WO2019242003A1 - 光纤内集成聚合物微纳结构的光纤器件及其制备方法 - Google Patents

光纤内集成聚合物微纳结构的光纤器件及其制备方法 Download PDF

Info

Publication number
WO2019242003A1
WO2019242003A1 PCT/CN2018/092403 CN2018092403W WO2019242003A1 WO 2019242003 A1 WO2019242003 A1 WO 2019242003A1 CN 2018092403 W CN2018092403 W CN 2018092403W WO 2019242003 A1 WO2019242003 A1 WO 2019242003A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
fiber
hollow core
polymer micro
nano structure
Prior art date
Application number
PCT/CN2018/092403
Other languages
English (en)
French (fr)
Inventor
廖常锐
王义平
李驰
徐磊
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Priority to PCT/CN2018/092403 priority Critical patent/WO2019242003A1/zh
Priority to US16/672,539 priority patent/US11163110B2/en
Publication of WO2019242003A1 publication Critical patent/WO2019242003A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/264Optical coupling means with optical elements between opposed fibre ends which perform a function other than beam splitting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
    • G01K11/3206Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres at discrete locations in the fibre, e.g. using Bragg scattering
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02057Optical fibres with cladding with or without a coating comprising gratings
    • G02B6/02076Refractive index modulation gratings, e.g. Bragg gratings
    • G02B6/02123Refractive index modulation gratings, e.g. Bragg gratings characterised by the method of manufacture of the grating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02319Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by core or core-cladding interface features
    • G02B6/02323Core having lower refractive index than cladding, e.g. photonic band gap guiding
    • G02B6/02328Hollow or gas filled core

Definitions

  • the invention relates to the field of optical fiber sensing, in particular to an optical fiber device with integrated polymer micro-nano structure in an optical fiber and a preparation method thereof.
  • Polymer fiber Bragg grating devices made of polymer materials have higher sensitivity and are expected to be used for monitoring the temperature in vivo.
  • the existing methods for preparing the functional microstructure of the polymer are as follows: ion beam etching method, two-photon polymerization processing method, and UV mask exposure method.
  • the ion beam etching method can only be processed on a plane and The processing of complex three-dimensional structures cannot be achieved, so the processed equipment is not conducive to the integration of optical fiber systems;
  • the two-photon polymerization processing method can achieve the processing of complex three-dimensional polymer microstructures, but due to the poor mechanical limitations of polymers, it cannot Fiber integration is well achieved;
  • the polymer structure prepared by the UV mask exposure method generally prepares Bragg gratings in polymer fibers. This manufacturing method is single, processing is limited, and polymer fibers are not conducive to fusion with quartz fibers.
  • the polymer structure prepared by this method is not conducive to the integration of optical fiber systems. None of the above existing methods for preparing polymer functional microstructures can well combine the material characteristics of polymers with the transmission characteristics of optical fibers to achieve the integration of complex polymer functional microstructures with optical fibers.
  • the main object of the present invention is to provide an optical fiber device with integrated polymer micro-nano structure in an optical fiber and a preparation method thereof, which are used to solve the technical problem that the prior art cannot achieve the integration of a complex polymer functional micro-structure with an optical fiber.
  • a first aspect of the present invention provides a method for preparing an optical fiber device with integrated polymer micro-nano structure in an optical fiber, the method includes:
  • the femtosecond laser Gemini polymerization technology is used to perform polymerization processing on the photoresist material inside the hollow core fiber, and then the developer is used to clean the hollow core fiber after the polymerization processing, to obtain a polymer micro-nano structure inside.
  • the second aspect of the present invention provides an optical fiber device with integrated polymer micro-nano structure in an optical fiber.
  • the optical fiber device with integrated polymer micro-nano structure in the optical fiber includes: a solid optical fiber, a hollow core optical fiber, and a colorless and transparent photoresist material;
  • the hollow core optical fiber is fused between two solid optical fibers
  • the through groove of the hollow core optical fiber is perpendicular to the inner wall of the hollow core optical fiber
  • the photoresist material is located in a through groove inside the hollow-core optical fiber
  • the inner micro-nano structure of the hollow fiber has the polymer micro-nano structure.
  • the invention provides an optical fiber device with a polymer micro-nano structure integrated in an optical fiber and a preparation method thereof.
  • the method first fuses a hollow fiber with a solid fiber, and then prepares a polymer micro-nano structure inside the hollow fiber to obtain
  • the optical fiber device with integrated polymer micro-nano structure in the optical fiber has polymer functional characteristics.
  • the optical fiber device with integrated polymer micro-nano structure in the optical fiber is a solid optical fiber at both ends, the optical fiber device with polymer micro-nano structure is integrated in the optical fiber. It is also convenient to weld the two ends to other quartz optical fibers, which combines the material characteristics of the polymer with the transmission characteristics of the optical fiber, and achieves the integration of complex polymer functional microstructures and optical fibers.
  • FIG. 1 is a schematic flowchart of a manufacturing method of an optical fiber device with integrated polymer micro-nano structure provided in an optical fiber according to a first embodiment of the present invention
  • FIG. 2 is a schematic diagram of fusion of a hollow core optical fiber and two solid optical fibers
  • FIG. 3 is a schematic diagram of the ablation treatment of the hollow core optical fiber
  • FIG. 4 is a schematic view of a photoresist material inside a hollow fiber after polymerization processing
  • FIG. 5 is a schematic structural diagram of an optical fiber device with integrated polymer micro-nano structure in an optical fiber obtained in the first embodiment of the present invention
  • FIG. 6 is a schematic flowchart of a method for preparing an optical fiber device with integrated polymer micro-nano structure in an optical fiber according to a second embodiment of the present invention
  • FIG. 7 is a schematic diagram of a temperature sensing test of an optical fiber device with integrated polymer micro-nano structure in an optical fiber
  • FIG. 8 is a schematic structural diagram of an optical fiber device incorporating a polymer micro-nano structure in an optical fiber according to a second embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of an optical fiber device in which a polymer micro-nano structure is integrated in an optical fiber
  • FIG. 10 is a spectral shift transmission spectrum graph and a fitting wavelength and temperature change graph of a temperature sensing test provided by a second embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of an optical fiber device with integrated polymer micro-nano structure in an optical fiber according to a third embodiment of the present invention.
  • the present invention proposes a method for preparing an optical fiber device with integrated polymer micro-nano structure in an optical fiber.
  • FIG. 1 is a schematic flowchart of a method for preparing an optical fiber device with integrated polymer micro-nano structure in an optical fiber according to a first embodiment of the present invention. The method includes:
  • Step 101 Perform fusion splicing on the hollow core optical fiber, so that the hollow core optical fiber is fused between two solid optical fibers.
  • the parameters of the fusion splicer are set, and the fusion splicer is used to splice the hollow core optical fiber between two solid optical fibers.
  • FIG. 2 is a schematic diagram of the fusion of the hollow fiber and two solid fibers.
  • the hollow fiber is connected between the two solid fibers, wherein the outer diameter of the hollow fiber and the outer diameter of the two solid fibers Similarly, the inner diameter of the hollow core fiber is larger than the core diameter of the solid fiber, wherein an outer wall exists in the hollow core region, and the characteristics of the outer wall are not specifically shown in FIG. 2.
  • the hollow-core optical fiber may also be replaced with a capillary quartz glass tube.
  • Step 102 The femtosecond laser ablation technology is used to perform ablation treatment on the fused hollow core optical fiber, so that a through groove perpendicular to the inner wall is ablated on the hollow core optical fiber.
  • the air-core optical fiber that has undergone fusion splicing is fixed on a three-dimensional displacement platform with a rotating jig, and by rotating the rotating jig 180 ° multiple times and using femtosecond laser ablation technology, the pair of air-core optical fibers is ablated in the vertical direction.
  • the grooves that pass through and the ablation grooves are perpendicular to the inner wall (that is, the empty grooves in the direction of the inner surface arc normal), as shown in FIG. 3.
  • FIG. 3 is a schematic diagram of the ablation treatment of the hollow core fiber, in which the ablation The treatment is to ablate the outer wall of the hollow core so that the opposite grooves burned out inside the hollow core fiber communicate with each other to form an empty slot inside the hollow core fiber.
  • the three-dimensional displacement platform has two rotating fixtures, and the two solid optical fibers connected to the two ends of the hollow fiber are respectively fixed to the two rotating fixtures, so that the hollow core fiber is suspended between the two rotating fixtures to realize the hollow core.
  • the purpose of fixing the optical fiber on the three-dimensional displacement platform is to perform the ablation treatment of the hollow core optical fiber by the femtosecond laser ablation technology.
  • step 103 a colorless and transparent liquid photoresist material is filled into the inside of the hollow core fiber that has undergone the ablation treatment, so that the inside of the hollow core fiber is filled with the photoresist material.
  • the hollow-core optical fiber has a through groove inside, and the liquid photoresist material is dropped in the through-hole of the hollow-core optical fiber and left for a period of time, which can be 1 to 10 minutes.
  • the photoresist material fills the through grooves of the hollow core optical fiber, so that other operations on the photoresist material can be performed later.
  • the photoresist material is a colorless transparent body, which can be used as an optical waveguide to make light energy. Propagates in a polymer waveguide.
  • Step 104 The femtosecond laser Gemini polymerization technology is used to perform polymerization processing on the photoresist material inside the hollow core fiber, and then the developer is used to clean the hollow core fiber after the polymerization processing process to obtain a polymer micro-nano microstructure inside.
  • FIG. 4 shows the photoresist material inside the hollow fiber.
  • the following schematic diagram shows that the inside of the hollow fiber after the polymerization process has a grating structure with a waveguide and a substrate, but there is still an uncured liquid photoresist material.
  • the developer is used to clean the hollow fiber that has been polymerized.
  • the uncured liquid photoresist material is washed away to obtain a finished optical fiber device with integrated polymer micro / nano structure in the optical fiber.
  • the obtained optical fiber device with integrated polymer micro / nano structure in the optical fiber is shown in FIG. 5, which is shown in FIG. 5
  • the hollow core optical fiber has a grating structure inside.
  • the developing solution is a mixed solution of acetone and isopropanol having a specific ratio.
  • a programmable three-dimensional displacement platform is used to control the structural characteristics of the polymer micro-nano structure.
  • the 3D displacement platform has integrated software.
  • the program of the integrated software can be used to control the polymerization processing of the photoresist material by the 3D displacement platform, so as to control the structural characteristics of the polymer micro-nano structure formed by the polymerization processing.
  • the structural characteristics include: structural dimensions , Structure morphology, etc., while controlling the performance changes due to changes in structural characteristics, such as grating reflectivity. Therefore, the integrated software of the three-dimensional displacement platform can be programmed and simulated to obtain the ideal polymer micro-nano structure.
  • the femtosecond laser Gemini polymerization technology uses a femtosecond laser in the near-infrared band, the laser repetition frequency ranges from 1 kHz to 1 MHz, and the laser pulse width ranges from 25 femtoseconds to 300 femtoseconds.
  • the repetition frequency of the laser pulse output by the femtosecond laser is 1 kHz to 220 kHz and is adjustable.
  • the laser device is adjusted to form a pulse width of 80 femtoseconds and output a laser wavelength of 1026 nm.
  • a femtosecond laser is also used in the femtosecond laser ablation technology, and detailed parameter values of the femtosecond laser are not described in detail.
  • step after step 102 and before step 103 further includes cleaning the ablated hollow core optical fiber.
  • two solid optical fibers are fixed on the same glass sheet with an adhesive, the hollow core optical fiber is fixed between two curing points of the glass sheet, and the hollow core optical fiber fixed on the glass sheet is penetrated into an ultrasonic cleaning machine with alcohol. Ultrasonic cleaning is performed in the process to remove debris and impurities generated during the ablation process, so that when the subsequent photoresist material fills the interior of the hollow fiber, the debris and impurities will not affect the photoresist material polymerization process.
  • the adhesive uses ultraviolet curing glue
  • the solid optical fiber at both ends of the hollow fiber is fixed to the same glass sheet by using the ultraviolet curing adhesive, and then the glass sheet and the hollow fiber are immersed in an ultrasonic cleaning machine with alcohol for cleaning and washing. Debris and impurities generated during the ablation process, and then the liquid photoresist material is dropped into the through-hole of the hollow-core optical fiber, and allowed to stand for a period of time, so that the photoresist fills the through-hole of the hollow-core optical fiber, and then is placed in the empty core.
  • the optical fiber is covered with a thin glass sheet and fixed on a precision programmable air-floating three-dimensional displacement platform.
  • the femtosecond laser twin polymerization technology is used to perform polymerization processing on the photoresist material inside the hollow core optical fiber.
  • the liquid photoresist material is cleaned by using a mixed solution of acetone and isopropanol with a specific ratio to obtain an optical fiber device with integrated polymer micro-nano structure in the optical fiber.
  • a method for preparing an optical fiber device with integrated polymer micro-nano structure in an optical fiber is known. This method first fuses a hollow fiber with a solid fiber, and then prepares a polymer micro-nano structure inside the fiber.
  • the optical fiber device with integrated polymer micro-nano structure in the optical fiber have polymer functional characteristics, at the same time, because the two ends of the optical fiber device with the polymer micro-nano structure in the fiber are solid optical fibers, the polymer micro-nano is integrated in the fiber. It is also convenient to connect the two ends of the structured optical fiber device with other quartz optical fibers.
  • the optical fiber device with integrated polymer micro-nano structure in the optical fiber combines the material characteristics of the polymer with the transmission characteristics of the optical fiber to achieve a complex polymer. Functional microstructure and fiber integration.
  • FIG. 6 is a schematic flowchart of a method for preparing an optical fiber device with integrated polymer micro-nano structure in an optical fiber according to a second embodiment of the present invention.
  • the method further includes: Step 105, integrating the obtained optical fiber Polymer micro-nano-structured optical fiber devices are tested for temperature sensing.
  • the specific step of step 105 includes: placing the obtained optical fiber device with integrated polymer micro-nano structure in the optical fiber into a temperature-controlled sealed temperature furnace, and connecting the left end of the optical fiber device with integrated polymer micro-nano structure in the optical fiber to the broadband light source. At the output end, the right end of the optical fiber device with integrated polymer micro / nano structure in the optical fiber is connected to the input of the spectrometer, and the temperature response of the optical fiber device with integrated polymer micro / nano structure in the optical fiber is tested by controlling the temperature in the sealed temperature furnace.
  • FIG. 7 is a schematic diagram of a temperature sensing test of an optical fiber device with integrated polymer micro-nano structure in an optical fiber.
  • the sample is the obtained optical fiber device with integrated polymer micro-nano structure in the optical fiber.
  • the optical fiber device with integrated polymer micro / nano structure is located in a sealed temperature furnace.
  • the left end of the optical fiber device with integrated polymer micro / nano structure is connected to the output end of the broadband light source, and the right end of the optical device with polymer micro / nano structure is integrated in the fiber.
  • FIG. 8 is a schematic structural diagram of an optical fiber device incorporating a polymer micro-nano structure in an optical fiber provided in a second embodiment of the present invention.
  • the inner diameter and outer diameter of the hollow fiber of the optical fiber device are 30um and 125um, respectively.
  • the solid fiber uses single-mode fiber, and a section of hollow-core fiber is fused between two single-mode fibers by a fusion splicer to control the discharge volume and discharge of the fusion splicer.
  • the embodiment of the present invention uses a fusion machine model of Fujikura 80S, optimized discharge parameters For: MMF mode, -10 discharge capacity, 400ms, the air-core fiber with inner and outer diameters of 30um and 125um, respectively, is well spliced between two single-mode fibers, and then step 102 to step in the first embodiment Operation 104, to obtain an optical fiber device with integrated polymer micro-nano structure in the optical fiber.
  • the internal structure of the hollow-core fiber of the optical fiber device with integrated polymer micro-nano structure in the optical fiber is a polymer fiber Bragg grating, as shown in FIG. 9.
  • Schematic diagram the incident light entering from the left end is modulated by the intermediate polymer Bragg grating, a resonance valley will be generated at the exit end, and a resonance peak will be generated at the reflection end.
  • the material The refractive index will produce a resonance.
  • the refractive index will change accordingly, which will lead to the drift of the Bragg resonance wavelength.
  • the external temperature change can be calibrated.
  • ⁇ b is the Bragg resonance wavelength
  • n is the effective refractive index of the light propagation medium
  • is the grating constant of the Bragg grating
  • FIG. 10 is a spectral shift transmission spectrum graph and a fitting wavelength and temperature change graph of a temperature sensing test provided by a second embodiment of the present invention
  • FIG. 10 (a) is Fig. 10 is the upper diagram
  • Fig. 10 (b) is the lower diagram in Fig. 10
  • Fig. 10 (a) is the spectral drift transmission spectrum diagram of the temperature sensing test
  • Fig. 10 (b) is the temperature sensing test.
  • Fit the graph of the change of wavelength and temperature As shown in Figure 10 (a), the Bragg resonance wavelength is 1558.5nm at 24 ° C. The temperature in the temperature furnace rises from 24 ° C to 2 ° C each time, and gradually rises to 40 ° C.
  • Figure 10 (a) shows that as the temperature gradually increases, the Bragg resonance wavelength moves significantly toward the short wave direction. Due to the high thermo-optic coefficient of the polymer, when the external temperature rises, the refractive index of the polymer material changes due to the thermo-optic effect. As a result, the relationship between the temperature and the resonance wavelength shown in FIG. 10 (b) is changed. As can be seen from FIG. 10 (b), the optical fiber device with integrated polymer micro-nano structure in the optical fiber obtained in the embodiment of the present invention has better performance. Linear sensitivity through temperature sensing Temperature sensitivity test was obtained -220pm / °C, sensitivity is significantly improved compared to the production of Bragg grating-based polymer optical fiber temperature sensor.
  • the method further comprises: determining the sensitivity obtained through a temperature sensing test, determining whether the optical fiber device integrated with the polymer micro-nano structure in the optical fiber is a sample that satisfies the requirements, and if the sensitivity is high, the obtained integrated polymerization in the optical fiber is obtained.
  • the optical micro-nano-structured optical fiber device is a required device with polymer functional characteristics. If the sensitivity is low, the device is discarded and the device is obtained again according to the method in the first embodiment.
  • the optical fiber device with integrated polymer micro-nano structure in the optical fiber is a good material for polymer.
  • the temperature sensing test results from the obtained optical fiber devices with integrated polymer micro-nanostructures show that the The sensitivity of optical fiber devices with polymer micro-nano structure integrated in the optical fiber is high.
  • FIG. 11 is a schematic structural diagram of an optical fiber device with integrated polymer micro / nano structure in an optical fiber according to a third embodiment of the present invention.
  • the optical fiber device with integrated polymer micro / nano structure in the optical fiber includes: solid optical fiber, Hollow core fiber and colorless and transparent photoresist material;
  • the hollow-core optical fiber is fused between two solid optical fibers.
  • the through-hole of the hollow-core optical fiber is perpendicular to the inner wall of the hollow-core optical fiber.
  • the photoresist material is located in the inner through-hole of the hollow-core optical fiber.
  • the photoresist material in the through groove has a polymer micro-nano structure.
  • the outer diameter of the hollow fiber is the same as the outer diameter of the two solid fibers, and the inner diameter of the hollow fiber is larger than the core diameter of the solid fiber.
  • the polymer micro-nano structure in the photoresist material is a grating structure
  • the internal structure of the hollow core fiber of the optical fiber device that integrates the polymer micro-nano structure in the optical fiber is specifically a polymer fiber Bragg grating, which is a polymer fiber Bragg grating
  • the grating has higher sensitivity, so that the optical fiber device with polymer micro-nano structure integrated in the optical fiber has higher sensitivity.
  • a polymer micro-nano structure optical fiber device with integrated polymer micro-nano structure is provided in the third embodiment of the invention.
  • the optical fiber has a polymer micro-nano structure inside, so that the optical fiber device integrated with the polymer micro-nano structure in the optical fiber has polymer functional characteristics.
  • Optical fiber devices with integrated polymer micro-nano structures in the optical fiber are easily welded to other quartz optical fibers at both ends, and the material characteristics of the polymer are well combined with the transmission characteristics of the optical fiber to achieve the integration of complex polymer functional microstructures and optical fibers. , So that optical fiber communication optical devices to the development of miniaturization.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

一种光纤内集成聚合物微纳结构的光纤器件的制备方法,本方法包括:对空芯光纤进行熔接处理,使空芯光纤熔接在两根实心光纤之间(101),利用飞秒激光烧蚀技术将熔接后的空芯光纤进行烧蚀处理,使空芯光纤上烧蚀出垂直于内壁的通槽(102),然后在空芯光纤内部填入无色且透明的光刻胶材料,使空芯光纤内部填满光刻胶材料(103),再利用飞秒激光双子聚合技术对空芯光纤内部的光刻胶材料上进行聚合加工,最后显影液清洗经过聚合加工处理后的空芯光纤,得到内部具有聚合物微纳结构的器件(104)。器件内部具有聚合物微纳结构,使其具有聚合物功能特性,很好的将聚合物的材料特性与光纤的传输特性结合在一起,实现复杂聚合物功能微结构与光纤的集成。

Description

光纤内集成聚合物微纳结构的光纤器件及其制备方法
本发明涉及光纤传感领域,尤其涉及一种光纤内集成聚合物微纳结构的光纤器件及其制备方法。
聚合物材料相对比石英因具有非常好的材料特性而广泛应用于光纤传感或通信领域,用聚合材料制备的聚合物光纤布拉格光栅器件具有更高的灵敏度,有望用于生物体内温度的监测。
现有的制备此聚合物功能微结构的方法有如下:离子束刻蚀法、双光子聚合加工法和紫外掩膜版曝光法等,其中,利用离子束刻蚀法仅可在平面进行加工且无法实现复杂三维结构的加工,因此加工出来的设备不利于光纤系统的集成;双光子聚合加工法可以实现复杂三维聚合物微结构的加工,但因为聚合物较差的机械性的局限,也不能很好地实现光纤集成;紫外掩膜版曝光法制备的聚合物结构一般在聚合物光纤中制备布拉格光栅,此制作手法单一,加工有局限性,且聚合物光纤不利于与石英光纤的熔接,因此,此方法制备的聚合物结构不利于光纤系统的集成。上述现有的制备聚合物功能微结构的方法均不能很好的将聚合物的材料特性与光纤的传输特性结合在一起,实现复杂聚合物功能微结构与光纤的集成。
发明内容
本发明的主要目的在于提供一种光纤内集成聚合物微纳结构的光纤器件及其制备方法,用于解决现有技术不能实现复杂聚合物功能微结构与光纤的集成的技术问题。
为实现上述目的,本发明第一方面提供一种光纤内集成聚合物微纳结构的光纤器件的制备方法,所述方法包括:
对空芯光纤进行熔接处理,使空芯光纤熔接在两根实心光纤之间;
利用飞秒激光烧蚀技术将所述熔接后的空芯光纤进行烧蚀处理,使所述空芯光纤上烧蚀出垂直于内壁的通槽;
在已进行所述烧蚀处理的空芯光纤的内部填入无色且透明的液态光刻胶材料,使所述空芯光纤的内部填满所述光刻胶材料;
利用飞秒激光双子聚合技术在所述空芯光纤内部的光刻胶材料上进行聚合加工,再利用显影液清洗经过所述聚合加工处理后的空芯光纤,得到内部具有聚合物微纳结构的光纤内集成聚合物微纳结构的光纤器件。
本发明第二方面提供一种光纤内集成聚合物微纳结构的光纤器件,所述光纤内集成聚合物微纳结构的光纤器件包括:实心光纤、空芯光纤和无色且透明的光刻胶材料;
所述空芯光纤熔接在两根所述实心光纤之间;
所述空芯光纤的通槽垂直于所述空芯光纤的内壁;
所述光刻胶材料位于所述空芯光纤的内部的通槽中;
所述空芯光纤内部通槽中具有所述聚合物微纳结构。
本发明提供一种光纤内集成聚合物微纳结构的光纤器件及其制备方法,该方法先将空芯光纤与实心光纤进行熔接,再在空芯光纤内部制备聚合物微纳结构,使其得到光纤内集成聚合物微纳结构的光纤器件具有聚合物功能特性,同时,因该光纤内集成聚合物微纳结构的光纤器件两端为实心光纤,该光纤内集成聚合物微纳结构的光纤器件两端与其他石英光纤的熔接也方便,很好地将聚合物的材料特性与光纤的传输特性结合在一起,实现复杂聚合物功能微结构与光纤的集成。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明第一实施例提供的一种光纤内集成聚合物微纳结构的光纤器件的制备方法的流程示意图;
图2为空芯光纤与两根实心光纤熔接后的示意图;
图3为空芯光纤进行烧蚀处理后的示意图;
图4为空芯光纤内部的光刻胶材料进行聚合加工后的示意图;
图5为本发明第一实施例获得的光纤内集成聚合物微纳结构的光纤器件的结构示意图;
图6为本发明第二实施例提供的一种光纤内集成聚合物微纳结构的光纤器件的制备方法的流程示意图;
图7为光纤内集成聚合物微纳结构的光纤器件进行温度传感测试的示意图;
图8为本发明第二实施例提供的光纤内集成聚合物微纳结构的光纤器件的结构示意图;
图9为光纤内集成聚合物微纳结构的光纤器件的结构示意图;
图10为本发明第二实施例提供的温度传感测试的光谱漂移透射光谱图和拟合波长与温度的变化图;
图11为本发明第三实施例提供的一种光纤内集成聚合物微纳结构的光纤器件的结构示意图。
具体实施方式
为使得本发明的发明目的、特征、优点能够更加的明显和易懂,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而非全部实施例。基于本发明中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
由于现有技术中不能实现复杂聚合物功能微结构与光纤的集成的技术问题。为了解决上述技术问题,本发明提出一种光纤内集成聚合物微纳结构的光纤器件的制备方法。
请参阅图1,图1为本发明第一实施例提供的一种光纤内集成聚合物微纳结构的光纤器件的制备方法的流程示意图,该方法包括:
步骤101、对空芯光纤进行熔接处理,使空芯光纤熔接在两根实心光纤之间。
具体地,设置熔接机的参数,利用熔接机将空芯光纤熔接在两根实心光纤之间。
如图2所示,图2为空芯光纤与两根实心光纤熔接后的示意图,空芯光纤连接在两根实心光纤之间,其中,空芯光纤的外径与两根实心光纤的外径相同,空芯光纤的内径大于实心光纤的纤芯直径,其中,空芯区域存在外壁,图2未具体示出外壁的特征。
可选地,空芯光纤也可以用毛细石英玻璃管代替。
步骤102、利用飞秒激光烧蚀技术将熔接后的空芯光纤进行烧蚀处理,使空芯光纤上烧蚀出垂直于内壁的通槽。
具体地,将已进行熔接处理的空芯光纤固定在具有旋转夹具的三维位移平台上,通过多次转动旋转夹具180°并利用飞秒激光烧蚀技术实现在空芯光纤垂直方向烧蚀出对穿的槽,烧蚀出的槽垂直于内壁(即为内壁弧面法线方向的空槽),如图3所示,图3为空芯光纤进行烧蚀处理后的示意图,其中,烧蚀处理是将空芯的外壁烧蚀掉,使空芯光纤内部烧出的对槽相通形成空芯光纤内部的一个空槽。
其中,三维位移平台上具有两个旋转夹具,将连接在空芯光纤两端的两根实心光纤分别固定两个旋转夹具上,从而使空芯光纤悬挂在两个旋转夹具之间,实现将空芯光纤固定在三维位移平台上的目的,以便飞秒激光烧蚀技术对空芯光纤进行烧蚀处理。
步骤103、在已进行烧蚀处理的空芯光纤的内部填入无色透明的液态光刻胶材料,使空芯光纤的内部填满该光刻胶材料。
其中,空芯光纤经过烧蚀处理后,该空芯光纤内部具有通槽,将液态光刻胶材料滴在空芯光纤的通槽中,静置一段时间,该时间段可为1至10分钟,静置处理后,光刻胶材料填满该空芯光纤的通槽,以便后续对光刻胶材料的其他操作,同时光刻胶材料为无色透明体,可作光波导,使光能在聚合物波导中传播。
需要说明的是,本申请方案也可选用其他无色透明聚合材料代替光刻胶材料。
步骤104、利用飞秒激光双子聚合技术在空芯光纤内部的光刻胶材料上进行聚合加工,再利用显影液清洗经过聚合加工处理后的空芯光纤,得到内部具有聚合物微纳微结构的光纤内集成聚合物微纳结构的光纤器件。
具体地,利用飞秒激光双子聚合技术对空芯光纤内部的光刻胶材料进行聚合加工,进行聚合加工后效果如图4所示,图4为空芯光纤内部的光刻胶材料进行聚合加工后的示意图,聚合加工后空芯光纤内部呈光栅结构,具有波导和基底,但是还存在未固化的液态光刻胶材料,此后,再利用显影液对已进行聚合加工处理的空芯光纤进行清洗,洗去未固化的液态光刻胶材料,得到成品的光纤内集成聚合物微纳结构的光纤器件,得到的光纤内集成聚合物微纳结构的光纤器件如图5所示,图5为本发明第一实施例获得的光纤内集成聚合物微纳结构的光纤器件的结构示意图,空芯光纤内部为光栅结构。
其中,显影液为具有特定比例的丙酮与异丙醇混合液。另,采用可编程控制的三维位移平台控制聚合物微纳结构的结构特征。三维位移平台中具有集成软件,可利用该集成软件的程序控制三维位移平台对光刻胶材料的聚合加工,从而控制聚合加工形成的聚合物微纳结构的结构特征,该结构特征包括:结构尺寸、结构形貌等,同时控制因改变结构特征而变化的性能,如光栅反射率等。因此,可对三维位移平台的集成软件进行编程仿真得到理想的聚合物微纳结构。
进一步地,飞秒激光双子聚合技术采用近红外波段的飞秒激光器,激光重复频率范围为1kHz到1MHz之间,激光脉冲宽度的范围为25飞秒到300飞秒。在本发明实施例中,飞秒激光器输出激光脉冲的重复频率为1kHz到220kHz且可调,调整激光装置,形成脉冲宽度为80飞秒,输出1026nm的激光波长。
需要说明的是,飞秒激光烧蚀技术中也采用飞秒激光器,该飞秒激光器的详细的参数值不作细述。
进一步地,在步骤102之后在步骤103之前的步骤还包括清洗烧蚀后空芯光纤。
具体地,利用粘接胶将两根实心光纤固定在同一玻璃片上,使空芯光纤固定在玻璃片的两固化点之间,将固定在玻璃片上的空芯光纤侵入装有酒精的超声清洗机中进行超声清洗,洗去烧蚀过程中产生的碎屑和杂质,以便后续光刻胶材料填满空芯光纤内部时碎屑和杂质不会对光刻胶材料聚合加工产生影响。
其中,粘接胶采用紫外固化胶,利用紫外固化胶将空芯光纤两端的实心光纤固定在同一玻璃片,之后玻璃片和空芯光纤整体浸泡于装有酒精的超声清洗机中清洗,洗去烧蚀过程中产生的碎屑和杂质,然后将液态光刻胶材料滴入空芯光纤的通槽中,静置一段时间,使光刻胶填满空芯光纤的通槽,再在空芯光纤上方盖上一层薄玻璃片,并固定于精密的可编程控制的气浮式三维位移平台上,最后,利用飞秒激光双子聚合技术在空芯光纤内部的光刻胶材料上进行聚合加工和利用具有特定比例的丙酮与异丙醇混合液清洗液体光刻胶材料,得到光纤内集成聚合物微纳结构的光纤器件。
从图1本发明第一实施例提供的光纤内集成聚合物微纳结构的光纤器件的制备方法可知,该方法先将空芯光纤与实心光纤进行熔接,再在光纤内部制备聚合物微纳结构,使其得到光纤内集成聚合物微纳结构的光纤器件具有聚合物功能特性,同时,因该光纤内集成聚合物微纳结构的光纤器件两端为实心光纤,该光纤内集成聚合物微纳结构的光纤器件两端与其他石英光纤连接时也较为方便,该光纤内集成聚合物微纳结构的光纤器件很好地将聚合物的材料特性与光纤的传输特性结合在一起,实现复杂聚合物功能微结构与光纤的集成。
请参阅图6,图6为本发明第二实施例提供的一种光纤内集成聚合物微纳结构的光纤器件的制备方法的流程示意图,该方法还包括:步骤105、将获得的光纤内集成聚合物微纳结构的光纤器件进行温度传感测试。
步骤105具体步骤包括:将获得的光纤内集成聚合物微纳结构的光纤器件放入温度可控的密封温度炉中,将光纤内集成聚合物微纳结构的光纤器件的左端连接到宽带光源的输出端,将光纤内集成聚合物微纳结构的光纤器件的右端连接到光谱仪的输入端,通过控制密封温度炉中的温度来测试光纤内集成聚合物微纳结构的光纤器件对温度的响应。
具体地,如图7所示,图7为光纤内集成聚合物微纳结构的光纤器件进行温度传感测试的示意图,样品为获得的光纤内集成聚合物微纳结构的光纤器件,该光纤内集成聚合物微纳结构的光纤器件位于密封温度炉中,该光纤内集成聚合物微纳结构的光纤器件的左端连接宽带光源的输出端,该光纤内集成聚合物微纳结构的光纤器件的右端连接光谱仪的输入端,通过控制密封温度炉中的温度来测试光纤内集成聚合物微纳结构的光纤器件对温度的响应。
其中,如图8所示,图8为本发明第二实施例提供的光纤内集成聚合物微纳结构的光纤器件的结构示意图,在本发明实施例中,光纤内集成聚合物微纳结构的光纤器件中空芯光纤的内径和外径分别为30um和125um,实心光纤采用单模光纤,利用熔接机将一段空芯光纤熔接在两根单模光纤之间,控制好熔接机的放电量和放电时间,以免在熔接过程中由于放电量过高导致空芯光纤的玻璃管塌陷,或是放电量不足导致熔接强度不够,因此本发明实施例采用熔接机的型号为藤仓80S,优化的放电参数为:MMF mode、-10放电量、400ms,将内径和外径分别为30um和125um的空芯光纤很好地熔接在两根单模光纤之间,再经第一实施例中步骤102至步骤104的操作,得到光纤内集成聚合物微纳结构的光纤器件。
需要说明的是,光纤内集成聚合物微纳结构的光纤器件的空芯光纤内部结构为聚合物光纤布拉格光栅,如图9所示,图9为光纤内集成聚合物微纳结构的光纤器件的结构示意图,由左端进入的入射光因中间聚合物布拉格光栅的调制,在出射端会产生一个谐振谷,在反射端会产生一个谐振峰,当外界温度环境变化时,由于热光效应,材料的折射率会产生一个谐振的折射率会有相应变化,从而导致布拉格谐振波长的漂移,通过检测谐振波长的漂移变化,可标定外界的温度变化,其中满足布拉格效应的方程为: b =2nΛ。
其中,m是布拉格光栅的阶数,λ b 是布拉格谐振波长,n是光传播介质的有效折射率,Λ是布拉格光栅的光栅常数。
在本发明实施例中,如图10所示,图10为本发明第二实施例提供的温度传感测试的光谱漂移透射光谱图和拟合波长与温度的变化图,图10(a)为图10中位于上方的图,图10(b)为图10中位于下方的图,图10(a)为温度传感测试的光谱漂移透射光谱图,图10(b)为温度传感测试中拟合波长与温度的变化图,如图10(a)所示,布拉格谐振波长在24℃时为1558.5nm,温度炉中的温度从24℃每次升温2℃,逐步上升到40℃,从图10(a)显示,随着温度的逐步升高,布拉格谐振波长明显向短波方向移动,由于聚合物的高热光系数,当外界温度上升时,由于热光效应导致聚合物材料折射率变化,从而导致如图10(b)所示的温度与谐振波长之间的变化关系,从图10(b)可知,本发明实施例获得的光纤内集成聚合物微纳结构的光纤器件具有较好的线性灵敏度,通过温度传感测试得到的温度灵敏度为-220pm/℃,相较于基于聚合物光纤内制作布拉格光栅温度传感器灵敏度有明显提高。
进一步地,该方法还包括:通过温度传感测试获得的灵敏度的高低,判断光纤内集成聚合物微纳结构的光纤器件是否为满足要求的样品,若灵敏度的高,则获得的光纤内集成聚合物微纳结构的光纤器件为所需的具有聚合物功能特性的器件,若灵敏度低,则舍弃该器件,重新按照第一实施例中的方法获取该器件。
从图6本发明第二实施例提供的光纤内集成聚合物微纳结构的光纤器件的制备方法可知,第一方面,光纤内集成聚合物微纳结构的光纤器件很好的将聚合物的材料特性与光纤的传输特性结合在一起,实现复杂聚合物功能微结构与光纤的集成;第二方面,从获取的光纤内集成聚合物微纳结构的光纤器件进行温度传感测试的结果显示,该光纤内集成聚合物微纳结构的光纤器件的灵敏度较高。
请参阅图11,图11为本发明第三实施例提供的一种光纤内集成聚合物微纳结构的光纤器件的结构示意图,该光纤内集成聚合物微纳结构的光纤器件包括:实心光纤、空芯光纤和无色且透明的光刻胶材料;
该空芯光纤熔接在两根实心光纤之间,空芯光纤的通槽垂直于空芯光纤的内壁,该光刻胶材料位于该空芯光纤的内部的通槽中,且该空芯光纤内部通槽中的光刻胶材料具有聚合物微纳结构。
其中,空芯光纤的外径与两根实心光纤的外径相同,空芯光纤的内径大于实心光纤的纤芯直径。
进一步地,光刻胶材料中具有的聚合物微纳结构为光栅结构,该光纤内集成聚合物微纳结构的光纤器件的空芯光纤内部结构具体为聚合物光纤布拉格光栅,该聚合物光纤布拉格光栅具有较高的灵敏度,从而该光纤内集成聚合物微纳结构的光纤器件具有较高的灵敏度。
从图11本发明第三实施例提供的光纤内集成聚合物微纳结构的光纤器件可知,该光纤内集成聚合物微纳结构的光纤器件中空芯光纤已与两根实心光纤连接,且空芯光纤内部具有聚合物微纳结构,使该光纤内集成聚合物微纳结构的光纤器件具有聚合物功能特性,同时,因该光纤内集成聚合物微纳结构的光纤器件两端为实心光纤,该光纤内集成聚合物微纳结构的光纤器件两端与其他石英光纤的熔接方便,很好的将聚合物的材料特性与光纤的传输特性结合在一起,实现复杂聚合物功能微结构与光纤的集成,使光纤通信光学器件向小型化发展。
需要说明的是,对于前述的各方法实施例,为了简便描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明并不受所描述的动作顺序的限制,因为依据本发明,某些步骤可以采用其它顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定都是本发明所必须的。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其它实施例的相关描述。
以上为对本发明所提供的一种光纤内集成聚合物微纳结构的光纤器件及其制备方法的描述,对于本领域的技术人员,依据本发明实施例的思想,在具体实施方式及应用范围上均会有改变之处,综上,本说明书内容不应理解为对本发明的限制。

Claims (10)

  1. 一种光纤内集成聚合物微纳结构的光纤器件的制备方法,其特征在于,所述方法包括:
    对空芯光纤进行熔接处理,使空芯光纤熔接在两根实心光纤之间;
    利用飞秒激光烧蚀技术将所述熔接后的空芯光纤进行烧蚀处理,使所述空芯光纤上烧蚀出垂直于内壁的通槽;
    在已进行所述烧蚀处理的空芯光纤的内部填入无色且透明的液态光刻胶材料,使所述空芯光纤的内部填满所述光刻胶材料;
    利用飞秒激光双子聚合技术在所述空芯光纤内部的光刻胶材料上进行聚合加工,再利用显影液清洗经过所述聚合加工处理后的空芯光纤,得到内部具有聚合物微纳结构的光纤内集成聚合物微纳结构的光纤器件。
  2. 根据权利要求1所述的方法,其特征在于,所述空芯光纤的外径与两根所述实心光纤的外径大小相同,所述空芯光纤的内径大于所述实心光纤的纤芯直径。
  3. 根据权利要求1所述的方法,其特征在于,所述利用飞秒激光烧蚀技术将熔接后的所述空芯光纤进行烧蚀处理,使所述空芯光纤上烧蚀出垂直于内壁的通槽的步骤包括:
    将已进行熔接处理的所述空芯光纤固定在具有旋转夹具的三维位移平台上;
    通过多次转动旋转夹具180°并利用飞秒激光烧蚀技术实现所述空芯光纤垂直方向烧蚀出对穿的槽。
  4. 根据权利要求1所述的方法,其特征在于,所述利用飞秒激光烧蚀技术将熔接后的所述空芯光纤进行烧蚀处理,使所述空芯光纤上烧蚀出垂直于内壁的通槽之后到在已进行所述烧蚀处理的空芯光纤的内部填入无色且透明的液态光刻胶材料,使所述空芯光纤的内部填满所述光刻胶材料之间的步骤还包括:
    利用粘接胶将所述两根实心光纤固定在同一玻璃片上,使所述空芯光纤固定在所述玻璃片的两固化点之间;
    将固定在玻璃片上的空芯光纤浸入装有酒精的超声清洗机中进行超声清洗。
  5. 根据权利要求1所述的方法,其特征在于,所述利用飞秒激光双光子聚合技术在所述空芯光纤内部的光刻胶材料上进行聚合加工,使所述空芯光纤内部得到具有聚合物微纳结构的光纤内集成聚合物微纳结构的光纤器件,其步骤还包括:
    采用可编程控制的三维位移平台控制所述聚合物微纳结构的结构特征。
  6. 根据权利要求1所述的方法,其特征在于,所述飞秒激光双子聚合技术采用近红外波段的飞秒激光器,激光重复频率范围为1kHz到1MHz之间,激光脉冲宽度的范围为25飞秒到300飞秒。
  7. 根据权利要求1所述的方法,其特征在于,所述显影液为具有特定比例的丙酮与异丙醇混合液。
  8. 根据权利要求1至7任意一项所述的方法,其特征在于,所述方法还包括:
    将获得的所述光纤内集成聚合物微纳结构的光纤器件放入温度可控的密封温度炉中,将所述光纤内集成聚合物微纳结构的光纤器件的左端连接到宽带光源的输出端,将所述光纤内集成聚合物微纳结构的光纤器件的右端连接接到光谱仪的输入端,通过控制所述密封温度炉中的温度来测试所述光纤集成聚合物功能微器件对温度的响应。
  9. 根据权利要求4所述的方法,其特征在于,所述粘接胶为紫外固化胶。
  10. 一种光纤内集成聚合物微纳结构的光纤器件,其特征在于,所述光纤内集成聚合物微纳结构的光纤器件包括:实心光纤、空芯光纤和无色且透明的光刻胶材料;
    所述空芯光纤熔接在两根所述实心光纤之间;
    所述空芯光纤的通槽垂直于所述空芯光纤的内壁;
    所述光刻胶材料位于所述空芯光纤的内部的通槽中;
    所述空芯光纤内部通槽中具有聚合物微纳结构。
PCT/CN2018/092403 2018-06-22 2018-06-22 光纤内集成聚合物微纳结构的光纤器件及其制备方法 WO2019242003A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/092403 WO2019242003A1 (zh) 2018-06-22 2018-06-22 光纤内集成聚合物微纳结构的光纤器件及其制备方法
US16/672,539 US11163110B2 (en) 2018-06-22 2019-11-04 Optical fiber device having polymer micronano structure integrated in optical fiber and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/092403 WO2019242003A1 (zh) 2018-06-22 2018-06-22 光纤内集成聚合物微纳结构的光纤器件及其制备方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/672,539 Continuation US11163110B2 (en) 2018-06-22 2019-11-04 Optical fiber device having polymer micronano structure integrated in optical fiber and preparation method thereof

Publications (1)

Publication Number Publication Date
WO2019242003A1 true WO2019242003A1 (zh) 2019-12-26

Family

ID=68982613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/092403 WO2019242003A1 (zh) 2018-06-22 2018-06-22 光纤内集成聚合物微纳结构的光纤器件及其制备方法

Country Status (2)

Country Link
US (1) US11163110B2 (zh)
WO (1) WO2019242003A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110177518A1 (en) * 2010-01-21 2011-07-21 Kartalov Emil P Methods and devices for micro-isolation, extraction, and/or analysis of microscale components
CN102162874A (zh) * 2011-05-23 2011-08-24 吉林大学 一种微孔阵列型光纤光栅的制备方法
KR20110098576A (ko) * 2010-02-26 2011-09-01 고려대학교 산학협력단 실린더 채널 및 장방형 채널을 포함하는 복합 채널, 이를 포함하는 불균일 미세 혼합기, 및 이의 제조방법
CN102374874A (zh) * 2011-09-20 2012-03-14 重庆大学 内嵌石英毛细管的全石英光纤Fabry-Perot干涉传感器及制作方法
CN102608071A (zh) * 2012-02-21 2012-07-25 中国计量学院 基于飞秒激光微加工空芯pbgf写入lpg的m-z型氢气传感头
CN107526131A (zh) * 2017-09-08 2017-12-29 深圳大学 一种制备光纤布拉格光栅的装置及其制备方法
CN108490535A (zh) * 2018-06-22 2018-09-04 深圳大学 光纤内集成聚合物微纳结构的光纤器件及其制备方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7438824B2 (en) * 2005-03-25 2008-10-21 National Research Council Of Canada Fabrication of long range periodic nanostructures in transparent or semitransparent dielectrics
CN101000394A (zh) * 2006-12-22 2007-07-18 重庆大学 增加长周期光纤光栅强度并减小带宽的方法及光纤光栅
CN100553178C (zh) * 2007-03-28 2009-10-21 重庆大学 多模-单模光网络全光纤互联方法及实现该方法的互联器
US8102599B2 (en) * 2009-10-21 2012-01-24 International Business Machines Corporation Fabrication of optical filters integrated with injection molded microlenses
US8639066B2 (en) * 2011-09-29 2014-01-28 General Electric Company Nano-structured trampoline fiber gas sensor
CN102374972A (zh) * 2011-10-13 2012-03-14 浙江大学 单根量子点掺杂聚合物纳米线的湿度传感器及其制备方法
CN102768381B (zh) * 2012-07-04 2014-06-11 南京大学 微纳结构d形光纤及制备方法与应用
CN103018819B (zh) * 2012-11-09 2014-05-21 浙江大学 基于纳米压印的高分子微纳光纤布拉格光栅制备方法
CN103227416B (zh) * 2013-03-25 2015-02-11 中国科学院半导体研究所 基于正交微纳周期结构选模的可调谐半导体激光器
JP6578007B2 (ja) * 2015-01-14 2019-09-18 ザ ユニバーシティ オブ アデライデThe University Of Adelaide 温度センサ
CN105356208B (zh) * 2015-11-27 2018-07-10 北京航空航天大学 一种基于相移型微纳光纤光栅(mpsbg)的微纳光纤激光器
CN107608022B (zh) * 2017-10-26 2023-09-26 深圳大学 微纳光纤布拉格光栅的制备系统及制备方法
CN110186875A (zh) * 2019-05-21 2019-08-30 天津大学 局部表面等离子共振光纤型pH值测量方法及传感器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110177518A1 (en) * 2010-01-21 2011-07-21 Kartalov Emil P Methods and devices for micro-isolation, extraction, and/or analysis of microscale components
KR20110098576A (ko) * 2010-02-26 2011-09-01 고려대학교 산학협력단 실린더 채널 및 장방형 채널을 포함하는 복합 채널, 이를 포함하는 불균일 미세 혼합기, 및 이의 제조방법
CN102162874A (zh) * 2011-05-23 2011-08-24 吉林大学 一种微孔阵列型光纤光栅的制备方法
CN102374874A (zh) * 2011-09-20 2012-03-14 重庆大学 内嵌石英毛细管的全石英光纤Fabry-Perot干涉传感器及制作方法
CN102608071A (zh) * 2012-02-21 2012-07-25 中国计量学院 基于飞秒激光微加工空芯pbgf写入lpg的m-z型氢气传感头
CN107526131A (zh) * 2017-09-08 2017-12-29 深圳大学 一种制备光纤布拉格光栅的装置及其制备方法
CN108490535A (zh) * 2018-06-22 2018-09-04 深圳大学 光纤内集成聚合物微纳结构的光纤器件及其制备方法

Also Published As

Publication number Publication date
US11163110B2 (en) 2021-11-02
US20200064545A1 (en) 2020-02-27

Similar Documents

Publication Publication Date Title
CN108490535B (zh) 光纤内集成聚合物微纳结构的光纤器件及其制备方法
US9529149B2 (en) Optical fiber microwire devices and manufacture method thereof
JP2002533743A (ja) 管に収容されたブラッグ回折格子を形成する方法および装置
CN113959606B (zh) 一种基于级联增强游标效应的混合型横向压力传感器
CN112558228A (zh) 基于聚合物回音壁模式谐振腔的光纤传感器及其制备方法
CN112596174B (zh) 一种微纳光纤耦合器复合制造方法
CN105628062B (zh) 基于平板波导共振耦合的光传感器、调制器及其制作方法
CN208569091U (zh) 光纤内集成聚合物微纳结构的光纤器件及其制备系统
CN110702148A (zh) 一种三参量同时区分测量光纤传感器件的制备方法及应用
KR20100095252A (ko) 마하젠더 간섭계형 광섬유, 그의 제조 방법 및 상기를 포함하는 센서
CN107608030B (zh) 一种混合型光纤耦合器及其制备方法
WO2019242003A1 (zh) 光纤内集成聚合物微纳结构的光纤器件及其制备方法
Chen et al. Ultrathin lensed photonic crystal fibers with wide bandwidth and long working distances
CN107632336A (zh) 一种长周期光栅及其制作方法
CN114234840B (zh) 一种基于拉锥双球型无芯光纤的曲率传感器及制备方法
AU2020102272A4 (en) Optical fiber device having polymer micronano structure integrated in optical fiber and preparation method thereof
US5930438A (en) Method for manufacturing an optoelectrical component and an optoelectrical component manufactured according to the method
Supian et al. Polymer optical fiber tapering using chemical solvent and polishing
JPS60173508A (ja) 光導波路接続方法
Poh et al. Single-mode operation in flat fibers slab waveguide via modal leakage
JP2022543638A (ja) 光ファイバスプライス接続方法
CN214011572U (zh) 一种基于聚合物回音壁模式谐振腔的光纤传感器
CN115127664B (zh) 一种光纤微球振动传感装置及其制备方法
Feng et al. Strain Sensor Based on Mach-Zehnder Interferometers by Waist-enlarged Structure and Spherical Structure
CN118465927A (zh) 基于微双臂马赫-曾德尔干涉仪原理的全光纤转换器及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18923004

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18923004

Country of ref document: EP

Kind code of ref document: A1