WO2018051479A1 - Assist device, air conditioning system, and derivation method - Google Patents

Assist device, air conditioning system, and derivation method Download PDF

Info

Publication number
WO2018051479A1
WO2018051479A1 PCT/JP2016/077379 JP2016077379W WO2018051479A1 WO 2018051479 A1 WO2018051479 A1 WO 2018051479A1 JP 2016077379 W JP2016077379 W JP 2016077379W WO 2018051479 A1 WO2018051479 A1 WO 2018051479A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermal image
image data
air conditioner
unit
air
Prior art date
Application number
PCT/JP2016/077379
Other languages
French (fr)
Japanese (ja)
Inventor
浩子 泉原
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2018539467A priority Critical patent/JP6755322B2/en
Priority to PCT/JP2016/077379 priority patent/WO2018051479A1/en
Publication of WO2018051479A1 publication Critical patent/WO2018051479A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2120/00Control inputs relating to users or occupants
    • F24F2120/10Occupancy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J2005/0077Imaging

Definitions

  • the present invention relates to a support device, an air conditioning system, and a derivation method.
  • air conditioning systems air conditioning systems
  • buildings such as buildings.
  • air conditioning system for example, a plurality of air conditioners (indoor units) are embedded in the ceiling of each floor, and it becomes possible to control the air conditioners in units of floors or in the entire building in a coordinated manner. Yes.
  • Such cooperative control is performed using location information indicating the relative positional relationship of each air conditioner. For example, when cooperative control of air conditioners is performed in units of floors, not only information for identifying all air conditioners installed in the floor, but also the positional relationship between the air conditioners in the floor. Information that indicates whether or not Therefore, location information including these pieces of information is created by an operator when the air conditioning system is introduced (at the time of construction), for example. The location information is also used when, for example, displaying a floor map for an administrator (for example, a floor map indicating the layout of each air conditioner and the operating status of each air conditioner).
  • Such location information is created, for example, by manually inputting the arrangement of each air conditioner based on a floor plan. For this reason, the work of creating location information is very time-consuming, and input errors may occur. In addition, in an old building, there is a case where a plan view does not remain, which increases the work load.
  • Patent Documents 1 and 2 disclose a technique for determining an installation position of an air conditioner installed in a room.
  • JP 2010-014350 A Japanese Patent Laying-Open No. 2015-001313
  • Patent Documents 1 and 2 in the first place, for a wall-mounted air conditioner used in a general home, only the installation position based on a structure such as a wall or a floor is determined. Therefore, the techniques of Patent Documents 1 and 2 are not very useful in an air conditioning system in which a plurality of air conditioners are installed in the same space. That is, the techniques of Patent Documents 1 and 2 determine the installation position of a single air conditioner, and cannot determine the relative positional relationship of each air conditioner. On the floor of a certain size or more, some air conditioners are installed away from the wall (that is, installed near the center of the floor ceiling). An air conditioner installed away from these walls cannot determine the installation position even using the techniques of Patent Documents 1 and 2.
  • the present invention has been made to solve the above-described problems, and provides a support device, an air conditioning system, and a derivation method that can appropriately derive the relative positional relationship between a plurality of air conditioners.
  • the purpose is to do.
  • the support device provides: First thermal image data detected by the first air conditioner and second thermal image data detected by the second air conditioner from the first air conditioner and the second air conditioner installed in the same space.
  • a data collection unit that collects
  • a derivation unit that derives a relative positional relationship between the first and second air conditioners based on the common feature points included in the first and second thermal image data; Is provided.
  • a plurality of thermal image data that is, first and second thermal image data
  • a plurality of air conditioners that is, the first and second air conditioners
  • a plurality of thermal image data are collected.
  • the relative positional relationship of each air conditioner is derived based on the common feature points included in the thermal image data. As a result, it is possible to appropriately derive the relative positional relationship between the air conditioners without manual intervention.
  • the schematic diagram which shows an example of the whole structure of the air conditioning system which concerns on embodiment of this invention Schematic diagram for explaining the scanning range of the thermal image sensor of the air conditioner Schematic diagram for explaining that the scanning ranges of the thermal image sensors partially overlap in adjacent air conditioners
  • Schematic diagram showing an example of thermal image data Schematic diagram showing an example of other thermal image data
  • Schematic diagram for explaining the connection between two thermal image data The flowchart for demonstrating the derivation
  • air conditioner air conditioner
  • air conditioner is a term that generally indicates both “outdoor unit” and “indoor unit”, but in order to correspond to the description in the claims of the present invention, The “indoor unit” will be described as “air conditioner”.
  • FIG. 1 is a schematic diagram showing an example of the overall configuration of an air conditioning system 1 according to an embodiment of the present invention.
  • the support device 10 the outdoor unit 20 (20 a, 20 b), and the air conditioner 30 (30 a to 30 d) are communicably connected via an air conditioning communication network 90.
  • FIG. 1 shows a case where the number of outdoor units 20 is two and the number of air conditioners 30 is four.
  • the number of outdoor units 20 and air conditioners 30 is that of introducing the air conditioning system 1. It can be appropriately changed according to the number of floors and floor area in the building BL.
  • the support device 10 appropriately controls the outdoor unit 20 and the air conditioner 30 via the air conditioning communication network 90, and derives a relative positional relationship among the air conditioners 30 installed in the building BL (in the floor). . Details of the support device 10 will be described later.
  • the outdoor unit 20 (20a, 20b) has, for example, a compressor and a heat source side heat exchanger, and is connected to the air conditioner 30 (30a to 30d) by piping. And the outdoor unit 20 circulates a refrigerant
  • the outdoor unit 20 is installed outdoors (as an example, on the roof) of the building BL.
  • the outdoor unit 20 includes a control unit and a communication unit, and transmits / receives control information necessary for air conditioning to / from the air conditioner 30, for example.
  • the air conditioner 30 (30a to 30d) is a so-called indoor unit, which has, for example, an expansion valve and a load side heat exchanger, and is connected to the outdoor unit 20 (20a, 20b) by piping. And the air conditioner 30 performs the air conditioning of object space by evaporating or condensing the refrigerant
  • the air conditioner 30 is embedded in a ceiling of a floor in a building BL. In the following description, it is assumed that a plurality of air conditioners 30 are installed on the same floor (same space).
  • the air conditioner 30 includes a control unit and a communication unit, and transmits, for example, thermal image data described below to the support device 10.
  • the air conditioner 30 further includes a thermal image sensor 31 (31a to 31d).
  • a thermal image sensor 31 for example, arranged infrared light receiving elements (eight infrared light receiving elements as an example) are movably supported by a movable (rotating) mechanism, and a thermal image in a predetermined scanning range is obtained. Detect data.
  • the thermal image sensor 31 is controlled by the control unit of the air conditioner 30, and scans the scanning range A from the upper side (ceiling) to the lower side (floor) as shown in FIG. Is detected.
  • each thermal image sensor 31 in the adjacent air conditioner 30 is installed so that the mutual scanning range partially overlaps.
  • the scanning range A1 of one thermal image sensor 31 and the scanning range A2 of the other thermal image sensor 31 are in a region indicated by hatching.
  • FIG. 2B shows a case where the air conditioners 30 are adjacent to each other in the horizontal direction (X direction) and the scanning ranges A1 and A2 partially overlap in the horizontal direction.
  • the vertical direction Y direction
  • the thermal image sensor 31 can detect thermal image data that captures such a heat source as a feature point.
  • the thermal image data is gradation image data representing temperature.
  • the gradation here is acquired in 256 steps (0 to 255), and the numerical value increases as the temperature increases.
  • the thermal image sensor 31 can detect thermal image data in which cold air or warm air blown from the air conditioner 30 is captured as a feature point. it can.
  • all the thermal image sensors 31 detect thermal image data at the same time (simultaneous period). For example, when detection of thermal image data is instructed from the support device 10 to any one of the air conditioners 30 (or the outdoor unit 20 that supervises), the timing adjustment is performed in each air conditioner 30. All the thermal image sensors 31 detect thermal image data at the same time.
  • the thermal image sensor 31 detects thermal image data, for example, if a person moves within the scanning range, the feature point (heat source) captured by the thermal image data also varies. Therefore, at the time of detection, the thermal image sensor 31 continuously detects thermal image data over a plurality of times (as an example, three times every 10 seconds) at a predetermined time interval. The time interval and the number of times can be appropriately changed according to the communication speed and the response speed of the thermal image sensor 31.
  • all the thermal image sensors 31 start detection at the same time and detect a certain number (a plurality) of thermal image data in time series.
  • FIG. 3 is a block diagram showing an example of the configuration of the support apparatus 10 according to the embodiment of the present invention.
  • the support apparatus 10 includes a communication unit 11, a data storage unit 12, and an arithmetic processing unit 13.
  • the communication unit 11 is a communication interface that can communicate with the outdoor unit 20 and the air conditioner 30 through the air conditioning communication network 90, for example.
  • the communication unit 11 is controlled by the arithmetic processing unit 13 and receives, for example, the above-described thermal image data from the air conditioner 30.
  • the data storage unit 12 plays a role as a so-called secondary storage device (auxiliary storage device), and is composed of a readable / writable nonvolatile semiconductor memory such as a flash memory, for example.
  • the data storage unit 12 stores, for example, thermal image data received from the air conditioner 30 by the communication unit 11.
  • the data storage unit 12 stores a program executed by the arithmetic processing unit 13.
  • the arithmetic processing unit 13 includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like, and controls the entire support apparatus 10.
  • the arithmetic processing unit 13 functionally includes a data collection unit 131, a data evaluation unit 132, a derivation unit 133, a command unit 134, and a generation unit 135. These functions are realized by the CPU appropriately executing various programs stored in the ROM or the data storage unit 12 using the RAM as a work memory.
  • the data collection unit 131 controls the communication unit 11 to collect the above-described thermal image data from the air conditioner 30. For example, the data collection unit 131 instructs one of the air conditioners 30 to detect thermal image data. Then, as described above, timing adjustment is performed in all the air conditioners 30, and thermal image data at the same time is detected by each thermal image sensor 31. At that time, each thermal image sensor 31 detects a certain number (a plurality) of thermal image data in time series. Therefore, the data collection unit 131 collects a plurality of (time-series) thermal image data from all the air conditioners 30.
  • the data evaluation unit 132 evaluates the thermal image data collected by the data collection unit 131. For example, the data evaluation unit 132 compares the collected time-series thermal image data in units of the air conditioner 30 and deletes the thermal image data if there is thermal image data in which the position of the feature point varies. For example, the data evaluation unit 132 compares time-series thermal image data for each pixel, and generates thermal image data using data having the smallest gradation value (low temperature) among them. In other words, in the time-series thermal image data, when the reflected heat source is moving (if there is a variation in feature points), by adopting the lowest temperature data in the same pixel between the thermal image data, The temperature of the background before and after the heat source is reflected can be acquired.
  • the same pixel between the thermal image data has almost the same value, so the data with the lowest temperature is used. By adopting it, it is possible to hold the value as it is.
  • the data evaluation unit 132 deletes the thermal image data. Therefore, only the thermal image data in which the heat source does not move (still state) remains.
  • the deriving unit 133 Based on the thermal image data collected from each air conditioner 30 (more specifically, the thermal image data after evaluation by the data evaluation unit 132), the deriving unit 133 performs relative processing of each air conditioner 30 as follows. The positional relationship is derived.
  • thermal image data T1 as shown in FIG. 4A is collected from the air conditioner 30a and the thermal image data T2 as shown in FIG. 4B is collected from the air conditioner 30b will be described as an example. To do. It is assumed that the thermal image data T1 and the thermal image data T2 include a feature point H indicating a heat source. Note that the feature point H has the same temperature distribution (a distribution whose values approximate) from the thermal image data T1 and T2, and usually has a certain range (width).
  • the deriving unit 133 determines whether or not the feature points H are matched (positions and shapes are matched) in the thermal image data T1 and the thermal image data T2, while corresponding sides (one side) partially overlap each other. judge. That is, a) the right side of the thermal image data T1 and the left side of the thermal image data T2 partially overlap, and b) the upper side of the thermal image data T1 and the lower side of the thermal image data T2 partially overlap. State c) State in which the left side of the thermal image data T1 and the right side of the thermal image data T2 partially overlap, d) Part of the lower side of the thermal image data T1 and upper side of the thermal image data T2 Whether or not the feature point H matches in the state is determined. If matching is determined during determination for all sides, the matching determination may be completed without performing determination for the remaining sides.
  • the deriving unit 133 derives that the air conditioner 30b and the air conditioner 30a are installed adjacent to each other in the horizontal direction (X direction). In more detail, the deriving unit 133 derives the relative positional relationship between the air conditioner 30b and the air conditioner 30a in consideration of information such as the angle of view of the thermal image sensor 31 and the estimated ceiling height. .
  • the deriving unit 133 tries matching for other thermal image data in the same manner, and finally derives a relative positional relationship for all the air conditioners 30. In this case, it is assumed that all the air conditioners 30 are installed on the same floor.
  • the derivation unit 133 cannot derive the positional relationship between the air conditioners 30 unless the feature points (feature points common to other thermal image data) are included in the thermal image data.
  • the deriving unit 133 cannot derive the positional relationship between the air conditioners 30. Therefore, as described below, the command unit 134 restarts the collection of thermal image data in a state where the feature points can be detected by operating the air conditioner 30.
  • the command unit 134 commands the air conditioner 30 to perform a cooling operation or a heating operation. That is, when the above-described deriving unit 133 cannot derive the relative positional relationship between the air conditioners 30, the command unit 134 operates, for example, at least one of the air conditioners 30. Specifically, the command unit 134 selects the air conditioners 30 at random so that 30% of the air conditioners 30 are targeted, and operates the air conditioners 30. When operating the air conditioner 30, the command unit 134 may switch and command the cooling operation and the heating operation according to the room temperature, for example.
  • the command unit 134 commands cooling operation in the summer (when the room temperature is high) and in the winter (room temperature If the temperature is low), command heating operation.
  • the command unit 134 selects at least one of the air conditioners 30 that could not be derived.
  • One air conditioner 30 may be operated.
  • the command unit 134 may select the air conditioners 30 at random so that 30% of the air conditioners 30 that cannot be derived are targeted, and operate those air conditioners 30. .
  • the generating unit 135 generates location information in accordance with the relative positional relationship of the air conditioners 30 derived by the deriving unit 133 described above.
  • the generation unit 135 includes information for identifying all the air conditioners 30 installed in the floor, and information indicating what positional relationship each air conditioner 30 is in the floor. Generate location information.
  • the generation unit 135 generates a layout image in which a figure (as an example, a symbol) indicating each air conditioner 30 is arranged in the floor plan data. Note that when there is no floor plan data in the old building BL, the generation unit 135 may automatically generate the plan view data based on the thermal image data collected from the air conditioner 30. For example, the generation unit 135 identifies the structure including the wall from the thermal image data collected by the data collection unit 131 in a state where all the air conditioners 30 are operated by the command unit 134, thereby generating a rough floor shape. Is generated. Specifically, on the floor, the boundary position between the floor surface and the wall surface can be detected in the thermal image data due to the difference in material between the floor surface and the wall surface.
  • generation part 135 produces
  • the generation unit 135 may correct the rough floor shape by utilizing that the wall surface is generally a plane or a right angle.
  • the generation unit 135 determines the plane from the thermal image data collected by operating only the specified air conditioner 30. Graphic data may be generated.
  • FIG. 5 is a flowchart showing an example of the derivation process according to the embodiment of the present invention.
  • the support device 10 collects thermal image data from each air conditioner 30 (step S101). That is, the data collection unit 131 instructs one of the air conditioners 30 to detect thermal image data. Then, as described above, timing adjustment is performed in all the air conditioners 30, and thermal image data at the same time is detected by each thermal image sensor 31. At that time, each thermal image sensor 31 detects a certain number (a plurality) of thermal image data in time series. Therefore, the data collection unit 131 collects a plurality of (time-series) thermal image data from all the air conditioners 30.
  • the support device 10 deletes the thermal image data including the moving heat source (step S102). That is, the data evaluation unit 132 compares the collected time-series thermal image data in units of the air conditioner 30 and deletes the thermal image data if there is thermal image data in which the position of the feature point varies. For example, the data evaluation unit 132 compares time-series thermal image data for each pixel, and generates thermal image data using data having the smallest gradation value (low temperature) among them. In other words, in the time-series thermal image data, when the reflected heat source is moving (if there is a variation in feature points), by adopting the lowest temperature data in the same pixel between the thermal image data, The temperature of the background before and after the heat source is reflected can be acquired.
  • the same pixel between the thermal image data has almost the same value, so the data with the lowest temperature is used. By adopting it, it is possible to hold the value as it is.
  • the support device 10 tries to derive a relative positional relationship (step S103). That is, the deriving unit 133 derives the relative positional relationship of the air conditioners 30 based on the thermal image data from which the thermal image data including the moving heat source is deleted. Specifically, as shown in FIGS. 4A to 4C described above, the feature points H match in the thermal image data T1 and the thermal image data T2 while the corresponding sides (one side) partially overlap each other. Determine whether or not. The deriving unit 133 derives the relative positional relationship between the air conditioners 30 in consideration of information such as the angle of view of the thermal image sensor 31 and the estimated ceiling height.
  • the support device 10 determines whether or not all of them can be derived (step S104). That is, the deriving unit 133 determines whether or not the relative positional relationship has been derived for all the air conditioners 30.
  • the support device 10 instructs the air conditioner 30 selected at random (step S105). That is, for example, the command unit 134 selects the air conditioners 30 at random so that 30% of the air conditioners 30 as a target are targeted, and operates the air conditioners 30.
  • the command unit 134 may switch and command the cooling operation and the heating operation according to the room temperature, for example. For example, in order to blow out cool air or warm air having a temperature difference from the current room temperature by operating the air conditioner 30, the command unit 134 commands cooling operation in the summer (when the room temperature is high) and in the winter (room temperature If the temperature is low), command heating operation.
  • the support device 10 returns the process to step S101 described above.
  • the support device 10 when it is determined that all can be derived (step S104; Yes), the support device 10 generates location information based on the derived positional relationship (step S106). That is, the generation unit 135 generates location information according to the relative positional relationship between the air conditioners 30 derived in step 103. For example, the generation unit 135 includes information for identifying all the air conditioners 30 installed in the floor, and information indicating what positional relationship each air conditioner 30 is in the floor. Generate location information. Further, the generation unit 135 may generate a layout image in which a figure (as an example, a symbol) indicating each air conditioner 30 is arranged in the floor plan data.
  • the generation unit 135 may automatically generate the plan view data based on the thermal image data collected from the air conditioner 30. For example, the generation unit 135 identifies the structure including the wall from the thermal image data collected by the data collection unit 131 in a state where all the air conditioners 30 are operated by the command unit 134, thereby generating a rough floor shape. Is generated. Specifically, on the floor, the boundary position between the floor surface and the wall surface can be detected in the thermal image data due to the difference in material between the floor surface and the wall surface.
  • generation part 135 produces
  • the generation unit 135 may correct the rough floor shape by utilizing that the wall surface is generally a plane or a right angle.
  • the generation unit 135 determines the plane from the thermal image data collected by operating only the specified air conditioner 30. Graphic data may be generated.
  • location information is generated by an operator manually entering the installation positions of all the air conditioners 30.
  • Such a method for generating location information with manual work has a high work cost and may cause an input error.
  • the relative positional relationship between the air conditioners 30 is automatically acquired by such a derivation process, thereby greatly reducing the work cost at the time of introduction. Can be reduced.
  • the use of the thermal image sensor 31 that the air conditioner 30 already has (used for control) eliminates the need to add a dedicated device.
  • the relative positional relationship between the 30 can be automatically acquired.
  • the generation unit 135 can automatically generate plan view data indicating a floor outline.
  • the building BL is old and the plan view data at the time of construction is used. When there is no leftover, it is possible to reduce the trouble of manually creating the plan view data again.
  • the command unit 134 selects the air conditioner 30 selected at random. Make it work. That is, by operating some of the air conditioners 30, the temperature distribution is intentionally generated and the feature points can be detected, and the process is resumed from the collection of the thermal image data. For this reason, the relative positional relationship of each air conditioner 30 can be correctly derived
  • the data evaluation unit 132 compares the collected time-series thermal image data for each air conditioner 30 unit, and the thermal image data in which the position of the feature point varies is obtained. If there is, the thermal image data is deleted. For example, even when the worker moves in the floor during the execution of the derivation process, the data evaluation unit 132 deletes the thermal image data of the moving heat source. Therefore, since the deriving unit 133 derives the relative positional relationship of each air conditioner 30 using only the thermal image data of the heat source that does not move, the accuracy can be improved.
  • the support device 10 can appropriately derive the relative positional relationship among the plurality of air conditioners 30.
  • FIG. 6 is a block diagram showing an example of the configuration of the support device 10 according to another embodiment of the present invention. Unlike the support device 10 in FIG. 3, the calculation processing unit 13 further includes a group creation unit 136 in the support device 10 in FIG. 6.
  • the group creation unit 136 groups the air conditioners 30 installed on the same floor (same space) according to the positional relationship derived by the deriving unit 133. That is, the group creation unit 136 groups the air conditioners 30 together in units of air conditioners 30 for which the positional relationship has been derived. At that time, the group creation unit 136 may give identification information unique to the space.
  • generation part 135 has arrange
  • a layout image (for example, a layout image of the entire building BL) is generated.
  • the support device 10 can appropriately derive the relative positional relationship between the air conditioners 30.
  • the data evaluation unit 132 adopts the minimum value of the gradation value for each pixel in order to delete the thermal image data in which the heat source moves is described.
  • the thermal image data to which the heat source moves may be detected and deleted by a different method such as movement detection by.
  • indication part 134 demonstrated the case where the air conditioner 30 was selected and operated at random, in addition to this, the order of the identification information (ID number as an example) of the air conditioner 30
  • the air conditioner 30 may be selected and operated by another algorithm (operating one by one in ascending order or descending order).
  • the program executed by the arithmetic processing unit 13 is a CD-ROM (Compact Disc Read Only Memory), DVD (Digital Versatile Disc), MO (Magneto-Optical Disk), USB memory, memory card. It is also possible to store and distribute in a computer-readable recording medium such as the above. Then, by installing such a program on a specific or general-purpose computer, it is possible to cause the computer to function as the support apparatus 10 in the above-described embodiment.
  • the above program may be stored in a disk device included in a server device on a communication network such as the Internet, and may be downloaded onto a computer by being superimposed on a carrier wave, for example.
  • the above-described processing can also be achieved by starting and executing a program while transferring it via a communication network.
  • the above-described processing can also be achieved by executing all or part of the program on the server device and executing the program while the computer transmits and receives information regarding the processing via the communication network.
  • the present invention can be suitably employed in a support device, an air conditioning system, and a derivation method that can appropriately derive a relative positional relationship among a plurality of air conditioners.
  • 1 air conditioning system 10 support device, 11 communication unit, 12 data storage unit, 13 arithmetic processing unit, 131 data collection unit, 132 data evaluation unit, 133 derivation unit, 134 command unit, 135 generation unit, 136 group creation unit, 20 (20a, 20b) Outdoor unit, 30 (30a-30d) Air conditioner, 31 (31a-31d) Thermal image sensor, 90 Air conditioning communication network

Abstract

Provided is an assist device (10), wherein a data collection unit (131) collects thermal image data from each air conditioner. A data evaluation unit (132) compares collected time-series thermal image data for each air conditioner, and if there is thermal image data in which a feature point position varies, that thermal image data is deleted. A derivation unit (133) derives the relative positional relationship of the air conditioners on the basis of common feature points contained in this type of thermal image data. Note that when the derivation unit (133) cannot derive the relative positional relationships of the air conditioners, a command unit (134) selects and operates an air conditioner at random. In this state, the assist device (10) resumes from the collection of thermal image data. A generation unit (135) generates location information according to the derived relative positional relationships of the air conditioners.

Description

支援装置、空調システム、および、導出方法Support device, air conditioning system, and derivation method
 本発明は、支援装置、空調システム、および、導出方法に関する。 The present invention relates to a support device, an air conditioning system, and a derivation method.
 従来より、ビルに代表される建物内には、空調システム(空気調和システム)が導入されている。このような空調システムでは、例えば、各フロアの天井に、複数の空調機(室内機)が埋め込まれて設置されており、フロア単位やビル全体における空調機を連携制御することが可能となっている。 Conventionally, air conditioning systems (air conditioning systems) have been introduced into buildings such as buildings. In such an air conditioning system, for example, a plurality of air conditioners (indoor units) are embedded in the ceiling of each floor, and it becomes possible to control the air conditioners in units of floors or in the entire building in a coordinated manner. Yes.
 このような連携制御は、各空調機についての相対的な位置関係を示すロケーション情報を利用して行われる。例えば、フロア単位に空調機の連携制御を行う場合では、そのフロア内に設置されている全ての空調機を識別する情報だけでなく、それらの空調機がフロア内においてどのような位置関係となっているのかを示す情報も必要となる。そのため、これらの情報を含んだロケーション情報が、例えば、空調システムの導入時(施工時)において、作業者によって作成されることになる。なお、ロケーション情報は、他にも、例えば、管理者向けのフロアマップ(一例として、各空調機のレイアウトと各空調機の運転状況とを示すフロアマップ)の表示時にも利用される。 Such cooperative control is performed using location information indicating the relative positional relationship of each air conditioner. For example, when cooperative control of air conditioners is performed in units of floors, not only information for identifying all air conditioners installed in the floor, but also the positional relationship between the air conditioners in the floor. Information that indicates whether or not Therefore, location information including these pieces of information is created by an operator when the air conditioning system is introduced (at the time of construction), for example. The location information is also used when, for example, displaying a floor map for an administrator (for example, a floor map indicating the layout of each air conditioner and the operating status of each air conditioner).
 このようなロケーション情報は、例えば、フロアの平面図を基に、各空調機の配置を手作業でそれぞれ入力することにより作成される。そのため、ロケーション情報を作成する作業には、非常に手間がかかり、その上、入力ミスが発生することもあった。また、古い建物では、平面図が残っていない場合もあり、作業負担をより大きくしていた。 Such location information is created, for example, by manually inputting the arrangement of each air conditioner based on a floor plan. For this reason, the work of creating location information is very time-consuming, and input errors may occur. In addition, in an old building, there is a case where a plan view does not remain, which increases the work load.
 なお、特許文献1,2には、部屋に設置された空調機について、その設置位置を判定する技術が開示されている。 Note that Patent Documents 1 and 2 disclose a technique for determining an installation position of an air conditioner installed in a room.
特開2010-014350号公報JP 2010-014350 A 特開2015-001313号公報Japanese Patent Laying-Open No. 2015-001313
 しかしながら、特許文献1,2では、そもそも、一般家庭で使用される壁掛けタイプの空調機について、壁や床のような構造物を基準とした設置位置を判定しているだけである。そのため、特許文献1,2の技術は、同一空間に複数の空調機が設置される空調システムにおいて、あまり有用ではない。つまり、特許文献1,2の技術は、単独の空調機について設置位置を判定するものであり、各空調機の相対的な位置関係について、何ら判定することができない。また、一定以上の大きさのフロアでは、一部の空調機が、壁から離れて設置される(つまり、フロア天井の中央付近に設置される)。これら壁から離れて設置された空調機は、特許文献1,2の技術を用いても、設置位置を判定することができない。 However, in Patent Documents 1 and 2, in the first place, for a wall-mounted air conditioner used in a general home, only the installation position based on a structure such as a wall or a floor is determined. Therefore, the techniques of Patent Documents 1 and 2 are not very useful in an air conditioning system in which a plurality of air conditioners are installed in the same space. That is, the techniques of Patent Documents 1 and 2 determine the installation position of a single air conditioner, and cannot determine the relative positional relationship of each air conditioner. On the floor of a certain size or more, some air conditioners are installed away from the wall (that is, installed near the center of the floor ceiling). An air conditioner installed away from these walls cannot determine the installation position even using the techniques of Patent Documents 1 and 2.
 そのため、同一空間に複数の空調機が設置される空調システムにおいて、人手を介さずに、各空調機の相対的な位置関係を導出する技術が求められていた。 Therefore, in an air conditioning system in which a plurality of air conditioners are installed in the same space, a technique for deriving the relative positional relationship of each air conditioner without human intervention has been demanded.
 本発明は、上述のような課題を解決するためになされたものであり、複数の空調機の相対的な位置関係を適切に導出することのできる支援装置、空調システム、および、導出方法を提供することを目的とする。 The present invention has been made to solve the above-described problems, and provides a support device, an air conditioning system, and a derivation method that can appropriately derive the relative positional relationship between a plurality of air conditioners. The purpose is to do.
 上記目的を達成するため、本発明に係る支援装置は、
 同一空間に設置された第1の空調機及び第2の空調機から、当該第1の空調機が検出した第1の熱画像データ及び当該第2の空調機が検出した第2の熱画像データを収集するデータ収集部と、
 前記第1及び第2の熱画像データに含まれる共通の特徴点に基づいて、前記第1及び第2の空調機の相対的な位置関係を導出する導出部と、
 を備える。
In order to achieve the above object, the support device according to the present invention provides:
First thermal image data detected by the first air conditioner and second thermal image data detected by the second air conditioner from the first air conditioner and the second air conditioner installed in the same space. A data collection unit that collects
A derivation unit that derives a relative positional relationship between the first and second air conditioners based on the common feature points included in the first and second thermal image data;
Is provided.
 本発明に係る支援装置では、複数の空調機(つまり、第1及び第2の空調機)から収集した複数の熱画像データ(つまり、第1及び第2の熱画像データ)を活用し、複数の熱画像データに含まれる共通の特徴点に基づいて、各空調機の相対的な位置関係を導出する。この結果、人手を介さずに、各空調機の相対的な位置関係を適切に導出することができる。 In the support device according to the present invention, a plurality of thermal image data (that is, first and second thermal image data) collected from a plurality of air conditioners (that is, the first and second air conditioners) are used, and a plurality of thermal image data are collected. The relative positional relationship of each air conditioner is derived based on the common feature points included in the thermal image data. As a result, it is possible to appropriately derive the relative positional relationship between the air conditioners without manual intervention.
本発明の実施形態に係る空調システムの全体構成の一例を示す模式図The schematic diagram which shows an example of the whole structure of the air conditioning system which concerns on embodiment of this invention 空調機が有する熱画像センサの走査範囲を説明するための模式図Schematic diagram for explaining the scanning range of the thermal image sensor of the air conditioner 隣り合う空調機において、各熱画像センサの走査範囲が一部重複することを説明するための模式図Schematic diagram for explaining that the scanning ranges of the thermal image sensors partially overlap in adjacent air conditioners 本発明の実施形態に係る支援装置の構成の一例を示すブロック図The block diagram which shows an example of a structure of the assistance apparatus which concerns on embodiment of this invention. 熱画像データの一例を示す模式図Schematic diagram showing an example of thermal image data 他の熱画像データの一例を示す模式図Schematic diagram showing an example of other thermal image data 2つの熱画像データの繋がりを説明するための模式図Schematic diagram for explaining the connection between two thermal image data 本発明の実施形態に係る導出処理を説明するためのフローチャートThe flowchart for demonstrating the derivation | leading-out process which concerns on embodiment of this invention. 本発明の他の実施形態に係る支援装置の構成の一例を示すブロック図The block diagram which shows an example of a structure of the assistance apparatus which concerns on other embodiment of this invention.
(実施形態1)
 以下、本発明の実施形態について図面を参照して詳細に説明する。なお、本明細書で使用する各図においては、共通する要素に同一の符号を付けるものとする。また、本発明は、以下の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々に変形することが可能である。
(Embodiment 1)
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings used in this specification, common elements are denoted by the same reference numerals. Further, the present invention is not limited to the following embodiments, and various modifications can be made without departing from the spirit of the present invention.
 また、「空調機」(空気調和機)とは、通常、「室外機」および「室内機」の両方を指し示す用語であるが、本発明の請求の範囲における記載と対応させるために、以下では、「室内機」を「空調機」と記して説明する。 In addition, “air conditioner” (air conditioner) is a term that generally indicates both “outdoor unit” and “indoor unit”, but in order to correspond to the description in the claims of the present invention, The “indoor unit” will be described as “air conditioner”.
 図1は、本発明の実施形態に係る空調システム1の全体構成の一例を示す模式図である。この空調システム1は、支援装置10と、室外機20(20a,20b)と、空調機30(30a~30d)とが、空調通信ネットワーク90を介して通信可能に接続されている。なお、図1では、室外機20の数が2台、そして、空調機30の数が4台の場合を示しているが、室外機20および空調機30の数は、空調システム1を導入する建物BLにおけるフロア数やフロア面積に応じて、適宜変更可能である。 FIG. 1 is a schematic diagram showing an example of the overall configuration of an air conditioning system 1 according to an embodiment of the present invention. In the air conditioning system 1, the support device 10, the outdoor unit 20 (20 a, 20 b), and the air conditioner 30 (30 a to 30 d) are communicably connected via an air conditioning communication network 90. FIG. 1 shows a case where the number of outdoor units 20 is two and the number of air conditioners 30 is four. However, the number of outdoor units 20 and air conditioners 30 is that of introducing the air conditioning system 1. It can be appropriately changed according to the number of floors and floor area in the building BL.
 支援装置10は、空調通信ネットワーク90を介して、室外機20や空調機30を適宜制御し、建物BL内(フロア内)に設置されている各空調機30における相対的な位置関係を導出する。なお、支援装置10の詳細については、後述する。 The support device 10 appropriately controls the outdoor unit 20 and the air conditioner 30 via the air conditioning communication network 90, and derives a relative positional relationship among the air conditioners 30 installed in the building BL (in the floor). . Details of the support device 10 will be described later.
 室外機20(20a,20b)は、例えば、圧縮機および熱源側熱交換器を有しており、配管によって空調機30(30a~30d)と接続されている。そして、室外機20は、この配管を通じて空調機30との間で冷媒を循環させる。なお、室外機20は、建物BLの屋外(一例として、屋上)に設置されている。また、室外機20は、制御ユニットおよび通信ユニットを有しており、例えば、空調機30との間で空調に必要な制御情報を送受信する。 The outdoor unit 20 (20a, 20b) has, for example, a compressor and a heat source side heat exchanger, and is connected to the air conditioner 30 (30a to 30d) by piping. And the outdoor unit 20 circulates a refrigerant | coolant between the air conditioners 30 through this piping. The outdoor unit 20 is installed outdoors (as an example, on the roof) of the building BL. The outdoor unit 20 includes a control unit and a communication unit, and transmits / receives control information necessary for air conditioning to / from the air conditioner 30, for example.
 空調機30(30a~30d)は、いわゆる室内機であり、例えば、膨張弁および負荷側熱交換器を有しており、配管によって室外機20(20a,20b)と接続されている。そして、空調機30は、この配管を通じて室外機20から送られた冷媒を、負荷側熱交換器において蒸発または凝縮させることにより、対象空間の空気調和を行う。この空調機30は、例えば、建物BL内におけるフロアの天井に埋め込まれて設置されている。なお、同一フロア(同一空間)には、複数の空調機30が設置されているものとして説明する。また、空調機30は、制御ユニットおよび通信ユニットを有しており、例えば、以下に説明する熱画像データを支援装置10に送信する。 The air conditioner 30 (30a to 30d) is a so-called indoor unit, which has, for example, an expansion valve and a load side heat exchanger, and is connected to the outdoor unit 20 (20a, 20b) by piping. And the air conditioner 30 performs the air conditioning of object space by evaporating or condensing the refrigerant | coolant sent from the outdoor unit 20 through this piping in a load side heat exchanger. For example, the air conditioner 30 is embedded in a ceiling of a floor in a building BL. In the following description, it is assumed that a plurality of air conditioners 30 are installed on the same floor (same space). The air conditioner 30 includes a control unit and a communication unit, and transmits, for example, thermal image data described below to the support device 10.
 また、空調機30は、熱画像センサ31(31a~31d)を、更に有している。この熱画像センサ31は、例えば、配列された赤外線受光素子(一例として、8つの赤外線受光素子)が可動(回転)機構によって、可動自在に支持されており、予め定められた走査範囲の熱画像データを検出する。具体的に、熱画像センサ31は、空調機30の制御ユニットに制御され、図2Aに示すように、上方(天井)から下方(床)に向けた走査範囲Aを走査して、熱画像データを検出する。 The air conditioner 30 further includes a thermal image sensor 31 (31a to 31d). In this thermal image sensor 31, for example, arranged infrared light receiving elements (eight infrared light receiving elements as an example) are movably supported by a movable (rotating) mechanism, and a thermal image in a predetermined scanning range is obtained. Detect data. Specifically, the thermal image sensor 31 is controlled by the control unit of the air conditioner 30, and scans the scanning range A from the upper side (ceiling) to the lower side (floor) as shown in FIG. Is detected.
 なお、隣り合う空調機30における各熱画像センサ31は、互いの走査範囲が一部重複するように設置されている。具体的には、図2Bに示すように、隣り合う空調機30において、一方の熱画像センサ31の走査範囲A1と、他方の熱画像センサ31の走査範囲A2とは、斜線部で示す領域において重複している。なお、図2Bでは、空調機30が横方向(X方向)に隣り合っており、互いの走査範囲A1,A2が、横方向において、一部重複する場合を示しているが、空調機30が縦方向(Y方向)に隣り合っていれば、同様に、縦方向においても、互いの走査範囲が一部重複することになる。 In addition, each thermal image sensor 31 in the adjacent air conditioner 30 is installed so that the mutual scanning range partially overlaps. Specifically, as shown in FIG. 2B, in the adjacent air conditioners 30, the scanning range A1 of one thermal image sensor 31 and the scanning range A2 of the other thermal image sensor 31 are in a region indicated by hatching. Duplicate. FIG. 2B shows a case where the air conditioners 30 are adjacent to each other in the horizontal direction (X direction) and the scanning ranges A1 and A2 partially overlap in the horizontal direction. Similarly, if they are adjacent to each other in the vertical direction (Y direction), the scanning ranges partially overlap in the vertical direction as well.
 そして、このような走査範囲内に、例えば、人やパソコンといった熱源が存在すると、熱画像センサ31は、そのような熱源を特徴点として捉えた熱画像データを検出することができる。具体的に、熱画像データは、温度を表す階調画像データである。ここでの階調は、一例として、256段階(0~255)で取得され、温度が高いほど数値が大きくなる。また、後述するように、空調機30が冷房運転や暖房運転した場合に、熱画像センサ31は、空調機30から吹き出される冷気や暖気を特徴点として捉えた熱画像データを検出することができる。 If a heat source such as a person or a personal computer is present in such a scanning range, the thermal image sensor 31 can detect thermal image data that captures such a heat source as a feature point. Specifically, the thermal image data is gradation image data representing temperature. As an example, the gradation here is acquired in 256 steps (0 to 255), and the numerical value increases as the temperature increases. In addition, as will be described later, when the air conditioner 30 performs a cooling operation or a heating operation, the thermal image sensor 31 can detect thermal image data in which cold air or warm air blown from the air conditioner 30 is captured as a feature point. it can.
 なお、全ての熱画像センサ31は、それぞれ同時刻(同時期)に、熱画像データを検出するようになっている。例えば、何れかの空調機30(又は、統括する室外機20でもよい)に対して、支援装置10から熱画像データの検出が指示されると、各空調機30にてタイミングの調整が行われ、全ての熱画像センサ31が同時刻で熱画像データを検出する。 In addition, all the thermal image sensors 31 detect thermal image data at the same time (simultaneous period). For example, when detection of thermal image data is instructed from the support device 10 to any one of the air conditioners 30 (or the outdoor unit 20 that supervises), the timing adjustment is performed in each air conditioner 30. All the thermal image sensors 31 detect thermal image data at the same time.
 また、熱画像センサ31が熱画像データを検出する際に、例えば、人が走査範囲内を移動してしまうと、熱画像データに捉えられる特徴点(熱源)も変動することになる。そのため、検出時に、熱画像センサ31は、予め定められた時間間隔で複数回(一例として、10秒毎に3回)に亘り、熱画像データを連続して検出する。なお、時間間隔や回数は、通信速度や熱画像センサ31の応答スピードに応じて、適宜変更可能である。 Also, when the thermal image sensor 31 detects thermal image data, for example, if a person moves within the scanning range, the feature point (heat source) captured by the thermal image data also varies. Therefore, at the time of detection, the thermal image sensor 31 continuously detects thermal image data over a plurality of times (as an example, three times every 10 seconds) at a predetermined time interval. The time interval and the number of times can be appropriately changed according to the communication speed and the response speed of the thermal image sensor 31.
 このように、全ての熱画像センサ31は、同時刻で検出を開始すると共に、一定数(複数)の熱画像データを時系列に検出する。 As described above, all the thermal image sensors 31 start detection at the same time and detect a certain number (a plurality) of thermal image data in time series.
 次に、支援装置10の詳細について、図3を参照して説明する。図3は、本発明の実施形態に係る支援装置10の構成の一例を示すブロック図である。図示するように、支援装置10は、通信部11と、データ記憶部12と、演算処理部13とを備える。 Next, details of the support device 10 will be described with reference to FIG. FIG. 3 is a block diagram showing an example of the configuration of the support apparatus 10 according to the embodiment of the present invention. As illustrated, the support apparatus 10 includes a communication unit 11, a data storage unit 12, and an arithmetic processing unit 13.
 通信部11は、例えば、空調通信ネットワーク90を通じて、室外機20や空調機30と通信可能な通信インタフェースである。通信部11は、演算処理部13に制御され、例えば、空調機30から上述した熱画像データを受信する。 The communication unit 11 is a communication interface that can communicate with the outdoor unit 20 and the air conditioner 30 through the air conditioning communication network 90, for example. The communication unit 11 is controlled by the arithmetic processing unit 13 and receives, for example, the above-described thermal image data from the air conditioner 30.
 データ記憶部12は、いわゆる二次記憶装置(補助記憶装置)としての役割を担い、例えば、フラッシュメモリといった読み書き可能な不揮発性の半導体メモリで構成される。データ記憶部12は、例えば、通信部11が空調機30から受信した熱画像データを記憶する。この他にもデータ記憶部12は、演算処理部13が実行するプログラムを記憶する。 The data storage unit 12 plays a role as a so-called secondary storage device (auxiliary storage device), and is composed of a readable / writable nonvolatile semiconductor memory such as a flash memory, for example. The data storage unit 12 stores, for example, thermal image data received from the air conditioner 30 by the communication unit 11. In addition, the data storage unit 12 stores a program executed by the arithmetic processing unit 13.
 演算処理部13は、CPU(Central Processing Unit),ROM(Read Only Memory),RAM(Random Access Memory)などを備え、支援装置10全体を制御する。演算処理部13は、機能的には、データ収集部131と、データ評価部132と、導出部133と、指令部134と、生成部135とを備える。これらの機能は、CPUが、RAMをワークメモリとして用い、ROMやデータ記憶部12に記憶されている各種プログラムを適宜実行することにより実現される。 The arithmetic processing unit 13 includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like, and controls the entire support apparatus 10. The arithmetic processing unit 13 functionally includes a data collection unit 131, a data evaluation unit 132, a derivation unit 133, a command unit 134, and a generation unit 135. These functions are realized by the CPU appropriately executing various programs stored in the ROM or the data storage unit 12 using the RAM as a work memory.
 データ収集部131は、通信部11を制御して、上述した熱画像データを空調機30から収集する。例えば、データ収集部131は、何れかの空調機30に対して、熱画像データの検出を指示する。すると、上述したように、全ての空調機30にてタイミングの調整が行われ、各熱画像センサ31により同時刻の熱画像データが検出される。その際、各熱画像センサ31は、一定数(複数)の熱画像データを時系列に検出する。そのため、データ収集部131は、全ての空調機30から複数の(時系列の)熱画像データをそれぞれ収集する。 The data collection unit 131 controls the communication unit 11 to collect the above-described thermal image data from the air conditioner 30. For example, the data collection unit 131 instructs one of the air conditioners 30 to detect thermal image data. Then, as described above, timing adjustment is performed in all the air conditioners 30, and thermal image data at the same time is detected by each thermal image sensor 31. At that time, each thermal image sensor 31 detects a certain number (a plurality) of thermal image data in time series. Therefore, the data collection unit 131 collects a plurality of (time-series) thermal image data from all the air conditioners 30.
 データ評価部132は、データ収集部131が収集した熱画像データを評価する。例えば、データ評価部132は、空調機30単位に、収集した時系列の熱画像データを比較して、特徴点の位置が変動する熱画像データがあれば、その熱画像データを削除する。例えば、データ評価部132は、時系列の熱画像データをピクセルごとに比較し、その中で、最も階調値が小さい(温度が低い)データを採用した熱画像データを生成する。つまり、時系列の熱画像データにおいて、映り込んだ熱源が移動している場合(特徴点の変動がある場合)、熱画像データ間の同一ピクセルにおいて、最も温度が低いデータを採用することにより、その熱源が映り込む前後の背景の温度を取得することができる。また、時系列の熱画像データにおいて、熱源が静止している場合(特徴点の変動がない場合)、熱画像データ間の同一ピクセルは、ほぼ同一の値となるため、最も温度が低いデータを採用することにより、そのままの値を保持することができる。 The data evaluation unit 132 evaluates the thermal image data collected by the data collection unit 131. For example, the data evaluation unit 132 compares the collected time-series thermal image data in units of the air conditioner 30 and deletes the thermal image data if there is thermal image data in which the position of the feature point varies. For example, the data evaluation unit 132 compares time-series thermal image data for each pixel, and generates thermal image data using data having the smallest gradation value (low temperature) among them. In other words, in the time-series thermal image data, when the reflected heat source is moving (if there is a variation in feature points), by adopting the lowest temperature data in the same pixel between the thermal image data, The temperature of the background before and after the heat source is reflected can be acquired. Also, in the time-series thermal image data, when the heat source is stationary (when there is no feature point variation), the same pixel between the thermal image data has almost the same value, so the data with the lowest temperature is used. By adopting it, it is possible to hold the value as it is.
 このように、空調機30(熱画像センサ31)が検出した時系列の熱画像データに特徴点の変動があれば、データ評価部132によって、その熱画像データが削除される。そのため、熱源に動きのない(静止状態の)熱画像データだけが残ることになる。 In this way, if there is a variation in feature points in the time-series thermal image data detected by the air conditioner 30 (thermal image sensor 31), the data evaluation unit 132 deletes the thermal image data. Therefore, only the thermal image data in which the heat source does not move (still state) remains.
 導出部133は、各空調機30から収集した熱画像データ(より詳細には、データ評価部132による評価後の熱画像データ)に基づいて、以下のように、各空調機30の相対的な位置関係を導出する。 Based on the thermal image data collected from each air conditioner 30 (more specifically, the thermal image data after evaluation by the data evaluation unit 132), the deriving unit 133 performs relative processing of each air conditioner 30 as follows. The positional relationship is derived.
 具体的に、空調機30aから図4Aに示すような熱画像データT1を収集しており、また、空調機30bから図4Bに示すような熱画像データT2を収集している場合を一例として説明する。なお、熱画像データT1及び熱画像データT2には、熱源を示す特徴点Hが含まれているものとする。なお、特徴点Hは、熱画像データT1,T2から同じ温度分布(値が近似する分布)であり、通常、ある程度の範囲(幅)となる。 Specifically, the case where thermal image data T1 as shown in FIG. 4A is collected from the air conditioner 30a and the thermal image data T2 as shown in FIG. 4B is collected from the air conditioner 30b will be described as an example. To do. It is assumed that the thermal image data T1 and the thermal image data T2 include a feature point H indicating a heat source. Note that the feature point H has the same temperature distribution (a distribution whose values approximate) from the thermal image data T1 and T2, and usually has a certain range (width).
 導出部133は、熱画像データT1と熱画像データT2とで、対応する辺(一辺)同士が一部重なるようにしながら、特徴点Hがマッチングするか(位置や形が一致するか)どうかを判定する。つまり、a)熱画像データT1の右辺と熱画像データT2の左辺とが一部重なるようにした状態、b)熱画像データT1の上辺と熱画像データT2の下辺とが一部重なるようにした状態、c)熱画像データT1の左辺と熱画像データT2の右辺とが一部重なるようにした状態、d)熱画像データT1の下辺と熱画像データT2の上辺とが一部重なるようにした状態、において、特徴点Hがマッチングするかどうかをそれぞれ判定する。なお、全ての辺について判定する途中で、マッチングすることが判定された場合には、残りの辺についての判定を行わずに、マッチング判定を終えるようにしてもよい。 The deriving unit 133 determines whether or not the feature points H are matched (positions and shapes are matched) in the thermal image data T1 and the thermal image data T2, while corresponding sides (one side) partially overlap each other. judge. That is, a) the right side of the thermal image data T1 and the left side of the thermal image data T2 partially overlap, and b) the upper side of the thermal image data T1 and the lower side of the thermal image data T2 partially overlap. State c) State in which the left side of the thermal image data T1 and the right side of the thermal image data T2 partially overlap, d) Part of the lower side of the thermal image data T1 and upper side of the thermal image data T2 Whether or not the feature point H matches in the state is determined. If matching is determined during determination for all sides, the matching determination may be completed without performing determination for the remaining sides.
 このようなマッチング判定にて、例えば、図4Cに示す状態(熱画像データT1の左辺と熱画像データT2の右辺とが一部重なるようにした状態)において、特徴点Hがマッチングすることが判定された場合、導出部133は、空調機30bと空調機30aとが横方向(X方向)に隣り合って設置されていることを導出する。なお、より詳細には、導出部133は、熱画像センサ31の画角、及び、推定天井高さといった情報も加味して、空調機30bと空調機30aとの相対的な位置関係を導出する。 In such a matching determination, for example, it is determined that the feature point H matches in the state shown in FIG. 4C (a state in which the left side of the thermal image data T1 and the right side of the thermal image data T2 partially overlap). When it is done, the deriving unit 133 derives that the air conditioner 30b and the air conditioner 30a are installed adjacent to each other in the horizontal direction (X direction). In more detail, the deriving unit 133 derives the relative positional relationship between the air conditioner 30b and the air conditioner 30a in consideration of information such as the angle of view of the thermal image sensor 31 and the estimated ceiling height. .
 導出部133は、他の熱画像データについても同様にマッチングを試みて、最終的に、全ての空調機30について相対的な位置関係を導出する。なお、この場合、全ての空調機30が同一フロアに設置されているものとする。 The deriving unit 133 tries matching for other thermal image data in the same manner, and finally derives a relative positional relationship for all the air conditioners 30. In this case, it is assumed that all the air conditioners 30 are installed on the same floor.
 なお、このようなマッチングを試みても、位置関係を導出できない(位置関係を十分な精度で導出できない)場合も起こり得る。例えば、熱画像データに特徴点(他の熱画像データと共通する特徴点)が含まれていないと、導出部133は、空調機30間の位置関係を導出できない。具体的に、新築の建物BLに空調システム1を導入する際には、フロア内に人やパソコンといった熱源がない(極端に少ない)状況が生じ得る。この場合、熱画像データに特徴点が含まれないため、導出部133は、空調機30間の位置関係を導出できない。そこで、以下に述べるように、指令部134が、空調機30を稼働させることにより、特徴点が検出できるようにした状態で、熱画像データの収集から再開する。 Note that even if such matching is attempted, there may be a case where the positional relationship cannot be derived (the positional relationship cannot be derived with sufficient accuracy). For example, the derivation unit 133 cannot derive the positional relationship between the air conditioners 30 unless the feature points (feature points common to other thermal image data) are included in the thermal image data. Specifically, when the air conditioning system 1 is introduced into a newly-built building BL, there may be a situation where there are no (or extremely few) heat sources such as people or personal computers on the floor. In this case, since the feature point is not included in the thermal image data, the deriving unit 133 cannot derive the positional relationship between the air conditioners 30. Therefore, as described below, the command unit 134 restarts the collection of thermal image data in a state where the feature points can be detected by operating the air conditioner 30.
 指令部134は、空調機30に冷房運転又は暖房運転を指令する。つまり、上述した導出部133にて、各空調機30の相対的な位置関係を導出することができなかった場合に、指令部134は、例えば、少なくとも何れか1つの空調機30を稼働させる。具体的に、指令部134は、全体の30%の空調機30が対象となるように、ランダムに空調機30を選択し、それらの空調機30を稼働させる。なお、空調機30を稼働させる際に、指令部134は、例えば、室内温度に応じて、冷房運転及び暖房運転を切り換えて指令するようにしてもよい。例えば、空調機30の稼働によって現在の室温との温度差のある冷気や暖気を吹き出すために、指令部134は、夏期において(室温が高温の場合)、冷房運転を指令し、冬期において(室温が低温の場合)、暖房運転を指令する。 The command unit 134 commands the air conditioner 30 to perform a cooling operation or a heating operation. That is, when the above-described deriving unit 133 cannot derive the relative positional relationship between the air conditioners 30, the command unit 134 operates, for example, at least one of the air conditioners 30. Specifically, the command unit 134 selects the air conditioners 30 at random so that 30% of the air conditioners 30 are targeted, and operates the air conditioners 30. When operating the air conditioner 30, the command unit 134 may switch and command the cooling operation and the heating operation according to the room temperature, for example. For example, in order to blow out cool air or warm air having a temperature difference from the current room temperature by operating the air conditioner 30, the command unit 134 commands cooling operation in the summer (when the room temperature is high) and in the winter (room temperature If the temperature is low), command heating operation.
 また、導出部133にて、一部の空調機30についてだけ相対的な位置関係を導出することができなかった場合に、指令部134は、導出できなかった空調機30の中から少なくとも何れか1つの空調機30を稼働させるようにしてもよい。例えば、指令部134は、導出できなかった空調機30の中から30%の空調機30が対象となるように、ランダムに空調機30を選択し、それらの空調機30を稼働させてもよい。 In addition, when the derivation unit 133 cannot derive the relative positional relationship for only some of the air conditioners 30, the command unit 134 selects at least one of the air conditioners 30 that could not be derived. One air conditioner 30 may be operated. For example, the command unit 134 may select the air conditioners 30 at random so that 30% of the air conditioners 30 that cannot be derived are targeted, and operate those air conditioners 30. .
 生成部135は、上述した導出部133により導出された各空調機30の相対的な位置関係に従って、ロケーション情報を生成する。例えば、生成部135は、フロア内に設置されている全ての空調機30を識別する情報と、各空調機30がフロア内においてどのような位置関係となっているのかを示す情報とを含んだロケーション情報を生成する。 The generating unit 135 generates location information in accordance with the relative positional relationship of the air conditioners 30 derived by the deriving unit 133 described above. For example, the generation unit 135 includes information for identifying all the air conditioners 30 installed in the floor, and information indicating what positional relationship each air conditioner 30 is in the floor. Generate location information.
 また、生成部135は、フロアの平面図データに、各空調機30を示す図形(一例として、シンボル)を配置したレイアウト画像を生成する。なお、古い建物BLでフロアの平面図データがない場合に、生成部135は、空調機30から収集した熱画像データを基に、平面図データを自動で生成するようにしてもよい。例えば、指令部134によって、全ての空調機30を稼働させた状態で、データ収集部131が収集した熱画像データから、生成部135は、壁を含む構造物を特定することにより、フロア概形を表す平面図データを生成する。具体的に、フロアにおいて、床面と壁面とは材質の違いにより、熱画像データにおいて、床面と壁面との境界位置が検出可能となっている。そのため、生成部135は、各空調機30の相対的な位置関係と、空調機30と壁面との相対的な位置関係とから、フロア概形を表す平面図データを生成する。その際、生成部135は、一般的に壁面は平面、もしくは直角であることを利用してフロア概形を補正してもよい。また、ロケーション情報により、フロアの外縁(壁側)に接する空調機30が特定できている場合に、生成部135は、それら特定した空調機30だけを稼働させて収集した熱画像データから、平面図データを生成してもよい。 Also, the generation unit 135 generates a layout image in which a figure (as an example, a symbol) indicating each air conditioner 30 is arranged in the floor plan data. Note that when there is no floor plan data in the old building BL, the generation unit 135 may automatically generate the plan view data based on the thermal image data collected from the air conditioner 30. For example, the generation unit 135 identifies the structure including the wall from the thermal image data collected by the data collection unit 131 in a state where all the air conditioners 30 are operated by the command unit 134, thereby generating a rough floor shape. Is generated. Specifically, on the floor, the boundary position between the floor surface and the wall surface can be detected in the thermal image data due to the difference in material between the floor surface and the wall surface. Therefore, the production | generation part 135 produces | generates the top view data showing a floor outline from the relative positional relationship of each air conditioner 30, and the relative positional relationship of the air conditioner 30 and a wall surface. At that time, the generation unit 135 may correct the rough floor shape by utilizing that the wall surface is generally a plane or a right angle. In addition, when the air conditioner 30 in contact with the outer edge (wall side) of the floor can be specified by the location information, the generation unit 135 determines the plane from the thermal image data collected by operating only the specified air conditioner 30. Graphic data may be generated.
 以下、このような構成の支援装置10の動作について、図5を参照して説明する。図5は、本発明の実施形態に係る導出処理の一例を示すフローチャートである。 Hereinafter, the operation of the support apparatus 10 having such a configuration will be described with reference to FIG. FIG. 5 is a flowchart showing an example of the derivation process according to the embodiment of the present invention.
 まず、支援装置10は、各空調機30から熱画像データを収集する(ステップS101)。すなわち、データ収集部131は、何れかの空調機30に対して、熱画像データの検出を指示する。すると、上述したように、全ての空調機30にてタイミングの調整が行われ、各熱画像センサ31により同時刻の熱画像データが検出される。その際、各熱画像センサ31は、一定数(複数)の熱画像データを時系列に検出する。そのため、データ収集部131は、全ての空調機30から複数の(時系列の)熱画像データをそれぞれ収集する。 First, the support device 10 collects thermal image data from each air conditioner 30 (step S101). That is, the data collection unit 131 instructs one of the air conditioners 30 to detect thermal image data. Then, as described above, timing adjustment is performed in all the air conditioners 30, and thermal image data at the same time is detected by each thermal image sensor 31. At that time, each thermal image sensor 31 detects a certain number (a plurality) of thermal image data in time series. Therefore, the data collection unit 131 collects a plurality of (time-series) thermal image data from all the air conditioners 30.
 支援装置10は、移動する熱源が含まれる熱画像データを削除する(ステップS102)。すなわち、データ評価部132は、空調機30単位に、収集した時系列の熱画像データを比較して、特徴点の位置が変動する熱画像データがあれば、その熱画像データを削除する。例えば、データ評価部132は、時系列の熱画像データをピクセルごとに比較し、その中で、最も階調値が小さい(温度が低い)データを採用した熱画像データを生成する。つまり、時系列の熱画像データにおいて、映り込んだ熱源が移動している場合(特徴点の変動がある場合)、熱画像データ間の同一ピクセルにおいて、最も温度が低いデータを採用することにより、その熱源が映り込む前後の背景の温度を取得することができる。また、時系列の熱画像データにおいて、熱源が静止している場合(特徴点の変動がない場合)、熱画像データ間の同一ピクセルは、ほぼ同一の値となるため、最も温度が低いデータを採用することにより、そのままの値を保持することができる。 The support device 10 deletes the thermal image data including the moving heat source (step S102). That is, the data evaluation unit 132 compares the collected time-series thermal image data in units of the air conditioner 30 and deletes the thermal image data if there is thermal image data in which the position of the feature point varies. For example, the data evaluation unit 132 compares time-series thermal image data for each pixel, and generates thermal image data using data having the smallest gradation value (low temperature) among them. In other words, in the time-series thermal image data, when the reflected heat source is moving (if there is a variation in feature points), by adopting the lowest temperature data in the same pixel between the thermal image data, The temperature of the background before and after the heat source is reflected can be acquired. Also, in the time-series thermal image data, when the heat source is stationary (when there is no feature point variation), the same pixel between the thermal image data has almost the same value, so the data with the lowest temperature is used. By adopting it, it is possible to hold the value as it is.
 支援装置10は、相対的な位置関係の導出を試みる(ステップS103)。すなわち、導出部133は、移動する熱源が含まれる熱画像データが削除された熱画像データに基づいて、各空調機30の相対的な位置関係を導出する。具体的には、上述した図4A~図4Cに示すように、熱画像データT1と熱画像データT2とで、対応する辺(一辺)同士が一部重なるようにしながら、特徴点Hがマッチングするかどうかを判定する。なお、導出部133は、熱画像センサ31の画角、及び、推定天井高さといった情報も加味して、空調機30間の相対的な位置関係を導出する。 The support device 10 tries to derive a relative positional relationship (step S103). That is, the deriving unit 133 derives the relative positional relationship of the air conditioners 30 based on the thermal image data from which the thermal image data including the moving heat source is deleted. Specifically, as shown in FIGS. 4A to 4C described above, the feature points H match in the thermal image data T1 and the thermal image data T2 while the corresponding sides (one side) partially overlap each other. Determine whether or not. The deriving unit 133 derives the relative positional relationship between the air conditioners 30 in consideration of information such as the angle of view of the thermal image sensor 31 and the estimated ceiling height.
 支援装置10は、全て導出可能であるか否かを判別する(ステップS104)。つまり、導出部133において、全ての空調機30について相対的な位置関係を導出できたかどうかを判定する。 The support device 10 determines whether or not all of them can be derived (step S104). That is, the deriving unit 133 determines whether or not the relative positional relationship has been derived for all the air conditioners 30.
 支援装置10は、全て導出可能でないと判別すると(ステップS104;No)、ランダムに選んだ空調機30に運転を指令する(ステップS105)。すなわち、指令部134は、例えば、全体の30%の空調機30が対象となるように、ランダムに空調機30を選択し、それらの空調機30を稼働させる。なお、空調機30を稼働させる際に、指令部134は、例えば、室内温度に応じて、冷房運転及び暖房運転を切り換えて指令するようにしてもよい。例えば、空調機30の稼働によって現在の室温との温度差のある冷気や暖気を吹き出すために、指令部134は、夏期において(室温が高温の場合)、冷房運転を指令し、冬期において(室温が低温の場合)、暖房運転を指令する。 If it is determined that all of the support devices 10 cannot be derived (step S104; No), the support device 10 instructs the air conditioner 30 selected at random (step S105). That is, for example, the command unit 134 selects the air conditioners 30 at random so that 30% of the air conditioners 30 as a target are targeted, and operates the air conditioners 30. When operating the air conditioner 30, the command unit 134 may switch and command the cooling operation and the heating operation according to the room temperature, for example. For example, in order to blow out cool air or warm air having a temperature difference from the current room temperature by operating the air conditioner 30, the command unit 134 commands cooling operation in the summer (when the room temperature is high) and in the winter (room temperature If the temperature is low), command heating operation.
 そして、支援装置10は、上述したステップS101に処理を戻す。 Then, the support device 10 returns the process to step S101 described above.
 一方、全て導出可能であると判別した場合(ステップS104;Yes)に、支援装置10は、導出した位置関係を基に、ロケーション情報を生成する(ステップS106)。すなわち、生成部135は、ステップ103にて導出された各空調機30の相対的な位置関係に従って、ロケーション情報を生成する。例えば、生成部135は、フロア内に設置されている全ての空調機30を識別する情報と、各空調機30がフロア内においてどのような位置関係となっているのかを示す情報とを含んだロケーション情報を生成する。また、生成部135は、フロアの平面図データに、各空調機30を示す図形(一例として、シンボル)を配置したレイアウト画像を生成してもよい。 On the other hand, when it is determined that all can be derived (step S104; Yes), the support device 10 generates location information based on the derived positional relationship (step S106). That is, the generation unit 135 generates location information according to the relative positional relationship between the air conditioners 30 derived in step 103. For example, the generation unit 135 includes information for identifying all the air conditioners 30 installed in the floor, and information indicating what positional relationship each air conditioner 30 is in the floor. Generate location information. Further, the generation unit 135 may generate a layout image in which a figure (as an example, a symbol) indicating each air conditioner 30 is arranged in the floor plan data.
 なお、古い建物BLでフロアの平面図データがない場合に、生成部135は、空調機30から収集した熱画像データを基に、平面図データを自動で生成するようにしてもよい。例えば、指令部134によって、全ての空調機30を稼働させた状態で、データ収集部131が収集した熱画像データから、生成部135は、壁を含む構造物を特定することにより、フロア概形を表す平面図データを生成する。具体的に、フロアにおいて、床面と壁面とは材質の違いにより、熱画像データにおいて、床面と壁面との境界位置が検出可能となっている。そのため、生成部135は、各空調機30の相対的な位置関係と、空調機30と壁面との相対的な位置関係とから、フロア概形を表す平面図データを生成する。その際、生成部135は、一般的に壁面は平面、もしくは直角であることを利用してフロア概形を補正してもよい。また、ロケーション情報により、フロアの外縁(壁側)に接する空調機30が特定できている場合に、生成部135は、それら特定した空調機30だけを稼働させて収集した熱画像データから、平面図データを生成してもよい。 In addition, when there is no floor plan data of the floor in the old building BL, the generation unit 135 may automatically generate the plan view data based on the thermal image data collected from the air conditioner 30. For example, the generation unit 135 identifies the structure including the wall from the thermal image data collected by the data collection unit 131 in a state where all the air conditioners 30 are operated by the command unit 134, thereby generating a rough floor shape. Is generated. Specifically, on the floor, the boundary position between the floor surface and the wall surface can be detected in the thermal image data due to the difference in material between the floor surface and the wall surface. Therefore, the production | generation part 135 produces | generates the top view data showing a floor outline from the relative positional relationship of each air conditioner 30, and the relative positional relationship of the air conditioner 30 and a wall surface. At that time, the generation unit 135 may correct the rough floor shape by utilizing that the wall surface is generally a plane or a right angle. In addition, when the air conditioner 30 in contact with the outer edge (wall side) of the floor can be specified by the location information, the generation unit 135 determines the plane from the thermal image data collected by operating only the specified air conditioner 30. Graphic data may be generated.
 従来であれば、作業員が全ての空調機30の設置位置を手作業で入力することで、ロケーション情報を生成していた。このような手作業を伴うロケーション情報の生成手法は、作業コストが大きく、また入力ミスが生じる可能性もあった。これに対して、本発明の実施形態に係る支援装置10では、このような導出処理により、空調機30間の相対的な位置関係を自動で取得することで、導入時の作業コストを大幅に削減することができる。その際、空調機30が既に有している(制御用に用いる)熱画像センサ31を活用することで、専用の機器を追加する必要がないため、製品コストの上昇を伴うことなく、空調機30間の相対的な位置関係を自動で取得することができる。 Conventionally, location information is generated by an operator manually entering the installation positions of all the air conditioners 30. Such a method for generating location information with manual work has a high work cost and may cause an input error. On the other hand, in the support device 10 according to the embodiment of the present invention, the relative positional relationship between the air conditioners 30 is automatically acquired by such a derivation process, thereby greatly reducing the work cost at the time of introduction. Can be reduced. At that time, the use of the thermal image sensor 31 that the air conditioner 30 already has (used for control) eliminates the need to add a dedicated device. The relative positional relationship between the 30 can be automatically acquired.
 また、本発明の実施形態に係る支援装置10では、生成部135が、フロア概形を示す平面図データを自動生成することも可能であり、例えば、建物BLが古く、施工時の平面図データが残っていない場合に、平面図データを手作業で再度作成する手間を削減できる。 Further, in the support device 10 according to the embodiment of the present invention, the generation unit 135 can automatically generate plan view data indicating a floor outline. For example, the building BL is old and the plan view data at the time of construction is used. When there is no leftover, it is possible to reduce the trouble of manually creating the plan view data again.
 また、本発明の実施形態に係る支援装置10では、導出部133が位置関係を導出できない(位置関係を十分な精度で導出できない)場合に、指令部134が、ランダムに選んだ空調機30を稼働させる。つまり、一部の空調機30を運転させることにより、温度分布を意図的に生成させ、特徴点が検出できるようにした状態で、熱画像データの収集から再開する。このため、例えば、施工中のフロアのように、人やパソコンのような熱源となるものが少ない状況でも、各空調機30の相対的な位置関係を正しく導出することができる。 In the support device 10 according to the embodiment of the present invention, when the deriving unit 133 cannot derive the positional relationship (the positional relationship cannot be derived with sufficient accuracy), the command unit 134 selects the air conditioner 30 selected at random. Make it work. That is, by operating some of the air conditioners 30, the temperature distribution is intentionally generated and the feature points can be detected, and the process is resumed from the collection of the thermal image data. For this reason, the relative positional relationship of each air conditioner 30 can be correctly derived | led-out, for example in the situation where there are few things which become heat sources like a person and a personal computer like the floor under construction.
 また、本発明の実施形態に係る支援装置10では、データ評価部132が、空調機30単位に、収集した時系列の熱画像データを比較して、特徴点の位置が変動する熱画像データがあれば、その熱画像データを削除する。例えば、導出処理の実行中に作業員がフロア内を移動したような場合でも、データ評価部132によって、移動する熱源の熱画像データが削除される。そのため、導出部133が、移動しない熱源の熱画像データのみを利用して、各空調機30の相対的な位置関係を導出するため、精度を向上させることができる。 Further, in the support device 10 according to the embodiment of the present invention, the data evaluation unit 132 compares the collected time-series thermal image data for each air conditioner 30 unit, and the thermal image data in which the position of the feature point varies is obtained. If there is, the thermal image data is deleted. For example, even when the worker moves in the floor during the execution of the derivation process, the data evaluation unit 132 deletes the thermal image data of the moving heat source. Therefore, since the deriving unit 133 derives the relative positional relationship of each air conditioner 30 using only the thermal image data of the heat source that does not move, the accuracy can be improved.
 以上説明したように、本発明の実施形態に係る支援装置10は、複数の空調機30間における相対的な位置関係を適切に導出することができる。 As described above, the support device 10 according to the embodiment of the present invention can appropriately derive the relative positional relationship among the plurality of air conditioners 30.
(他の実施形態)
 上記の実施形態では、全ての空調機30が同一フロア(同一空間)内に設置され、各空調機30について、相対的な位置関係を導出できる場合について説明したが、空調機30が異なるフロアに設置されている場合もある。以下、フロア単位に空調機30をグループ化することを特徴とした本発明の他の実施形態について説明する。
(Other embodiments)
In the above embodiment, the case where all the air conditioners 30 are installed in the same floor (the same space) and the relative positional relationship can be derived for each air conditioner 30 has been described. However, the air conditioners 30 are on different floors. Sometimes it is installed. Hereinafter, another embodiment of the present invention characterized by grouping the air conditioners 30 in units of floors will be described.
 図6は、本発明の他の実施形態に係る支援装置10の構成の一例を示すブロック図である。図3の支援装置10と異なり、図6の支援装置10において、演算処理部13がグループ作成部136を更に備えている。 FIG. 6 is a block diagram showing an example of the configuration of the support device 10 according to another embodiment of the present invention. Unlike the support device 10 in FIG. 3, the calculation processing unit 13 further includes a group creation unit 136 in the support device 10 in FIG. 6.
 このグループ作成部136は、導出部133により導出された位置関係に従って、同一フロア(同一空間)に設置された空調機30毎にグループ化する。つまり、グループ作成部136は、位置関係が導出できた空調機30単位にまとめて、空調機30をグループ化する。なお、その際、グループ作成部136は、空間固有の識別情報を付与してもよい。 The group creation unit 136 groups the air conditioners 30 installed on the same floor (same space) according to the positional relationship derived by the deriving unit 133. That is, the group creation unit 136 groups the air conditioners 30 together in units of air conditioners 30 for which the positional relationship has been derived. At that time, the group creation unit 136 may give identification information unique to the space.
 そして、生成部135は、このようにグループ化された空調機30の情報に従って、例えば、フロア毎の平面図データに、対応するグループの空調機30を示す図形(一例として、シンボル)を配置したレイアウト画像(一例として、建物BL全体のレイアウト画像)を生成する。 And the production | generation part 135 has arrange | positioned the figure (as an example, a symbol) which shows the air conditioner 30 of a corresponding group in the top view data for every floor according to the information of the air conditioner 30 grouped in this way, for example. A layout image (for example, a layout image of the entire building BL) is generated.
 この場合、例えば、空調機30に対して、フロア数やフロア名(部屋名)といった付随情報を設定する際に、予め同一空間内にある空調機30をグループ化しておくことで一括設定が可能となり、作業負担を削減できる。 In this case, for example, when setting incidental information such as the number of floors and the floor name (room name) for the air conditioner 30, it is possible to perform batch setting by grouping the air conditioners 30 in the same space in advance. Thus, the work load can be reduced.
 このように、空調機30が異なるフロアに設置されている場合でも、他の実施形態に係る支援装置10は、各空調機30間における相対的な位置関係を適切に導出することができる。 Thus, even when the air conditioners 30 are installed on different floors, the support device 10 according to another embodiment can appropriately derive the relative positional relationship between the air conditioners 30.
 上記の実施形態では、データ評価部132が、熱源が移動する熱画像データを削除するために、ピクセルごとの階調値の最小値を採用する場合について説明したが、この他にも、オプティカルフローによる移動検知といった異なる手法により、熱源が移動する熱画像データを検知して削除してもよい。 In the above embodiment, the case where the data evaluation unit 132 adopts the minimum value of the gradation value for each pixel in order to delete the thermal image data in which the heat source moves is described. The thermal image data to which the heat source moves may be detected and deleted by a different method such as movement detection by.
 また、上記の実施形態では、指令部134が、ランダムに空調機30を選択して稼働させる場合について説明したが、この他にも、空調機30の識別情報(一例として、ID番号)の順番(昇順や降順)に、空調機30を1台ずつ稼働させるといった他のアルゴリズムで、空調機30を選択して稼働させてもよい。 Moreover, in said embodiment, although the instruction | indication part 134 demonstrated the case where the air conditioner 30 was selected and operated at random, in addition to this, the order of the identification information (ID number as an example) of the air conditioner 30 The air conditioner 30 may be selected and operated by another algorithm (operating one by one in ascending order or descending order).
 また、上記の実施形態において、演算処理部13によって実行されるプログラムは、CD-ROM(Compact Disc Read Only Memory),DVD(Digital Versatile Disc),MO(Magneto-Optical Disk),USBメモリ,メモリカード等のコンピュータ読み取り可能な記録媒体に格納して配布することも可能である。そして、かかるプログラムを特定の又は汎用のコンピュータにインストールすることによって、当該コンピュータを上記の実施形態における支援装置10として機能させることも可能である。 In the above embodiment, the program executed by the arithmetic processing unit 13 is a CD-ROM (Compact Disc Read Only Memory), DVD (Digital Versatile Disc), MO (Magneto-Optical Disk), USB memory, memory card. It is also possible to store and distribute in a computer-readable recording medium such as the above. Then, by installing such a program on a specific or general-purpose computer, it is possible to cause the computer to function as the support apparatus 10 in the above-described embodiment.
 また、上記のプログラムをインターネットといった通信ネットワーク上のサーバ装置が有するディスク装置に格納しておき、例えば、搬送波に重畳させて、コンピュータにダウンロードするようにしてもよい。また、通信ネットワークを介してプログラムを転送しながら起動実行することによっても、上述の処理を達成することができる。さらに、プログラムの全部又は一部をサーバ装置上で実行させ、その処理に関する情報をコンピュータが通信ネットワークを介して送受信しながらプログラムを実行することによっても、上述の処理を達成することができる。 Further, the above program may be stored in a disk device included in a server device on a communication network such as the Internet, and may be downloaded onto a computer by being superimposed on a carrier wave, for example. The above-described processing can also be achieved by starting and executing a program while transferring it via a communication network. Furthermore, the above-described processing can also be achieved by executing all or part of the program on the server device and executing the program while the computer transmits and receives information regarding the processing via the communication network.
 なお、上述の機能を、OS(Operating System)が分担して実現する場合又はOSとアプリケーションとの協働により実現する場合等には、OS以外の部分のみを上記の記録媒体に格納して配布してもよく、また、コンピュータにダウンロードしてもよい。 Note that when the above functions are realized by sharing an OS (Operating System) or when the functions are realized by cooperation between the OS and an application, only the part other than the OS is stored in the recording medium and distributed. It may also be downloaded to a computer.
 本発明は、広義の精神と範囲を逸脱することなく、様々な実施形態及び変形が可能である。また、上述した実施形態は、本発明を説明するためのものであり、本発明の範囲を限定するものではない。つまり、本発明の範囲は、実施形態ではなく、請求の範囲によって示される。そして、請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、本発明の範囲内とみなされる。 The present invention can be variously modified and modified without departing from the spirit and scope of the broad sense. Further, the above-described embodiment is for explaining the present invention, and does not limit the scope of the present invention. That is, the scope of the present invention is shown not by the embodiments but by the claims. Various modifications within the scope of the claims and within the scope of the equivalent invention are considered to be within the scope of the present invention.
 本発明は、複数の空調機間における相対的な位置関係を適切に導出することのできる支援装置、空調システム、および、導出方法に好適に採用され得る。 The present invention can be suitably employed in a support device, an air conditioning system, and a derivation method that can appropriately derive a relative positional relationship among a plurality of air conditioners.
 1 空調システム、10 支援装置、11 通信部、12 データ記憶部、13 演算処理部、131 データ収集部、132 データ評価部、133 導出部、134 指令部、135 生成部、136 グループ作成部、20(20a,20b) 室外機、30(30a~30d) 空調機、31(31a~31d) 熱画像センサ、90 空調通信ネットワーク 1 air conditioning system, 10 support device, 11 communication unit, 12 data storage unit, 13 arithmetic processing unit, 131 data collection unit, 132 data evaluation unit, 133 derivation unit, 134 command unit, 135 generation unit, 136 group creation unit, 20 (20a, 20b) Outdoor unit, 30 (30a-30d) Air conditioner, 31 (31a-31d) Thermal image sensor, 90 Air conditioning communication network

Claims (8)

  1.  同一空間に設置された第1の空調機及び第2の空調機から、当該第1の空調機が検出した第1の熱画像データ及び当該第2の空調機が検出した第2の熱画像データを収集するデータ収集部と、
     前記第1及び第2の熱画像データに含まれる共通の特徴点に基づいて、前記第1及び第2の空調機の相対的な位置関係を導出する導出部と、
     を備える支援装置。
    First thermal image data detected by the first air conditioner and second thermal image data detected by the second air conditioner from the first air conditioner and the second air conditioner installed in the same space. A data collection unit that collects
    A derivation unit that derives a relative positional relationship between the first and second air conditioners based on the common feature points included in the first and second thermal image data;
    A support device comprising:
  2.  前記データ収集部は、前記第1及び第2の空調機が同時刻に検出した前記第1及び第2の熱画像データを収集し、
     前記導出部は、前記第1の熱画像データと前記第2の熱画像データとで異なる位置に存在する共通の特徴点に基づいて、前記第1及び第2の空調機の相対的な位置関係を導出する、
     請求項1に記載の支援装置。
    The data collection unit collects the first and second thermal image data detected by the first and second air conditioners at the same time,
    The derivation unit is configured to determine a relative positional relationship between the first and second air conditioners based on a common feature point existing at a different position between the first thermal image data and the second thermal image data. Deriving,
    The support device according to claim 1.
  3.  前記第1及び第2の熱画像データから壁を含む構造物を特定することにより、前記同一空間を表す平面図データを生成する生成部を更に備える、
     請求項1に記載の支援装置。
    A generator that generates plan view data representing the same space by specifying a structure including a wall from the first and second thermal image data;
    The support device according to claim 1.
  4.  前記第1及び第2の熱画像データに前記共通の特徴点が含まれず、前記導出部が前記位置関係を導出できない場合に、前記第1及び第2の空調機からランダムに選んだ少なくとも1つの空調機を稼働させる指令を発する指令部を更に備える、
     請求項1に記載の支援装置。
    When the first and second thermal image data do not include the common feature point and the derivation unit cannot derive the positional relationship, at least one selected randomly from the first and second air conditioners A command unit that issues a command to operate the air conditioner;
    The support device according to claim 1.
  5.  前記データ収集部は、前記第1及び第2の空調機が時系列に検出した前記第1及び第2の熱画像データを収集するものであり、
     時系列に検出された前記第1及び第2の熱画像データから、前記特徴点の位置が変動する熱画像データを削除するデータ評価部を更に備える、
     請求項1に記載の支援装置。
    The data collection unit collects the first and second thermal image data detected in time series by the first and second air conditioners,
    A data evaluation unit that deletes the thermal image data in which the position of the feature point varies from the first and second thermal image data detected in time series;
    The support device according to claim 1.
  6.  前記データ収集部は、前記第1及び第2の空調機とは異なる空間に設置された空調機が検出した熱画像データを更に収集するものであり、
     前記導出部により導出された前記位置関係に従って、同一空間に設置された空調機毎にグループ化するグループ作成部を更に備える、
     請求項1に記載の支援装置。
    The data collection unit further collects thermal image data detected by an air conditioner installed in a different space from the first and second air conditioners,
    According to the positional relationship derived by the deriving unit, further comprising a group creating unit that groups for each air conditioner installed in the same space,
    The support device according to claim 1.
  7.  同一空間に設置された第1の空調機及び第2の空調機と、支援装置とがネットワークを介して接続された空調システムであって、
     前記支援装置は、
     前記第1及び第2の空調機から、前記第1の空調機が検出した第1の熱画像データ及び前記第2の空調機が検出した第2の熱画像データを収集するデータ収集部と、
     前記第1及び第2の熱画像データに含まれる共通の特徴点に基づいて、前記第1及び第2の空調機の相対的な位置関係を導出する導出部と、を備える、
     空調システム。
    An air conditioning system in which a first air conditioner and a second air conditioner installed in the same space, and a support device are connected via a network,
    The support device includes:
    A data collection unit for collecting first thermal image data detected by the first air conditioner and second thermal image data detected by the second air conditioner from the first and second air conditioners;
    A derivation unit that derives a relative positional relationship between the first and second air conditioners based on a common feature point included in the first and second thermal image data,
    Air conditioning system.
  8.  同一空間に設置された第1の空調機及び第2の空調機と通信可能な支援装置が実行する導出方法であって、
     前記第1の空調機が検出した第1の熱画像データ及び前記第2の空調機が検出した第2の熱画像データを収集するデータ収集ステップと、
     前記第1及び第2の熱画像データに含まれる共通の特徴点に基づいて、前記第1及び第2の空調機の相対的な位置関係を導出する導出ステップと、
     を備える導出方法。
    A derivation method executed by a support device capable of communicating with a first air conditioner and a second air conditioner installed in the same space,
    A data collection step of collecting first thermal image data detected by the first air conditioner and second thermal image data detected by the second air conditioner;
    A derivation step for deriving a relative positional relationship between the first and second air conditioners based on a common feature point included in the first and second thermal image data;
    A derivation method comprising:
PCT/JP2016/077379 2016-09-16 2016-09-16 Assist device, air conditioning system, and derivation method WO2018051479A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018539467A JP6755322B2 (en) 2016-09-16 2016-09-16 Assistance device, air conditioning system, and derivation method
PCT/JP2016/077379 WO2018051479A1 (en) 2016-09-16 2016-09-16 Assist device, air conditioning system, and derivation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/077379 WO2018051479A1 (en) 2016-09-16 2016-09-16 Assist device, air conditioning system, and derivation method

Publications (1)

Publication Number Publication Date
WO2018051479A1 true WO2018051479A1 (en) 2018-03-22

Family

ID=61618722

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/077379 WO2018051479A1 (en) 2016-09-16 2016-09-16 Assist device, air conditioning system, and derivation method

Country Status (2)

Country Link
JP (1) JP6755322B2 (en)
WO (1) WO2018051479A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019229984A1 (en) * 2018-06-01 2019-12-05 三菱電機株式会社 Relative position calculation device, relative position calculation system, relative position calculation method and program
WO2019244219A1 (en) * 2018-06-18 2019-12-26 三菱電機株式会社 Air conditioning system, air conditioning method, control device, and program
CN110749043A (en) * 2019-10-17 2020-02-04 珠海格力电器股份有限公司 Air conditioner debugging equipment and method
WO2020202323A1 (en) * 2019-03-29 2020-10-08 三菱電機株式会社 Ceiling-embedded air conditioner
JPWO2021181571A1 (en) * 2020-03-11 2021-09-16

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011133167A (en) * 2009-12-24 2011-07-07 Mitsubishi Electric Corp Air conditioner
WO2012035789A1 (en) * 2010-09-13 2012-03-22 三菱電機株式会社 Air conditioning control device, air conditioning control method and program
JP2016080302A (en) * 2014-10-21 2016-05-16 アズビル株式会社 Temperature distribution display device and method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6091348B2 (en) * 2013-06-13 2017-03-08 三菱電機株式会社 Air conditioner
JP2015052431A (en) * 2013-09-09 2015-03-19 日立アプライアンス株式会社 Indoor unit of air conditioner, and air conditioner
WO2016157384A1 (en) * 2015-03-30 2016-10-06 三菱電機株式会社 Air blowing system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011133167A (en) * 2009-12-24 2011-07-07 Mitsubishi Electric Corp Air conditioner
WO2012035789A1 (en) * 2010-09-13 2012-03-22 三菱電機株式会社 Air conditioning control device, air conditioning control method and program
JP2016080302A (en) * 2014-10-21 2016-05-16 アズビル株式会社 Temperature distribution display device and method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019229984A1 (en) * 2018-06-01 2019-12-05 三菱電機株式会社 Relative position calculation device, relative position calculation system, relative position calculation method and program
JPWO2019229984A1 (en) * 2018-06-01 2020-12-10 三菱電機株式会社 Relative position calculation device, relative position calculation system, relative position calculation method and program
WO2019244219A1 (en) * 2018-06-18 2019-12-26 三菱電機株式会社 Air conditioning system, air conditioning method, control device, and program
JPWO2019244219A1 (en) * 2018-06-18 2020-12-17 三菱電機株式会社 Air conditioning systems, air conditioning methods, controls, and programs
WO2020202323A1 (en) * 2019-03-29 2020-10-08 三菱電機株式会社 Ceiling-embedded air conditioner
JPWO2020202323A1 (en) * 2019-03-29 2021-10-14 三菱電機株式会社 Ceiling embedded air conditioner
JP7066050B2 (en) 2019-03-29 2022-05-12 三菱電機株式会社 Ceiling embedded air conditioner
CN110749043A (en) * 2019-10-17 2020-02-04 珠海格力电器股份有限公司 Air conditioner debugging equipment and method
JPWO2021181571A1 (en) * 2020-03-11 2021-09-16
WO2021181571A1 (en) 2020-03-11 2021-09-16 三菱電機株式会社 Air-conditioning system
JP7246564B2 (en) 2020-03-11 2023-03-27 三菱電機株式会社 air conditioning system

Also Published As

Publication number Publication date
JPWO2018051479A1 (en) 2019-02-21
JP6755322B2 (en) 2020-09-16

Similar Documents

Publication Publication Date Title
WO2018051479A1 (en) Assist device, air conditioning system, and derivation method
US9715240B2 (en) Facility equipment operation device, facility equipment operation system, facility equipment operation method, and medium
US10045424B2 (en) Lighting control system
WO2014059123A1 (en) On-line optimization scheme for hvac demand response
JP6173784B2 (en) Air conditioning energy management system, method, and program
JP5695492B2 (en) Air conditioning control apparatus and method
JP2014002124A (en) Apparatus and method for specifying temperature detection range
JP6125672B2 (en) Zone-based heating, ventilation, and air conditioning (HVAC) control using extensive temperature monitoring
JP2017166816A (en) Air conditioning energy management system, method and program
EP3985318A1 (en) Air-conditioning control device and air-conditioning control system
JP2019002596A (en) Temperature distribution measurement system, air conditioning system, cooling method, and program
KR20180130460A (en) Thermal image processing apparatus and offset amount calculating method
KR102038122B1 (en) Apparatus and method for detecting temperature distribution
KR20160123227A (en) Air conditioning control device
JP6783599B2 (en) Arithmetic logic unit for air conditioning control, arithmetic method for air conditioning control, and arithmetic program for air conditioning control
JP6780740B1 (en) Air conditioner placement presentation system
CN108489048B (en) Air conditioner installation position determining method and device, readable storage medium and air conditioner
CN114777298B (en) Temperature regulation prediction method, device, equipment, storage medium and air conditioning equipment
CN113494763A (en) Control method and device of air conditioner
JP5910322B2 (en) Air conditioning control device and program
JP2018071805A (en) Air-conditioning control device, air-conditioning system, air-conditioning control method and program
JP6698959B2 (en) Controller, radiation air conditioning equipment, control method and control program
KR102657573B1 (en) Intelligent environmental monitoring and control system using video and thermal imaging
JP7418185B2 (en) Control device, control system, and control method
US20230011111A1 (en) Air conditioning system

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018539467

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16916260

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16916260

Country of ref document: EP

Kind code of ref document: A1