WO2019240326A1 - 광 도파로 센서 및 이를 이용한 측정 물질 검출 시스템 - Google Patents

광 도파로 센서 및 이를 이용한 측정 물질 검출 시스템 Download PDF

Info

Publication number
WO2019240326A1
WO2019240326A1 PCT/KR2018/010129 KR2018010129W WO2019240326A1 WO 2019240326 A1 WO2019240326 A1 WO 2019240326A1 KR 2018010129 W KR2018010129 W KR 2018010129W WO 2019240326 A1 WO2019240326 A1 WO 2019240326A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical waveguide
light
single dna
seq
dna strand
Prior art date
Application number
PCT/KR2018/010129
Other languages
English (en)
French (fr)
Inventor
주형규
Original Assignee
가천대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가천대학교 산학협력단 filed Critical 가천대학교 산학협력단
Publication of WO2019240326A1 publication Critical patent/WO2019240326A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/648Specially adapted constructive features of fluorimeters using evanescent coupling or surface plasmon coupling for the excitation of fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N2021/258Surface plasmon spectroscopy, e.g. micro- or nanoparticles in suspension
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N2021/6484Optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
    • G01N33/0045Hg

Definitions

  • the present invention relates to an optical waveguide sensor and a measurement material detection system using the same, and more particularly, to a sensor and a system capable of detecting whether heavy metal is included in a measurement material by using surface plasmon resonance.
  • an optical waveguide sensor represented by an optical fiber uses voltage, current, temperature, concentration, and pressure using various variables such as the intensity of light passing through the optical waveguide, the refractive index and length of the optical waveguide, the mode, and the change in polarization state. Various information can be measured.
  • the optical waveguide sensor has the advantage of being able to measure ultra-precise broadband, is not affected by electromagnetic waves, and is easy to measure remotely.
  • the measurement unit does not use electricity and has excellent corrosion resistance of the silica material, there is an advantage that there are almost no restrictions on the use environment.
  • a general chemical sensor or biosensor for concentration measurement includes an electrode in order to use the electrical properties of the measurement material.
  • an electrode since electricity must be transmitted from an electrode, and a conductor such as an electric wire is required to transmit the electrical signal measured by the measuring unit to an external measuring instrument, there is a problem in the use environment.
  • an embodiment of the present invention provides an optical waveguide sensor and a measurement material detection system using an optical waveguide sensor capable of detecting heavy metals satisfying both mobility, sensitivity, and low cost. I would like to.
  • an embodiment of the present invention is to provide an optical waveguide sensor and a measurement material detection system using the optical waveguide sensor with excellent reproducibility.
  • the optical waveguide sensor may include an optical waveguide configured to acquire a first light from one side connected to a light source and to transmit a second light to the other side; An endothelial formed on the outside of the optical waveguide; And a measuring part formed by removing a part of the endothelium so that a part of the optical waveguide is exposed to the outside, wherein the measuring part contacts the measuring material to measure the concentration using a single DNA strand.
  • the measurement unit may further include a plating layer formed on a surface of the optical waveguide exposed to the outside to bond with at least one single DNA strand.
  • the plating layer is a chromium plating layer which is a first layer formed on the surface of the optical waveguide; And a gold plating layer which is a second layer formed on the surface of the chromium plating.
  • the single DNA strand may consist of any one of SEQ ID NOs: 1-5.
  • the optical waveguide may be provided such that the other side thereof is connected to an optical output meter for measuring the output of the second light.
  • the light source may be a helium-neon laser or a tungsten-halogen lamp.
  • the measurement material is a heavy metal
  • the detection limit of the measurement unit can be expressed by the following equation.
  • the measurement material may be mercury.
  • a measurement material detection system using an optical waveguide sensor is provided.
  • An optical waveguide sensor receiving the first light from the light source and converting the first light into a second light by using a measurement material;
  • a detection device that receives the second light from the optical waveguide sensor and detects whether the measurement material contains a heavy metal to be measured using a single DNA strand.
  • the light source may be a helium-neon laser or a tungsten-halogen lamp.
  • the measurement unit may further include a plating layer formed on a surface of the optical waveguide exposed to the outside to bond with at least one single DNA strand.
  • the plating layer is a chromium plating layer which is a first layer formed on the surface of the optical waveguide; And a gold plating layer which is a second layer formed on the surface of the chromium plating.
  • the single DNA strand may consist of any one of SEQ ID NOs: 1-5.
  • the optical waveguide may be provided such that the other side thereof is connected to an optical output meter for measuring the output of the second light.
  • the light source may be a helium-neon laser or a tungsten-halogen lamp.
  • the measurement material is a heavy metal
  • the detection limit of the measurement unit can be expressed by the following equation.
  • the measurement material may be mercury.
  • optical waveguide sensor and the measurement material detection system using the same have an effect of having high reproducibility when repeatedly detecting the measurement material.
  • optical waveguide sensor and the measurement material detection system using the same has the effect of detecting the presence of heavy metal at low cost.
  • optical waveguide sensor and the measurement material detection system using the same has the effect of measuring the concentration of heavy metal in real time.
  • optical waveguide sensor and the measurement material detection system using the same have an effect of detecting heavy metals with high sensitivity.
  • FIG. 1 is a view showing an optical waveguide sensor according to an embodiment of the present invention.
  • FIG. 2 is a view showing an optical waveguide sensor coupled to a single DNA strand according to an embodiment of the present invention.
  • Figure 3 is a diagram showing the change in form of a single DNA strand (a) the basic form of a single DNA strand of SEQ ID NO: 1 and (b) mercury ions according to an embodiment of the present invention.
  • Figure 4 is a diagram showing the change in form of a single DNA strand (a) the basic form of a single DNA strand of SEQ ID NO: 2 and (b) mercury ions according to an embodiment of the present invention.
  • Figure 5 is a diagram showing the change in form of a single DNA strand (a) the basic form of a single DNA strand of SEQ ID NO: 3 and mercury ions according to an embodiment of the present invention.
  • Figure 6 is a diagram showing the change in form of a single DNA strand (a) the basic form of a single DNA strand of SEQ ID NO: 4 and (b) mercury ions according to an embodiment of the present invention.
  • Figure 7 is a diagram showing the change in form of a single DNA strand (a) the basic form of a single DNA strand of SEQ ID NO: 5 and (b) mercury ions according to an embodiment of the present invention.
  • FIG. 8 is a diagram showing the results of detection limits for a single DNA strand of SEQ ID NO: 1 according to an embodiment of the present invention.
  • FIG. 9 is a diagram showing the results of detection limits for a single DNA strand of SEQ ID NO: 2 according to an embodiment of the present invention.
  • Figure 10 is a diagram showing the results of detection limits for a single DNA strand of SEQ ID NO: 3 according to an embodiment of the present invention.
  • FIG. 11 is a diagram showing the results of detection limits for a single DNA strand of SEQ ID NO: 4 according to an embodiment of the present invention.
  • FIG. 12 is a diagram showing the results of detection limits for a single DNA strand of SEQ ID NO: 5 according to an embodiment of the present invention.
  • FIG. 13 is a diagram showing the results of detection limit experiment of SEQ ID NO: 1 to SEQ ID NO: 5 according to an embodiment of the present invention in a summary table.
  • FIG. 14 is a view showing a measurement material detection system using an optical waveguide sensor according to an embodiment of the present invention.
  • FIG. 1 is a view showing an optical waveguide sensor according to an embodiment of the present invention
  • Figure 2 is a view showing an optical waveguide sensor coupled to a single DNA strand according to an embodiment of the present invention
  • Figure 3 is an embodiment of the present invention
  • Figure 4 is a sequence according to an embodiment of the present invention
  • Figure 2 shows the basic shape of a single DNA strand of number 2 and (b) a change in the shape of a single DNA strand when detecting mercury ions
  • Figure 5 is (a) single DNA strand of SEQ ID NO: 3 according to an embodiment of the present invention
  • the basic form of and (b) is a diagram showing the change in shape of a single DNA strand when detecting mercury ions
  • Figure 6 is (a) the basic form of a single DNA strand of SEQ ID NO: 4 and (b) according to an embodiment of the present invention ) Changes in the
  • an optical waveguide sensor 100 includes an optical waveguide 110, a measuring unit 120, and an outer shell 130.
  • the optical waveguide sensor 100 may be formed with an outer shell 130 on the outside of the optical waveguide 110.
  • the optical waveguide 110 may be formed of, for example, silica-based, and the outer skin 130 may be formed of a polymer type, and the refractive index of the optical waveguide 110 may be greater than the refractive index of the outer skin 130. have.
  • the measuring unit 120 contacts the sample and detects a measurement substance included in the sample.
  • the measurement unit 120 is formed to include the first plating layer 121 and the second plating layer 123 in the optical waveguide 110 exposed by partially removing the outer skin 130 of the optical waveguide sensor 100.
  • the measuring unit 120 is a portion formed by sequentially stacking the first metal layer 121 and the second metal layer 123 after the optical waveguide 110 is exposed to the outside.
  • one side of the single DNA strand 210 may be formed to bind to the second metal layer 123.
  • the first plating layer 121 may be preferably a chromium plating layer
  • the second plating layer 123 may be a gold plating layer.
  • At least one single DNA strand 210 is provided, and one side thereof is coupled to the second metal layer 123.
  • one side of the single DNA strand 210 that is coupled to the second metal layer 123 may be a 5 'side to which the siol group (SH-) is bonded, and the 3' side may be formed to contact the sample 230.
  • the single DNA strand 210 according to an embodiment of the present invention is most preferably to use any one of the single DNA strand of the five sequence codes described below, but is not necessarily limited thereto.
  • the optical waveguide 110 exposed to the outside by removing the shell 130 may appear in a cylindrical shape.
  • the optical waveguide sensor 100 of the present invention for example, the diameter of the optical waveguide 110 may be formed to about 200um, the thickness of the outer shell may be formed to about 15um.
  • the measuring unit 120 may have a length of 4 cm, but the present invention is not limited thereto and may be formed in various lengths according to a user's setting.
  • the measurement material included in the sample 230 may be a heavy metal, particularly preferably mercury.
  • FIGS. 3 to 7 illustrate the basic shape and the shape when mercury ions are detected, respectively, of five single DNA strands used in the optical waveguide sensor 100 according to the exemplary embodiment of the present invention.
  • Table 1 below shows the nucleotide sequences of the five single DNA strands shown in FIGS.
  • the single DNA of SEQ ID NO: 1 is formed in a form in which the 5 'side is in contact with the second plating layer 123, and an internal nucleotide sequence is formed in the order of TTG TTT GTT GCC CCC TTC TTT CTT.
  • a single DNA of SEQ ID NO: 1 of Figure 3a is modified to a hairpin form of Figure 3b so that mercury ions are combined with two thymine.
  • mercury ions are bonded between thymine and thymine, and guanine and cytosine are formed in a form that is bonded to each other. That is, a single DNA of SEQ ID NO: 1 shown in Figure 3 is formed to have a total of seven thymine-thymine bonds and three guanine-cytosine bonds.
  • the single DNA of SEQ ID NO: 2 is formed in a form in which the 5 ′ side is in contact with the second plating layer 123, and an internal nucleotide sequence is formed in the order of TTC TTT CTT CCC CCC TTC TTT CTT.
  • a single DNA of SEQ ID NO: 2 of Figure 4a is modified to a hairpin form of Figure 4b so that mercury ions are combined with two thymine.
  • mercury ions are bonded between thymine and thymine, and guanine and cytosine are formed in a form that is bonded to each other. That is, the single DNA of SEQ ID NO: 2 shown in FIG. 4 has a total of seven thymine-thymine bonds and is formed such that there is no guanine-cytosine bond unlike the single DNA of SEQ ID NO: 1.
  • the single DNA of SEQ ID NO: 3 is formed in a form in which the 5 ′ side is in contact with the second plating layer 123, and an internal nucleotide sequence is formed in the order of TCG TTC GTC GCC CCC CTC CTT CCT.
  • a single DNA of SEQ ID NO: 3 of Figure 5a is modified to a hairpin form of Figure 5b so that mercury ions are combined with two thymine.
  • mercury ions are bonded between thymine and thymine, and guanine and cytosine are formed in a form that is bonded to each other. That is, the single DNA of SEQ ID NO: 3 shown in FIG. 5 has a total of four thymine-thymine bonds and three guanine-cytosine bonds, and is formed to have three thymine-thymine bonds less than the single DNA of SEQ ID NO: 1. .
  • the single DNA of SEQ ID NO: 4 is formed in a form in which the 5 ′ side is in contact with the second plating layer 123, and an internal nucleotide sequence is formed in the order of TTG TCC GCC GCC CCC CCC CCT CTT.
  • a single DNA of SEQ ID NO: 4 of Figure 6a is modified to a hairpin form of Figure 6b so that mercury ions are combined with two thymine.
  • mercury ions are bonded between thymine and thymine, and guanine and cytosine are formed in a form that is bonded to each other. That is, the single DNA of SEQ ID NO: 4 shown in FIG. 6 has a total of three thymine-thymine bonds and three guanine-cytosine bonds, and is formed such that four thymine-thymine bonds are shorter than the single DNA of SEQ ID NO: 1. .
  • the single DNA of SEQ ID NO: 5 is formed in a form in which the 5 ′ side is in contact with the second plating layer 123, and an internal nucleotide sequence is formed in the order of CCG CCT GTT GCC CCC TTC TCC CCC.
  • a single DNA of SEQ ID NO: 5 of Figure 7a is modified to a hairpin form of Figure 7b so that mercury ions are combined with two thymine.
  • mercury ions are bonded between thymine and thymine, and guanine and cytosine are formed in a form that is bonded to each other. That is, the single DNA of SEQ ID NO: 5 shown in FIG. 7 has a total of three thymine-thymine bonds and three guanine-cytosine bonds, and is formed such that four thymine-thymine bonds are shorter than the single DNA of SEQ ID NO: 1. .
  • the structures of the single DNA of SEQ ID NO: 4 and the single DNA of SEQ ID NO: 5 may be classified according to whether thymine-thymine bond exists in the tail portion or whether thymine-thymine bond exists in the hairpin portion.
  • Figure 8 is a (a) detection limit test results for a single DNA strand of SEQ ID NO: 1 according to an embodiment of the present invention, (b) detection limit test results for a single DNA strand of SEQ ID NO: 2, (c) sequence Limit detection results for a single DNA strand of No. 3, (d) limit detection results for a single DNA strand of SEQ ID NO: 4, (e) limit detection results for a single DNA strand of SEQ ID NO: 5, and (f) Figure shows a summary of the experimental results.
  • the limit of detection is generally called LOD (Limit of Detection) and can be calculated through the following equation using standard deviation.
  • LOD is the detection limit
  • SD is the standard deviation of the output at the first concentration
  • ⁇ P is the output value of the first concentration
  • ⁇ C is the concentration difference between the first and second concentrations.
  • the output-mercury ion concentration graph of FIG. 8A is a graph showing the measured output value according to the mercury ion concentration change, and the values are summarized in the table to the right.
  • the detection limit of the single DNA strand of SEQ ID NO: 1 can be calculated by the following formula (2).
  • the calculation result shows that the single DNA of SEQ ID NO: 1 is about It was confirmed that it had a detection limit of M.
  • FIG. 8B shows a detection limit test result using a single DNA strand of SEQ ID NO.
  • the output-mercury ion concentration graph of FIG. 8B is a graph showing the measured output value according to the mercury ion concentration change, and the values are summarized in the table to the right.
  • the detection limit of the single DNA strand of SEQ ID NO: 2 can be calculated by the following equation (3).
  • the calculation result shows that the single DNA of SEQ ID NO: 2 is about It was confirmed that it had a detection limit of M.
  • FIG. 8C shows a detection limit test result using a single DNA strand of SEQ ID NO.
  • the output-mercury ion concentration graph of FIG. 8C is a graph showing the measured output value according to the mercury ion concentration change, and the values are summarized in the table to the right.
  • the detection limit of the single DNA strand of SEQ ID NO: 3 can be calculated by the following equation (4).
  • the calculation result shows that the single DNA of SEQ ID NO: 3 is about It was confirmed that it had a detection limit of M.
  • Fig. 8D shows the results of detection limits using a single DNA strand of SEQ ID NO.
  • the output-mercury ion concentration graph of FIG. 8D is a graph showing the measured output value according to the mercury ion concentration change, and the values are summarized in the table to the right.
  • the detection limit of the single DNA strand of SEQ ID NO: 4 can be calculated by the following equation (5).
  • the calculation result shows that the single DNA of SEQ ID NO: 4 is about It was confirmed that it had a detection limit of M.
  • FIG. 8E shows the results of detection limit experiments using a single DNA strand of SEQ ID NO.
  • the output-mercury ion concentration graph of FIG. 8E is a graph showing the measured output value according to the mercury ion concentration change, and the values are summarized in the table to the right.
  • the detection limit of the single DNA strand of SEQ ID NO: 5 can be calculated by the following equation (6).
  • the calculation result shows that the single DNA of SEQ ID NO: 5 is about It was confirmed that it had a detection limit of M.
  • SEQ ID NO: 4 is the thymine-thymine bond is formed on the tail side
  • SEQ ID NO: 5 is the thymine-thymine bond is formed on the hairpin side
  • the optical waveguide sensor 100 of the present invention is more sensitive to mercury, the more thymine-thymine bond is a single DNA structure that binds to the measurement unit 120, the more guanine-cytosine bond When ions can be detected and have the same number of bonds, it has been confirmed that a single DNA structure in which thymine-thymine bonds are present on the tail side can detect mercury ions sensitively.
  • FIG 9 illustrates a measurement material detection system using an optical waveguide sensor according to an exemplary embodiment of the present invention.
  • a measurement material detection system 900 using an optical waveguide sensor includes a light source 910, an optical converter 920, an optical waveguide sensor 100, and an optical measurement unit. 930.
  • the light source 910 generates a first light therein and transmits the first light to the light converter 920.
  • the output of the first light generated by the light source 210 is adjustable according to the user's setting, it is preferable that the visible light. This is because the amount of light in the visible light region is hardly absorbed by the aqueous solution. Therefore, the light source 210 may be a device for generating and emitting visible light such as a laser diode and an LED, and in any one embodiment of the present invention, the light source 210 may be a helium-neon laser or a tungsten-halogen lamp. have.
  • the light conversion unit 920 receives the first light and performs light conversion for transmitting parallel light to the optical waveguide sensor 100.
  • the light converting unit 920 may provide parallel light using, for example, a lens having various curvatures, and convert the parallel light into an optical waveguide sensor 100 using a mirror, a quarter wave plate, and a light separator. ) Can be delivered.
  • the present invention is not limited thereto, and may be sufficiently omitted depending on the user's setting.
  • the optical waveguide sensor 100 receives the first light from the light converter 920 and emits the second light, and the light measuring unit 930 receives the second light to output the second light and the output of the first light. Compare and verify that mercury ions are included in the sample. In this case, when the output of the second light is reduced compared to the output of the first light, the light measuring unit 930 may determine that the sample contains mercury ions.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Combustion & Propulsion (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

광 도파로 센서 및 광 도파로 센서를 이용한 측정 물질 검출 시스템이 제공된다. 본 발명의 실시예에 따른 광 도파로 센서는 광원과 연결된 일 측으로부터 제 1광을 획득하여 타 측으로 제 2광을 전달하는 광 도파로; 상기 광 도파로의 외부에 형성되는 내피; 및 상기 광 도파로의 일부가 외부에 노출되도록 상기 내피의 일부가 제거되어 형성되는 측정부;를 포함하며, 상기 측정부는, 단일 DNA 가닥을 이용하여 농도를 측정하고자 하는 측정 물질과 접촉한다.

Description

광 도파로 센서 및 이를 이용한 측정 물질 검출 시스템
본 발명은 광 도파로 센서 및 이를 이용한 측정 물질 검출 시스템에 관한 것으로, 특히, 표면 플라즈몬 공명 현상을 이용하여 측정 물질에 중금속이 포함되었는지 검출 할 수 있는 센서 및 시스템에 관한 것이다.
일반적으로 광 섬유로 대표되는 광 도파로를 이용한 센서는 광 도파로를 지나가는 빛의 세기, 광 도파로의 굴절률 및 길이, 모드, 및 편광 상태의 변화 등 다양한 변인을 이용하여 전압, 전류, 온도, 농도, 압력 등 다양한 정보를 측정할 수 있다. 광 도파로 센서는 초정밀광대역 측정이 가능하며, 전자파의 영향을 받지 않으며, 원격 측정이 용이하다는 장점이 있다. 또한, 측정부에서 전기를 사용하지 않으며 실리카 재질의 뛰어난 내부식성을 가지기 때문에 사용 환경에 대한 제약이 거의 존재하지 않다는 장점이 있다.
한편, 일반적인 농도 측정용 화학 센서 또는 바이오 센서 등은, 측정 물질의 전기적 성질을 이용하기 위해 전극을 포함한다. 이 경우, 전극으로부터 전기를 전달받아야 하며, 측정부에서 측정된 전기신호를 외부의 측정기에 전달하기 위해 전선 등의 전도체가 요구되기 때문에 사용 환경에 대한 문제점이 존재한다.
또, 중금속을 신속히 현장에서 간단한 검사 장비를 이용하여 검출하는 기술에 대한 수요가 증가하고 있다. 현재 중금속을 검출할 수 있는 다양한 장비가 개발되어 있지만, 이동성, 민감도 및 낮은 단가를 모두 만족하는 장비에 대한 소요가 존재한다.
최근, 표면 증강 라만 분광 기술을 이용하여 중금속을 초 민감도로 검출하는 기술이 개발되었지만, 라만 신호는 재현성이 매우 부족하다는 문제점이 존재한다.
상기와 같은 종래 기술의 문제점을 해결하기 위해, 본 발명의 일 실시예는 이동성, 민감도 및 낮은 단가를 모두 만족하며 중금속을 검출할 수 있는 광 도파로 센서 및 광 도파로 센서를 이용한 측정 물질 검출 시스템을 제공하고자 한다.
또, 본 발명의 일 실시예는 재현성이 뛰어난 광 도파로 센서 및 광 도파로 센서를 이용한 측정 물질 검출 시스템을 제공하고자 한다.
위와 같은 과제를 해결하기 위한 본 발명의 일 측면에 따르면, 광 도파로 센서가 제공된다. 상기 광 도파로 센서는 광원과 연결된 일 측으로부터 제 1광을 획득하여 타 측으로 제 2광을 전달하는 광 도파로; 상기 광 도파로의 외부에 형성되는 내피; 및 상기 광 도파로의 일부가 외부에 노출되도록 상기 내피의 일부가 제거되어 형성되는 측정부;를 포함하며, 상기 측정부는, 단일 DNA 가닥을 이용하여 농도를 측정하고자 하는 측정 물질과 접촉한다.
상기 측정부는, 적어도 하나의 상기 단일 DNA 가닥과 결합하기 위해 상기 외부에 노출된 상기 광 도파로의 표면에 형성되는 도금층;을 더 포함할 수 있다.
상기 도금층은, 상기 광 도파로의 표면에 형성되는 제 1층인 크롬 도금층; 및 상기 크롬 도금의 표면에 형성되는 제 2층인 금 도금층;으로 형성될 수 있다.
상기 단일 DNA 가닥은 서열번호 1 내지 5 중 어느 하나로 이루어질 수 있다.
상기 광 도파로는, 타 측이 상기 제 2광의 출력을 측정하는 광 출력 측정기와 연결되도록 구비될 수 있다.
상기 광원은 헬륨-네온 레이저 또는 텅스텐-할로겐 램프일 수 있다.
상기 측정 물질은 중금속이며, 상기 측정부의 검출 한계가 하기 수학식으로 표현될 수 있다.
Figure PCTKR2018010129-appb-I000001
(여기서, LOD는 검출 한계, SD = 제 1 농도에서의 출력 표준 편차, ΔP = 제 1 농도의 출력, ΔC = 제 1 농도와 제 2 농도의 농도 차)
상기 측정 물질은 수은일 수 있다.
본 발명의 일 측면에 따르면, 광 도파로 센서를 이용한 측정 물질 검출 시스템이 제공된다. 상기 광 도파로 센서를 이용한 측정 물질 검출 시스템은, 일정 세기의 제 1광을 발생시키는 광원; 상기 광원으로부터 상기 제 1광을 전달 받고, 측정 물질을 이용하여 상기 제 1광을 제 2광으로 변환시키는 광 도파로 센서; 및 상기 광 도파로 센서로부터 상기 제 2광을 전달받아 상기 측정 물질에 측정하고자 하는 중금속이 포함되었는지 단일 DNA 가닥을 이용하여 검출하는 검출 장치;를 포함한다.
상기 광원은, 헬륨-네온 레이저 또는 텅스텐-할로겐 램프일 수 있다.
상기 광원과 연결된 일 측으로부터 상기 제 1광을 획득하여 타 측으로 상기 제 2광을 전달하는 광 도파로; 상기 광 도파로의 외부에 형성되는 내피; 및 상기 광 도파로의 일부가 외부에 노출되도록 상기 내피의 일부가 제거되어 형성되는 측정부;를 포함하며, 상기 측정부는, 상기 단일 DNA 가닥을 이용하여 농도를 측정하고자 하는 측정 물질과 접촉할 수 있다.
상기 측정부는, 적어도 하나의 상기 단일 DNA 가닥과 결합하기 위해 상기 외부에 노출된 상기 광 도파로의 표면에 형성되는 도금층;을 더 포함할 수 있다.
상기 도금층은, 상기 광 도파로의 표면에 형성되는 제 1층인 크롬 도금층; 및 상기 크롬 도금의 표면에 형성되는 제 2층인 금 도금층;으로 형성될 수 있다.
상기 단일 DNA 가닥은 서열번호 1 내지 5 중 어느 하나로 이루어질 수 있다.
상기 광 도파로는, 타 측이 상기 제 2광의 출력을 측정하는 광 출력 측정기와 연결되도록 구비될 수 있다.
상기 광원은 헬륨-네온 레이저 또는 텅스텐-할로겐 램프일 수 있다.
상기 측정 물질은 중금속이며, 상기 측정부의 검출 한계가 하기 수학식으로 표현될 수 있다.
Figure PCTKR2018010129-appb-I000002
(여기서, LOD는 검출 한계, SD = 제 1 농도에서의 출력 표준 편차, ΔP = 제 1 농도의 출력, ΔC = 제 1 농도와 제 2 농도의 농도 차)
상기 측정 물질은 수은일 수 있다.
본 발명의 일 실시예에 따른 광 도파로 센서 및 이를 이용한 측정 물질 검출 시스템은 반복하여 측정 물질을 검출하는 경우 높은 재현성을 가지는 효과가 있다.
또, 본 발명의 일 실시예에 따른 광 도파로 센서 및 이를 이용한 측정 물질 검출 시스템은 낮은 비용으로 중금속의 존재 여부를 검출할 수 있는 효과가 있다.
또한, 본 발명의 일 실시예에 따른 광 도파로 센서 및 이를 이용한 측정 물질 검출 시스템은 중금속의 농도를 실시간으로 측정할 수 있는 효과가 있다.
또한, 광 도파로 센서 및 이를 이용한 측정 물질 검출 시스템은 높은 민감도로 중금속을 검출할 수 있는 효과가 있다.
도 1은 본 발명의 실시예에 따른 광 도파로 센서를 나타낸 도이다.
도 2는 본 발명의 실시예에 따른 단일 DNA 가닥이 결합된 광 도파로 센서를 나타낸 도이다.
도 3은 본 발명의 실시예에 따른 (a) 서열번호 1의 단일 DNA 가닥의 기본 형태 및 (b) 수은 이온을 감지하는 경우 단일 DNA 가닥의 형태 변화를 나타낸 도이다.
도 4는 본 발명의 실시예에 따른 (a) 서열번호 2의 단일 DNA 가닥의 기본 형태 및 (b) 수은 이온을 감지하는 경우 단일 DNA 가닥의 형태 변화를 나타낸 도이다.
도 5는 본 발명의 실시예에 따른 (a) 서열번호 3의 단일 DNA 가닥의 기본 형태 및 (b) 수은 이온을 감지하는 경우 단일 DNA 가닥의 형태 변화를 나타낸 도이다.
도 6은 본 발명의 실시예에 따른 (a) 서열번호 4의 단일 DNA 가닥의 기본 형태 및 (b) 수은 이온을 감지하는 경우 단일 DNA 가닥의 형태 변화를 나타낸 도이다.
도 7은 본 발명의 실시예에 따른 (a) 서열번호 5의 단일 DNA 가닥의 기본 형태 및 (b) 수은 이온을 감지하는 경우 단일 DNA 가닥의 형태 변화를 나타낸 도이다.
도 8은 본 발명의 실시예에 따른 서열번호 1의 단일 DNA 가닥에 대한 검출 한계 실험 결과를 나타낸 도이다.
도 9는 본 발명의 실시예에 따른 서열번호 2의 단일 DNA 가닥에 대한 검출 한계 실험 결과를 나타낸 도이다.
도 10은 본 발명의 실시예에 따른 서열번호 3의 단일 DNA 가닥에 대한 검출 한계 실험 결과를 나타낸 도이다.
도 11은 본 발명의 실시예에 따른 서열번호 4의 단일 DNA 가닥에 대한 검출 한계 실험 결과를 나타낸 도이다.
도 12는 본 발명의 실시예에 따른 서열번호 5의 단일 DNA 가닥에 대한 검출 한계 실험 결과를 나타낸 도이다.
도 13은 본 발명의 실시예에 따른 서열번호 1 내지 서열번호 5의 검출 한계 실험 결과를 요약표로 나타낸 도이다.
도 14는 본 발명의 실시예에 따른 광 도파로 센서를 이용한 측정 물질 검출 시스템을 나타낸 도이다.
이하, 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조부호를 붙였다.
도 1은 본 발명의 실시예에 따른 광 도파로 센서를 나타낸 도이고, 도 2는 본 발명의 실시예에 따른 단일 DNA 가닥이 결합된 광 도파로 센서를 나타낸 도이며, 도 3은 본 발명의 실시예에 따른 (a) 서열번호 1의 단일 DNA 가닥의 기본 형태 및 (b) 수은 이온을 감지하는 경우 단일 DNA 가닥의 형태 변화를 나타낸 도이고, 도 4는 본 발명의 실시예에 따른 (a) 서열번호 2의 단일 DNA 가닥의 기본 형태 및 (b) 수은 이온을 감지하는 경우 단일 DNA 가닥의 형태 변화를 나타낸 도이며, 도 5는 본 발명의 실시예에 따른 (a) 서열번호 3의 단일 DNA 가닥의 기본 형태 및 (b) 수은 이온을 감지하는 경우 단일 DNA 가닥의 형태 변화를 나타낸 도이고, 도 6은 본 발명의 실시예에 따른 (a) 서열번호 4의 단일 DNA 가닥의 기본 형태 및 (b) 수은 이온을 감지하는 경우 단일 DNA 가닥의 형태 변화를 나타낸 도이며, 도 7은 본 발명의 실시예에 따른 (a) 서열번호 5의 단일 DNA 가닥의 기본 형태 및 (b) 수은 이온을 감지하는 경우 단일 DNA 가닥의 형태 변화를 나타낸 도이고, 도 8은 본 발명의 실시예에 따른 (a) 서열번호 1의 단일 DNA 가닥에 대한 검출 한계 실험 결과, (b) 서열번호 2의 단일 DNA 가닥에 대한 검출 한계 실험 결과, (c) 서열번호 3의 단일 DNA 가닥에 대한 검출 한계 실험 결과, (d) 서열번호 4의 단일 DNA 가닥에 대한 검출 한계 실험 결과, (e) 서열번호 5의 단일 DNA 가닥에 대한 검출 한계 실험 결과 및 (f) 실험 결과 요약표를 나타낸 도이다.
이하에서는 도 1 내지 도 8을 이용하여 본 발명의 실시예에 따른 광 도파로 센서를 보다 상세히 설명하도록 한다.
도 1을 참고하면, 본 발명의 일 실시예에 따른 광 도파로 센서(100)는 광 도파로(110), 측정부(120) 및 외피(130)를 포함한다. 이때, 광 도파로 센서(100)는 광 도파로(110)의 외부에 외피(130)를 구비하여 형성될 수 있다. 또, 광 도파로(110)는 일 예로 실리카 계열로 형성될 수 있고, 외피(130)는 폴리머 종류로 형성될 수 있으며, 광 도파로(110)의 굴절률은 외피(130)의 굴절률보다 크게 형성될 수 있다.
측정부(120)는 시료와 접촉하고 시료에 포함된 측정 물질을 검출한다. 이를 위해 측정부(120)는 광 도파로 센서(100)의 외피(130)가 일부 제거되어 노출된 광 도파로(110)에 제 1 도금층(121) 및 제 2 도금층(123)을 포함하도록 형성된다.
다시 말해, 측정부(120)는 광 도파로(110)가 외부로 노출된 후 제 1 금속층(121) 및 제 2 금속층(123)이 순서대로 적층되어 형성되는 부분이며, 특히 도 2에 도시된 바와 같이 단일 DNA 가닥(210)의 일 측이 제 2 금속층(123)에 결합하도록 형성될 수 있다. 또, 제 1 도금층(121)은 바람직하게는 크롬 도금층일 수 있으며, 제 2 도금층(123)은 금 도금층일 수 있다.
단일 DNA 가닥(210)은 적어도 하나가 구비되며, 일 측이 제 2 금속층(123)에 결합한다. 이때, 제 2 금속층(123)에 결합하는 단일 DNA 가닥(210)의 일 측은 시올기(SH-)가 결합된 5'측일 수 있으며, 3'측은 시료(230)에 접하도록 형성될 수 있다. 또, 본 발명의 일 실시예에 따른 단일 DNA 가닥(210)은 후술되는 5개의 서열부호의 단일 DNA 가닥 중 어느 하나를 사용하는 것이 가장 바람직하지만 반드시 이에 한정되는 것은 아니다.
도 1 및 도 2에서는 설명 및 이해의 편의를 위해 광 도파로 센서(100)의 단면도를 도시하였으며, 본 발명은 외피(130)가 제거되어 외부에 드러나는 광 도파로(110)가 원통 형태로 나타날 수도 있다. 또, 본 발명의 광 도파로 센서(100)는 일 예로 광 도파로(110)의 지름이 200um 내외로 형성될 수도 있으며, 외피의 두께가 15um 내외로 형성될 수도 있다.
나아가 측정부(120)는 4cm의 길이를 가질 수 있으나, 본 발명은 이에 한정되지 않으며 사용자의 설정에 따라 다양한 길이로 형성될 수도 있다. 또, 시료(230)에 포함되는 측정 물질은 중금속일 수 있으며, 특히 바람직하게는 수은일 수 있다.
한편, 도 3 내지 도 7에는 본 발명의 일 실시예에 따른 광 도파로 센서(100)에 사용되는 5개의 단일 DNA 가닥의 기본 형태 및 수은 이온을 감지하였을 때의 형태가 각각 도시되고 있다.
하기 표 1에는 도 3 내지 도 7에 도시된 5개의 단일 DNA 가닥의 염기서열이 나타나고 있다.
염기서열 서열번호
5'- TTG TTT GTT GCC CCC TTC TTT CTT -3' 1
5'- TTC TTT CTT CCC CCC TTC TTT CTT -3' 2
5'- TCG TTC GTC GCC CCC CTC CTT CCT -3' 3
5'- TTG TCC GCC GCC CCC CCC CCT CTT -3' 4
5'- CCG CCT GTT GCC CCC TTC TCC CCC -3' 5
도 3a를 살펴보면 상기 서열번호 1의 단일 DNA는 5'측이 제 2 도금층(123)과 접촉하는 형태로 형성되며, 내부 염기서열은 TTG TTT GTT GCC CCC TTC TTT CTT 순서로 형성된다.
이때, 측정부(120)가 시료(230)와 접촉하게 되면, 도 3a의 서열번호 1의 단일 DNA는 수은 이온이 두 개의 티민과 결합하도록 도 3b의 헤어핀 형태로 변형된다. 이때, 티민과 티민 사이에는 수은 이온이 결합하며, 구아닌과 사이토신이 서로 결합되는 형태로 형성된다. 즉, 도 3에 도시된 서열번호 1의 단일 DNA는 총 7개의 티민-티민 결합과 3개의 구아닌-사이토신 결합을 가지도록 형성된다.
도 4a를 살펴보면 상기 서열번호 2의 단일 DNA는 5'측이 제 2 도금층(123)과 접촉하는 형태로 형성되며, 내부 염기서열은 TTC TTT CTT CCC CCC TTC TTT CTT 순서로 형성된다.
이때, 측정부(120)가 시료(230)와 접촉하게 되면, 도 4a의 서열번호 2의 단일 DNA는 수은 이온이 두 개의 티민과 결합하도록 도 4b의 헤어핀 형태로 변형된다. 이때, 티민과 티민 사이에는 수은 이온이 결합하며, 구아닌과 사이토신이 서로 결합되는 형태로 형성된다. 즉, 도 4에 도시된 서열번호 2의 단일 DNA는 총 7개의 티민-티민 결합을 가지게 되며 서열번호 1의 단일 DNA와 달리 구아닌-사이토신 결합이 존재하지 않도록 형성된다.
도 5a를 살펴보면 상기 서열번호 3의 단일 DNA는 5'측이 제 2 도금층(123)과 접촉하는 형태로 형성되며, 내부 염기서열은 TCG TTC GTC GCC CCC CTC CTT CCT 순서로 형성된다.
이때, 측정부(120)가 시료(230)와 접촉하게 되면, 도 5a의 서열번호 3의 단일 DNA는 수은 이온이 두 개의 티민과 결합하도록 도 5b의 헤어핀 형태로 변형된다. 이때, 티민과 티민 사이에는 수은 이온이 결합하며, 구아닌과 사이토신이 서로 결합되는 형태로 형성된다. 즉, 도 5에 도시된 서열번호 3의 단일 DNA는 총 4개의 티민-티민 결합과 3개의 구아닌-사이토신 결합을 가지게 되며 서열번호 1의 단일 DNA보다 티민-티민 결합이 3개 모자라도록 형성된다.
도 6a를 살펴보면 상기 서열번호 4의 단일 DNA는 5'측이 제 2 도금층(123)과 접촉하는 형태로 형성되며, 내부 염기서열은 TTG TCC GCC GCC CCC CCC CCT CTT 순서로 형성된다.
이때, 측정부(120)가 시료(230)와 접촉하게 되면, 도 6a의 서열번호 4의 단일 DNA는 수은 이온이 두 개의 티민과 결합하도록 도 6b의 헤어핀 형태로 변형된다. 이때, 티민과 티민 사이에는 수은 이온이 결합하며, 구아닌과 사이토신이 서로 결합되는 형태로 형성된다. 즉, 도 6에 도시된 서열번호 4의 단일 DNA는 총 3개의 티민-티민 결합과 3개의 구아닌-사이토신 결합을 가지게 되며 서열번호 1의 단일 DNA보다 티민-티민 결합이 4개 모자라도록 형성된다.
도 7a를 살펴보면 상기 서열번호 5의 단일 DNA는 5'측이 제 2 도금층(123)과 접촉하는 형태로 형성되며, 내부 염기서열은 CCG CCT GTT GCC CCC TTC TCC CCC 순서로 형성된다.
이때, 측정부(120)가 시료(230)와 접촉하게 되면, 도 7a의 서열번호 5의 단일 DNA는 수은 이온이 두 개의 티민과 결합하도록 도 7b의 헤어핀 형태로 변형된다. 이때, 티민과 티민 사이에는 수은 이온이 결합하며, 구아닌과 사이토신이 서로 결합되는 형태로 형성된다. 즉, 도 7에 도시된 서열번호 5의 단일 DNA는 총 3개의 티민-티민 결합과 3개의 구아닌-사이토신 결합을 가지게 되며 서열번호 1의 단일 DNA보다 티민-티민 결합이 4개 모자라도록 형성된다.
여기서, 서열번호 4의 단일 DNA와 서열번호 5의 단일 DNA의 구조는, 꼬리 부분에 티민-티민 결합이 존재하는지, 헤어핀 부분에 티민-티민 결합이 존재하는지에 따라 구분될 수 있다.
한편, 도 8은 본 발명의 실시예에 따른 (a) 서열번호 1의 단일 DNA 가닥에 대한 검출 한계 실험 결과, (b) 서열번호 2의 단일 DNA 가닥에 대한 검출 한계 실험 결과, (c) 서열번호 3의 단일 DNA 가닥에 대한 검출 한계 실험 결과, (d) 서열번호 4의 단일 DNA 가닥에 대한 검출 한계 실험 결과, (e) 서열번호 5의 단일 DNA 가닥에 대한 검출 한계 실험 결과 및 (f) 실험 결과 요약표를 나타낸 도이다.
검출 한계는 일반적으로 LOD(Limit of Detection)으로 불리우며, 표준편차를 이용하는 하기 수학식을 통해 계산될 수 있다.
수학식 1
Figure PCTKR2018010129-appb-I000003
여기서, LOD는 검출 한계이며, SD는 제 1 농도에서의 출력의 표준편차이고, ΔP는 제 1 농도의 출력값이며, ΔC는 제 1 농도와 제 2 농도의 농도 차일 수 있다.
도 8a에는 서열번호 1의 단일 DNA 가닥을 이용한 검출 한계 실험 결과가 나타나고 있다. 도 8a의 출력-수은 이온 농도 그래프는 수은 이온 농도 변화에 따른 측정 출력값을 나타낸 그래프이며, 오른쪽 표로 그 값을 정리하였다.
이때, 서열번호 1의 단일 DNA 가닥의 검출 한계는 하기 수학식 2로 계산될 수 있다.
수학식 2
Figure PCTKR2018010129-appb-I000004
즉, 계산 결과, 서열번호 1의 단일 DNA는 약
Figure PCTKR2018010129-appb-I000005
M의 검출 한계를 가지는 것을 확인하였다.
다음으로 도 8b에는 서열번호 2의 단일 DNA 가닥을 이용한 검출 한계 실험 결과가 나타나고 있다. 도 8b의 출력-수은 이온 농도 그래프는 수은 이온 농도 변화에 따른 측정 출력값을 나타낸 그래프이며, 오른쪽 표로 그 값을 정리하였다.
이때, 서열번호 2의 단일 DNA 가닥의 검출 한계는 하기 수학식 3으로 계산될 수 있다.
수학식 3
Figure PCTKR2018010129-appb-I000006
즉, 계산 결과, 서열번호 2의 단일 DNA는 약
Figure PCTKR2018010129-appb-I000007
M의 검출 한계를 가지는 것을 확인하였다.
다음으로 도 8c에는 서열번호 3의 단일 DNA 가닥을 이용한 검출 한계 실험 결과가 나타나고 있다. 도 8c의 출력-수은 이온 농도 그래프는 수은 이온 농도 변화에 따른 측정 출력값을 나타낸 그래프이며, 오른쪽 표로 그 값을 정리하였다.
이때, 서열번호 3의 단일 DNA 가닥의 검출 한계는 하기 수학식 4로 계산될 수 있다.
수학식 4
Figure PCTKR2018010129-appb-I000008
즉, 계산 결과, 서열번호 3의 단일 DNA는 약
Figure PCTKR2018010129-appb-I000009
M의 검출 한계를 가지는 것을 확인하였다.
다음으로 도 8d에는 서열번호 4의 단일 DNA 가닥을 이용한 검출 한계 실험 결과가 나타나고 있다. 도 8d의 출력-수은 이온 농도 그래프는 수은 이온 농도 변화에 따른 측정 출력값을 나타낸 그래프이며, 오른쪽 표로 그 값을 정리하였다.
이때, 서열번호 4의 단일 DNA 가닥의 검출 한계는 하기 수학식 5로 계산될 수 있다.
수학식 5
Figure PCTKR2018010129-appb-I000010
즉, 계산 결과, 서열번호 4의 단일 DNA는 약
Figure PCTKR2018010129-appb-I000011
M의 검출 한계를 가지는 것을 확인하였다.
마지막으로 도 8e에는 서열번호 5의 단일 DNA 가닥을 이용한 검출 한계 실험 결과가 나타나고 있다. 도 8e의 출력-수은 이온 농도 그래프는 수은 이온 농도 변화에 따른 측정 출력값을 나타낸 그래프이며, 오른쪽 표로 그 값을 정리하였다.
이때, 서열번호 5의 단일 DNA 가닥의 검출 한계는 하기 수학식 6으로 계산될 수 있다.
수학식 6
Figure PCTKR2018010129-appb-I000012
즉, 계산 결과, 서열번호 5의 단일 DNA는 약
Figure PCTKR2018010129-appb-I000013
M의 검출 한계를 가지는 것을 확인하였다.
한편, 상술한 도 8a 내지 도 8e의 결과가 도 8f에 표로 정리되어 있다. 이때, 서열번호 1과 서열번호 2를 비교하면, 동일한 개수의 티민-티민 결합을 가지고 있지만, 구아닌-사이토신 결합이 서열번호 2에 존재하지 않음으로써, 서열번호 2의 단일 DNA 구조는 수은 이온 검출 능력이 서열번호 1의 단일 DNA 구조보다 떨어지는 것을 확인할 수 있었다.
또, 서열번호 1과 서열번호 3을 비교하면, 두 단일 DNA는 동일한 개수의 구아닌-사이토신 결합을 가지고 있지만, 서열번호 3이 서열번호 1보다 티민-티민 결합이 3개 적게 형성되며, 따라서 수은 이온 검출 능력이 서열번호 1의 단일 DNA 구조보다 떨어지는 것을 확인할 수 있었다. 나아가, 서열번호 2와의 검출 한계값의 비교를 통해, 티민-티민 결합 개수가 검출 한계에 더욱 직접적인 영향을 미치는 것으로 확인할 수 있었다.
또한, 서열번호 4와 서열번호 5를 비교하면, 도 6 및 도 7에서 확인한 바와 같이 서열번호 4는 꼬리 쪽에 티민-티민 결합이 형성되며, 서열번호 5는 헤어핀 측에 티민-티민 결합이 형성되는데, 결과적으로 서열번호 4가 서열번호 5보다 민감하게 수은 이온을 검출할 수 있는 것으로 확인되었다.
즉 도 8의 모의실험을 정리하면, 본 발명의 광 도파로 센서(100)는 측정부(120)에 결합하는 단일 DNA 구조가 티민-티민 결합이 많을수록, 구아닌-사이토신 결합이 많을수록 더욱 민감하게 수은 이온을 검출할 수 있으며, 동일한 개수의 결합 수를 가지는 경우, 티민-티민 결합이 꼬리 쪽에 존재하는 단일 DNA 구조가 수은 이온을 민감하게 검출할 수 있는 것으로 확인되었다.
한편, 도 9에는 본 발명의 실시예에 따른 광 도파로 센서를 이용한 측정 물질 검출 시스템이 도시되고 있다.
도 9를 참조하면, 본 발명의 일 실시예에 따른 광 도파로 센서를 이용한 측정 물질 검출 시스템(900)은, 광원(910), 광 변환부(920), 광 도파로 센서(100) 및 광 측정부(930)를 포함한다.
광원(910)은, 내부에서 제 1광을 생성하여 광 변환부(920)로 전달한다. 이때, 광원(210)에서 생성되는 제 1광의 출력은 사용자의 설정에 따라 조절 가능하며, 가시광선인 것인 것이 바람직하다. 이는, 가시광선 영역의 빛은 수용액에 의해 흡수되는 양이 거의 존재하지 않기 때문이다. 따라서 광원(210)은 레이저 다이오드, LED 등 가시광선을 생성하여 방출하는 장치일 수 있으며, 본 발명의 일 실시예 중 어느 하나에서는 헬륨-네온 레이저(He-Ne laser) 또는 텅스텐-할로겐 램프일 수 있다.
다음으로 광 변환부(920)는 제 1광을 전달 받아 광 도파로 센서(100)에 평행광을 전달하기 위한 광 변환을 수행한다. 이때, 광 변환부(920)는 일 예로 다양한 곡률을 가지는 렌즈를 이용하여 평행광을 제공할 수도 있고, 거울과 1/4 파장판, 그리고 광 분리기 등을 이용하여 평행광을 광 도파로 센서(100)에 전달할 수 있다. 나아가, 본 발명은 이에 제한되지 않으며 사용자의 설정에 따라 충분히 생략될 수도 있다.
광 도파로 센서(100)는 광 변환부(920)로부터 제 1광을 전달 받아 제 2광을 방출하며, 광 측정부(930)는 제 2광을 전달 받아 제 2광의 출력과 제 1광의 출력을 비교하여 수은 이온이 시료에 포함되었는지 확인한다. 이때, 제 1광의 출력과 비교하여 제 2광의 출력이 감소한 경우, 광 측정부(930)는 시료에 수은 이온이 포함된 것으로 판단할 수 있다.
이상에서 본 발명의 일 실시예에 대하여 설명하였으나, 본 발명의 사상은 본 명세서에 제시되는 실시 예에 제한되지 아니하며, 본 발명의 사상을 이해하는 당업자는 동일한 사상의 범위 내에서, 구성요소의 부가, 변경, 삭제, 추가 등에 의해서 다른 실시 예를 용이하게 제안할 수 있을 것이나, 이 또한 본 발명의 사상범위 내에 든다고 할 것이다.
<110> 가천대학교 산학협력단
<120> Optical waveguide sensor and measuring compound detecting system with it
<160> 5
<170> Kopatent In 2.0
<210> 1
<211> 24
<212> DNA
<220><223> 서열번호 1
<400> 1
TTG TTT GTT GCC CCC TTC TTT CTT
<210> 2
<211> 24
<212> DNA
<220><223> 서열번호 2
<400> 2
TTC TTT CTT CCC CCC TTC TTT CTT
<210> 3
<211> 24
<212> DNA
<220><223> 서열번호 3
<400> 3
TCG TTC GTC GCC CCC CTC CTT CCT
<210> 4
<211> 24
<212> DNA
<220><223> 서열번호 4
<400> 4
TTG TCC GCC GCC CCC CCC CCT CTT
<210> 5
<211> 24
<212> DNA
<220><223> 서열번호 5
<400> 5
CCG CCT GTT GCC CCC TTC TCC CCC

Claims (18)

  1. 광원과 연결된 일 측으로부터 제 1광을 획득하여 타 측으로 제 2광을 전달하는 광 도파로;
    상기 광 도파로의 외부에 형성되는 내피; 및
    상기 광 도파로의 일부가 외부에 노출되도록 상기 내피의 일부가 제거되어 형성되는 측정부;를 포함하며,
    상기 측정부는, 단일 DNA 가닥을 이용하여 농도를 측정하고자 하는 측정 물질과 접촉하는 광 도파로 센서.
  2. 제 1항에 있어서,
    상기 측정부는, 적어도 하나의 상기 단일 DNA 가닥과 결합하기 위해 상기 외부에 노출된 상기 광 도파로의 표면에 형성되는 도금층;을 더 포함하는 광 도파로 센서.
  3. 제 2항에 있어서,
    상기 도금층은, 상기 광 도파로의 표면에 형성되는 제 1층인 크롬 도금층; 및
    상기 크롬 도금의 표면에 형성되는 제 2층인 금 도금층;으로 형성되는 광 도파로 센서.
  4. 제 3항에 있어서,
    상기 단일 DNA 가닥은 서열번호 1 내지 5 중 어느 하나로 이루어지는 광 도파로 센서.
  5. 제 4항에 있어서,
    상기 광 도파로는, 타 측이 상기 제 2광의 출력을 측정하는 광 출력 측정기와 연결되도록 구비되는 광 도파로 센서.
  6. 제 5항에 있어서,
    상기 광원은 헬륨-네온 레이저 또는 텅스텐-할로겐 램프인 광 도파로 센서.
  7. 제 6항에 있어서,
    상기 측정 물질은 중금속이며, 상기 측정부의 검출 한계가 하기 수학식으로 표현되는 광 도파로 센서.
    Figure PCTKR2018010129-appb-I000014
    (여기서, LOD는 검출 한계, SD = 제 1 농도에서의 출력 표준 편차, ΔP = 제 1 농도의 출력, ΔC = 제 1 농도와 제 2 농도의 농도 차)
  8. 제 7항에 있어서,
    상기 측정 물질은 수은인 광 도파로 센서.
  9. 일정 세기의 제 1광을 발생시키는 광원;
    상기 광원으로부터 상기 제 1광을 전달 받고, 측정 물질을 이용하여 상기 제 1광을 제 2광으로 변환시키는 광 도파로 센서; 및
    상기 광 도파로 센서로부터 상기 제 2광을 전달받아 상기 측정 물질에 측정하고자 하는 중금속이 포함되었는지 단일 DNA 가닥을 이용하여 검출하는 검출 장치;를 포함하는 광 도파로 센서를 이용한 측정 물질 검출 시스템.
  10. 제 9항에 있어서,
    상기 광원은, 헬륨-네온 레이저 또는 텅스텐-할로겐 램프인 광 도파로 센서를 이용한 측정 물질 검출 시스템.
  11. 제 10항에 있어서,
    상기 광원과 연결된 일 측으로부터 상기 제 1광을 획득하여 타 측으로 상기 제 2광을 전달하는 광 도파로;
    상기 광 도파로의 외부에 형성되는 내피; 및
    상기 광 도파로의 일부가 외부에 노출되도록 상기 내피의 일부가 제거되어 형성되는 측정부;를 포함하며,
    상기 측정부는, 상기 단일 DNA 가닥을 이용하여 농도를 측정하고자 하는 측정 물질과 접촉하는 광 도파로 센서를 이용한 측정 물질 검출 시스템.
  12. 제 11항에 있어서,
    상기 측정부는, 적어도 하나의 상기 단일 DNA 가닥과 결합하기 위해 상기 외부에 노출된 상기 광 도파로의 표면에 형성되는 도금층;을 더 포함하는 광 도파로 센서를 이용한 측정 물질 검출 시스템.
  13. 제 12항에 있어서,
    상기 도금층은, 상기 광 도파로의 표면에 형성되는 제 1층인 크롬 도금층; 및 상기 크롬 도금의 표면에 형성되는 제 2층인 금 도금층;으로 형성되는 광 도파로 센서를 이용한 측정 물질 검출 시스템.
  14. 제 13항에 있어서,
    상기 단일 DNA 가닥은 서열번호 1 내지 5 중 어느 하나로 이루어지는 광 도파로 센서를 이용한 측정 물질 검출 시스템.
  15. 제 14항에 있어서,
    상기 광 도파로는, 타 측이 상기 제 2광의 출력을 측정하는 광 출력 측정기와 연결되도록 구비되는 광 도파로 센서를 이용한 측정 물질 검출 시스템.
  16. 제 15항에 있어서,
    상기 광원은 헬륨-네온 레이저 또는 텅스텐-할로겐 램프인 광 도파로 센서를 이용한 측정 물질 검출 시스템.
  17. 제 16항에 있어서,
    상기 측정 물질은 중금속이며, 상기 측정부의 검출 한계가 하기 수학식으로 표현되는 광 도파로 센서를 이용한 측정 물질 검출 시스템.
    Figure PCTKR2018010129-appb-I000015
    (여기서, LOD는 검출 한계, SD = 제 1 농도에서의 출력 표준 편차, ΔP = 제 1 농도의 출력, ΔC = 제 1 농도와 제 2 농도의 농도 차)
  18. 제 17항에 있어서,
    상기 측정 물질은 수은인 광 도파로 센서를 이용한 측정 물질 검출 시스템.
PCT/KR2018/010129 2018-06-14 2018-08-31 광 도파로 센서 및 이를 이용한 측정 물질 검출 시스템 WO2019240326A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0067848 2018-06-14
KR1020180067848A KR102097421B1 (ko) 2018-06-14 2018-06-14 광 도파로 센서 및 이를 이용한 측정 물질 검출 시스템

Publications (1)

Publication Number Publication Date
WO2019240326A1 true WO2019240326A1 (ko) 2019-12-19

Family

ID=68843403

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/010129 WO2019240326A1 (ko) 2018-06-14 2018-08-31 광 도파로 센서 및 이를 이용한 측정 물질 검출 시스템

Country Status (2)

Country Link
KR (1) KR102097421B1 (ko)
WO (1) WO2019240326A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006170885A (ja) * 2004-12-17 2006-06-29 Nippon Telegr & Teleph Corp <Ntt> ウィルスセンサおよびその製造方法、ウィルス検出法およびウィルスセンサ装置
JP2007170928A (ja) * 2005-12-20 2007-07-05 Stanley Electric Co Ltd 表面プラズモン共鳴センサー素子
JP2010539497A (ja) * 2007-09-18 2010-12-16 エーアーデーエス・ドイッチェランド・ゲゼルシャフト ミット ベシュレンクテル ハフツング バイオセンサを再生する装置及び方法
JP2015102459A (ja) * 2013-11-26 2015-06-04 シチズンホールディングス株式会社 センサ装置および測定方法
KR20160059500A (ko) * 2014-11-18 2016-05-27 가천대학교 산학협력단 바이오센서의 센서 헤드의 재생방법

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2331533T3 (es) 2005-03-29 2010-01-07 Cci Corporation Biosensor.
JP4918678B2 (ja) * 2006-09-20 2012-04-18 国立大学法人山梨大学 酢酸濃度検出センサ
JP5219033B2 (ja) * 2008-03-28 2013-06-26 公益財団法人北九州産業学術推進機構 雰囲気センサ及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006170885A (ja) * 2004-12-17 2006-06-29 Nippon Telegr & Teleph Corp <Ntt> ウィルスセンサおよびその製造方法、ウィルス検出法およびウィルスセンサ装置
JP2007170928A (ja) * 2005-12-20 2007-07-05 Stanley Electric Co Ltd 表面プラズモン共鳴センサー素子
JP2010539497A (ja) * 2007-09-18 2010-12-16 エーアーデーエス・ドイッチェランド・ゲゼルシャフト ミット ベシュレンクテル ハフツング バイオセンサを再生する装置及び方法
JP2015102459A (ja) * 2013-11-26 2015-06-04 シチズンホールディングス株式会社 センサ装置および測定方法
KR20160059500A (ko) * 2014-11-18 2016-05-27 가천대학교 산학협력단 바이오센서의 센서 헤드의 재생방법

Also Published As

Publication number Publication date
KR20190141293A (ko) 2019-12-24
KR102097421B1 (ko) 2020-04-06

Similar Documents

Publication Publication Date Title
US10866081B2 (en) Waveguide interferometer
WO2021177569A1 (ko) 박막 시편의 물성 평가방법 및 인장시험 테스트용 박막 시편
DE60216752T8 (de) Faseroptische rückstreu-polarimetrie
WO2022065668A1 (ko) 광섬유 격자센서를 이용한 계측 시스템
WO2012036376A1 (ko) 애자 점검 모듈 및 그 구동 방법, 애자 점검 장치 및 그 방법
WO2019240326A1 (ko) 광 도파로 센서 및 이를 이용한 측정 물질 검출 시스템
WO2011115386A2 (ko) 변형률계를 구비한 온도 보상 로드 셀
WO2017200267A1 (ko) 온도측정 웨이퍼 센서 및 그 제조방법
WO2018124518A1 (ko) 변압기 내부결함 검출장치
WO2013108948A1 (ko) 파이프 손상 감지 장치 및 방법
WO2013079027A1 (zh) 基于双通道的分布式光纤传感装置及其运行方法
WO2012018162A1 (ko) 광센서를 이용한 맥진기
WO2012011631A1 (ko) 차분 자기 센서 모듈을 구비한 자기장 검출 장치
WO2017176072A1 (ko) 수동형 센서를 이용한 응력 측정 시스템 및 그 응력 측정 방법
DE60003263D1 (de) Magnetostriktiver positionsmessender Wandler mit hoher Messgenauigkeit
WO2022220662A1 (ko) 기하 위상 렌즈를 기반으로 하는 색공초점 센서
WO2023085525A1 (ko) 수화반응물질 구조체의 강도 모니터링 장치 및 이를 이용한 강도 모니터링 방법
WO2014104563A1 (ko) 비선형 파라미터 측정 장치 및 방법
WO2022010037A1 (ko) 표면 플라즈몬 공명을 이용한 형광 증폭 장치 및 광 증폭 장치
WO2019164265A1 (ko) 광 굴절계 및 이를 구비한 실시간 모니터링 분석 장치
CN110567609B (zh) 用于变压器绕组的光纤光栅传感测温方法
WO2022181935A1 (ko) 실리콘 포토닉스 인터로게이터를 구비한 반사 광파장 스캐닝 장치
WO2012165791A2 (ko) 주사탐침열현미경 및 이를 이용한 온도 프로파일링 방법
Grenar et al. Measurement of longitudinal strain impact on the signal group velocity in PM fiber
WO2023177016A1 (ko) 변형률 감지 장치 및 그 방법, 이를 이용한 통증 표현 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18922607

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18922607

Country of ref document: EP

Kind code of ref document: A1