WO2019242088A1 - 一种具有镂空结构的双极化贴片天线单元 - Google Patents

一种具有镂空结构的双极化贴片天线单元 Download PDF

Info

Publication number
WO2019242088A1
WO2019242088A1 PCT/CN2018/101943 CN2018101943W WO2019242088A1 WO 2019242088 A1 WO2019242088 A1 WO 2019242088A1 CN 2018101943 W CN2018101943 W CN 2018101943W WO 2019242088 A1 WO2019242088 A1 WO 2019242088A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna unit
dual
radiation
patch antenna
substrate
Prior art date
Application number
PCT/CN2018/101943
Other languages
English (en)
French (fr)
Inventor
葛磊
赵田野
Original Assignee
深圳市深大唯同科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市深大唯同科技有限公司 filed Critical 深圳市深大唯同科技有限公司
Publication of WO2019242088A1 publication Critical patent/WO2019242088A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/045Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means

Definitions

  • the present invention relates to the technical field of communication antennas, and in particular, to a dual-polarized patch antenna unit with a hollow structure.
  • Massive MIMO large-scale multiple input multiple output
  • the integration with the active beamforming network is related to the size and distribution space of the entire system and the compatibility of the system modules.
  • High isolation and low mutual coupling effect In a MIMO system, mutual coupling between antenna units will not only reduce the isolation of the channel, but also reduce the communication efficiency of the entire system.
  • the current base station antenna unit widely adopts the technical solution of the symmetric oscillator.
  • the profile is high, the volume is large, and the mutual coupling between the units is strong, which makes it difficult to improve the isolation and the distortion of the pattern, which seriously affects
  • the overall performance of the antenna array in addition to the mutual coupling between the vibrators, the radiant energy of the complex petite feeding network itself has a serious impact on the performance of the antenna, and an effective way is needed to suppress this energy leakage and make the antenna ’s
  • the radiation pattern is purer and better.
  • the present invention provides a miniaturized, dual-polarized patch antenna unit with low profile, high isolation, and low mutual coupling effects.
  • the technical problem to be solved by the present invention is to provide a dual-polarized patch antenna unit with a hollow structure, which includes a substrate, a radiation module is provided on one surface of the substrate, and a hollow area is provided at a position of the substrate corresponding to the radiation module.
  • the radiation module is provided above the hollowed-out area; the radiation module is provided with a shielded metal ground for suppressing the leakage of radiation energy to the antenna unit in combination with the hollowed-out area.
  • the radiation module includes at least one layer of supporting medium, and the supporting medium is further provided with a feeding medium on a surface close to the substrate;
  • a power division feeding network is provided on a surface of the feeding medium near the substrate;
  • Radiation patches are provided on the surface of each layer of the supporting medium away from the substrate;
  • It also includes a metal feeding column, which is used to penetrate the feeding medium and the supporting medium respectively, and connect the radiation patch and the feeding network to realize feeding.
  • the power division feeding network includes two sets of power dividers maintaining a certain distance and two sets of input ends connected to the power divider, and two ends of the power divider are respectively connected to output ends;
  • the angle between the two connections of the output ends of different groups is 90 degrees.
  • the amplitude difference between the input end and the two output ends of the same group is less than 0.5 dB, and the phase difference is 160-200 degrees.
  • the power division feeding network includes a microstrip line, a coplanar waveguide, or other forms of transmission lines.
  • the area of the hollowed-out area is smaller than the area of the radiation module.
  • the area ratio of the adjacent radiation patches is 0.8-2.3.
  • a shielding metal ground is provided on a surface of the feeding medium far from the power division feeding network, and a avoidance hole for isolating the shielding metal ground is provided, and the avoidance hole is provided corresponding to an output end of the power division feeding network;
  • the metal feed post maintains a certain distance from the shield metal ground through the avoidance hole.
  • the height of the supporting medium is 0.002-0.1 working wavelengths; the dielectric constant of the supporting medium is 1.0-16.0.
  • the radiation patch is vertically projected on the substrate, and the projection area covers the power divider and the output end.
  • the shape of the radiation patch includes a polygon or a circle.
  • the invention can greatly reduce the size and height of the unit, realize miniaturization and low profile, effectively reduce the mutual coupling between the units in the array, improve the isolation, and change
  • the radiation pattern has characteristics such as wave width, gain, and cross polarization.
  • each group of power division networks of the invention to the radiating patch adopts equal-amplitude inverse feeding, which can eliminate high-order modes in the patch, effectively suppress mutual interference in the unit, and improve isolation and cross polarization. characteristic.
  • a hollow structure is formed on the back of the substrate of the present invention to form a small closed cavity behind the power division network.
  • the cavity can restrain the radiant energy of the power division network inside the cavity, and together with the shielding metal ground, suppress the energy to the antenna unit. Radiation, which reduces the interference to the radiation performance of the unit, further improves the cross-polarization of the pattern, and improves the isolation.
  • this hollow-out method allows the unit and the substrate to be fixed only by large-area metal ground welding, which has greater process margin, reduces the requirements for processing accuracy, and improves its productivity and reliability.
  • FIG. 1 is an exploded schematic view of a dual-polarized patch antenna unit having a hollow structure
  • FIG. 2 is a schematic diagram of a dual-polarized patch antenna unit having a hollow structure
  • FIG. 3 is a schematic cross-sectional view of FIG. 2;
  • FIG. 4 is a schematic diagram of a power division feeding network on a lower surface of a feeding medium
  • FIG. 5 is a schematic diagram of a combination of a power division feeding network and a substrate
  • FIG. 6 is a schematic diagram of a feeding medium
  • FIG. 7 is a standing wave curve diagram of a dual-polarized patch antenna unit having a hollow structure
  • FIG. 9 is a radiation pattern diagram of a dual-polarized patch antenna unit with a hollow structure.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Therefore, the features defined as “first” and “second” may explicitly or implicitly include one or more of the features. In the description of the present invention, the meaning of “plurality” is two or more, unless specifically defined otherwise.
  • the terms “installation”, “connected”, “connected”, “fixed” and other terms shall be understood in a broad sense unless specified and limited otherwise.
  • they may be fixed connections, or may be Disassembly and connection or integration; it can be mechanical or electrical connection; it can be directly connected or indirectly connected through an intermediate medium; it can be the internal connection of two elements or the interaction between two elements.
  • the specific meanings of the above terms in the present invention can be understood according to specific situations.
  • the present invention provides a dual-polarized patch antenna unit with a hollow structure, which includes a substrate 1, a radiation module is disposed on one surface of the substrate 1, and the substrate 1 corresponds to a radiation module. Positioned with a hollowed-out area 10, the radiation module is arranged above the hollowed-out area 10, and the power division feeding network 20 of the radiation module is set between closed areas of the hollowed-out area 10, and its radiant energy is restrained in this area. At the same time, the radiation module is provided with a shielding metal ground 23, which further suppresses the leakage of the radiation energy to the antenna unit.
  • the combination of the hollowed-out area 10 and the shield metal ground 23 effectively reduces the interference to the radiation performance of the unit, effectively improves the cross polarization of the pattern, and improves the isolation.
  • the radiation module includes at least two layers of supporting medium, and the supporting medium is further provided with a feeding medium 2 on a surface close to the substrate 1;
  • a power division feeding network 20 is provided on a surface of the feeding medium 2 near the substrate 1;
  • Radiation patches are provided on the surface of each layer of the supporting medium away from the substrate 1.
  • the supporting medium is a single-layer or multi-layer structure, and the number of layers is designed according to requirements.
  • the supporting medium is set to include a first supporting medium 4 and a second supporting medium 6 from bottom to top.
  • the feeding medium 2, the first supporting medium 4, and the second supporting medium 6 are sequentially pressed together.
  • Form a one-piece structure and place it directly above the hollowed-out area 10 a first metal ground is set around the hollowed-out area on the lower surface of the feed medium 2, and the first metal ground is welded to the second metal ground on the upper surface of the substrate 1 by the SMT process Together to achieve a fixed purpose.
  • the above-mentioned method of welding only a large area of metal ground has the advantages of high consistency, good stability, and greater process margin, which reduces the requirements for processing accuracy and improves Producibility and reliability.
  • the first support medium 4 and the second support medium 6 are respectively provided with a first radiation patch 5 and a second radiation patch 7 on the upper part thereof.
  • the supporting medium may have a single-layer or multiple-layer structure, which is not limited to the above-mentioned structure.
  • It also includes a metal feed post 3 for penetrating the feed medium 2 and the first support medium 4, respectively, and connecting the first radiation patch 5 and the feed network to realize feed.
  • the radiation patches may be of different shapes, such as polygons, circles, or triangles.
  • the embodiment here uses a radiation patch of a rectangular structure.
  • the first support medium 4 and the second support here
  • the area ratio of the radiation patches on the medium 6 is 0.8-2.3. To form two close resonance frequencies, the impedance bandwidth is widened.
  • the area of the hollow area 10 is smaller than the area of the feeding medium 2.
  • each output end is connected to a metal feed post 3, which is arranged vertically, is located at a non-adjacent rectangular corner position of the radiation patch and is in contact with the first radiation patch 5, which can be further considered as
  • the four metal feeding columns are arranged at intervals near the corners of the rectangular side of the radiation patch.
  • the two sets of power dividers directly feed the radiation patches through metal feeding columns to achieve the radiation characteristics of two orthogonal polarizations.
  • the two sets of power dividers in the power division feeding network 20 are referred to as a first power divider 21 and a second power divider 22, respectively, and two output ends of the first power divider 21 are referred to as The first output terminal 201 and the second output terminal 205, and the two output terminals of the second power divider 22 are referred to as a third output terminal 202 and a fourth output terminal 206, respectively.
  • the specific distribution is that the first output terminal 201, the third output terminal 202, the second output terminal 205, and the fourth output terminal 206 are arranged in a clockwise order along four in a rectangular area. And the first output terminal 201 and the second output terminal 205 form a first connection, the third output terminal 202 and the fourth output terminal 206 form a second connection, and the angle between the first connection and the second connection is 90 degrees .
  • the amplitude difference from the input end to the two output ends of the same group is less than 0.5 dB, and the phase difference is 160-200 degrees.
  • the details are as follows: the widths of the first power branch 209 and the second power branch 210 of the first power splitter 21 are the same, so as to ensure that the amplitude difference between the first input end 204 to the first output end 201 and the second output end 205 is less than 0.5dB.
  • the length of the power branch sections of the first output terminal 201 to the first input terminal 204 of the first power divider 21 is longer than the length of the power branch sections of the second output terminal 205 to the first input terminal 204.
  • the first power branch The branch 209 is longer than the second power branch 210.
  • the difference between the line lengths of the first power branch 209 and the second power branch 210 is a quarter of the medium wavelength corresponding to the center frequency, so as to achieve the phase from the first input 204 to the first output 201 and the second output 205.
  • the difference is 180 degrees relative to the center frequency and 160-200 degrees relative to the edge frequency.
  • the longer branches can be bent according to the layout needs.
  • the second power divider 22 is set using the same principle. With the above settings, the two sets of power dividers can be used to feed the patch in the same amplitude and phase inversion method to eliminate high-order modes in the patch, effectively suppress the mutual interference in the unit, and improve the isolation. And cross polarization characteristics.
  • the embodiment includes four metal feeding poles 3 arranged vertically, and fixedly connected to the first output terminal 201, the third output terminal 202, the second output terminal 205, and the fourth output terminal 206 to achieve conduction, and Because the first output terminal 201 and the third output terminal 202 form a first connection, the second output terminal 205 and the fourth output terminal 206 form a second connection, and the angle between the first connection and the second connection is 90 degrees Therefore, the distribution form of the four metal feeding columns 3 forms two orthogonal polarizations, and each polarization has an equal amplitude and antiphase feeding mode.
  • this embodiment describes the current frequency band of 2500-2700MHz for 5G in detail.
  • the height of the supporting medium is 0.002-0.1 working wavelength, and the dielectric constant of the supporting medium is 1.0-6.2.
  • Increasing the dielectric constant of the medium can reduce the area of the unit, but it will also increase the Q value of the antenna and reduce the bandwidth.
  • reducing the height of the medium can reduce the profile of the unit, but it will also increase the Q value and affect the bandwidth.
  • the unit provided in this case has an area reduction of more than 60% and a height reduction of more than 75% compared to the traditional symmetric oscillator unit. It truly realizes miniaturization and low profile, which can effectively reduce the mutual coupling between the units in the array. , Improve the isolation, change the radiation pattern's wave width, gain, cross polarization and other characteristics.
  • a shielding metal ground 23 is provided on a surface of the feeding medium 2 far from the power division feeding network 20, and an avoiding hole 24 for isolating the shielding metal ground 23 from the metal feeding post 3 is provided, and the avoiding hole 24 corresponds to power.
  • the output end of the sub-feed network 20 is set;
  • the metal feed post 3 maintains a certain distance from the shielding metal ground 23 through the avoidance hole 24.
  • the purpose of isolation is achieved through the avoidance hole 24 and the shielding metal ground 23.
  • the two sets of power-division feeding networks 20 adopt the transmission line form of GCPW, that is, a third metal ground is also provided on the lower surface of the feeding medium 2 and is located in the hollow area 10 Inside, it is insulated from each branch of the power-division feeding network 20 and a certain gap is ensured.
  • Metalized vias 25 penetrate the feeding medium 2 and connect the third metal ground to the shielding metal ground 23 to further suppress the energy leakage of the feeding network.
  • the extended branches on the substrate 1 also adopt the transmission line form of GCPW.
  • the metalized vias in the substrate 1 connect the fourth metal ground on the lower surface of the substrate 1 to the second metal ground on the upper surface.
  • the first input terminal 203 and the second input terminal 204 are respectively overlapped with one end of the extended branch 101 on the substrate 1, but are overlapped with the substrate 1.
  • the surface of the second metal ground is insulated and fixed by means of welding or conductive glue to achieve the connection between the unit and the external feeding network.
  • the transmission line form of the power division feeding network 20 is not unique, and it can also be implemented by a simple microstrip line.
  • the standing waves of the two polarized ports of the antenna unit of the present invention are both less than 1.25.
  • the solid line and the dotted line in the figure represent one polarized port standing wave, respectively.
  • the isolation between the two ports of the antenna unit of the present invention is less than -34dB.
  • the radiation pattern of the antenna unit of the present invention has an axial cross polarization of less than -34 dB.
  • the solid line represents the main polarization
  • the dotted line represents the cross polarization.
  • the antenna unit of the present invention has the advantages of wide frequency band, high isolation, and good cross polarization, and is suitable for the requirements of a 5G base station communication system.

Landscapes

  • Waveguide Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明涉及一种具有镂空结构的双极化贴片天线单元,包括基板,所述基板的一个面上设有辐射模块,所述基板对应辐射模块的位置设有镂空区;所述辐射模块设在镂空区上方;所述辐射模块设有屏蔽金属地,用于结合镂空区抑制功分网络的辐射能量向天线单元的泄漏。本发明天线单元的基板背后采用镂空的结构在功分网络背后形成一个小型封闭腔体,该腔体可以把功分网络的辐射能量束缚在腔体内部,与辐射模块内部的屏蔽金属地共同抑制该能量向天线单元的辐射,减小了对单元辐射性能的干扰,进一步改善了方向图交叉极化,提高了隔离度。

Description

一种具有镂空结构的双极化贴片天线单元 【技术领域】
本发明涉及通信天线技术领域,尤其涉及一种具有镂空结构的双极化贴片天线单元。
【背景技术】
5G移动通信天线广泛采用Massive MIMO(大规模多输入多输出)的阵列技术,这要求天线设计符合以下原则:1、小型化,低剖面,易集成;减小天线阵列的口径大小,降低剖面,与有源波束赋形网络融为一体,关系到整个系统的体积大小和分布空间,以及各系统模块相互兼容的问题。2、高隔离度,低互耦影响。在MIMO系统里面,天线单元之间的互耦不仅仅会降低信道的隔离度,还会降低整个系统的通信效率。然而目前的基站天线单元广泛采用对称振子的技术方案,其高度和面积与波长成正比,剖面高,体积大,单元间互耦强烈,导致隔离度很难提高,方向图产生畸变,严重影响了天线阵列的总体性能;除了振子间的互耦影响,复杂宠大的馈电网络自身的辐射能量对天线的性能也有严重的影响,急需采用一种有效的方式抑制这种能量泄漏,使天线的辐射方向图更纯粹更优异。
基于以上需求,本发明提出了一种小型化,低剖面,高隔离度,低互耦影响的双极化贴片天线单元。
【发明内容】
本发明要解决的技术问题是提供一种具有镂空结构的双极化贴 片天线单元,包括基板,所述基板的一个面上设有辐射模块,所述基板对应辐射模块的位置设有镂空区;所述辐射模块设在镂空区上方;所述辐射模块设有屏蔽金属地,用于结合镂空区抑制辐射能量向天线单元的泄漏。
进一步的,所述辐射模块包括至少一层的支撑介质,所述支撑介质在靠近基板的面还设有馈电介质;
所述馈电介质靠近基板的面设有功分馈电网络;
每层支撑介质远离基板的面上都设有辐射贴片;
还包括金属馈电柱,用于分别穿透馈电介质和支撑介质,连接辐射贴片和馈电网络,实现馈电。
进一步的,所述功分馈电网络包括保持一定间距的两组功分器以及两组连接功分器的输入端,功分器的两末端分别连接输出端;
所述功分馈电网络中同组的功分器末端的输出端连线后,不同组输出端的两条连线的夹角为90度。
进一步的,所述功分馈电网络中同组的输入端到两个输出端的幅度差小于0.5dB,相位差160~200度。
进一步的,所述功分馈电网络包括微带线、共面波导或其他形式的传输线。
进一步的,所述镂空区的面积小于辐射模块的面积。
进一步的,所述相邻的辐射贴片面积比为0.8-2.3。
进一步的,所述馈电介质远离功分馈电网络的面设有屏蔽金属地,以及用于隔离屏蔽金属地的避让孔,所述避让孔对应功分馈电网络的 输出端设置;
所述金属馈电柱通过避让孔与屏蔽金属地保持一定的距离。
进一步的,所述支撑介质的高度为0.002-0.1个工作波长;所述支撑介质的介电常数为1.0-16.0。
进一步的,所述辐射贴片的垂直投影在基板上,投影面积覆盖了功分器和输出端。
进一步的,所述辐射贴片的形状包括多边形或者圆形。
与现有技术相比,本发明的有益效果在于:
本发明通过合理设置各层支撑介质的介电常数及高度,可以大大减小单元的尺寸和高度,实现小型化,低剖面,有效减小了阵列中单元间的互耦,提高隔离度,改变辐射方向图的波宽,增益,交叉极化等特性。
本发明的每组功分网络对辐射贴片的馈电采用等幅反相馈电,可以消除贴片内的高次模,使单元内的互扰得到有效抑制,提高隔离度和交叉极化特性。
本发明的基板背后采用镂空的结构在功分网络背后形成一个小型封闭腔体,该腔体可以把功分网络的辐射能量束缚在腔体内部,与屏蔽金属地共同抑制该能量向天线单元的辐射,减小了对单元辐射性能的干扰,进一步改善了方向图交叉极化,提高了隔离度。另外,这种背后镂空的方式使得单元与基板的固定方式只需通过大面积的金属地焊接,具有更大的工艺余量,降低了对加工精度的要求,提高了其可生产性和可靠性。
【附图说明】
图1为具有镂空结构的双极化贴片天线单元的分解示意图;
图2为具有镂空结构的双极化贴片天线单元的示意图;
图3为图2的剖视示意图;
图4为馈电介质下表面的功分馈电网络示意图;
图5为功分馈电网络与基板的结合示意图;
图6为馈电介质的示意图;
图7为具有镂空结构的双极化贴片天线单元的驻波曲线图;
图8为具有镂空结构的双极化贴片天线单元的隔离度曲线图;
图9为具有镂空结构的双极化贴片天线单元的辐射方向图。
图中标识:1-基板;10-镂空区;101-延长枝节;2-馈电介质;3-金属馈电柱;4-第一支撑介质;5-第一辐射贴片;6-第二支撑介质;7-第二辐射贴片;20-功分馈电网络;21-第一功分器;22-第二功分器;23-屏蔽金属地;24-避让孔;24-金属化过孔;201-第一输出端;202-第三输出端;203-第二输入端;204-第一输入端;205-第二输出端;206-第四输出端;207-第三功分枝节;208-第四功分枝节;209-第一功分枝节;210-第二功分枝节。
【具体实施方式】
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不限定本发明。
在本发明的描述中,需要理解的是,术语“长度”、“宽度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明实施例中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
参考附图1所示本发明中提供了一种具有镂空结构的双极化贴片天线单元,包括基板1,所述基板1的一个面上设有辐射模块,所述基板1对应辐射模块的位置设有镂空区10,所述辐射模块设在镂空区10上方,辐射模块的功分馈电网络20设在镂空区10的封闭区域之间,其辐射能量被束缚在该区域内。同时辐射模块设有屏蔽金属 地23,进一步抑制了该辐射能量向天线单元的泄漏。
本方案中通过镂空区10和屏蔽金属地23的结合有效的减小了对单元辐射性能的干扰,有效改善了方向图交叉极化,提高了隔离度。
进一步的,所述辐射模块包括至少两层的支撑介质,所述支撑介质在靠近基板1的面还设有馈电介质2;
所述馈电介质2靠近基板1的面设有功分馈电网络20;
每层支撑介质远离基板1的面上都设有辐射贴片。
这里需要说明的,支撑介质为单层或多层结构,而层数的多少根据需求进行设计。本实施例中将支撑介质设为包括由下至上的第一支撑介质4和第二支撑介质6,本实施例将馈电介质2、第一支撑介质4和第二支撑介质6依次压合在一起形成一体结构,并置于镂空区10的正上方,馈电介质2的下表面环绕镂空区设置有第一金属地,通过SMT工艺把第一金属地与基板1上表面的第二金属地焊接在一起达到固定的目的。相对传统的对称振子的人工安装方式,上述只需焊接大面积金属地的方式具有一致性高,稳定性好的优点,且有更大的工艺余量,降低了对加工精度的要求,提高了可生产性和可靠性。这里的第一支撑介质4和第二支撑介质6上部分别设置了第一辐射贴片5和第二辐射贴片7。
而其它的实施例中,支撑介质可以是单层或者更多层的结构,比不局限上述的结构。
还包括金属馈电柱3,用于分别穿透馈电介质2和第一支撑介质 4,连接第一辐射贴片5和馈电网络,实现馈电。
需要指出的是,辐射贴片可以是不同的形状,如多边形、圆形或三角形等,这里的实施例中采用了矩形结构的辐射贴片,举例的,这里第一支撑介质4和第二支撑介质6上的辐射贴片面积比为0.8-2.3。以形成两个接近的谐振频率,展宽阻抗带宽。
为了起到支撑的作用,所述镂空区10的面积小于馈电介质2的面积。
进一步的,所述功分馈电网络20中同组的功分器末端的输出端连线后,不同组输出端的两条连线的夹角为90度。所述每个输出端连接一个金属馈电柱3,金属馈电柱3垂直设置,位于辐射贴片的非相邻的矩形角位置并与第一辐射贴片5相接触,进一步的可以认为是四个金属馈电柱为相互间隔的设在靠近辐射贴片矩形边角的位置。两组功分器通过金属馈电柱对辐射贴片进行直接馈电,实现两个正交极化的辐射特性。
进一步的,将功分馈电网络20中的两组功分器,分别称之为第一功分器21和第二功分器22,第一功分器21的两个输出端分别称为第一输出端201和第二输出端205,第二功分器22的两个输出端分称为第三输出端202和第四输出端206。具体的分布是,第一输出端201、第三输出端202、第二输出端205和第四输出端206为沿矩形面积内的四个依次为顺时针的排列。并且第一输出端201与第二输出端205形成第一连线,第三输出端202与第四输出端206形成第二连线,第一连线和第二连线的夹角为90度。
所述功分馈电网络20中同组的输入端到两个输出端的幅度差小于0.5dB,相位差160~200度。具体如下:第一功分器21的第一功分枝节209与第二功分枝节210的宽度相同,以保证第一输入端204到第一输出端201和第二输出端205的幅度差小于0.5dB。第一功分器21的所述第一输出端201到第一输入端204的功分枝节长度比第二输出端205到第一输入端204的功分枝节长度长,具体的第一功分枝节209比第二功分枝节210长。第一功分枝节209与第二功分枝节210的线长差为中心频率对应的四分之一介质波长,以实现第一输入端204到第一输出端201和第二输出端205的相位差相对于中心频率为180度,相对于边缘频率保持在160-200度之间。较长的枝节可以根据布局需要进行弯折。第二功分器22采用同样的的原理进行设置。通过以上设置,可以使两组功分器分别采用等幅反相的方法对贴片进行馈电,用以消除贴片内的高次模,使单元内的互扰得到有效抑制,提高隔离度和交叉极化特性。
进一步的,实施例中包括四个金属馈电柱3垂直设置,并且分别与第一输出端201、第三输出端202、第二输出端205与第四输出端206固定连接实现导通,而由于第一输出端201与第三输出端202形成第一连线,第二输出端205与第四输出端206形成第二连线,第一连线和第二连线的夹角为90度,因此四个金属馈电柱3的分布形式形成了两个正交极化,且每个极化等幅反相的馈电方式。
为实现小型化的技术要求,本实施案例针对5G的现行频带2500-2700MHz进行了详细说明,所述支撑介质的高度为0.002-0.1个 工作波长,支撑介质的介电常数为1.0-6.2。增加介质的介电常数可以减小单元的面积,但同时也会增加天线的Q值而降低带宽,同样降低介质的高度可以降低单元的剖面,但也会增加Q值而影响带宽。经过最优化设计,本案例提供的单元相比于传统对称振子单元,面积减小60%以上,高度降低75%以上,真正实现小型化,低剖面,可以有效减小阵列中单元间的互耦,提高隔离度,改变辐射方向图的波宽,增益,交叉极化等特性。
进一步的,所述馈电介质2远离功分馈电网络20的面设有屏蔽金属地23,以及用于隔离屏蔽金属地23与金属馈电柱3的避让孔24,所述避让孔24对应功分馈电网络20的输出端设置;
所述金属馈电柱3通过避让孔24与屏蔽金属地23保持一定的距离。
这里四个金属馈电柱3在穿过馈电介质2时,通过避让孔24与屏蔽金属地23实现隔离的目的。
为了达到进一步的抑制馈电网络的能量泄漏,两组功分馈电网络20都采用GCPW的传输线形式,即在馈电介质2的下表面还设置有第三金属地,位于所述镂空区10的内部,与功分馈电网络20的各个枝节绝缘且保证一定的间隙,金属化过孔25贯穿馈电介质2,把第三金属地与屏蔽金属地23连接起来,进一步抑制馈电网络的能量泄漏。同样,基板1上的延长枝节也采用GCPW的传输线形式,基板1内的金属化过孔将基板1下表面的第四金属地与上表面的第二金属地相连。
参考附图5所示,具体的,馈电介质2焊接到基板1上时,第一输入端203和第二输入端204分别与基板1上的延长枝节101的一端相重叠,但与基板1上表面的第二金属地相绝缘,并通过焊接或导电胶等方式固定,实现单元与外部馈电网络的联系。
当然,功分馈电网络20的传输线形式不唯一,还可以采用简单的微带线来实现。
如图7,在现行5G要求的2500-2700MHz频带内,可见本发明天线单元的两个极化端口驻波都小于1.25,图中实线和虚线分别代表一个极化的端口驻波。
如图8,在现行5G要求的2500-2700MHz频带内,可见本发明天线单元的两个端口间隔离度小于-34dB。
如图9,本发明天线单元的辐射方向图,轴向交叉极化小于-34dB。图中实线代表主极化,虚线代表交叉极化。
从以上结果可见,本发明天线单元具有宽频带,高隔离度,交叉极化好等优点,适合5G基站通信系统的要求。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种具有镂空结构的双极化贴片天线单元,包括基板(1),所述基板(1)的一个面上设有辐射模块,其特征在于:所述基板(1)对应辐射模块的位置设有镂空区(10);所述辐射模块设在镂空区(10)上方;所述辐射模块设有屏蔽金属地(23),用于结合镂空区(10)抑制功分网络的辐射能量向天线单元的泄漏。
  2. 如权利要求1所述的具有镂空结构的双极化贴片天线单元,其特征在于:所述辐射模块包括至少一层的支撑介质,所述支撑介质在靠近基板(1)的面还设有馈电介质(2);选择一个构建基块。
    所述馈电介质(2)靠近基板(1)的面设有功分馈电网络(20);
    每层支撑介质远离基板(1)的面上都设有辐射贴片;
    还包括金属馈电柱(3),用于分别穿透馈电介质(2)和支撑介质,连接辐射贴片和功分馈电网络(20),实现馈电。
  3. 如权利要求2所述的具有镂空结构的双极化贴片天线单元,其特征在于:所述馈电介质(2)远离功分馈电网络(20)的面设有屏蔽金属地(23),以及用于隔离屏蔽金属地(23)与金属馈电柱(3)的避让孔(24),所述避让孔(24)对应功分馈电网络(20)的输出端设置;
    所述金属馈电柱(3)通过避让孔(24)与屏蔽金属地(23)保持一定的距离。
  4. 如权利要求2所述的具有镂空结构的双极化贴片天线单元,其特征在于:所述功分馈电网络(20)包括保持一定间距的两组功分器以及两组连接功分器的输入端,功分器的两末端分别连接输出端;
    所述功分馈电网络(20)中同组的功分器末端的输出端连线后,不同组输出端的两条连线的夹角为90度。
  5. 如权利要求4所述的具有镂空结构的双极化贴片天线单元,其特征在于:所述功分馈电网络(20)中同组的输入端到两个输出端的幅度差小于0.5dB,相位差160~200度。
  6. 如权利要求1所述的具有镂空结构的双极化贴片天线单元,其特征在于:所述镂空区(10)的面积小于辐射模块的面积。
  7. 如权利要求2所述的具有镂空结构的双极化贴片天线单元,其特征在于:所述相邻的辐射贴片面积比为0.8-2.3。
  8. 如权利要求2所述的具有镂空结构的双极化贴片天线单元,其特征在于:所述支撑介质的高度为0.002-0.1个工作波长。
  9. 如权利要求2或8所述的具有镂空结构的双极化贴片天线单元,其特征在于:所述支撑介质的介电常数为1.0-16.0。
  10. 如权利要求2或7所述的具有镂空结构的双极化贴片天线单元,其特征在于:所述辐射贴片的形状包括多边形或者圆形。
PCT/CN2018/101943 2018-06-20 2018-08-23 一种具有镂空结构的双极化贴片天线单元 WO2019242088A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810633504.5A CN108695597B (zh) 2018-06-20 2018-06-20 一种具有镂空结构的双极化贴片天线单元
CN201810633504.5 2018-06-20

Publications (1)

Publication Number Publication Date
WO2019242088A1 true WO2019242088A1 (zh) 2019-12-26

Family

ID=63848403

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/101943 WO2019242088A1 (zh) 2018-06-20 2018-08-23 一种具有镂空结构的双极化贴片天线单元

Country Status (2)

Country Link
CN (1) CN108695597B (zh)
WO (1) WO2019242088A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111129713A (zh) * 2020-01-10 2020-05-08 深圳市信维通信股份有限公司 一种5g毫米波双极化天线模组及终端设备
CN113764892A (zh) * 2021-09-02 2021-12-07 上海安费诺永亿通讯电子有限公司 一种毫米波天线、天线阵列、天线模组及电子设备
CN114865328A (zh) * 2022-04-28 2022-08-05 成都雷电微力科技股份有限公司 一种低剖面圆极化隐身相控阵天线

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110571520A (zh) * 2019-10-12 2019-12-13 江苏联智微通信科技有限公司 一种低剖面5g天线辐射单元及天线阵列
CN110797640B (zh) * 2019-11-07 2021-09-07 西安电子工程研究所 基于高频层压技术的Ka频段宽带低剖面双线极化微带天线
CN110856088A (zh) * 2019-12-03 2020-02-28 瑞声科技(新加坡)有限公司 扬声器的组装方法和扬声器
CN112821069B (zh) * 2021-01-04 2023-04-11 中信科移动通信技术股份有限公司 贴片辐射单元及基站天线

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101383343A (zh) * 2007-09-07 2009-03-11 夏普株式会社 无线通信装置
US20140184455A1 (en) * 2011-08-17 2014-07-03 CBF Networks, Inc. Backhaul radio with an aperture-fed antenna assembly
CN104485522A (zh) * 2014-12-15 2015-04-01 宁波安陆通信科技有限公司 一种双极化缝隙耦合天线
CN105356055A (zh) * 2015-11-18 2016-02-24 西北工业大学 缝隙耦合馈电高隔离度极化分集mimo天线
CN106099333A (zh) * 2016-07-28 2016-11-09 华南理工大学 双极化介质谐振器天线单元及基站天线
CN208423165U (zh) * 2018-06-20 2019-01-22 深圳市深大唯同科技有限公司 一种具有镂空结构的双极化贴片天线单元

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6211824B1 (en) * 1999-05-06 2001-04-03 Raytheon Company Microstrip patch antenna
FR2984613B1 (fr) * 2011-12-20 2015-05-15 Bouygues Telecom Sa Antenne imprimee optiquement transparente et reseau d'antennes optiquement transparentes
CN104319464B (zh) * 2014-10-29 2017-01-18 中国人民解放军理工大学 Uhf波段卫星通信双频圆极化天线装置
CN105186140B (zh) * 2015-09-18 2018-06-08 西安电子科技大学 一种小型宽波束双极化微带天线
CN105896104A (zh) * 2016-04-11 2016-08-24 中国人民解放军国防科学技术大学 一种用于北斗卫星导航系统地面监测站的ls双频高精度天线
CN107834176A (zh) * 2017-11-16 2018-03-23 西安电子科技大学 一种窄波束h形缝隙耦合微带贴片阵列天线

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101383343A (zh) * 2007-09-07 2009-03-11 夏普株式会社 无线通信装置
US20140184455A1 (en) * 2011-08-17 2014-07-03 CBF Networks, Inc. Backhaul radio with an aperture-fed antenna assembly
CN104485522A (zh) * 2014-12-15 2015-04-01 宁波安陆通信科技有限公司 一种双极化缝隙耦合天线
CN105356055A (zh) * 2015-11-18 2016-02-24 西北工业大学 缝隙耦合馈电高隔离度极化分集mimo天线
CN106099333A (zh) * 2016-07-28 2016-11-09 华南理工大学 双极化介质谐振器天线单元及基站天线
CN208423165U (zh) * 2018-06-20 2019-01-22 深圳市深大唯同科技有限公司 一种具有镂空结构的双极化贴片天线单元

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YANG, XUJUN ET AL.: "A Dual- Polarized Aperture-Coupled Magneto-Electric Dipole Antenna", PROCEEDINGS OF 2017 NATIONAL CONFERENCE ON ANTENNA, vol. 2, 16 October 2017 (2017-10-16) *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111129713A (zh) * 2020-01-10 2020-05-08 深圳市信维通信股份有限公司 一种5g毫米波双极化天线模组及终端设备
CN113764892A (zh) * 2021-09-02 2021-12-07 上海安费诺永亿通讯电子有限公司 一种毫米波天线、天线阵列、天线模组及电子设备
CN114865328A (zh) * 2022-04-28 2022-08-05 成都雷电微力科技股份有限公司 一种低剖面圆极化隐身相控阵天线

Also Published As

Publication number Publication date
CN108695597B (zh) 2024-02-06
CN108695597A (zh) 2018-10-23

Similar Documents

Publication Publication Date Title
WO2019242088A1 (zh) 一种具有镂空结构的双极化贴片天线单元
WO2019242087A1 (zh) 一种低剖面、小型化、高隔离度的双极化贴片天线单元
KR101496387B1 (ko) 이중 편파 방사 다이폴 안테나
WO2020228275A1 (zh) 辐射结构及阵列天线
CN107808998B (zh) 多极化辐射振子及天线
CN104103906A (zh) 一种多层pcb工艺的低成本微波毫米波圆极化天线
US11757195B2 (en) Antenna element and electronic device
WO2021082935A1 (zh) 电子设备
CN208589539U (zh) 一种低剖面、小型化、高隔离度的双极化贴片天线单元
CN110224219A (zh) 一种圆极化基片集成腔天线
CN109830802B (zh) 一种毫米波双极化贴片天线
CN103066376A (zh) 一种宽频带高隔离度双极化天线及其辐射单元
US11769952B2 (en) Antenna element and electronic device
CN112838360B (zh) 一种双极化微带相控阵天线单元及其阵列
CN103474755B (zh) 一种双极化宽频天线振子单元以及宽频天线
CN114976665B (zh) 一种加载频率选择表面辐射稳定的宽带双极化偶极子天线
WO2021244158A1 (zh) 双极化天线及客户前置设备
WO2021139016A1 (zh) 一种 5g 毫米波双极化天线模组及终端设备
CN111916892A (zh) 5g毫米波双极化天线单元、天线阵列及终端设备
CN107196069B (zh) 紧凑型基片集成波导背腔缝隙天线
CN115732925A (zh) 一种毫米波双频分别馈电的双极化天线阵列
CN208423165U (zh) 一种具有镂空结构的双极化贴片天线单元
CN104009299A (zh) 双极化基站天线
CN111355029B (zh) 用于第五代通信系统的高性能双极化微带天线
CN110707418A (zh) 宽频基站振子天线及基站天线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18923414

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 29.04.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18923414

Country of ref document: EP

Kind code of ref document: A1