WO2019242733A1 - 一种标定永磁同步电机电流的方法和装置 - Google Patents

一种标定永磁同步电机电流的方法和装置 Download PDF

Info

Publication number
WO2019242733A1
WO2019242733A1 PCT/CN2019/092286 CN2019092286W WO2019242733A1 WO 2019242733 A1 WO2019242733 A1 WO 2019242733A1 CN 2019092286 W CN2019092286 W CN 2019092286W WO 2019242733 A1 WO2019242733 A1 WO 2019242733A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
synchronous motor
magnet synchronous
current
field weakening
Prior art date
Application number
PCT/CN2019/092286
Other languages
English (en)
French (fr)
Inventor
郝斌
贾景国
叶晓
Original Assignee
精进电动科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 精进电动科技股份有限公司 filed Critical 精进电动科技股份有限公司
Publication of WO2019242733A1 publication Critical patent/WO2019242733A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0085Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for high speeds, e.g. above nominal speed
    • H02P21/0089Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for high speeds, e.g. above nominal speed using field weakening
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop

Definitions

  • the invention relates to the technical field of motor control, in particular to a method and device for calibrating the current of a permanent magnet synchronous motor.
  • PMSM Permanent Magnet Synchronous Motor
  • MTPA Maximum Torque Per Ampere
  • the PMSM is generally calibrated manually.
  • the operator manually calibrates the motor data using a bench.
  • the entire process requires a large amount of calibration work to obtain a driving current, a maximum torque corresponding to the driving current, and a corresponding maximum torque.
  • 3D number table characterized by the current angle.
  • the 3D number table after calibration needs to be post-processed by external computing equipment.
  • the 3D number table is converted into data suitable for the motor software program.
  • the unit of torque is integrated into the motor controller.
  • the three-dimensional number table needs a lot of complicated manual calculations before it can be converted into data applicable to the motor controller.
  • the entire work process is cumbersome and inefficient.
  • the invention provides a method and a device for calibrating the current of a permanent magnet synchronous motor, so as to solve the problems of tedious work process and low efficiency caused by manual calibration of the current of the permanent magnet synchronous motor in the existing solution.
  • An aspect of the present invention provides a method for calibrating a current of a permanent magnet synchronous motor, including:
  • the turning speed corresponding to the inflection point of the permanent magnet synchronous motor from the non-field weakening zone into the field weakening zone and the zero torque point demagnetizing current of the field weakening zone are obtained;
  • the permanent magnet synchronous motor current is automatically calibrated in the non-field weakening zone according to the preset maximum torque-current ratio curve
  • the permanent magnet synchronous motor current is automatically calibrated in the field weakening zone according to the set voltage utilization rate and the zero torque point of the field weakening zone.
  • Another aspect of the present invention provides a device for calibrating a current of a permanent magnet synchronous motor, including:
  • a judging unit configured to determine a work area where the permanent magnet synchronous motor is currently located according to a magnitude relationship between the current rotational speed of the permanent magnet synchronous motor and the rotational speed of the inflection point;
  • a first calibration unit for automatically calibrating the current of the permanent magnet synchronous motor in the non-field weakening zone according to a preset maximum torque-current ratio curve when the permanent magnet synchronous motor is in the non-field weakening zone;
  • the second calibration unit is used to automatically calibrate the current of the permanent magnet synchronous motor in the field weakening zone according to the set voltage utilization rate and the zero torque point of the field weakening zone when the permanent magnet synchronous motor is in the field weakening zone.
  • the beneficial effects of the present invention are: compared with the manual calibration method in the prior art, the method of the present invention for automatic calibration of permanent magnet synchronous motor current can significantly shorten the calibration time, and based on the set voltage utilization rate in the field weakening zone.
  • the current calibration of the permanent magnet synchronous motor can ensure a smaller risk of motor out of control, and the safety of automatic calibration can be guaranteed.
  • the calibration data used in the present invention can be all calculated by the controller, the consistency and reliability of the calibration data can be improved, and the operation process of automatically calibrating the current of the permanent magnet synchronous motor by the controller is relatively simple and very easy to operate on site. Has better convenience.
  • FIG. 1 is a flowchart of a method for calibrating a current of a permanent magnet synchronous motor according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a MTPA curve of a non-field weakening area according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram showing changes in torque of a field weakening region with current according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram showing a relationship between a voltage limit ellipse and a current limit circle of a non-field weakening region according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram showing a relationship between a voltage limit ellipse and a current limit circle of a field weakening region according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of an automatic calibration control system of a permanent magnet synchronous motor according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of an automatic calibration process according to an embodiment of the present invention.
  • 11 is another automatic calibration ammeter shown in an embodiment of the present invention.
  • FIG. 12 is a structural block diagram of an apparatus for calibrating a current of a permanent magnet synchronous motor according to an embodiment of the present invention
  • FIG. 13 is a schematic diagram of a hardware structure for calibrating a current of a permanent magnet synchronous motor according to an embodiment of the present invention.
  • a computer-readable medium may be any medium capable of containing, storing, transmitting, propagating, or transmitting instructions.
  • computer-readable media can include, but is not limited to, electrical, magnetic, optical, electromagnetic, infrared, or semiconductor systems, devices, devices, or propagation media.
  • Specific examples of computer-readable media include: magnetic storage devices such as magnetic tapes or hard disk drives (HDD); optical storage devices such as optical disks (CD-ROM); memories such as random access memory (RAM) or flash memory; and / or wired / Wireless communication link.
  • FIG. 1 is a flowchart of a method for calibrating a current of a permanent magnet synchronous motor according to an embodiment of the present invention.
  • the automatic calibration method of this embodiment is applicable to an electric working condition and a power generating working condition of a permanent magnet synchronous motor. As shown in FIG. 1, the method in this embodiment includes:
  • the turning speed corresponding to the entry of the non-weakening zone into the field weakening zone refers to the rotation speed of the permanent magnet synchronous motor corresponding to the non-weakening zone and the critical point of the field weakening zone.
  • the d-axis current of the permanent magnet synchronous motor is zero. Therefore, in this embodiment, the turning speed corresponding to the inflection point from the non-field weakening zone into the field weakening zone can be understood as that the d-axis current of the permanent magnet synchronous motor is zero and the permanent magnet synchronous motor does not run out of control Critical speed. Then, by making the d-axis current and q-axis current of the permanent magnet synchronous motor both zero, the voltage equation of the permanent magnet synchronous motor and the set voltage utilization rate are used to solve the inflection point speed.
  • the zero torque point in the field weakening zone refers to the point where the d-axis current is given to the permanent magnet synchronous motor and the q-axis current is zero.
  • the output torque of the permanent magnet synchronous motor is zero Nm, and the permanent magnet synchronous motor Can run stably.
  • the permanent magnet synchronous motor enters the field weakening zone.
  • the voltage equation of the permanent magnet synchronous motor and the set voltage can be utilized by making the q-axis current of the permanent magnet synchronous motor zero. Rate to find the demagnetizing current at zero torque in the field weakening zone.
  • the voltage utilization rate set in this embodiment refers to the ratio of the effective value and the fundamental value of the fundamental wave component of the maximum three-phase AC line voltage that the inverter can output.
  • base value selection there are two types of base value selection, one is based on the DC bus voltage as the base value; the other is based on the maximum fundamental wave value that the inverter can output in different modulation modes as the base value.
  • S120 Determine a working area where the permanent magnet synchronous motor is currently located according to the magnitude relationship between the current rotational speed of the permanent magnet synchronous motor and the rotational speed of the inflection point.
  • the rotation speed of the permanent magnet synchronous motor is related to the working area where the permanent magnet synchronous motor is located.
  • the rotation speed of the permanent magnet synchronous motor is greater than the rotation speed of the inflection point, the permanent magnet synchronous motor operates in the field weakening area. At speed, the permanent magnet synchronous motor works in the non-field weakening area.
  • the corresponding relationship among the driving current, driving current angle, and output torque at different speeds is the same in the non-field weakening zone, that is, in the non-field weakening zone, the d-axis of a given permanent magnet synchronous motor
  • the torque output by the permanent magnet synchronous motor does not change with the speed. Therefore, in this embodiment, when the permanent magnet synchronous motor is in the non-field weakening zone, it can be calibrated according to the MTPA curve to obtain three-dimensional data tables at different speeds.
  • the three-dimensional data table consists of the driving current, the maximum torque corresponding to the driving current, and A table representing the angle of drive current corresponding to this maximum torque.
  • the permanent magnet synchronous motor current is automatically calibrated in the field weakening zone according to the set voltage utilization rate and the zero torque point of the field weakening zone.
  • the method for automatic calibration of the permanent magnet synchronous motor in this embodiment can significantly shorten the calibration time. For example, 2 engineers manually calibrate a 48Kw permanent magnet synchronous motor in about 3 days. Time, and the automatic calibration method of the embodiment of the present invention can shorten the calibration time to about one day; and perform current calibration on the permanent magnet synchronous motor based on the set voltage utilization rate in the field weakening zone can ensure a smaller risk of motor runaway and automatically Calibration safety can be guaranteed.
  • the calibration data used in this embodiment can all be calculated by the controller, the consistency and reliability of the calibration data can be improved, and the operation process of using the controller to automatically calibrate the current of the permanent magnet synchronous motor is relatively simple and very easy to operate on site , Has better convenience.
  • FIG. 6 is a schematic diagram of an automatic calibration control system of a permanent magnet synchronous motor according to an embodiment of the present invention.
  • the control of the permanent magnet synchronous motor is closely related to the motor controller in the automatic calibration control system.
  • the running performance of the permanent magnet synchronous motor is affected by Constraints of the motor controller. The most obvious is that the limit value of the phase voltage effective value and the phase current effective value of the permanent magnet synchronous motor are limited by the DC side voltage and the maximum output current of the motor controller.
  • FIG. 4 is a voltage limit of the non-weakening zone shown in the embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a relationship between a voltage limit ellipse and a current limit circle of a field weakening area according to an embodiment of the present invention.
  • the zero torque point demagnetizing current I OK calibration
  • the peak value of the current gradient is I OG , that is, when the speed of the permanent magnet synchronous motor is the speed corresponding to the minimum voltage limit ellipse in FIG. 5, the current locus is I OK to I OG .
  • the driving current angle ⁇ is not Monotonic change, so to automatically calibrate the permanent magnet synchronous motor current in the field weakening zone, the drive current angle needs to be adjusted.
  • the permanent magnet synchronous motor current is automatically calibrated in the non-field weakening zone according to the following method:
  • the driving current and driving current angle that make the permanent magnet synchronous motor output the maximum torque are obtained.
  • the driving current is X
  • the optimal control angle is Y
  • the motor outputs the maximum torque at this time.
  • the driving current that makes the permanent magnet synchronous motor output the maximum torque is X
  • the driving current angle is the optimal control angle Y
  • the obtained driving current and driving current angle are used to drive the permanent magnet synchronous motor to obtain the permanent magnet.
  • the driving current, driving current angle and corresponding output torque that make the permanent magnet synchronous motor output the maximum torque are recorded as a set of calibration data, so that different driving currents and different driving currents can be obtained.
  • the output torque corresponding to the angle is obtained from multiple sets of calibration data in the non-field weakening zone.
  • the permanent magnet synchronous motor current is automatically calibrated in the field weakening zone according to the following method:
  • the demagnetizing current at the zero torque point of the field weakening zone is used as the initial drive current of the field weakening zone, and the initial drive current of the field weakening zone and the field drive current are used to drive the permanent magnet synchronous motor.
  • the angle between the current angle and the d-axis of the permanent magnet synchronous motor is zero.
  • the demagnetizing current at the zero torque point in the field weakening zone, the initial drive current angle of the field weakening zone, and the corresponding output torque are the field weakening zones
  • the driving current angle is adjusted according to the difference between the feedback voltage utilization and the set voltage utilization, and the permanent magnet is driven by using the received driving current and the adjusted driving current angle
  • the synchronous motor obtains the output torque of the permanent magnet synchronous motor.
  • the drive current, the adjusted drive current angle, and the corresponding output torque are other calibration data of the field weakening zone.
  • the driving current and driving current angle involved in this embodiment can be understood as being obtained according to a set of calibration data on the field weakening zone.
  • the adjusted driving current angle in the previous group can be used as the driving current angle in the next set of calibration data.
  • the feedback will be based on the feedback.
  • the difference between the voltage utilization rate and the set voltage utilization rate is used to adjust the driving current angle.
  • the adjusted initial driving current angle can be used as the driving current angle in the next set of calibration data.
  • the driving current in the calibration data it can be obtained according to the calibration current gradient value.
  • the driving current in the following set of calibration data can be the sum of the driving current and the calibration current gradient value in the previous set of calibration data.
  • the sum of the driving current in the data and the calibration current gradient value is used as the driving current in the next set of calibration data.
  • the q-axis current of the permanent magnet synchronous motor is 0, in practice, in order to ensure that the permanent magnet synchronous motor can run stably at the full torque point of the entire field weakening region, it needs to be based on the set voltage utilization and actual The difference between the feedback voltage utilization rates is used to dynamically adjust the demagnetization current at the zero torque point in the field weakening zone, that is, the d-axis demagnetization current is dynamically adjusted.
  • the demagnetizing current at the zero torque point of the field weakening zone is adjusted according to the difference between the feedback voltage utilization rate and the set voltage utilization rate, and the angle of the demagnetizing current at the zero torque point of the field weakening zone and the initial driving current angle of the field weakening zone are adjusted Drives a permanent magnet synchronous motor.
  • the PI regulator is used to adjust the demagnetizing current at the zero-torque point in the field weakening zone to ensure that the permanent magnet synchronous motor can operate stably at the full torque point in the entire field-weakening zone.
  • this embodiment After dynamic adjustment of the demagnetizing current at the zero torque point in the field weakening zone, during the automatic calibration of other calibration points in the field weakening zone, this embodiment also according to the difference between the feedback voltage utilization and the set voltage utilization The value dynamically adjusts the angle of the received driving current, such as adjusting the angle of the driving current from the host computer.
  • a PI regulator with an anti-integral saturation function can be designed.
  • the input of the PI regulator is a set voltage utilization rate and a feedback voltage utilization rate.
  • the output of the PI regulator can be determined according to different working conditions. It is the current or current angle. For example, when adjusting the demagnetizing current at the zero torque point in the field weakening zone, the PI regulator outputs current, and during the automatic calibration of other table fixed points in the field weakening zone, the PI regulator outputs the current angle. .
  • the field weakening inflection point rotation speed and the field weakening zone zero torque point demagnetization current can be calculated by using the following formula:
  • the motor permanent magnet flux linkage E ⁇ is the no-load back-EMF amplitude of the permanent magnet synchronous motor
  • ⁇ c is the electrical angular frequency of the permanent magnet synchronous motor
  • ⁇ e is the angular velocity of the rotor
  • L d is the d-axis inductance of the permanent magnet synchronous motor, which can be measured by existing test methods.
  • I d I s cos ⁇
  • I q I s sin ⁇
  • the driving current angle
  • I s the driving current
  • R s a permanent magnet synchronous motor phase resistance
  • P is the number of pole pairs of permanent magnet synchronous motors
  • Spd demag a permanent magnet synchronous motor speed
  • U dc is the DC bus voltage
  • Spd demag is greater than the weak field inflection point rotation speed Spd thd .
  • Spd demag is greater than the weak field inflection point rotation speed Spd thd.
  • One or more calibrated rotation speed values Assuming the calibrated rotation value is 50 rpm, the Spd demag may be Spd thd +50, Spd demag is Spd thd + 50 * n, n is a positive integer greater than 1, and the relationship between the rotor angular speed and the rotational speed is a multiple of 2P ⁇ (60 * ⁇ ) between the rotor angular speed and the rotational speed.
  • the voltage equation of the motor can be used to calculate the inflection point speed corresponding to the entry of the field weakening zone into the field weakening zone and the zero torque point demagnetizing current in the field weakening zone, which provides an accurate reference for the correct calibration of the permanent magnet synchronous motor current.
  • the voltage utilization ratio automatically adjusts the angle of the drive current to ensure the accuracy of the data during the calibration process and the safety of the motor, so that the corresponding table of the obtained output torque, speed and drive current can be used for the torque loop control of the motor.
  • This embodiment is to ensure the safety of the automatic calibration of the permanent magnet synchronous motor.
  • This embodiment detects the temperature of the permanent magnet synchronous motor. When the temperature of the permanent magnet synchronous motor reaches or exceeds the motor protection temperature, the current of the calibrated permanent magnet synchronous motor is recorded. Data, and reduce the speed of the permanent magnet synchronous motor and / or reduce the driving current of the permanent magnet synchronous motor. When the temperature of the permanent magnet synchronous motor reaches a safe value, according to the recorded data of the calibrated permanent magnet synchronous motor, Automatic calibration of magnetic synchronous motor current.
  • the entire calibration process is jointly completed by the lower computer (the lower computer is also the motor controller) and the upper computer.
  • the host computer of the test machine is connected to the motor controller, and the motor controller is connected to the permanent magnet synchronous motor.
  • the motor controller of this embodiment is an inverter, and the DC side of the inverter is connected to the host computer of the test machine and inverter
  • the AC side of the converter is connected to a permanent magnet synchronous motor.
  • the upper computer of the test machine is also connected to an electric power test machine.
  • the electric power test machine is also connected to a permanent magnet synchronous motor, which is used to send the output torque of the permanent magnet synchronous motor to the upper machine of the test machine.
  • the embodiment uses an adjustable low-voltage power source as the permanent magnet synchronous motor.
  • the motor controller is powered by a power battery.
  • the permanent magnet synchronous motor and the motor controller in this embodiment are also connected to a water cooling system.
  • the required data is imported into the host computer in advance, such as electromagnetic simulation data and basic motor parameters.
  • the electromagnetic simulation data includes, but is not limited to, the MTPA curve and the set voltage utilization rate.
  • the basic motor parameters include but not It is limited to parameters such as the relationship between the angular speed of the rotor and the rotational speed, the amplitude of the no-load back-EMF of the motor, the electrical angular frequency of the permanent magnet synchronous motor, the angular speed of the rotor, and the d-axis inductance.
  • the host computer calculates the inflection point rotation speed and the zero torque point demagnetization current in the field weakening zone according to the method described above in this embodiment, and then determines the working area where the permanent magnet synchronous motor is located according to the current calibration speed. If the permanent magnet synchronous motor is in a non-weak field region, the lower computer controls the permanent magnet synchronous motor according to the driving current and driving current angle sent by the upper computer, and records the driving current, driving current angle and output torque measured by the electric dynamometer. Calibration data for a group.
  • the lower computer adjusts the driving current angle ⁇ by detecting the set voltage utilization rate, and the driving current angle ⁇ can be adjusted in real time according to the change trend of the voltage utilization rate. the size of.
  • the constant voltage utilization automatic calibration strategy shown in FIG. 7 means that after the permanent magnet synchronous motor enters the field weakening zone, the driving current angle ⁇ is dynamically adjusted according to the difference between the set voltage utilization and the actual feedback voltage utilization.
  • the driving current angle ⁇ is dynamically adjusted according to the difference between the set voltage utilization and the actual feedback voltage utilization.
  • the magnitude of the d-axis demagnetizing current needs to be dynamically adjusted according to the difference between the set voltage utilization and the actual feedback voltage utilization. Ensure that the permanent magnet synchronous motor can run stably at the full torque point of the entire field weakening area.
  • this embodiment sets a PI regulator with an anti-integral saturation function.
  • the input of the PI regulator is the set voltage utilization rate and the feedback voltage utilization rate.
  • the output of the PI regulator is based on the operating conditions.
  • the difference can be current or current angle.
  • the interactive interface of the upper computer in this embodiment can be displayed on a computer screen, and the upper computer and the lower computer can be realized through CAN communication. You can input the set voltage utilization rate and motor protection temperature through the interactive interface of the host computer to ensure that the motor will not run out of control or over-temperature during the automatic calibration process.
  • the calibration interval and peak value can also be set on the host computer. The host computer will automatically send the drive current and drive current angle instructions to the host computer according to the calibration interval and peak value, thereby realizing the permanent magnet synchronous motor current by means of the host computer and the host computer. Automatic calibration.
  • Figures 8 and 9 are a set of manual calibration ammeters and automatic calibration ammeters, respectively.
  • the x-axis represents the output current of the motor controller
  • the y-axis represents the speed of the permanent magnet synchronous motor
  • the z-axis represents the calibration current. angle.
  • Figures 10 and 11 show another set of manual calibration ammeters and automatic calibration ammeters respectively.
  • the x-axis represents the output torque of the PMSM
  • the y-axis represents the speed of the PMSM
  • the z-axis Indicates the calibration current angle.
  • the automatic calibration method of this embodiment can ensure that the calibration data is consistent with the manual calibration regardless of the non-weak magnetic field or weak magnetic field, but the calibration time can be shortened by more than half.
  • the closed-loop temperature detection is performed during the calibration process, when the calibration temperature is high, the current is automatically reduced, and the calibration process is waited for the temperature to return to normal temperature, and safety can be guaranteed.
  • corresponding closed-loop protection measures are performed at the high-speed zero torque point of the permanent magnet synchronous motor. When the permanent magnet synchronous motor is speeded up, the demagnetizing current is adjusted in real time according to the voltage utilization rate to ensure system stability. And the voltage utilization rate in the calibration process of this embodiment can be set and changed in real time, which can meet the calibration needs of different voltage utilization rates.
  • the automatic calibration method of this embodiment does not need to increase any hardware investment, the system control operation is simple and easy, the test of the project site conditions is easy to implement, the calibration parameter process is fast, the use time is short, and the accuracy is high.
  • an embodiment of the present invention also provides a device for calibrating the current of the permanent magnet synchronous motor.
  • FIG. 12 is a structural block diagram of an apparatus for calibrating a current of a permanent magnet synchronous motor according to an embodiment of the present invention. As shown in FIG. 12, the apparatus for calibrating a current of a permanent magnet synchronous motor in this embodiment includes:
  • a computing unit 121 is configured to obtain the turning speed corresponding to the inflection point of the permanent magnet synchronous motor from the non-field weakening zone and the zero torque point of the field weakening zone according to the voltage equation of the permanent magnet synchronous motor and the set voltage utilization rate;
  • a judging unit 122 configured to determine a working area in which the permanent magnet synchronous motor is currently located according to the magnitude relationship between the current rotational speed of the permanent magnet synchronous motor and the rotational speed of the inflection point;
  • a first calibration unit 123 configured to automatically calibrate the current of the permanent magnet synchronous motor in the non-field weakening zone according to a preset maximum torque-current ratio curve when the permanent magnet synchronous motor is in the non-field weakening zone;
  • the second calibration unit 124 is configured to automatically calibrate the current of the permanent magnet synchronous motor in the field weakening zone according to the set voltage utilization rate and the zero torque point of the field weakening zone when the permanent magnet synchronous motor is in the field weakening zone.
  • the first calibration unit 123 is configured to obtain a driving current and a driving current angle that enable the permanent magnet synchronous motor to output the maximum torque according to a preset maximum torque-current ratio curve; and use the obtained driving current and driving current angle Drive the permanent magnet synchronous motor to obtain the output torque of the permanent magnet synchronous motor.
  • the second calibration unit 124 is used when the permanent magnet synchronous motor enters the field weakening zone, and uses the field weakening zone zero torque point demagnetizing current as the field weakening zone initial drive current, and uses the field weakening zone initial drive current and the field weakening zone initial drive current angle to drive the permanent magnet.
  • the angle between the initial drive current angle in the field weakening zone and the d-axis of the permanent magnet synchronous motor is zero; when the drive current and drive current angle are received, according to the difference between the feedback voltage utilization and the set voltage utilization The difference adjusts the driving current angle; drives the permanent magnet synchronous motor by using the received driving current and the adjusted driving current angle to obtain the output torque of the permanent magnet synchronous motor; wherein the second calibration unit 124 is further configured to The difference between the voltage utilization rate and the set voltage utilization rate is used to adjust the zero-torque point demagnetizing current in the field weakening zone, and use the adjusted zero-torque point demagnetizing current in the field-weakening zone and the initial driving current of the field-weakening zone to drive the angle. Permanent magnet synchronous motor.
  • the device shown in FIG. 12 further includes a detection unit, a recording unit, and a control unit;
  • the recording unit is used to record data for calibrating the current of the permanent magnet synchronous motor when the temperature of the permanent magnet synchronous motor reaches or exceeds the motor protection temperature;
  • the relevant part may refer to the description of the method embodiment.
  • the device embodiments described above are only schematic, and the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located One place, or it can be distributed across multiple network elements. Some or all of the modules may be selected according to actual needs to achieve the objective of the solution of this embodiment. Those of ordinary skill in the art can understand and implement without creative efforts.
  • the device for calibrating the current of a permanent magnet synchronous motor provided in this application may be implemented by software, or may be implemented by hardware or a combination of software and hardware.
  • the device for calibrating a current of a permanent magnet synchronous motor provided in the present application may include a processor 1301 and a machine-readable storage medium 1302 that stores machine-executable instructions.
  • the processor 1301 and the machine-readable storage medium 1302 may communicate via a system bus 1303. And, by reading and executing machine-executable instructions corresponding to the calibration permanent magnet synchronous motor current in the machine-readable storage medium 1302, the processor 1301 may execute the method for calibrating the permanent magnet synchronous motor current described above.
  • the machine-readable storage medium 1302 mentioned in this application may be any electronic, magnetic, optical, or other physical storage device, and may contain or store information, such as executable instructions, data, and so on.
  • the machine-readable storage medium may be: RAM (Radom Access Memory), volatile memory, non-volatile memory, flash memory, storage drive (such as hard drive), solid state hard disk, any type of storage disk (Such as optical discs, DVDs, etc.), or similar storage media, or a combination thereof.
  • the present application also provides a machine-readable storage medium including machine-executable instructions, such as the machine-readable storage medium 1302 in FIG. 13, where the machine-executable instructions can be calibrated by a permanent magnet synchronous motor.
  • the processor 1301 in the current device executes to implement the method of calibrating a permanent magnet synchronous motor current described above.
  • the words “first” and “second” are used to distinguish the same or similar items that have substantially the same function and effect. Personnel can understand that the words “first” and “second” do not limit the number and execution order.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

一种标定永磁同步电机电流的方法和装置。所述方法包括:根据永磁同步电机的电压方程和设定的电压利用率,获得永磁同步电机由非弱磁区进入弱磁区对应的拐点转速和弱磁区零扭矩点去磁电流(S110);根据永磁同步电机当前转速与拐点转速之间的大小关系,确定永磁同步电机当前所处的工作区(S120);在永磁同步电机处于非弱磁区时,根据预设的最大转矩电流比曲线在非弱磁区内自动标定永磁同步电机电流(S130);在永磁同步电机处于弱磁区时,根据设定的电压利用率和弱磁区零扭矩点去磁电流在弱磁区自动标定永磁同步电机电流(S140)。该方法能够显著缩短标定时间,提高标定效率,并保证标定数据的一致性和可靠性。

Description

一种标定永磁同步电机电流的方法和装置 技术领域
本发明涉及电机控制技术领域,特别涉及一种标定永磁同步电机电流的方法和装置。
发明背景
永磁同步电机(Permanent Magnet Synchronous Motor,PMSM)由于其高功率密度、高可靠性和高效率等特点,在电动汽车等要求较高的调速驱动系统中得到了广泛的应用。在对PMSM进行控制时,一般利用最大转矩电流比(Maximum Torque Per Ampere,MTPA)算法对PMSM的驱动电流和转矩进行优化匹配。在实际运行中,PMSM的交轴与直轴电感,交轴与直轴电流均和温度成非线性关联,且这种非线性关系可测量难度极大,因此一般通过标定驱动电流对应的实际输出转矩进行驱动电流与转矩的最优匹配。
目前,一般采用人工方式对PMSM进行标定,操作人员利用台架手动标定电机数据,整个过程需要经过大量标定工作,得到一个由驱动电流、与驱动电流对应的最大转矩和与该最大转矩对应的电流角度表征的三维数表,标定完成后的三维数表需要通过外部运算设备进行后处理,将三维数表转换为适合电机软件程序的数据单位转矩集成到电机控制器当中,且需要对该三维数表进行大量复杂的手工计算,才能将三维数表转换为电机控制器可应用的数据,整个工作过程繁琐、效率较低。
发明内容
本发明提供了一种标定永磁同步电机电流的方法和装置,以解决现有方案利用手工方式对永磁同步电机电流进行标定导致工作过程繁琐、效率低的问题。
本发明的一方面提供了一种标定永磁同步电机电流的方法,包括:
根据永磁同步电机的电压方程和设定的电压利用率,获得永磁同步电机由非弱磁区进入弱磁区对应的拐点转速和弱磁区零扭矩点去磁电流;
根据永磁同步电机当前转速与拐点转速之间的大小关系,确定永磁同步电机当前所处的工作区;
在永磁同步电机处于非弱磁区时,根据预设的最大转矩电流比曲线在非弱磁区内自动标定永磁同步电机电流;
在所述永磁同步电机处于弱磁区时,根据设定的电压利用率和弱磁区零扭矩点去磁电流在弱磁区自动标定永磁同步电机电流。
本发明的另一方面提供了一种标定永磁同步电机电流的装置,包括:
计算单元,用于根据永磁同步电机的电压方程和设定的电压利用率,获得永磁同步电机由非弱磁区进入弱磁区对应的拐点转速和弱磁区零扭矩点去磁电流;
判断单元,用于根据永磁同步电机当前转速与所述拐点转速之间的大小关系,确定永磁同步电机当前所处的工作区;
第一标定单元,用于在永磁同步电机处于非弱磁区时,根据预设的最大转矩电流比曲线在非弱磁区内自动标定永磁同步电机电流;
第二标定单元,用于在永磁同步电机处于弱磁区时,根据设定的电压利用率和弱磁区零扭矩点去磁电流在弱磁区自动标定永磁同步电机电流。
本发明的有益效果是:本发明对永磁同步电机电流自动标定的方法相比于现有技术手动标定方法,本发明实施例能够显著缩短标定时间,并且在弱磁区基于设定的电压利用率对永磁同步电机进行电流标定可以保证更小的电机失控风险,自动标定的安全性能够得到保证。由于本发明使用的标定数据可以全部由控制器计算得到,能够提高标定数据的一致性和可靠性,且利用控制器对永磁同步电机电流进行自动标定的操作流程较为简单,非常易于现场操作,具有较好的便捷性。
附图简要说明
图1为本发明实施例示出的标定永磁同步电机电流的方法流程图;
图2为本发明实施例示出的非弱磁区MTPA曲线示意图;
图3为本发明实施例示出的弱磁区转矩随电流变化的示意图;
图4为本发明实施例示出的非弱磁区电压极限椭圆和电流极限圆的关系示意图;
图5为本发明实施例示出的弱磁区电压极限椭圆和电流极限圆的关系示意图;
图6为本发明实施例示出的永磁同步电机的自动标定控制系统示意图;
图7为本发明实施例示出的自动标定流程示意图;
图8为本发明实施例示出的一种手动标定电流表;
图9为本发明实施例示出的一种自动标定电流表;
图10为本发明实施例示出的另一种手动标定电流表;
图11为本发明实施例示出的另一种自动标定电流表;
图12为本发明实施例示出的标定永磁同步电机电流的装置结构框图;
图13为本发明实施例示出的标定永磁同步电机电流的硬件结构示意图。
实施本发明的方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
以下,将参照附图来描述本发明的实施例。但是应该理解,这些描述只是示例性的,而并非要限制本发明的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本发明的概念。
在此使用的术语仅仅是为了描述具体实施例,而并非意在限制本发明。这里使用的词语“一”、“一个(种)”和“该”等也应包括“多个”、“多种”的意思,除非上下文另外明确指出。此外,在此使用的术语“包括”、“包含”等表明了所述特征、步骤、操作和/或部件的存在,但是并不排除存在或添加一个或多个其他特征、步骤、操作或部件。
在此使用的所有术语(包括技术和科学术语)具有本领域技术人员通常所理解的含义,除非另外定义。应注意,这里使用的术语应解释为具有与本说明书的上下文相一致的含义,而不应以理想化或过于刻板的方式来解释。
附图中示出了一些方框图和/或流程图。应理解,方框图和/或流程图中的一些方框或其组合可以由计算机程序指令来实现。这些计算机程序指令可以提供给通用计算机、专用计算机或其他可编程数据处理装置的处理器,从而这些指令在由该处理器执行时可以创建用于实现这些方框图和/或流程图中所说明的功能/操作的装置。
因此,本发明的技术可以硬件和/或软件(包括固件、微代码等)的形式来实现。另外,本发明的技术可以采取存储有指令的计算机可读介质上的计算机程序产品的形式,该计算机程序产品可供指令执行系统使用或者结合指令执行系统使用。在本发明的上下文中,计算机可读介质可以是能够包含、存储、传送、传播或传输指令的任意介质。例如,计算机可读介质可以包括但不限于电、磁、光、电磁、红外或半导体系统、装置、器件或传播介质。计算机可读介质的具体示例包括:磁存储装置,如磁带或硬盘(HDD);光存储装置,如光盘(CD-ROM);存储器,如随机存取存储器(RAM)或闪存;和/或有线/无线通信链路。
图1为本发明实施例示出的标定永磁同步电机电流的方法流程图,本实施例的 自动标定方法适用于永磁同步电机的电动工况和发电工况。如图1所示,本实施例的方法包括:
S110,根据永磁同步电机的电压方程和设定的电压利用率,获得永磁同步电机由非弱磁区进入弱磁区对应的拐点转速和弱磁区零扭矩点去磁电流。
本实施例中由非弱磁区进入弱磁区对应的拐点转速是指非弱磁区与弱磁区临界点对应的永磁同步电机的转速,当永磁同步电机处于非弱磁区与弱磁区临界点时,永磁同步电机的d轴电流为零,由此本实施例中由非弱磁区进入弱磁区对应的拐点转速可以理解为,永磁同步电机的d轴电流为零,且永磁同步电机不失控的临界转速。那么可以通过使永磁同步电机的d轴电流和q轴电流均为零来利用永磁同步电机的电压方程和设定的电压利用率求解拐点转速。
本实施例中弱磁区零扭矩点是指在永磁同步电机给定d轴电流,而q轴电流为零的点,此时,永磁同步电机输出转矩为零牛米,永磁同步电机可以稳定运行。在永磁同步电机的转速大于拐点转速时,永磁同步电机进入弱磁区,那么可以通过使永磁同步电机的q轴电流均为零来利用永磁同步电机的电压方程和设定的电压利用率求解弱磁区零扭矩点去磁电流。
本实施例设定的电压利用率是指逆变器能输出的最大三相交流线电压的基波分量有效值与基值的比值。其中,基值的选取有两种,一种是以直流母线电压作为基值;另一种是以逆变器在不同调制方式能输出的最大基波值作为基值。
S120,根据永磁同步电机当前转速与拐点转速之间的大小关系,确定永磁同步电机当前所处的工作区。
永磁同步电机的转速与永磁同步电机所处的工作区相关联,在永磁同步电机的转速大于拐点转速时,永磁同步电机工作在弱磁区域,在永磁同步电机的转速小于拐点转速时,永磁同步电机工作在非弱磁区域。
S130,在永磁同步电机处于非弱磁区时,根据预设的最大转矩电流比曲线在非弱磁区内自动标定永磁同步电机电流。
参考图2所示,由于在非弱磁区,不同转速下驱动电流、驱动电流角和输出转矩三者的对应关系是一致的,即在非弱磁区,在给定永磁同步电机的d轴电流和q轴电流的情况下,永磁同步电机输出的转矩不随转速变化。因此,本实施例在永磁同步电机处于非弱磁区时,可以按照MTPA曲线进行标定,得到不同转速下的三维数据表,该三维数据表是由驱动电流、与驱动电流对应的最大转矩和与该最大转矩对应的驱动电流角度表征的数表。
S140,在永磁同步电机处于弱磁区时,根据设定的电压利用率和弱磁区零扭矩点去磁电流在弱磁区自动标定永磁同步电机电流。
在标定高转速过程中,希望得到较合适的电压利用率,现有技术中的手动标定方法往往依靠标定工程师的标定经验,这样很不利于标定数据的一致性,同时驱动电流和驱动电流角度的给定稍有不妥,则可能出现失控,导致故障。参考图3所示,本实施例在永磁同步电机进入弱磁区时,先根据弱磁区零扭矩点去磁电流对弱磁区零扭矩点的进行标定,再按照设定的电压利用率对驱动电流角度进行调节,利用驱动电流和调节后的电流角度,完成弱磁区电流标定。
本实施例对永磁同步电机电流自动标定的方法相比于现有技术手动标定方法,本发明实施例能够显著缩短标定时间,例如2名工程师手动标定48Kw的永磁同步电机需要3天左右的时间,而本发明实施例的自动标定方法能够将标定时间缩短至1天左右;并且在弱磁区基于设定的电压利用率对永磁同步电机进行电流标定可以保证更小的电机失控风险,自动标定的安全性能够得到保证。
由于本实施例使用的标定数据可以全部由控制器计算得到,能够提高标定数据的一致性和可靠性,且利用控制器对永磁同步电机电流进行自动标定的操作流程较为简单,非常易于现场操作,具有较好的便捷性。
图6为本发明实施例示出的永磁同步电机的自动标定控制系统示意图,永磁同步电机的控制是与自动标定控制系统中的电机控制器密切相关的,永磁同步电机的运行性能要受到电机控制器的制约。其中最明显的是永磁同步电机的相电压有效值的极限值和相电流有效值要受到电机控制器直流侧电压和最大输出电流限制,图4为本发明实施例示出的非弱磁区电压极限椭圆和电流极限圆的关系示意图,图5为本发明实施例示出的弱磁区电压极限椭圆和电流极限圆的关系示意图。
参考图4~5,随着永磁同步电机转速的升高,电压极限椭圆越来越小,永磁同步电机将沿着MTPA曲线和最大转矩电压比(Maximum Torque Per Voltage,MTPV)曲线之间的恒转矩曲线运行。参考图4,当永磁同步电机工作在非弱磁区时,随着转速升高,永磁同步电机保持稳态运行。当转速持续升高,直至大于拐点转速时,永磁同步电机由非弱磁区进入弱磁区。参考图5,电流I OH、I OJ和I OK分别表示不同转速下的零扭矩点去磁电流,以图5中最小电压极限椭圆为例,此时零扭矩点去磁电流为I OK,标定电流梯度的峰值为I OG,即当永磁同步电机的转速为图5中最小电压极限椭圆对应的转速时,电流轨迹为I OK到I OG,在这一过程中,驱动电流角度β并不是单调变化的,因此在弱磁区对永磁同步电机电流进行 自动标定时,需要对驱动电流角度进行调整。
在本实施例的一个实现方案中,根据下述方法在非弱磁区内自动标定永磁同步电机电流:
根据预设的MTPA曲线,获得使永磁同步电机输出最大转矩的驱动电流和驱动电流角度,参考图2,假设驱动电流为X时,最优控制角为Y,此时电机输出最大转矩,那么根据MTPA曲线可以获得使永磁同步电机输出最大转矩的驱动电流为X,驱动电流角度为最优控制角Y;利用获得的驱动电流和驱动电流角度驱动永磁同步电机,获得永磁同步电机的输出转矩,此时将使永磁同步电机输出最大转矩的驱动电流、驱动电流角度和相应的输出转矩记为一组标定数据,由此可以得到不同驱动电流和不同驱动电流角度对应的输出转矩,得到非弱磁区的多组标定数据。
在本实施例的一个实现方案中,根据下述方法在弱磁区内自动标定永磁同步电机电流:
在永磁同步电机进入弱磁区时,将弱磁区零扭矩点去磁电流作为弱磁区初始驱动电流,并利用弱磁区初始驱动电流和弱磁区初始驱动电流角度驱动永磁同步电机,弱磁区初始驱动电流角度与永磁同步电机d轴夹角为零,此时弱磁区零扭矩点去磁电流、弱磁区初始驱动电流角度和相应的输出转矩(此时的输出转矩为零)为弱磁区的第一组标定数据;
在接收到驱动电流和驱动电流角度时,根据反馈的电压利用率和设定的电压利用率之间的差值调节驱动电流角度,利用接收到的驱动电流和调节后的驱动电流角度驱动永磁同步电机,获得永磁同步电机的输出转矩,此时驱动电流、调节后的驱动电流角度和相应的输出转矩为弱磁区的其他标定数据。
对于本实施例此处涉及的驱动电流和驱动电流角度可以理解为,根据弱磁区上一组标定数据得到的。可以将上一组中调节后的驱动电流角度作为下一组标定数据中的驱动电流角度,例如,在利用弱磁区初始驱动电流和弱磁区初始驱动电流角度驱动永磁同步电机时,会根据反馈的电压利用率和设定的电压利用率之间的差值调节驱动电流角度,可以将调节后的初始驱动电流角度作为下一组标定数据中的驱动电流角度。而对于标定数据中的驱动电流,可以根据标定电流梯度值得到,如下一组标定数据中的驱动电流可以为上一组标定数据中的驱动电流与标定电流梯度值的和,即将上一组标定数据中的驱动电流与标定电流梯度值的和作为下一组标定数据中的驱动电流。
在零扭矩点,由于永磁同步电机q轴给定电流为0,实际应用中为保证永磁同 步电机在整个弱磁区域全扭矩点都能稳定运行,需要根据设定的电压利用率与实际反馈的电压利用率之间的差值来动态调节弱磁区零扭矩点去磁电流,即动态调整d轴去磁电流。本实施例根据反馈的电压利用率和设定的电压利用率之间的差值调节弱磁区零扭矩点去磁电流,利用调节后的弱磁区零扭矩点去磁电流和弱磁区初始驱动电流角度驱动永磁同步电机。本实施例利用该PI调节器实现对弱磁区零扭矩点去磁电流的调节,保证永磁同步电机在整个弱磁区域全扭矩点都能稳定运行。在对弱磁区零扭矩点去磁电流进行动态调整之后,在弱磁区的其他标定点进行自动标定的过程中,本实施例还根据反馈的电压利用率和设定的电压利用率之间的差值对接收到的驱动电流角度进行动态调节,如对来自上位机的驱动电流角度进行调节。
根据本实施例,可以设计具有带抗积分饱和功能的PI调节器,该PI调节器的输入分别是设定的电压利用率和反馈的电压利用率,PI调节器的输出根据工况的不同可以是电流或电流角度,如在调节弱磁区零扭矩点去磁电流时,PI调节器输出的是电流,而在弱磁区对其他表定点进行自动标定的过程中,PI调节器输出的是电流角度。
在本实施例中,弱磁拐点转速和弱磁区零扭矩点去磁电流可以利用下述公式计算得到:
根据永磁同步电机的q轴电压方程U q=R sI qeL dI deψ f、转子角速度与转速之间的关系和设定的电压利用率η,在q轴电压方程中的I q=0和I d=0时,得到弱磁拐点转速
Figure PCTCN2019092286-appb-000001
在q轴电压方程中的I q=0时,得到弱磁区零扭矩点去磁电流
Figure PCTCN2019092286-appb-000002
其中,电机永磁体磁链
Figure PCTCN2019092286-appb-000003
E φ为永磁同步电机空载反电动势幅值,ω c为永磁同步电机的电角频率,ω e为转子角速度,L d为永磁同步电机d轴电感,可以通过现有测试方法测量获得L d,I d和I q分别为永磁同步电机d轴和q轴电流,I d=I scosβ,I q=I ssinβ,β为驱动电流角度,I s为驱动电流,R s为永磁同步电机相电阻,可以使用数字电桥表测试得到永磁同步电机相电阻,P为永磁同步电机极对数,Spd demag为永磁同步电机的转速,U dc为直流母线电压,Spd demag大于弱磁拐点转速Spd thd,本实施例中的Spd demag大于弱磁拐点转速Spd thd一个或多个标定转速值,假设标定转速值为50rpm,则Spd demag可以为Spd thd+50,或者Spd demag为Spd thd+50*n,n为大于1的正整数,转子角速度与转速之间的关系为转子角速度与转速之间成2P·(60*π)的倍数关系。
本实施例利用电机的电压方程可以计算得出由非弱磁区进入弱磁区对应的拐点转速和弱磁区零扭矩点去磁电流,为正确标定永磁同步电机电流提供了准确参考,再根据设定的电压利用率自动调节驱动电流角度,保证标定过程中数据的准确性和电机的安全性,使得获得的输出转矩、转速和驱动电流的对应关系表可以用于电机的转矩环控制。
本实施例为保证永磁同步电机电流自动标定的安全性,本实施例检测永磁同步电机的温度,在永磁同步电机的温度达到或超过电机保护温度时,记录标定永磁同步电机电流的数据,并降低永磁同步电机的转速和/或降低驱动永磁同步电机的驱动电流,在永磁同步电机的温度达到安全值时,根据记录的标定永磁同步电机电流的数据,继续进行永磁同步电机电流的自动标定。
本实施例为满足自动标定的要求,同时保证标定过程中永磁同步电机不出现失控的风险,整个标定过程由下位机(下位机也即电机控制器)和上位机共同完成。
如图6所示,测试机上位机连接电机控制器,电机控制器连接永磁同步电机,本实施例的电机控制器为逆变器,逆变器的直流侧连接测试机上位机,逆变器的交流侧连接永磁同步电机。测试机上位机还连接电力测试机,电力测试机还与永磁同步电机,用于将永磁同步电机的输出转矩发送给测试机上位机,实施例利用可调低压电源为永磁同步电机供电,利用动力电池为电机控制器供电,本实施例的永磁同步电机和电机控制器还连接水冷却系统。
如图7所示,预先在上位机中导入需要的数据,如电磁仿真数据和电机基本参数,电磁仿真数据包括但不限于MTPA曲线、设定的电压利用率等数据,电机基本参数包括但不限于转子角速度与转速之间的关系参数、电机空载反电动势幅值、永磁同步电机的电角频率、转子角速度、d轴电感等参数。
上位机根据本实施例上文描述的方法计算出拐点转速和弱磁区零扭矩点去磁电流,再根据当前的标定转速判断永磁同步电机所处工作区。如果永磁同步电机处在非弱磁区域,下位机按照上位机发出的驱动电流和驱动电流角度进行永磁同步电机的控制,将驱动电流、驱动电流角度和电力测功机测量的输出扭矩记为一组标定数据。如果永磁同步电机处在弱磁区域,上位机发出电流指令后,下位机通过检测设定的电压利用率来调节驱动电流角度β,可以根据电压利用率的变化趋势来实时调节驱动电流角度β的大小。
图7中示出的恒定电压利用率自动标定策略是指,在永磁同步电机进入弱磁区以后,根据设定的电压利用率与实际反馈的电压利用率的差值来动态调节驱动电流 角度β,以达到自动修正永磁同步电机d轴电流I d和q轴电流I q的目的。需要指出的是,在弱磁区零扭矩点,由于q轴给定电流为0,需要根据设定的电压利用率与实际反馈的电压利用率的差值来动态调节d轴去磁电流的大小,保证永磁同步电机在整个弱磁区域全扭矩点都能稳定运行。以及在弱磁区标定其他标定点时,根据设定的电压利用率与实际反馈的电压利用率的差值来动态调节驱动电流角度。为了达到这两个目的,本实施例设置具有带抗积分饱和功能的PI调节器,PI调节器的输入分别是设定的电压利用率和反馈的电压利用率,PI调节器的输出根据工况的不同可以是电流或电流角度。
本实施例的上位机的交互界面可以在电脑屏幕上显示,上位机与下位机之间可以通过CAN通信实现。可以通过在上位机的交互界面输入设定的电压利用率和电机保护温度,保证在自动标定过程中,电机不会失控也不会过温。还可以在上位机设定标定的间隔和峰值,上位机会根据标定的间隔和峰值,自动发送驱动电流和驱动电流角度指令给下位机,由此借助于上位机和下位机实现永磁同步电机电流的自动标定。
图8和图9分别为一组手动标定电流表和自动标定电流表,在图8和图9中,x轴表示电机控制器的输出电流,y轴表示永磁同步电机的转速,z轴表示标定电流角度。图10和图11分别为另一组手动标定电流表和自动标定电流表,在图10和图11中,x轴表示永磁同步电机的输出转矩,y轴表示永磁同步电机的转速,z轴表示标定电流角度。
从图8~11中可以看出,本实施例的自动标定方法不论是非弱磁区还是弱磁区,都可以保证标定数据与手动标定的一致,但标定时间可以大大缩短一半以上。另外,本实施例在标定过程中由于对温度做了闭环检测,当标定温度较高时,会自动降电流,等待温度恢复常温后再进入标定流程,安全性能够得到保证。并且,本实施例在永磁同步电机在高速零扭矩点做了相应的闭环保护措施,永磁同步电机升速时,根据电压利用率对去磁电流进行实时调节,保证系统稳定性。且本实施例标定过程中的电压利用率可以实时设置更改,能够满足不同电压利用率的标定需求。
本实施例的自动标定方法无需增加任何硬件投资,系统控制操作简单易行,工程现场条件测试易于实现,标定参数过程快速、用时短、准确性高。
与本发明标定永磁同步电机电流的方法相对应的,本发明实施例还提供了一种标定永磁同步电机电流的装置。
图12为本发明实施例示出的标定永磁同步电机电流的装置结构框图,如图12 所示,本实施例的标定永磁同步电机电流的装置包括:
计算单元121,用于根据永磁同步电机的电压方程和设定的电压利用率,获得永磁同步电机由非弱磁区进入弱磁区对应的拐点转速和弱磁区零扭矩点去磁电流;
判断单元122,用于根据永磁同步电机当前转速与所述拐点转速之间的大小关系,确定永磁同步电机当前所处的工作区;
第一标定单元123,用于在永磁同步电机处于非弱磁区时,根据预设的最大转矩电流比曲线在非弱磁区内自动标定永磁同步电机电流;
第二标定单元124,用于在永磁同步电机处于弱磁区时,根据设定的电压利用率和弱磁区零扭矩点去磁电流在弱磁区自动标定永磁同步电机电流。
本实施例中,第一标定单元123用于根据预设的最大转矩电流比曲线,获得使永磁同步电机输出最大转矩的驱动电流和驱动电流角度;利用获得的驱动电流和驱动电流角度驱动永磁同步电机,获得永磁同步电机的输出转矩。
第二标定单元124用于在永磁同步电机进入弱磁区时,将弱磁区零扭矩点去磁电流作为弱磁区初始驱动电流,并利用弱磁区初始驱动电流和弱磁区初始驱动电流角度驱动永磁同步电机,弱磁区初始驱动电流角度与所述永磁同步电机d轴夹角为零;在接收到驱动电流和驱动电流角度时,根据反馈的电压利用率和设定的电压利用率之间的差值调节所述驱动电流角度;利用接收到的驱动电流和调节后的驱动电流角度驱动永磁同步电机,获得永磁同步电机的输出转矩;其中,第二标定单元124还用于根据反馈的电压利用率和所述设定的电压利用率之间的差值调节所述弱磁区零扭矩点去磁电流,利用调节后的弱磁区零扭矩点去磁电流和弱磁区初始驱动电流角度驱动永磁同步电机。
本实施例中的计算单元121,用于根据永磁同步电机的q轴电压方程U q=R sI qeL dI deψ f、转子角速度与转速之间的关系和设定的电压利用率η,在所述q轴电压方程中的I q=0和I d=0时,得到弱磁拐点转速
Figure PCTCN2019092286-appb-000004
在q轴电压方程中的I q=0时,得到弱磁区零扭矩点去磁电流
Figure PCTCN2019092286-appb-000005
图12所示的装置还包括检测单元、记录单元、控制单元;
监测单元,用于检测永磁同步电机的温度;
记录单元,用于在永磁同步电机的温度达到或超过电机保护温度时,记录标定永磁同步电机电流的数据;
控制单元,用于在永磁同步电机的温度达到或超过电机保护温度时,降低所述永磁同步电机的转速和/或降低驱动永磁同步电机的驱动电流,在永磁同步电机的温度达到安全值时,根据记录的标定永磁同步电机电流的数据,继续进行所述永磁同步电机电流的自动标定。
对于装置实施例而言,由于其基本对应于方法实施例,所以相关之处参见方法实施例的部分说明即可。以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
本申请提供的标定永磁同步电机电流的装置可以通过软件实现,也可以通过硬件或者软硬件结合的方式实现。以软件实现为例,参照图13所示,本申请提供的标定永磁同步电机电流的装置可包括处理器1301、存储有机器可执行指令的机器可读存储介质1302。处理器1301与机器可读存储介质1302可经由系统总线1303通信。并且,通过读取并执行机器可读存储介质1302中与标定永磁同步电机电流对应的机器可执行指令,处理器1301可执行上文描述的标定永磁同步电机电流的方法。
本申请中提到的机器可读存储介质1302可以是任何电子、磁性、光学或其它物理存储装置,可以包含或存储信息,如可执行指令、数据,等等。例如,机器可读存储介质可以是:RAM(Radom Access Memory,随机存取存储器)、易失存储器、非易失性存储器、闪存、存储驱动器(如硬盘驱动器)、固态硬盘、任何类型的存储盘(如光盘、DVD等),或者类似的存储介质,或者它们的组合。
根据本申请公开的示例,本申请还提供了一种包括机器可执行指令的机器可读存储介质,例如图13中的机器可读存储介质1302,所述机器可执行指令可由标定永磁同步电机电流的装置中的处理器1301执行以实现上文描述的标定永磁同步电机电流的方法。
为了便于清楚描述本发明实施例的技术方案,在发明的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分,本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定。
以上所述,仅为本发明的具体实施方式,在本发明的上述教导下,本领域技术 人员可以在上述实施例的基础上进行其他的改进或变形。本领域技术人员应该明白,上述的具体描述只是更好的解释本发明的目的,本发明的保护范围应以权利要求的保护范围为准。

Claims (10)

  1. 一种标定永磁同步电机电流的方法,其特征在于,所述方法包括:
    根据永磁同步电机的电压方程和设定的电压利用率,获得永磁同步电机由非弱磁区进入弱磁区对应的拐点转速和弱磁区零扭矩点去磁电流;
    根据永磁同步电机当前转速与所述拐点转速之间的大小关系,确定永磁同步电机当前所处的工作区;
    在所述永磁同步电机处于非弱磁区时,根据预设的最大转矩电流比曲线在非弱磁区内自动标定永磁同步电机电流;
    在所述永磁同步电机处于弱磁区时,根据所述设定的电压利用率和所述弱磁区零扭矩点去磁电流在弱磁区自动标定永磁同步电机电流。
  2. 根据权利要求1所述的方法,其特征在于,所述根据预设的最大转矩电流比曲线在非弱磁区内自动标定永磁同步电机电流,包括:
    根据预设的最大转矩电流比曲线,获得使所述永磁同步电机输出最大转矩的驱动电流和驱动电流角度;
    利用获得的所述驱动电流和驱动电流角度驱动所述永磁同步电机,获得所述永磁同步电机的输出转矩。
  3. 根据权利要求1所述的方法,其特征在于,所述在所述永磁同步电机处于弱磁区时,根据所述设定的电压利用率和所述弱磁区零扭矩点去磁电流在弱磁区自动标定永磁同步电机电流,包括:
    在所述永磁同步电机进入弱磁区时,将所述弱磁区零扭矩点去磁电流作为弱磁区初始驱动电流,并利用所述弱磁区初始驱动电流和弱磁区初始驱动电流角度驱动所述永磁同步电机,所述弱磁区初始驱动电流角度与所述永磁同步电机d轴夹角为零;
    在接收到驱动电流和驱动电流角度时,根据反馈的电压利用率和所述设定的电压利用率之间的差值调节所述驱动电流角度;
    利用接收到的驱动电流和调节后的驱动电流角度驱动所述永磁同步电机,获得所述永磁同步电机的输出转矩。
  4. 根据权利要求3所述的方法,其特征在于,所述利用所述弱磁区初始驱动电流和弱磁区初始驱动电流角度驱动所述永磁同步电机,包括:
    根据反馈的电压利用率和所述设定的电压利用率之间的差值调节所述弱磁区零扭矩点去磁电流,利用调节后的弱磁区零扭矩点去磁电流和所述弱磁区初始驱动电流角度驱动所述永磁同步电机。
  5. 根据权利要求1所述的方法,其特征在于,所述根据永磁同步电机的电压方程和设定的电压利用率,获得永磁同步电机由非弱磁区进入弱磁区对应的弱磁拐点转速和弱磁区零扭矩点去磁电流,包括:
    根据所述永磁同步电机的q轴电压方程U q=R sI qeL dI deψ f、转子角速度与转速之间的关系和设定的电压利用率η,在所述q轴电压方程中的I q=0和I d=0时,得到弱磁拐点转速
    Figure PCTCN2019092286-appb-100001
    在所述q轴电压方程中的I q=0时,得到弱磁区零扭矩点去磁电流
    Figure PCTCN2019092286-appb-100002
    其中,电机永磁体磁链
    Figure PCTCN2019092286-appb-100003
    E φ为所述永磁同步电机空载反电动势幅值,ω c为所述永磁同步电机的电角频率,ω e为转子角速度,L d为所述永磁同步电机d轴电感,I d和I q分别为所述永磁同步电机d轴和q轴电流,R s为所述永磁同步电机相电阻,P为所述永磁同步电机极对数,Spd demag为所述永磁同步电机的转速,Spd demag大于所述弱磁拐点转速Spd thd,U dc为直流母线电压。
  6. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    检测所述永磁同步电机的温度,在所述永磁同步电机的温度达到或超过电机保护温度时,记录标定永磁同步电机电流的数据,并降低所述永磁同步电机的转速和/或降低驱动永磁同步电机的驱动电流,在所述永磁同步电机的温度达到安全值时,根据记录的标定永磁同步电机电流的数据,继续进行所述永磁同步电机电流的自动标定。
  7. 一种标定永磁同步电机电流的装置,其特征在于,所述装置包括:
    计算单元,用于根据永磁同步电机的电压方程和设定的电压利用率,获得永磁同步电机由非弱磁区进入弱磁区对应的拐点转速和弱磁区零扭矩点去磁电流;
    判断单元,用于根据永磁同步电机当前转速与所述拐点转速之间的大小关系,确定永磁同步电机当前所处的工作区;
    第一标定单元,用于在所述永磁同步电机处于非弱磁区时,根据预设的最大转矩电流比曲线在非弱磁区内自动标定永磁同步电机电流;
    第二标定单元,用于在所述永磁同步电机处于弱磁区时,根据所述设定的电压 利用率和所述弱磁区零扭矩点去磁电流在弱磁区自动标定永磁同步电机电流。
  8. 根据权利要求7所述的装置,其特征在于,
    所述第一标定单元,用于根据预设的最大转矩电流比曲线,获得使所述永磁同步电机输出最大转矩的驱动电流和驱动电流角度;利用获得的所述驱动电流和驱动电流角度驱动所述永磁同步电机,获得所述永磁同步电机的输出转矩。
  9. 根据权利要求7所述的装置,其特征在于,
    所述第二标定单元,用于在所述永磁同步电机进入弱磁区时,将所述弱磁区零扭矩点去磁电流作为弱磁区初始驱动电流,并利用所述弱磁区初始驱动电流和弱磁区初始驱动电流角度驱动所述永磁同步电机,所述弱磁区初始驱动电流角度与所述永磁同步电机d轴夹角为零;在接收到驱动电流和驱动电流角度时,根据反馈的电压利用率和所述设定的电压利用率之间的差值调节所述驱动电流角度;利用接收到的驱动电流和调节后的驱动电流角度驱动所述永磁同步电机,获得所述永磁同步电机的输出转矩;
    其中,所述第二标定单元,还用于根据反馈的电压利用率和所述设定的电压利用率之间的差值调节所述弱磁区零扭矩点去磁电流,利用调节后的弱磁区零扭矩点去磁电流和所述弱磁区初始驱动电流角度驱动所述永磁同步电机。
  10. 根据权利要求7所述的装置,其特征在于,所述装置还包括检测单元、记录单元、控制单元;
    所述监测单元,用于检测所述永磁同步电机的温度;
    所述记录单元,用于在所述永磁同步电机的温度达到或超过电机保护温度时,记录标定永磁同步电机电流的数据;
    所述控制单元,用于在所述永磁同步电机的温度达到或超过电机保护温度时,降低所述永磁同步电机的转速和/或降低驱动永磁同步电机的驱动电流,在所述永磁同步电机的温度达到安全值时,根据记录的标定永磁同步电机电流的数据,继续进行所述永磁同步电机电流的自动标定。
PCT/CN2019/092286 2018-06-21 2019-06-21 一种标定永磁同步电机电流的方法和装置 WO2019242733A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810645315.X 2018-06-21
CN201810645315.XA CN108696219B (zh) 2018-06-21 2018-06-21 一种标定永磁同步电机电流的方法和装置

Publications (1)

Publication Number Publication Date
WO2019242733A1 true WO2019242733A1 (zh) 2019-12-26

Family

ID=63848936

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/092286 WO2019242733A1 (zh) 2018-06-21 2019-06-21 一种标定永磁同步电机电流的方法和装置

Country Status (2)

Country Link
CN (1) CN108696219B (zh)
WO (1) WO2019242733A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021104760A1 (de) * 2019-11-29 2021-06-03 Robert Bosch Gmbh Verfahren und vorrichtung zur kalibrierung einer regelung einer elektrischen maschine

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108696219B (zh) * 2018-06-21 2024-03-26 精进电动科技股份有限公司 一种标定永磁同步电机电流的方法和装置
CN109302117A (zh) * 2018-11-30 2019-02-01 上海大郡动力控制技术有限公司 永磁同步电机电压利用率自动寻优方法
CN110007228B (zh) * 2019-04-04 2022-01-21 江苏吉泰科电气股份有限公司 一种基于扭矩和无功测量的永磁同步电机标定方法
CN110190794A (zh) * 2019-04-12 2019-08-30 北京航天发射技术研究所 内置式永磁同步电机电流给定值的计算方法和装置
CN109977626B (zh) * 2019-05-08 2023-04-07 广东工业大学 一种永磁同步电机的弱磁扩速能力的计算方法及设备
CN110429885B (zh) * 2019-08-08 2021-06-11 阳光电源股份有限公司 一种电机标定方法及上位机
CN110460282A (zh) * 2019-08-22 2019-11-15 东风航盛(武汉)汽车控制系统有限公司 一种永磁同步电机电感参数的自动标定方法
CN110466363B (zh) * 2019-08-29 2021-08-20 华人运通(江苏)技术有限公司 车辆的电机控制方法、装置、设备和计算机可读存储介质
CN110798111B (zh) * 2019-10-25 2021-09-03 南京越博动力系统股份有限公司 永磁同步电机旋转变压器零位检测方法、装置
CN112928958B (zh) 2019-12-06 2022-10-14 新疆金风科技股份有限公司 控制变流器的机侧端电压的方法及相应控制器
CN111049447A (zh) * 2019-12-31 2020-04-21 潍柴动力股份有限公司 永磁同步电机mtpv算法的自动标定方法、系统及存储介质
CN111222024B (zh) * 2020-01-20 2023-05-16 重庆凯瑞动力科技有限公司 一种车用永磁同步电机台架降速标定数据处理方法
CN113300650B (zh) * 2020-02-24 2024-05-17 蜂巢传动系统(江苏)有限公司保定研发分公司 驱动电机标定方法及系统
CN111948537B (zh) * 2020-08-11 2022-12-02 臻驱科技(上海)有限公司 凸极式永磁同步电机最大转矩磁链比工作点的标定方法
CN112615579B (zh) * 2020-12-17 2022-09-23 潍柴动力股份有限公司 电压极限圆的标定方法、装置、终端及存储介质
CN112468033B (zh) * 2020-12-21 2022-03-08 哈尔滨工业大学 永磁同步电机最大功率控制电流轨迹搜索方法及在线控制方法
CN112468037B (zh) * 2020-12-21 2022-07-12 哈尔滨工业大学 永磁同步电机mtpv控制电流轨迹搜索方法及在线控制方法
CN113960470B (zh) * 2021-08-24 2022-07-15 北京金风慧能技术有限公司 发电机轴电流的检测方法及装置
CN114977955A (zh) * 2022-06-30 2022-08-30 中国第一汽车股份有限公司 一种永磁同步电机的全域控制方法、装置及永磁同步电机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013138559A (ja) * 2011-12-28 2013-07-11 Bosch Corp 同期モータに取り付けられた角度センサを較正するための方法及び装置
CN106301100A (zh) * 2015-05-28 2017-01-04 长城汽车股份有限公司 一种永磁同步电机的自动标定方法、系统和控制器
CN106411213A (zh) * 2015-07-27 2017-02-15 比亚迪股份有限公司 用于提供电机定子电流值的方法及装置
CN106921326A (zh) * 2015-12-25 2017-07-04 南车株洲电力机车研究所有限公司 电机的全转速范围内的最大转矩电流比控制方法与装置
CN107592052A (zh) * 2017-08-22 2018-01-16 浙江零跑科技有限公司 一种永磁同步电机最大转矩电流比曲线跟踪方法及装置
CN108696219A (zh) * 2018-06-21 2018-10-23 精进电动科技股份有限公司 一种标定永磁同步电机电流的方法和装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08182398A (ja) * 1994-12-27 1996-07-12 Fuji Electric Co Ltd 永久磁石形同期電動機の駆動装置
CN103746623B (zh) * 2013-12-25 2016-05-11 东方电气集团国际合作有限公司 永磁直驱风电机组的最大可用转矩弱磁控制方法
CN106452244A (zh) * 2016-10-27 2017-02-22 江苏大学 内嵌式永磁同步电机最大转矩输出线性化弱磁控制方法及系统
CN107026592A (zh) * 2017-06-01 2017-08-08 浙江赛安电气科技有限公司 一种永磁同步电机的弱磁控制系统及方法
CN107332485B (zh) * 2017-07-14 2020-09-11 阳光电源股份有限公司 一种永磁同步电机的弱磁控制方法及控制器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013138559A (ja) * 2011-12-28 2013-07-11 Bosch Corp 同期モータに取り付けられた角度センサを較正するための方法及び装置
CN106301100A (zh) * 2015-05-28 2017-01-04 长城汽车股份有限公司 一种永磁同步电机的自动标定方法、系统和控制器
CN106411213A (zh) * 2015-07-27 2017-02-15 比亚迪股份有限公司 用于提供电机定子电流值的方法及装置
CN106921326A (zh) * 2015-12-25 2017-07-04 南车株洲电力机车研究所有限公司 电机的全转速范围内的最大转矩电流比控制方法与装置
CN107592052A (zh) * 2017-08-22 2018-01-16 浙江零跑科技有限公司 一种永磁同步电机最大转矩电流比曲线跟踪方法及装置
CN108696219A (zh) * 2018-06-21 2018-10-23 精进电动科技股份有限公司 一种标定永磁同步电机电流的方法和装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021104760A1 (de) * 2019-11-29 2021-06-03 Robert Bosch Gmbh Verfahren und vorrichtung zur kalibrierung einer regelung einer elektrischen maschine
US11831261B2 (en) 2019-11-29 2023-11-28 Robert Bosch Gmbh Method and device for calibrating a controller of an electric machine

Also Published As

Publication number Publication date
CN108696219B (zh) 2024-03-26
CN108696219A (zh) 2018-10-23

Similar Documents

Publication Publication Date Title
WO2019242733A1 (zh) 一种标定永磁同步电机电流的方法和装置
CN103187919B (zh) 一种永磁同步电机弱磁调速的系统和方法
JP3454210B2 (ja) 同期モータの位置センサレス制御方法
WO2020108173A1 (zh) 一种永磁同步电机控制方法
CN102931906B (zh) 异步电机转子磁链观测与转速辨识的方法
RU2491692C2 (ru) Устройство управления для вращающейся машины переменного тока
EP3002872B1 (en) Methods of estimating rotor magnet temperature and systems thereof
US9991829B2 (en) Direct-axis current protection method and device for permanent magnet synchronous motor drive system
CN1954486A (zh) 同步机控制装置
WO2022133892A1 (zh) 永磁同步电机的mtpa控制方法、装置、系统及设备
JPH0951700A (ja) 回転電機の制御装置
JP2014513910A (ja) 可変動作速度において可変スイッチング周波数で電気モータを制御する方法およびシステム
JP2014068528A (ja) 永久磁石同期モータのインダクタンスの測定方法および測定装置、並びに、永久磁石同期モータ
CN109617486A (zh) 一种永磁同步电机自动标定方法
WO2021109861A1 (zh) 一种电机控制方法、装置、终端设备及存储介质
CN109782173A (zh) 异步电机励磁互感曲线测量系统及其测量方法
CN111740664B (zh) 实现基于Id=0的凸极永磁同步电机弱磁控制的方法
CN106301100A (zh) 一种永磁同步电机的自动标定方法、系统和控制器
CN108809185B (zh) 一种电动汽车的电机扭矩控制的方法及系统
JP2017055647A (ja) 誘導電動機の再起動方法
CN110380659A (zh) 一种永磁同步电机快速标定方法、系统和控制器
WO2024002315A1 (zh) 一种永磁同步电机的全域控制方法、装置及永磁同步电机
CN111162712B (zh) 直驱永磁同步电机的控制方法、牵引控制器及存储介质
CN111224599B (zh) 永磁辅助同步磁阻电机的控制方法
CN110535387A (zh) 电流幅值调节方法、系统、设备及计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19822934

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19822934

Country of ref document: EP

Kind code of ref document: A1