WO2019242735A1 - 一种灭火剂及灭火系统 - Google Patents

一种灭火剂及灭火系统 Download PDF

Info

Publication number
WO2019242735A1
WO2019242735A1 PCT/CN2019/092291 CN2019092291W WO2019242735A1 WO 2019242735 A1 WO2019242735 A1 WO 2019242735A1 CN 2019092291 W CN2019092291 W CN 2019092291W WO 2019242735 A1 WO2019242735 A1 WO 2019242735A1
Authority
WO
WIPO (PCT)
Prior art keywords
fire extinguishing
polyoxyethylene
extinguishing agent
fire
water
Prior art date
Application number
PCT/CN2019/092291
Other languages
English (en)
French (fr)
Inventor
陆佳政
陈宝辉
梁平
孙易成
李波
吴传平
周特军
Original Assignee
国网湖南省电力有限公司
国网湖南省电力有限公司防灾减灾中心
国家电网有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国网湖南省电力有限公司, 国网湖南省电力有限公司防灾减灾中心, 国家电网有限公司 filed Critical 国网湖南省电力有限公司
Priority to AU2019272058A priority Critical patent/AU2019272058B2/en
Publication of WO2019242735A1 publication Critical patent/WO2019242735A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C3/00Fire prevention, containment or extinguishing specially adapted for particular objects or places
    • A62C3/16Fire prevention, containment or extinguishing specially adapted for particular objects or places in electrical installations, e.g. cableways
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C31/00Delivery of fire-extinguishing material
    • A62C31/02Nozzles specially adapted for fire-extinguishing
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C37/00Control of fire-fighting equipment

Definitions

  • the present application belongs to the technical field of substation supporting equipment, for example, relates to a fire extinguishing agent and a fire extinguishing system.
  • Transformers are the powerhouse of the power energy internet.
  • the power transformer contains a large amount of flammable insulating oil. Once a fire occurs, it will cause large-scale and long-term power outages, causing major property damage and even casualties. According to statistics, every 63 to 81 transformers will have a fire during their 40-year service period.
  • the overall base of power transformers is large, and transformer fires have become a major disaster that threatens the safe supply of electricity. For example, on June 18, 2016, a transformer substation in a certain province caught fire, and many transformers were burned out.
  • the failure loss load was 243,000 kilowatts, and the number of power outage users was 86,500, which had a great social impact. Therefore, it is urgent to develop efficient transformer oil fire extinguishing technology.
  • Adding water-based fire extinguishing agent to the water can significantly improve the fire extinguishing effect of water.
  • the fire extinguishing agents on the market are mainly targeted at conventional fires, such as Class A wood and plastic fires, and Class B gasoline and diesel fires.
  • Transformer oil is a heavy oil with high viscosity and ignition value.
  • the fire extinguishing principle is different from oil fires such as gasoline and diesel. Therefore, it is difficult to apply the conventional oil-based fire extinguishing fluid to the fire extinguishing of transformer oil.
  • the traditional fire extinguishing fluid does not consider the insulation problem and uses a large amount of conductive ionic compounds, which cannot be used in a charged environment. Therefore, there is an urgent need to develop a transformer oil fire extinguishing liquid with strong insulation performance and high fire extinguishing efficiency.
  • the technical problem to be solved by the present application is to overcome the deficiencies and defects mentioned in the above background technology, provide a fire extinguishing agent with strong insulation performance and high fire extinguishing efficiency, and provide a fire extinguishing system accordingly.
  • a fire extinguishing agent based on parts by weight, including the following components:
  • Transformer oil has a high viscosity, and the fire extinguishing principle is different from gasoline and diesel oil fires. Traditional oil fire extinguishing liquids are difficult to apply to transformer oil fire extinguishing. Studies have found that emulsifying transformer oil with oil-in-water emulsifiers forms "oil-in-water" Type specific emulsion, which can significantly reduce fuel flammability and achieve efficient fire suppression.
  • the oil-in-water emulsifier is polyoxyethylene oxypropylene oleate, polyoxyethylene sorbitol beeswax derivative, tetraethylene glycol monolaurate, polyoxyethylene Lauryl ether, polyoxyethylene sorbitan monostearate, hexaethylene glycol monostearate, polyoxyethylene sorbitan monooleate, polyethylene glycol laurate, polyoxyethylene ten Hexyl ether, polyoxyethylene sorbitan tristearate, polyoxyethylene sorbitan trioleate, polyoxyethylene lanolin derivative, polyoxyethylene monooleate, polyoxyethylene monooleate Palmitate, alkylaryl sulfonate, triethanolamine oleate, polyoxyethylene monolaurate, polyoxyethylene alkylphenol, polyoxyethylene sorbitol lanolin derivative, polyoxyethylene alkylaryl Ether, polyoxyethylene monolaurate, polyoxyethylene lauryl ether,
  • the cloud point elevating agent is one or more of fatty acid methyl ester ethoxylate, alkyl polyglycoside, and N-alkyl glucamide.
  • the emulsifier solution will appear turbid as the temperature increases, which will affect the performance of the emulsifier.
  • the temperature at which the emulsifier solution is transformed is the cloud point temperature. Because the fire extinguishing liquid needs to be placed at room temperature, if the cloud point temperature is too low, it will affect the use of fire extinguishing agents. Adding fatty acid methyl ester ethoxylates, alkyl polyglycosides, and N-alkyl glucosamine in this application can greatly improve fire suppression. Cloud point temperature of the agent.
  • the surface spreading agent is one or more of a fluorocarbon non-ionic surfactant and a silicone-polyether copolymer, and the fluorocarbon non-ionic surface active agent.
  • Models of the agent include XW-201, XW-101, FC-4430, FC-430, RK-8317, FC-2, and RK-8316; models of silicone-polyether copolymers include SPE, DY-ET121L, SH- 300, 600CS, 1000CS.
  • the negative combustion catalyst is 4,4'-bis ( ⁇ , ⁇ -dimethylbenzyl) diphenylamine, thiourea, methionine, cysteine hydrochloride And one or more of catechol.
  • the combustion process of organic compounds is a series of free radical reactions. Under the action of heat, light or oxygen, the chemical bonds of organic molecules are broken, generating active free radicals and hydroperoxides, and the decomposition reaction of hydroperoxides. Hydroxyl radicals and hydroxyl radicals are formed. These free radicals can trigger a series of free radical reactions, resulting in changes in the structure and properties of organic compounds.
  • Combustion negative catalyst is a substance that can slow down or inhibit the chemical reaction process.
  • combustion negative catalyst is to eliminate the free radicals that have just been generated, or to promote the decomposition of hydroperoxides and prevent combustion. Adopting the above specific negative combustion catalyst has negative combustion catalytic effect on transformer oil fire.
  • the near-fire gelling synergist is one or more of hydroxyethyl cellulose, hydroxypropyl cellulose, and hydroxypropyl carboxymethyl cellulose.
  • the mist particles will gel, reducing the evaporation rate of water, so that the mist droplets can be closer to the fire source and then evaporate or produce a fire extinguishing effect, which significantly improves the fire extinguishing performance of the fire extinguishing fluid.
  • the corrosion inhibitor is mercaptobenzothiazole, sulfonated lignin, methylbenzotriazole, benzotriazole, thiobenzazole, tallowamine, ten One or more of hexadecylamine, octadecylamine, hydroxyethylidene diphosphonic acid, disodium hydroxyethylidene diphosphonic acid, polyacrylic acid, polyaspartic acid, and polyethyleneimine. Corrosion inhibitors can be divided into three categories.
  • the first type is an adsorption film type corrosion inhibitor, which has polar groups and can be adsorbed by the charge on the metal surface to form a single-molecule film in the entire anode and cathode region, thereby preventing or slowing down the electrochemical reaction.
  • Corrosion inhibitors include tallowamine, cetylamine and stearylamine.
  • the second type of corrosion inhibitors contain both hydrophilic and hydrophobic groups. They are nitrogen-, sulfur-, or hydroxyl-containing, surface-active organic compounds. The molecules of these compounds are adsorbed on the metal surface using hydrophilic groups to form a Layer of dense hydrophobic film to protect the metal surface from water corrosion.
  • Such corrosion inhibitors include hydroxyethylidene diphosphonic acid, disodium hydroxyethylidene diphosphonic acid, polyacrylic acid, polyaspartic acid, polyethyleneimine .
  • the third type of inhibitors can form complexes with metals and form films on the surface.
  • Such inhibitors include mercaptobenzothiazole, benzotriazole, sulfonated lignin, methylbenzotriazole, and benzofluorene.
  • Triazole and mercaptobenzothiazole are corrosion inhibitors for non-ferrous metals, especially copper.
  • a combination of multiple kinds of corrosion inhibitors is used in the fire extinguishing agent, which can achieve the superimposition of the effects of multiple types of corrosion inhibitors to achieve the best corrosion inhibition effect.
  • the present application also provides a fire extinguishing system including a water storage tank, a fire extinguishing agent mixing device, a fire extinguishing agent tank, and a pump configured to pump water in the water storage tank into the fire extinguishing agent mixing device.
  • Group pressure module, zone control system configured to distribute fire extinguishing agent in the fire extinguishing agent mixing device to multiple transformers, sprinkler system (including multiple nozzles surrounding the transformer) arranged to surround the transformer, and control configured
  • the pump module pressure module starts, shuts down, and is set as an automatic control-protection device that stabilizes the automatic protection system.
  • the automatic control-protection device is connected to the pump module pressure module, and the water storage tank is connected to the inlet of the pump module pressure module.
  • the outlet of the pressure module of the pump set is connected to the inlet of the fire extinguishing agent mixing device, the fire extinguishing agent tank is also connected to the inlet of the fire extinguishing agent mixing device, and the outlet of the fire extinguishing agent mixing device is connected to the inlet of the zone control system Connected, the outlet of the zone control system is in communication with the nozzle system.
  • the fire extinguishing agent stored in the fire extinguishing agent tank is the above fire extinguishing agent.
  • the viscosity of the pure fire extinguishing agent component in this application is very large, and the concentration of the fire extinguishing agent actually used for fire extinguishing is less than 0.5%.
  • a certain proportion of water needs to be added. The water in the water storage tank is mixed with the fire extinguishing agent in the fire extinguishing agent tank through the pressure module of the pump unit and then mixed into the subsequent system to realize the dilution of the fire extinguishing agent.
  • the zone control system is a set of valve groups, commonly used electric ball valves, and different transformers correspond to different electric ball valves. Assume that a fire extinguishing system protects three transformers, and because the transformers are independent of each other, usually three transformers do not catch fire at the same time when a fire occurs. Generally, one transformer catches fire.
  • the partition control system can realize the partition control of different transformers. When a certain type of transformer catches fire, it is only necessary to open the electric ball valve in this zone to extinguish the fire.
  • a fire extinguishing device can cover multiple transformers.
  • an automatic control-protection device can protect the entire fire-extinguishing system. If the water pressure of the pressure module of the pump set is too high, it will automatically shut down to protect the system; if there is no water in the storage tank, the pressure module of the pump set will automatically shut down to protect the pump set.
  • the droplet diameter of the water mist sprayed by the sprinkler system is in the range of 200-400 microns, and the droplet concentration is 20-100 g / (m2 ⁇ s) (g / (m2 ⁇ s)), the average initial axial spray velocity of the droplets is in the range of 6-20 meters / second (m / s).
  • the water mist having the above-mentioned physical characteristics has an insulation performance equivalent to or better than air.
  • the selection of the droplet diameter and the droplet concentration of the water mist sprayed by the nozzle system is obtained by using a device shown in FIG. 1 to carry out relevant tests.
  • the test device shown in FIG. 1 includes a power module, a water spray nozzle, a droplet diameter measurement system, an analog transformer bushing, and a conductivity measurement module.
  • the power module can generate high-voltage electricity
  • the droplet diameter measurement system measures the diameter of water mist droplets
  • the transformer casing is simulated to simulate the discharge body
  • the conductivity measurement module measures the conductivity value of water.
  • the breakdown voltage test procedure of the test refers to the artificial pollution test measurement method of high-voltage insulators (GB / T4584-2004 / IEC60507: 1991), and the water mist breakdown voltage value is measured by a method of 50% withstand voltage.
  • the discharge interval used in the water mist electrification breakdown test is 3 meters (m). The characteristics of the water mist breakdown voltage under this condition are obtained, and the parameters of the droplet diameter and droplet concentration applicable to the charged fire extinguishment are obtained in the law. Section.
  • the device shown in Figure 2 can be used to study the wind resistance of water mist.
  • the test device shown in FIG. 2 includes a water pump, a water spray nozzle, a three-dimensional velocity measurement system for a droplet, and a wind tunnel. At the beginning of the test, turn on the water pump and spray water mist, and measure the velocity of the droplets in the three-dimensional range. Then, open the wind tunnel, control the wind speed, and observe the changes in the distance of the spray nozzle and the spray cone angle.
  • the fire extinguishing agent with strong insulation performance due to the use of non-ionic substances
  • the related parameters of the sprinkler system are controlled to finally obtain a fire extinguishing system with high insulation performance and high fire suppression efficiency.
  • the fire extinguishing agent provided by the present application includes a non-ionic oil-in-water emulsifier, a cloud point enhancer, a surface spreader, a negative combustion catalyst, a near-fire gelling synergist, a corrosion inhibitor, and water.
  • Non-ionic oil-in-water emulsifier reduces fuel flammability, burns negative catalyst to achieve flame retardance, prevents oil fire from burning, quickly extinguishes the flame, surface spreader prevents oil fire from re-ignition, and near-fire gelling synergist further enhances fire suppression
  • the extinguishing component utilization rate of the agent, cloud point enhancer, and corrosion inhibitors ensure the extinguishing effectiveness and application range of the extinguishing agent.
  • the above-mentioned multiple substances have weak electrical conductivity, strong insulation performance, and multiple substances interact in synergy.
  • the composite fire extinguishing agent finally obtained has the advantages of high insulation performance, high fire extinguishing efficiency,
  • Figure 1 is a schematic diagram of a water mist atomization insulation test device
  • Figure 2 is a schematic diagram of a water mist wind resistance test device
  • FIG. 3 is a schematic structural diagram of a fire extinguishing system in an embodiment.
  • a transformer oil fire extinguishing agent comprising the following components: 5 kilograms (kg) of polyethylene glycol laurate, 2 kg of N-alkylglucosamine, 2 kg of fluorocarbon surfactant (FC-4430), and 1.0 kg of catechol , 300 g of hydroxypropyl cellulose, 50 g (g) of mercaptobenzothiazole, 50 g of polyethyleneimine and 15 kg of water.
  • the fire extinguishing agent is prepared by firstly mixing 5 kg of polyethylene glycol laurate, 2 kg of N-alkylglucamide and 10 kg of water, and evenly stirring in a 10 liter (L) glass stirring reactor for 1 hour to obtain mixture A, and then mixing mixture A It was mixed with FC-44302kg, catechol 1.5kg, hydroxypropyl cellulose 300g, mercaptobenzothiazole 50g, polyethyleneimine 50g and 5kg of water, and stirred for 1 hour to obtain sample 1.
  • the transformer oil fire extinguishing agent of this comparative example is different in that polyethylene glycol laurate is not added in this comparative example, and sample 2 is obtained in this comparative example.
  • the transformer oil fire extinguishing agent of this comparative example is different from Example 1 in that the N-alkylglucosamine is not added to this comparative example, and sample 3 is obtained in this comparative example.
  • the transformer oil fire extinguishing agent of this comparative example is different in that FC-4430 is not added in this comparative example, and sample 4 is obtained in this comparative example.
  • the transformer oil fire extinguishing agent of this comparative example is different from Example 1 in that catechol is not added in this comparative example, and sample 5 is obtained in this comparative example.
  • the transformer oil fire extinguishing agent of this comparative example is different from Example 1 in that hydroxypropyl cellulose is not added to this comparative example, and sample 6 is obtained in this comparative example.
  • Sample 1 has the best fire extinguishing effect, and the oil-in-water emulsifier, combustion negative catalyst, and near-fire gelling synergist are the three key components that determine the fire extinguishing performance of the fire extinguishing agent.
  • the surface spreading agent is a key component that determines the ability of the fire extinguishing agent to prevent re-ignition.
  • the fire extinguisher is connected to the ground.
  • the nozzle should be connected to the handle , And then connected to the earth.
  • the metal plate is energized, the fire extinguisher is opened and sprayed, and the current flowing between the fire extinguisher and the ground is measured until the spraying ends.
  • Table 3 The comparison of the effective fire extinguishing time of the above seven fire extinguishing agents is shown in Table 3 below.
  • Table 3 Electric current flowing between the fire extinguishing agent and the ground when the seven fire extinguishing agents in Example 3 are used to extinguish a fire
  • the fire extinguishing agent has a good charging safety performance.
  • adding a cloud point enhancer can significantly increase the cloud point of the fire extinguishing agent, can maintain long-term stability at about 60 degrees, and can be suitable for use in many different climatic conditions.
  • a fire extinguishing system includes a pump set pressure module 2, a water storage tank 3, a fire extinguishing agent mixing device 4, a fire extinguishing agent tank 5, a zone control system 6, and a sprinkler system 7 arranged around a transformer ( It includes a plurality of nozzles surrounding the transformer) and an automatic control-protection device 1 configured to control the startup, shutdown of the pressure module 2 of the pump set and an automatic protection system.
  • the automatic control-protection device 1 is connected to the pressure module 2 of the pump set, the storage tank 3 is connected to the inlet of the pressure module 2 of the pump set, the outlet of the pressure module 2 of the pump set is connected to the inlet of the fire extinguishing agent mixing device 4, and the fire extinguishing agent tank 5 is also It is connected to the inlet of the fire extinguishing agent mixing device 4, the outlet of the fire extinguishing agent mixing device 4 is connected to the inlet of the zone control system 6, and the outlet of the zone control system 6 is connected to the sprinkler system 7.
  • the fire extinguishing agent prepared in Example 1 is stored in the fire extinguishing agent tank 5, and the droplet diameter of the water mist sprayed from the nozzle system is controlled to be 200-400 microns, and the droplet concentration is 20 to 100 g / ( m2 ⁇ s), the average initial axial spray velocity of the droplet is 6-20m / s.
  • the determination of the droplet diameter and the droplet concentration of the water mist sprayed by the nozzle system is obtained by carrying out relevant tests using the device shown in FIG. 1, and the device shown in FIG. 2 can be used to study the water mist. Wind resistance.
  • the test device shown in FIG. 1 includes a power module, a water spray nozzle, a droplet diameter measurement system, an analog transformer bushing, and a conductivity measurement module.
  • the power module can generate high-voltage electricity
  • the droplet diameter measuring system measures the diameter of water mist droplets
  • the simulation of the transformer casing simulates the discharge body
  • the conductivity measurement module measures the conductivity value of water.
  • the breakdown voltage test procedure of the test refers to the artificial pollution test measurement method of high-voltage insulators (GB / T4584-2004 / IEC60507: 1991), and the water mist breakdown voltage value is measured by a method of 50% withstand voltage.
  • the discharge interval used in the water mist electrification breakdown test is 3m. The characteristics of the water mist breakdown voltage under this condition are obtained, and the parameters of the droplet diameter and droplet concentration suitable for the charged fire extinguishment are obtained in the law.
  • the test device shown in FIG. 2 includes a water pump, a water spray nozzle, a three-dimensional velocity measurement system for a droplet, and a wind tunnel.
  • a water pump a water spray nozzle
  • a three-dimensional velocity measurement system for a droplet a droplet
  • a wind tunnel At the beginning of the test, turn on the water pump and spray water mist, and measure the velocity of the droplets in the three-dimensional range. Then, open the wind tunnel, control the wind speed, and observe the changes in the distance of the spray nozzle and the spray cone angle.
  • the fire extinguishing system in this application embodiment realizes the application of transformer emulsified insulation and charged fire extinguishing agent, which is suitable for wide application.
  • the fire extinguishing system in this application embodiment is not only suitable for the prevention and control of transformer fires of multiple voltage levels, but also can be widely used for the prevention of multiple types of oil-insulated equipment fires and cable tunnel fires. Through improvement, it can also be extended to the UHV valve hall Fire protection has huge application potential.
  • the water mist sprayed by the fire extinguishing system provided by the present application has strong insulation performance, can realize fire extinguishing with electricity, and has outdoor wind resistance.
  • the fire extinguishing system provided by this application has a simple structure, is easy to control, and has a wide application range.

Landscapes

  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Fire-Extinguishing Compositions (AREA)

Abstract

一种灭火剂,按重量份计,包括以下组分:水包油型乳化剂20-30份;浊点提升剂5-20份;表面铺张剂3-15份;燃烧负催化剂1-5份;近火胶凝增效剂1-5份;缓蚀助剂0.1-3份;水40-60份。

Description

一种灭火剂及灭火系统
本申请要求在2018年06月22日提交中国专利局、申请号为201810659753.1的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请属于变电配套设备技术领域,例如涉及一种灭火剂及灭火系统。
背景技术
变压器是电力能源互联网的动力枢纽。电力变压器内部含有大量可燃性绝缘油,一旦发生火灾,将引发大面积、长时间停电事故,造成重大财产损失乃至人员伤亡。据统计,每63至81台变压器在其40年的服务期限内会有1台发生火灾。电力变压器总体基数很大,变压器火灾已成为威胁电力安全供应的重大灾害。如2016年6月18日,某省变电站变压器失火,多台变压器烧毁,故障损失负荷24.3万千瓦,停电用户8.65万户,社会影响极大。因此,亟需开发高效的变压器油火灾灭火技术。
水系灭火剂添加至水中,可显著提升水的灭火效果。但市面上的灭火剂主要针对常规火灾,如A类木材、塑料火灾,以及B类汽油、柴油等火灾。变压器油属于偏重油,粘度和燃值高,灭火原理不同于汽油、柴油等油类火灾。因此,传统油类灭火液难以适用于变压器油火灾扑救。而且,传统灭火液不考虑绝缘问题,采用了大量导电离子化合物,不能应用于带电环境。因此,亟需研制绝缘性能强、灭火效率高的变压器油火灾灭火液。
发明内容
本申请所要解决的技术问题是克服以上背景技术中提到的不足和缺陷,提供一种绝缘性能强、灭火效率高的灭火剂,并相应提供一种灭火系统。
本申请提出的技术方案为:
一种灭火剂,按重量份计,包括以下组分:
Figure PCTCN2019092291-appb-000001
Figure PCTCN2019092291-appb-000002
变压器油粘度较高,灭火原理不同于汽油、柴油等油类火灾,传统油类灭火液难以适用于变压器油火灾扑救,研究发现,通过水包油乳化剂乳化变压器油,形成“水包油”型的特定乳化物,可显著降低燃油可燃性,实现高效灭火。
在一实施例中,上述灭火剂中,所述水包油型乳化剂为聚氧乙烯氧丙烯油酸酯、聚氧乙烯山梨醇蜂蜡衍生物、四乙二醇单月桂酸酯、聚氧乙烯月桂醚、聚氧乙烯失水山梨醇单硬脂酸酯、六乙二醇单硬脂酸酯、聚氧乙烯失水山梨醇单油酸酯、聚乙二醇月桂酸酯、聚氧乙烯十六烷基醚、聚氧乙烯失水山梨醇三硬脂酸酯、聚氧乙烯失水山梨醇三油酸酯、聚氧乙烯羊毛脂衍生物、聚氧乙烯单油酸酯、聚氧乙烯单棕榈酸酯、烷基芳基磺酸盐、三乙醇胺油酸酯、聚氧乙烯单月桂酸酯、聚氧乙烯烷基酚、聚氧乙烯山梨醇羊毛脂衍生物、聚氧乙烯烷基芳基醚、聚氧乙烯单月桂酸酯、聚氧乙烯月桂醚、聚氧乙烯蓖麻油、聚氧乙烯植物油、聚氧乙烯失水山梨醇单月桂酸酯、混和脂肪酸和树脂酸的聚氧乙烯酯、聚氧乙烯失水山梨醇单硬脂酸酯、聚氧乙烯油基醚、聚氧乙烯十八醇、聚氧乙烯油醇、聚氧乙烯脂肪醇、聚乙二醇单棕榈酸酯、聚氧乙烯失水山梨醇单棕榈酸酯、聚氧乙烯十六烷基醇、聚氧乙烯氧丙烯硬脂酸酯、聚氧乙烯山梨醇羊毛脂衍生物和聚氧乙烯单硬脂酸酯中的一种或多种的组合。
在一实施例中,上述灭火剂中,所述浊点提升剂为脂肪酸甲酯乙氧基化物、烷基多糖苷、N-烷基葡萄糖酰胺中的一种或多种。受表面活性剂分子结构和共存物质的影响,乳化剂溶液随着温度的升高会出现浑浊现象,会影响乳化剂的性能,乳化剂溶液转变时的温度即为浊点温度。由于灭火液需要置于室温应用,若浊点温度太低,将影响灭火剂的使用,本申请中加入脂肪酸甲酯乙氧基化物、烷基多糖苷、N-烷基葡萄糖酰胺可大幅提高灭火剂的浊点温度。
在一实施例中,上述灭火剂中,所述表面铺张剂为氟碳非离子型表面活性剂和有机硅-聚醚共聚物中的一种或几种,所述氟碳非离子型表面活性剂的型号包括XW-201、XW-101、FC-4430、FC-430、RK-8317、FC-2和RK-8316;有机硅-聚醚共聚物的型号包括SPE、DY-ET121L、SH-300、600CS、1000CS。灭火过程中,灭火剂能否快速铺张到燃油表面是保证灭火剂灭火效果、防止变压器油复燃的关键,采用上述表面铺张剂可以显著提升灭火剂在变压器油表面的铺张速度,最终提升灭火剂防止变压器油复燃的能力。
在一实施例中,上述灭火剂中,所述燃烧负催化剂为4,4’-双(α,α-二甲基苄基)二苯胺、硫脲、甲硫氨酸、盐酸半胱氨酸和邻苯二酚中的一种或多种。有机化合物的燃烧过程是一系列的自由基反应,在热、光或氧的作用下,有机分子的化学键发生断裂,生成活泼的自由基和氢过氧化物,氢过氧化物发生分解反应,也生成烃氧自由基和羟基自由基。这些自由基可以引发一系列的自由基反应,导致有机化合物的结构和性质发生燃烧变化。燃烧负催化剂是可减缓或抑止化学反应过程的物质,它和常规催化剂的作用相反,常规催化剂是一种能加速化学反应过程的物质。燃烧负催化剂的作用是消除刚刚产生的自由基,或者促使氢过氧化物的分解,阻止燃烧。采用上述特定的燃烧负催化剂对变压器油火具有燃烧负催化作用。
在一实施例中,上述灭火剂中,所述近火胶凝增效剂为羟乙基纤维素、羟丙基纤维素和羟丙基羧甲基纤维素中的一种或多种。水雾灭火过程中存在一个问题:当火势很大时,由于雾滴颗粒较小(小于400微米(μm)),在未接近火源就已经基本蒸发,不能实现最佳的灭火效果。如何控制雾滴中灭火水剂的蒸发速度,是实现高效灭火的一个关键问题。研究发现,羟乙基纤维素、羟丙基纤维素、羟丙基羧甲基纤维素在达到约80摄氏度(℃)以上的温度时会发生高温胶凝现象,形成半固体状的凝胶。因此,基于以上研究发现,将羟乙基纤维素、羟丙基纤维素、羟丙基羧甲基纤维素中的一种或多种的组合加入灭火剂中,当灭火水剂雾滴接近火源时,由于雾滴受热,雾滴颗粒将产生胶凝化,降低水的蒸发速率,使雾滴能够更加接近火源后再蒸发或者产生灭火效果,显著提升灭火液的灭火性能。
在一实施例中,上述灭火剂中,所述缓蚀助剂为巯基苯并噻唑、磺化木质素、甲基苯并三唑、苯骈三氮唑、巯基苯骈噻唑、牛脂胺、十六烷胺、十八烷胺、羟基乙叉二膦酸、羟基乙叉二膦酸二钠、聚丙烯酸、聚天冬氨酸和聚乙烯亚胺中的一种或多种。缓蚀剂可分为三类。第一类为吸附膜型缓蚀剂,具有极性基团,可被金属表面的电荷吸附,在整个阳极和阴极区域形成一层单分子膜,从而阻止或减缓电化学反应的发生,此类缓蚀剂包括牛脂胺、十六烷胺和十八烷胺。第二类缓蚀剂同时含有亲水基和憎水基,为含氮、含硫或含羟基的、具有表面活性的有机化合物,这些化合物的分子利用亲水基吸附于金属表面上,形成一层致密的憎水膜,保护金属表面不受水腐蚀,此类缓蚀剂包括羟基乙叉二膦酸、羟基乙叉二膦酸二钠、聚丙烯酸、聚天冬氨酸、聚乙烯亚胺。第三类缓蚀剂能与金属形成络合物,进而在表面成膜,此类缓蚀剂包括巯基苯并噻唑、苯并三唑、磺化木质素、甲基苯并三唑、苯骈三氮唑、巯基苯骈噻唑,是针对有色金属特别是铜的缓蚀剂。本申请中为了减小灭火剂对设备腐蚀,在灭火剂中采用多种缓蚀剂的组合使用,可以实现使多类缓蚀剂的效果相互叠加,以实 现最佳的缓蚀效果。
作为一个总的技术构思,本申请还提供一种灭火系统,包括储水罐、灭火剂混合装置、灭火剂罐、设置为将所述储水罐中水泵入所述灭火剂混合装置中的泵组压力模块、设置为将所述灭火剂混合装置中的灭火剂分配多台变压器的分区控制系统、设置为布设于所述变压器周边的喷头系统(包括多个围绕变压器的喷嘴)和设置为控制泵组压力模块启动、关停及设置为自动保护系统稳定的自动控制-保护装置,自动控制-保护装置与泵组压力模块连接,所述储水罐与泵组压力模块的入口相连,所述泵组压力模块的出口与所述灭火剂混合装置的入口相连,所述灭火剂罐也与所述灭火剂混合装置的入口相连,所述灭火剂混合装置的出口与所述分区控制系统的入口相连,所述分区控制系统的出口与所述喷头系统相连通。
在一实施例中,上述灭火系统中,所述灭火剂罐中储存的灭火剂为上述的灭火剂。一般来说,本申请中纯灭火剂组分的粘度很大,而实际用于灭火的灭火剂的浓度小于0.5%,将本申请的灭火剂放入灭火剂罐中,需要加入一定比例的水,储水罐中的水经泵组压力模块与灭火剂罐中灭火剂在灭火剂混合装置混合后进入后续系统,实现灭火剂的稀释。
上述灭火系统中,分区控制系统的存在,可使上述灭火系统同时服务于多变压器。分区控制系统是一套阀组,常用电动球阀,不同变压器对应不同的电动球阀。假设一套灭火系统保护三台变压器,而由于变压器是相互独立的,火灾发生时,通常不会三台变压器同时起火,一般是一台变压器起火,通过分区控制系统可实现对不同变压器进行分区控制,当某一种变压器起火时,只需打开这个分区的电动球阀,进行灭火,可实现一套灭火装置覆盖多台变压器。
上述灭火系统中,自动控制-保护装置的存在可对整个灭火系统起到保护作用。如泵组压力模块水压过高会自动关停,以保护系统;如储水罐无水,泵组压力模块会自动关停,以保护泵组等。
在一实施例中,上述灭火系统中,所述喷头系统喷出的水雾的雾滴直径在200-400微米范围内、雾滴浓度在20-100克/(平方米·秒)(g/(m2·s))范围内、雾滴平均初始轴向喷射速度在6-20米/秒(m/s)范围内。具有上述物理特性的水雾具有和空气相当或更好的绝缘性能。
上述灭火系统中,所述喷头系统喷出的水雾的雾滴直径和雾滴浓度的选择为采用如图1所示的装置开展相关试验得到。
图1所示的试验装置包括电源模块、水雾喷头、雾滴直径测量系统、模拟变压器套管、电导率测量模块组成。其中电源模块可产生高压电,雾滴直径测 量系统测量水雾雾滴直径,模拟变压器套管模拟放电体,电导率测量模块测量水的电导率值。试验开始时,首先测量添加至灭火剂中的水的电导率,然后开展水雾的带电击穿试验。试验的击穿电压测试流程参考了高压绝缘子的人工污秽试验测量方法(GB/T 4584-2004/IEC 60507:1991),利用50%耐受电压的方法测量水雾击穿电压值。其中水雾带电击穿试验采用的放电间距为3米(m),获得该工况下的水雾击穿电压特性规律,在规律中获得适用于带电灭火的雾滴直径和雾滴浓度的参数区段。
上述灭火系统中,水雾在户外应用,需要满足一定的防风要求。采用图2所示的装置可以研究水雾的抗风能力。图2所示的试验装置包括水泵、水雾喷头、雾滴三维速度测量系统、风洞组成。试验开始时,开启水泵并喷射水雾,测量雾滴在三维范围内的速度。然后,开启风洞,控制风速,观察水雾喷头距离和雾化锥角的变化。研究发现,在多种雾滴物性和雾滴三维速度参数中,雾滴的雾滴直径和平均初始轴向喷射速度决定了水雾喷射距离和雾化锥角的变化。因此可以认为,这两个参数是影响水雾抗风性能的关键。本申请针对200-400微米的水雾雾滴范围内,开展不同雾滴平均初始轴向喷射速度与抗风性能力的试验研究,研究发现可抗5级风的雾滴平均初始轴向喷射速度为6-12米/秒(m/s)。
上述灭火系统中,由于采用上述绝缘性能强(由于采用非离子型的物质)的灭火剂,外加控制喷头系统的相关参数,最终得到高绝缘性能、高灭火效率的灭火系统。
本申请提供的灭火剂,包含非离子型的水包油型乳化剂、浊点提升剂、表面铺张剂、燃烧负催化剂、近火胶凝增效剂、缓蚀助剂和水。非离子型的水包油型乳化剂降低燃油可燃性,燃烧负催化剂实现阻燃,阻止油火燃烧,快速熄灭火焰,表面铺张剂阻止油火复燃,近火胶凝增效剂进一步提升灭火剂的灭火组分利用率,浊点提升剂、缓蚀助剂确保灭火剂的灭火有效性和应用范围。上述多种物质导电能力弱,绝缘性能强,多种物质相互协同作用,最终获得的复合灭火剂同时具有绝缘性能高、灭火效率高、带电安全可靠的优点。
附图说明
图1为水雾雾化绝缘试验装置的示意图;
图2为水雾抗风性试验装置的示意图;
图3为一实施例中灭火系统的结构示意图。
图例说明:
1、自动控制-保护装置;2、泵组压力模块;3、储水罐;4、灭火剂混合装置;5、灭火剂
罐;6、分区控制系统;7、喷头系统。
具体实施方式
为了便于理解本申请,下文将结合说明书附图和实施例对本申请作更全面、细致地描述,但本申请的保护范围并不限于以下具体的实施例。
除非另有定义,下文中所使用的所有专业术语与本领域技术人员通常理解的含义相同。本文中所使用的专业术语只是为了描述具体实施例的目的,并不是旨在限制本申请的保护范围。
除非另有特别说明,本申请中用到的多种原材料、试剂、仪器和设备等均可通过市场购买得到或者可通过现有方法制备得到。
实施例1:
一种变压器油灭火剂,包含以下组分:5千克(kg)聚乙二醇月桂酸酯、2kgN-烷基葡萄糖酰胺、2kg氟碳表面活性剂(FC-4430)、1.0kg邻苯二酚、300g羟丙基纤维素、50克(g)巯基苯骈噻唑、50g聚乙烯亚胺与15kg水。灭火剂制备方法为先将聚乙二醇月桂酸酯5kg、N-烷基葡萄糖酰胺2kg与水10kg,在10升(L)玻璃搅拌反应釜中均匀搅拌1小时获得混合物A,再将混合物A与FC-44302kg、邻苯二酚1.5kg、羟丙基纤维素300g、巯基苯骈噻唑50g、聚乙烯亚胺50g与水5kg混合,搅拌1小时,即获得样品1。
对比例1:
本对比例的变压器油灭火剂与实施例1相比,不同之处在于本对比例中没有添加聚乙二醇月桂酸酯,本对比例得到样品2。
对比例2:
本对比例的变压器油灭火剂与实施例1相比,不同之处在于本对比例中没有添加N-烷基葡萄糖酰胺,本对比例得到样品3。
对比例3:
本对比例的变压器油灭火剂与实施例1相比,不同之处在于本对比例中没有添加FC-4430,本对比例得到样品4。
对比例4:
本对比例的变压器油灭火剂与实施例1相比,不同之处在于本对比例中没 有添加邻苯二酚,本对比例得到样品5。
对比例5:
本对比例的变压器油灭火剂与实施例1相比,不同之处在于本对比例中没有添加羟丙基纤维素,本对比例得到样品6。
应用实施例1:
首先将直径为100厘米(cm)的油盘放在水平地面上,先在油盘中添加20L水(起降温作用,防止油盘烧坏),再加10L 25#克拉玛依变压器油,最后再加500mL汽油用于引燃。采用纯水和添加样品1-6的水进行灭火,采用高压细水雾泵组和喷头进行灭火,泵组压力为12兆帕(Mpa),流量为750毫升/分钟(ml/min)。引燃火盘,首先预燃360秒(s),然后启动水泵组,升高水泵压力,实施灭火,明火熄灭后停止喷射灭火剂,并记录灭火时间。为保证可重复性,每组试验开展至少两次,并取平均值。以上七种灭火剂的有效灭火时间对比如下表1所示。
表1:应用实施例1中七种灭火剂的有效灭火时间
Figure PCTCN2019092291-appb-000003
由表1可知,样品1的灭火效果最好,且水包油乳化剂、燃烧负催化剂、近火胶凝增效剂是决定灭火剂灭火性能的三大关键组分。
应用实施例2:
根据国标GB15308-2005《泡沫灭火剂》第5.10.5.2中的规定设置灭火剂抗烧性试验,记录25%的燃料面积被引燃的时间,即25%抗烧时间。以上七种灭火剂的25%抗烧时间对比如下表2所示。
表2:应用实施例2中七种灭火剂的有效抗烧时间
Figure PCTCN2019092291-appb-000004
由表2可知,表面铺张剂是决定灭火剂防复燃能力的关键组分。
应用实施例3:
根据国标GB4351.1-2005《手提式灭火器第1部分:性能与结构要求》中第7.13条中规定要求设置带电绝缘性试验。将一块尺寸为(1±0.025)m×(1±0.025)m的金属板垂直悬挂在绝缘的支架上,将金属板连接到变压器上,使金属板与大地之间建立一个(36±3.6)千伏(kV)的交流电压。这回路的阻抗应是:当一个等于通常初级10%的电压被加在初级上,且次级短路时,则次级电流不小于0.1毫安(mA)。然后,固定灭火器在绝缘支架上,使喷嘴保持距离金属板中心1m,并与金属板成直角对准金属板中心,灭火器与大地连接,对配有喷射软管的灭火器,喷嘴应与手把连接,再与大地连接。金属板通电,打开灭火器喷射,测量流过灭火器与大地间的电流,直至喷射结束。以上七种灭火剂的有效灭火时间对比如下表3所示。
表3:应用实施例3中七种灭火剂灭火时流过灭火剂与大地间的电流
Figure PCTCN2019092291-appb-000005
由表3可知,由于本实施例均采用了非离子型化合物组分,灭火剂具有很好的带电安全性能。
应用实施例4
量取15-20ml灭火剂于试管中,水浴加热至混浊。用温度计边搅拌边冷却,看重新澄清的温度点,该温度即为灭火液的浊点。以上七种灭火剂的浊点如下表4所示。
表4:应用实施例4中七种灭火剂的浊点
样品 纯水 样品1 样品2 样品3 样品4 样品5 样品6
浊点(℃) 56 34 65 55 56 58 59
由表4可知,加入浊点提升剂可以显著提升灭火剂的浊点,在60度左右可以保持长期稳定,可适合多地不同气候条件下使用。
应用实施例5:
研究发现,细水雾雾滴间产生的大空气间隙,可使水的绝缘性能提升,因此带电安全性能较高。但是对于户外应用的变压器灭火系统,由于户外存在风的影响,因此除了需满足带电安全性之外,还需要满足抗风性要求。
如图3所示,一种灭火系统,包括泵组压力模块2、储水罐3、灭火剂混合装置4、灭火剂罐5、分区控制系统6、设置为布设于变压器周边的喷头系统7(包括多个围绕变压器的喷嘴)和设置为控制泵组压力模块2启动、关停及设置为自动保护系统稳定的自动控制-保护装置1。自动控制-保护装置1与泵组压力模块2连接,储水罐3与泵组压力模块2的入口相连,泵组压力模块2的出口与灭火剂混合装置4的入口相连,灭火剂罐5也与灭火剂混合装置4的入口相连,灭火剂混合装置4的出口与分区控制系统6的入口相连,分区控制系统6的出口与喷头系统7相连通。本应用实施例中,灭火剂罐5中储存实施例1中制备得到的灭火剂,且控制喷头系统喷出的水雾的雾滴直径为200-400微米、雾滴浓度为20-100g/(m2·s)、雾滴平均初始轴向喷射速度为6-20m/s。
本应用实施例中,喷头系统喷出的水雾的雾滴直径和雾滴浓度的确定为采用如图1所示的装置开展相关试验得到,并采用图2所示的装置可以研究水雾的抗风能力。图1所示的试验装置包括电源模块、水雾喷头、雾滴直径测量系统、模拟变压器套管、电导率测量模块。其中电源模块可产生高压电,雾滴直径测量系统测量水雾雾滴直径,模拟变压器套管模拟放电体,电导率测量模块测量水的电导率值。试验开始时,首先测量添加至灭火剂中的水的电导率,然后开展水雾的带电击穿试验。试验的击穿电压测试流程参考了高压绝缘子的人工污秽试验测量方法(GB/T 4584-2004/IEC 60507:1991),利用50%耐受电压的方法测量水雾击穿电压值。其中水雾带电击穿试验采用的放电间距为3m,获得该工况下的水雾击穿电压特性规律,在规律中获得适用于带电灭火的雾滴直径和雾滴浓度的参数区段。
图2所示的试验装置包括水泵、水雾喷头、雾滴三维速度测量系统、风洞。试验开始时,开启水泵并喷射水雾,测量雾滴在三维范围内的速度。然后,开启风洞,控制风速,观察水雾喷头距离和雾化锥角的变化。
本应用实施例中的灭火系统实现了变压器乳化绝缘带电灭火剂的应用,适合广泛推广应用。另外,本应用实施例中的灭火系统不仅适合多个电压等级的变压器火灾防治,还可广泛应用于多类油绝缘设备火灾、电缆隧道火灾的防治,通过改进,还可以推广至特高压阀厅火灾的防护,应用潜力巨大。
本申请提供的灭火系统喷出的水雾绝缘性能强,可实现带电灭火,并具有户外抗风能力。
本申请提供的灭火系统,结构简单,易于操控,应用范围广。

Claims (10)

  1. 一种灭火剂,按重量份计,包括以下组分:
    Figure PCTCN2019092291-appb-100001
  2. 根据权利要求1所述的灭火剂,其中,所述水包油型乳化剂为聚氧乙烯氧丙烯油酸酯、聚氧乙烯山梨醇蜂蜡衍生物、四乙二醇单月桂酸酯、聚氧乙烯月桂醚、聚氧乙烯失水山梨醇单硬脂酸酯、六乙二醇单硬脂酸酯、聚氧乙烯失水山梨醇单油酸酯、聚乙二醇月桂酸酯、聚氧乙烯十六烷基醚、聚氧乙烯失水山梨醇三硬脂酸酯、聚氧乙烯失水山梨醇三油酸酯、聚氧乙烯羊毛脂衍生物、聚氧乙烯单油酸酯、聚氧乙烯单棕榈酸酯、烷基芳基磺酸盐、三乙醇胺油酸酯、聚氧乙烯单月桂酸酯、聚氧乙烯烷基酚、聚氧乙烯山梨醇羊毛脂衍生物、聚氧乙烯烷基芳基醚、聚氧乙烯单月桂酸酯、聚氧乙烯月桂醚、聚氧乙烯蓖麻油、聚氧乙烯植物油、聚氧乙烯失水山梨醇单月桂酸酯、混和脂肪酸和树脂酸的聚氧乙烯酯、聚氧乙烯失水山梨醇单硬脂酸酯、聚氧乙烯油基醚、聚氧乙烯十八醇、聚氧乙烯油醇、聚氧乙烯脂肪醇、聚乙二醇单棕榈酸酯、聚氧乙烯失水山梨醇单棕榈酸酯、聚氧乙烯十六烷基醇、聚氧乙烯氧丙烯硬脂酸酯、聚氧乙烯山梨醇羊毛脂衍生物和聚氧乙烯单硬脂酸酯中的至少一种。
  3. 根据权利要求1所述的灭火剂,其中,所述浊点提升剂为脂肪酸甲酯乙氧基化物、烷基多糖苷和N-烷基葡萄糖酰胺中的至少一种。
  4. 根据权利要求1所述的灭火剂,其中,所述表面铺张剂为氟碳非离子型表面活性剂和有机硅-聚醚共聚物中的至少一种,所述氟碳非离子型表面活性剂的型号包括XW-201、XW-101、FC-4430、FC-430、RK-8317、FC-2和RK-8316;有机硅-聚醚共聚物的型号包括SPE、DY-ET121L、SH-300、600CS、1000CS。
  5. 根据权利要求1所述的灭火剂,其中,所述燃烧负催化剂为4,4’-双(α,α-二甲基苄基)二苯胺、硫脲、甲硫氨酸、盐酸半胱氨酸和邻苯二酚中的至少一种。
  6. 根据权利要求1所述的灭火剂,其中,所述近火胶凝增效剂为羟乙基纤维素、羟丙基纤维素和羟丙基羧甲基纤维素中的至少一种。
  7. 根据权利要求1所述的灭火剂,其中,所述缓蚀助剂为巯基苯并噻唑、磺化木质素、甲基苯并三唑、苯骈三氮唑、巯基苯骈噻唑、牛脂胺、十六烷胺、十八烷胺、羟基乙叉二膦酸、羟基乙叉二膦酸二钠、聚丙烯酸、聚天冬氨酸和聚乙烯亚胺中的至少一种。
  8. 一种灭火系统,包括储水罐(3)、灭火剂混合装置(4)、灭火剂罐(5)、设置为将所述储水罐(3)中的水泵入所述灭火剂混合装置(4)中的泵组压力模块(2)、设置为将所述灭火剂混合装置(4)中的灭火剂分配至多台变压器的分区控制系统(6)、设置为布设于所述变压器周边的喷头系统(7)和设置为控制泵组压力模块(2)启动、关停及设置为自动保护系统稳定的自动控制-保护装置(1),所述自动控制-保护装置(1)与所述泵组压力模块(2)连接,所述储水罐(3)与泵组压力模块(2)的入口相连,所述泵组压力模块(2)的出口与所述灭火剂混合装置(4)的入口相连,所述灭火剂罐(5)与所述灭火剂混合装置(4)的入口相连,所述灭火剂混合装置(4)的出口与所述分区控制系统(6)的入口相连,所述分区控制系统(6)的出口与所述喷头系统(7)相连通。
  9. 根据权利要求8所述的灭火系统,其中,所述灭火剂罐(5)中储存的灭火剂为权利要求1-7中任一项所述的灭火剂。
  10. 根据权利要求8或9所述的变压器的灭火系统,其中,所述喷头系统(7)喷出的水雾的雾滴直径在200-400微米范围内、雾滴浓度在20-100g/(m2·s)范围内、雾滴平均初始轴向喷射速度在6-20m/s范围内。
PCT/CN2019/092291 2018-06-22 2019-06-21 一种灭火剂及灭火系统 WO2019242735A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2019272058A AU2019272058B2 (en) 2018-06-22 2019-06-21 Fire extinguishing agent and fire extinguishing system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810659753.1A CN108785911B (zh) 2018-06-22 2018-06-22 一种变压器油灭火剂及灭火系统
CN201810659753.1 2018-06-22

Publications (1)

Publication Number Publication Date
WO2019242735A1 true WO2019242735A1 (zh) 2019-12-26

Family

ID=64084949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/092291 WO2019242735A1 (zh) 2018-06-22 2019-06-21 一种灭火剂及灭火系统

Country Status (3)

Country Link
CN (1) CN108785911B (zh)
AU (1) AU2019272058B2 (zh)
WO (1) WO2019242735A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108785911B (zh) * 2018-06-22 2019-08-09 国网湖南省电力有限公司 一种变压器油灭火剂及灭火系统
CN110141820B (zh) * 2019-05-24 2021-11-02 国网湖南省电力有限公司 用于变压器高温油火的绝缘灭火剂及其使用方法
CN110152222B (zh) * 2019-05-24 2021-03-16 国网湖南省电力有限公司 带电灭火喷头、带电防爆灭火装置及带电灭火方法
CN110389045B (zh) * 2019-07-29 2021-01-08 应急管理部天津消防研究所 用于大型实体火试验的变压器油加热装置及加热方法
CN111184963B (zh) * 2020-01-20 2021-04-16 安徽飞镖知识产权服务股份有限公司 一种用于工业控制设备的保护设备
CN112526301B (zh) * 2020-11-30 2022-01-21 广东电网有限责任公司佛山供电局 一种高电导率雾下线路冲击耐受特性测试平台及评估方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1323236A (zh) * 1998-09-11 2001-11-21 皮罗根公司 灭火气溶胶形成材料
CN103691085A (zh) * 2013-12-17 2014-04-02 中国科学技术大学 一种洁净化学气体和细水雾联合作用的灭火系统
US20140202716A1 (en) * 2013-01-22 2014-07-24 Miraculum Applications AB Flame retardant and fire extinguishing product for fires in liquids
CN106975192A (zh) * 2017-04-20 2017-07-25 湖南省湘电试研技术有限公司 一种变压器油火灾安全灭火剂及其制备方法
CN107875559A (zh) * 2017-12-14 2018-04-06 国网湖南省电力有限公司 适用于细水雾的水系灭火剂
CN108785911A (zh) * 2018-06-22 2018-11-13 国网湖南省电力有限公司 一种变压器油灭火剂及灭火系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103751943B (zh) * 2014-01-13 2020-10-13 湖北及安盾消防科技有限公司 一种含有含氮类有机化合物的灭火组合物

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1323236A (zh) * 1998-09-11 2001-11-21 皮罗根公司 灭火气溶胶形成材料
US20140202716A1 (en) * 2013-01-22 2014-07-24 Miraculum Applications AB Flame retardant and fire extinguishing product for fires in liquids
CN103691085A (zh) * 2013-12-17 2014-04-02 中国科学技术大学 一种洁净化学气体和细水雾联合作用的灭火系统
CN106975192A (zh) * 2017-04-20 2017-07-25 湖南省湘电试研技术有限公司 一种变压器油火灾安全灭火剂及其制备方法
CN107875559A (zh) * 2017-12-14 2018-04-06 国网湖南省电力有限公司 适用于细水雾的水系灭火剂
CN108785911A (zh) * 2018-06-22 2018-11-13 国网湖南省电力有限公司 一种变压器油灭火剂及灭火系统

Also Published As

Publication number Publication date
CN108785911B (zh) 2019-08-09
AU2019272058B2 (en) 2021-06-24
AU2019272058A1 (en) 2020-01-23
CN108785911A (zh) 2018-11-13

Similar Documents

Publication Publication Date Title
WO2019242735A1 (zh) 一种灭火剂及灭火系统
CN106975192B (zh) 一种变压器油火灾安全灭火剂及其制备方法
CN110935128B (zh) 一种防火降温水凝胶及其制备方法
CN102940948B (zh) 三相复合型泡沫液的应用
WO2010139124A1 (zh) 一种环保水系灭火剂
CN112494879B (zh) 一种高效水成膜泡沫灭火剂
WO2021254465A1 (zh) 适用特高压换流站的灭火系统、灭火方法及特高压换流站
Lu et al. Experimental evaluation of protecting high-voltage electrical transformers using water mist with and without additives
CN114748828A (zh) 一种高效环保型np-泡沫灭火剂及其制备方法
CN107875559A (zh) 适用于细水雾的水系灭火剂
CN2532566Y (zh) 油浸变压器防爆防火灭火装置
CN115177904A (zh) 一种纳米微泡灭火胶囊制备方法及多形态灭火方法
CN108837366A (zh) 一种抗溶性水成膜泡沫灭火剂的制备方法
Chen et al. Research on suppression effect of low-expansion AFFF, AFFF/AR and FFFP foam on hot oil fire for oil-immersed transformers
CN106964098A (zh) 一种复配协同型a、b、e类水系灭火剂的制备方法
CN110152222B (zh) 带电灭火喷头、带电防爆灭火装置及带电灭火方法
Huang et al. Fire protection of heritage structures: Use of a portable water mist system under high-altitude conditions
CN108837362B (zh) 适用于变压器油火的水系灭火剂
CN214633477U (zh) 一种基于混合灭火剂的全淹没灭火装置
Zhang et al. Patent-based technological developments and surfactants application of Lithium-ion batteries fire-extinguishing agent
Huo et al. Experimental study on fire suppression performance of the high pressure water mist in the engine room of an offshore platform
CN116549904A (zh) 一种适用于变压器油火的绝缘灭火剂及其制备方法、灭火装置
CN110141820B (zh) 用于变压器高温油火的绝缘灭火剂及其使用方法
CN111530012A (zh) 一种抗腐蚀性气溶胶灭火剂的制备方法
CN111298355A (zh) 扑灭燃烧柴油的水基多相新型消防剂及其制备方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019272058

Country of ref document: AU

Date of ref document: 20190621

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19822252

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19822252

Country of ref document: EP

Kind code of ref document: A1