WO2019241941A1 - 一种激光扫描装置及激光雷达 - Google Patents

一种激光扫描装置及激光雷达 Download PDF

Info

Publication number
WO2019241941A1
WO2019241941A1 PCT/CN2018/092051 CN2018092051W WO2019241941A1 WO 2019241941 A1 WO2019241941 A1 WO 2019241941A1 CN 2018092051 W CN2018092051 W CN 2018092051W WO 2019241941 A1 WO2019241941 A1 WO 2019241941A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
driving
scanning device
lens holder
ring
Prior art date
Application number
PCT/CN2018/092051
Other languages
English (en)
French (fr)
Inventor
汪晓波
Original Assignee
汪晓波
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 汪晓波 filed Critical 汪晓波
Priority to PCT/CN2018/092051 priority Critical patent/WO2019241941A1/zh
Priority to US16/620,517 priority patent/US11709232B2/en
Publication of WO2019241941A1 publication Critical patent/WO2019241941A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/46Indirect determination of position data
    • G01S17/48Active triangulation systems, i.e. using the transmission and reflection of electromagnetic waves other than radio waves
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0875Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more refracting elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/023Mountings, adjusting means, or light-tight connections, for optical elements for lenses permitting adjustment

Definitions

  • the invention relates to the field of detection, in particular to a laser scanning device and a laser radar.
  • Lidar which is optical radar and light detection (LiDAR), is a sensor used to accurately obtain three-dimensional position information. Its working principle is to first emit a detection laser beam to a target, and then send the received laser beam from the target. The reflected signal is compared with the transmitted signal. After proper processing, relevant information about the target can be obtained, such as the target distance, orientation, height, speed, attitude, and shape. Lidar obtains three-dimensional position information by measuring the time difference and phase difference of the laser signal to determine the distance, measuring the angle by horizontal rotation scanning or phased scanning, and establishing a two-dimensional polar coordinate system based on these two data; and then obtaining different pitch angles by Signal to obtain the height information in the third dimension.
  • the high-frequency laser can acquire a large amount (10 6-10 7 orders of magnitude) of position point information (called point cloud) in one second, and perform three-dimensional modeling based on this information.
  • a two-dimensional galvanometer is generally used to change the optical path direction of the outgoing laser light in the vertical direction and the horizontal direction, respectively, so as to realize the movement of the laser beam in a plane to obtain two-dimensional coordinate data, and reflect
  • the mirror is used to change the light path direction of the emitted laser light to make it incident on the measured object, and to receive the reflected laser light from the measured object to make it incident on the light receiver.
  • the mirror In order to completely scan the surface of the measured object, the mirror needs to be set between two It can rotate in all directions, which requires a larger space and increases the overall volume of the lidar.
  • the embodiments of the present invention are expected to provide a laser scanning device and a laser radar with a compact structure and a small volume.
  • a laser scanning device includes a lens holder, a lens, and an optical path adjustment mechanism; wherein the lens is disposed on the lens holder, one side of the lens faces incident light; and the optical path adjustment mechanism is connected to the lens holder Including a distance adjustment component and a rotation driving component, the distance adjustment component is used to adjust the position of the lens holder, and the distance adjustment component adjusts the position of the lens holder relative to the incident light by adjusting the position of the lens holder.
  • An eccentric distance the rotation driving component is used to drive the lens to rotate around a set rotation axis, and the rotation axis is parallel to the optical axis of the lens.
  • the lens holder includes a lens barrel and a pressure ring; an inner surface of the lens barrel is provided with a step surface for mounting the lens; the lens is mounted on the step surface, and the pressure ring Abut against the other side of the lens away from the step surface.
  • the distance adjusting assembly includes a guide structure including guide rails on opposite sides of the lens holder, and the guide rails are formed on the opposite sides of the lens holder to be accommodated in the lens holder.
  • An inner guide groove whose extending direction is perpendicular to the rotation axis.
  • the distance adjusting assembly includes a ring bracket and a spring; the spring includes a first end connected to the lens holder and a second end connected to the ring bracket; the ring bracket and the Rotary drive assembly connection.
  • the distance adjusting component further includes a magnetic driving mechanism for driving the spring telescopic movement
  • the magnetic driving mechanism includes a first magnet and a plurality of second magnets
  • the spring further includes a first magnet and a second magnet respectively.
  • a third end connected by a magnet and a fourth end connected with the lens holder; the plurality of second magnets are arranged around the circumferential direction of the ring-shaped bracket.
  • the rotary driving assembly includes a bearing, and the bearing includes an outer ring, an inner ring spaced from the outer ring and having a common center, and the outer ring and the inner ring can rotate relatively;
  • An outer ring is connected to the lens holder, and the outer ring rotates to drive the lens holder and the lens to rotate together around a set rotation axis.
  • the rotary driving assembly further includes a gear driving structure connected to the outer ring, and the gear driving structure includes a driven gear, a driving gear, and a motor; the driven gear is fixed to the outer ring The driving gear is connected to the motor, the driving gear and the driven gear mesh with each other, and the motor drives the driving gear to rotate and the driven gear to rotate, thereby driving the lens holder and the driven gear The lenses rotate together about the rotation axis.
  • the rotary driving assembly further includes a driving belt driving structure, the driving belt driving structure includes a driving belt, a driving wheel, and a motor; the driving belt is sleeved on the outer ring and the driving wheel, respectively; A motor drives the driving wheel to rotate, thereby driving the lens holder and the lens to rotate about the rotation axis.
  • the scanning device further includes a fixing base fixedly connected to the inner ring, and the fixing base is used for fixing the bearing.
  • a laser radar includes a laser, a photodetector, and a laser scanning device, wherein the laser is disposed on one side of the laser scanning device and is configured to emit a laser beam incident on the lens; the laser scanning device, The laser beam is refracted, and the refracted laser beam is emitted to a target.
  • the photodetector is used to collect a laser beam reflected by the target.
  • the embodiment of the present invention has the following beneficial effects:
  • the embodiment of the present invention provides a laser scanning device including a lens holder, a lens, and an optical path adjustment mechanism.
  • the lens is disposed on the lens holder, and one side of the lens faces incident light.
  • the light path adjusting mechanism is connected with the lens holder, and includes a distance adjusting component and a rotation driving component, the distance adjusting component is used to adjust the position of the lens holder, and the distance adjusting component adjusts the position of the lens holder by The eccentric distance of the lens relative to the incident light is adjusted accordingly, and the rotation driving component is configured to drive the lens to rotate about a set rotation axis, and the rotation axis is parallel to the optical axis of the lens;
  • To achieve the refraction of the incident light incident on the lens by setting a distance adjustment component, the distance between the center of the lens and the axis of the incident light is adjusted, and the refraction of different parts between the center of the lens and the outer periphery is used Different
  • the different degrees of incident light passing through the center of the lens to the outer periphery are different.
  • the refraction effect of the lens requires only a single rotational movement to achieve the movement of the incident light through the lens on the two-dimensional plane of the refracted light.
  • the overall structure is more compact and the size of the laser scanning device is reduced.
  • FIG. 1 is a schematic structural diagram of a scanning device according to an optional embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of a lens in an optional embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a lens barrel in an optional embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a pressure ring according to an optional embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a guide rail in an alternative embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a distance adjusting component in an optional embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a distance adjustment component in another optional embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a bearing in an alternative embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a fixing base in an optional embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a rotation driving component in an optional embodiment of the present invention.
  • FIG. 11 is a schematic diagram of the composition of a laser radar in an alternative embodiment of the present invention.
  • an embodiment of the present invention provides a laser scanning device 10 including a lens holder 101, a lens 102, and an optical path adjustment mechanism 103; wherein the lens 102 is disposed on the lens holder 101, and the lens 102 One side faces incident light; the light path adjustment mechanism 103 is connected to the lens holder 101 and includes a distance adjustment component 104 and a rotation driving component 105.
  • the distance adjustment component 104 is used to adjust the position of the lens holder 101.
  • the distance adjusting component 104 adjusts the eccentric distance of the lens 102 relative to the incident light by adjusting the position of the lens holder 101.
  • the rotation driving component 105 is used to drive the lens 102 to rotate around a set rotation axis.
  • the rotation axis is parallel to the optical axis of the lens 102.
  • the laser scanning device 10 is configured to scan incident light in a two-dimensional plane.
  • the lens 102 may be a concave lens or a convex lens
  • the concave lens may be a spherical concave lens 201
  • the spherical concave lens 201 may be both sides.
  • the concave lens may also be an aspherical concave lens 202.
  • the convex lens may be a spherical convex lens 203, and the spherical convex lens 203 may be a biconvex lens having convex surfaces on both sides; it may be a plano-convex lens with one surface being convex and the other surface being flat; or a convex surface on one side and a concave surface on the other side Convex lenses.
  • the convex lens may also be an aspherical convex lens 204.
  • the lens holder 101 is used to hold the lens 102, and the optical path adjustment mechanism 103 is connected to the lens holder 101.
  • the optical path adjustment mechanism 103 is used to adjust the trajectory of the incident light in the two-dimensional plane after passing through the lens 102.
  • the light path adjustment mechanism 103 includes a distance adjustment component 104 and a rotation driving component 105.
  • the distance adjustment component 104 is used to adjust the position of the lens holder 101.
  • the distance adjustment component 104 adjusts the position of the lens holder 101 accordingly. Adjust the eccentric distance of the lens 102 with respect to the incident light.
  • the lens 102 as a spherical concave lens 201 as an example, please refer to FIG. 2 again.
  • the incident light passes through the spherical concave lens 201 at three different incident positions, and the incident light passes through the spherical surface. Refraction does not occur at the center 2011 of the concave lens 201.
  • the incident light passes through the spherical concave lens 201 at a first position 2012 near the center and is refracted at a refraction angle of ⁇ 1.
  • the incident light passes through the spherical concave lens 201 at a second position 2013 away from the center.
  • the concave spherical lens changes 201 from the axis center of the incident light, i.e., to change the center distance of the lens 102 with respect to the incident light, the incident light can be changed through the spherical concave deflection direction 201.
  • the lens 102 as a spherical convex lens 203 as an example, the incident light passes through the spherical convex lens 203 at three different incident positions. The incident light passes through the center of the spherical convex lens 203 without being refracted.
  • the incident light passes through the spherical convex lens 203 near the center.
  • Refraction with a refraction angle of ⁇ 3 occurs at a position 2032
  • refraction with a refraction angle of ⁇ 4 occurs at a second position 2033 away from the center through the spherical convex lens 203, and the refraction angle ⁇ 4 > ⁇ 3 .
  • the position of the incident light being kept constant, changing the distance between the center of the spherical convex lens 203 and the axis of the incident light can change the deflection direction of the incident light after passing through the spherical convex lens 203.
  • the rotation driving component 105 is used to drive the lens 102 to rotate around a set rotation axis, and the rotation axis is parallel to the optical axis of the lens 102.
  • the rotation axis coincides with the axis of the incident light.
  • the lens holder 101 includes a lens barrel 1011 and a pressure ring 1012; an inner surface of the lens barrel 1011 is provided with a stepped surface 1013 for mounting the lens 102; and the lens 102 Mounted on the stepped surface 1013, the pressure ring 1012 abuts on the other side of the lens 102 away from the stepped surface 1013.
  • the stepped surface 1013 is provided at the central portion of the inner surface of the lens barrel 1011.
  • One side of the lens 102 abuts the stepped surface 1013, and the pressure ring 1012 abuts the other side of the lens 102 away from the stepped surface 1013.
  • the inner surface of the lens barrel 1011 is also provided with a first thread 1014, which matches the second thread 1015 provided on the outer surface of the pressure ring 1012, and the first thread 1014 and the second thread 1015 cooperate with each other for the pressure ring 1012 and the lens barrel 1011 are screwed tightly, and the lens 102 is fixed.
  • the pressure ring 1012 is provided with two grooves 1016, and the grooves 1016 are symmetrically arranged with the center of the circle as the center. The setting of the grooves 1016 facilitates the use of tools to reach in. An operation is performed in the groove 1016 to screw the pressure ring 1012 to the inner surface of the lens barrel 1011.
  • the distance adjusting assembly 104 includes a guide structure 106.
  • the guide structure 106 includes guide rails 1061 located on opposite sides of the lens holder 101.
  • a guide groove 1062 is accommodated in two opposite sides of the lens holder 101, and an extending direction of the guide groove 1062 is perpendicular to the rotation axis.
  • the number of the guide rails 1061 is two, which are respectively located on opposite sides of the lens holder 101, and the guide grooves 1062 are respectively provided on the inner surface of each guide rail 1061 facing the other guide rail 1061.
  • the extending direction of the groove 1062 is perpendicular to the rotation axis.
  • the extending direction of the guide groove 1062 is the same as the extending direction of the guide rail 1061, and a connecting bar 1063 is provided between the ends of the two guide rails 1061 to fix the distance between the two guide grooves 1062.
  • the specifications of the guide groove 1062 are matched with the lens holder 101, so that the lens holder 101 can be correspondingly accommodated in the guide groove 1062, and can slide in the guide groove 1062 in the direction of the guide groove 1062 to achieve the The lens holder 101 and the guide groove 1062 are relatively slidably connected.
  • the distance adjusting assembly 104 includes a ring bracket 1041 and a spring 1042.
  • the spring 1042 includes a first end connected to the lens holder 101 and a ring end 1041 connected to the lens holder 101.
  • the second end; the ring-shaped bracket 1041 is connected to the rotation driving assembly 105.
  • the ring bracket 1041 is connected to the second end of the spring 1042, and is used to fix the spring 1042 to the ring bracket 1041.
  • the first end of the spring 1042 is connected to the lens holder 101.
  • the first end of the spring 1042 is connected to the lens barrel 1011 in the lens holder 101, and the ring-shaped bracket 1041 is connected to the rotation driving assembly 105 for driving the spring 1042, the lens holder 101 and the lens 102 together around the device.
  • Rotation of a fixed rotation axis is optionally, the center of the ring bracket 1041 is located on a set rotation axis. Due to the gravity of the lens holder 101 and the lens 102, when the rotation driving component 105 drives the ring bracket 1041 to rotate, the deformation of the spring 1042 follows the rotation speed.
  • the lens holder 101 and the lens 102 are moved in the radial direction of the annular bracket 1041.
  • the laser scanning device 10 when the laser scanning device 10 is in a non-working state, if the center of mass of the lens holder 101 and the lens 102 is located between the first end of the spring 1042 and the rotation axis, when the laser scanning device 10 is in a working state, that is, When the ring holder 1041 is rotated about a set rotation axis, the centrifugal force generated by the lens holder 101 and the lens 102 during rotation causes the spring 1042 to compress and deform.
  • the compression deformation of the spring 1042 becomes larger, and the lens With the deformation of the spring 1042, the clamp 101 and the lens 102 move away from the rotation axis in the radial direction of the ring-shaped bracket 1041.
  • the rotation axis is between the centroids of the lens holder 101 and the lens 102 and the first end of the spring 1042
  • the laser scanning device 10 is in a working state, that is, When the ring holder 1041 is rotated about a set rotation axis, the centrifugal force generated by the lens holder 101 and the lens 102 during rotation causes the spring 1042 to undergo an elongation deformation.
  • the elongation of the spring 1042 becomes larger. With the deformation of the spring 1042, the lens holder 101 and the lens 102 move away from the rotation axis in the radial direction of the ring-shaped bracket 1041.
  • the distance adjusting component 104 further includes a magnetic driving mechanism 107 that drives the telescopic movement of the spring 1042.
  • the magnetic driving mechanism 107 includes a first magnet 1071 and a plurality of second magnets 1072.
  • the spring 1042 further includes a third end connected to the first magnet 1071 and a fourth end connected to the lens holder 101, respectively; the plurality of second magnets 1072 are arranged around the circumferential direction of the ring-shaped bracket 1041.
  • the first magnet 1071 is connected to the third end of the spring 1042
  • the fourth end of the spring 1042 is connected to the lens holder 101
  • the first end of the spring 1042 is connected to the lens holder 101
  • the second end of the spring 1042 is connected to the annular bracket 1041.
  • the first end, the second end, the third end, and the fourth end of the spring 1042 are located on the same straight line.
  • the second end of the spring 1042 The connecting line between the end and the fourth end is parallel to the diameter of the lens 102.
  • the plurality of second magnets 1072 are arranged around the circumferential direction of the ring-shaped bracket 1041; optionally, the plurality of second magnets 1072 are arranged around the circumferential direction of the ring-shaped bracket 1041 at equal intervals.
  • a limit hole is provided on the first magnet 1071, and the extension direction of the limit hole is parallel to the axis of the spring 1042.
  • the magnetic driving mechanism 107 further includes a limit post 1073, and the limit One end of the column 1073 is connected to the ring-shaped bracket 1041.
  • the diameter of the limiting column 1073 is smaller than the diameter of the limiting hole.
  • the other end of the limiting column 1073 penetrates the limiting hole and communicates with the first magnet 1071. connection.
  • the magnetic driving mechanism 107 further includes a support structure 1074, and the plurality of second magnets 1072 are disposed on the support structure 1074, thereby ensuring that the position of the second magnet 1072 is fixed.
  • the first magnet 1071 is a permanent magnet
  • the second magnet 1072 is an electromagnet. The magnitude of the current passing through the second magnet 1072 can be changed to adjust the magnetic size of the second magnet 1072 to control the second magnet. The distance between the magnet 1072 and the first magnet 1071 can accordingly adjust the position of the lens holder to adjust the eccentric distance of the lens relative to the incident light accordingly.
  • the first magnet 1071 is opposite to the magnetic pole of the same name of the second magnet 1072, that is, the N pole of the first magnet 1071 is opposite to the N pole of the second magnet 1072 or the S pole of the first magnet 1071 is opposed to the S pole of the second magnet 1072.
  • the first magnet 1071 and the second magnet 1072 may be oppositely-named magnetic poles, that is, the N pole of the first magnet 1071 is opposite to the S pole of the second magnet 1072 or the S pole of the first magnet 1071.
  • the rotary driving assembly 105 includes a bearing 108 including an outer ring 1081, an inner ring 1082 spaced from the outer ring 1081 and having a common center, and the outer ring 1081 and The inner ring 1082 can rotate relatively; the outer ring 1081 is connected to the lens holder 101, and the outer ring 1081 rotates to drive the lens holder 101 and the lens 102 to rotate about a set rotation axis together.
  • the outer ring 1081 and the inner ring 1082 are spaced apart from each other and have a common circle center, and the bearing 108 further includes and is disposed between the outer ring 1081 and the inner ring 1082.
  • the outer ring 1081 and the inner ring 1082 are relatively rotatable.
  • the outer ring 1081 is connected to the lens holder 101.
  • the outer ring 1081 rotates to drive the lens holder 101 and the lens 102 to rotate about a set rotation axis; optionally, the outer ring 1081 is connected to the ring bracket 1041, and the lens holder 101 and the lens holder 101
  • the ring bracket 1041 is connected.
  • the outer ring 1081 can be directly used as the annular bracket 1041.
  • the laser scanning device further includes a fixing base 110 fixedly connected to the inner ring 1082, and the fixing base 110 is used for fixing the bearing 108.
  • the fixing base 110 includes a main fixing base 1101 and a sub-fixing base 1102.
  • the main fixing base 1101 is fixedly connected to the inner ring 1082 for fixing the bearing 108.
  • the sub-fixing base 1102 and the The main fixing base 1101 is fixedly connected for carrying the main fixing base 1101.
  • the rotary driving assembly 105 further includes a gear driving structure 109 connected to the outer ring 1081, and the gear driving structure 109 includes a driven gear 1091, a driving gear 1092, and a motor 1093;
  • the driven gear 1091 is fixedly connected to the outer ring 1081, the driving gear 1092 is connected to the motor 1093, the driving gear 1092 and the driven gear 1091 mesh with each other, and the motor 1093 drives the driving gear 1092
  • the rotation and the rotation of the driven gear 1091 further drive the lens holder 101 and the lens 102 to rotate together about the rotation axis.
  • the gear driving structure 109 is connected to the outer ring 1081, and the outer surfaces of the driven gear 1091 and the driving gear 1092 are provided with teeth, and the number of the teeth is not less than three and is evenly distributed.
  • the driving gear 1092 and the driven gear 1091 mesh with each other.
  • the driven gear 1091 is fixedly connected to the outer ring 1081
  • the driving gear 1092 is fixedly connected to the motor 1093
  • the motor 1093 drives the driving gear 1092 to rotate, and indirectly drives the driven gear
  • the gear 1091 rotates, thereby driving the lens holder 101 and the lens 102 to rotate about the rotation axis together; optionally, the motor 1093 is fixed on the fixing base 110.
  • the rotation driving assembly 105 further includes a transmission belt driving structure 111.
  • the transmission belt driving structure 111 includes a transmission belt 1111, a driving wheel 1112, and a motor 1093.
  • the transmission belt 1111 is sleeved on the outer ring 1081 and the driving wheel 1112, and the motor 1093 drives the driving wheel 1112 to rotate, thereby driving the lens holder 101 and the lens 102 around the rotation axis.
  • the outer ring 1081 and the driving wheel 1112 each have a groove matching the transmission belt 1111, and the grooves respectively surround an outer surface of the outer ring 1081 and an outer surface of the driving wheel 1112.
  • the transmission belt 1111 is sleeved in the groove of the outer ring 1081 and the driving wheel 1112, the motor 1093 is connected to the driving wheel 1112, and the motor 1093 drives the driving wheel 1112 to rotate, and further
  • the lens holder 101 and the lens 102 are driven to rotate around the rotation axis; optionally, the motor 1093 is fixed on the fixing base 110.
  • a laser radar which includes a laser 11, a photodetector 12, and a laser scanning device 10, wherein the laser 11 is disposed on one side of the laser scanning device 10 and is used for transmitting A laser beam incident on the lens 102; the laser scanning device 10 is configured to refract the laser beam, and the refracted laser beam is emitted to a target 13; the photodetector 12 is used to collect The laser beam reflected by the target 13, wherein the laser scanning device 10 is a laser scanning device 10 provided by any embodiment of the present application, and includes a lens holder 101, a lens 102, and an optical path adjustment mechanism 103; the lens 102 It is arranged on the lens holder 101, one side of the lens 102 faces a laser beam; the optical path adjustment mechanism 103 is connected to the lens holder 101, and includes a distance adjustment component 104 and a rotation driving component 105.
  • the laser scanning device 10 is a laser scanning device 10 provided by any embodiment of the present application, and includes a lens holder 101, a
  • the distance adjustment component 104 is used to adjust the position of the lens holder 101, and the distance adjusting component 104 adjusts the lens 102 phase accordingly by adjusting the position of the lens holder 101 To-center distance of the laser beam, the rotational drive assembly 105 for driving the rotation axis of the lens 102 is set around the rotation axis of the rotation axis of the lens 102 is parallel.
  • the lens 102 By setting the lens 102, the laser beam incident on the lens 102 is refracted. By setting the distance adjusting component 104, the distance between the center of the lens 102 and the axis of the laser beam is adjusted. Different refraction angles of different parts between the outer peripheries realize different degrees of deflection of the laser beam; by setting the rotation driving component 105, the lens 102 is rotated along a set rotation axis, and then the laser beam is generated through the lens 102.
  • the refracted light forms a circular motion trajectory on the target 13; in this way, through the different degrees of refracting of incident light by different parts between the center of the lens 102 and the outer periphery, the lens 102 only needs to perform a single rotary motion to achieve
  • the laser beam passes through the movement of the refracted light generated by the lens 102 in a two-dimensional plane, the overall structure is more compact, and the volume of the laser scanning device 10 is reduced; the laser radar emits the laser beam to the lens 102 in the laser scanning device 10 through the laser 11 ,
  • the laser scanning device 10 realizes the laser beam generated by the lens 102 through the optical path adjustment mechanism 103
  • the photodetector 12 is set to perform the laser beam reflected by the target 13
  • the acquisition of the target 13 is achieved, and the scanning of the target 13
  • the laser scanning device includes a lens holder, a lens, and an optical path adjustment mechanism.
  • the lens is disposed on the lens holder, and one side of the lens faces incident light; the optical path adjustment mechanism and the lens holder
  • the connection includes a distance adjustment component and a rotation driving component.
  • the distance adjustment component is used to adjust the position of the lens holder.
  • the distance adjustment component adjusts the lens relative to the incident light by adjusting the position of the lens holder.
  • the rotation driving component is used to drive the lens to rotate around a set rotation axis, and the rotation axis is parallel to the optical axis of the lens; by setting the lens, the incident on the lens is realized Refraction of light, the distance between the center of the lens and the axis of the incident light is adjusted by setting a distance adjustment component.
  • the difference in the angle of refraction between the center of the lens and the outer periphery is used to achieve different degrees of incident light.
  • the lens By setting a rotation drive component, the lens can be rotated along a set rotation axis, thereby realizing The refracted light generated by the incident light passing through the lens forms a circular motion trajectory in a two-dimensional plane; in this way, the lens only needs to perform a single rotational movement through the different degrees of refracting of the incident light by the different parts between the center of the lens and the outer periphery.
  • the movement of the refracted light generated by the incident light through the lens in a two-dimensional plane can be realized, the overall structure is more compact, and the volume of the scanning device is reduced.
  • the laser radar in the embodiment of the present invention emits a laser beam to a lens in a laser scanning device through a laser.
  • the laser scanning device implements the movement of the refracted light generated by the laser beam through the lens in a two-dimensional plane through an optical path adjustment mechanism, so that the laser beam After being incident on the complete surface of the target, it is reflected to the location of the photodetector.
  • the photodetector is used to collect the laser beam reflected by the target, which realizes the collection of target information and completes the target object. scanning.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optics & Photonics (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种激光雷达,具有激光扫描装置(10),激光扫描装置(10)包括镜片夹具(101)、透镜(102)以及光路调节机构(103);其中,透镜(102)设置于镜片夹具(101)上,透镜(102)的一侧面向入射光;光路调节机构(103)与镜片夹具(101)连接,包括距离调节组件(104)和旋转驱动组件(105),距离调节组件(104)用于调节镜片夹具(101)的位置,距离调节组件(104)通过调节镜片夹具(101)的位置相应调节透镜(102)相对于入射光的偏心距离,旋转驱动组件(105)用于驱动透镜(102)绕设定的旋转轴线旋转,旋转轴线与透镜(102)的光轴平行。

Description

一种激光扫描装置及激光雷达 技术领域
本发明涉及检测领域,尤其涉及一种激光扫描装置及激光雷达。
背景技术
激光雷达,即光学雷达、光达(Light Detection and Ranging,LiDAR),是一种用于精确获得三维位置信息的传感器,其工作原理是先向目标发射探测激光光束,然后将接收到的从目标反射回来的信号与发射信号进行比较,作适当处理后,就可获得目标的有关信息,例如目标距离、方位、高度、速度、姿态和形状等参数。激光雷达获得三维位置信息是通过测量激光信号的时间差、相位差确定距离,通过水平旋转扫描或相控扫描测角度,并根据这两个数据建立二维的极坐标系;再通过获取不同俯仰角度的信号获得第三维的高度信息。高频激光可在一秒内获取大量(10 6-10 7数量级)的位置点信息(称为点云),并根据这些信息进行三维建模。
在现有的激光雷达中,一般是采用二维振镜在垂直方向上和水平方向上分别改变所述出射激光的光路方向,以实现激光束在平面内的移动以获取二维坐标数据,反射镜用于改变出射激光的光路方向使其入射至被测物体、以及接收被测物体反射的激光使其入射至光接收器,为了完整扫描到被测物体表面,反射镜需要被设置为在两个方向上均能够旋转,从而需要较大的空间,增加了激光雷达的整体体积。
发明内容
本发明实施例期望提供一种结构紧凑、体积较小的激光扫描装置及激光雷达。
本发明实施例的技术方案是这样实现的:
一种激光扫描装置,包括镜片夹具、透镜以及光路调节机构;其中,所述透镜设置于所述镜片夹具上,所述透镜的一侧面向入射光;所述光路调节机构与所述镜片夹具连接,包括距离调节组件和旋转驱动组件,所述距离调节组件用于调节所述镜片夹具的位置,所述距离调节组件通过调节所述镜片夹具的位置相应调节所述透镜相对于所述入射光的偏心距离,所述旋转驱动组件用于驱动所述透镜绕设定的旋转轴线旋转,所述旋转轴线与所述透镜的光轴平行。
一种实现方式中,所述镜片夹具包括镜筒和压环;所述镜筒的内表面设置有用于安装所述透镜的台阶面;所述透镜安装于所述台阶面上,所述压环抵靠于所述透镜远离所述台阶面的另一侧。
一种实现方式中,所述距离调节组件包括导向结构,所述导向结构包括位于所述镜片夹具的相对两侧的导轨,所述导轨上形成有可供所述镜片夹具的相对两侧收容在内的导向槽,所述导向槽的延伸方向与所述旋转轴线垂直。
一种实现方式中,所述距离调节组件包括环形支架和弹簧;所述弹簧包括与所述镜片夹具连接的第一端和与所述环形支架连接的第二端;所述环形支架与所述旋转驱动组件连接。
一种实现方式中,所述距离调节组件还包括驱动所述弹簧伸缩运动的磁性驱动机构,所述磁性驱动机构包括第一磁铁和多个第二磁铁;所述弹簧还包括分别与所述第一磁铁连接的第三端和与所述镜片夹具连接的第四端;所述多个第二磁铁沿所述环形支架的圆周方向环绕设置。
一种实现方式中,所述旋转驱动组件包括轴承,所述轴承包括外圈、与所述外圈相互间隔且共圆心的内圈,所述外圈和所述内圈可相对旋转;所述外圈与所述镜片夹具连接,所述外圈旋转而驱动所述镜片夹具与所述 透镜共同绕设定的旋转轴线旋转。
一种实现方式中,所述旋转驱动组件还包括与所述外圈连接的齿轮驱动结构,所述齿轮驱动结构包括从动齿轮、主动齿轮和马达;所述从动齿轮与所述外圈固定连接,所述主动齿轮与所述马达连接,所述主动齿轮与所述从动齿轮相互啮合,所述马达驱动所述主动齿轮转动和所述从动齿轮旋转,进而带动所述镜片夹具与所述透镜共同绕所述旋转轴线旋转。
一种实现方式中,所述旋转驱动组件还包括传动带驱动结构,所述传动带驱动结构包括传动带、主动轮和马达;所述传动带分别套接于所述外圈和所述主动轮上,所述马达驱动所述主动轮转动,进而驱动所述镜片夹具与所述透镜绕所述旋转轴线旋转。
一种实现方式中,所述扫描装置还包括与所述内圈固定连接的固定座,所述固定座用于固定所述轴承。
一种激光雷达,包括激光器、光电探测器和激光扫描装置,其中,所述激光器设置于所述激光扫描装置的一侧,用于发射入射至所述透镜的激光光束;所述激光扫描装置,用于将所述激光光束折射,经过折射后的所述激光光束出射至目标物;所述光电探测器,用于采集所述目标物反射的激光光束。
本发明实施例具有以下有益效果:本发明实施例提供一种包括镜片夹具、透镜以及光路调节机构的激光扫描装置,所述透镜设置于所述镜片夹具上,所述透镜的一侧面向入射光;所述光路调节机构与所述镜片夹具连接,包括距离调节组件和旋转驱动组件,所述距离调节组件用于调节所述镜片夹具的位置,所述距离调节组件通过调节所述镜片夹具的位置相应调节所述透镜相对于所述入射光的偏心距离,所述旋转驱动组件用于驱动所述透镜绕设定的旋转轴线旋转,所述旋转轴线与所述透镜的光轴平行;通过设置透镜,实现了对入射至所述透镜的入射光的折射,通过设置距离调 节组件,实现了透镜的中心与入射光轴线之间的距离的调整,利用透镜的中心到外周缘之间不同部分的折射角的不同,实现对入射光的不同程度的偏折;通过设置旋转驱动组件,实现了透镜沿设定的旋转轴线旋转,进而实现入射光经过透镜产生的折射光在二维平面形成环形的运动轨迹;如此,通过透镜的中心到外周缘之间不同部分对入射光的不同程度的折射作用,透镜仅需做单一的旋转运动,即可实现入射光经过透镜产生的折射光在二维平面的运动,整体结构更加紧凑,减小了激光扫描装置的体积。
附图说明
图1为本发明一可选实施例中扫描装置的组成结构示意图;
图2为本发明一可选实施例中透镜的结构示意图;
图3为本发明一可选实施例中镜筒的结构示意图;
图4为本发明一可选实施例中压环的结构示意图;
图5为本发明一可选实施例中导轨的结构示意图;
图6为本发明一可选实施例中距离调节组件的结构示意图;
图7为本发明另一可选实施例中距离调节组件的结构示意图;
图8为本发明一可选实施例中轴承的结构示意图;
图9为本发明一可选实施例中固定座的结构示意图;
图10为本发明一可选实施例中旋转驱动组件的结构示意图;
图11为本发明一可选实施例中激光雷达的组成示意图。
具体实施方式
以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的实施例仅仅用以解释本发明,并不用于限定本发明。
请参阅图1,本发明实施例提供一种激光扫描装置10,包括镜片夹具101、透镜102以及光路调节机构103;其中,所述透镜102设置于所述镜 片夹具101上,所述透镜102的一侧面向入射光;所述光路调节机构103与所述镜片夹具101连接,包括距离调节组件104和旋转驱动组件105,所述距离调节组件104用于调节所述镜片夹具101的位置,所述距离调节组件104通过调节所述镜片夹具101的位置相应调节所述透镜102相对于所述入射光的偏心距离,所述旋转驱动组件105用于驱动所述透镜102绕设定的旋转轴线旋转,所述旋转轴线与所述透镜102的光轴平行。
具体的,激光扫描装置10用于实现入射光在二维平面的扫描,请参阅图2,透镜102可以是凹透镜或凸透镜,所述凹透镜可以是球面凹透镜201,所述球面凹透镜201可以是两面均为凹面的双凹透镜;可以是一面为凹面、另一面为平面的平凹透镜;还可以是一面为凸面、另一面为凹面的凸凹透镜。可选的,所述凹透镜也可以是非球面凹透镜202。所述凸透镜可以是球面凸透镜203,所述球面凸透镜203可以是两面均为凸面的双凸透镜;可以是一面为凸面、另一面为平面的平凸透镜;还可以是一面为凸面、另一面为凹面的凹凸透镜。可选的,所述凸透镜也可以是非球面凸透镜204。
请再次参阅图1,镜片夹具101用于夹持透镜102,光路调节机构103与镜片夹具101连接,所述光路调节机构103用于调节入射光经过透镜102后在二维平面的运动轨迹,具体的,光路调节机构103包括距离调节组件104和旋转驱动组件105,所述距离调节组件104用于调节所述镜片夹具101的位置,所述距离调节组件104通过调节所述镜片夹具101的位置相应调节所述透镜102相对于所述入射光的偏心距离,以透镜102为球面凹透镜201为例,请再次参阅图2,入射光以三个不同的入射位置透过球面凹透镜201,入射光经过球面凹透镜201的中心2011处未发生折射,入射光在靠近中心的第一位置2012处经过球面凹透镜201发生折射角为θ 1的折射,入射光在远离中心的第二位置2013处经过球面凹透镜201发生折射角为θ 2的折射,折射角θ 21,在保持入射光的位置不变的情况下,改变球面凹透镜 201的中心与入射光的轴线的距离,即,改变所述透镜102相对于所述入射光的偏心距离,可以改变入射光经过球面凹透镜201后的偏折方向。再以透镜102为球面凸透镜203为例,入射光以三个不同的入射位置透过球面凸透镜203,入射光经过球面凸透镜203的中心2031处未发生折射,入射光经过球面凸透镜203靠近中心的第一位置处2032处发生折射角为θ 3的折射,入射光经过球面凸透镜203远离中心的第二位置2033处发生折射角为θ 4的折射,折射角θ 43。在保持入射光的位置不变的情况下,改变球面凸透镜203的中心与入射光的轴线的距离,可以改变入射光经过球面凸透镜203后的偏折方向。
所述旋转驱动组件105用于驱动所述透镜102绕设定的旋转轴线旋转,所述旋转轴线与所述透镜102的光轴平行,可选的,所述旋转轴线与入射光的轴线重合。通过设置透镜102,实现了对入射至所述透镜102的入射光的折射,通过设置距离调节组件104,实现了透镜102的中心与入射光轴线之间的距离的调整,利用透镜102从中心到外周缘之间不同部分对光线的折射角的不同,实现对入射光的不同程度的偏折,通过设置旋转驱动组件105,实现了透镜102沿设定的旋转轴线旋转,进而实现入射光经过透镜102产生的折射光在二维平面形成环形的运动轨迹,如此实现了入射光经过透镜102产生的折射光在二维平面的运动。
这里,请结合参阅图3和图4,所述镜片夹具101包括镜筒1011和压环1012;所述镜筒1011的内表面设置有用于安装所述透镜102的台阶面1013;所述透镜102安装于所述台阶面1013上,所述压环1012抵靠于所述透镜102远离所述台阶面1013的另一侧。具体的,台阶面1013设置于镜筒1011的内表面的中央部分,透镜102的一侧与台阶面1013相抵靠,压环1012抵靠于所述透镜102远离所述台阶面1013的另一侧;可选的,镜筒1011的内表面还设置有第一螺纹1014,与压环1012外表面上设置的 第二螺纹1015相匹配,第一螺纹1014和第二螺纹1015相互配合用于压环1012与镜筒1011旋紧,实现了透镜102的固定。可选的,请参阅图4,所述压环1012上设置有两个凹槽1016,所述凹槽1016以圆心为中心呈对称设置,通过所述凹槽1016的设置,便于使用工具伸入该凹槽1016内进行操作而将压环1012旋合于镜筒1011的内表面。
这里,所述距离调节组件104包括导向结构106,请结合参阅1和图5,所述导向结构106包括位于所述镜片夹具101的相对两侧的导轨1061,所述导轨1061上形成有可供所述镜片夹具101的相对两侧收容在内的导向槽1062,所述导向槽1062的延伸方向与所述旋转轴线垂直。具体的,所述导轨1061的数量为两条,分别位于所述镜片夹具101的相对两侧,所述导向槽1062分别设置于每一导轨1061面向另一导轨1061的内侧表面上,所述导向槽1062的延伸方向与所述旋转轴线垂直。可选的,所述导向槽1062的延伸方向与导轨1061的延伸方向相同,两个导轨1061的末端之间设置有连接横杆1063,用于固定两个导向槽1062之间的距离。所述导向槽1062的规格与镜片夹具101相匹配,以使得镜片夹具101可以对应的收容于所述导向槽1062内,并可在导向槽1062内顺沿导向槽1062的方向滑动,实现所述镜片夹具101与所述导向槽1062可相对滑动地连接。
这里,请结合参阅图1和图6,所述距离调节组件104包括环形支架1041和弹簧1042;所述弹簧1042包括与所述镜片夹具101连接的第一端和与所述环形支架1041连接的第二端;所述环形支架1041与所述旋转驱动组件105连接。具体的,所述环形支架1041与所述弹簧1042的第二端连接,用于将弹簧1042固定于所述环形支架1041上,所述弹簧1042的第一端与所述镜片夹具101连接,可选的,弹簧1042的第一端与所述镜片夹具101中的镜筒1011连接,所述环形支架1041与旋转驱动组件105连接,用于带动弹簧1042、镜片夹具101和镜片102共同绕该设定的旋转轴线旋 转。可选的,所述环形支架1041的中心位于设定的旋转轴线上,由于镜片夹具101和镜片102的重力作用,旋转驱动组件105带动环形支架1041旋转时,弹簧1042的形变量随着旋转速度的变化而变化,由于弹簧1042的形变方向沿着所述环形支架1041的径向,实现了镜片夹具101和镜片102沿环形支架1041径向的运动。可选的,当激光扫描装置10处于非工作状态时,若镜片夹具101和镜片102的质心位于弹簧1042的第一端和旋转轴线之间,则当激光扫描装置10处于工作状态时,即,环形支架1041处于绕设定的旋转轴线旋转的状态时,镜片夹具101和镜片102在旋转中产生的离心力使得弹簧1042产生压缩形变,随着旋转速度的增加,弹簧1042的压缩形变变大,镜片夹具101和镜片102随着弹簧1042的形变而沿环形支架1041的径向远离旋转轴线。可选的,当激光扫描装置10处于非工作状态时,若旋转轴线位于镜片夹具101和镜片102的质心与弹簧1042的第一端之间,则当激光扫描装置10处于工作状态时,即,环形支架1041处于绕设定的旋转轴线旋转的状态时,镜片夹具101和镜片102在旋转中产生的离心力使得弹簧1042产生伸长形变,随着旋转速度的增加,弹簧1042的伸长形变变大,镜片夹具101和镜片102随着弹簧1042的形变而沿环形支架1041的径向远离旋转轴线。
这里,请参阅图7,所述距离调节组件104还包括驱动所述弹簧1042伸缩运动的磁性驱动机构107,所述磁性驱动机构107包括第一磁铁1071和多个第二磁铁1072;所述弹簧1042还包括分别与所述第一磁铁1071连接的第三端和与所述镜片夹具101连接的第四端;所述多个第二磁铁1072沿所述环形支架1041的圆周方向环绕设置。具体的,所述第一磁铁1071与弹簧的1042的第三端连接,所述弹簧1042的第四端与所述镜片夹具101连接,所述弹簧1042的第一端与所述镜片夹具101连接,所述弹簧1042的第二端与所述环形支架1041连接,所述弹簧1042的第一端、第二端、 第三端和第四端位于同一条直线上,所述弹簧1042的第二端和第四端的连线平行于所述镜片102的直径。所述多个第二磁铁1072沿所述环形支架1041的圆周方向环绕设置;可选的,所述多个第二磁铁1072沿所述环形支架1041的圆周方向等间距环绕设置。可选的,所述第一磁铁1071上设置有限位孔,所述限位孔的延伸方向与所述弹簧1042的轴线平行,所述磁性驱动机构107还包括限位柱1073,所述限位柱1073的一端连接于所述环形支架1041,所述限位柱1073的直径小于所述限位孔的直径,所述限位柱1073的另一端贯穿所述限位孔而与第一磁铁1071连接。可选的,所述磁性驱动机构107还包括支撑结构1074,所述多个第二磁铁1072设置于所述支撑结构1074上,保证了第二磁铁1072的位置固定。可选的,所述第一磁铁1071为永磁铁,所述第二磁铁1072为电磁铁,可以改变通过第二磁铁1072上的电流的大小而调节第二磁铁1072的磁性大小,以控制第二磁铁1072与第一磁铁1071之间的距离,从而可以相应调节镜片夹具的位置,以相应调节透镜相对于入射光的偏心距离。所述第一磁铁1071与第二磁铁1072的同名磁极相对,即第一磁铁1071的N极与第二磁铁1072的N极相对或者第一磁铁1071的S极与第二磁铁1072的S极相对,随着第二磁铁1072的磁性的增强,第一磁铁1071与第二磁铁1072之间的距离增加,进而改变透镜102相对于入射光的偏心距离。可选的,所述第一磁铁1071与第二磁铁1072之间也可以是异名磁极相对,即第一磁铁1071的N极与第二磁铁1072的S极相对或者第一磁铁1071的S极与第二磁铁1071的N极相对,随着第二磁铁1072的磁性的增强,第一磁铁1071与第二磁铁1072之间的距离减小,进而也可以改变透镜102相对于入射光的偏心距离。
这里,请再次参阅图1,所述旋转驱动组件105包括轴承108,所述轴承108包括外圈1081、与所述外圈1081相互间隔且共圆心的内圈1082,所述外圈1081和所述内圈1082可相对旋转;所述外圈1081与所述镜片夹 具101连接,所述外圈1081旋转而驱动所述镜片夹具101与所述透镜102共同绕设定的旋转轴线旋转。具体的,请结合参阅图8,所述外圈1081与所述内圈1082相互间隔且共圆心,所述轴承108还包括、设置于所述外圈1081与所述内圈1082之间的滚动体1083和支撑所述滚动体1083之间两两相互间隔的保持架1084,所述外圈1081与所述内圈1082可相对旋转;所述外圈1081与所述镜片夹具101连接,所述外圈1081旋转而带动所述镜片夹具101与所述透镜102共同绕设定的旋转轴线旋转;可选的,所述外圈1081与所述环形支架1041连接,所述镜片夹具101与所述环形支架1041连接。作为另一可选的实施例,所述外圈1081可以直接作为所述环形支架1041。
这里,请参阅图9,所述激光扫描装置还包括与所述内圈1082固定连接的固定座110,所述固定座110用于固定所述轴承108。具体的,所述固定座110包括主固定座1101和副固定座1102,所述主固定座1101与所述内圈1082固定连接,用于固定所述轴承108,所述副固定座1102与所述主固定座1101固定连接,用于承载所述主固定座1101,通过设置固定座110,实现了轴承108位置的固定,进而实现了镜片夹具101和透镜102的旋转时所绕的旋转轴线的固定。
这里,请再次参阅图1,所述旋转驱动组件105还包括与所述外圈1081连接的齿轮驱动结构109,所述齿轮驱动结构109包括从动齿轮1091、主动齿轮1092和马达1093;所述从动齿轮1091与所述外圈1081固定连接,所述主动齿轮1092与所述马达1093连接,所述主动齿轮1092与所述从动齿轮1091相互啮合,所述马达1093驱动所述主动齿轮1092转动和所述从动齿轮1091旋转,进而带动所述镜片夹具101与所述透镜102共同绕所述旋转轴线旋转。具体的,所述齿轮驱动结构109与所述外圈1081连接,所述从动齿轮1091与所述主动齿轮1092的外表面均设置有齿,所述齿的数 量不少于三个且均匀分布于所述从动齿轮1091与所述主动齿轮1092的外表面,所述主动齿轮1092与所述从动齿轮1091相互啮合。可选的,所述从动齿轮1091与所述外圈1081固定连接,所述主动齿轮1092与所述马达1093固定连接,所述马达1093驱动所述主动齿轮1092旋转,间接驱动所述从动齿轮1091旋转,进而带动所述镜片夹具101与所述透镜102共同绕所述旋转轴线旋转;可选的,所述马达1093固定于所述固定座110上。
这里,作为另一可选的实施例中,请参阅图10,所述旋转驱动组件105还包括传动带驱动结构111,所述传动带驱动结构111包括传动带1111、主动轮1112和马达1093。所述传动带1111分别套接于所述外圈1081和所述主动轮1112上,所述马达1093驱动所述主动轮1112转动,进而驱动所述镜片夹具101与所述透镜102绕所述旋转轴线旋转。具体的,所述外圈1081和所述主动轮1112上均具有与所述传动带1111相匹配的凹槽,所述凹槽分别环绕所述外圈1081的外表面和所述主动轮1112的外表面,所述传动带1111分别套接于所述外圈1081和所述主动轮1112凹槽中,所述马达1093与所述主动轮1112连接,所述马达1093驱动所述主动轮1112转动,进而驱动所述镜片夹具101与所述透镜102绕所述旋转轴线旋转;可选的,所述马达1093固定于所述固定座110上。
本发明实施例另一方面,还提供一种激光雷达,包括激光器11、光电探测器12和激光扫描装置10,其中,所述激光器11设置于所述激光扫描装置10的一侧,用于发射入射至所述透镜102的激光光束;所述激光扫描装置10,用于将所述激光光束折射,经过折射后的所述激光光束出射至目标物13;所述光电探测器12,用于采集所述目标物13反射的激光光束,其中,所述激光扫描装置10为本申请任一实施例所提供的激光扫描装置10,包括镜片夹具101、透镜102以及光路调节机构103;所述透镜102设置于所述镜片夹具101上,所述透镜102的一侧面向激光光束;所述光路调节 机构103与所述镜片夹具101连接,包括距离调节组件104和旋转驱动组件105,所述距离调节组件104用于调节所述镜片夹具101的位置,所述距离调节组件104通过调节所述镜片夹具101的位置相应调节所述透镜102相对于所述激光光束的偏心距离,所述旋转驱动组件105用于驱动所述透镜102绕设定的旋转轴线旋转,所述旋转轴线与所述透镜102的光轴平行。
通过设置透镜102,实现了对入射至所述透镜102的激光光束的折射,通过设置距离调节组件104,实现了透镜102的中心与激光光束轴线之间的距离的调整,利用透镜102的中心到外周缘之间不同部分的折射角的不同,实现对激光光束的不同程度的偏折;通过设置旋转驱动组件105,实现了透镜102沿设定的旋转轴线旋转,进而实现激光光束经过透镜102产生的折射光在目标物13形成环形的运动轨迹;如此,通过透镜102的中心到外周缘之间不同部分对入射光的不同程度的折射作用,透镜102仅需做单一的旋转运动,即可实现激光光束经过透镜102产生的折射光在二维平面内的运动,整体结构更加紧凑,减小了激光扫描装置10的体积;该激光雷达通过激光器11发射激光光束至激光扫描装置10中的透镜102,激光扫描装置10通过光路调节机构103实现了激光光束经过透镜102产生的折射光在二维平面内的运动,以使得激光光束能够入射至目标物13的完整表面后被反射至光电探测器12所在位置,通过设置光电探测器12进行所述目标物13反射的激光光束的采集,实现了对目标物13信息的采集,完成了对目标物13的扫描。
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。
工业实用性
本发明实施例中激光扫描装置包括镜片夹具、透镜以及光路调节机构的,所述透镜设置于所述镜片夹具上,所述透镜的一侧面向入射光;所述 光路调节机构与所述镜片夹具连接,包括距离调节组件和旋转驱动组件,所述距离调节组件用于调节所述镜片夹具的位置,所述距离调节组件通过调节所述镜片夹具的位置相应调节所述透镜相对于所述入射光的偏心距离,所述旋转驱动组件用于驱动所述透镜绕设定的旋转轴线旋转,所述旋转轴线与所述透镜的光轴平行;通过设置透镜,实现了对入射至所述透镜的入射光的折射,通过设置距离调节组件,实现了透镜的中心与入射光轴线之间的距离的调整,利用透镜的中心到外周缘之间不同部分的折射角的不同,实现对入射光的不同程度的偏折;通过设置旋转驱动组件,实现了透镜沿设定的旋转轴线旋转,进而实现入射光经过透镜产生的折射光在二维平面形成环形的运动轨迹;如此,通过透镜的中心到外周缘之间不同部分对入射光的不同程度的折射作用,透镜仅需做单一的旋转运动,即可实现入射光经过透镜产生的折射光在二维平面的运动,整体结构更加紧凑,减小了扫描装置的体积。本发明实施例中的激光雷达通过激光器发射激光光束至激光扫描装置中的透镜,激光扫描装置通过光路调节机构实现了激光光束经过透镜产生的折射光在二维平面内的运动,以使得激光光束能够入射至目标物的完整表面后被反射至光电探测器所在位置,通过设置光电探测器进行所述目标物反射的激光光束的采集,实现了对目标物信息的采集,完成了对目标物的扫描。

Claims (10)

  1. 一种激光扫描装置,包括镜片夹具、透镜以及光路调节机构;其中,
    所述透镜设置于所述镜片夹具上,所述透镜的一侧面向入射光;
    所述光路调节机构与所述镜片夹具连接,包括距离调节组件和旋转驱动组件,所述距离调节组件用于调节所述镜片夹具的位置,所述距离调节组件通过调节所述镜片夹具的位置相应调节所述透镜相对于所述入射光的偏心距离,所述旋转驱动组件用于驱动所述透镜绕设定的旋转轴线旋转,所述旋转轴线与所述透镜的光轴平行。
  2. 根据权利要求1所述的激光扫描装置,其中,所述镜片夹具包括镜筒和压环;
    所述镜筒的内表面设置有用于安装所述透镜的台阶面;
    所述透镜安装于所述台阶面上,所述压环抵靠于所述透镜远离所述台阶面的另一侧。
  3. 根据权利要求1所述的激光扫描装置,其中,所述距离调节组件包括导向结构,所述导向结构包括位于所述镜片夹具的相对两侧的导轨,所述导轨上形成有可供所述镜片夹具的相对两侧收容在内的导向槽,所述导向槽的延伸方向与所述旋转轴线垂直。
  4. 根据权利要求1所述的激光扫描装置,其中,所述距离调节组件包括环形支架和弹簧;
    所述弹簧包括与所述镜片夹具连接的第一端和与所述环形支架连接的第二端;
    所述环形支架与所述旋转驱动组件连接。
  5. 根据权利要求4所述的激光扫描装置,其中,所述距离调节组件 还包括驱动所述弹簧伸缩运动的磁性驱动机构,所述磁性驱动机构包括第一磁铁和多个第二磁铁;
    所述弹簧还包括分别与所述第一磁铁连接的第三端和与所述镜片夹具连接的第四端;
    所述多个第二磁铁沿所述环形支架的圆周方向环绕设置。
  6. 根据权利要求1所述的激光扫描装置,其中,所述旋转驱动组件包括轴承,所述轴承包括外圈、与所述外圈相互间隔且共圆心的内圈,所述外圈和所述内圈可相对旋转;所述外圈与所述镜片夹具连接,所述外圈旋转而驱动所述镜片夹具与所述透镜共同绕设定的旋转轴线旋转。
  7. 根据权利要求6所述的激光扫描装置,其中,所述旋转驱动组件还包括与所述外圈连接的齿轮驱动结构,所述齿轮驱动结构包括从动齿轮、主动齿轮和马达;
    所述从动齿轮与所述外圈固定连接,所述主动齿轮与所述马达连接,所述主动齿轮与所述从动齿轮相互啮合,所述马达驱动所述主动齿轮转动和所述从动齿轮旋转,进而带动所述镜片夹具与所述透镜共同绕所述旋转轴线旋转。
  8. 根据权利要求6所述的激光扫描装置,其中,所述旋转驱动组件还包括传动带驱动结构,所述传动带驱动结构包括传动带、主动轮和马达;
    所述传动带分别套接于所述外圈和所述主动轮上,所述马达驱动所述主动轮转动,进而驱动所述镜片夹具与所述透镜绕所述旋转轴线旋转。
  9. 根据权利要求6所述的激光扫描装置,其中,所述扫描装置还包括与所述内圈固定连接的固定座,所述固定座用于固定所述轴承。
  10. 一种激光雷达,包括激光器、光电探测器和如权利要求1至9中任一项所述的激光扫描装置,其中,
    所述激光器设置于所述激光扫描装置的一侧,用于发射入射至所述透镜的激光光束;
    所述激光扫描装置,用于将所述激光光束折射,经过折射后的所述激光光束出射至目标物;
    所述光电探测器,用于采集所述目标物反射的激光光束。
PCT/CN2018/092051 2018-06-20 2018-06-20 一种激光扫描装置及激光雷达 WO2019241941A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/092051 WO2019241941A1 (zh) 2018-06-20 2018-06-20 一种激光扫描装置及激光雷达
US16/620,517 US11709232B2 (en) 2018-06-20 2018-06-20 Laser scanning device and laser radar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/092051 WO2019241941A1 (zh) 2018-06-20 2018-06-20 一种激光扫描装置及激光雷达

Publications (1)

Publication Number Publication Date
WO2019241941A1 true WO2019241941A1 (zh) 2019-12-26

Family

ID=68982562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/092051 WO2019241941A1 (zh) 2018-06-20 2018-06-20 一种激光扫描装置及激光雷达

Country Status (2)

Country Link
US (1) US11709232B2 (zh)
WO (1) WO2019241941A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115166695A (zh) * 2022-09-06 2022-10-11 深圳力策科技有限公司 高安全性激光雷达扫描装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112119343B (zh) * 2019-02-02 2023-04-21 深圳市大疆创新科技有限公司 扫描模组及测距装置
CN116499504A (zh) * 2023-03-16 2023-07-28 深圳市志奋领科技有限公司 可调镜片角度的光电传感器及装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1420749A (zh) * 1999-09-24 2003-05-28 维思克斯公司 用于激光眼科手术的双枢轴扫描
US20040222366A1 (en) * 2001-08-09 2004-11-11 Rainer Frick Device for distance measurement
CN1821711A (zh) * 2005-02-18 2006-08-23 株式会社其恩斯 位置敏感光电传感器和在该传感器中设置基准距离的方法
CN101097290A (zh) * 2006-06-30 2008-01-02 鸿富锦精密工业(深圳)有限公司 激光扫描装置
CN101393399A (zh) * 2007-09-20 2009-03-25 日立比亚机械股份有限公司 激光直描装置
CN103675831A (zh) * 2012-09-13 2014-03-26 株式会社理光 距离测定装置
CN104166174A (zh) * 2014-07-29 2014-11-26 中国科学院苏州生物医学工程技术研究所 一种透镜及其构成的透镜组和应用
CN105589075A (zh) * 2014-11-12 2016-05-18 特林布尔有限公司 具有扫描功能的距离测量仪器

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4891653A (en) * 1987-04-27 1990-01-02 Minolta Camera Kabushiki Kaisha Image recorder with microstep driven motor transport
JP4469462B2 (ja) * 2000-05-25 2010-05-26 株式会社ニコン キャリア形状測定機
JP3995041B2 (ja) * 2002-07-10 2007-10-24 株式会社トプコン レーザ照射装置
US8660631B2 (en) * 2005-09-08 2014-02-25 Bruker Biospin Corporation Torsional support apparatus and method for craniocaudal rotation of animals
JP2011118993A (ja) * 2009-12-04 2011-06-16 Sony Corp 記録装置、制御方法
JP2015055662A (ja) * 2013-09-10 2015-03-23 惠州市大亜湾永昶電子工業有限公司 アクチュエータユニット
DE112015000994B4 (de) * 2014-02-26 2024-01-18 Panasonic Corporation of North America (n.d.Ges.d. Staates Delaware) Systeme für Mehrstrahl-Laseranordnungen mit veränderbarem Strahlparameterprodukt
JP2016086619A (ja) * 2014-10-29 2016-05-19 キヤノン株式会社 振動型駆動装置、レンズ鏡筒、撮像装置及びステージ装置
WO2017024584A1 (zh) * 2015-08-13 2017-02-16 爱佩仪光电技术(深圳)有限公司 抗磁干扰平移式光学防抖音圈马达及其装配方法
JP6454754B2 (ja) * 2017-05-12 2019-01-16 マクセル株式会社 レンズユニット
WO2019045152A1 (ko) * 2017-09-01 2019-03-07 (주)비에스텍 비접촉 3차원 측정기를 위한 3차원 통합 광학측정 시스템 및 3차원 통합 광학측정 방법
CN110118766B (zh) * 2018-02-07 2024-05-14 高利通科技(深圳)有限公司 手持式通用物质分析系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1420749A (zh) * 1999-09-24 2003-05-28 维思克斯公司 用于激光眼科手术的双枢轴扫描
US20040222366A1 (en) * 2001-08-09 2004-11-11 Rainer Frick Device for distance measurement
CN1821711A (zh) * 2005-02-18 2006-08-23 株式会社其恩斯 位置敏感光电传感器和在该传感器中设置基准距离的方法
CN101097290A (zh) * 2006-06-30 2008-01-02 鸿富锦精密工业(深圳)有限公司 激光扫描装置
CN101393399A (zh) * 2007-09-20 2009-03-25 日立比亚机械股份有限公司 激光直描装置
CN103675831A (zh) * 2012-09-13 2014-03-26 株式会社理光 距离测定装置
CN104166174A (zh) * 2014-07-29 2014-11-26 中国科学院苏州生物医学工程技术研究所 一种透镜及其构成的透镜组和应用
CN105589075A (zh) * 2014-11-12 2016-05-18 特林布尔有限公司 具有扫描功能的距离测量仪器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115166695A (zh) * 2022-09-06 2022-10-11 深圳力策科技有限公司 高安全性激光雷达扫描装置

Also Published As

Publication number Publication date
US11709232B2 (en) 2023-07-25
US20210405160A1 (en) 2021-12-30

Similar Documents

Publication Publication Date Title
JP6541365B2 (ja) 姿勢検出装置及びデータ取得装置
JP6616077B2 (ja) 測定装置及び3次元カメラ
WO2019241941A1 (zh) 一种激光扫描装置及激光雷达
JP6777987B2 (ja) 測定装置
US5920394A (en) Optical coordinate measuring machine
US10816665B2 (en) Surveying system
JP6867734B2 (ja) 軸支持構造、レーザ光線照射ユニット及び測量装置
CN1829900A (zh) 用于检查或校准高精度试件的角相关对准的设备
CN113340279B (zh) 具有同轴射束偏转元件的勘测装置
JP2020038180A (ja) ターゲット装置及び測量システム
JP2008527450A (ja) 位置決め装置
US10564265B2 (en) Measurement device and measurement method
JP2018132328A (ja) 測量機
CN103018733B (zh) 一种天文望远镜焦点定位装置
JP6896523B2 (ja) 偏向装置及び測量機
CN114846352A (zh) 具有平坦光学器件和旋转反射镜并在高帧速率、高空间分辨率和低功耗下实现360度视场的LiDAR光学系统
CN206546432U (zh) 一种基于时间飞行法的激光雷达光学系统
CN104880833A (zh) 可实现光学镜头与焦面组件高精度定中心的系统及方法
CN105182353A (zh) 一种非接触式激光距离测量仪与测量方法
JP7360298B2 (ja) 測量装置
KR101861433B1 (ko) 라이다 장비의 광학계
CN202062087U (zh) 一种实现道威棱镜反射面轴线与旋转轴平行的系统
US20150077544A1 (en) Camera system comprising a zoom lens and a linear encoder
CN110320505A (zh) 激光雷达系统
US9383080B1 (en) Wide field of view concentrator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18923326

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18923326

Country of ref document: EP

Kind code of ref document: A1