WO2019242193A1 - 电子设备及其控制方法、装置和计算机可读存储介质 - Google Patents

电子设备及其控制方法、装置和计算机可读存储介质 Download PDF

Info

Publication number
WO2019242193A1
WO2019242193A1 PCT/CN2018/112724 CN2018112724W WO2019242193A1 WO 2019242193 A1 WO2019242193 A1 WO 2019242193A1 CN 2018112724 W CN2018112724 W CN 2018112724W WO 2019242193 A1 WO2019242193 A1 WO 2019242193A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic device
light intensity
control
state
temperature information
Prior art date
Application number
PCT/CN2018/112724
Other languages
English (en)
French (fr)
Inventor
陈志斌
Original Assignee
芜湖美智空调设备有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 芜湖美智空调设备有限公司, 美的集团股份有限公司 filed Critical 芜湖美智空调设备有限公司
Publication of WO2019242193A1 publication Critical patent/WO2019242193A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2130/00Control inputs relating to environmental factors not covered by group F24F2110/00
    • F24F2130/20Sunlight

Definitions

  • the present application relates to the technical field of electronic devices, and in particular, to electronic devices, control methods, apparatuses, and computer-readable storage media.
  • the electronic device takes an air conditioner as an example.
  • the user often adjusts the operating parameters of the air conditioner.
  • the user can control the operation of the air conditioner through a control device such as a remote control or a mobile phone to adjust the indoor environment temperature, Humidity, wind speed, etc., or control the operation of the air conditioner according to the user's historical control habits, and the above control method is different from the actual environment in which the user is currently located, resulting in poor accuracy of the control parameters of the air conditioner, which in turn makes the air conditioner The control accuracy is poor.
  • the main purpose of this application is to provide an electronic device control method, device, electronic device, and computer-readable storage medium.
  • the parameter acquisition accuracy is poor, which makes the control accuracy of the air conditioner poor.
  • an aspect of the present application provides an electronic device control method.
  • the electronic device control method includes the following steps:
  • the operation of the electronic device is controlled according to the comparison result and the temperature information.
  • the step of controlling the operation of the electronic device according to the comparison result and the temperature information includes:
  • a second control parameter corresponding to the light intensity is obtained, and the operation of the electronic device is controlled according to the temperature information and the second control parameter.
  • the method further includes:
  • the operation of the electronic device is controlled according to the confirmation result and the comparison result.
  • the method further includes:
  • the control electronic device operates with control parameters corresponding to the first state.
  • the method further includes:
  • a control parameter of the control electronic device corresponding to the second state is operated.
  • the method further includes:
  • a control parameter of the control electronic device corresponding to the third state is operated.
  • the method further includes:
  • a control parameter corresponding to the fourth state is controlled to run by the electronic device, and the electronic device corresponding to the third state and the third state is in an energy-saving operation.
  • the step of controlling the operation of the electronic device according to the comparison result and the temperature information includes:
  • the user's hot and cold state is obtained, and the operation of the electronic device is controlled according to the comparison result and the hot and cold state.
  • another aspect of the present application further provides an electronic device control apparatus, where the electronic device control apparatus includes: a memory, a processor, and a processor stored in the memory and operable on the processor.
  • a computer program that, when executed by the processor, implements the following steps:
  • the operation of the electronic device is controlled according to the comparison result and the temperature information.
  • another aspect of the present application further provides an electronic device, the electronic device includes: a memory, a processor, a detection device connected to the processor, and stored in the memory and can be processed in A computer program running on a computer, and when the computer program is executed by the processor, the following steps are implemented:
  • the operation of the electronic device is controlled according to the comparison result and the temperature information.
  • the electronic device is an air conditioner
  • the detection device includes a light sensor and an infrared sensor connected to the processor.
  • another aspect of the present application further provides a computer-readable storage medium, where the computer-readable storage medium stores an electronic device control program, and the electronic device control program is implemented as follows when executed by a processor: step:
  • the operation of the electronic device is controlled according to the comparison result and the temperature information.
  • This application collects the light intensity and temperature information in the working space of the electronic device, and obtains the control information that the user needs to control the electronic device by combining the light intensity and temperature information, and then can control the operation of the electronic device according to the control information.
  • the temperature information can obtain the user's true control needs in the current environment, thereby improving the accuracy of the control parameters of the electronic equipment and the accuracy of the electronic equipment control.
  • FIG. 1 is a schematic structural diagram of an electronic device in a hardware operating environment according to an embodiment of the present application
  • FIG. 2 is a schematic flowchart of a first embodiment of a method for controlling an electronic device of this application
  • FIG. 3 is a schematic flowchart of controlling an operation of an electronic device according to the comparison result and the temperature information according to an embodiment of the present application;
  • FIG. 4 is a schematic flowchart of a second embodiment of a method for controlling an electronic device of this application.
  • FIG. 5 is a schematic flowchart of a third embodiment of a method for controlling an electronic device of this application.
  • FIG. 6 is a schematic flowchart of an air conditioner control process according to an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of an air conditioner control process in another embodiment of the present application.
  • the main solution of the embodiment of the present application is: detecting the light intensity and temperature information in the working space of the electronic device; comparing the light intensity with a preset light intensity value; controlling the electronic device according to the comparison result and the temperature information. run.
  • the present application provides a solution, by collecting light intensity and temperature information in an electronic device's working space, and combining light intensity and temperature information to obtain control information that a user needs to control an electronic device, and then the electronic device can be controlled according to the control information.
  • the operation, combined with the light intensity and temperature information, can obtain the user's real control needs in the current environment, thereby improving the accuracy of the electronic device control parameter acquisition and the accuracy of the electronic device control.
  • FIG. 1 is a schematic structural diagram of an electronic device in a hardware operating environment according to a solution of an embodiment of the present application.
  • the electronic device may be an air conditioner, or other controlled devices, such as a fan or a television, for controlling the communication connection of the device.
  • the electronic device may be an air conditioner, or other controlled devices, such as a fan or a television, for controlling the communication connection of the device.
  • the electronic device may include a processor 1001, such as a CPU, a network interface 1004, a user interface 1003, a memory 1005, and a communication bus 1002.
  • the communication bus 1002 is configured to implement connection and communication between these components.
  • the user interface 1003 may include a display, an input unit such as a keyboard, and the optional user interface 1003 may further include a standard wired interface and a wireless interface.
  • the network interface 1004 may optionally include a standard wired interface and a wireless interface (such as a WI-FI interface).
  • the memory 1005 may be a high-speed RAM memory or a non-volatile memory. memory), such as disk storage.
  • the memory 1005 may optionally be a storage device independent of the foregoing processor 1001.
  • the electronic device may further include a camera, RF (Radio Frequency (radio frequency) circuits, sensors, audio circuits, WiFi modules, detectors (radar sensor 1006), etc.
  • RF Radio Frequency (radio frequency) circuits
  • sensors audio circuits
  • WiFi modules WiFi modules
  • detectors radar sensor 1006
  • the electronic device may also be configured with other sensors such as a gyroscope, a barometer, a hygrometer, a thermometer, a temperature sensor, and the like, which will not be repeated here.
  • terminal structure shown in FIG. 1 does not constitute a limitation on the electronic device, and may include more or fewer components than shown in the figure, or some components may be combined, or different components may be arranged.
  • the memory 1005 as a computer-readable storage medium may include an operating system, a network communication module, a user interface module, and an electronic device control application program.
  • the network interface 1004 is mainly configured to connect to a background server and perform data communication with the background server;
  • the user interface 1003 is mainly configured to connect to a client (user) and perform data communication with the client;
  • 1001 may be configured to call an electronic device control application stored in the memory 1005 and perform the following operations:
  • the operation of the electronic device is controlled according to the comparison result and the temperature information.
  • processor 1001 may be configured to call an electronic device control application stored in the memory 1005 and perform the following operations:
  • a second control parameter corresponding to the light intensity is obtained, and the operation of the electronic device is controlled according to the temperature information and the second control parameter.
  • the processor 1001 may be configured to call an electronic device control application stored in the memory 1005 and perform the following operations:
  • the operation of the electronic device is controlled according to the confirmation result and the comparison result.
  • the processor 1001 may be configured to call an electronic device control application stored in the memory 1005 and perform the following operations:
  • the control electronic device operates with control parameters corresponding to the first state.
  • the processor 1001 may be configured to call an electronic device control application stored in the memory 1005 and perform the following operations:
  • a control parameter of the control electronic device corresponding to the second state is operated.
  • the processor 1001 may be configured to call an electronic device control application stored in the memory 1005 and perform the following operations:
  • a control parameter of the control electronic device corresponding to the third state is operated.
  • the processor 1001 may be configured to call an electronic device control application stored in the memory 1005 and perform the following operations:
  • a control parameter corresponding to the fourth state is controlled to run by the electronic device, and the electronic device corresponding to the third state and the third state is in an energy-saving operation.
  • an embodiment of the present application provides a method for controlling an electronic device.
  • the method for controlling an electronic device includes:
  • Step S10 Detect light intensity and temperature information in a working space of the electronic device
  • the electronic device may be an air conditioner, an air-cooled fan, or a refrigerator.
  • the electronic device functions as a space environment in a building or structure.
  • an air conditioner is an air conditioner.
  • the space environment where functions such as cooling, heating or dehumidification occur.
  • the space used can be the space where the air conditioner is located, or the air conditioner can be installed outside the space, but it will cool, heat or dehumidify the space.
  • the space environment is, for example, a user's bedroom, room (bedroom), kitchen, or mall.
  • the electronic device is automatically turned on according to a control instruction or according to a set condition. After the electronic device is turned on, the electronic device may be detected by a detection device provided on the electronic device or provided outside the electronic device but connected to the electronic device. Information on light intensity and temperature in the working space.
  • the detection device may be disposed on the electronic device, or may be disposed outside the electronic device, connected with the electronic device by wireless or wired means, or connected by a wireless hotspot provided in the environment.
  • the detection device may include a light-sensitive sensor and an infrared thermopile sensor. The light-sensing sensor detects the light intensity in the working space of the electronic device, and the thermopile sensor detects the temperature information in the working space of the electronic device.
  • thermopile is a pyroelectric infrared sensor, which is a device composed of a thermocouple. At present, it has been widely used as a temperature detection device in ear thermometers, radiation thermometers, electric ovens, food temperature detection and other fields.
  • Photosensitive sensor is a sensor that uses a light-sensitive element to convert an optical signal into an electrical signal. Its sensitive wavelength is near the wavelength of visible light, including infrared and ultraviolet wavelengths.
  • Step S20 comparing the light intensity with a preset light intensity value
  • the preset light intensity value may be a value close to darkness or below the preset light intensity value, it is night or lighting in the electronic device's working space, and the preset light intensity value is 10% or 5%. It can be determined that the user is in a sleep state under the preset care intensity.
  • the light intensity is compared with a preset light intensity value to obtain a comparison result.
  • the comparison result is the presence or absence of light, and the presence of light here is a daylight condition, and it is determined that the user is in a non-sleep state (for example, awake state or exercise state), and the absence of light determines that the user is in a sleep state .
  • Step S30 Control the operation of the electronic device according to the comparison result and the temperature information.
  • the operation of the electronic device is controlled according to the comparison result and the temperature information.
  • the cold and hot state of the user is obtained according to the acquired temperature information, and the operation of the electronic device is controlled according to the comparison result and the cold and hot state.
  • the operation of the electronic device is controlled according to the user's cold and hot feeling, or in the non-sleep state, the operation of the electronic device is controlled according to the user's cold and hot feeling; in the sleep state and in the non-sleep state, the same
  • the sense of heat and cold is different for the control of electronic equipment.
  • the control amplitude in the sleep state is smaller than that in the non-sleep state.
  • the control of combining temperature information in the sleep state and the non-sleep state is also similar. At the same temperature, the control is different when the sleep state is different.
  • the step of controlling the operation of the electronic device according to the comparison result and the temperature information includes:
  • Step S31 when the light intensity is less than the preset light intensity value, obtain a first control parameter corresponding to the light intensity, and control the operation of the electronic device according to the temperature information and the first control parameter;
  • Step S32 When the light intensity is greater than or equal to the preset light intensity value, obtain a second control parameter corresponding to the light intensity, and control the electronic device according to the temperature information and the second control parameter. run.
  • the thermopile sensor When the user uses the cold and heat sensing function, the thermopile sensor continuously collects the temperature information in the room, and at the same time, before or after, determines whether there is light.
  • the air conditioner combines two parameters to judge and execute, and performs different air conditioner controls based on the judgment results. Under the light condition, the cold and heat sensing function under the light condition is performed, and under the light condition, the cold and heat sensing function is performed under the no light condition.
  • the air conditioner collects the human body's cold and heat information through a thermopile sensor, and when the human body's cold and hot feeling is relatively hot, the air conditioning set temperature is reduced by 2 ° Adopt the logic of blowing cold air toward people and increase the cooling frequency.
  • the air conditioner Collect the cold and hot feeling information of the human body through the thermopile sensor.
  • the air-conditioning set temperature is increased by 2 ° C. The logic of hot air blowing toward the person is adopted, and the heating frequency is increased.
  • the set temperature of the air conditioner is restored, the logic of taking hot air to avoid human blowing is taken, and the heating frequency is restored.
  • the air conditioner collects the human body's cold and heat information through a thermopile sensor.
  • the air conditioner's set temperature is increased by 1 ° C, and the cold wind is swayed. The logic of the wind does not increase the cooling frequency.
  • the air conditioner collects the human body's cold and hot feeling through the thermopile sensor. Information, when the human body feels cold and hot, the air conditioner set temperature is reduced by 1 ° C, and the logic of hot air swinging is adopted, without increasing the heating frequency.
  • the air conditioner set temperature is restored. Hot air avoids the logic of human blowing and restores the heating frequency.
  • the light intensity and temperature information in the working space of the electronic device is collected, and the control information of the electronic device that the user needs to control is obtained by combining the light intensity and temperature information, and then the operation of the electronic device can be controlled according to the control information, and the light intensity is combined.
  • temperature information can obtain the real control needs of users in the current environment, thereby improving the accuracy of the control parameters of the electronic equipment and the accuracy of the electronic equipment control.
  • the method further includes:
  • Step S40 Detect user information in a function space of the electronic device
  • Step S50 Acquire a confirmation result of whether a user exists in the electronic device's function space according to the user information
  • Step S60 Control the operation of the electronic device according to the confirmation result and the comparison result.
  • the user information in the working space of the electronic device is detected, the existence of the user is determined based on the user information, and the presence or absence of light in the working space of the electronic device is determined based on the light intensity information in the working space of the electronic device. And whether there is light to determine what kind of electronic device control is performed.
  • the method further includes:
  • Step S11 when a user exists and the light intensity is less than a preset light intensity value, mark the current environment state as the first state;
  • step S12 the control electronic device controls the control parameters corresponding to the first state to run.
  • Step S13 when a user exists and the light intensity is greater than or equal to a preset light intensity value, mark the current environment state as the second state;
  • step S14 the control electronic device is controlled to operate with the control parameters corresponding to the second state.
  • step S15 when there is no user and the light intensity is greater than or equal to a preset light intensity value, the current environment state is marked as a third state;
  • step S16 the control electronic device corresponding to the third state is operated.
  • step S17 when there is no user and the light intensity is less than a preset light intensity value, the current environment state is marked as a fourth state;
  • step S18 the control device corresponding to the fourth state is controlled to operate the electronic device, wherein the electronic device corresponding to the third state and the third state is in an energy-saving operation.
  • the first state is that the user exists and there is no light
  • the second state is that the user exists and that there is light
  • the third state is that the user does not exist and that there is light
  • the fourth state is that the user does not exist. And there is no case of light.
  • the control of the electronic device is different. If the electronic device is divided into normal operating parameters and energy-saving operating parameters, there are four states corresponding to the normal operating parameters under no light in the first state, the normal operating conditions under light in the second state, and the third state.
  • the energy-saving operation parameters under light are executed under the fourth state, and the energy-saving operation parameters under no light are under the fourth state.
  • the user can use the energy-saving function, the light sensor determines whether there is light, and then the thermopile sensor determines whether there is someone in the room. Combining the conditions of the two judgments, the air conditioner performs the normal function of light when there is light. When there is light and no one, the energy-saving function with light is performed. When there is no light, people perform the normal function without light. When there is no light and no person, the energy-saving function is performed without light.
  • the operating frequency of electronic devices in normal operating parameters under light is higher than the normal operating parameters in non-light.
  • the operating frequency of electronic devices in energy-saving operating parameters under light is higher than the energy-saving operating parameters under no light. ; Regardless of the presence or absence of light, the operating parameters in the normal operating parameters are less than the operating frequency of the electronic equipment in the energy-saving operating parameters.
  • the light intensity and user information are obtained through detection by sensors, and according to whether there is someone in the electronic device's working space and whether there is light, the control parameters of the electronic device in different situations are obtained by combining the light intensity and whether there is any person, which is further accurate. Control of electronic equipment to improve the intelligence and rationality of electronic equipment control.
  • the process of controlling the air conditioner includes:
  • Step S100 the thermopile sensor collects room temperature information
  • Step S200 the light-sensitive sensor determines whether there is light
  • Step S300 the air conditioner combines the thermopile sensor data to perform the cold and heat sensing function under the light condition;
  • step S400 the air conditioner combines the thermopile sensor data to perform the cold and heat sensing function under no-light conditions.
  • the air conditioner collects the human body's cold and heat information through a thermopile sensor.
  • the air conditioner's set temperature is lowered by 2 ° C, and the cold wind is taken Logic of human blowing, and increase the cooling frequency.
  • restore the air conditioner set temperature take cold air to avoid the human blowing logic, and restore the cooling frequency.
  • the air conditioner passes the thermopile.
  • the sensor collects information about the human body's cold and hot feelings.
  • the air conditioner's set temperature is increased by 2 ° C.
  • the logic of hot air blowing toward the person is adopted, and the heating frequency is increased. Restore the set temperature of the air conditioner, adopt the logic of hot air to avoid people blowing, and restore the heating frequency.
  • the air conditioner collects the human body's cold and heat information through a thermopile sensor.
  • the air conditioner's set temperature is increased by 1 ° C, and the cold wind is swayed. The logic of the wind does not increase the cooling frequency.
  • the air conditioner collects the human body's cold and hot feeling through the thermopile sensor. Information, when the human body feels cold and hot, the air conditioner set temperature is reduced by 1 ° C, and the logic of hot air swinging is adopted, without increasing the heating frequency.
  • the air conditioner set temperature is restored. Hot air avoids the logic of human blowing and restores the heating frequency.
  • the process of controlling the air conditioner includes:
  • Step S01 the photo sensor determines whether there is anyone? If yes, go to step S02; if no, go to step S03;
  • Step S02 the thermopile sensor determines whether there is anyone? If yes, go to step S04; if no, go to step S05;
  • Step S03 the thermopile sensor judges whether there is anyone? If yes, go to step S06; if no, go to step S07;
  • Step S04 the air conditioner performs a normal function under a light condition
  • Step S05 the air conditioner executes an energy-saving function under light conditions
  • Step S06 the air conditioner performs normal functions under no-light conditions
  • step S07 the air conditioner performs an energy saving function under no-light conditions.
  • the light-sensitive sensor determines whether there is light, and the thermopile sensor determines whether there is any person.
  • the air conditioner performs the normal function of light when there is light and there is no one in the light. Under the circumstances, the energy-saving function with light is performed, the normal function without light is performed with no light, and the energy-saving function is performed with no light and no person.
  • the operating frequency of electronic devices in normal operating parameters under light is higher than the normal operating parameters in non-light. Similarly, the operating frequency of electronic devices in energy-saving operating parameters under light is higher than the energy-saving operating parameters under no light.
  • thermopile sensor judges whether someone compares the temperature information detected by the thermopile sensor with the preset user temperature information. If it matches, it judges someone, if it does not match, it judges no one; and the photosensitive sensor judges whether it exists Lighting is the same as the above judgment method, and is determined by setting a preset light intensity.
  • the present application also provides an electronic device control device.
  • the electronic device control device includes: a memory, a processor, a detection device connected to the processor, and a computer program stored in the memory and executable on the processor. When the computer program is executed by the processor, the steps of the method according to the foregoing embodiment are implemented.
  • the processor of the control device is communicatively connected to the electronic device.
  • the processor is connected with a detection device.
  • the detection device detects the light intensity and temperature information to calculate and obtain the user's control information, thereby realizing the control of the electronic device.
  • the detection device is preferably a photo sensor that detects the intensity of the light and a thermopile sensor that detects the temperature information.
  • the present application also provides an electronic device.
  • the electronic device includes a memory, a processor, and a computer program stored on the memory and executable on the processor. When the computer program is executed by the processor, Implement the steps of the method as described in the above embodiments.
  • the electronic device is preferably an air conditioner, and may also be an air-cooled fan or a refrigerator.
  • the light intensity and temperature information in the working space of the electronic device can be detected by a detection device provided on the electronic device or provided outside the electronic device but connected to the electronic device.
  • the detection device may include a light-sensitive sensor and a thermopile sensor, and the light intensity in the working space of the electronic device is detected by the light-sensitive sensor, and the temperature information in the working space of the electronic device is detected by the thermopile sensor. When installed on an electronic device, the detection device is connected to the processor.
  • the light intensity and temperature information in the working space of the electronic device is collected, and the control information of the electronic device that the user needs to control is obtained by combining the light intensity and temperature information, and then the operation of the electronic device can be controlled according to the control information, and the light intensity is combined.
  • temperature information can obtain the real control needs of users in the current environment, thereby improving the accuracy of the control parameters of the electronic equipment and the accuracy of the electronic equipment control.
  • an embodiment of the present application also provides a computer-readable storage medium, where the computer-readable storage medium stores an electronic device control program, and the electronic device control program is implemented as described above when executed by a processor.
  • the electronic device control method according to the embodiment is not limited to the embodiment.

Abstract

一种电子设备控制方法,包括步骤:检测电子设备作用空间内的光照强度和温度信息(S10);将所述光照强度与预设光照强度值比对(S20);根据比对结果以及所述温度信息控制电子设备的运行(S30)。

Description

电子设备及其控制方法、装置和计算机可读存储介质
技术领域
本申请涉及电子设备技术领域,尤其涉及电子设备及其控制方法、装置和计算机可读存储介质。
背景技术
目前,越来越多的电子设备进入人们的日常生活和工作当中。所述电子设备以空调器为例,在空调器运行过程中,用户经常会调整空调器的运行参数,用户可通过遥控器或者手机等控制设备控制空调器的运行,以调节室内环境的温度、湿度和风速等,或者根据用户的历史控制习惯来控制空调器的运行,而上述的控制方式与用户当前所处的实际环境存在差异,导致空调器的控制参数获取准确度差,进而使得空调器的控制准确度差。
发明内容
本申请的主要目的在于提供一种电子设备控制方法、装置、电子设备和计算机可读存储介质,旨在解决目前空调器的控制方式与用户当前所处的实际环境存在差异,导致空调器的控制参数获取准确度差,进而使得空调器的控制准确度差的问题。
为实现上述目的,本申请一方面提供一种电子设备控制方法,所述电子设备控制方法包括以下步骤:
检测电子设备作用空间内的光照强度和温度信息;
将所述光照强度与预设光照强度值比对;以及,
根据比对结果以及所述温度信息控制电子设备的运行。
可选地,所述根据比对结果以及所述温度信息控制电子设备的运行的步骤包括:
在所述光照强度小于所述预设光照强度值时,获取与所述光照强度对应的第一控制参数,并根据所述温度信息和所述第一控制参数控制电子设备的运行;以及,
在所述光照强度大于或者等于所述预设光照强度值时,获取与所述光照强度对应的第二控制参数,并根据所述温度信息和所述第二控制参数控制电子设备的运行。
可选地,所述将所述光照强度与预设光照强度值比对的步骤之后,还包括:
检测电子设备作用空间内的用户信息;
根据所述用户信息获取电子设备作用空间内是否存在用户的确认结果;以及,
根据所述确认结果和所述比对结果控制电子设备的运行。
可选地,所述根据所述确认结果和所述比对结果控制电子设备的运行的步骤之后,还包括:
在存在用户,且所述光照强度小于预设光照强度值时,将当前环境状态标记为第一状态;以及,
控制电子设备与所述第一状态对应的控制参数运行。
可选地,所述根据所述确认结果和所述比对结果控制电子设备的运行的步骤之后,还包括:
在存在用户,且所述光照强度大于或等于预设光照强度值时,将当前环境状态标记为第二状态;以及,
控制电子设备与所述第二状态对应的控制参数运行。
可选地,所述根据所述确认结果和所述比对结果控制电子设备的运行的步骤之后,还包括:
在不存在用户,且所述光照强度大于或等于预设光照强度值时,将当前环境状态标记为第三状态;以及,
控制电子设备与所述第三状态对应的控制参数运行。
可选地,所述根据所述确认结果和所述比对结果控制电子设备的运行的步骤之后,还包括:
在不存在用户,且所述光照强度小于预设光照强度值时,将当前环境状态标记为第四状态;以及,
控制电子设备与所述第四状态对应的控制参数运行,其中所述第三状态和第三状态对应的电子设备处于节能运行。
可选地,所述根据比对结果以及所述温度信息控制电子设备的运行的步骤包括:
根据获取到的温度信息,得到用户的冷热感状态,根据比对结果和冷热感状态控制电子设备的运行。
此外,为实现上述目的,本申请另一方面还提供一种电子设备控制装置,所述电子设备控制装置包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如下步骤:
检测电子设备作用空间内的光照强度和温度信息;
将所述光照强度与预设光照强度值比对;以及,
根据比对结果以及所述温度信息控制电子设备的运行。
此外,为实现上述目的,本申请另一方面还提供一种电子设备,所述电子设备包括:存储器、处理器、与处理器连接的检测装置及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如下步骤:
检测电子设备作用空间内的光照强度和温度信息;
将所述光照强度与预设光照强度值比对;以及,
根据比对结果以及所述温度信息控制电子设备的运行。
可选地,所述电子设备为空调器,所述检测装置包括与处理器连接的光敏传感器和红外传感器。
此外,为实现上述目的,本申请再一方面还提供一种计算机可读存储介质,所述计算机可读存储介质上存储有电子设备控制程序,所述电子设备控制程序被处理器执行时实现如下步骤:
检测电子设备作用空间内的光照强度和温度信息;
将所述光照强度与预设光照强度值比对;以及,
根据比对结果以及所述温度信息控制电子设备的运行。
本申请通过采集电子设备作用空间内的光照强度和温度信息,通过结合光照强度和温度信息来得到用户需要控制电子设备的控制信息,进而可以根据该控制信息控制电子设备的运行,结合光照强度和温度信息可得到当前环境下用户真实的控制需求,进而提高了电子设备控制参数获取的准确度,提高了电子设备控制的准确度。
附图说明
图1为本申请一实施例方案涉及的硬件运行环境的电子设备结构示意图;
图2为本申请电子设备控制方法的第一实施例的流程示意图;
图3为本申请一实施例中根据所述比对结果以及所述温度信息控制电子设备的运行的流程示意图;
图4为本申请电子设备控制方法的第二实施例的流程示意图;
图5为本申请电子设备控制方法的第三实施例的流程示意图;
图6为本申请一实施例中空调器控制过程的流程示意图;
图7为本申请另实施例中空调器控制过程的流程示意图。
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不限定本申请。
本申请实施例的主要解决方案是:检测电子设备作用空间内的光照强度和温度信息;将所述光照强度与预设光照强度值比对;根据比对结果以及所述温度信息控制电子设备的运行。
由于空调器的控制方式与用户当前所处的实际环境存在差异,导致空调器的控制参数获取准确度差,进而使得空调器的控制准确度差的问题。本申请提供一种解决方案,通过采集电子设备作用空间内的光照强度和温度信息,通过结合光照强度和温度信息来得到用户需要控制电子设备的控制信息,进而可以根据该控制信息控制电子设备的运行,结合光照强度和温度信息可得到当前环境下用户真实的控制需求,进而提高了电子设备控制参数获取的准确度,提高了电子设备控制的准确度。
如图1所示,图1是本申请实施例方案涉及的硬件运行环境的电子设备结构示意图。
本申请实施例电子设备可以是空调器,也可是控制设备通信连接的其他被控设备,例如,风扇或电视。通过采集电子设备作用空间内的光照强度和温度信息,通过结合光照强度和温度信息来得到用户需要控制电子设备的控制信息,进而可以根据该控制信息控制电子设备的运行。
如图1所示,该电子设备可以包括:处理器1001,例如CPU,网络接口1004,用户接口1003,存储器1005,通信总线1002。其中,通信总线1002设置为实现这些组件之间的连接通信。用户接口1003可以包括显示屏(Display)、输入单元比如键盘(Keyboard),可选用户接口1003还可以包括标准的有线接口、无线接口。网络接口1004可选的可以包括标准的有线接口、无线接口(如WI-FI接口)。存储器1005可以是高速RAM存储器,也可以是稳定的存储器(non-volatile memory),例如磁盘存储器。存储器1005可选的还可以是独立于前述处理器1001的存储装置。
可选地,电子设备还可以包括摄像头、RF(Radio Frequency,射频)电路,传感器、音频电路、WiFi模块、检测器(雷达传感器1006)等等。当然,电子设备还可配置陀螺仪、气压计、湿度计、温度计、温度传感器等其他传感器,在此不再赘述。
本领域技术人员可以理解,图1中示出的终端结构并不构成对电子设备的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
如图1所示,作为一种计算机计算机可读存储介质的存储器1005中可以包括操作系统、网络通信模块、用户接口模块以及电子设备控制应用程序。
在图1所示的终端中,网络接口1004主要设置为连接后台服务器,与后台服务器进行数据通信;用户接口1003主要设置为连接客户端(用户端),与客户端进行数据通信;而处理器1001可以设置为调用存储器1005中存储的电子设备控制应用程序,并执行以下操作:
检测电子设备作用空间内的光照强度和温度信息;
将所述光照强度与预设光照强度值比对;
根据比对结果以及所述温度信息控制电子设备的运行。
进一步地,处理器1001可以设置为调用存储器1005中存储的电子设备控制应用程序,并执行以下操作:
在所述光照强度小于所述预设光照强度值时,获取与所述光照强度对应的第一控制参数,并根据所述温度信息和所述第一控制参数控制电子设备的运行;
在所述光照强度大于或者等于所述预设光照强度值时,获取与所述光照强度对应的第二控制参数,并根据所述温度信息和所述第二控制参数控制电子设备的运行。
进一步地,所述将所述光照强度与预设光照强度值比对的步骤之后,处理器1001可以设置为调用存储器1005中存储的电子设备控制应用程序,并执行以下操作:
检测电子设备作用空间内的用户信息;
根据所述用户信息获取电子设备作用空间内是否存在用户的确认结果;
根据所述确认结果和所述比对结果控制电子设备的运行。
进一步地,所述根据所述确认结果和所述比对结果控制电子设备的运行的步骤之后,处理器1001可以设置为调用存储器1005中存储的电子设备控制应用程序,并执行以下操作:
在存在用户,且所述光照强度小于预设光照强度值时,将当前环境状态标记为第一状态;
控制电子设备与所述第一状态对应的控制参数运行。
进一步地,所述根据所述确认结果和所述比对结果控制电子设备的运行的步骤之后,处理器1001可以设置为调用存储器1005中存储的电子设备控制应用程序,并执行以下操作:
在存在用户,且所述光照强度大于或等于预设光照强度值时,将当前环境状态标记为第二状态;
控制电子设备与所述第二状态对应的控制参数运行。
进一步地,所述根据所述确认结果和所述比对结果控制电子设备的运行的步骤之后,处理器1001可以设置为调用存储器1005中存储的电子设备控制应用程序,并执行以下操作:
在不存在用户,且所述光照强度大于或等于预设光照强度值时,将当前环境状态标记为第三状态;
控制电子设备与所述第三状态对应的控制参数运行。
进一步地,所述根据所述确认结果和所述比对结果控制电子设备的运行的步骤之后,处理器1001可以设置为调用存储器1005中存储的电子设备控制应用程序,并执行以下操作:
在不存在用户,且所述光照强度小于预设光照强度值时,将当前环境状态标记为第四状态;
控制电子设备与所述第四状态对应的控制参数运行,其中所述第三状态和第三状态对应的电子设备处于节能运行。
参照图2,本申请的一实施例提供一种电子设备控制方法,所述电子设备控制方法包括:
步骤S10,检测电子设备作用空间内的光照强度和温度信息;
在本实施例中,所述电子设备可以是空调器、风冷风扇或冰箱等;所述电子设备作用空间为一建筑或构建物内的空间环境,例如,以空调器为例,为空调器发生制冷、制热或除湿等功能所产生作用的空间环境,所作用的空间可以是空调器所在的空间,或者是空调器可以设置空间外部,但会对该空间起到制冷、制热或除湿的效果;所述空间环境,例如,为用户的卧室,房间(卧室)、厨房,或者是商场等。
所述电子设备根据控制指令或者根据设定的条件自动开启,在电子设备开启后,可通过设置于电子设备上的或者设置于电子设备之外但与电子设备连接的检测装置来检测得到电子设备作用空间内的光照强度和温度信息。所述检测装置可以设置在电子设备上,也可设置于电子设备之外,与电子设备通过无线或者有线的方式连接,或者通过设置于环境中的无线热点连接。所述检测装置可包括光敏传感器和红外热电堆传感器,通过光敏传感器检测电子设备作用空间内的光照强度,通过热电堆传感器检测电子设备作用空间内的温度信息。所述红外热电堆(Thermopile)传感器:热电堆是一种热释红外线传感器,它是由热电偶构成的一种器件。目前,它在耳式体温计、放射温度计、电烤炉、食品温度检测等领域中,作为温度检测器件获得了广泛的应用。
光敏传感器:光敏传感器是利用光敏元件将光信号转换为电信号的传感器,它的敏感波长在可见光波长附近,包括红外线波长和紫外线波长。
步骤S20,将所述光照强度与预设光照强度值比对;
所述预设光强度值可以是接近黑暗的值或者说在该预设光照强度值之下,为晚上或者为电子设备作用空间内为光照,所述预设光照强度值为10%或者5%等,在该预设关照强度下,可判定用户处于睡眠状态。
在获取到电子设备作用空间内的光照强度,将所述光照强度与预设光照强度值比对,以得到比对结果。所述比对结果为存在光照或不存在光照,而这里说的存在光照为白天情况,判定用户处于非睡眠状态(例如,清醒状态或者运动状态等),而不存在光照,判定用户处于睡眠状态。
步骤S30,根据比对结果以及所述温度信息控制电子设备的运行。
在得到光照强度的比对结果后,根据所述比对结果以及所述温度信息控制电子设备的运行。具体的,根据获取到的温度信息,得到用户的冷热感状态,根据比对结果和冷热感状态控制电子设备的运行。例如,在睡眠状态下,根据用户冷热感来控制电子设备的运行,或者在非睡眠状态下,根据用户冷热感来控制电子设备的运行;在睡眠状态下和非睡眠状态下,同样的冷热感对于电子设备的控制是不同的。睡眠状态下的控制幅度小于非睡眠状态下的控制幅度。对于睡眠状态下和非睡眠状态下结合温度信息的控制也类似,相同温度,在睡眠状态不同时,控制不相同。
具体的,参考图3,所述根据比对结果以及所述温度信息控制电子设备的运行的步骤包括:
步骤S31,在所述光照强度小于所述预设光照强度值时,获取与所述光照强度对应的第一控制参数,并根据所述温度信息和所述第一控制参数控制电子设备的运行;
步骤S32,在所述光照强度大于或者等于所述预设光照强度值时,获取与所述光照强度对应的第二控制参数,并根据所述温度信息和所述第二控制参数控制电子设备的运行。
用户在使用冷热感功能时,热电堆传感器不断采集房间内温度信息,同时或者之前或者之后,判断是否有光照,空调器结合两个参数判断执行,根据判断结果执行不同的空调器控制。在有光照条件下,执行有光照条件下的冷热感功能,在无光照条件下执行无光照条件下的冷热感功能。
具体的,有光照条件下的冷热感功能:在制冷情况下,空调器通过热电堆传感器采集人体冷热感信息,在人体冷热感比较热的情况下,空调设定温度降低2℃,采取冷风朝向人吹的逻辑,并且提高制冷频率,在人体冷热适中的情况下,还原空调设定温度,采取冷风避开人吹的逻辑,并且还原制冷频率;在制热情况下,空调器通过热电堆传感器采集人体冷热感信息,在人体冷热感比较冷的情况下,空调设定温度提高2℃,采取热风朝向人吹的逻辑,并且提高制热频率,在人体冷热适中的情况下,还原空调设定温度,采取热风避开人吹的逻辑,并且还原制热频率。
无光照条件下的冷热感功能:在制冷情况下,空调器通过热电堆传感器采集人体冷热感信息,在人体冷热感比较热的情况下,空调设定温度提高1℃,采取冷风摇摆风的逻辑,不提高制冷频率,在人体冷热适中的情况下,还原空调设定温度,采取冷风避开人吹的逻辑;在制热情况下,空调器通过热电堆传感器采集人体冷热感信息,在人体冷热感比较冷的情况下,空调设定温度降低1℃,采取热风摇摆风的逻辑,不提高制热频率,在人体冷热适中的情况下,还原空调设定温度,采取热风避开人吹的逻辑,并且还原制热频率。
本实施例通过采集电子设备作用空间内的光照强度和温度信息,通过结合光照强度和温度信息来得到用户需要控制电子设备的控制信息,进而可以根据该控制信息控制电子设备的运行,结合光照强度和温度信息可得到当前环境下用户真实的控制需求,进而提高了电子设备控制参数获取的准确度,提高了电子设备控制的准确度。
而在一实施例中,参考图4,所述将所述光照强度与预设光照强度值比对的步骤之后,还包括:
步骤S40,检测电子设备作用空间内的用户信息;
步骤S50,根据所述用户信息获取电子设备作用空间内是否存在用户的确认结果;
步骤S60,根据所述确认结果和所述比对结果控制电子设备的运行。
在本实施例中,检测电子设备作用空间内的用户信息,根据用户信息判断是否存在用户,以及根据电子设备作用空间内的光照强度信息判断电子设备作用空间内是否存在光照,通过用户存在与否以及是否存在光照来判断执行何种电子设备控制。
参考图5,所述根据所述确认结果和所述比对结果控制电子设备的运行的步骤之后,还包括:
步骤S11,在存在用户,且所述光照强度小于预设光照强度值时,将当前环境状态标记为第一状态;
步骤S12,控制电子设备与所述第一状态对应的控制参数运行。
步骤S13,在存在用户,且所述光照强度大于或等于预设光照强度值时,将当前环境状态标记为第二状态;
步骤S14,控制电子设备与所述第二状态对应的控制参数运行。
步骤S15,在不存在用户,且所述光照强度大于或等于预设光照强度值时,将当前环境状态标记为第三状态;
步骤S16,控制电子设备与所述第三状态对应的控制参数运行。
步骤S17,在不存在用户,且所述光照强度小于预设光照强度值时,将当前环境状态标记为第四状态;
步骤S18,控制电子设备与所述第四状态对应的控制参数运行,其中所述第三状态和第三状态对应的电子设备处于节能运行。
其中第一状态为用户存在,且不存在光照的情况,第二状态为用户存在,且存在光照的情况,第三状态为用户不存在,且存在光照的情况,第四状态为用户不存在,且不存在光照的情况,在这四种情况下,电子设备的控制不同。如果电子设备分正常运行参数和节能运行参数,则对应该四种状态,分别有第一状态下执行无光照下的正常运行参数,第二状态下执行有光照下的正常运行情况,第三状态下执行有光照下的节能运行参数,第四状态下无光照下的节能运行参数。
具体的,用户可以使用节能功能,光敏传感器判断是否有光照,然后热电堆传感器判断房间内是否有人,结合二者判断的条件,空调器在有光照有人的情况下执行有光照的正常功能,在有光照无人的情况下执行有光照的节能功能,在无光照有人的情况下执行无光照的正常功能,在无光照无人的情况下执行无光照的节能功能。有光照下的正常运行参数中电子设备的运行频率要高于无光照下的正常运行参数,同样的,有光照下的节能运行参数中电子设备的运行频率要高于无光照下的节能运行参数;而不管有无光照下,正常运行参数中的运行参数均要小于节能运行参数中的电子设备的运行频率。
本实施例中,通过传感器来检测得到光照强度和用户信息,根据电子设备作用空间内是否有人以及有无光照,通过结合光照强度和是否有人来得到电子设备在不同情况下的控制参数,进一步准确的控制电子设备,提高电子设备控制的智能化程度和合理性。
为了更好的描述本申请实施例,参考图6,所述空调器控制的过程包括:
步骤S100,热电堆传感器采集房间温度信息;
步骤S200,光敏传感器判断是否存在光照;
步骤S300,空调结合热电堆传感器数据,执行有光照条件下的冷热感功能;
步骤S400,空调器结合热电堆传感器数据,执行无光照条件下冷热感功能。
有光照条件下的冷热感功能:在制冷情况下,空调器通过热电堆传感器采集人体冷热感信息,在人体冷热感比较热的情况下,空调设定温度降低2℃,采取冷风朝向人吹的逻辑,并且提高制冷频率,在人体冷热适中的情况下,还原空调设定温度,采取冷风避开人吹的逻辑,并且还原制冷频率;在制热情况下,空调器通过热电堆传感器采集人体冷热感信息,在人体冷热感比较冷的情况下,空调设定温度提高2℃,采取热风朝向人吹的逻辑,并且提高制热频率,在人体冷热适中的情况下,还原空调设定温度,采取热风避开人吹的逻辑,并且还原制热频率。
无光照条件下的冷热感功能:在制冷情况下,空调器通过热电堆传感器采集人体冷热感信息,在人体冷热感比较热的情况下,空调设定温度提高1℃,采取冷风摇摆风的逻辑,不提高制冷频率,在人体冷热适中的情况下,还原空调设定温度,采取冷风避开人吹的逻辑;在制热情况下,空调器通过热电堆传感器采集人体冷热感信息,在人体冷热感比较冷的情况下,空调设定温度降低1℃,采取热风摇摆风的逻辑,不提高制热频率,在人体冷热适中的情况下,还原空调设定温度,采取热风避开人吹的逻辑,并且还原制热频率。
为了更好的描述本申请实施例,参考图7,所述空调器控制的过程包括:
步骤S01,光敏传感器判断是否有人?若是,执行步骤S02,若否,执行步骤S03;
步骤S02,热电堆传感器判断是否有人?若是,执行步骤S04,若否,执行步骤S05;
步骤S03,热电堆传感器判断是否有人?若是,执行步骤S06,若否,执行步骤S07;
步骤S04,空调执行有光照条件下正常功能;
步骤S05,空调执行有光照条件下节能功能;
步骤S06,空调执行无光照条件下正常功能;
步骤S07,空调执行无光照条件下节能功能。
在使用空调的节能功能时,光敏传感器判断是否有光照,热电堆传感器判断是否有人,结合两个判断条件,空调器在有光照有人的情况下执行有光照的正常功能,在有光照无人的情况下执行有光照的节能功能,在无光照有人的情况下执行无光照的正常功能,在无光照无人的情况下执行无光照的节能功能。有光照下的正常运行参数中电子设备的运行频率要高于无光照下的正常运行参数,同样的,有光照下的节能运行参数中电子设备的运行频率要高于无光照下的节能运行参数;而不管有无光照下,正常运行参数中的运行参数均要小于节能运行参数中的电子设备的运行频率。所述热电堆传感器判断是否有人是根据热电堆传感器检测到的温度信息与预设的用户温度信息比对,如果匹配,则判断有人,如果不匹配,则判断无人;而光敏传感器判断是否存在光照,与上述判断的方式相同,通过设置预设光照强度来判断。
本申请还提供一种电子设备控制装置,所述电子设备控制装置包括:存储器、处理器、与处理器连接的检测装置及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如上实施例所述的方法的步骤。所述控制装置的处理器与电子设备通信连接,所述处理器连接有检测装置,检测装置检测光照强度和温度信息,来计算得到用户的控制信息,进而实现电子设备的控制。所述检测装置优选为包括检测光照强度的光敏传感器和检测温度信息的热电堆传感器。
本申请还提供一种电子设备,所述电子设备包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如上述实施例所述的方法的步骤。所述电子设备优选为空调器,也还可以是风冷风扇或冰箱等。可通过设置于电子设备上的或者设置于电子设备之外但与电子设备连接的检测装置来检测得到电子设备作用空间内的光照强度和温度信息。所述检测装置可包括光敏传感器和热电堆传感器,通过光敏传感器检测电子设备作用空间内的光照强度,通过热电堆传感器检测电子设备作用空间内的温度信息。在设置与电子设备上时,所述检测装置连接所述处理器。
本实施例通过采集电子设备作用空间内的光照强度和温度信息,通过结合光照强度和温度信息来得到用户需要控制电子设备的控制信息,进而可以根据该控制信息控制电子设备的运行,结合光照强度和温度信息可得到当前环境下用户真实的控制需求,进而提高了电子设备控制参数获取的准确度,提高了电子设备控制的准确度。
此外,本申请实施例还提出一种计算机可读存储介质,计算机可读存储介质,所述计算机可读存储介质上存储有电子设备控制程序,所述电子设备控制程序被处理器执行时实现如上实施例所述的电子设备控制方法。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者系统不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者系统所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者系统中还存在另外的相同要素。
上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在如上所述的一个计算机可读存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
以上仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (15)

  1. 一种电子设备控制方法,其中,所述电子设备控制方法包括以下步骤:
    检测电子设备作用空间内的光照强度和温度信息;
    将所述光照强度与预设光照强度值比对;以及,
    根据比对结果以及所述温度信息控制电子设备的运行。
  2. 如权利要求1所述的电子设备控制方法,其中,所述根据比对结果以及所述温度信息控制电子设备的运行的步骤包括:
    在所述光照强度小于所述预设光照强度值时,获取与所述光照强度对应的第一控制参数,并根据所述温度信息和所述第一控制参数控制电子设备的运行;以及,
    在所述光照强度大于或者等于所述预设光照强度值时,获取与所述光照强度对应的第二控制参数,并根据所述温度信息和所述第二控制参数控制电子设备的运行。
  3. 如权利要求1所述的电子设备控制方法,其中,所述将所述光照强度与预设光照强度值比对的步骤之后,还包括:
    检测电子设备作用空间内的用户信息;
    根据所述用户信息获取电子设备作用空间内是否存在用户的确认结果;以及,
    根据所述确认结果和所述比对结果控制电子设备的运行。
  4. 如权利要求3所述的电子设备控制方法,其中,所述根据所述确认结果和所述比对结果控制电子设备的运行的步骤之后,还包括:
    在存在用户,且所述光照强度小于预设光照强度值时,将当前环境状态标记为第一状态;以及,
    控制电子设备与所述第一状态对应的控制参数运行。
  5. 如权利要求4所述的电子设备控制方法,其中,所述根据所述确认结果和所述比对结果控制电子设备的运行的步骤之后,还包括:
    在存在用户,且所述光照强度大于或等于预设光照强度值时,将当前环境状态标记为第二状态;以及,
    控制电子设备与所述第二状态对应的控制参数运行。
  6. 如权利要求5所述的电子设备控制方法,其中,所述根据所述确认结果和所述比对结果控制电子设备的运行的步骤之后,还包括:
    在不存在用户,且所述光照强度大于或等于预设光照强度值时,将当前环境状态标记为第三状态;以及,
    控制电子设备与所述第三状态对应的控制参数运行。
  7. 如权利要求6所述的电子设备控制方法,其中,所述根据所述确认结果和所述比对结果控制电子设备的运行的步骤之后,还包括:
    在不存在用户,且所述光照强度小于预设光照强度值时,将当前环境状态标记为第四状态;以及,
    控制电子设备与所述第四状态对应的控制参数运行,其中所述第三状态和第三状态对应的电子设备处于节能运行。
  8. 如权利要求1所述的电子设备控制方法,其中,所述根据比对结果以及所述温度信息控制电子设备的运行的步骤包括:
    根据获取到的温度信息,得到用户的冷热感状态,根据比对结果和冷热感状态控制电子设备的运行。
  9. 一种电子设备控制装置,其中,所述电子设备控制装置包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如下步骤:
    检测电子设备作用空间内的光照强度和温度信息;
    将所述光照强度与预设光照强度值比对;以及,
    根据比对结果以及所述温度信息控制电子设备的运行。
  10. 一种电子设备,其中,所述电子设备包括:存储器、处理器、与处理器连接的检测装置及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如下步骤:
    检测电子设备作用空间内的光照强度和温度信息;
    将所述光照强度与预设光照强度值比对;以及,
    根据比对结果以及所述温度信息控制电子设备的运行。
  11. 如权利要求10所述的电子设备,其中,所述电子设备为空调器,所述检测装置包括与处理器连接的光敏传感器和红外传感器。
  12. 如权利要求10所述的电子设备,其中,所述计算机程序被所述处理器执行时实现如下步骤:
    在所述光照强度小于所述预设光照强度值时,获取与所述光照强度对应的第一控制参数,并根据所述温度信息和所述第一控制参数控制电子设备的运行;以及,
    在所述光照强度大于或者等于所述预设光照强度值时,获取与所述光照强度对应的第二控制参数,并根据所述温度信息和所述第二控制参数控制电子设备的运行。
  13. 如权利要求10所述的电子设备,其中,所述计算机程序被所述处理器执行时实现如下步骤:
    检测电子设备作用空间内的用户信息;
    根据所述用户信息获取电子设备作用空间内是否存在用户的确认结果;以及,
    根据所述确认结果和所述比对结果控制电子设备的运行。
  14. 如权利要求13所述的电子设备,其中,所述计算机程序被所述处理器执行时实现如下步骤:
    在存在用户,且所述光照强度小于预设光照强度值时,将当前环境状态标记为第一状态;以及,
    控制电子设备与所述第一状态对应的控制参数运行。
  15. 一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有电子设备控制程序,所述电子设备控制控制程序被处理器执行时实现如下步骤:
    检测电子设备作用空间内的光照强度和温度信息;
    将所述光照强度与预设光照强度值比对;以及,
    根据比对结果以及所述温度信息控制电子设备的运行。
PCT/CN2018/112724 2018-06-19 2018-10-30 电子设备及其控制方法、装置和计算机可读存储介质 WO2019242193A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810633294.XA CN108954705A (zh) 2018-06-19 2018-06-19 电子设备及其控制方法、装置和计算机可读存储介质
CN201810633294.X 2018-06-19

Publications (1)

Publication Number Publication Date
WO2019242193A1 true WO2019242193A1 (zh) 2019-12-26

Family

ID=64491745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/112724 WO2019242193A1 (zh) 2018-06-19 2018-10-30 电子设备及其控制方法、装置和计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN108954705A (zh)
WO (1) WO2019242193A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110274364A (zh) * 2019-06-28 2019-09-24 宁波奥克斯电气股份有限公司 一种空调智能送风的控制方法、系统及空调
CN112524766B (zh) * 2020-12-10 2021-11-26 珠海格力电器股份有限公司 空调设备的控制方法、装置和电子装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202058032U (zh) * 2011-06-03 2011-11-30 熊爱民 一种基于现场总线的反馈式窗帘控制系统
CN103388875A (zh) * 2012-05-09 2013-11-13 上海航天汽车机电股份有限公司 一种车用双温区自动空调控制方法
CN105371417A (zh) * 2014-08-22 2016-03-02 珠海格力电器股份有限公司 空调器及其控制方法和装置
CN106500237A (zh) * 2015-09-06 2017-03-15 王梦舟 教室环境控制系统
CN106843345A (zh) * 2017-04-19 2017-06-13 重庆大学 一种办公区域多参数耦合智能控制系统及方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103245033B (zh) * 2012-02-10 2016-04-20 珠海格力电器股份有限公司 空调器及其控制方法和装置
CN103940041A (zh) * 2014-04-14 2014-07-23 美的集团股份有限公司 空调及其舒适睡眠控制方法和系统
US9772116B2 (en) * 2014-11-04 2017-09-26 Google Inc. Enhanced automated control scheduling
CN104374054B (zh) * 2014-11-25 2017-07-28 珠海格力电器股份有限公司 空调机组的控制方法和系统
CN104990200B (zh) * 2015-05-28 2019-08-20 青岛海尔空调电子有限公司 一种空调控制方法及空调
CN106196483B (zh) * 2016-07-29 2019-08-16 广东美的制冷设备有限公司 空调器运行控制方法及装置
CN106440213A (zh) * 2016-09-29 2017-02-22 广东美的制冷设备有限公司 空调及其控制方法和控制系统
CN106545965A (zh) * 2016-10-27 2017-03-29 北京许继电气有限公司 一种自适应温控方法和系统
CN107421068B (zh) * 2017-07-26 2020-03-06 广东美的制冷设备有限公司 空调器控制方法、电子设备和计算机可读存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202058032U (zh) * 2011-06-03 2011-11-30 熊爱民 一种基于现场总线的反馈式窗帘控制系统
CN103388875A (zh) * 2012-05-09 2013-11-13 上海航天汽车机电股份有限公司 一种车用双温区自动空调控制方法
CN105371417A (zh) * 2014-08-22 2016-03-02 珠海格力电器股份有限公司 空调器及其控制方法和装置
CN106500237A (zh) * 2015-09-06 2017-03-15 王梦舟 教室环境控制系统
CN106843345A (zh) * 2017-04-19 2017-06-13 重庆大学 一种办公区域多参数耦合智能控制系统及方法

Also Published As

Publication number Publication date
CN108954705A (zh) 2018-12-07

Similar Documents

Publication Publication Date Title
WO2020019403A1 (zh) 用电量异常检测方法、装置、设备及可读存储介质
WO2017160076A1 (ko) 음향 센서, 및 이를 구비하는 홈 어플라이언스 시스템
WO2018048094A1 (en) Cook top, range hood and control methods thereof
WO2018076756A1 (zh) 智能穿戴设备的穿戴状态检测方法及检测装置、空调器
WO2018076757A1 (zh) 一种人体位置获取方法和装置
WO2019114559A1 (zh) 空气调节器的控制方法、装置及计算机可读存储介质
WO2019114553A1 (zh) 空气调节器及其控制方法、装置以及存储介质
WO2017123074A1 (ko) 전자 장치 및 이의 냉난방 제어 방법
WO2014092464A1 (ko) 홈 모니터링 방법 및 장치
WO2021000507A1 (zh) 空调温度调节异常的控制方法、空调器及存储介质
WO2021031334A1 (zh) 空调系统及其空调控制方法、空调控制装置
WO2020093707A1 (zh) 空调器控制方法、空调器及计算机可读存储介质
WO2019242193A1 (zh) 电子设备及其控制方法、装置和计算机可读存储介质
WO2018090465A1 (zh) 视频监控方法、系统以及监控装置
WO2017143488A1 (zh) 家庭环境监控方法、装置及系统
WO2020024534A1 (zh) 基于电量预测的用电控制方法、装置、设备和存储介质
WO2016080747A1 (en) User terminal and method for controlling display apparatus
WO2020015060A1 (zh) 用电量异常评估方法、装置、设备和计算机存储介质
WO2020077753A1 (zh) 控制终端、一拖多空调器的控制方法及装置和存储介质
WO2020007099A1 (zh) 电视终端控制方法、设备及计算机可读存储介质
WO2020077749A1 (zh) 一拖多空调器及其控制方法、装置和计算机可读存储介质
WO2019114565A1 (zh) 空气调节器的调节方法、装置以及存储介质
WO2020124848A1 (zh) 空调器的控制方法、空调器及存储介质
WO2019114552A1 (zh) 空气调节装置及控制方法、终端和存储介质
WO2020098408A1 (zh) 空调器及其控制方法和计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18923427

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18923427

Country of ref document: EP

Kind code of ref document: A1