の発熱部及び計測部を備える。第2計測装置120は、第1計測装置110と同様に、図4の発熱制御処理を実行することで、第2計測装置120の通信アドレスを表す第2パターンに従って不図示の発熱部を発熱させる。 The second measuring device 120 has the same hardware as the first measuring device 110 and performs the same function as the first measuring device 110. That is, the second measuring device 120 includes a heating unit and a measuring unit (not shown) having the same configuration and functions as the heating unit 115 and the measuring unit 116 of the first measuring device 110. Similarly to the first measuring device 110, the second measuring device 120 executes the heat generation control process of FIG. 4 to cause the heat generating portion (not shown) to generate heat according to the second pattern representing the communication address of the second measuring device 120. .
 図1の第1空調機210は、第1計測装置110及び第2計測装置120が設置された空調空間Sの熱画像である第1熱画像を生成し、生成された第1熱画像を、第1計測装置110及び第2計測装置120の位置を特定する制御装置900へ送信する。 The first air conditioner 210 of FIG. 1 generates a first thermal image that is a thermal image of the air-conditioned space S in which the first measuring device 110 and the second measuring device 120 are installed, and generates the generated first thermal image. The information is transmitted to the control device 900 that specifies the positions of the first measuring device 110 and the second measuring device 120.
 このため、第1空調機210は、第1熱画像の生成及び送信を制御するプログラムを含んだ各種のプログラムを実行する、図6のCPU211、各種のプログラムを保存するROM212及びフラッシュメモリ213、並びに、各種のプログラムの実行時にワークエリアとして使用されるRAM214を備える。 For this reason, the first air conditioner 210 executes various programs including a program for controlling generation and transmission of the first thermal image, the CPU 211 in FIG. 6, a ROM 212 and a flash memory 213 storing various programs, and And a RAM 214 used as a work area when executing various programs.
 また、第1空調機210は、輻射熱の計測結果に基づいて、空調空間Sの熱分布を表す第1熱画像を生成する第1輻射センサ215を備える。第1輻射センサ215は、輻射熱を計測するため、例えば、リモートコントローラが有する赤外線LED(Light Emitting Diode)から発せられる近赤外線を検出することができない又は難しいが、熱体から発せられる遠赤外線を検出できる。 {Circle around (1)} The first air conditioner 210 includes a first radiation sensor 215 that generates a first thermal image representing the heat distribution of the air-conditioned space S based on the measurement result of the radiation heat. Since the first radiation sensor 215 measures radiant heat, for example, it is difficult or difficult to detect near-infrared rays emitted from an infrared LED (Light Emitting Diode) of a remote controller, but detects far-infrared rays emitted from a heat body. it can.
 第1輻射センサ215は、遠赤外線を透過させるレンズ251aと、レンズ251aを透過した遠赤外線によって生じる輻射熱を電気信号に変換するサーモパイルアレイ251bと、を有する輻射熱計測部251を備える。 The first radiation sensor 215 includes a radiation heat measuring unit 251 having a lens 251a that transmits far infrared rays, and a thermopile array 251b that converts radiant heat generated by the far infrared rays transmitted through the lens 251a into an electric signal.
 輻射熱計測部251は、レンズ251aの光軸を、図7に示す鉛直上方向をZw軸の正方向とする世界座標系XwYwZwにおいて、Xw軸の正方向と成す角度がθ1である水平方向LA1に向けて設置されている。つまり、レンズ251aの光軸の設置方向は、水平方向LA1である。 The radiation heat measuring unit 251 sets the optical axis of the lens 251a in the horizontal direction LA1 in which the angle formed with the positive direction of the Xw axis is θ1 in the world coordinate system XwYwZw in which the vertical direction shown in FIG. 7 is the positive direction of the Zw axis. It is installed for. That is, the installation direction of the optical axis of the lens 251a is the horizontal direction LA1.
 サーモパイルアレイ251bは、図8に示す第1熱画像の副走査方向に1列に並んだNy個の画素に対応する、鉛直方向に1列に並べられたNy個のサーモパイル素子で構成される。 The thermopile array 251b is composed of Ny thermopile elements arranged in one column in the vertical direction corresponding to Ny pixels arranged in one column in the sub-scanning direction of the first thermal image shown in FIG.
 説明を簡単にするため、Nyは奇数であるとして以下説明する。サーモパイルアレイ251bの中心に位置するサーモパイル素子(以下、中心素子という)は、レンズ251aの光軸と重なる位置に配置されている。光軸が水平方向LA1に向けられている場合、中心素子は、水平方向LA1から到来する遠赤外線により生じる輻射熱に応じた電気信号を出力する。 た め For the sake of simplicity, the following description is based on the assumption that Ny is an odd number. A thermopile element (hereinafter, referred to as a center element) located at the center of the thermopile array 251b is arranged at a position overlapping the optical axis of the lens 251a. When the optical axis is directed in the horizontal direction LA1, the central element outputs an electric signal corresponding to radiant heat generated by far infrared rays coming from the horizontal direction LA1.
 中心素子より1つ上の位置に配置されたサーモパイル素子は、光軸が水平方向LA1に向けられている場合、図9に示すレンズ251aの中心が設置された位置(以下、レンズ251aの設置位置という)PA1を通り水平方向LA1よりも刻み角度φだけ下の方向から到来する遠赤外線により生じる輻射熱に応じた電気信号を出力する。但し、刻み角度φは、レンズ251aの焦点距離と鉛直方向におけるサーモパイル素子のサイズとで決まる角度である。つまり、刻み角度φは、焦点距離と等しい長さの隣辺と、サーモパイル素子のサイズに等しい長さの対辺と、を有する直角三角形を用いる従来の算出方法により特定できる。 When the optical axis is oriented in the horizontal direction LA1, the thermopile element disposed one position higher than the center element has a position where the center of the lens 251a shown in FIG. 9 is installed (hereinafter, the installation position of the lens 251a). An electric signal corresponding to radiant heat generated by far-infrared rays arriving from a direction lower than the horizontal direction LA1 by a step angle φ from the horizontal direction LA1 is output. However, the notch angle φ is an angle determined by the focal length of the lens 251a and the size of the thermopile element in the vertical direction. That is, the notch angle φ can be specified by a conventional calculation method using a right-angled triangle having an adjacent side having a length equal to the focal length and a paired side having a length equal to the size of the thermopile element.
 同様に、中心素子よりi個上の位置に配置されたサーモパイル素子は、水平方向LA1よりも刻み角度φ×iだけ下の方向から到来する遠赤外線により生じる輻射熱に応じた電気信号を出力する。但し、iは2以上、かつ、(Ny-1)/2以下の自然数である。 Similarly, the thermopile elements arranged at positions i above the center element output an electric signal corresponding to radiant heat generated by far infrared rays arriving from a direction below the horizontal direction LA1 by a step angle φ × i. Here, i is a natural number of 2 or more and (Ny-1) / 2 or less.
 また同様に、中心素子よりi個下の位置に配置されたサーモパイル素子は、水平方向LA1よりも刻み角度φ×iだけ上の方向から到来する遠赤外線によって生じる輻射熱に応じた電気信号を出力する。 Similarly, the thermopile element disposed i positions below the central element outputs an electric signal corresponding to radiant heat generated by far infrared rays arriving from a direction above the horizontal direction LA1 by a step angle φ × i. .
 図6の第1輻射センサ215は、輻射熱計測部215を走査させる不図示のステッピングモータを含んだ走査部252を備える。走査部252は、輻射熱計測部215の走査において、サーモパイルアレイ251bの受光面をレンズ251aの光軸と垂直に保ちながら、レンズ251aの設置位置PA1を変えずに、レンズ251aの光軸の方向を水平に維持したまま、変更前と異なる方向に変更する。 The first radiation sensor 215 in FIG. 6 includes a scanning unit 252 including a stepping motor (not shown) that scans the radiation heat measuring unit 215. The scanning unit 252 adjusts the direction of the optical axis of the lens 251a without changing the installation position PA1 of the lens 251a while maintaining the light receiving surface of the thermopile array 251b perpendicular to the optical axis of the lens 251a in the scanning of the radiant heat measuring unit 215. Change to a different direction from before the change, while keeping it horizontal.
 走査部252が、レンズ251aの光軸の方向を、図7の水平方向LA1から変化させる前に、サーモパイルアレイ251bは、第1熱画像の第1列の画素列を表す電気信号を出力する。次に、走査部252が、レンズ251aの光軸の方向を、水平方向LA1から刻み角度φだけYw軸の正方向に変化させると、サーモパイルアレイ251bは、第2列の画素列を表す電気信号を出力する。同様に、走査部252が、光軸の方向をさらに刻み角度φだけ変化させると、サーモパイルアレイ251bは、第3列の画素列を表す電気信号を出力する。同様の処理の繰り返しにより、サーモパイルアレイ251bは、第4列から第Nx列の画素列を表す電気信号を出力する。その後、走査部252は、レンズ251aの光軸の方向を走査前の水平方向LA1に戻す。 Before the scanning unit 252 changes the direction of the optical axis of the lens 251a from the horizontal direction LA1 in FIG. 7, the thermopile array 251b outputs an electric signal representing the first pixel column of the first thermal image. Next, when the scanning unit 252 changes the direction of the optical axis of the lens 251a from the horizontal direction LA1 to the positive direction of the Yw axis by the step angle φ, the thermopile array 251b outputs an electric signal representing the second pixel column. Is output. Similarly, when the scanning unit 252 further changes the direction of the optical axis by the step angle φ, the thermopile array 251b outputs an electric signal representing the third pixel column. By repeating the same processing, the thermopile array 251b outputs an electric signal representing the fourth to Nxth pixel columns. Thereafter, the scanning unit 252 returns the direction of the optical axis of the lens 251a to the horizontal direction LA1 before scanning.
 図6の第1空調機210は、サーモパイルアレイ251bから出力された第1列から第Nx列の画素列を表す電気信号に基づいて第1熱画像を生成する第1熱画像生成回路216を備える。第1熱画像生成回路216は、本発明に係る第1熱画像生成手段の一例である。 The first air conditioner 210 in FIG. 6 includes a first thermal image generation circuit 216 that generates a first thermal image based on electric signals representing the first to Nxth pixel columns output from the thermopile array 251b. . The first thermal image generation circuit 216 is an example of a first thermal image generation unit according to the present invention.
 第1空調機210は、図1の通信ケーブルCに接続され、第1輻射センサ215で生成された第1熱画像を制御装置900へ送信し、かつ、制御装置900からコマンドを受信する有線通信回路217を備える。 The first air conditioner 210 is connected to the communication cable C of FIG. 1, and transmits the first thermal image generated by the first radiation sensor 215 to the control device 900 and receives a command from the control device 900 by wire communication. The circuit 217 is provided.
 また、第1空調機210は、制御装置900から受信されたコマンドに基づいて、空調空間Sの空気を循環させるファン218と、ファン218を回転させるモータ219と、を備える。 The first air conditioner 210 includes a fan 218 for circulating the air in the air-conditioned space S based on a command received from the control device 900, and a motor 219 for rotating the fan 218.
 第1空調機210のCPU211は、電源が投入されたタイミングで、第1熱画像の生成を行う、不図示の画像生成処理の実行を開始する。CPU211は、画像生成処理を開始すると、第1熱画像を生成させる制御を第1輻射センサ215に行い、第1輻射センサ215で生成された第1熱画像を制御装置900へ送信させる制御を、有線通信回路217に行う。 CPU The CPU 211 of the first air conditioner 210 starts execution of an image generation process (not shown) for generating a first thermal image at a timing when the power is turned on. When the CPU 211 starts the image generation processing, the CPU 211 controls the first radiation sensor 215 to generate a first thermal image, and performs control to transmit the first thermal image generated by the first radiation sensor 215 to the control device 900. This is performed by the wired communication circuit 217.
 その後、CPU211は、例えば、図1の空気調和システム1の保守管理者によって、第1熱画像を生成する時間間隔として予め設定された設定間隔をフラッシュメモリ213から読み出す。設定間隔は、第1計測装置110及び第2計測装置120が発熱を継続させる時間として、第1計測装置110及び第2計測装置120に設定された設定時間よりも短い間隔に設定されている。第1計測装置110及び第2計測装置120が発熱の状態を変化させた後から、次に発熱の状態を変化させる前までに、少なくとも1枚の第1熱画像を生成させるためである。 After that, the CPU 211 reads out from the flash memory 213 a preset interval set as a time interval for generating the first thermal image, for example, by the maintenance manager of the air conditioning system 1 of FIG. The set interval is set to an interval shorter than the set time set for the first measuring device 110 and the second measuring device 120, as the time during which the first measuring device 110 and the second measuring device 120 continue to generate heat. This is because at least one first thermal image is generated after the first measuring device 110 and the second measuring device 120 change the state of heat generation and before changing the state of heat generation next time.
 CPU211は、設定間隔を読み出すと、ソフトウェアタイマーを用いて計時を開始した後に、計時された経過時間が設定間隔よりも長くなるまでスリープしてから、第1熱画像を生成させる制御を行う処理から上記処理を繰り返す。 When reading the set interval, the CPU 211 starts the timing using the software timer, then sleeps until the measured elapsed time becomes longer than the set interval, and then performs a process of performing control to generate the first thermal image. The above process is repeated.
 図1の第2空調機220は、第1空調機210と同様のハードウェアを備え、第1空調機210と同様の機能を発揮する。すなわち、第2空調機220は、不図示の第2輻射センサと第2熱画像生成回路とを備える。第2熱画像生成回路は、本発明に係る第2熱画像生成手段の一例である。 2The second air conditioner 220 of FIG. 1 includes the same hardware as the first air conditioner 210 and performs the same function as the first air conditioner 210. That is, the second air conditioner 220 includes a second radiation sensor (not shown) and a second thermal image generation circuit. The second thermal image generation circuit is an example of a second thermal image generation unit according to the present invention.
 第2空調機220が備える第2輻射センサは、図7に示すXw軸の正方向と成す角度がθ2である水平方向LA2に光軸を向けて設置されている。つまり、第2輻射センサの光軸の設置方向は、水平方向LA2である。また、第2輻射センサの光軸の向きは、第2輻射センサが備えるレンズの設置位置PA2を変化させずに、水平を維持したまま変更可能である。 The second radiation sensor included in the second air conditioner 220 is installed with its optical axis directed in the horizontal direction LA2 where the angle formed with the positive direction of the Xw axis shown in FIG. 7 is θ2. That is, the installation direction of the optical axis of the second radiation sensor is the horizontal direction LA2. Further, the direction of the optical axis of the second radiation sensor can be changed without changing the installation position PA2 of the lens provided in the second radiation sensor, while maintaining the horizontal position.
 図1の制御装置900は、例えば、空調空間Sの壁に設置された集中リモコンであり、ユーザの操作に従って、第1空調機210及び第2空調機220を制御する。 1 is, for example, a centralized remote controller installed on the wall of the air-conditioned space S, and controls the first air conditioner 210 and the second air conditioner 220 according to a user operation.
 このため、制御装置900は、空調制御プログラムを含んだ各種のプログラムを実行する、図10のCPU901、各種のプログラムを保存するROM902及びフラッシュメモリ903、並びに、各種のプログラムの実行時にワークエリアとして使用されるRAM904を備える。 Therefore, the control device 900 executes various programs including the air-conditioning control program, the CPU 901 in FIG. 10, the ROM 902 and the flash memory 903 for storing various programs, and the work area when executing the various programs. RAM 904 to be used.
 制御装置900は、第1計測装置110及び第2計測装置120と無線通信する無線通信回路907aと、図1の通信ケーブルCに接続され、第1空調機210及び第2空調機220と通信する有線通信回路907bと、を備える。無線通信回路907aは、本発明に係る第1通信手段の一例であり、有線通信回路907bは、本発明に係る第2通信手段の一例である。 The control device 900 is connected to the wireless communication circuit 907a that wirelessly communicates with the first measuring device 110 and the second measuring device 120, and the communication cable C in FIG. 1, and communicates with the first air conditioner 210 and the second air conditioner 220. A wired communication circuit 907b. The wireless communication circuit 907a is an example of a first communication unit according to the present invention, and the wired communication circuit 907b is an example of a second communication unit according to the present invention.
 制御装置900は、ユーザの操作に従った信号を入力するボタン908と、図2に示したビデオカード119a及びLCD119bと同様の構成及び機能を有するビデオカード909a及びLCD909bと、を備える。制御装置900は、ボタン908に代えてタッチパネルを備えても良い。 The control device 900 includes a button 908 for inputting a signal according to a user operation, and a video card 909a and an LCD 909b having the same configuration and functions as the video card 119a and the LCD 119b shown in FIG. Control device 900 may include a touch panel instead of button 908.
 制御装置900のCPU901は、第1熱画像と第2熱画像とに基づいて、発熱により位置を通知する第1計測装置110又は第2計測装置120の設置位置を特定する、図11の位置特定処理を実行する。 The CPU 901 of the control device 900 specifies the installation position of the first measurement device 110 or the second measurement device 120 that notifies the position by heat generation based on the first thermal image and the second thermal image. Execute the process.
 これにより、CPU901は、第1熱画像と第2熱画像とを有線通信回路907bから取得する、図12の取得部910、及び、取得部910で取得された第1熱画像及び第2熱画像に基づいて第1計測装置110及び第2計測装置120の設置位置を特定する特定部920として機能する。取得部910は、本発明に係る取得手段の一例であり、特定部920は、本発明に係る特定手段の一例である。 Accordingly, the CPU 901 acquires the first thermal image and the second thermal image from the wired communication circuit 907b, and acquires the first thermal image and the second thermal image acquired by the acquiring unit 910 in FIG. 12 and the acquiring unit 910. Function as a specifying unit 920 that specifies the installation positions of the first measuring device 110 and the second measuring device 120 based on the. The obtaining unit 910 is an example of an obtaining unit according to the present invention, and the specifying unit 920 is an example of a specifying unit according to the present invention.
 さらに、CPU901は、特定部920で特定された第1計測装置110及び第2計測装置120の設置位置と、第1計測装置110及び第2計測装置120で計測された温度及び湿度と、に基づいて、第1空調機210及び第2空調機220を制御する制御部930として機能する。制御部930は、本発明に係る制御手段の一例である。 Further, the CPU 901 determines the installation positions of the first measuring device 110 and the second measuring device 120 specified by the specifying unit 920, and the temperature and the humidity measured by the first measuring device 110 and the second measuring device 120. Thus, it functions as the control unit 930 that controls the first air conditioner 210 and the second air conditioner 220. The control unit 930 is an example of a control unit according to the present invention.
 図10のフラッシュメモリ903は、位置特定処理で用いられる情報を記憶する情報記憶部990として機能する。 The flash memory 903 in FIG. 10 functions as an information storage unit 990 that stores information used in the position specifying process.
 情報記憶部990は、第1計測装置110及び第2計測装置120を発熱させる実験により観測された画素値の範囲を表す情報が予め保存されている、図13の画素値テーブルを記憶している。 The information storage unit 990 stores the pixel value table of FIG. 13 in which information indicating a range of pixel values observed by an experiment that causes the first measuring device 110 and the second measuring device 120 to generate heat is stored in advance. .
 画素値テーブルには、発熱の状態と、当該状態で第1計測装置110及び第2計測装置120を発熱させる実験において観測された、第1計測装置110及び第2計測装置120を表す画素の画素値の最小値と、最大値と、が対応付けられたレコードが予め保存されている。 In the pixel value table, the state of heat generation and the pixels of the pixels representing the first measurement device 110 and the second measurement device 120, which were observed in an experiment in which the first measurement device 110 and the second measurement device 120 generate heat in the state, are shown. A record in which the minimum value and the maximum value are associated with each other is stored in advance.
 また、情報記憶部990は、画素値テーブルを用いた検出処理の実行結果を表す情報が保存される、図14の検出結果テーブルを記憶している。検出結果テーブルには、発熱した第1計測装置110又は第2計測装置120の識別情報と、パターンに従った何回目の発熱であるかを表す情報と、発熱状態と、が対応付けられたレコードが保存される。当該レコードの発熱状態には、発熱状態に対応した画素値の画素として、第1熱画像から画素値テーブルを用いて検出された画素(以下、第1画素という)の座標値が1又は複数対応付けられて保存される。同様に、当該レコードの発熱の状態には、発熱状態に対応した画素値の画素として第2熱画像から検出された画素(以下、第2画素という)の座標値が1又は複数対応付けられて保存される。 (4) The information storage unit 990 stores the detection result table of FIG. 14 in which information indicating the execution result of the detection processing using the pixel value table is stored. The detection result table is a record in which identification information of the first measuring device 110 or the second measuring device 120 that has generated heat, information indicating the number of times of heat generation according to the pattern, and a heat generation state are associated with each other. Is saved. In the heat generation state of the record, one or more coordinate values of a pixel (hereinafter, referred to as a first pixel) detected from the first thermal image using the pixel value table as a pixel having a pixel value corresponding to the heat generation state correspond. Attached and saved. Similarly, one or a plurality of coordinate values of a pixel (hereinafter, referred to as a second pixel) detected from the second thermal image as a pixel having a pixel value corresponding to the heat generation state is associated with the heat generation state of the record. Will be saved.
 また、情報記憶部990は、第1熱画像を生成した第1空調機210の設置状況と、第2熱画像を生成した第2空調機220の設置状況と、を表す情報が予め保存された、図15の設置状況テーブルを記憶している。第1画素及び第2画素に基づいて特定される遠赤外線の到来方向を表すベクトルを、第1空調機210の設置状況及び第2空調機220の設置状況に基づいて、図7の世界座標系XwYwZwで表される方向ベクトルに変換するためである。 The information storage unit 990 stores in advance information indicating the installation status of the first air conditioner 210 that generated the first thermal image and the installation status of the second air conditioner 220 that generated the second thermal image. 15 is stored. The vector indicating the arrival direction of the far infrared ray specified based on the first pixel and the second pixel is converted into the world coordinate system of FIG. 7 based on the installation state of the first air conditioner 210 and the installation state of the second air conditioner 220. This is for converting into a direction vector represented by XwYwZw.
 設置状況テーブルには、第1空調機210の通信アドレスと、図7のXw軸と第1空調機210の光軸の設置方向LA1とが成す設置角度θ1と、光軸の刻み角度φと、第1空調機210の設置位置PA1の座標値と、が対応付けられたレコードが予め保存されている。同様に、設置状況テーブルには、第2空調機220の通信アドレスと、図7のXw軸と第2空調機220の光軸の設置方向LA2とが成す設置角度θ2と、第2空調機220の設置位置PA2の座標値と、が対応付けられたレコードが予め保存されている。 The installation status table includes a communication address of the first air conditioner 210, an installation angle θ1 formed by the Xw axis in FIG. 7 and the installation direction LA1 of the optical axis of the first air conditioner 210, a step angle φ of the optical axis, A record in which the coordinate values of the installation position PA1 of the first air conditioner 210 are associated with each other is stored in advance. Similarly, in the installation status table, the communication address of the second air conditioner 220, the installation angle θ2 between the Xw axis in FIG. 7 and the installation direction LA2 of the optical axis of the second air conditioner 220, and the second air conditioner 220 The record in which the coordinate value of the installation position PA2 is associated with is stored in advance.
 また、情報記憶部990は、位置特定処理によって特定された第1計測装置110の設置位置(以下、特定位置という)及び第2計測装置120の特定位置を表す情報が保存される、図16の特定位置テーブルを記憶している。特定位置テーブルには、第1計測装置110又は第2計測装置120を識別する識別情報と、第1計測装置110又は第2計測装置120の特定位置を表す情報と、が対応付けられたレコードが保存される。 The information storage unit 990 stores information indicating the installation position of the first measuring device 110 (hereinafter, referred to as a specific position) and the specific position of the second measuring device 120 specified by the position specifying process. The specific position table is stored. In the specific position table, a record in which identification information for identifying the first measuring device 110 or the second measuring device 120 and information indicating a specific position of the first measuring device 110 or the second measuring device 120 are associated with each other. Will be saved.
 制御装置900のCPU901は、「第1計測装置110」による発熱の状態を表す発熱状態情報を、図10の無線通信回路907aが受信すると、「第1計測装置110」の設置位置を特定するために、図11の位置特定処理の実行を開始する。 When the wireless communication circuit 907a in FIG. 10 receives the heat generation state information indicating the heat generation state of the “first measurement device 110”, the CPU 901 of the control device 900 specifies the installation position of the “first measurement device 110”. Then, the execution of the position specifying process of FIG. 11 is started.
 これに対して、制御装置900のCPU901は、「第2計測装置120」による発熱の状態を表す発熱状態情報が受信されると、「第2計測装置120」の設置位置を特定するために位置特定処理の実行を開始する。 On the other hand, when the CPU 901 of the control device 900 receives the heat generation state information indicating the heat generation state by the “second measurement device 120”, the CPU 901 determines the position of the “second measurement device 120” by specifying the installation position. Start execution of specific processing.
 第1計測装置110が発熱状態情報を送信するタイミングと、第2計測装置120が発熱状態情報を送信するタイミングと、は、時分割されていない。このため、制御装置900のCPU901は、「第1計測装置110」の位置を特定するための位置特定処理と、「第2計測装置120」の位置を特定するための位置特定処理と、を並列的に実行する場合がある。しかし、説明を簡単にするために、先ず、「第1計測装置110」の設置位置を特定するための位置特定処理について説明した後に、「第2計測装置120」の設置位置を特定するための位置特定処理について説明する。 (4) The timing at which the first measuring device 110 transmits the heat generation state information and the timing at which the second measurement device 120 transmits the heat generation state information are not time-divided. Therefore, the CPU 901 of the control device 900 executes the position specifying process for specifying the position of the “first measuring device 110” and the position specifying process for specifying the position of the “second measuring device 120” in parallel. May be executed in some cases. However, in order to simplify the description, first, a position specifying process for specifying the installation position of the “first measuring device 110” will be described, and then a process for specifying the installation position of the “second measuring device 120” will be described. The position specifying process will be described.
 第1計測装置110の設置位置を特定する、図11の位置特定処理の実行が開始されると、取得部910は、第1計測装置110による発熱の状態に対応した第1画素及び第2画素を検出する、図17の検出処理を実行する(ステップS11)。 When the position specifying process of FIG. 11 for specifying the installation position of the first measuring device 110 is started, the acquisition unit 910 sets the first pixel and the second pixel corresponding to the state of heat generation by the first measuring device 110. The detection processing of FIG. 17 is performed (step S11).
 検出処理の実行を開始すると、取得部910は、無線通信回路907aが第1計測装置110との通信に用いた通信アドレスを、第1計測装置110の識別情報として取得する。次に、取得部910は、無線通信回路907aが第1計測装置110から受信した発熱状態情報と発熱回数情報とを無線通信回路907aから取得する(ステップS21)。 When the execution of the detection process is started, the acquisition unit 910 acquires a communication address used by the wireless communication circuit 907a for communication with the first measurement device 110 as identification information of the first measurement device 110. Next, the acquisition unit 910 acquires the heat generation state information and the heat generation frequency information received by the wireless communication circuit 907a from the first measuring device 110 from the wireless communication circuit 907a (Step S21).
 その後、取得部910は、図10の有線通信回路907bが第1空調機210から第1熱画像を受信するまでスリープする。その後、有線通信回路907bが第1熱画像を受信すると、取得部910は、第1熱画像を有線通信回路907bから取得する(ステップS22)。 Thereafter, the acquiring unit 910 sleeps until the wired communication circuit 907b in FIG. 10 receives the first thermal image from the first air conditioner 210. Thereafter, when the wired communication circuit 907b receives the first thermal image, the acquiring unit 910 acquires the first thermal image from the wired communication circuit 907b (Step S22).
 その後、特定部920は、図13の画素値テーブルから、ステップS21で取得された発熱状態情報と対応付けられた画素値の最小値を表す情報と、画素値の最大値を表す情報と、を取得する。次に、特定部920は、ステップS22で取得された第1熱画像から、取得された情報で表される最小値以上、かつ、最大値以下の画素値を有する1又は複数の画素を検出し、検出された1又は複数の画素を第1画素と特定する(ステップS23)。 After that, the specifying unit 920, based on the pixel value table in FIG. 13, stores information indicating the minimum value of the pixel value associated with the heat generation state information acquired in step S21 and information indicating the maximum value of the pixel value. get. Next, the identification unit 920 detects one or more pixels having a pixel value equal to or greater than the minimum value and equal to or less than the maximum value represented by the acquired information from the first thermal image acquired in step S22. Then, one or a plurality of detected pixels are specified as the first pixels (step S23).
 その後、ステップS22及びS23と同様の処理が実行されることで、第2熱画像が取得され(ステップS24)、第2熱画像から発熱の状態に対応する1又は複数の第2画素が特定される(ステップS25)。 Thereafter, by performing the same processing as in steps S22 and S23, a second thermal image is obtained (step S24), and one or a plurality of second pixels corresponding to the state of heat generation are specified from the second thermal image. (Step S25).
 その後、特定部920は、図8に示した第1熱画像の主走査方向を正方向とするXc軸と、副走査方向を正方向とするYc軸と、第1列の画素列における中心画素の位置を原点Ocとするカメラ座標系XcYcの座標値を、1又は複数の第1画素と、1又は複数の第2画素と、について特定する。 After that, the specifying unit 920 sets the Xc axis in which the main scanning direction of the first thermal image shown in FIG. 8 is the positive direction, the Yc axis in which the sub scanning direction is the positive direction, and The coordinate value of the camera coordinate system XcYc having the position of the origin Oc is specified for one or a plurality of first pixels and one or a plurality of second pixels.
 次に、特定部920は、図17のステップS21で取得された第1計測装置110の識別情報、発熱回数情報、及び、発熱状態情報と、ステップS23及びS25で特定された1又は複数の第1画素の座標値、及び、1又は複数の第2画素の座標値と、を対応付けたレコードを生成する。その後、特定部920は、生成されたレコードを、図14の検出結果テーブルに保存する(ステップS26)。 Next, the specifying unit 920 determines the identification information, the heat generation frequency information, and the heat generation state information of the first measuring device 110 acquired in step S21 of FIG. 17 and the one or more first heat measurement information specified in steps S23 and S25. A record in which the coordinate value of one pixel and the coordinate values of one or more second pixels are associated with each other. After that, the specifying unit 920 stores the generated record in the detection result table of FIG. 14 (Step S26).
 次に、特定部920は、ステップS21で取得された発熱回数情報で表される発熱回数が、発熱のパターンに従った最後の発熱回数Nであるか否かを判別する(ステップS27)。このとき、特定部920は、発熱回数が最後の発熱回数Nでないため、第1パターンに従った一連の発熱の途中であると判別すると(ステップS27;No)、ステップS21から上記処理を繰り返す。 Next, the specifying unit 920 determines whether or not the number of times of heat represented by the information on the number of times of heat acquired in step S21 is the last number of times of heat generation N according to the pattern of heat generation (step S27). At this time, when the specifying unit 920 determines that the number of heat generations is not the last number of heat generations N and is in the middle of a series of heat generations according to the first pattern (Step S27; No), the above-described processing is repeated from Step S21.
 これに対して、特定部920は、発熱回数が最後の発熱回数Nであるため、第1パターンに従った一連の発熱が終了したと判別すると(ステップS27;Yes)、図14の検出結果テーブルから、ステップS21で取得された識別情報が保存された複数のレコードを取得する。次に、特定部920は、取得された複数のレコードに共通して保存された1又は複数の第1画素の座標値と、複数のレコードに共通して保存された1又は複数の第2画素の座標値と、を特定する。第1パターンに従ったN回の発熱の状態に共通して検出された1又は複数の第1画素と1又は複数の第2画素とを特定するためである(図17のステップS28)。つまり、第1計測装置110が第1パターンに従って発熱しているときに、第2計測装置120が第2パターンに従って発熱し、かつ、第1計測装置110の発熱状態が、偶然、第2計測装置120の発熱状態と同じであった場合に、第2計測装置120から到来した遠赤外線による輻射熱を表した画素を除外するためである。 On the other hand, when the specifying unit 920 determines that a series of heat generations according to the first pattern is completed because the heat generation number is the last heat generation number N (step S27; Yes), the detection unit 920 of FIG. , A plurality of records in which the identification information obtained in step S21 is stored. Next, the specifying unit 920 calculates the coordinate values of one or more first pixels stored in common with the acquired records and the one or more second pixels stored in common with the records. And the coordinate value of. This is for specifying one or a plurality of first pixels and one or a plurality of second pixels that are commonly detected in the state of heat generation N times according to the first pattern (step S28 in FIG. 17). That is, when the first measuring device 110 is generating heat according to the first pattern, the second measuring device 120 generates heat according to the second pattern, and the heat generation state of the first measuring device 110 is accidentally changed to the second measuring device. This is because, when the heat generation state is the same as the heat generation state of 120, pixels representing the radiant heat due to the far infrared rays coming from the second measurement device 120 are excluded.
 ステップS28において、特定部920は、複数のレコードに共通して保存された複数の第1画素の座標値を特定した場合、特定された複数の第1画素の全てを含む最小の円を特定し、特定された円の中心に位置する画素を、当該複数の第1画素を代表する第1画素と特定する。但し、これに限定される訳ではなく、例えば、複数の第1画素の座標値の平均値に最も近い座標値を有する画素を、当該複数の第1画素を代表する第1画素と特定しても良い。 In step S28, when the specifying unit 920 specifies the coordinate values of the plurality of first pixels stored in common in the plurality of records, the specifying unit 920 specifies the smallest circle including all of the specified plurality of first pixels. The pixel located at the center of the specified circle is specified as a first pixel representing the plurality of first pixels. However, the present invention is not limited to this. For example, a pixel having a coordinate value closest to the average value of the coordinate values of the plurality of first pixels is specified as a first pixel representing the plurality of first pixels. Is also good.
 同様に、特定部920は、ステップS28において、複数のレコードに共通して保存された1又は複数の第2画素を代表する第2画素を特定する。その後、特定部920は、検出処理の実行を終了する。 Similarly, in step S28, the specifying unit 920 specifies a second pixel representing one or a plurality of second pixels commonly stored in a plurality of records. After that, the specifying unit 920 ends the execution of the detection processing.
 図11のステップS11で検出処理を実行した後に、特定部920は、図17のステップS28で特定された第1画素の座標値に基づいて、第1空調機210から第1計測装置110へ向かう、図7に示す第1直線L11を特定する、図18の直線特定処理を実行する(ステップS12)。 After executing the detection processing in step S11 in FIG. 11, the specifying unit 920 travels from the first air conditioner 210 to the first measuring device 110 based on the coordinate value of the first pixel specified in step S28 in FIG. Then, the straight line specifying process of FIG. 18 for specifying the first straight line L11 shown in FIG. 7 is executed (step S12).
 ここで、説明を容易にするため、図17のステップS28において、図8に示す画素IE11が第1画素として特定された場合を例に挙げて以下の説明を行う。 Here, in order to facilitate the description, the following description will be given by taking as an example a case where the pixel IE11 shown in FIG. 8 is specified as the first pixel in step S28 in FIG.
 直線特定処理の実行を開始すると、特定部920は、図15の設置状況テーブルから、第1空調機210の通信アドレスと対応付けられた第1輻射センサ215の光軸の刻み角度φを取得する。次に、特定部920は、第1画素IE11のXc座標値に刻み角度φを乗算する。これにより、特定部920は、図7に示した走査前の第1空調機210の光軸の設置方向LA1と、第1計測装置110からの遠赤外線であって、第1画素IE11で表される輻射熱を生じさせた遠赤外線の到来方向(以下、第1方向という)D11のXwYw平面への射影と、が成す到来角度φxy11を特定する。 When the execution of the straight line specifying process is started, the specifying unit 920 acquires the step angle φ of the optical axis of the first radiation sensor 215 associated with the communication address of the first air conditioner 210 from the installation status table of FIG. . Next, the specifying unit 920 multiplies the Xc coordinate value of the first pixel IE11 by the step angle φ. Thereby, the specifying unit 920 is the installation direction LA1 of the optical axis of the first air conditioner 210 before scanning illustrated in FIG. 7 and the far infrared rays from the first measurement device 110, and is represented by the first pixel IE11. An arrival angle φxy11 formed between the arrival direction (hereinafter, referred to as a first direction) D11 of the far-infrared ray that has generated the radiant heat and the projection onto the XwYw plane is specified.
 同様に、特定部920は、第1画素IE11のYc座標値に刻み角度φを乗算することで、図9に示した光軸の設置方向LA1のYwZw平面への射影と、第1方向D11のYwZw平面への射影と、が成す到来角度φxz11を特定する。 Similarly, the specifying unit 920 multiplies the Yc coordinate value of the first pixel IE11 by the notch angle φ to project the optical axis installation direction LA1 shown in FIG. 9 onto the YwZw plane and the first direction D11. The arrival angle φxz11 formed by the projection onto the YwZw plane is specified.
 その後、特定部920は、図15の設置状況テーブルから、第1空調機210の通信アドレスと対応付けられた光軸の設置方向LA1を表す設置角度θ1を取得する。その後、特定部920は、到来角度φxy11及び到来角度φxz11、並びに、設置角度θ1を用いて、第1方向D11を表す世界座標系XwYwZwのベクトルを特定する(ステップS31)。 After that, the specifying unit 920 acquires the installation angle θ1 representing the installation direction LA1 of the optical axis associated with the communication address of the first air conditioner 210 from the installation status table of FIG. After that, the specifying unit 920 specifies the vector of the world coordinate system XwYwZw representing the first direction D11 using the arrival angle φxy11 and the arrival angle φxz11 and the installation angle θ1 (step S31).
 次に、特定部920は、図15の設置状況テーブルから、第1空調機210の通信アドレスに基づいて第1空調機210の設置位置PA1の世界座標系XwYwZwにおける座標値を取得する(ステップS32)。 Next, the specifying unit 920 acquires the coordinate value of the installation position PA1 of the first air conditioner 210 in the world coordinate system XwYwZw from the installation status table of FIG. 15 based on the communication address of the first air conditioner 210 (step S32). ).
 その後、特定部920は、ステップS32で取得された第1空調機210の設置位置PA1を表す座標値と、ステップS31で特定された第1方向D11を表すベクトルとに基づいて、第1空調機210の設置位置PA1から遠赤外線の到来方向である第1方向D11に向かう第1直線L11を表す方程式を特定する(ステップS33)。 After that, the specifying unit 920 determines the first air conditioner based on the coordinate value indicating the installation position PA1 of the first air conditioner 210 acquired in step S32 and the vector indicating the first direction D11 specified in step S31. An equation representing a first straight line L11 directed from the installation position PA1 in the first direction D11 which is a direction of arrival of far infrared rays is specified (step S33).
 その後、特定部920は、ステップS31からステップS33と同様の処理を実行することで、第2空調機220の設置位置PA2から第2方向D21に向かう第2直線L21を表す方程式を特定する。但し、第2方向D21は、第1計測装置110から第2空調機220へ到来した遠赤外線の到来方向である(ステップS34からS36)。その後、特定部920は、直線特定処理の実行を終了する。 After that, the specifying unit 920 specifies the equation representing the second straight line L21 that goes from the installation position PA2 of the second air conditioner 220 in the second direction D21 by executing the same processing as in steps S31 to S33. However, the second direction D21 is the direction of arrival of the far infrared rays arriving from the first measuring device 110 to the second air conditioner 220 (steps S34 to S36). After that, the specifying unit 920 ends the execution of the straight line specifying process.
 図11のステップS12で直線特定処理を実行した後に、特定部920は、図7に示す第1直線L11と第2直線L21との交点PM1の座標値を、第1直線L11を表す方程式と第2直線L21を表す方程式とを用いて特定する。次に、特定部920は、特定された交点PM1の座標値を、第1計測装置110の設置位置として特定する(ステップS13)。 After executing the straight line specifying process in step S12 of FIG. 11, the specifying unit 920 calculates the coordinate value of the intersection PM1 of the first straight line L11 and the second straight line L21 shown in FIG. It is specified using an equation representing the two straight lines L21. Next, the specifying unit 920 specifies the coordinate value of the specified intersection PM1 as the installation position of the first measuring device 110 (Step S13).
 その後、特定部920は、図16の特定位置テーブルに、ステップS11で取得された第1計測装置110の識別情報と、第1計測装置110の特定位置を表す情報と、を対応付けて保存した後に(ステップS14)、位置特定処理の実行を終了する。 After that, the specifying unit 920 stores the identification information of the first measuring device 110 acquired in step S11 and the information indicating the specific position of the first measuring device 110 in the specific position table of FIG. Later (step S14), the execution of the position identification processing ends.
 次に、「第2計測装置120」の位置を特定するための位置特定処理について説明する。制御装置900の無線通信回路907aが、第2計測装置120から発熱状態情報を受信すると、制御装置900のCPU901は、第2計測装置120の位置を特定する位置特定処理の実行を開始する。 Next, a position specifying process for specifying the position of the “second measuring device 120” will be described. When the wireless communication circuit 907a of the control device 900 receives the heat generation state information from the second measuring device 120, the CPU 901 of the control device 900 starts executing the position specifying process for specifying the position of the second measuring device 120.
 先ず、CPU901は、図17の検出処理を実行することで、第1熱画像から、第2計測装置120による発熱の状態に対応した第1画素を検出し、第2熱画像から第2画素を検出する(ステップS11)。 First, the CPU 901 detects the first pixel corresponding to the state of heat generation by the second measuring device 120 from the first thermal image by executing the detection processing of FIG. 17, and removes the second pixel from the second thermal image. It is detected (step S11).
 次に、特定部920は、図18の直線特定処理を実行することで、第1空調機210の設置位置PA1から第1方向D12に向かう第1直線L12を表す方程式を特定する(ステップS12)。但し、第1方向D12は、第2計測装置120から第1空調機210に到来した遠赤外線の到来方向である。同様に、特定部920は、第2空調機220の設置位置PA2から第2方向D22に向かう第2直線L22を表す方程式を特定する。但し、第2方向D22は、第2計測装置120から第2空調機220に到来した遠赤外線の到来方向である。 Next, the specifying unit 920 specifies the equation representing the first straight line L12 from the installation position PA1 of the first air conditioner 210 in the first direction D12 by executing the straight line specifying process of FIG. 18 (Step S12). . However, the first direction D12 is the arrival direction of far-infrared rays arriving at the first air conditioner 210 from the second measuring device 120. Similarly, the specifying unit 920 specifies an equation representing a second straight line L22 that extends from the installation position PA2 of the second air conditioner 220 in the second direction D22. However, the second direction D22 is an arrival direction of far-infrared rays arriving at the second air conditioner 220 from the second measuring device 120.
 その後、特定部920は、図7に示す第1直線L12と第2直線L22との交点PM2の座標値を特定し、特定された交点PM2の座標値を第2計測装置120の設置位置として特定する(ステップS13)。 After that, the specifying unit 920 specifies the coordinate value of the intersection PM2 between the first straight line L12 and the second straight line L22 illustrated in FIG. 7 and specifies the coordinate value of the specified intersection PM2 as the installation position of the second measuring device 120. (Step S13).
 その後、特定部920は、図16の特定位置テーブルに、ステップS11で取得された第2計測装置120の識別情報と、第2計測装置120の特定位置を表す情報と、を対応付けて保存した後に(ステップS14)、位置特定処理の実行を終了する。 After that, the specifying unit 920 stores the identification information of the second measuring device 120 acquired in step S11 and the information indicating the specific position of the second measuring device 120 in association with each other in the specific position table of FIG. Later (step S14), the execution of the position identification processing ends.
 図10に示した制御装置900のボタン908が、ユーザの操作に応じた信号を入力すると、CPU901は、ユーザによって設定された温度(以下、設定温度という)及び設定された湿度(以下、設定湿度という)を、入力された信号に基づいて特定する。その後、CPU901は、設定温度を表す設定温度情報と、設定湿度を表す設定湿度情報と、を、フラッシュメモリ903に保存する。 When a button 908 of the control device 900 illustrated in FIG. 10 inputs a signal corresponding to a user operation, the CPU 901 determines a temperature set by the user (hereinafter, referred to as a set temperature) and a set humidity (hereinafter, set humidity). Is specified based on the input signal. After that, the CPU 901 stores the set temperature information indicating the set temperature and the set humidity information indicating the set humidity in the flash memory 903.
 図10に示した制御装置900の無線通信回路907aが第1計測装置110又は第2計測装置120から計測温度情報及び計測湿度情報を受信すると、CPU901は、第1空調機210及び第2空調機220を制御する、図19の空調制御処理を実行する。 When the wireless communication circuit 907a of the control device 900 shown in FIG. 10 receives the measured temperature information and the measured humidity information from the first measuring device 110 or the second measuring device 120, the CPU 901 sets the first air conditioner 210 and the second air conditioner The air conditioning control process of FIG.
 空調制御処理の実行を開始すると、図12の取得部910は、無線通信回路907aから計測温度情報及び計測湿度情報を取得する。また、取得部910は、無線通信回路907aが計測温度情報及び計測湿度情報の受信に用いた通信アドレスを第1計測装置110又は第2計測装置120の識別情報として取得する(ステップS41)。 When the execution of the air conditioning control process is started, the acquisition unit 910 in FIG. 12 acquires the measured temperature information and the measured humidity information from the wireless communication circuit 907a. The acquiring unit 910 acquires a communication address used by the wireless communication circuit 907a to receive the measured temperature information and the measured humidity information as identification information of the first measuring device 110 or the second measuring device 120 (Step S41).
 次に、制御部930は、図16の特定位置テーブルから、ステップS41で取得された識別情報に対応付けられた特定位置を表す情報を取得する(ステップS42)。 Next, the control unit 930 obtains information indicating the specific position associated with the identification information obtained in step S41 from the specific position table in FIG. 16 (step S42).
 また、制御部930は、図10に示したフラッシュメモリ903から、設定温度情報及び設定湿度情報を取得する(ステップS43)。 The control unit 930 also acquires the set temperature information and the set humidity information from the flash memory 903 shown in FIG. 10 (Step S43).
 その後、制御部930は、ステップS42で取得された第1計測装置110又は第2計測装置120の特定位置における温度及び湿度を、設定温度及び設定湿度にする制御を、計測温度情報及び計測湿度情報、特定位置を表す情報、並びに、設定温度情報及び設定湿度情報に基づいて決定する。次に、制御部930は、決定された制御を第1空調機210及び第2空調機220に行うために、第1空調機210及び第2空調機220を宛先としてコマンドを有線通信回路907bに出力する(ステップS44)。その後、有線通信回路907bがコマンドを送信した後に、制御部930は、空調制御処理の実行を終了する。 Thereafter, the control unit 930 performs control to set the temperature and humidity at the specific position of the first measuring device 110 or the second measuring device 120 acquired in step S42 to the set temperature and the set humidity. , Based on the information indicating the specific position, and the set temperature information and the set humidity information. Next, the control unit 930 sends a command to the wired communication circuit 907b with the first air conditioner 210 and the second air conditioner 220 as destinations in order to perform the determined control on the first air conditioner 210 and the second air conditioner 220. Output (Step S44). After that, after the wired communication circuit 907b transmits the command, the control unit 930 ends the execution of the air conditioning control process.
 これらの構成によれば、第1計測装置110で発せられた熱は、第1計測装置110と、第1熱画像を生成する第1空調機210及び第2熱画像を生成する第2空調機220と、の間に人又は物体が存在しない限り、空調空間に滞在する人及び物体の数及び位置に関わらず、輻射によって伝達される。第2計測装置120で発せられた熱も同様に輻射によって伝達される。このため、電磁波の検出強度によって第1計測装置110及び第2計測装置120の位置を特定する従来技術と比べて、空気調和システム1は、精度良く第1計測装置110及び第2計測装置120の位置を特定できる。 According to these configurations, the heat generated by the first measuring device 110 is generated by the first measuring device 110, the first air conditioner 210 that generates the first thermal image, and the second air conditioner that generates the second thermal image. As long as no person or object is present between the air conditioner and the air conditioner 220, the air is transmitted by radiation regardless of the number and position of the person and the object staying in the air-conditioned space. The heat generated by the second measuring device 120 is also transmitted by radiation. For this reason, the air-conditioning system 1 is more accurate than the conventional technology in which the positions of the first measuring device 110 and the second measuring device 120 are specified based on the detection intensity of the electromagnetic wave. The position can be specified.
 また、遠赤外線の距離による減衰は、可視光及び近赤外線の距離による減衰よりも少ない。このため、第1計測装置110及び第2計測装置120から第1空調機210及び第2空調機220までの距離が長くなっても、空気調和システム1は、例えば、LEDの点滅により第1計測装置110及び第2計測装置120の位置を検出する従来技術よりも精度良く第1計測装置110及び第2計測装置120の位置を特定できる。 減 衰 Furthermore, the attenuation due to the far-infrared distance is smaller than the attenuation due to the visible and near-infrared distance. For this reason, even if the distance from the first measuring device 110 and the second measuring device 120 to the first air conditioner 210 and the second air conditioner 220 is long, the air conditioning system 1 performs the first measurement by blinking the LED, for example. The positions of the first measuring device 110 and the second measuring device 120 can be specified with higher accuracy than the conventional technology for detecting the positions of the device 110 and the second measuring device 120.
 また、遠赤外線は、湿度の影響を受けない、又は、可視光及び近赤外線よりも少ない影響しか受けない。このため、空調空間Sの湿度が高くなっても、空気調和システム1は、従来技術よりも精度良く第1計測装置110及び第2計測装置120の位置を特定できる。 遠 Far infrared rays are not affected by humidity, or are less affected than visible light and near infrared rays. For this reason, even if the humidity of the air-conditioned space S increases, the air-conditioning system 1 can specify the positions of the first measuring device 110 and the second measuring device 120 with higher accuracy than in the related art.
 さらに、従来の空気調和システムが、輻射センサを備える空調機と、輻射センサで生成された熱画像に基づいて空調機を制御する制御装置と、を備えてさえいれば、従来の制御装置に制御装置900のプログラムをインストールするだけで、本実施形態に係る空気調和システム1に改良できる。このため、低コストで、従来の空気調和システムを、本実施の形態に係る空気調和システム1に改良できる。 Furthermore, if the conventional air conditioning system only includes an air conditioner having a radiation sensor and a control device that controls the air conditioner based on a thermal image generated by the radiation sensor, control is performed by the conventional control device. The air conditioning system 1 according to the present embodiment can be improved simply by installing the program of the device 900. For this reason, the conventional air conditioning system can be improved to the air conditioning system 1 according to the present embodiment at low cost.
 またこれらの構成によれば、制御装置900は、第1空調機210が生成した第1熱画像及び第2空調機220が生成した第2熱画像に基づいて、第1計測装置110の設置位置及び第2計測装置120の設置位置を特定する。このため、空気調和システム1の保守管理者が、第1計測装置110の設置位置及び第2計測装置120の設置位置を制御装置900に入力するために、制御装置900を操作する必要がない。 Further, according to these configurations, control device 900 determines the installation position of first measurement device 110 based on the first thermal image generated by first air conditioner 210 and the second thermal image generated by second air conditioner 220. And the installation position of the second measuring device 120 is specified. Therefore, the maintenance manager of the air conditioning system 1 does not need to operate the control device 900 to input the installation position of the first measurement device 110 and the installation position of the second measurement device 120 to the control device 900.
 またこれらの構成によれば、第1計測装置110は、第1パターンに従って発熱し、制御装置900は、第1パターンに従って発生した輻射熱に対応する画素値の画素を特定する。このため、第1計測装置110以外に発熱を行う物体が空調空間Sに存在したとしても、制御装置900は、第1パターンに基づいて、第1計測装置110の位置を従来よりも確実に特定できる。 According to these configurations, first measuring device 110 generates heat according to the first pattern, and control device 900 specifies a pixel having a pixel value corresponding to radiant heat generated according to the first pattern. For this reason, even if an object that generates heat exists in the air-conditioned space S other than the first measuring device 110, the control device 900 more reliably identifies the position of the first measuring device 110 based on the first pattern than before. it can.
 またこれらの構成によれば、第1空調機210が第1熱画像を生成する時間間隔と、第2空調機220が第2熱画像を生成する時間間隔と、は、第1計測装置110が第1パターンに従って発熱状態を変更させる時間間隔、及び、第2計測装置120が第2パターンに従って発熱状態を変更させる時間間隔よりも短い。このため、第1空調機210及び第2空調機220は、第1パターンに従った複数回の発熱の全て、及び、第2パターンに従った複数回の発熱の全て、を映した第1熱画像及び第2熱画像を従来よりも確実に生成できる。 According to these configurations, the time interval at which the first air conditioner 210 generates the first thermal image and the time interval at which the second air conditioner 220 generates the second thermal image are determined by the first measuring device 110 The time interval for changing the heat generation state according to the first pattern and the time interval for the second measurement device 120 to change the heat generation state according to the second pattern are shorter. For this reason, the first air conditioner 210 and the second air conditioner 220 reflect all of the multiple heat generations according to the first pattern and all of the multiple heat generations according to the second pattern. The image and the second thermal image can be generated more reliably than before.
 またこれらの構成によれば、第1計測装置110は、第1計測装置110を識別する第1パターンに従って発熱し、第2計測装置120は、第2計測装置120を識別する第2パターンに従って発熱する。このため、第1計測装置110が第1パターンに従って発熱する間に、第2計測装置120が第2パターンに従って発熱しても、制御装置900は、第1パターン及び第2パターンに基づいて、第1計測装置110の位置及び第2計測装置120の位置を従来よりも確実に特定できる。 Further, according to these configurations, the first measuring device 110 generates heat according to the first pattern for identifying the first measuring device 110, and the second measuring device 120 generates heat according to the second pattern for identifying the second measuring device 120. I do. For this reason, even if the second measuring device 120 generates heat according to the second pattern while the first measuring device 110 generates heat according to the first pattern, the control device 900 generates a second signal based on the first pattern and the second pattern. The position of the first measuring device 110 and the position of the second measuring device 120 can be specified more reliably than before.
 またこれらの構成によれば、第1計測装置110は、第1計測装置110の通信アドレスを表す第1パターンに従って発熱し、第2計測装置120は、第2計測装置120の通信アドレスを表す第2パターンに従って発熱する。このため、第1計測装置110及び第2計測装置120に発熱のパターンを設定しなくとも、第1計測装置110と第2計測装置120とが互いに異なるパターンで発熱できる。 Further, according to these configurations, the first measuring device 110 generates heat according to the first pattern representing the communication address of the first measuring device 110, and the second measuring device 120 generates the second pattern representing the communication address of the second measuring device 120. Heat is generated according to two patterns. Therefore, the first measurement device 110 and the second measurement device 120 can generate heat in different patterns without setting a heat generation pattern in the first measurement device 110 and the second measurement device 120.
(実施の形態の変形例1)
 本実施の形態では、空気調和システム1は、図1に示した第1計測装置110及び第2計測装置120、第1空調機210及び第2空調機220、並びに、制御装置900を備えると説明した。また、本実施の形態では、制御装置900は、第1空調機210が生成する第1熱画像と第2空調機210が生成する第2熱画像とに基づいて、第1計測装置110及び第2計測装置120の位置を特定すると説明した。
(Modification 1 of Embodiment)
In the present embodiment, it is described that the air-conditioning system 1 includes the first measuring device 110 and the second measuring device 120, the first air conditioner 210 and the second air conditioner 220, and the control device 900 illustrated in FIG. did. Further, in the present embodiment, control device 900 determines first measurement device 110 and second measurement device 110 based on the first thermal image generated by first air conditioner 210 and the second thermal image generated by second air conditioner 210. It has been described that the position of the second measuring device 120 is specified.
 しかし、これに限定される訳ではなく、空気調和システム1は、図20に示す第3空調機230をさらに備え、制御装置900は、第3空調機230が生成する第3熱画像にさらに基づいて、第1計測装置110及び第2計測装置120の位置を特定しても良い。 However, the present invention is not limited to this. The air-conditioning system 1 further includes a third air conditioner 230 illustrated in FIG. 20, and the control device 900 is further based on a third thermal image generated by the third air conditioner 230. Thus, the positions of the first measuring device 110 and the second measuring device 120 may be specified.
 第3空調機230は、第1空調機210と同様のハードウェア構成及び機能を有している。つまり、第3空調機230は、不図示の第3輻射センサと、第3輻射センサによる輻射熱の計測結果に基づいて第3熱画像を生成する第3熱画像生成回路と、を備える。 The third air conditioner 230 has the same hardware configuration and functions as the first air conditioner 210. That is, the third air conditioner 230 includes a third radiation sensor (not shown) and a third thermal image generation circuit that generates a third thermal image based on the measurement result of the radiation heat by the third radiation sensor.
 制御装置900は、図18の直線特定処理のステップS31からS33と同様の処理を、第3空調機230で生成された第3熱画像に対して実行する。これにより、制御装置900は、第3熱画像に基づいて、図21に示す第3空調機230の設置位置PA3から、第1計測装置110から設置位置PA3に到来した遠赤外線の到来方向D31へ向かう第3直線L31を特定する。 Control device 900 executes the same processing as steps S31 to S33 of the straight line specifying processing of FIG. 18 on the third thermal image generated by third air conditioner 230. Thereby, based on the third thermal image, control device 900 moves from installation position PA3 of third air conditioner 230 shown in FIG. 21 to arrival direction D31 of far-infrared rays arriving at installation position PA3 from first measurement device 110. The heading third straight line L31 is specified.
 また、制御装置900は、図11のステップS13に代えて、図21に示す第1直線L11と第2直線L21との交点PM12と、第1直線L11と第3直線L31との交点PM13と、第2直線L21と第3直線L31との交点PM23と、を特定する処理を実行する。制御装置900は、交点PM12と交点PM13と交点PM23とが全て一致すると座標値に基づいて判別すると、交点PM12を第1計測装置110の設置位置と特定する。これに対して、制御装置900は、交点PM12と交点PM13と交点PM23とが全て一致する訳でないと判別すると、交点PM12と交点PM13と交点PM23とを含む最小の円CLを特定し、特定された円の中心位置を第1計測装置110の設置位置と特定する。 Further, the control device 900 replaces step S13 in FIG. 11 with an intersection PM12 between the first straight line L11 and the second straight line L21, and an intersection PM13 between the first straight line L11 and the third straight line L31 shown in FIG. A process for specifying an intersection PM23 between the second straight line L21 and the third straight line L31 is executed. When the controller 900 determines based on the coordinate values that the intersection PM12, the intersection PM13, and the intersection PM23 all match, the controller 900 specifies the intersection PM12 as the installation position of the first measuring device 110. On the other hand, if the control device 900 determines that the intersections PM12, PM13, and PM23 do not all match, the control device 900 identifies the smallest circle CL including the intersections PM12, PM13, and PM23, and identifies the minimum circle CL. The center position of the circle is specified as the installation position of the first measuring device 110.
 但し、これに限定される訳でなく、制御装置900は、交点PM12と交点PM13と交点PM23との座標値の平均値を第1計測装置110の設置位置としても良い。また、制御装置900は、交点PM12と交点PM13と交点PM23とで定まる三角形の内接円の中心の位置又は重心の位置を、第1計測装置110の設置位置と特定しても良い。 However, the present invention is not limited to this, and the control device 900 may use the average value of the coordinate values of the intersection PM12, the intersection PM13, and the intersection PM23 as the installation position of the first measurement device 110. The control device 900 may specify the position of the center or the position of the center of gravity of the triangular inscribed circle defined by the intersection points PM12, PM13, and PM23 as the installation position of the first measurement device 110.
 空気調和システム1が備える空調機の数は3台に限定される訳では無く、空気調和システム1は、4台以上の空調機を備えても良い。また、制御装置900は、3台の空調機で生成された3枚の熱画像に基づいて第1計測装置110及び第2計測装置120の位置を特定することに限定されるのではない。制御装置900は、4台以上の空調機で生成された4枚以上の熱画像に基づいて第1計測装置110及び第2計測装置120の位置を特定しても良い。 The number of air conditioners provided in the air conditioning system 1 is not limited to three, and the air conditioning system 1 may include four or more air conditioners. Further, control device 900 is not limited to specifying the positions of first measuring device 110 and second measuring device 120 based on three thermal images generated by three air conditioners. The control device 900 may specify the positions of the first measuring device 110 and the second measuring device 120 based on four or more thermal images generated by four or more air conditioners.
 さらに、空気調和システム1が備える計測装置の数は2台に限定される訳では無く、空気調和システム1は、3台以上の計測装置を備えても良い。また、制御装置900は、第1熱画像と第2熱画像とに基づいて2台の計測装置である第1計測装置110及び第2計測装置120の位置を特定することに限定されるのではない。制御装置900は、第1熱画像と第2熱画像とに基づいて3台以上の計測装置の位置を特定しても良い。 Furthermore, the number of measuring devices provided in the air conditioning system 1 is not limited to two, and the air conditioning system 1 may include three or more measuring devices. In addition, the control device 900 is not limited to specifying the positions of the two measurement devices, the first measurement device 110 and the second measurement device 120, based on the first thermal image and the second thermal image. Absent. The control device 900 may specify the positions of three or more measurement devices based on the first thermal image and the second thermal image.
(実施の形態の変形例2)
 本実施の形態では、第1計測装置110及び第2計測装置120は、温度及び湿度を計測し、計測された温度を表す計測温度情報と、計測された湿度を表す計測湿度情報と、の双方を制御装置900へ送信すると説明した。制御装置900は、計測温度情報と計測湿度情報との双方に基づいて第1空調機210及び第2空調機220を制御すると説明したが、これに限定される訳ではない。
(Modification 2 of Embodiment)
In the present embodiment, the first measuring device 110 and the second measuring device 120 measure the temperature and the humidity, and measure both the measured temperature information indicating the measured temperature and the measured humidity information indicating the measured humidity. Has been described to be transmitted to the control device 900. Although it has been described that control device 900 controls first air conditioner 210 and second air conditioner 220 based on both the measured temperature information and the measured humidity information, the present invention is not limited to this.
 第1計測装置110及び第2計測装置120は、温度及び湿度のいずれか一方を計測し、計測温度情報と計測湿度情報とのいずれか一方を制御装置900へ送信しても良い。制御装置900は、計測温度情報と計測湿度情報とのいずれか一方に基づいて第1空調機210及び第2空調機220のいずれか一方を制御しても良い。 The first measuring device 110 and the second measuring device 120 may measure either one of the temperature and the humidity, and transmit either the measured temperature information or the measured humidity information to the control device 900. Control device 900 may control one of first air conditioner 210 and second air conditioner 220 based on one of the measured temperature information and the measured humidity information.
(実施の形態の変形例3)
 本実施の形態では、制御装置900は、図17のステップS21で、第1計測装置110又は第2計測装置120が発熱状態を変更した後に送信される発熱状態情報を取得した後、第1空調機210が第1熱画像を送信するまでスリープすると説明した。
(Modification 3 of Embodiment)
In the present embodiment, the control device 900 acquires the heat generation state information transmitted after the first measurement device 110 or the second measurement device 120 changes the heat generation state in step S21 of FIG. It has been described that the machine 210 sleeps until the first thermal image is transmitted.
 しかし、これに限定される訳ではなく、制御装置900は、図17のステップS21で発熱状態情報を取得した後に、第1空調機210に第1熱画像の送信を命じるコマンドを送信しても良い。同様に、制御装置900は、発熱状態情報を取得した後に、第2空調機220に第2熱画像の生成及び送信を命じるコマンドを送信しても良い。 However, the present invention is not limited to this. The control device 900 may transmit a command for transmitting the first thermal image to the first air conditioner 210 after acquiring the heat generation state information in step S21 of FIG. good. Similarly, after acquiring the heat generation state information, control device 900 may transmit a command for generating and transmitting the second thermal image to second air conditioner 220.
 この構成によれば、第1計測装置110又は第2計測装置120が発熱状態を変更すると、第1空調機210が第1熱画像の生成及び送信を行い、かつ、第2空調機220が第2熱画像の生成及び送信を行う。このため、制御装置900は、変更後の状態で発熱する第1計測装置110又は第2計測装置120が映った第1熱画像と第2熱画像とを確実に取得できる。 According to this configuration, when the first measuring device 110 or the second measuring device 120 changes the heat generation state, the first air conditioner 210 generates and transmits the first thermal image, and the second air conditioner 220 transmits the first thermal image. (2) Generate and transmit a thermal image. Therefore, the control device 900 can reliably acquire the first thermal image and the second thermal image in which the first measuring device 110 or the second measuring device 120 that generates heat in the state after the change is reflected.
(実施の形態の変形例4)
 本実施の形態では、制御装置900は、図17のステップS22で第1熱画像を取得した後、直ちにステップS23の処理を実行して、第1熱画像から第1画素を特定すると説明したが、これに限定される訳では無い。
(Modification 4 of Embodiment)
In the present embodiment, the control device 900 has described that after acquiring the first thermal image in step S22 in FIG. 17, immediately execute the process in step S23 to identify the first pixel from the first thermal image. , But is not limited to this.
 制御装置900は、ステップS22で第1熱画像を取得した後、前回に特定された第1画素の座標と同じ座標に在る、今回取得された第1熱画像の画素に、ユーザを表す熱塊が映っているか否かを判別しても良い。制御装置900は、ユーザを表す熱塊が映っていると判別した場合に、ステップS22に戻り、第1空調機210から別の第1熱画像が受信されるまでスリープしても良い。 After acquiring the first thermal image in step S22, the control device 900 assigns a thermal image representing the user to the pixel of the first thermal image acquired this time, which is located at the same coordinate as the coordinate of the first pixel identified last time. It may be determined whether a lump is reflected. If the control device 900 determines that a thermal mass representing the user is being displayed, the process may return to step S22 and sleep until another first thermal image is received from the first air conditioner 210.
 前回に特定された第1画素の座標値を特定するために、制御装置900は、図14の検出結果テーブルから、今回のステップS21で取得された識別情報と、今回の発熱回数情報で表される回数よりも1回少ない回数を表す情報と、に対応付けられた1又は複数の第1画素の座標値を取得すれば良い。 In order to specify the coordinate value of the first pixel specified last time, the control device 900 uses the identification information acquired in the current step S21 and the current heat generation frequency information from the detection result table in FIG. What is necessary is just to acquire the coordinate value of one or a plurality of first pixels associated with the information indicating the number of times one less than the number of times of the first pixel.
 また、ユーザを表す熱塊が映っている画素を特定するために、制御装置900は、例えば、摂氏35度から40度までの温度に対応した画素値の画素が、例えば、実験により定められた個数よりも多く連続した領域に含まれる画素を特定すれば良い。 In addition, in order to specify a pixel in which a heat lump representing a user is reflected, the control device 900 determines, for example, a pixel having a pixel value corresponding to a temperature of 35 to 40 degrees Celsius, for example, by experiment. What is necessary is just to specify the pixels contained in the continuous area larger than the number.
 同様に、制御装置900は、ステップS24で第2熱画像を取得した後、前回に特定された第2画素の座標と同じ座標に在る、今回取得された第2熱画像の画素に、ユーザを表す熱塊が映っていると判別した場合に、ステップS24に戻り、第2空調機220から別の第2熱画像が受信されるまでスリープしても良い。 Similarly, after acquiring the second thermal image in step S24, the control device 900 assigns the user to the pixel of the currently acquired second thermal image located at the same coordinate as the coordinate of the second pixel identified last time. If it is determined that the thermal mass representing the image is displayed, the process may return to step S24 and sleep until another second thermal image is received from the second air conditioner 220.
 これらの構成によれば、制御装置900は、取得し直した第1熱画像及び第2熱画像から、第1計測装置110又は第2計測装置120による発熱の状態に対応した第1画素及び第2画像をより確実に特定できる。 According to these configurations, the control device 900 obtains the first pixel and the second pixel corresponding to the state of heat generation by the first measurement device 110 or the second measurement device 120 from the reacquired first thermal image and second thermal image. Two images can be specified more reliably.
(実施の形態の変形例5)
 本実施の形態では、制御装置900は、第1画素を第1熱画像から特定するステップS23の処理を実行した後、実際に第1画素が特定されたか否かを判別せずに、ステップS24の処理を実行すると説明した。
(Modification 5 of Embodiment)
In the present embodiment, after executing the process of step S23 for specifying the first pixel from the first thermal image, control device 900 proceeds to step S24 without determining whether the first pixel is actually specified. It has been described that the above process is executed.
 しかし、これに限定される訳ではなく、制御装置900は、ステップS23を実行した後に、実際に第1画素が特定されたか否かを判別しても良い。制御装置900は、第1画素が実際に特定されなかったと判別すると、ステップS22に戻り、第1空調機210から別の第1熱画像が受信されるまでスリープしても良い。同様に、制御装置900は、ステップS25を実行した後に、実際に第2画素が特定されたか否かを判別しても良い。制御装置900は、第2画素が実際に特定されなかったと判別すると、ステップS24に戻り、第2空調機220から別の第2熱画像が受信されるまでスリープしても良い。 However, the present invention is not limited to this, and the control device 900 may determine whether or not the first pixel is actually specified after executing step S23. When the control device 900 determines that the first pixel has not been actually specified, the process may return to step S22 and sleep until another first thermal image is received from the first air conditioner 210. Similarly, after executing step S25, control device 900 may determine whether the second pixel is actually specified. If the control device 900 determines that the second pixel has not been actually specified, the process may return to step S <b> 24 and sleep until another second thermal image is received from the second air conditioner 220.
(実施の形態の変形例6)
 本実施の形態では、第1計測装置110の発熱部115は、図3のスイッチSW、サーモスタットBH、BM、及び、BL、並びに電熱線Rで構成されると説明したが、これに限定される訳では無い。
(Modification 6 of Embodiment)
In the present embodiment, the heating section 115 of the first measuring device 110 has been described as being configured by the switch SW, the thermostats BH, BM, and BL, and the heating wire R in FIG. 3, but is not limited thereto. Not in translation.
 第1計測装置110の発熱部115は、図3の構成に代えて、一端を電源PWに接続された電熱線Rと、一端を電熱線Rに接続され、かつ、他端を電源PWに接続された不図示のスイッチと、スイッチのON及びOFFを制御する不図示のMCU(Micro Controller Unit)と、を備えても良い。発熱部115は、電熱線Rの周辺に設置された、不図示の温度センサをさらに備え、MCUは、温度センサから出力される信号と、CPU111から出力される信号と、に基づいてスイッチの開閉を制御しても良い。 The heating unit 115 of the first measuring device 110 has, instead of the configuration shown in FIG. 3, one end connected to the heating wire R connected to the power supply PW, one end connected to the heating wire R, and the other end connected to the power supply PW. And a not-shown MCU (Micro Controller Unit) that controls ON and OFF of the switch. The heating unit 115 further includes a temperature sensor (not shown) installed around the heating wire R. The MCU opens and closes a switch based on a signal output from the temperature sensor and a signal output from the CPU 111. May be controlled.
 例えば、MCUは、CPU111から温度THでの発熱を指示する信号SHが入力された後、温度センサから温度TH未満の計測温度に対応した信号が入力されている間、ONを指示する信号(以下、ON信号という)をスイッチに出力する。これに対して、MCUは、CPU111から信号SHが入力された後、温度センサから温度TH以上の計測温度に対応した信号が入力されている間、OFFを指示する信号(以下、OFF信号という)をスイッチに出力する。 For example, after a signal SH instructing heat generation at the temperature TH from the CPU 111 is input to the MCU, while a signal corresponding to a measured temperature less than the temperature TH is input from the temperature sensor, a signal for instructing ON (hereinafter, referred to as “signal”). , ON signal) to the switch. On the other hand, after the signal SH is input from the CPU 111, the MCU outputs an OFF signal (hereinafter referred to as an OFF signal) while a signal corresponding to a measured temperature equal to or higher than the temperature TH is input from the temperature sensor. Is output to the switch.
 同様に、MCUは、信号SMが入力された後、温度TM未満の計測温度に対応した信号が入力されている間、ON信号を出力し、温度TM以上の計測温度に対応した信号が入力されている間、OFF信号を出力する。また同様に、MCUは、信号SLが入力された後、温度TL未満の計測温度に対応した信号が入力されている間、ON信号を出力し、温度TL以上の計測温度に対応した信号が入力されている間、OFF信号を出力する。 Similarly, after the signal SM is input, the MCU outputs an ON signal while the signal corresponding to the measured temperature lower than the temperature TM is input, and receives the signal corresponding to the measured temperature equal to or higher than the temperature TM. During this time, an OFF signal is output. Similarly, after the signal SL is input, the MCU outputs an ON signal while the signal corresponding to the measured temperature lower than the temperature TL is input, and receives the signal corresponding to the measured temperature equal to or higher than the temperature TL. During this time, an OFF signal is output.
 さらに、MCUは、発熱の停止を指示する信号SSが入力された後、次に信号SH、信号SM、及び、信号SLのいずれかが入力されるまで、OFF信号を出力する。 {Circle around (4)} After the signal SS for instructing the stop of heat generation is input, the MCU outputs an OFF signal until one of the signal SH, the signal SM, and the signal SL is input next.
 本変形例に係る制御装置900は、図17のステップS23を実行した後に、第1計測装置110の発熱状態に対応した第1画素を、第1熱画像から特定できたか否かを判別しても良い。制御装置900は、第1画素を特定できなかったと判別すると、発熱温度の修正、及び、パターンに従った発熱のやり直しを命じるコマンドを、第1計測装置110に送信しても良い。 After executing step S23 in FIG. 17, the control device 900 according to the present modification determines whether the first pixel corresponding to the heat generation state of the first measurement device 110 has been identified from the first thermal image. Is also good. If the control device 900 determines that the first pixel could not be specified, the control device 900 may transmit to the first measurement device 110 a command to correct the heat generation temperature and restart the heat generation according to the pattern.
 例えば、制御装置900は、発熱温度を摂氏T度増加させた後に発熱のやり直しを命じるコマンドを第1計測装置110に送信しても良い。第1計測装置110のCPU111は、受信されたコマンドに従って、信号SHが入力された場合に温度TH+Tで、信号SMが入力された場合に温度TM+Tで、信号SLが入力された場合に温度TM+Lで、電熱線Rを発熱させる制御をMCUに行う。 For example, after increasing the heat generation temperature by T degrees Celsius, the control device 900 may transmit to the first measurement device 110 a command to restart the heat generation. According to the received command, the CPU 111 of the first measuring device 110 operates at the temperature TH + T when the signal SH is input, at the temperature TM + T when the signal SM is input, and at the temperature TM + L when the signal SL is input. The MCU is controlled to generate heat from the heating wire R.
 同様に、制御装置900は、発熱温度を摂氏T度減少させた後に発熱のやり直しを命じるコマンドを第1計測装置110に送信しても良い。第1計測装置110のCPU111は、受信されたコマンドに従って、信号SHが入力された場合に温度TH-Tで、信号SMが入力された場合に温度TM-Tで、信号SLが入力された場合に温度TM-Lで、電熱線Rを発熱させる制御をMCUに行う。その後、第1計測装置110のCPU111は、図4の発熱制御処理を再度実行する。 Similarly, the control device 900 may transmit to the first measuring device 110 a command to restart the heat generation after reducing the heat generation temperature by T degrees Celsius. According to the received command, the CPU 111 of the first measuring device 110 determines whether the temperature is TH-T when the signal SH is input, the temperature is TM-T when the signal SM is input, and the signal SL is input when the signal SM is input. The MCU is controlled so that the heating wire R generates heat at the temperature TM-L. Thereafter, the CPU 111 of the first measuring device 110 executes the heat generation control process of FIG. 4 again.
 制御装置900は、同様に、図17のステップS25を実行した後に、第2画素を特定できなかったと判別すると、発熱温度の修正、及び、パターンに従った発熱のやり直しを命じるコマンドを、第1計測装置110に送信しても良い。 Similarly, if the control device 900 determines that the second pixel could not be specified after executing step S25 in FIG. 17, the control device 900 issues a command for correcting the heat generation temperature and re-starting heat generation according to the pattern. It may be transmitted to the measuring device 110.
 さらに、第2計測装置120の発熱部も同様に、電熱線Rと、不図示のスイッチ、MCU、及び、温度センサと、を備えても良い。制御装置900は、発熱温度の修正、及び、パターンに従った発熱のやり直しを命じるコマンドを、第2計測装置120に送信しても良い。 発 熱 Furthermore, similarly, the heat generating portion of the second measuring device 120 may include the heating wire R, a switch, an MCU, and a temperature sensor (not shown). The control device 900 may transmit, to the second measuring device 120, a command to correct the heat generation temperature and to restart the heat generation according to the pattern.
(実施の形態の変形例7)
 本実施の形態では、第1計測装置110及び第2計測装置120は、制御装置900との通信に用いる通信アドレスを表すパターンで発熱すると説明したが、これに限定される訳では無い。
(Modification 7 of Embodiment)
In the present embodiment, the first measuring device 110 and the second measuring device 120 are described as generating heat in a pattern representing a communication address used for communication with the control device 900, but the present invention is not limited to this.
 制御装置900は、第1計測装置110による発熱のパターンと、第2計測装置120による発熱のパターンと、を、例えば、ランダムに決定し、決定されたパターンを第1計測装置110及び第2計測装置120に送信しても良い。 The control device 900 determines, for example, a heat generation pattern by the first measurement device 110 and a heat generation pattern by the second measurement device 120 at random, and determines the determined pattern by the first measurement device 110 and the second measurement device. It may be transmitted to the device 120.
(実施の形態の変形例8)
 本実施の形態では、制御装置900の制御部930は、第1熱画像と第2熱画像とに基づいて第1空調機210及び第2空調機220を制御すると説明したが、これに限定される訳では無い。
(Eighth Modification of Embodiment)
In the present embodiment, control unit 930 of control device 900 has been described as controlling first air conditioner 210 and second air conditioner 220 based on the first thermal image and the second thermal image, but the present invention is not limited to this. Not necessarily.
 制御装置900の制御部930は、第1熱画像の画素値と第2熱画像の画素値とに基づいて、空気調和システム1の保守管理者によって設定された上限温度よりも高い温度で発熱する物体が空調空間Sに存在すると判別した場合に、発熱を停止させる制御を第1計測装置110及び第2計測装置120に行っても良い。保守管理者によって設定される上限温度は、発熱パターンに従った発熱温度の最大値である温度Thよりも高い温度に設定されていれば、どのような温度であっても良い。 The control unit 930 of the control device 900 generates heat at a temperature higher than the upper limit temperature set by the maintenance manager of the air conditioning system 1 based on the pixel value of the first thermal image and the pixel value of the second thermal image. When it is determined that the object exists in the air-conditioned space S, control for stopping heat generation may be performed on the first measuring device 110 and the second measuring device 120. The upper limit temperature set by the maintenance manager may be any temperature as long as it is set to a temperature higher than the temperature Th which is the maximum value of the heat generation temperature according to the heat generation pattern.
 この構成によれば、第1計測装置110又は第2計測装置120が、例えば、故障又は誤操作により、保守管理者によって設定された上限温度よりも高い温度で発熱し続けることを防止できる。 According to this configuration, it is possible to prevent the first measuring device 110 or the second measuring device 120 from continuously generating heat at a temperature higher than the upper limit temperature set by the maintenance manager due to, for example, a failure or an erroneous operation.
 制御装置900の制御部930は、上限温度よりも高い温度で発熱する物体(以下、高温物体という)の位置を、第1熱画像と第2熱画像とに基づいて特定し、特定された高温物体の位置と、高温物体の存在を知らせるメッセージと、を表示させる制御を、図10のLCD909bに行っても良い。 The control unit 930 of the control device 900 specifies the position of an object that generates heat at a temperature higher than the upper limit temperature (hereinafter, referred to as a high-temperature object) based on the first thermal image and the second thermal image, and Control for displaying the position of the object and a message indicating the presence of the high-temperature object may be performed on the LCD 909b in FIG.
(実施の形態の変形例9)
 本実施の形態では、第1計測装置110は、第1計測装置110を識別する第1パターンに従って発熱し、第2計測装置120は、第2計測装置120を識別する第2パターンに従って発熱すると説明したが、これに限定される訳では無い。
(Modification 9 of Embodiment)
In the present embodiment, it is described that the first measuring device 110 generates heat according to the first pattern for identifying the first measuring device 110, and the second measuring device 120 generates heat according to the second pattern for identifying the second measuring device 120. However, it is not limited to this.
 第1計測装置110は、不図示の蓄電池を備え、CPU111は、蓄電池の蓄電量が、空気調和システム1の保守管理者によって設定された量以上であると判別すると、第1パターンに従った発熱を発熱部115に指示しても良い。これに対して、第1計測装置110のCPU111は、蓄電池の蓄電量が設定された量未満であると判別すると、第1パターンを短縮させたパターンに従った発熱を発熱部115に指示しても良い。 The first measuring device 110 includes a storage battery (not shown). When the CPU 111 determines that the storage amount of the storage battery is equal to or larger than the amount set by the maintenance manager of the air conditioning system 1, the CPU 111 generates heat according to the first pattern. May be instructed to the heat generating unit 115. On the other hand, when the CPU 111 of the first measuring device 110 determines that the storage amount of the storage battery is less than the set amount, the CPU 111 instructs the heat generation unit 115 to generate heat according to the shortened first pattern. Is also good.
 第1パターンを短縮させたパターンは、例えば、第1パターンに従った第1回目の発熱から第K回目の発熱を行うパターンであっても良い。但し、Kは、Nよりも小さい自然数である。また、第1パターンを短縮させたパターンは、例えば、第1パターンに従った第N-K+1回目の発熱から第N回目の発熱を行うパターンであっても良い。 The pattern obtained by shortening the first pattern may be, for example, a pattern that performs the first heat generation to the K-th heat generation according to the first pattern. Here, K is a natural number smaller than N. Further, the pattern obtained by shortening the first pattern may be, for example, a pattern that performs the (N−K + 1) th heat generation to the Nth heat generation according to the first pattern.
 第1計測装置110のCPU111は、短縮させたパターンに従った発熱が終了した後、パターンに従った発熱の終了を報告する情報を、制御装置900に送信しても良い。また、第1計測装置110のCPU111は、短縮させたパターンに従った発熱を開始する前に、短縮させたパターンに従った発熱の総回数を表す情報を制御装置900に送信しても良い。 The CPU 111 of the first measuring device 110 may transmit, to the control device 900, information reporting the end of the heat generation according to the pattern after the heat generation according to the shortened pattern ends. Further, the CPU 111 of the first measuring device 110 may transmit information indicating the total number of times of heat generation according to the shortened pattern to the control device 900 before starting heat generation according to the shortened pattern.
 第1計測装置110と同様に、第2計測装置120は、蓄電池の蓄電量が設定された量未満となると、第1パターンを短縮させたパターンに従って発熱しても良い。 As in the case of the first measuring device 110, the second measuring device 120 may generate heat in accordance with a shortened first pattern when the storage amount of the storage battery is less than a set amount.
 また、制御装置900の制御部930は、短縮させたパターンで発熱する第1計測装置110又は第2計測装置120の位置を、第1計測装置110又は第2計測装置120の識別情報と、蓄電量の低下を知らせるメッセージと、共に表示させる制御を、図10のLCD909bに行っても良い。 Further, the control unit 930 of the control device 900 determines the position of the first measuring device 110 or the second measuring device 120 that generates heat in the shortened pattern, the identification information of the first measuring device 110 or the second measuring device 120, and the power storage. Control for displaying a message indicating a decrease in amount and displaying the message together may be performed on the LCD 909b in FIG.
 さらに、第1計測装置110のCPU111は、バッテリの蓄電量が少なくなる程、第1パターンをより短縮させたパターンで発熱部115を発熱させても良い。 The CPU 111 of the first measuring device 110 may cause the heat generating unit 115 to generate heat in a pattern in which the first pattern is further shortened as the amount of stored power of the battery decreases.
 これらの構成によれば、第1計測装置110は、蓄電池の蓄電量が設定された量未満となると第1パターンを短縮させたパターンに従って発熱し、第2計測装置120は、蓄電池の蓄電量が設定された量未満となると第2パターンを短縮させたパターンに従って発熱する。このため、第1計測装置110及び第2計測装置120を省電力化できる。 According to these configurations, the first measuring device 110 generates heat in accordance with a pattern obtained by shortening the first pattern when the charged amount of the storage battery is less than the set amount, and the second measuring device 120 determines that the charged amount of the storage battery is When the amount is less than the set amount, heat is generated according to the pattern obtained by shortening the second pattern. Therefore, the first measuring device 110 and the second measuring device 120 can save power.
(実施の形態の変形例10)
 本実施の形態では、第1計測装置110及び第2計測装置120は、例えば、オフィススペースの壁面又はデスクに設置されると説明したが、これに限定される訳では無い。第1計測装置110及び第2計測装置120は、例えば、ユーザに携帯されるリモコンでも良い。
(Modification 10 of Embodiment)
In the present embodiment, the first measuring device 110 and the second measuring device 120 have been described as being installed on, for example, a wall surface of an office space or a desk, but the present invention is not limited to this. The first measuring device 110 and the second measuring device 120 may be, for example, remote controls carried by the user.
 本発明の実施の形態及び実施の形態の変形例1から10は、互いに組み合わせることができる。 実 施 Embodiments of the present invention and Modifications 1 to 10 of the embodiments can be combined with each other.
 本発明の実施の形態及び実施の形態の変形例1から10のいずれかに係る機能を実現するための構成を予め備えた制御装置900として提供できる。また、プログラムの適用により、既存の制御装置900を本発明の実施の形態及び実施の形態の変形例1から10のいずれかに係る制御装置900として機能させることもできる。すなわち、本発明の実施の形態及び実施の形態の変形例1から10のいずれかで例示した制御装置900による各機能構成を実現させるためのプログラムを、既存の制御装置を制御するコンピュータ(CPUなど)が実行することで、本発明の実施の形態及び実施の形態の変形例1から10のいずれかに係る制御装置900として機能させることができる。 The present invention can be provided as a control device 900 having a configuration for realizing the functions according to the embodiment of the present invention and any one of the first to tenth modifications of the embodiment. Further, by applying the program, the existing control device 900 can be caused to function as the control device 900 according to any one of the embodiments and the first to tenth modifications of the embodiment of the present invention. That is, a program for realizing each functional configuration by the control device 900 exemplified in the embodiment of the present invention and any one of the modified examples 1 to 10 of the embodiment is stored in a computer (CPU or the like) for controlling the existing control device. ) Can be caused to function as the control device 900 according to the embodiment of the present invention and any of Modifications 1 to 10 of the embodiment.
 このようなプログラムの配布方法は任意であり、例えば、メモリカード、CD-ROM(Compact Disc Read Only Memory)、又は、DVD-ROM(Digital Versatile Disk Read Only Memory)などの記録媒体に格納して配布できる他、インターネットなどの通信媒体を介して配布することもできる。尚、空気調和方法は、空気調和システム1を用いて実施できる。 The distribution method of such a program is arbitrary. For example, the program is stored in a recording medium such as a memory card, a CD-ROM (Compact Disc Read Only Memory), or a DVD-ROM (Digital Versatile Disk Read Only Memory) and distributed. In addition, it can be distributed via a communication medium such as the Internet. Note that the air conditioning method can be implemented using the air conditioning system 1.
 また、本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施の形態及び変形が可能とされるものである。また、上述した実施の形態は、本発明を説明するためのものであり、本発明の範囲を限定するものではない。つまり、本発明の範囲は、実施の形態ではなく、請求の範囲によって示される。そして、請求の範囲内及びそれと同等の発明の範囲内で施される様々な変形が、本発明の範囲内とみなされる。 The present invention allows various embodiments and modifications without departing from the broad spirit and scope of the present invention. Further, the above-described embodiment is for describing the present invention, and does not limit the scope of the present invention. In other words, the scope of the present invention is defined by the appended claims rather than the embodiments. Various modifications made within the scope of the claims and equivalents thereto are considered to be within the scope of the present invention.
 本発明は、空調空間の空気を調和させる空調通信システムに適する。 The present invention is suitable for an air-conditioning communication system that harmonizes air in an air-conditioned space.
1 空気調和システム、110 第1計測装置、111,211,901 CPU、112,212,902 ROM、113,213,903 フラッシュメモリ、114,214,904 RAM、115 発熱部、116 計測部、116a 温度センサ、116b 湿度センサ、117,907a 無線通信回路、118,908 ボタン、119a,909a ビデオカード、119b,909b LCD、120 第2計測装置、200 室外機、210 第1空調機、215 第1輻射センサ、216 第1熱画像生成回路、217,907b 有線通信回路、218 ファン、219 モータ、220 第2空調機、230 第3空調機、251 輻射熱計測部、251a レンズ、251b サーモパイルアレイ、252 走査部、900 制御装置、910 取得部、920 特定部、930 制御部、990 情報記憶部、C 通信ケーブル、CL 円、D11,D12,D21,D22,D31 到来方向、IE11 第1画素、LA1,LA2 光軸の設置方向、L11,L12 第1直線、L21,L22 第2直線、L31 第3直線、P0,PH,PL,PM 端子、PA1,PA2,PA3 設置位置、PM1,PM2 交点、R 電熱線、S 空調空間、BH,BL,BM サーモスタット、SW スイッチ、XwYwZw 世界座標系、XcYc カメラ座標系、θ1,θ2 設置角度、φxy11,φxy12,φxy21,φxy22,φxz11 到来角度、φ 刻み角度 1 air conditioning system, 110 first measurement device, 111, 211, 901 CPU, 112, 212, 902 ROM, 113, 213, 903 flash memory, 114, 214, 904 RAM, 115 heating unit, 116 measurement unit, 116a temperature Sensor, 116b {humidity sensor, 117,907a} wireless communication circuit, 118,908 button, 119a, 909a video card, 119b, 909b LCD, 120 second measuring device, 200 outdoor unit, 210 first air conditioner, 215 first radiation sensor 216 {first thermal image generation circuit, 217,907b} wired communication circuit, 218 fan, 219 motor, 220 second air conditioner, 230 third air conditioner, 251 radiant heat measurement unit, 251a lens, 251b thermopile array, 252 Scanning unit, 900 control unit, 910 acquisition unit, 920 identification unit, 930 control unit, 990 information storage unit, C communication cable, CL circle, D11, D12, D21, D22, D31 arrival direction, IE11 first pixel, LA1, LA2 installation direction of optical axis, L11, L12 first straight line, L21, L22 second straight line, L31 third straight line, P0, PH, PL, PM terminal, PA1, PA2, PA3 installation position, PM1, PM2 intersection, R Hot wire, S air-conditioned space, BH, BL, BM モ thermostat, SW switch, XwYwZw world coordinate system, XcYc camera coordinate system, θ1, θ2 installation angle, φxy11, φxy12, φxy21, φxy22, φxy11 arrival angle, φ step angle

Claims (10)

  1.  空調空間の温度及び湿度のいずれか1つ以上を計測する計測手段と、発熱する発熱手段と、を備える計測装置と、
     前記発熱手段の発熱により生じる輻射熱を計測する第1輻射センサと、前記第1輻射センサの計測結果に基づいて第1熱画像を生成する第1熱画像生成手段と、を備える第1空気調和機と、
     前記発熱手段の前記発熱により生じる輻射熱を計測する第2輻射センサと、前記第2輻射センサの計測結果に基づいて第2熱画像を生成する第2熱画像生成手段と、を備える第2空気調和機と、
     前記第1熱画像生成手段で生成された前記第1熱画像と、前記第2熱画像生成手段で生成された前記第2熱画像と、に基づいて前記計測装置の位置を特定し、特定した前記計測装置の前記位置と、前記計測装置で計測された前記温度及び前記湿度のいずれか1つ以上と、に基づいて前記第1空気調和機及び前記第2空気調和機を制御する制御装置と、を備える、
     空気調和システム。
    A measuring device that includes a measuring unit that measures one or more of the temperature and the humidity of the air-conditioned space, and a heating unit that generates heat,
    A first air conditioner comprising: a first radiation sensor that measures radiant heat generated by heat generated by the heat generating unit; and a first thermal image generating unit that generates a first thermal image based on a measurement result of the first radiation sensor. When,
    A second air conditioner comprising: a second radiation sensor that measures radiant heat generated by the heat generated by the heat generating unit; and a second thermal image generating unit that generates a second thermal image based on a measurement result of the second radiation sensor. Machine and
    The position of the measurement device is specified and specified based on the first thermal image generated by the first thermal image generating means and the second thermal image generated by the second thermal image generating means. A control device that controls the first air conditioner and the second air conditioner based on the position of the measurement device and any one or more of the temperature and the humidity measured by the measurement device. Comprising,
    Air conditioning system.
  2.  前記計測装置の前記発熱手段は、前記発熱により遠赤外線を発し、
     前記制御装置は、前記第1輻射センサで計測された前記輻射熱を生じさせた前記遠赤外線の到来方向である第1方向を前記第1熱画像に基づいて特定し、前記第2輻射センサで計測された前記輻射熱を生じさせた前記遠赤外線の到来方向である第2方向を前記第2熱画像に基づいて特定し、かつ、前記第1輻射センサから前記第1方向へ向かう第1直線と、前記第2輻射センサから前記第2方向へ向かう第2直線と、に基づいて、前記計測装置の前記位置を特定する、
     請求項1に記載の空気調和システム。
    The heating means of the measuring device emits far-infrared rays by the heat generation,
    The control device specifies, based on the first thermal image, a first direction, which is an arrival direction of the far-infrared ray that caused the radiant heat measured by the first radiation sensor, and measures the first direction by the second radiation sensor. A second direction, which is a direction of arrival of the far-infrared ray that caused the radiant heat, is specified based on the second thermal image, and a first straight line from the first radiation sensor toward the first direction, Based on a second straight line heading in the second direction from the second radiation sensor, the position of the measurement device is specified,
    The air conditioning system according to claim 1.
  3.  前記計測装置の前記発熱手段は、一定のパターンで発熱し、
     前記第1熱画像生成手段は、複数の第1熱画像を生成し、
     前記第2熱画像生成手段は、複数の第2熱画像を生成し、
     前記制御装置は、前記複数の第1熱画像から、前記一定のパターンに従って発生した前記輻射熱に対応する第1画素を特定した後に、前記第1画素に基づいて前記第1方向を特定し、かつ、前記複数の第2熱画像から、前記一定のパターンに従って発生した前記輻射熱に対応する第2画素を特定した後に、前記第2画素に基づいて前記第2方向を特定する、
     請求項2に記載の空気調和システム。
    The heating means of the measuring device generates heat in a fixed pattern,
    The first thermal image generation means generates a plurality of first thermal images,
    The second thermal image generating means generates a plurality of second thermal images,
    The control device, from the plurality of first thermal images, after identifying a first pixel corresponding to the radiant heat generated according to the fixed pattern, to identify the first direction based on the first pixel, and From the plurality of second thermal images, after identifying a second pixel corresponding to the radiant heat generated according to the fixed pattern, identifying the second direction based on the second pixel,
    The air conditioning system according to claim 2.
  4.  前記第1熱画像生成手段が前記第1熱画像を生成する時間間隔と、前記第2熱画像生成手段が前記第2熱画像を生成する時間間隔と、は、前記計測装置が前記一定のパターンに従って前記発熱手段による発熱の状態を変更させる時間間隔よりも短い、
     請求項3に記載の空気調和システム。
    The time interval at which the first thermal image generating means generates the first thermal image and the time interval at which the second thermal image generating means generates the second thermal image, Shorter than the time interval for changing the state of heat generation by the heat generating means in accordance with
    The air conditioning system according to claim 3.
  5.  前記計測装置は、前記発熱手段による発熱の状態を前記一定のパターンに従って変化させると、変化後の発熱の状態を表す発熱状態情報を前記制御装置へ送信し、
     前記制御装置は、前記発熱状態情報を受信すると、前記第1熱画像の生成を命じるコマンドを前記第1空気調和機に送信し、かつ、前記第2熱画像の生成を命じるコマンドを前記第2空気調和機に送信する、
     請求項3に記載の空気調和システム。
    The measuring device, when changing the state of heat generation by the heat generating means according to the fixed pattern, transmits to the control device heat generation state information indicating the state of heat generation after the change,
    The control device, upon receiving the heat generation state information, transmits a command instructing generation of the first thermal image to the first air conditioner, and transmits a command instructing generation of the second thermal image to the second air conditioner. Send to air conditioner,
    The air conditioning system according to claim 3.
  6.  前記計測手段と前記発熱手段とを備え、かつ、前記計測装置である第1計測装置と異なる第2計測装置をさらに備え、
     前記第1計測装置の前記発熱手段は、前記一定のパターンであり、かつ、前記第1計測装置を識別する第1パターンで発熱し、
     前記第2計測装置の前記発熱手段は、前記第1パターンと異なるパターンであり、かつ、前記第2計測装置を識別する第2パターンで発熱する、
     請求項3から5のいずれか一項に記載の空気調和システム。
    The apparatus further includes a second measurement device that includes the measurement unit and the heat generation unit, and that is different from the first measurement device that is the measurement device.
    The heat generating means of the first measuring device is the fixed pattern, and generates heat in a first pattern for identifying the first measuring device,
    The heat generating means of the second measuring device generates heat in a pattern different from the first pattern and in a second pattern for identifying the second measuring device.
    The air conditioning system according to any one of claims 3 to 5.
  7.  前記第1パターンは、前記第1計測装置の通信アドレスを識別し、
     前記第2パターンは、前記第2計測装置の通信アドレスを識別する、
     請求項6に記載の空気調和システム。
    The first pattern identifies a communication address of the first measuring device,
    The second pattern identifies a communication address of the second measuring device;
    The air conditioning system according to claim 6.
  8.  発熱手段を備える計測装置と、第1熱画像生成手段を備える第1空気調和機と、第2熱画像生成手段を備える第2空気調和機と、第1空気調和機及び第2空気調和機を制御する制御装置と、を備える空気調和システムで実行される方法であって、
     前記計測装置が、空調空間の温度及び湿度のいずれか1つ以上を計測するステップと、
     前記計測装置の前記発熱手段が、発熱するステップと、
     前記第1空気調和機の前記第1熱画像生成手段が、前記発熱手段の発熱により生じる輻射熱を計測する第1輻射センサの計測結果に基づいて第1熱画像を生成するステップと、
     前記第2空気調和機の前記第2熱画像生成手段が、前記発熱手段の前記発熱により生じる輻射熱を計測する第2輻射センサの計測結果に基づいて第2熱画像を生成するステップと、
     前記制御装置が、前記第1熱画像生成手段で生成された前記第1熱画像と、前記第2熱画像生成手段で生成された前記第2熱画像と、に基づいて前記計測装置の位置を特定するステップと、
     前記計測装置の前記特定された位置と、前記計測装置で計測された前記温度及び前記湿度のいずれか1つ以上と、に基づいて、前記制御装置が、前記第1空気調和機及び前記第2空気調和機を制御するステップと、を備える、
     空気調和方法。
    A measuring device having a heat generating means, a first air conditioner having a first thermal image generating means, a second air conditioner having a second thermal image generating means, a first air conditioner and a second air conditioner A control device for controlling, and a method performed in an air conditioning system comprising:
    The measuring device measures one or more of the temperature and humidity of the air-conditioned space,
    The heating unit of the measuring device generates heat,
    A step in which the first thermal image generating means of the first air conditioner generates a first thermal image based on a measurement result of a first radiation sensor that measures radiant heat generated by heat generation of the heat generating means;
    A step in which the second thermal image generating means of the second air conditioner generates a second thermal image based on a measurement result of a second radiation sensor that measures radiant heat generated by the heat generation of the heat generating means;
    The control device is configured to determine a position of the measurement device based on the first thermal image generated by the first thermal image generating unit and the second thermal image generated by the second thermal image generating unit. Identifying steps;
    The control device is configured to control the first air conditioner and the second air conditioner based on the specified position of the measurement device and any one or more of the temperature and the humidity measured by the measurement device. Controlling the air conditioner.
    Air conditioning method.
  9.  空調空間の温度及び湿度のいずれか1つ以上を計測する計測手段と、発熱する発熱手段と、を備える計測装置から、前記計測手段で計測された前記温度を表す計測温度情報及び前記湿度を表す計測湿度情報のいずれか1つ以上を受信する第1通信手段と、
     前記計測装置の発熱により生じる輻射熱を計測する第1輻射センサと、前記第1輻射センサの計測結果に基づいて第1熱画像を生成する第1熱画像生成手段と、を備える第1空気調和機から前記第1熱画像を受信し、かつ、前記計測装置の前記発熱により生じる輻射熱を計測する第2輻射センサと、前記第2輻射センサの計測結果に基づいて第2熱画像を生成する第2熱画像生成手段と、を備える第2空気調和機から前記第2熱画像を受信する第2通信手段と、
     前記第2通信手段で受信された前記第1熱画像と前記第2熱画像とに基づいて前記計測装置の位置を特定する特定手段と、
     前記特定手段で特定された前記計測装置の前記位置と、前記第1通信手段で受信された前記計測温度情報で表される前記温度及び前記計測湿度情報で表される前記湿度のいずれか1つ以上と、に基づいて前記第1空気調和機及び前記第2空気調和機を制御する制御手段と、を備える、
     制御装置。
    A measuring device that measures one or more of the temperature and humidity of the air-conditioned space, and a heating device that generates heat. From a measuring device, the measured temperature information indicating the temperature measured by the measuring device and the humidity are expressed. First communication means for receiving any one or more of the measured humidity information;
    A first air conditioner comprising: a first radiation sensor that measures radiant heat generated by heat generated by the measurement device; and a first thermal image generation unit that generates a first thermal image based on a measurement result of the first radiation sensor. A second radiation sensor that receives the first thermal image from the second thermal sensor and measures radiant heat generated by the heat generation of the measurement device, and a second thermal image that generates a second thermal image based on the measurement result of the second radiation sensor. A second communication unit for receiving the second thermal image from a second air conditioner, comprising: a thermal image generating unit;
    Specifying means for specifying the position of the measuring device based on the first thermal image and the second thermal image received by the second communication means,
    Any one of the position of the measuring device specified by the specifying unit and the temperature represented by the measured temperature information and the humidity represented by the measured humidity information received by the first communication unit And control means for controlling the first air conditioner and the second air conditioner based on the above.
    Control device.
  10.  コンピュータを、
     空調空間の温度及び湿度のいずれか1つ以上を計測する計測手段と、発熱する発熱手段と、を備える計測装置で計測された前記温度を表す計測温度情報及び前記湿度を表す計測湿度情報のいずれか1つ以上を取得し、
     前記計測装置の発熱により生じる輻射熱を計測する第1輻射センサと、前記第1輻射センサの計測結果に基づいて第1熱画像を生成する第1熱画像生成手段と、を備える第1空気調和機で生成された前記第1熱画像を取得し、かつ、
     前記計測装置の前記発熱により生じる輻射熱を計測する第2輻射センサと、前記第2輻射センサの計測結果に基づいて第2熱画像を生成する第2熱画像生成手段と、を備える第2空気調和機で生成された前記第2熱画像を取得する、取得手段、
     前記取得手段で取得された前記第1熱画像と前記第2熱画像とに基づいて前記計測装置の位置を特定する特定手段、
     前記特定手段で特定された前記計測装置の前記位置と、前記取得手段で取得された前記計測温度情報で表される前記温度及び前記計測湿度情報で表される前記湿度のいずれか1つ以上と、に基づいて前記第1空気調和機及び前記第2空気調和機を制御する制御手段、として機能させる、
     プログラム。
    Computer
    Any of measurement temperature information indicating the temperature and measurement humidity information indicating the humidity measured by a measurement device including a measurement unit that measures any one or more of the temperature and humidity of the air-conditioned space and a heat generation unit that generates heat. Or one or more,
    A first air conditioner comprising: a first radiation sensor that measures radiant heat generated by heat generated by the measurement device; and a first thermal image generation unit that generates a first thermal image based on a measurement result of the first radiation sensor. Acquiring the first thermal image generated in; and
    A second air conditioner comprising: a second radiation sensor that measures radiant heat generated by the heat generation of the measurement device; and a second thermal image generation unit that generates a second thermal image based on a measurement result of the second radiation sensor. Acquiring means for acquiring the second thermal image generated by the machine,
    Specifying means for specifying the position of the measuring device based on the first thermal image and the second thermal image acquired by the acquiring means,
    The position of the measuring device specified by the specifying means, and any one or more of the temperature represented by the measured temperature information acquired by the acquisition means and the humidity represented by the measured humidity information Control means for controlling the first air conditioner and the second air conditioner based on
    program.
PCT/JP2018/023161 2018-06-18 2018-06-18 Air conditioning system, air conditioning method, control device, and program WO2019244219A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020525100A JP6914442B2 (en) 2018-06-18 2018-06-18 Air conditioning systems, air conditioning methods, controls, and programs
PCT/JP2018/023161 WO2019244219A1 (en) 2018-06-18 2018-06-18 Air conditioning system, air conditioning method, control device, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/023161 WO2019244219A1 (en) 2018-06-18 2018-06-18 Air conditioning system, air conditioning method, control device, and program

Publications (1)

Publication Number Publication Date
WO2019244219A1 true WO2019244219A1 (en) 2019-12-26

Family

ID=68982935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/023161 WO2019244219A1 (en) 2018-06-18 2018-06-18 Air conditioning system, air conditioning method, control device, and program

Country Status (2)

Country Link
JP (1) JP6914442B2 (en)
WO (1) WO2019244219A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05187687A (en) * 1992-01-13 1993-07-27 Mitsubishi Heavy Ind Ltd Controller for fan coil
JP2011064427A (en) * 2009-09-18 2011-03-31 Mitsubishi Electric Corp Environment measuring device, equipment control system, environment measuring method and environment measuring program
WO2012101831A1 (en) * 2011-01-28 2012-08-02 三菱電機株式会社 Air-conditioning system and air-conditioning method
WO2018051479A1 (en) * 2016-09-16 2018-03-22 三菱電機株式会社 Assist device, air conditioning system, and derivation method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05187687A (en) * 1992-01-13 1993-07-27 Mitsubishi Heavy Ind Ltd Controller for fan coil
JP2011064427A (en) * 2009-09-18 2011-03-31 Mitsubishi Electric Corp Environment measuring device, equipment control system, environment measuring method and environment measuring program
WO2012101831A1 (en) * 2011-01-28 2012-08-02 三菱電機株式会社 Air-conditioning system and air-conditioning method
WO2018051479A1 (en) * 2016-09-16 2018-03-22 三菱電機株式会社 Assist device, air conditioning system, and derivation method

Also Published As

Publication number Publication date
JP6914442B2 (en) 2021-08-04
JPWO2019244219A1 (en) 2020-12-17

Similar Documents

Publication Publication Date Title
KR102385263B1 (en) Mobile home robot and controlling method of the mobile home robot
JP6501973B2 (en) Air conditioning system
JP7002680B2 (en) Control method of air conditioning equipment, control device, air conditioning equipment and storage medium
US10929642B2 (en) Identification of objects for three-dimensional depth imaging
KR102390979B1 (en) Electronic Device Capable of controlling IoT device to corresponding to the state of External Electronic Device and Electronic Device Operating Method
KR20210074792A (en) Air conditioning device and control method thereof
KR20190097902A (en) Air-conditioner controlling direction of the wind by instructed position and method of controlling thereof
JP7179176B2 (en) Air conditioning controller and air conditioning control system
JP2015055384A (en) Air conditioner
JP6355850B2 (en) Determination support apparatus, determination support method, and program
JP2017166791A (en) Control method of information terminal in air conditioning control system, and air conditioning control system
JP2023178497A (en) air conditioner
CN110825146A (en) Control system of wisdom hotel guest room
WO2019244219A1 (en) Air conditioning system, air conditioning method, control device, and program
JP2019039570A (en) Air cleaning system
JP5009962B2 (en) Environmental measurement device, equipment control system, environmental measurement method, and environmental measurement program
WO2020108108A1 (en) Animation projection apparatus employing laser light and control method
JP2015148396A (en) Control system and control method
JP6233737B2 (en) Motion detection device and control system
JP2014532190A (en) Laser projection apparatus and image data projection method
WO2021104317A1 (en) Robot for detecting air cleanliness and method for detecting air cleanliness
JP2013029275A (en) Control device, and control system
JP6415565B2 (en) Controller, home system, synchronization control method, and program
KR101716060B1 (en) Lighting controller device
JP7170857B2 (en) CONTROLLER, SYSTEM, METHOD AND PROGRAM

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18923565

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020525100

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18923565

Country of ref document: EP

Kind code of ref document: A1