WO2019240306A1 - Apparatus for homogeneous mixing and continuous injecting of lignin and solvent, lignin decomposition system using supercritical fluid comprising the same, and operating method thereof - Google Patents

Apparatus for homogeneous mixing and continuous injecting of lignin and solvent, lignin decomposition system using supercritical fluid comprising the same, and operating method thereof Download PDF

Info

Publication number
WO2019240306A1
WO2019240306A1 PCT/KR2018/006645 KR2018006645W WO2019240306A1 WO 2019240306 A1 WO2019240306 A1 WO 2019240306A1 KR 2018006645 W KR2018006645 W KR 2018006645W WO 2019240306 A1 WO2019240306 A1 WO 2019240306A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
lignin
reaction
fluid
liquefaction
Prior art date
Application number
PCT/KR2018/006645
Other languages
French (fr)
Korean (ko)
Inventor
이인구
양제복
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Priority to PCT/KR2018/006645 priority Critical patent/WO2019240306A1/en
Publication of WO2019240306A1 publication Critical patent/WO2019240306A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07GCOMPOUNDS OF UNKNOWN CONSTITUTION
    • C07G1/00Lignin; Lignin derivatives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Definitions

  • the present invention relates to an apparatus for uniformly mixing lignin and a solvent and continuously introducing the lignin and a solvent into a liquefaction reaction unit, a lignin decomposition system using the supercritical fluid including the same, and a method of operating the same.
  • Lignin along with cellulose and hemi-cellulose, is a major component of woody biomass. Lignin is produced as a by-product separated from cellulose and the like during pulp production and ethanol production from woody biomass. In the past, separated lignin was burned and used as a process energy source. Recently, lignin is liquefied to manufacture high value-added phenolic raw materials or liquid fuels. As such, continuous process development is required to mass produce high value added liquids from lignin.
  • Rapid pyrolysis technology is a technology that converts a low molecular weight material by applying heat to a material composed of a polymer such as lignin, and the reaction temperature is lower than combustion or gasification and has an advantage of operating at normal pressure.
  • rapid pyrolysis there is a problem in that the yield of liquid substance is low.
  • lignin has a property of being easily separated and precipitated with a liquid such as ethanol or water much faster than sawdust.
  • the present inventors have been trying to develop a continuous reaction apparatus that can be used for the production of high-value liquid substances by the liquefaction reaction using lignin and subcritical fluid or supercritical fluid, and solvents such as lignin and ethanol (liquefaction reaction conditions Subcritical fluid or supercritical fluid) in a uniformly mixed feeder for supplying continuously to the reactor of the next stage and the lignin decomposition system comprising the same to complete the present invention.
  • solvents such as lignin and ethanol (liquefaction reaction conditions Subcritical fluid or supercritical fluid) in a uniformly mixed feeder for supplying continuously to the reactor of the next stage and the lignin decomposition system comprising the same to complete the present invention.
  • Patent Document 1 Republic of Korea Patent Publication 10-2009-0030967
  • Another object of the present invention is to provide a lignin decomposition system using a supercritical fluid including a raw material supply part, a liquefaction reaction part and a catalytic reaction part including the supply device.
  • Another object of the present invention to provide a method for operating a lignin decomposition system using a supercritical fluid.
  • a raw material receiving unit receiving and receiving a mixture of lignin and a solvent as raw materials;
  • a partition wall which is movable while distinguishing a raw material container and a fluid container;
  • a cylinder including a fluid receiving portion capable of receiving a fluid capable of applying pressure to the partition wall;
  • a supply device to the liquefaction reactor of the raw material mixture comprising a discharge portion disposed in a portion of the raw material receiving portion for discharging the raw material stirred by the stirring means.
  • a raw material supply unit including the supply device
  • the present invention provides a lignin decomposition system using a supercritical fluid filled with a supercritical fluid and including a catalytic reaction part receiving a reaction product generated in the liquefaction reaction part and performing a catalytic reaction.
  • step 1 Supplying lignin and a solvent to a raw material receiving portion of the feeder (step 1);
  • It provides a method of using the above feeder comprising the step of applying a pressure to the partition wall and the lignin and solvent mixture mixed in the step 2 into the liquefaction reaction unit through the outlet (step 3).
  • step 1 Supplying a raw material which is a mixture of lignin and a solvent to a feeder of the lignin decomposition system (step 1);
  • step 2 Filling the liquefaction reaction unit and the catalyst reaction unit with a supercritical fluid solvent and setting the reaction pressure and the reaction temperature (step 2); And
  • It provides a method of operating the decomposition system including the step (step 3) of supplying the raw material to the reaction unit using a partition of the supply device and performing a liquefaction reaction and a catalytic reaction.
  • Feeding device for uniform mixing and continuous dosing of lignin and the solvent according to the present invention can be uniformly mixed with the mixture through a stirrer having a horizontal or vertical blade (blade), it can be added to the reaction section of the rear stage .
  • a stirrer having a horizontal or vertical blade (blade)
  • it is possible to prevent the separation of lignin and liquid more effectively by specifying the discharge pipe at a certain value, and evenly mixed into the reaction part for the post-stage process by applying a pressure to the mixture by adding a fluid to the upper part of the partition after partitioning the partition. It is effective to continuously add the mixture.
  • 1 is a schematic diagram showing a feeding device of a raw material mixture to a liquefaction reactor
  • FIG. 2 is a schematic diagram showing a lignin decomposition system using a supercritical fluid
  • FIG. 3 is a photograph of an acrylic reactor equipped with a horizontal blade stirrer
  • FIG. 4 is a table showing the results of mixing experiments of lignin and ethanol in an acrylic reactor equipped with a horizontal blade stirrer;
  • FIG. 6 is a table showing the results of mixing experiments of lignin and ethanol in an acrylic reactor equipped with a vertical blade stirrer;
  • FIG. 7 is a photograph and a table showing the results of mixing experiments of lignin and ethanol in an acrylic reactor equipped with a vertical cross blade stirrer;
  • FIG. 8 is a photograph showing an acrylic reactor equipped with a cross blade stirrer and having a 3/8 inch inside of the outlet conduit;
  • FIG. 9 is a table showing the results of mixing experiments with lignin and ethanol according to pipeline improvement in an acrylic reactor equipped with a cross blade stirrer;
  • FIG. 13 is a graph showing temperature and pressure versus lignin digestion system operating time
  • FIG. 15 is a graph of the analysis of gaseous products resulting from the operation of the lignin decomposition system
  • FIG. 16 is a graph showing temperature and pressure versus lignin decomposition system operating time of a lignin slurry mixture at a concentration of 5 wt%;
  • 17 is a table showing the color change and conditions of the liquid product produced due to the lignin decomposition system operation of the lignin slurry mixture of 5 wt% concentration;
  • FIG. 18 is a graph showing the results of GC-MS analysis of a liquid product obtained from the liquefaction of a lignin decomposition system of a lignin slurry mixture at a concentration of 5 wt%;
  • 19 is a graph showing the composition of a gas product obtained from the liquefaction of a lignin decomposition system of a lignin slurry mixture at a concentration of 5 wt%;
  • 20 is a graph showing temperature and pressure versus lignin decomposition system operating time of a lignin slurry mixture at a concentration of 25 wt%;
  • FIG. 21 is a table showing the color change and conditions of the liquid product produced due to the lignin decomposition system operation of the lignin slurry mixture at 25 wt% concentration;
  • FIG. 22 is a graph showing the results of GC-MS analysis of a liquid product obtained from the liquefaction of a lignin decomposition system of a lignin slurry mixture at a concentration of 25 wt%;
  • FIG. 23 is a graph showing the composition of a gas product obtained from the liquefaction of a lignin decomposition system of a lignin slurry mixture at a concentration of 25 wt%.
  • the present invention is a.
  • a raw material accommodating part 111 receiving and receiving a mixture of lignin and a solvent as raw materials;
  • a partition wall 112 that is movable while separating the raw material accommodating part and the fluid accommodating part 113;
  • a cylinder 110 including a fluid accommodating part 113 capable of accommodating a fluid capable of applying pressure to the partition wall;
  • FIG. 1 An example of the supply device 100 according to the present invention is shown through a schematic diagram of FIG.
  • the supply apparatus includes a cylinder 110, the cylinder includes a raw material receiving portion 111 for receiving and receiving a mixture of lignin and a solvent as a raw material; A partition wall 112 that is movable while separating the raw material accommodating part and the fluid accommodating part 113; And a fluid accommodating part capable of accommodating a fluid capable of applying pressure to the partition wall.
  • the supply device 100 is a raw material storage tank 140 for mixing and storing the lignin and the solvent; It may include an atmospheric pressure pump 141 for transferring the raw material to the raw material receiving portion.
  • the raw material storage tank is a storage tank for uniformly mixing and storing the lignin and the solvent for the supercritical fluid at a constant weight ratio, and may transfer the mixed raw material of the uniformly mixed lignin and the solvent to the raw material accommodating part 111. Preparation and storage of the mixed raw material of the lignin and the solvent may be stirred at a stirring speed of 200 rpm to 1,000 rpm, preferably 300 rpm or more at room temperature and normal pressure.
  • the raw material reservoir is preferably maintained in agitation in order to maintain a uniform mixed state of the mixed raw material of the lignin and the solvent.
  • the raw material storage tank may include a stirring means capable of performing the stirring.
  • the supply device 100 includes a fluid reservoir 150 for storing the fluid; And it may include a high pressure pump 151 for supplying the fluid to the fluid receiving portion.
  • the fluid is a substance present as a liquid at room temperature and a pressure of 400 bar or less, and may be water, ethanol, methanol, or the like. Fluid transported from the fluid reservoir to the fluid receiving unit 113 through the high pressure pump serves to transport the mixed raw material of the raw material receiving unit 111 to the reaction unit that can be installed at the rear end by pushing the partition 112 downward. .
  • the fluid and the raw material are preferably not mixed with each other in a completely blocked state by the partition wall.
  • the raw material storage tank 140 may include a supply line in communication with the raw material receiving portion 111, the supply line includes one or more valves for controlling the supply flow rate.
  • the valve may be, for example, a first valve 142.
  • the feed line is preferably kept horizontally to minimize the space between the raw material reservoir and the raw material receiving portion to prevent separation of the lignin and the solvent.
  • the fluid includes water, but any fluid that can apply pressure to the partition wall 112 can be used without limitation.
  • the cylinder 110 is divided into an upper chamber 10 and a lower chamber 20, wherein the upper chamber and the lower chamber are detachable from each other, and the supply device 100 includes a portion where the upper chamber and the lower chamber are detachable. It includes a high pressure cover 114 to maintain the pressure of the upper chamber. At this time, the detachment of the upper chamber and the lower chamber is preferably achieved through a screw type.
  • the high pressure cover 114 serves to fix the upper chamber 10 (upper layer) in a high pressure state, and when the high pressure cover is released, the upper chamber can be separated from the lower chamber 20, and the upper chamber is In a detached state, the partition wall 112 in the cylinder may be removed or replaced.
  • the upper chamber 10 has a fluid injection conduit 115 formed at the center of the upper end, through which the fluid capable of applying pressure to the partition wall 112 is injected into the fluid receiving part 113.
  • the inner diameter range of the fluid injection pipe is not particularly limited but may be preferably in the range of 3/4 inch (0.75 inch) to 1.5 inch.
  • the valve is mounted on the fluid injection line under high pressure to control the fluid input amount. There is a problem that is difficult to do.
  • an air discharge pipe 116 is formed at an upper portion of the upper chamber 10, and when the pressure is generated while the raw material is supplied to the raw material accommodating part 111 through the pipe, the partition 112 is pushed upward. I can raise it.
  • the air discharge line may be connected to the fluid reservoir 150.
  • Supply apparatus 100 includes a stirring means 120, the stirring means is provided in the raw material accommodating portion 111 to agitate the raw material.
  • the diameter of a portion of the raw material accommodating part in which the stirring means is located is smaller than the diameter of the partition so that the partition wall 112 cannot contact the stirring means 120. As the jaw is formed, the partition cannot contact the stirring means.
  • the stirring means 120 comprises a stirrer, the stirrer comprising a horizontal blade or a vertical blade, preferably a vertical blade.
  • the stirrer may be oriented blades in a straight or cross shape.
  • the stirring speed of the stirring means 120 may be 200 rpm to 1000 rpm, may be 300 rpm or more. If the stirring speed is less than 200 rpm there may be a problem that the mixture is not sufficiently stirred, there is a problem that unnecessary energy is required if it exceeds 1000 rpm.
  • the supply device 100 includes a discharge unit 130 and is disposed in a portion of the raw material receiving unit 111 to discharge the raw material stirred by the stirring means 120.
  • the discharge unit 130 may be disposed on the bottom or side of the raw material receiving portion 111, preferably may be disposed on the bottom.
  • the discharge unit 130 may have an inner diameter of 3/8 inch to 1 inch range.
  • the discharge unit 130 may include a single valve in the same way as the supply line to control the input amount of the lignin and the solvent mixture passing through the discharge unit.
  • the solvent is ethanol, n-propyl alcohol, isopropyl alcohol, butyl alcohol, pentanol, hexanol, cyclopentanol, cyclohexanol, 2-methylcyclopentanol, hydroxyketone, cyclic ketone, acetone, Propane, butanone, pentanone, hexanone, 2-methyl-cyclopentanone, ethylene glycol, 1,3-propanediol, propylene glycol, butanediol, pentanediol, hexanediol, methylglyoxal, butanedione (butanedione), pentanedione, diketohexane, hydroxyaldehyde, acetaldehyde, propionaldehyde, butyraldehyde, pentanal, hexanal, formic acid, acetic acid, Propi
  • the solvent may be a supercritical fluid or a subcritical fluid.
  • a supercritical fluid for example, when lignin is liquefied using subcritical water or supercritical ethanol, it is possible to produce a high yield of liquid phenolic material.
  • Raw material supply unit 200 including the supply device 100;
  • a liquefaction reaction unit 300 filled with a fluid in a supercritical state and receiving a stirred raw material discharged from the raw material supply unit 200 to perform a liquefaction reaction;
  • the lignin decomposition system 1000 using the supercritical fluid according to the present invention includes a raw material supply part 200 including the supply device 100 as described above.
  • the raw material mixture containing lignin When the raw material mixture containing lignin is introduced into the reaction part 300 of the rear stage using the feeder 100, separation of the lignin and the liquid may be prevented, and thus the raw material mixed uniformly may be continuously added.
  • the supply device 100 may apply pressure to the raw material accommodating part 111 by using the fluid and the partition wall 112 supplied to the fluid accommodating part 113, and the high pressure condition when supplying the raw material through the applied pressure Can be formed.
  • the raw material may be supplied at the same pressure (eg, 200 bar to 400 bar pressure conditions) as that of the liquefaction reaction unit 300 and the catalytic reaction unit 400 at the rear stage.
  • the lignin decomposition system 1000 using the supercritical fluid according to the present invention includes a liquefaction reaction unit 300, and the liquefaction reaction unit is filled with a fluid in a supercritical state and supplies the stirred raw material discharged from the raw material supply unit. Take and perform the liquefaction reaction.
  • the liquefaction reactor 300 is a liquefaction reactor 310 for receiving a raw material discharged from the raw material supply unit 200 including the supply device 100 to perform a liquefaction reaction and to separate the solid product generated in the liquefaction reactor It comprises a solid product separator 320.
  • the liquefaction reaction unit 300 may include a heater, and a heater 311 may be formed on an outer circumferential surface of the liquefaction reactor 310.
  • the liquefaction reaction unit 300 may include a filter 330 between the liquefaction reactor 310 and the solid phase product separator 320, in a specific example by installing a filter at the bottom of the liquefaction reactor liquid phase product It can be separated from the product and gaseous product.
  • the raw material input tube 350 connected to the lower end of the supply device 100 passes.
  • the raw material input tube may preferably have an inner diameter of 0.5 cm or more, and may be 0.5 cm to 5 cm.
  • the raw material input tube is installed vertically from the bottom of the feeder to the top of the solid phase product separator to prevent the high concentration of lignin contained in the raw material from being separated from the valve or line with a solvent for supercritical fluid such as ethanol.
  • the raw material is heated while passing through the liquefaction reactor, the solvent is converted into a supercritical fluid and the liquefaction of lignin proceeds.
  • the preheating and liquefaction of the raw material is indirectly performed using a heater installed outside the liquefaction reactor, and the heater may be an electric furnace or a combustion furnace.
  • the liquefaction reactor may maintain the reaction temperature and the reaction pressure, the reaction temperature may be at least 300 °C, preferably at least 350 °C, 350 °C to 500 °C, the reaction pressure is 200 bar or more, 200 bar to By keeping it as high as possible in the 400 bar range, the solvent in the feed material (eg ethanol) can reach the supercritical state and the lignin can react with the supercritical fluid to maximize liquefaction.
  • the solvent in the feed material eg ethanol
  • the liquefaction reaction unit 300 may include a valve 340 on the top of the liquefaction reactor 310, the valve may be connected to the external environment.
  • the supercritical fluid is filled inside the liquefaction reactor, but generally the supercritical fluid is not filled inside the reactor.
  • the liquefaction reactor of the lignin decomposition system 1000 according to the present invention forms a valve on the upper portion, the valve in the supercritical fluid can be opened to fill the supercritical fluid to the top of the reactor.
  • the solid product separator 320 also includes a heater, and a heater 321 may be formed on the outer circumferential surface of the solid product separator.
  • the solid product separator may also include a discharge valve 322 disposed below the solid product separator for discharging the solid product separated from the liquefaction reactor 310. While passing through the liquefaction reactor, the solvent contained in the raw material becomes a supercritical fluid and the liquefaction of lignin proceeds. The result is a liquid product, a gaseous product and a solid product.
  • the solid product separator is operated at the same pressure as the liquefaction reactor at a temperature of about 300 °C, preferably in the temperature range of 200 °C to 400 °C, pressure range of 200 bar to 400 bar and precipitates the solid product by gravity And from gaseous products.
  • the liquid product and the gaseous product are heated to about 350 ° C. while passing through the upper liquefaction reactor and introduced into the catalytic reaction unit 400.
  • the solids are discharged within a range that does not affect the reaction conditions by using a high temperature and high pressure valve at the bottom.
  • the lignin decomposition system 1000 using the supercritical fluid according to the present invention includes a catalytic reaction part 400, and the catalytic reaction part is filled with a fluid in a supercritical state, and the reaction occurring in the liquefaction reaction part 300.
  • the product is supplied to carry out the catalytic reaction.
  • the catalytic reaction unit 400 may include a catalytic reactor 410 and a heater 411 filled with a solid catalyst.
  • the catalyst decomposes a supercritical fluid to generate reducible radicals such as hydrogen, which are highly reactive therefrom, and promotes a deoxygenation reaction which removes oxygen from the oxidized organic compounds of the generated radicals and liquid products. Play a role.
  • the catalyst may preferably be a catalyst well dispersed and supported on a metal having activity in the reaction, such as nickel, on a well-developed mesopore.
  • the catalyst is molded and filled to have an appropriate particle size at a level that does not interfere with the flow of supercritical fluids and products.
  • a heater which is an electric furnace or a combustion furnace, is installed outside the catalytic reactor to maintain the temperature of the catalyst in the catalytic reactor at least 300 ° C or more, preferably in the range of 300 ° C to 500 ° C and 300 ° C to 350 ° C, and the reaction pressure is 200 bar It maintains the same pressure as the liquefaction reactor 310 and the solid phase product separator 320 in the range from to 400 bar.
  • the decomposition system 1000 is a supercritical fluid solvent reservoir 500 for storing a solvent for the supercritical fluid; And it may include a high pressure pump 510 for supplying the solvent to the reactor.
  • the solvent storage tank for the supercritical fluid is a storage tank of an organic solvent which serves as a supercritical fluid at reaction temperature and reaction pressure conditions, and the high pressure pump is a liquid phase reactor for liquefying the organic solvent in the solvent storage tank for the supercritical fluid. 320), the catalytic reactor 410 and the like to serve as a unit.
  • the liquefaction reactor 310, the solid-phase product separator 320, the catalytic reactor 410, etc. installed at the lower end of the supply device 100 are put into the unit apparatus under reaction temperature and reaction pressure conditions. Maintains supercritical fluid status.
  • dilution of the mixed raw material containing lignin may be required during the liquefaction reaction operation, it may also serve to adjust the concentration of lignin.
  • the decomposition system 1000 includes a heat exchanger 600 positioned at the rear end of the catalytic reaction unit 400 to cool the reaction product formed in the catalytic reaction unit.
  • the heat exchanger serves to cool the reaction product generated in the catalytic reaction unit from the reaction temperature to room temperature.
  • the pressure may be in the same pressure range as the liquefaction reactor 310, the solid phase product separator 320, the catalytic reactor 410 in the range of 200 bar to 400 bar.
  • the cracking system 1000 includes a back-pressure regulator 700 that constantly controls the pressure in the cracking system.
  • the after-pressure controller is a raw material receiving portion 111, liquefaction reactor 310, solid state product separator 320, catalytic reactor 410, heat exchanger 600 of the cylinder 100 of the feeder 100 It serves to control the pressure constantly.
  • the after pressure controller may be located after the catalytic reactor, more preferably after the heat exchanger, and the reaction product is depressurized to atmospheric pressure as it passes through the after pressure controller.
  • the decomposition system 1000 includes a gas-liquid separator 800 located at the rear end of the catalytic reaction unit 400 to separate the reaction product into gas phase and liquid phase.
  • the gas-liquid separator serves to separate the product at room temperature and pressure into the gas phase and the liquid phase.
  • the gaseous product is discharged to the top of the gas-liquid separator, and the liquid product is obtained from the bottom of the gas-liquid separator.
  • the decomposition system 1000 may include a gas flow rate meter 810 for measuring the production flow rate of the gaseous product in real time.
  • the gas flow rate meter may be connected to a gas-liquid separator to measure a production flow rate of the gaseous product, and as a specific example, a wet test meter may be used.
  • the decomposition system 1000 may include a control unit for monitoring and controlling temperature and pressure.
  • a pressure gauge at the front and rear ends of all the unit devices, including the supply device 100, by monitoring the pressure change can be utilized as information necessary for the operation of the decomposition system.
  • the decomposition system 1000 may include a feeder such that the plurality of feeders 100 are connected in parallel to the liquefaction reaction unit 300, and the raw material stirred by the liquefaction reactor as the plurality of feeders are provided. Can be fed continuously.
  • the other feeder may prepare a uniformly stirred raw material by stirring the raw material.
  • the agitated raw material may be injected into the liquefaction reactor from the feeder, which prepares the uniformly stirred raw material, to perform continuous feeding.
  • step 1 Supplying lignin and a solvent to the raw material accommodating part 111 of the supply device 100 (step 1);
  • It provides a method of using the supply device 100 comprising applying a pressure to the partition wall 112 and injecting the lignin and solvent mixture mixed in the step 2 into the liquefaction reaction unit through the discharge unit 130 (step 3). .
  • step 1 is a step of supplying lignin and a solvent to the raw material receiving portion 111 of the feeder.
  • the lignin and the solvent which are the raw materials, may be supplied to the raw material accommodating part 111 independently or in a mixed state while the valve of the discharge part 130 is completely closed.
  • step 2 and step 3 the lignin and the solvent supplied to the raw material accommodating portion 111 is mixed with the stirring means 120, partition (! 12) is added to the liquefaction reaction unit 300 through the discharge unit 130 by adding a pressure to the lignin and solvent mixture mixed in step 2 above.
  • Steps 2 and 3 are a mixture of the lignin and solvent mixture by stirring the raw material with the stirring means 120 provided in the raw material receiving portion 111, and then applying a pressure to the partition 112 in the cylinder 110 with a fluid To the liquefaction reaction unit 300 through the discharge unit 130.
  • Mixing time through the stirrer which is the stirring means 120 may vary depending on the size of the supply device 100 and is not particularly limited but may be stirred for 5 to 30 minutes, preferably for 7 to 20 minutes May be stirred, more preferably 8 minutes to 15 minutes, and most preferably 10 minutes.
  • the fluid is introduced until the lowering of the partition 112 stops, and if the fluid is continuously supplied to the upper part of the partition wall, the partition wall is lowered until the pressure between the lignin and the solvent mixture is equal to the pressure of the fluid, and the pressure is the same.
  • the valve of the outlet 130 is opened and the fluid is continuously supplied again.
  • the amount of the mixture supplied to the liquefaction reactor 310 is equal to the amount of fluid introduced.
  • step 1 Supplying a raw material which is a mixture of lignin and a solvent to a supply device 100 of the lignin decomposition system 1000 (step 1);
  • step 2 Filling the liquefaction reaction unit 300 and the catalytic reaction unit 400 with a supercritical fluid solvent and setting the reaction pressure and the reaction temperature (step 2); And
  • step It provides a method of operating the decomposition system 1000 comprising a).
  • step 1 is a step of supplying a raw material which is a mixture of lignin and a solvent to the supply device 100 of the lignin decomposition system.
  • step 1 the raw material, which is a mixture of lignin and a solvent, is supplied to the supply device 100 of the decomposition system, and more specifically, to the raw material receiving part 111 inside the cylinder 110 of the supply device.
  • the raw material supplied in step 1 may be a mixture of lignin and a solvent mixed in the raw material storage unit 140.
  • a lignin and a supercritical fluid solvent (for example, ethanol, etc.) of a desired concentration are added to the raw material storage unit at atmospheric pressure, and mixed by stirring.
  • the mixture is prepared and stored, and the atmospheric pressure pump 141 and the first valve are prepared.
  • 142 is used to feed into the raw material accommodating portion 111 of the cylinder 110.
  • the third valve 117 and the fifth valve 119 are completely closed, and the fourth valve 118 is left open.
  • air may be discharged out through the fourth valve 118 at the upper end of the cylinder.
  • the fourth valve 118 is also completely closed and the third valve 117 is opened to inject the fluid in the fluid reservoir 150 into the fluid receiving part 113 using the high pressure pump 151. If the fluid is continuously added, the pressure in the cylinder 100 increases because the first valve 142, the fourth valve 118, and the fifth valve 119 are closed. The pressure inside the cylinder can be maintained at about 1 bar to 2 bar higher than the reaction pressure. The fluid is introduced into the fluid receiving portion using a high pressure pump until the pressure inside the cylinder is maintained at about 1 bar to 2 bar higher than the reaction pressure, and stops when the target pressure is reached.
  • step 2 is to set the reaction pressure and reaction temperature after filling the liquefaction reaction unit 300 and the catalyst reaction unit 400 with a supercritical fluid solvent Step.
  • Step 2 is a step of forming the reaction apparatus in a supercritical fluid state before the decomposition reaction of lignin, the supercritical conditions after filling the liquefaction reaction unit 300 and the catalytic reaction unit 400, the reaction unit with a supercritical fluid solvent is set do.
  • the step 2 is the second valve connected to the solvent reservoir 500 and the high pressure pump 510 for the supercritical fluid in a state in which the fifth valve 119 connected to the outlet 130 of the supply device 100 is closed. 511 is opened and a supercritical fluid solvent (for example, ethanol, etc.) is introduced into the liquefaction reactor 310 using a high pressure pump.
  • a supercritical fluid solvent for example, ethanol, etc.
  • the solvent introduced into the catalytic reactor passes through the solid phase product separator 320, the catalytic reactor 410, the heat exchanger 600, and the back pressure controller 700, and exits the gas-liquid separator 800. Continue to feed through the high pressure pump until it is confirmed that the solvent exits the gas-liquid separator.
  • step 3 uses the partition 112 of the supply device 100 to make the pressure of the raw material accommodating part 111 equal to the reaction pressure of the reaction part. After setting, the raw material is supplied to the reaction unit to perform a liquefaction reaction and a catalytic reaction.
  • step 3 the mixed raw material prepared in step 1 is supplied into the reaction unit prepared in step 2 to perform the decomposition reaction of lignin.
  • the step 3 is to open the fifth valve 119 and at the same time using a high pressure pump 151 to inject a solvent into the fluid receiving portion 113 of the cylinder 100 to the mixed raw material to the liquefaction reactor 310 Can be put in.
  • the solvent input for the supercritical fluid through the high pressure pump 510 is stopped at the same time and the second valve 511 is completely closed.
  • a supercritical fluid liquefaction operation of lignin is performed.
  • the decomposition system 1000 includes a heat exchanger 600 positioned at the rear end of the catalytic reaction unit 400 to cool the reaction product formed in the catalytic reaction unit, and further comprising the step of cooling the reaction product (step 4). It may include.
  • the product passed through the catalytic reactor 410 is separated into a gaseous phase and a liquid phase through cooling and pressure reduction processes, and the gaseous phase is measured in real time with a gas flow meter.
  • a gas sample is placed between the gas-liquid separator 800 and the gas flow rate meter to collect a gas sample and use it for composition analysis.
  • the liquid product is collected from the bottom of the gas-liquid separator for a certain period of time and used for analysis of generation amount and fuel characteristics.
  • the input flow rate is performed while changing the flow rate of the high pressure pump 151 connected to the fluid reservoir 150, and the lignin concentration control is performed and the flow rate change of the high pressure pump 510 connected to the solvent reservoir 500 for the supercritical fluid. This can be done via:
  • the reaction pressure may be controlled through the after pressure controller 700 and the reaction temperature may be controlled through the temperature controller.
  • Fluid reservoir 113
  • High pressure cover 114
  • Pipe for fluid injection 115 Pipe for air discharge: 116
  • Raw material storage 140 atmospheric pressure pump: 141
  • Raw material supply part 200 Liquefaction reaction part: 300
  • Catalytic Reactor 400 Catalytic Reactor: 410
  • FIG. 3 As shown in FIG. 3, four samples having an internal diameter of 90 mm and a height of 600 mm, having an acrylic mixer reactor equipped with a stirrer at the bottom and having a 1/4 inch pipeline at uniform intervals according to the height. A harvesting port was installed. The four sampling ports are for measuring the mixing rate according to the mixing reactor height. After mixing 25-30 wt% of hydrolyzed lignin in ethanol, it was added to the acrylic reactor, and after sufficient time (about 30 minutes) while stirring at 250 rpm, the valve of the sampling port was slowly opened to collect a sample and lignin by the reactor height. The content was measured. The stirrer used a stirrer with a horizontal blade (blade) as shown in the lower right of FIG.
  • blade horizontal blade
  • the lignin content of all four samples was very low, 6 wt% or less, and the higher the sampling height, the lower the concentration. That is, the mixing of lignin and ethanol did not occur well under such stirring conditions, and most of the lignin was precipitated at the bottom of the reactor.
  • the mixing ratio difference according to the height of the reactor was somewhat improved (particularly, the lignin concentration of sample sampling No. 4) was still different from that of 30 wt% of the lignin concentration of the stock solution.
  • the lignin decomposition system as shown in the schematic diagram in FIG. 2 was configured, and the catalytic reactor was made of Inconel 625 material having an inner diameter of 17.5 mm, a length of 150 mm, and a volume of 35 mL.
  • the deoxidation reaction proceeds while the solid phase cannot pass through the catalyst layer and passes only the liquid and gaseous products.
  • the experimental method is as follows.
  • ethanol was filled with the liquefaction reactor and the catalytic reactor using a high pressure pump, and then boosted to 300 bar using a back pressure controller (BPR) and maintained for 30 minutes to check whether the pressure was leaked.
  • BPR back pressure controller
  • the inside of the reactor was heated up to 350 ° C. using an electric furnace mounted outside the reactor.
  • a cooling device was installed outside the reactor catalyst layer to control the reaction temperature in case of excessive exothermic reaction. Once the reactor temperature reached the target value, the reactor and all tube lines were rechecked for leaks.
  • lignin-ethanol raw material mixture is continuously liquefied and introduced into the catalytic reactor. When the raw material mixture reaches the reactor, a rapid liquefaction of lignin proceeds to produce a first decomposition product.
  • the primary decomposition product passes through the catalyst bed where the deoxygenation reaction proceeds. After passing through the catalyst bed, the product is cooled and decompressed to enter the gas-liquid separator to separate gas and liquid product.
  • the separated gas product was identified in real time using a wet gas meter (wet gas meter). Liquid products were collected for a defined time at the bottom of the gas-liquid separator to determine the weight and rate of production.
  • the heating was stopped and the reactor was cooled down to room temperature. When the temperature inside the reactor reached room temperature, the inside of the reactor was opened to recover the solid product and the catalyst.
  • the solid phase was dried in an atmospheric pressure dryer at 105 ° C. for 12 hours, cooled, and weighed.
  • the liquid product was distilled under reduced pressure in a vacuum distillation apparatus at 60 ° C. to remove ethanol as a solvent, and the remaining material was harvested as a liquefied oil product.
  • the pure ethanol input flow rate was increased to 0.8, 1.5, 2.2, 3.1, and 3.9 g / min, and the reactor was operated to establish the operating conditions for maintaining the reactor temperature and pressure at 350 ° C and 300 bar. No catalyst was used in this experiment. After reaching the target temperature and pressure at each ethanol input flow rate, the product was collected for 30 minutes and then the product was collected and changed to the next flow rate. The results were shown in Table 1 below.
  • the reactor liquefied bed temperature was maintained at 350 ° C. at 3.9 g / min (0.23 kg / h), which is an ethanol input flow rate higher than the initial input flow target 0.1 kg / h flow rate. Since the heating furnaces of the liquefied layer and the catalyst layer are installed and operated independently, the temperature of the catalyst layer can be raised to 300 ° C or more if necessary.
  • the reactor was operated for 4 hours at a ethanol flow rate of 2.37 g / min (0.14 kg / h) in order to confirm that the reactor temperature of 350 ° C. and the pressure of 300 bar were maintained over time.
  • the results are shown in FIG. 10. Liquid and gaseous product samples were collected and analyzed every 1 hour during operation, and the results are shown in FIGS. 11 and 12.
  • the GC-MS analysis showed that the ethanol content was about 79 area% and the acetic acid and propanoic acid were 10 area%, respectively. These results are very different from the experimental results using KOH as a catalyst. On KOH, 90% of ethanol is converted to butanol, hexanol, gas and the like. On the other hand, gas production was very low at an average of 3 ml / min, and the main components were hydrogen and carbon dioxide.
  • the liquid product obtained in the case of the catalyst experiment was composed of a wide variety of organic compounds in comparison with the experiment of 2) (the catalyst-free experiment, see FIG. 12).
  • the liquid product produced various ethers and aldehydes such as 1,1-diethoxy ethane, acetaldehyde, ethyl ether, 1-ethoxy butane and butanoic acid ethyl ester.
  • 1,1-diethoxy ethane is produced from dehydration and dehydrogenation of ethanol
  • acetaldehyde is produced from dehydrogenation of ethanol.
  • reaction conditions are liquefied bed temperature 350 °C, Mg-Ni-Mo / AC catalyst bed temperature 350 °C, reactor pressure 300 bar, reactant stirring speed 400rpm, WHSV 244.7, 122.3, 61.2, 36.8 h -1 .
  • Figure 16 shows the change in reaction temperature and reaction pressure over time. In the experiment, which lasted about two and a half hours, the temperature and pressure remained fairly constant.
  • the temperature of the liquefied layer and the catalyst bed of the reactor can be independently controlled by using a separate heating furnace, so that the temperature of the liquefied layer and the catalyst bed can be raised to 400 ° C. or more if necessary.
  • FIG. 17 shows the color changes and conditions of the liquid product obtained in the separation process of the gas and the liquid product generated from the supercritical ethanol combustion liquefaction of 5 wt% lignin, and the distribution of the liquid, gaseous and solid products is shown in Table 2. Indicated. At lower feed rates, the liquid product had a lighter brown color, which is interpreted as a secondary reaction of the lignin degradation products.
  • Liquid products were classified into N-compounds, phenols, aromatics, acids, esters, aldehydes, ketones, alcohols, ethers, hydrocarbons, and others.
  • other substances include alpha.-d-6,3-Furanos, levoglucosan, ethyl .alpha.-d-glucopyranoside, 1,6-Anhydro-.alpha.-d-galactofuranose, 3-Methylmannoside, Methyl .beta.-d Compounds such as -ribofuranoside d-allose were included.
  • Table 3 shows the results of elemental analysis of the liquid product obtained from the 5 wt% lignin liquefaction and the calculated high calorific value (HHV).
  • HHV high calorific value
  • the liquefaction experiment was carried out by continuously adding 25 wt% of lignin and 75 wt% of ethanol to the reactor while mixing in the cylinder raw material receiving portion.
  • the reaction conditions are reactor temperature 350 ° C., reactor pressure 300 bar, stirring speed 400 rpm, WHSV 244.7, 122.3, 61.2, 36.8 h ⁇ 1 on Mg-Ni-Mo / AC catalyst.
  • the influence of reactant input flow rate on the composition of the liquid product obtained in 25 wt% lignin supercritical ethanol continuous liquefaction is shown in FIG. 22.
  • the liquid product composition was different from that of lignin 5 wt%.
  • aromatic compounds there was a tendency for aromatic compounds to increase as the WHSV decreased. This is interpreted as being converted into an aromatic compound by deoxygenation, hydrogenation, and dehydration of oxygen-containing materials. Phenols also increased until WHSV decreased from 244.7 h -1 to 122.3 h -1 and then decreased to 36.8 h -1 .
  • Table 5 shows the elemental analysis results of the liquid product obtained in the 25 wt% lignin supercritical ethanol continuous liquefaction experiment and the calculated high calorific value (HHV). Overall, oxygen content was lower than that of 5 wt% lignin, and carbon content increased and oxygen content decreased with longer reactor residence time (lower WHSV). The maximum calorific value was 34.78 MJ / kg at WHSV 36.8 h ⁇ 1 .

Abstract

The present invention provides an apparatus for feeding a raw material mixture to a liquefaction reactor, comprising: a raw material receiving unit for receiving a mixture of lignin and a solvent supplied as a raw material; a partition wall which can move while separating the raw material receiving unit from a fluid receiving unit; a cylinder including the fluid receiving unit capable of receiving a fluid that is capable of applying pressure to the partition wall; a stirring means, provided in the raw material receiving unit, for stirring the raw material; and a discharging unit, disposed in a portion of the raw material receiving unit, for discharging the raw material stirred by the stirring means. According to the present invention, a feeding apparatus for homogeneously mixing and continuously injecting the mixture of lignin and a solvent can mix a mixture homogeneously by means of a stirrer having horizontal or vertical blades, and maintain the mixture to be injected into a reaction unit at a post stage. In addition, it is possible to more effectively prevent separation between the lignin and a liquid by specifying a pipe in the discharging unit to a certain value. After the raw material and a fluid are separated by means of the partition wall, the fluid is injected into the top of the partition wall such that a pressure is applied to the mixture, thereby allowing the homogeneously mixed mixture to be continuously injected into the reaction unit for a post-stage process.

Description

리그닌 및 용매의 균일혼합 및 연속투입을 위한 장치, 이를 포함하는 초임계유체를 이용한 리그닌 분해 시스템 및 이의 운전방법Apparatus for homogeneous mixing and continuous dosing of lignin and solvent, lignin decomposition system using supercritical fluid comprising the same and method of operation thereof
리그닌과 용매를 균일하게 혼합하고 이를 연속적으로 액화 반응부로 투입하기 위한 장치, 이를 포함하는 초임계유체를 이용한 리그닌 분해 시스템 및 이의 운전방법에 관한 것이다.The present invention relates to an apparatus for uniformly mixing lignin and a solvent and continuously introducing the lignin and a solvent into a liquefaction reaction unit, a lignin decomposition system using the supercritical fluid including the same, and a method of operating the same.
리그닌(lignin)은 셀룰로오스(cellulose) 및 헤미셀룰로소스(hemi-cellulose)와 더불어 목질계 바이오매스를 구성하는 주요 성분이다. 리그닌은 펄프 제조 과정이나 목질계 바이오매스로부터의 에탄올 제조과정에서 셀룰로오스 등과 분리되어 부산물로 생산되고 있다. 과거에는 분리된 리그닌을 연소하여 공정에너지원으로 활용하였으나, 최근에는 리그닌을 액화하여 고부가가치의 페놀계 원료물질을 제조하거나 액상 연료 등을 제조하는 기술들이 개발되고 있다. 이와 같이 리그닌으로부터 액상의 고부가가치 물질을 대량생산 하기 위해서는 연속 공정개발이 필요하다. Lignin, along with cellulose and hemi-cellulose, is a major component of woody biomass. Lignin is produced as a by-product separated from cellulose and the like during pulp production and ethanol production from woody biomass. In the past, separated lignin was burned and used as a process energy source. Recently, lignin is liquefied to manufacture high value-added phenolic raw materials or liquid fuels. As such, continuous process development is required to mass produce high value added liquids from lignin.
가장 간단한 연속 공정은 급속열분해이다. 급속열분해 기술은 리그닌과 같은 고분자로 구성된 물질에 열을 가하여 저분자 물질로 전환하는 기술로서 반응온도가 연소나 가스화에 비하여 낮고 상압에서 운전되는 장점이 있다. 다만, 급속열분해의 경우 액상물질의 수율이 낮은 문제점이 존재한다.The simplest continuous process is rapid pyrolysis. Rapid pyrolysis technology is a technology that converts a low molecular weight material by applying heat to a material composed of a polymer such as lignin, and the reaction temperature is lower than combustion or gasification and has an advantage of operating at normal pressure. However, in case of rapid pyrolysis, there is a problem in that the yield of liquid substance is low.
한편, 최근 연구에 의해 리그닌을 아임계수나 초임계유체(예, 초임계 에탄올)에서 액화시키면 높은 수율의 액상 페놀계 물질을 생산할 수 있음이 밝혀졌으며, 이에 대한 연구가 활발히 진행되고 있다(특허문헌 1). 이 공정은 급속열분해 보다 저온에서 반응이 진행되지만 100기압 이상의 높은 반응압력이 요구되는 어려움이 있으며 이러한 고압에서는 급속열분해 공정에서 흔히 이용되는 스크류 장치를 이용하여 리그닌 원료를 초임계유체 반응기에 연속으로 투입하는 것이 불가능하다. On the other hand, recent studies have shown that liquefaction of lignin in subcritical water or supercritical fluids (e.g. supercritical ethanol) can produce high yields of liquid phenolic materials, and studies on this have been actively conducted. One). In this process, although the reaction proceeds at a lower temperature than rapid pyrolysis, it requires a high reaction pressure of 100 atm or higher. At such a high pressure, lignin raw material is continuously introduced into the supercritical fluid reactor using a screw device commonly used in the rapid pyrolysis process. It is impossible to do.
게다가, 리그닌은 톱밥에 비하여 훨씬 빠르게 에탄올이나 물 등의 액체와 쉽게 분리 및 침전되는 성질이 있다.In addition, lignin has a property of being easily separated and precipitated with a liquid such as ethanol or water much faster than sawdust.
따라서, 리그닌의 아임계 혹은 초임계유체 액화반응에 의한 액상 고부가 가치 물질을 생산하는 연속 반응장치를 개발하기 위해서는 무엇보다 리그닌을 연속으로 투입하는 시스템의 개발이 필요하다.Therefore, in order to develop a continuous reactor for producing a liquid high value-added material by the subcritical or supercritical fluid liquefaction of lignin, the development of a system for continuously injecting lignin is necessary.
이에, 본 발명자는 리그닌과 아임계유체 또는 초임계유체를 이용한 액화 반응에 의한 액상 고부가가치 물질 생산에 사용될 수 있는 연속 반응장치를 개발하기 위해 노력하던 중, 리그닌과 에탄올 등의 용매(액화 반응 조건에서 아임계유체 또는 초임계유체)를 균일하게 혼합하면서 후단의 반응장치에 연속으로 공급하기 위한 공급장치 및 이를 포함하는 리그닌 분해 시스템을 개발하여 본 발명을 완성하였다.Accordingly, the present inventors have been trying to develop a continuous reaction apparatus that can be used for the production of high-value liquid substances by the liquefaction reaction using lignin and subcritical fluid or supercritical fluid, and solvents such as lignin and ethanol (liquefaction reaction conditions Subcritical fluid or supercritical fluid) in a uniformly mixed feeder for supplying continuously to the reactor of the next stage and the lignin decomposition system comprising the same to complete the present invention.
<선행기술문헌><Preceding technical literature>
(특허문헌 1) 대한민국 공개특허 10-2009-0030967(Patent Document 1) Republic of Korea Patent Publication 10-2009-0030967
본 발명의 목적은 리그닌 및 용매 혼합물의 액화 반응기로의 공급장치를 제공하는 데 있다.It is an object of the present invention to provide a feeder of a lignin and solvent mixture to a liquefaction reactor.
본 발명의 다른 목적은 상기 공급장치를 포함하는 원료 공급부, 액화 반응부 및 촉매 반응부를 포함하는 초임계유체를 이용한 리그닌 분해 시스템을 제공하는 데 있다.Another object of the present invention is to provide a lignin decomposition system using a supercritical fluid including a raw material supply part, a liquefaction reaction part and a catalytic reaction part including the supply device.
본 발명의 또 다른 목적은 리그닌 및 용매 혼합물의 액화 반응기로의 공급장치의 사용방법을 제공하는 데 있다.It is a further object of the present invention to provide a method of using a feeder of a lignin and a solvent mixture to a liquefaction reactor.
본 발명의 다른 목적은 초임계유체를 이용한 리그닌 분해 시스템의 운전방법을 제공하는 데 있다.Another object of the present invention to provide a method for operating a lignin decomposition system using a supercritical fluid.
상기 목적을 달성하기 위하여, 본 발명은In order to achieve the above object, the present invention
리그닌 및 용매의 혼합물을 원료로 공급받아 수용하는 원료 수용부; 원료 수용부와 유체 수용부를 구분하면서 움직일 수 있는 격벽; 상기 격벽에 압을 가할 수 있는 유체를 수용할 수 있는 유체 수용부를 포함하는 실린더;A raw material receiving unit receiving and receiving a mixture of lignin and a solvent as raw materials; A partition wall which is movable while distinguishing a raw material container and a fluid container; A cylinder including a fluid receiving portion capable of receiving a fluid capable of applying pressure to the partition wall;
상기 원료 수용부 내에 구비되어 원료를 교반시켜 주는 교반 수단; 및Stirring means provided in the raw material accommodating portion to stir the raw materials; And
상기 원료 수용부 일부분에 배치되어 상기 교반 수단에 의해 교반된 원료를 배출하는 배출부를 포함하는 원료 혼합물의 액화 반응기로의 공급장치를 제공한다.Provided is a supply device to the liquefaction reactor of the raw material mixture comprising a discharge portion disposed in a portion of the raw material receiving portion for discharging the raw material stirred by the stirring means.
또한, 본 발명은In addition, the present invention
상기의 공급장치를 포함하는 원료 공급부;A raw material supply unit including the supply device;
초임계 상태의 유체로 채워지고, 상기 원료 공급부로부터 배출되는 교반된 원료를 공급받아 액화 반응을 수행하는 액화 반응부; 및 A liquefaction reaction unit filled with a fluid in a supercritical state and receiving a stirred raw material discharged from the raw material supply unit to perform a liquefaction reaction; And
초임계 상태의 유체로 채워지고, 상기 액화 반응부에서 발생하는 반응 생성물을 공급받아 촉매 반응을 수행하는 촉매 반응부를 포함하는 초임계유체를 이용한 리그닌 분해 시스템을 제공한다.The present invention provides a lignin decomposition system using a supercritical fluid filled with a supercritical fluid and including a catalytic reaction part receiving a reaction product generated in the liquefaction reaction part and performing a catalytic reaction.
나아가, 본 발명은Furthermore, the present invention
상기 공급장치의 원료 수용부에 리그닌 및 용매를 공급하는 단계(단계 1);Supplying lignin and a solvent to a raw material receiving portion of the feeder (step 1);
상기 원료 수용부로 공급된 리그닌 및 용매를 교반 수단으로 혼합하는 단계(단계 2); 및Mixing the lignin and the solvent supplied to the raw material accommodating part with stirring means (step 2); And
격벽에 압을 가하여 상기 단계 2에서 혼합된 리그닌 및 용매 혼합물을 배출부를 통해 액화 반응부로 투입하는 단계(단계 3)를 포함하는 상기의 공급장치의 사용방법을 제공한다.It provides a method of using the above feeder comprising the step of applying a pressure to the partition wall and the lignin and solvent mixture mixed in the step 2 into the liquefaction reaction unit through the outlet (step 3).
더욱 나아가, 본 발명은Furthermore, the present invention
상기 리그닌 분해 시스템의 공급장치로 리그닌 및 용매의 혼합물인 원료를 공급하는 단계(단계 1);Supplying a raw material which is a mixture of lignin and a solvent to a feeder of the lignin decomposition system (step 1);
액화 반응부 및 촉매 반응부를 초임계유체용 용매로 채운 후 반응압력 및 반응온도로 설정하는 단계(단계 2); 및Filling the liquefaction reaction unit and the catalyst reaction unit with a supercritical fluid solvent and setting the reaction pressure and the reaction temperature (step 2); And
공급장치의 격벽을 이용하여 반응부로 원료를 공급하며 액화반응 및 촉매반응을 수행하는 단계(단계 3)를 포함하는 상기의 분해 시스템의 운전방법을 제공한다.It provides a method of operating the decomposition system including the step (step 3) of supplying the raw material to the reaction unit using a partition of the supply device and performing a liquefaction reaction and a catalytic reaction.
본 발명에 따른 리그닌과 용매의 균일 혼합 및 연속 투입을 위한 공급장치는 수평형 또는 수직형 블레이드(blade)를 가진 교반기를 통해 혼합물을 균일하게 혼합하고, 이를 유지하여 후단의 반응부로 투입할 수 있다. 또한, 배출부의 관로를 일정수치로 특정하여 리그닌과 액체의 분리를 더욱 효과적으로 방지할 수 있으며, 격벽으로 구획 후 격벽 상부에 유체를 투입하여 혼합물에 압력을 가함으로써 후단공정을 위한 반응부로 균일하게 혼합된 혼합물을 연속투입할 수 있는 효과가 있다.Feeding device for uniform mixing and continuous dosing of lignin and the solvent according to the present invention can be uniformly mixed with the mixture through a stirrer having a horizontal or vertical blade (blade), it can be added to the reaction section of the rear stage . In addition, it is possible to prevent the separation of lignin and liquid more effectively by specifying the discharge pipe at a certain value, and evenly mixed into the reaction part for the post-stage process by applying a pressure to the mixture by adding a fluid to the upper part of the partition after partitioning the partition. It is effective to continuously add the mixture.
도 1은 원료 혼합물의 액화 반응기로의 공급장치를 나타낸 모식도이고;1 is a schematic diagram showing a feeding device of a raw material mixture to a liquefaction reactor;
도 2는 초임계유체를 이용한 리그닌 분해 시스템을 나타낸 모식도이고;2 is a schematic diagram showing a lignin decomposition system using a supercritical fluid;
도 3은 수평형 블레이드(blade) 교반기가 장착된 아크릴 반응기를 나타낸 사진이고;3 is a photograph of an acrylic reactor equipped with a horizontal blade stirrer;
도 4는 수평형 블레이드(blade) 교반기가 장착된 아크릴 반응기에서 리그닌과 에탄올의 혼합 실험 결과를 나타내는 표이고;4 is a table showing the results of mixing experiments of lignin and ethanol in an acrylic reactor equipped with a horizontal blade stirrer;
도 5는 수직형 블레이드(blade) 교반기가 장착된 아크릴 반응기를 나타내는 사진이고;5 is a photograph showing an acrylic reactor equipped with a vertical blade stirrer;
도 6은 수직형 블레이드(blade) 교반기가 장착된 아크릴 반응기에서 리그닌과 에탄올의 혼합 실험 결과를 나타내는 표이고;6 is a table showing the results of mixing experiments of lignin and ethanol in an acrylic reactor equipped with a vertical blade stirrer;
도 7은 수직형 십자형 블레이드(blade) 교반기가 장착된 아크릴 반응기에서 리그닌과 에탄올의 혼합 실험 결과를 나타내는 사진 및 표이고;7 is a photograph and a table showing the results of mixing experiments of lignin and ethanol in an acrylic reactor equipped with a vertical cross blade stirrer;
도 8은 십자형 수직형 블레이드(blade) 교반기가 장착되고 배출구 관로의 내부가 3/8 인치(inch)인 아크릴 반응기를 나타내는 사진이고;FIG. 8 is a photograph showing an acrylic reactor equipped with a cross blade stirrer and having a 3/8 inch inside of the outlet conduit; FIG.
도 9는 십자형 수직형 블레이드(blade) 교반기가 장착된 아크릴 반응기에서 관로 개선에 따른 리그닌과 에탄올의 혼합 실험 결과를 나타내는 표이고;FIG. 9 is a table showing the results of mixing experiments with lignin and ethanol according to pipeline improvement in an acrylic reactor equipped with a cross blade stirrer; FIG.
도 10은 리그닌 분해 시스템 운전 시간에 대한 온도 및 압력을 나타낸 그래프이고;10 is a graph showing temperature and pressure versus lignin digestion system operating time;
도 11은 리그닌 분해 시스템 운전으로 인해 발생하는 액상 생성물을 분석한 결과 그래프이고;11 is a graph of the analysis of the liquid product generated by the operation of the lignin decomposition system;
도 12는 리그닌 분해 시스템 운전으로 인해 발생하는 기상 생성물을 분석한 결과 그래프이고;12 is a graph of the analysis of the gaseous products resulting from the operation of the lignin decomposition system;
도 13은 리그닌 분해 시스템 운전 시간에 대한 온도 및 압력을 나타낸 그래프이고;FIG. 13 is a graph showing temperature and pressure versus lignin digestion system operating time; FIG.
도 14는 리그닌 분해 시스템 운전으로 인해 발생하는 액상 생성물을 분석한 결과 그래프이고;14 is a graph of the analysis of the liquid product generated by the operation of the lignin decomposition system;
도 15는 리그닌 분해 시스템 운전으로 인해 발생하는 기상 생성물을 분석한 결과 그래프이고;FIG. 15 is a graph of the analysis of gaseous products resulting from the operation of the lignin decomposition system; FIG.
도 16은 5 wt% 농도의 리그닌 슬러리 혼합물의 리그닌 분해 시스템 운전 시간에 대한 온도 및 압력을 나타낸 그래프이고;FIG. 16 is a graph showing temperature and pressure versus lignin decomposition system operating time of a lignin slurry mixture at a concentration of 5 wt%;
도 17은 5 wt% 농도의 리그닌 슬러리 혼합물의 리그닌 분해 시스템 운전으로 인해 생성된 액상 생성물의 색상 변화 및 조건을 나타낸 표이고;17 is a table showing the color change and conditions of the liquid product produced due to the lignin decomposition system operation of the lignin slurry mixture of 5 wt% concentration;
도 18은 5 wt% 농도의 리그닌 슬러리 혼합물의 리그닌 분해 시스템의 액화반응으로부터 얻은 액상 생성물의 GC-MS 분석 결과를 나타낸 그래프이고;18 is a graph showing the results of GC-MS analysis of a liquid product obtained from the liquefaction of a lignin decomposition system of a lignin slurry mixture at a concentration of 5 wt%;
도 19는 5 wt% 농도의 리그닌 슬러리 혼합물의 리그닌 분해 시스템의 액화반응으로부터 얻은 가스 생성물의 조성을 나타낸 그래프이고;19 is a graph showing the composition of a gas product obtained from the liquefaction of a lignin decomposition system of a lignin slurry mixture at a concentration of 5 wt%;
도 20은 25 wt% 농도의 리그닌 슬러리 혼합물의 리그닌 분해 시스템 운전 시간에 대한 온도 및 압력을 나타낸 그래프이고;20 is a graph showing temperature and pressure versus lignin decomposition system operating time of a lignin slurry mixture at a concentration of 25 wt%;
도 21은 25 wt% 농도의 리그닌 슬러리 혼합물의 리그닌 분해 시스템 운전으로 인해 생성된 액상 생성물의 색상 변화 및 조건을 나타낸 표이고;FIG. 21 is a table showing the color change and conditions of the liquid product produced due to the lignin decomposition system operation of the lignin slurry mixture at 25 wt% concentration;
도 22는 25 wt% 농도의 리그닌 슬러리 혼합물의 리그닌 분해 시스템의 액화반응으로부터 얻은 액상 생성물의 GC-MS 분석 결과를 나타낸 그래프이고;FIG. 22 is a graph showing the results of GC-MS analysis of a liquid product obtained from the liquefaction of a lignin decomposition system of a lignin slurry mixture at a concentration of 25 wt%;
도 23은 25 wt% 농도의 리그닌 슬러리 혼합물의 리그닌 분해 시스템의 액화반응으로부터 얻은 가스 생성물의 조성을 나타낸 그래프이다.FIG. 23 is a graph showing the composition of a gas product obtained from the liquefaction of a lignin decomposition system of a lignin slurry mixture at a concentration of 25 wt%.
본 발명은The present invention
리그닌 및 용매의 혼합물을 원료로 공급받아 수용하는 원료 수용부(111); 원료 수용부와 유체 수용부(113)를 구분하면서 움직일 수 있는 격벽(112); 상기 격벽에 압을 가할 수 있는 유체를 수용할 수 있는 유체 수용부(113)를 포함하는 실린더(110);A raw material accommodating part 111 receiving and receiving a mixture of lignin and a solvent as raw materials; A partition wall 112 that is movable while separating the raw material accommodating part and the fluid accommodating part 113; A cylinder 110 including a fluid accommodating part 113 capable of accommodating a fluid capable of applying pressure to the partition wall;
상기 원료 수용부(111) 내에 구비되어 원료를 교반시켜 주는 교반 수단(120); 및Stirring means 120 provided in the raw material accommodating part 111 to stir the raw material; And
상기 원료 수용부(111) 일부분에 배치되어 상기 교반 수단(120)에 의해 교반된 원료를 배출하는 배출부(130)를 포함하는 원료 혼합물의 액화반응기로의 공급장치(100)를 제공한다.It is provided to the supply device 100 to the liquefaction reactor of the raw material mixture including a discharge unit 130 is disposed in a portion of the raw material receiving portion 111 for discharging the raw material stirred by the stirring means 120.
이때, 본 발명에 따른 공급장치(100)의 일례를 도 1의 모식도를 통해 나타내었으며,At this time, an example of the supply device 100 according to the present invention is shown through a schematic diagram of FIG.
이하, 도 1의 모식도를 참조하여, 본 발명에 따른 원료 혼합물의 액화반응기로의 공급장치(100)에 대하여 상세히 설명한다.Hereinafter, with reference to the schematic diagram of FIG. 1, the supply apparatus 100 to the liquefaction reactor of the raw material mixture which concerns on this invention is demonstrated in detail.
본 발명에 따른 공급장치는 실린더(110)를 포함하며, 상기 실린더는 리그닌 및 용매의 혼합물을 원료로 공급받아 수용하는 원료 수용부(111); 원료 수용부와 유체 수용부(113)를 구분하면서 움직일 수 있는 격벽(112); 및 상기 격벽에 압을 가할 수 있는 유체를 수용할 수 있는 유체 수용부를 포함한다.The supply apparatus according to the present invention includes a cylinder 110, the cylinder includes a raw material receiving portion 111 for receiving and receiving a mixture of lignin and a solvent as a raw material; A partition wall 112 that is movable while separating the raw material accommodating part and the fluid accommodating part 113; And a fluid accommodating part capable of accommodating a fluid capable of applying pressure to the partition wall.
또한, 상기 공급장치(100)는 리그닌 및 용매를 혼합 및 저장하는 원료 저장조(140); 상기 원료를 원료 수용부로 이송시키는 상압 펌프(141)를 포함할 수 있다. 상기 원료 저장조는 일정한 무게비의 리그닌과 초임계유체용 용매를 균일하게 혼합함과 동시에 저장하는 저장조로서, 균일하게 혼합된 리그닌 및 용매의 혼합 원료를 원료 수용부(111)로 이송시킬 수 있다. 상기 리그닌 및 용매의 혼합 원료의 제조 및 저장은 상온, 상압에서 200 rpm 내지 1,000 rpm, 바람직하게는 300 rpm 이상의 교반 속도로 교반할 수 있다. 상기 원료 저장조는 리그닌 및 용매의 혼합 원료의 균일한 혼합 상태를 유지하기 위해 교반을 유지하는 것이 바람직하다. 상기 원료 저장조는 교반을 수행할 수 있는 교반 수단을 포함할 수 있다.In addition, the supply device 100 is a raw material storage tank 140 for mixing and storing the lignin and the solvent; It may include an atmospheric pressure pump 141 for transferring the raw material to the raw material receiving portion. The raw material storage tank is a storage tank for uniformly mixing and storing the lignin and the solvent for the supercritical fluid at a constant weight ratio, and may transfer the mixed raw material of the uniformly mixed lignin and the solvent to the raw material accommodating part 111. Preparation and storage of the mixed raw material of the lignin and the solvent may be stirred at a stirring speed of 200 rpm to 1,000 rpm, preferably 300 rpm or more at room temperature and normal pressure. The raw material reservoir is preferably maintained in agitation in order to maintain a uniform mixed state of the mixed raw material of the lignin and the solvent. The raw material storage tank may include a stirring means capable of performing the stirring.
나아가, 상기 공급장치(100)는 유체를 저장하는 유체 저장조(150); 및 상기 유체를 유체 수용부로 공급하기 위한 고압펌프(151)를 포함할 수 있다. 상기 유체는 상온 및 400 bar 이하의 압력에서 액체로 존재하는 물질로서, 물, 에탄올, 메탄올 등일 수 있다. 고압펌프를 통하여 유체 저장조에서 유체 수용부(113)로 운반되는 유체는 격벽(112)을 하부로 밀어 원료 수용부(111)의 혼합된 원료를 후단에 설치될 수 있는 반응부로 운반하는 역할을 한다. 상기 유체와 원료는 격벽에 의하여 완전히 차단된 상태로 서로 혼합되지 않는 것이 바람직하다.Further, the supply device 100 includes a fluid reservoir 150 for storing the fluid; And it may include a high pressure pump 151 for supplying the fluid to the fluid receiving portion. The fluid is a substance present as a liquid at room temperature and a pressure of 400 bar or less, and may be water, ethanol, methanol, or the like. Fluid transported from the fluid reservoir to the fluid receiving unit 113 through the high pressure pump serves to transport the mixed raw material of the raw material receiving unit 111 to the reaction unit that can be installed at the rear end by pushing the partition 112 downward. . The fluid and the raw material are preferably not mixed with each other in a completely blocked state by the partition wall.
이때, 상기 원료 저장조(140)는 원료 수용부(111)와 연통되는 공급 라인을 포함할 수 있으며, 상기 공급 라인은 공급 유량을 제어하기 위한 하나 이상의 밸브를 포함한다. 상기 밸브는 일례로 제1 밸브(142)일 수 있다. 또한, 상기 공급 라인은 리그닌과 용매의 분리를 방지하기 위해 원료 저장조와 원료 수용부 사이 공간을 최소화하고, 수평으로 유지하는 것이 바람직하다. 나아가, 상기 유체는 물을 포함하나, 격벽(112)에 압을 가할 수 있는 유체라면 제한없이 사용 가능하다.In this case, the raw material storage tank 140 may include a supply line in communication with the raw material receiving portion 111, the supply line includes one or more valves for controlling the supply flow rate. The valve may be, for example, a first valve 142. In addition, the feed line is preferably kept horizontally to minimize the space between the raw material reservoir and the raw material receiving portion to prevent separation of the lignin and the solvent. Further, the fluid includes water, but any fluid that can apply pressure to the partition wall 112 can be used without limitation.
상기 실린더(110)는 상층실(10)과 하층실(20)로 나뉘되, 상기 상층실과 하층실은 서로로부터 탈부착이 가능하고, 상기 공급장치(100)는 상층실과 하층실이 탈부착되는 부위를 포함하여 상층실의 압력을 유지시키는 고압용 커버(114)를 포함한다. 이때, 상기 상층실과 하층실의 탈부착은 스크류 타입을 통해 달성되는 것이 바람직하다.The cylinder 110 is divided into an upper chamber 10 and a lower chamber 20, wherein the upper chamber and the lower chamber are detachable from each other, and the supply device 100 includes a portion where the upper chamber and the lower chamber are detachable. It includes a high pressure cover 114 to maintain the pressure of the upper chamber. At this time, the detachment of the upper chamber and the lower chamber is preferably achieved through a screw type.
여기서, 상기 고압용 커버(114)는 고압상태에서 상층실(10, 상층부)을 고정해 주는 역할을 하며, 고압용 커버를 풀면 상층실을 하층실(20)과 분리할 수 있고, 상층실이 분리된 상태에서 실린더 내부의 격벽(112)을 제거하거나 교체할 수 있다.Here, the high pressure cover 114 serves to fix the upper chamber 10 (upper layer) in a high pressure state, and when the high pressure cover is released, the upper chamber can be separated from the lower chamber 20, and the upper chamber is In a detached state, the partition wall 112 in the cylinder may be removed or replaced.
상기 상층실(10)은 상단 중앙에 유체 주입용 관로(115)가 형성되어 있으며, 이 관로를 통해 격벽(112)에 압을 가할 수 있는 유체가 유체 수용부(113)로 주입된다. 이때, 상기 유체 주입용 관로의 내부 직경 범위는 특별히 제한되는 것은 아니나 바람직하게는 3/4 인치(0.75 인치) 내지 1.5 인치의 범위일 수 있다. 상기 내부직경이 3/4 인치(0.75 인치) 미만일 경우 유체를 유체 수용부로 투입하기 어렵고, 내부직경이 1.5 인치를 초과할 경우 고압조건에서 유체 주입용 관로에 장착된 밸브로는 유체의 투입량을 조절하기 어려운 문제점이 있다.The upper chamber 10 has a fluid injection conduit 115 formed at the center of the upper end, through which the fluid capable of applying pressure to the partition wall 112 is injected into the fluid receiving part 113. At this time, the inner diameter range of the fluid injection pipe is not particularly limited but may be preferably in the range of 3/4 inch (0.75 inch) to 1.5 inch. When the inner diameter is less than 3/4 inch (0.75 inch), it is difficult to inject the fluid into the fluid receiving portion, and when the inner diameter exceeds 1.5 inches, the valve is mounted on the fluid injection line under high pressure to control the fluid input amount. There is a problem that is difficult to do.
또한, 상기 상층실(10) 상단 일부분에 공기 배출용 관로(116)가 형성되어 있으며, 이 관로를 통해 원료 수용부(111)에 원료가 공급되면서 압력이 발생하면 격벽(112)을 위쪽으로 밀어올릴 수 있다. 이때, 상기 공기 배출용 관로는 유체 저장조(150)와 연결될 수 있다.In addition, an air discharge pipe 116 is formed at an upper portion of the upper chamber 10, and when the pressure is generated while the raw material is supplied to the raw material accommodating part 111 through the pipe, the partition 112 is pushed upward. I can raise it. In this case, the air discharge line may be connected to the fluid reservoir 150.
본 발명에 따른 공급장치(100)는 교반 수단(120)을 포함하며, 상기 교반 수단은 상기 원료 수용부(111) 내에 구비되어 원료를 교반시킨다. Supply apparatus 100 according to the present invention includes a stirring means 120, the stirring means is provided in the raw material accommodating portion 111 to agitate the raw material.
상기 격벽(112)이 교반 수단(120)과 접촉할 수 없도록 교반 수단이 위치하는 원료 수용부 일부분의 직경은 격벽의 직경보다 작아 턱이 형성되어 있는 것이 바람직하다. 턱이 형성됨에 따라 격벽은 교반 수단과 접촉할 수 없다.It is preferable that the diameter of a portion of the raw material accommodating part in which the stirring means is located is smaller than the diameter of the partition so that the partition wall 112 cannot contact the stirring means 120. As the jaw is formed, the partition cannot contact the stirring means.
상기 교반 수단(120)은 교반기를 포함하며, 상기 교반기는 수평형 블레이드 또는 수직형 블레이드를 포함하고, 바람직하게는 수직형 블레이드를 포함한다. 수직형 블레이드를 사용할 경우 배출부(130)로 배출되는 리그닌 및 용매 혼합물 중 리그닌의 함량이 혼합물 수용부에 공급된 초기 리그닌 함량의 99% 이상을 나타냄으로 균일하게 혼합되는 효과를 갖는다. 이때, 상기 교반기는 일자형 또는 십자형으로 블레이드가 배향될 수 있다.The stirring means 120 comprises a stirrer, the stirrer comprising a horizontal blade or a vertical blade, preferably a vertical blade. When the vertical blade is used, the content of the lignin in the lignin and the solvent mixture discharged to the discharge unit 130 is equal to or greater than 99% of the initial lignin content supplied to the mixture receiving unit, thereby having an effect of uniform mixing. At this time, the stirrer may be oriented blades in a straight or cross shape.
또한, 상기 교반 수단(120)의 교반 속도는 200 rpm 내지 1000 rpm일 수 있으며, 300 rpm 이상일 수 있다. 교반 속도가 200 rpm 미만일 경우 혼합물이 충분히 교반되지 않는 문제점이 있을 수 있고, 1000 rpm을 초과할 경우 불필요한 에너지가 요구되는 문제점이 있다.In addition, the stirring speed of the stirring means 120 may be 200 rpm to 1000 rpm, may be 300 rpm or more. If the stirring speed is less than 200 rpm there may be a problem that the mixture is not sufficiently stirred, there is a problem that unnecessary energy is required if it exceeds 1000 rpm.
본 발명에 따른 공급장치(100)는 배출부(130)를 포함하며, 상기 원료 수용부(111) 일부분에 배치되어 상기 교반 수단(120)에 의해 교반된 원료를 배출한다.The supply device 100 according to the present invention includes a discharge unit 130 and is disposed in a portion of the raw material receiving unit 111 to discharge the raw material stirred by the stirring means 120.
상기 배출부(130)는 원료 수용부(111)의 하단 또는 측면에 배치될 수 있으며, 바람직하게는 하단에 배치될 수 있다.The discharge unit 130 may be disposed on the bottom or side of the raw material receiving portion 111, preferably may be disposed on the bottom.
또한, 상기 배출부(130)는 내부직경이 3/8 인치 내지 1 인치 범위일 수 있다.In addition, the discharge unit 130 may have an inner diameter of 3/8 inch to 1 inch range.
이때, 배출부(130)의 내부직경이 3/8 인치 미만일 경우 리그닌과 용매의 분리현상이 발생하여 리그닌은 관로 벽에 부착되어 쌓이고 용매만 관로를 통과하게 되는 문제점이 발생하며, 배출부의 내부직경이 1 인치를 초과할 경우 배출부의 후단에 연결되는 액화 반응기(310)와의 연결부분에서 고온, 고압 상태로 제어하기 어려운 문제점이 있다.At this time, when the inner diameter of the outlet 130 is less than 3/8 inch, separation of lignin and solvent occurs, so that lignin is attached to the pipe wall and accumulated, and only the solvent passes through the pipe. If it exceeds 1 inch there is a problem that it is difficult to control the high temperature, high pressure in the connection portion with the liquefaction reactor 310 is connected to the rear end of the discharge.
나아가, 상기 배출부(130)에는 상기 공급 라인과 동일하게 하나의 밸브를 포함하여 배출부를 통과하는 리그닌과 용매 혼합물의 투입량을 제어할 수 있다.Furthermore, the discharge unit 130 may include a single valve in the same way as the supply line to control the input amount of the lignin and the solvent mixture passing through the discharge unit.
한편, 상기 용매는 에탄올, n-프로필 알코올, 이소프로필 알코올, 부틸 알코올, 펜탄올, 헥산올, 사이클로펜탄올, 사이클로헥산올, 2-메틸사이클로펜탄올, 하이드록시케톤, 사이클릭 케톤, 아세톤, 프로판온, 부탄온, 펜탄온, 헥산온, 2-메틸-사이클로펜탄온, 에틸렌 글리콜, 1,3-프로판디올, 프로필렌 글리콜, 부탄디올, 펜탄디올, 헥산디올, 메틸클리옥살(methylglyoxal), 부탄디온(butanedione), 펜탄디온(pentanedione), 디케토헥산(diketohexane), 하이드록시알데히드, 아세트알데히드, 프로피온알데히드, 부티르알데히드(butyraldehyde), 펜타날(pentanal), 헥사날(hexanal), 포름산, 아세트산, 프로피온산, 부탄산, 펜탄산, 헥산산, 락트산, 글리세롤, 푸란(furan), 테트라하이드로푸란(tetrahydrofuran), 디하이드로푸란(dihydrofuran), 2-푸란 메탄올, 2-메틸-테트라하이드로푸란, 2,5-디메틸-테트라하이드로푸란, 2-에틸-테트라하이드로푸란, 2-메틸 푸란, 2,5-디메틸푸란, 2-에틸푸란, 하이드록시메틸푸르푸랄(hydroxylmethylfurfural), 3-하이드록시테트라하이드로푸란, 테트라하이드로-3-푸란올, 5-하이드록시메틸-2(5H)-푸란온, 디하이드로-5-(하이드록시메틸)-2(3H)-푸란온, 테트라하이드로-2-푸로산, 디하이드로-5-(하이드록시메틸)-2(3H)-푸란온, 테트라하이드로푸르푸릴 알코올(tetrahydrofurfuryl alcohol), 1-(2-푸릴)에탄올(1-(2-furyl)ethanol), 하이드록시메틸테트라하이드로푸르푸랄 등일 수 있다.On the other hand, the solvent is ethanol, n-propyl alcohol, isopropyl alcohol, butyl alcohol, pentanol, hexanol, cyclopentanol, cyclohexanol, 2-methylcyclopentanol, hydroxyketone, cyclic ketone, acetone, Propane, butanone, pentanone, hexanone, 2-methyl-cyclopentanone, ethylene glycol, 1,3-propanediol, propylene glycol, butanediol, pentanediol, hexanediol, methylglyoxal, butanedione (butanedione), pentanedione, diketohexane, hydroxyaldehyde, acetaldehyde, propionaldehyde, butyraldehyde, pentanal, hexanal, formic acid, acetic acid, Propionic acid, butanoic acid, pentanic acid, hexanoic acid, lactic acid, glycerol, furan, tetrahydrofuran, dihydrofuran, 2-furan methanol, 2-methyl-tetrahydrofuran, 2,5 -Dimethyl-tet Hydrofuran, 2-ethyl-tetrahydrofuran, 2-methylfuran, 2,5-dimethylfuran, 2-ethylfuran, hydroxymethylfurfural, 3-hydroxytetrahydrofuran, tetrahydro-3- Furanol, 5-hydroxymethyl-2 (5H) -furanone, dihydro-5- (hydroxymethyl) -2 (3H) -furanone, tetrahydro-2-furoic acid, dihydro-5- ( Hydroxymethyl) -2 (3H) -furanone, tetrahydrofurfuryl alcohol, 1- (2-furyl) ethanol, hydroxymethyltetrahydrofurfural, etc. Can be.
더욱 구체적으로, 상기 용매는 초임계유체 또는 아임계유체일 수 있다. 일례로, 리그닌을 아임계수 또는 초임계 에탄올을 사용하여 액화시킬 경우 높은 수율의 액상 폐놀계 물질을 생산할 수 있다.More specifically, the solvent may be a supercritical fluid or a subcritical fluid. For example, when lignin is liquefied using subcritical water or supercritical ethanol, it is possible to produce a high yield of liquid phenolic material.
또한, 본 발명은In addition, the present invention
상기의 공급장치(100)를 포함하는 원료 공급부(200);Raw material supply unit 200 including the supply device 100;
초임계 상태의 유체로 채워지고, 상기 원료 공급부(200)로부터 배출되는 교반된 원료를 공급받아 액화 반응을 수행하는 액화 반응부(300); 및 A liquefaction reaction unit 300 filled with a fluid in a supercritical state and receiving a stirred raw material discharged from the raw material supply unit 200 to perform a liquefaction reaction; And
초임계 상태의 유체로 채워지고, 상기 액화 반응부(300)에서 발생하는 반응 생성물을 공급받아 촉매 반응을 수행하는 촉매 반응부(400)를 포함하는 초임계유체를 이용한 리그닌 분해 시스템(1000)을 제공한다.A lignin decomposition system 1000 using a supercritical fluid filled with a fluid in a supercritical state and including a catalytic reaction part 400 which receives a reaction product generated from the liquefaction reaction part 300 and performs a catalytic reaction to provide.
이때, 본 발명에 따른 리그닌 분해 시스템(1000)의 일례를 도 1 내지 3의 모식도를 통해 나타내었으며,At this time, an example of the lignin decomposition system 1000 according to the present invention is shown through the schematic diagram of FIGS.
이하, 도 1 내지 3의 모식도를 참조하여, 본 발명에 따른 초임계유체를 이용한 리그닌 분해 시스템(1000)에 대하여 상세히 설명한다.Hereinafter, referring to the schematic diagrams of FIGS. 1 to 3, the lignin decomposition system 1000 using the supercritical fluid according to the present invention will be described in detail.
본 발명에 따른 초임계유체를 이용한 리그닌 분해 시스템(1000)은 전술한 바와 같은 공급장치(100)를 포함하는 원료 공급부(200)를 포함한다.The lignin decomposition system 1000 using the supercritical fluid according to the present invention includes a raw material supply part 200 including the supply device 100 as described above.
상기 공급장치(100)를 이용하여 후단의 반응부(300)로 리그닌을 포함하는 원료 혼합물을 투입하는 경우 리그닌과 액체의 분리를 방지할 수 있어 균일하게 혼합된 원료를 연속투입할 수 있다.When the raw material mixture containing lignin is introduced into the reaction part 300 of the rear stage using the feeder 100, separation of the lignin and the liquid may be prevented, and thus the raw material mixed uniformly may be continuously added.
또한, 상기 공급장치(100)는 유체 수용부(113)로 공급되는 유체 및 격벽(112)을 이용하여 원료 수용부(111)에 압력을 가할 수 있으며, 가해지는 압력을 통해 원료 공급 시 고압 조건을 형성할 수 있다. 이를 통해 후단의 액화 반응부(300) 및 촉매 반응부(400)의 압력조건과 동일한 압력(예를 들어, 200 bar 내지 400 bar의 압력조건)으로 원료를 공급할 수 있다.In addition, the supply device 100 may apply pressure to the raw material accommodating part 111 by using the fluid and the partition wall 112 supplied to the fluid accommodating part 113, and the high pressure condition when supplying the raw material through the applied pressure Can be formed. Through this, the raw material may be supplied at the same pressure (eg, 200 bar to 400 bar pressure conditions) as that of the liquefaction reaction unit 300 and the catalytic reaction unit 400 at the rear stage.
본 발명에 따른 초임계유체를 이용한 리그닌 분해 시스템(1000)은 액화 반응부(300)를 포함하고, 상기 액화 반응부는 초임계 상태의 유체로 채워지고, 상기 원료 공급부로부터 배출되는 교반된 원료를 공급받아 액화 반응을 수행한다.The lignin decomposition system 1000 using the supercritical fluid according to the present invention includes a liquefaction reaction unit 300, and the liquefaction reaction unit is filled with a fluid in a supercritical state and supplies the stirred raw material discharged from the raw material supply unit. Take and perform the liquefaction reaction.
상기 액화 반응부(300)는 상기 공급장치(100)를 포함하는 원료 공급부(200)로부터 배출되는 원료를 공급받아 액화 반응을 수행하는 액화 반응기(310; 및 상기 액화 반응기에서 발생하는 고상 생성물을 분리하는 고상 생성물 분리기(320)를 포함한다.The liquefaction reactor 300 is a liquefaction reactor 310 for receiving a raw material discharged from the raw material supply unit 200 including the supply device 100 to perform a liquefaction reaction and to separate the solid product generated in the liquefaction reactor It comprises a solid product separator 320.
상기 액화 반응부(300)는 가열기를 포함하며, 액화 반응기(310) 외주면으로 가열기(311)가 형성될 수 있다. The liquefaction reaction unit 300 may include a heater, and a heater 311 may be formed on an outer circumferential surface of the liquefaction reactor 310.
이때, 상기 액화 반응부(300)는 액화 반응기(310)와 고상 생성물 분리기(320) 사이에 필터(330)를 포함할 수 있으며, 구체적인 일례로 상기 액화 반응기 하단에 필터를 설치하여 고상 생성물을 액상 생성물 및 기상 생성물과 분리할 수 있다. 상기 액화 반응기 내부에는 공급장치(100) 하단과 연결된 원료 투입용 튜브(350)가 통과한다. 상기 원료 투입용 튜브는 바람직하게는 0.5 cm 이상의 내경을 가질 수 있으며, 0.5 cm 내지 5 cm일 수 있다. 상기 원료 투입용 튜브는 공급장치 하단에서 고상 생성물 분리기 상단까지 수직으로 설치하여 원료에 포함된 고농도의 리그닌이 밸브나 라인에서 에탄올 등의 초임계유체용 용매와 분리되는 것을 방지한다. 상기 원료는 액화 반응기를 통과하면서 가열되어 용매는 초임계유체로 전환되고 리그닌의 액화 반응이 진행된다. 상기 원료의 예열 및 액화 반응은 액화 반응기 외부에 설치된 가열기를 이용하여 간접적으로 이루어지며, 상기 가열기는 전기로나 연소로일 수 있다. 상기 액화 반응기는 반응온도 및 반응압력을 유지할 수 있으며, 상기 반응온도는 최소 300℃ 이상, 바람직하게는 350℃ 이상, 350℃ 내지 500℃일 수 있고, 상기 반응압력은 200 bar 이상, 200 bar 내지 400 bar 범위에서 가능한 높게 유지하여 투입되는 원료 내의 용매(예를 들어, 에탄올)가 초임계 상태에 도달하게 하고 리그닌은 초임계유체와 반응하여 최대한 액화되도록 할 수 있다. At this time, the liquefaction reaction unit 300 may include a filter 330 between the liquefaction reactor 310 and the solid phase product separator 320, in a specific example by installing a filter at the bottom of the liquefaction reactor liquid phase product It can be separated from the product and gaseous product. Inside the liquefaction reactor, the raw material input tube 350 connected to the lower end of the supply device 100 passes. The raw material input tube may preferably have an inner diameter of 0.5 cm or more, and may be 0.5 cm to 5 cm. The raw material input tube is installed vertically from the bottom of the feeder to the top of the solid phase product separator to prevent the high concentration of lignin contained in the raw material from being separated from the valve or line with a solvent for supercritical fluid such as ethanol. The raw material is heated while passing through the liquefaction reactor, the solvent is converted into a supercritical fluid and the liquefaction of lignin proceeds. The preheating and liquefaction of the raw material is indirectly performed using a heater installed outside the liquefaction reactor, and the heater may be an electric furnace or a combustion furnace. The liquefaction reactor may maintain the reaction temperature and the reaction pressure, the reaction temperature may be at least 300 ℃, preferably at least 350 ℃, 350 ℃ to 500 ℃, the reaction pressure is 200 bar or more, 200 bar to By keeping it as high as possible in the 400 bar range, the solvent in the feed material (eg ethanol) can reach the supercritical state and the lignin can react with the supercritical fluid to maximize liquefaction.
또한, 상기 액화 반응부(300)는 액화 반응기(310) 상단에 밸브(340)를 포함할 수 있으며, 상기 밸브는 외부 환경과 연결될 수 있다. 상기 액화 반응기 내부에 초임계유체가 채워지는데, 일반적으로 반응기 내부에 초임계유체를 가득 채워지지 않는다. 이에, 본 발명에 따른 리그닌 분해 시스템(1000)의 액화 반응기는 상단 일부분에 밸브를 형성하여, 초임계유체를 채움에 있어서 밸브를 열어 반응기 최상단부까지 초임계유체를 채울 수 있다.In addition, the liquefaction reaction unit 300 may include a valve 340 on the top of the liquefaction reactor 310, the valve may be connected to the external environment. The supercritical fluid is filled inside the liquefaction reactor, but generally the supercritical fluid is not filled inside the reactor. Thus, the liquefaction reactor of the lignin decomposition system 1000 according to the present invention forms a valve on the upper portion, the valve in the supercritical fluid can be opened to fill the supercritical fluid to the top of the reactor.
나아가, 상기 고상 생성물 분리기(320)도 가열기를 포함하며, 고상 생성물 분리기 외주면으로 가열기(321)가 형성될 수 있다. 또한, 상기 고상 생성물 분리기는 액화 반응기(310)로부터 분리된 고상 생성물의 배출을 위한 고상 생성물 분리기 하단에 배치되는 배출 밸브(322)를 포함할 수 있다. 상기 액화 반응기를 통과하면서 원료에 포함된 용매는 초임계유체가 되고 리그닌의 액화 반응이 진행된다. 그 결과 액상 생성물, 기상 생성물 및 고상 생성물이 발생한다. 상기 고상 생성물 분리기는 300℃ 내외의 온도, 바람직하게는 200℃ 내지 400℃의 온도 범위, 200 bar 내지 400 bar의 압력 범위에서 액화 반응기와 동일한 압력으로 운전되며 고상 생성물을 중력에 의하여 침전시켜 액상 생성물 및 기상 생성물로부터 분리한다. 상기 액상 생성물 및 기상 생성물은 상부의 액화 반응기를 통과하면서 약 350℃ 정도로 가열되어 촉매 반응부(400)로 투입된다. 고상 생성물이 일정량 누적되면 하단의 고온, 고압 밸브를 이용하여 반응조건에 영향을 주지 않는 범위에서 고형물을 배출한다.Furthermore, the solid product separator 320 also includes a heater, and a heater 321 may be formed on the outer circumferential surface of the solid product separator. The solid product separator may also include a discharge valve 322 disposed below the solid product separator for discharging the solid product separated from the liquefaction reactor 310. While passing through the liquefaction reactor, the solvent contained in the raw material becomes a supercritical fluid and the liquefaction of lignin proceeds. The result is a liquid product, a gaseous product and a solid product. The solid product separator is operated at the same pressure as the liquefaction reactor at a temperature of about 300 ℃, preferably in the temperature range of 200 ℃ to 400 ℃, pressure range of 200 bar to 400 bar and precipitates the solid product by gravity And from gaseous products. The liquid product and the gaseous product are heated to about 350 ° C. while passing through the upper liquefaction reactor and introduced into the catalytic reaction unit 400. When a certain amount of solid products accumulate, the solids are discharged within a range that does not affect the reaction conditions by using a high temperature and high pressure valve at the bottom.
본 발명에 따른 초임계유체를 이용한 리그닌 분해 시스템(1000)은 촉매 반응부(400)를 포함하고, 상기 촉매 반응부는 초임계 상태의 유체로 채워지고, 상기 액화 반응부(300)에서 발생하는 반응 생성물을 공급받아 촉매 반응을 수행한다.The lignin decomposition system 1000 using the supercritical fluid according to the present invention includes a catalytic reaction part 400, and the catalytic reaction part is filled with a fluid in a supercritical state, and the reaction occurring in the liquefaction reaction part 300. The product is supplied to carry out the catalytic reaction.
상기 촉매 반응부(400)는 고상 촉매가 충전된 촉매 반응기(410) 및 가열기(411)를 포함할 수 있다. 상기 촉매는 초임계유체를 분해하여 이로부터 반응성이 좋은 수소와 같은 환원성 라디칼을 생성하는 역할과, 생성된 라디칼 및 액상 생성물의 산화유기화합물을 반응시켜 이로부터 산소를 제거하는 탈산소 반응을 촉진하는 역할을 한다. 상기 촉매는 바람직하게는 메조포어가 잘 발달된 지지체에 니켈 등과 같은 상기 반응에 활성을 갖는 금속을 잘 분산 및 담지된 촉매일 수 있다. 상기 촉매는 초임계유체와 생성물의 흐름에 방해가 되지 않는 수준에서 적당한 입도를 갖도록 성형하여 충전한다. 촉매 반응기 외부에 전기로 또는 연소로인 가열기를 설치하여 촉매 반응기 내 촉매의 온도를 최소 300℃ 이상, 바람직하게는 300℃ 내지 500℃, 300℃ 내지 350℃ 범위로 유지하고, 반응압력은 200 bar 내지 400 bar 범위에서 액화 반응기(310) 및 고상 생성물 분리기(320)와 동일한 압력을 유지한다.The catalytic reaction unit 400 may include a catalytic reactor 410 and a heater 411 filled with a solid catalyst. The catalyst decomposes a supercritical fluid to generate reducible radicals such as hydrogen, which are highly reactive therefrom, and promotes a deoxygenation reaction which removes oxygen from the oxidized organic compounds of the generated radicals and liquid products. Play a role. The catalyst may preferably be a catalyst well dispersed and supported on a metal having activity in the reaction, such as nickel, on a well-developed mesopore. The catalyst is molded and filled to have an appropriate particle size at a level that does not interfere with the flow of supercritical fluids and products. A heater, which is an electric furnace or a combustion furnace, is installed outside the catalytic reactor to maintain the temperature of the catalyst in the catalytic reactor at least 300 ° C or more, preferably in the range of 300 ° C to 500 ° C and 300 ° C to 350 ° C, and the reaction pressure is 200 bar It maintains the same pressure as the liquefaction reactor 310 and the solid phase product separator 320 in the range from to 400 bar.
또한, 상기 분해 시스템(1000)은 초임계유체용 용매를 저장하는 초임계유체용 용매 저장조(500); 및 상기 용매를 반응기에 공급하기 위한 고압펌프(510)를 포함할 수 있다. 상기 초임계유체용 용매 저장조는 반응온도 및 반응압력 조건에서 초임계유체 역할을 하는 유기 용매의 저장조이며, 상기 고압펌프는 상기 초임계유체용 용매 저장조 내 유기 용매를 액화 반응기(310), 고상 생성물 분리기(320), 촉매 반응기(410) 등과 같은 단위장치들에 투입하는 역할을 한다. In addition, the decomposition system 1000 is a supercritical fluid solvent reservoir 500 for storing a solvent for the supercritical fluid; And it may include a high pressure pump 510 for supplying the solvent to the reactor. The solvent storage tank for the supercritical fluid is a storage tank of an organic solvent which serves as a supercritical fluid at reaction temperature and reaction pressure conditions, and the high pressure pump is a liquid phase reactor for liquefying the organic solvent in the solvent storage tank for the supercritical fluid. 320), the catalytic reactor 410 and the like to serve as a unit.
상기 분해 시스템(1000)의 운전 초기에 공급장치(100) 하단에 설치된 액화 반응기(310), 고상 생성물 분리기(320), 촉매 반응기(410) 등에 투입하여 반응온도와 반응압력 조건에서 상기 단위 장치의 초임계유체 상태를 유지하는 역할을 한다. 또한, 리그닌을 포함하는 혼합 원료의 희석이 필요한 경우에는 액화 반응 운전 중에 투입하여 리그닌의 투입 농도를 조절하는 역할도 할 수 있다.In the initial stage of operation of the decomposition system 1000, the liquefaction reactor 310, the solid-phase product separator 320, the catalytic reactor 410, etc. installed at the lower end of the supply device 100 are put into the unit apparatus under reaction temperature and reaction pressure conditions. Maintains supercritical fluid status. In addition, when dilution of the mixed raw material containing lignin may be required during the liquefaction reaction operation, it may also serve to adjust the concentration of lignin.
또한, 상기 분해 시스템(1000)은 촉매 반응부(400) 후단에 위치하여 촉매 반응부에서 형성된 반응 생성물을 냉각시키는 열교환기(600)를 포함한다. 상기 열교환기는 촉매 반응부에서 발생한 반응 생성물을 반응온도에서 상온으로 냉각하는 역할을 한다. 압력은 200 bar 내지 400 bar 범위에서 액화 반응기(310), 고상 생성물 분리기(320), 촉매 반응기(410)와 동일한 압력 범위일 수 있다.In addition, the decomposition system 1000 includes a heat exchanger 600 positioned at the rear end of the catalytic reaction unit 400 to cool the reaction product formed in the catalytic reaction unit. The heat exchanger serves to cool the reaction product generated in the catalytic reaction unit from the reaction temperature to room temperature. The pressure may be in the same pressure range as the liquefaction reactor 310, the solid phase product separator 320, the catalytic reactor 410 in the range of 200 bar to 400 bar.
나아가, 상기 분해 시스템(1000)은 분해 시스템 내 압력을 일정하게 제어하는 후압 제어기(back-pressure regulator, 700)를 포함한다. 구체적인 일례로, 상기 후압 제어기는 공급장치(100)의 실린더(100)의 원료 수용부(111), 액화 반응기(310), 고상 생성물 분리기(320), 촉매 반응기(410), 열교환기(600)의 압력을 일정하게 제어하는 역할을 한다. 상기 후압 제어기는 촉매 반응기 후단, 더 바람직하게는 열교환기 후단에 위치할 수 있으며, 반응 생성물이 후압 제어기를 통과하면 상압으로 감압된다.Further, the cracking system 1000 includes a back-pressure regulator 700 that constantly controls the pressure in the cracking system. As a specific example, the after-pressure controller is a raw material receiving portion 111, liquefaction reactor 310, solid state product separator 320, catalytic reactor 410, heat exchanger 600 of the cylinder 100 of the feeder 100 It serves to control the pressure constantly. The after pressure controller may be located after the catalytic reactor, more preferably after the heat exchanger, and the reaction product is depressurized to atmospheric pressure as it passes through the after pressure controller.
또한, 상기 분해 시스템(1000)은 촉매 반응부(400) 후단에 위치하여 반응 생성물을 기상 및 액상으로 분리하는 기액 분리기(800)를 포함한다. 상기 기액 분리기는 상온 및 상압의 생성물을 기상과 액상으로 분리하는 역할을 한다. 기상 생성물은 기액 분리기 상부로 배출되고, 액상 생성물은 기액 분리기 하부로부터 얻는다.In addition, the decomposition system 1000 includes a gas-liquid separator 800 located at the rear end of the catalytic reaction unit 400 to separate the reaction product into gas phase and liquid phase. The gas-liquid separator serves to separate the product at room temperature and pressure into the gas phase and the liquid phase. The gaseous product is discharged to the top of the gas-liquid separator, and the liquid product is obtained from the bottom of the gas-liquid separator.
이때, 상기 분해 시스템(1000)은 기상 생성물의 생성 유속을 실시간 측정하기 위한 가스 유속 측정기(810)를 포함할 수 있다. 상기 가스 유속 측정기는 기액 분리기와 연결되어 기상 생성물의 생성 유속을 측정할 수 있으며, 구체적인 일례로 습식가스미터(wet test meter)를 사용할 수 있다.In this case, the decomposition system 1000 may include a gas flow rate meter 810 for measuring the production flow rate of the gaseous product in real time. The gas flow rate meter may be connected to a gas-liquid separator to measure a production flow rate of the gaseous product, and as a specific example, a wet test meter may be used.
나아가, 상기 분해 시스템(1000)은 온도 및 압력을 모니터링하고 제어하기 위한 제어부를 포함할 수 있다. 상기 액화 반응기(310), 고상 생성물 분리기(320), 촉매 반응기(410)의 온도제어 및 모니터링을 위한 장치이다. 또한, 공급장치(100)를 포함한 모든 단위 장치 및 장치 전단, 후단에는 압력계를 설치하여 압력 변화를 모니터링함으로써 분해 시스템 운전에 필요한 정보로 활용할 수 있다.Furthermore, the decomposition system 1000 may include a control unit for monitoring and controlling temperature and pressure. The apparatus for temperature control and monitoring of the liquefaction reactor 310, the solid-phase product separator 320, the catalytic reactor 410. In addition, by installing a pressure gauge at the front and rear ends of all the unit devices, including the supply device 100, by monitoring the pressure change can be utilized as information necessary for the operation of the decomposition system.
또한, 상기 분해 시스템(1000)은 복수 개의 공급장치(100)가 액화 반응부(300)로 병렬 연결되도록 공급장치를 구비할 수 있으며, 복수 개의 상기 공급장치가 구비됨에 따라 액화 반응기로 교반된 원료를 연속적으로 공급할 수 있다. 예를 들어, 하나의 공급장치에서 교반이 충분히 완료되어 균일한 원료가 액화 반응기로 주입될 때, 동시에 다른 하나의 공급장치에서는 원료를 교반하여 균일하게 교반된 원료를 준비할 수 있다. 액화 반응기로 교반된 원료를 주입하던 공급장치 내 원료가 모두 주입되었을 시점에, 균일하게 교반된 원료를 준비하던 공급장치로부터 교반된 원료를 액화 반응기로 주입하여 연속적인 공급을 수행할 수 있다.In addition, the decomposition system 1000 may include a feeder such that the plurality of feeders 100 are connected in parallel to the liquefaction reaction unit 300, and the raw material stirred by the liquefaction reactor as the plurality of feeders are provided. Can be fed continuously. For example, when agitation is sufficiently completed in one feeder and a uniform raw material is injected into the liquefaction reactor, at the same time, the other feeder may prepare a uniformly stirred raw material by stirring the raw material. At the time when all the raw materials in the feeder injecting the stirred raw material into the liquefaction reactor are injected, the agitated raw material may be injected into the liquefaction reactor from the feeder, which prepares the uniformly stirred raw material, to perform continuous feeding.
나아가, 본 발명은Furthermore, the present invention
상기 공급장치(100)의 원료 수용부(111)에 리그닌 및 용매를 공급하는 단계(단계 1);Supplying lignin and a solvent to the raw material accommodating part 111 of the supply device 100 (step 1);
상기 원료 수용부(111)로 공급된 리그닌 및 용매를 교반 수단(120)으로 혼합하는 단계(단계 2); 및Mixing the lignin and the solvent supplied to the raw material accommodating part 111 with the stirring means 120 (step 2); And
격벽(112)에 압을 가하여 상기 단계 2에서 혼합된 리그닌 및 용매 혼합물을 배출부(130)를 통해 액화 반응부로 투입하는 단계(단계 3)를 포함하는 상기 공급장치(100) 사용방법을 제공한다.It provides a method of using the supply device 100 comprising applying a pressure to the partition wall 112 and injecting the lignin and solvent mixture mixed in the step 2 into the liquefaction reaction unit through the discharge unit 130 (step 3). .
이하, 본 발명에 따른 리그닌 및 용매 혼합물의 액화 반응부로의 공급장치(100) 사용방법을 각 단계별로 상세히 설명한다.Hereinafter, a method of using the supply device 100 to the liquefaction reaction unit of the lignin and the solvent mixture according to the present invention will be described in detail for each step.
먼저, 본 발명에 따른 공급장치(100)의 사용방법에 있어서, 단계 1은 상기 공급장치의 원료 수용부(111)에 리그닌(lignin) 및 용매를 공급하는 단계이다.First, in the method of using the feeder 100 according to the present invention, step 1 is a step of supplying lignin and a solvent to the raw material receiving portion 111 of the feeder.
상기 단계 1은 배출부(130)의 밸브를 완전히 잠근 상태에서 원료 수용부(111)에 원료인 리그닌 및 용매를 독립적으로 또는 혼합된 상태로 공급할 수 있다.In the step 1, the lignin and the solvent, which are the raw materials, may be supplied to the raw material accommodating part 111 independently or in a mixed state while the valve of the discharge part 130 is completely closed.
다음으로, 본 발명에 따른 공급장치(100)의 사용방법에 있어서, 단계 2 및 단계 3은 상기 원료 수용부(111)로 공급된 리그닌 및 용매를 교반 수단(120)으로 혼합하고, 격벽(!12)에 압을 가하여 상기 단계 2에서 혼합된 리그닌 및 용매 혼합물을 배출부(130)를 통해 액화 반응부(300)로 투입하는 단계이다.Next, in the method of using the feeder 100 according to the present invention, step 2 and step 3, the lignin and the solvent supplied to the raw material accommodating portion 111 is mixed with the stirring means 120, partition (! 12) is added to the liquefaction reaction unit 300 through the discharge unit 130 by adding a pressure to the lignin and solvent mixture mixed in step 2 above.
상기 단계 2 및 단계 3은 원료 수용부(111) 내부에 구비된 교반 수단(120)으로 원료를 교반한 후, 실린더(110) 내 격벽(112)에 유체로 압을 가하여 혼합된 리그닌 및 용매 혼합물을 배출부(130)를 통해 액화 반응부(300)로 투입한다. Steps 2 and 3 are a mixture of the lignin and solvent mixture by stirring the raw material with the stirring means 120 provided in the raw material receiving portion 111, and then applying a pressure to the partition 112 in the cylinder 110 with a fluid To the liquefaction reaction unit 300 through the discharge unit 130.
교반 수단(120)인 교반기를 통한 혼합시간은 상기 공급장치(100)의 크기에 따라 달라질 수 있으며 특별히 제한된 것은 아니나 5분 내지 30분 동안 교반될 수 있고, 바람직하게는 7분 내지 20분 동안 교반될 수 있고, 더욱 바람직하게는 8분 내지 15분 동안 교반될 수 있고, 가장 바람직하게는 10분 동안 교반될 수 있다.Mixing time through the stirrer which is the stirring means 120 may vary depending on the size of the supply device 100 and is not particularly limited but may be stirred for 5 to 30 minutes, preferably for 7 to 20 minutes May be stirred, more preferably 8 minutes to 15 minutes, and most preferably 10 minutes.
상기 격벽(112)의 하강이 멈출 때까지 유체를 투입하며, 격벽 상부로 유체를 계속하여 공급하면 리그닌 및 용매 혼합물이 이루는 압력과 유체가 이루는 압력이 같아질 때까지 격벽이 하강하게 되고 압력이 같아지면 격벽의 하강이 멈추게 된다.The fluid is introduced until the lowering of the partition 112 stops, and if the fluid is continuously supplied to the upper part of the partition wall, the partition wall is lowered until the pressure between the lignin and the solvent mixture is equal to the pressure of the fluid, and the pressure is the same. The descent of the ground bulkhead stops.
격벽(112) 상부에서 유체가 가하는 압력과 격벽 하부에 혼합물이 이루는 압력이 같아진 상태에서 즉, 격벽의 하강이 멈춘 상태에서 배출부(130)의 밸브를 열어주고 다시 유체를 연속하여 공급하여 주면 액화 반응기(310)로 공급되는 혼합물의 양은 투입된 유체의 양과 동일하게 된다. 이를 통해 액화 반응기로 공급속도를 조절할 수 있으며, 격벽이 교반 수단(120)이 구비된 위치에 격벽이 통과할 수 없도록 형성된 턱에 도달하면 배출부(130)를 통한 리그닌 및 용매 혼합물의 투입은 정지된다.When the pressure applied by the fluid in the upper part of the partition wall 112 and the pressure of the mixture at the lower part of the partition wall are equal, that is, when the lowering of the partition wall is stopped, the valve of the outlet 130 is opened and the fluid is continuously supplied again. The amount of the mixture supplied to the liquefaction reactor 310 is equal to the amount of fluid introduced. Through this, the feed rate can be adjusted to the liquefaction reactor, and when the partition reaches the jaw formed so that the partition cannot pass through the stirring means 120, the input of the lignin and the solvent mixture through the discharge unit 130 is stopped. do.
더욱 나아가, 본 발명은Furthermore, the present invention
상기 리그닌 분해 시스템(1000)의 공급장치(100)로 리그닌 및 용매의 혼합물인 원료를 공급하는 단계(단계 1);Supplying a raw material which is a mixture of lignin and a solvent to a supply device 100 of the lignin decomposition system 1000 (step 1);
액화 반응부(300) 및 촉매 반응부(400)를 초임계유체용 용매로 채운 후 반응압력 및 반응온도로 설정하는 단계(단계 2); 및Filling the liquefaction reaction unit 300 and the catalytic reaction unit 400 with a supercritical fluid solvent and setting the reaction pressure and the reaction temperature (step 2); And
공급장치(100)의 격벽(112)을 이용하여 원료 수용부(111)의 압력을 반응부의 반응압력과 동일하게 설정한 후, 반응부로 원료를 공급하여 액화반응 및 촉매반응을 수행하는 단계(단계 3)를 포함하는 상기 분해 시스템(1000)의 운전방법을 제공한다.Setting the pressure of the raw material accommodating part 111 to be equal to the reaction pressure of the reaction part using the partition 112 of the supply device 100, and then supplying the raw material to the reaction part to perform the liquefaction and catalytic reactions (step It provides a method of operating the decomposition system 1000 comprising a).
이하, 도 2의 모식도를 참조하여, 본 발명에 따른 분해 시스템(1000)의 운전방법을 각 단계별로 상세히 설명한다.Hereinafter, with reference to the schematic diagram of Figure 2, the operation method of the decomposition system 1000 according to the present invention will be described in detail for each step.
먼저, 본 발명에 따른 분해 시스템(1000)의 운전방법에 있어서, 단계 1은 상기 리그닌 분해 시스템의 공급장치(100)로 리그닌 및 용매의 혼합물인 원료를 공급하는 단계이다.First, in the operating method of the decomposition system 1000 according to the present invention, step 1 is a step of supplying a raw material which is a mixture of lignin and a solvent to the supply device 100 of the lignin decomposition system.
상기 단계 1에서는 리그닌 및 용매의 혼합물인 원료를 분해 시스템의 공급장치(100), 더욱 구체적으로 공급장치의 실린더(110) 내부 원료 수용부(111)로 공급한다.In step 1, the raw material, which is a mixture of lignin and a solvent, is supplied to the supply device 100 of the decomposition system, and more specifically, to the raw material receiving part 111 inside the cylinder 110 of the supply device.
이때, 상기 단계 1에서 공급되는 원료는 원료 저장부(140)에서 혼합된 리그닌 및 용매의 혼합물일 수 있다. 상압의 원료 저장부(140)에 원하는 농도의 리그닌과 초임계유체용 용매(예를 들어, 에탄올 등)를 투입하고 교반 수단으로 혼합하여 혼합물을 제조 및 저장하고 이를 상압 펌프(141) 및 제1 밸브(142)를 이용하여 실린더(110)의 원료 수용부(111)로 투입한다. 이때, 제3 밸브(117) 및 제5 밸브(119)는 완전히 닫힌 상태인 것이 바람직하고, 제4 밸브(118)는 열어 놓는다. 상기 원료 수용부로 원료가 공급되면서 압력이 발생하면 격벽(112)을 위쪽으로 밀어올리게 된다. 이때, 실린더 상단의 제4 밸브(118)를 통하여 공기가 밖으로 배출될 수 있다. 일정량의 리그닌 및 용매의 혼합 원료를 원료 수용부에 채우면 투입을 중지하고 제1 밸브를 완전히 닫는다. In this case, the raw material supplied in step 1 may be a mixture of lignin and a solvent mixed in the raw material storage unit 140. A lignin and a supercritical fluid solvent (for example, ethanol, etc.) of a desired concentration are added to the raw material storage unit at atmospheric pressure, and mixed by stirring. The mixture is prepared and stored, and the atmospheric pressure pump 141 and the first valve are prepared. 142 is used to feed into the raw material accommodating portion 111 of the cylinder 110. At this time, it is preferable that the third valve 117 and the fifth valve 119 are completely closed, and the fourth valve 118 is left open. When pressure is generated while the raw material is supplied to the raw material accommodating part, the partition wall 112 is pushed upward. At this time, air may be discharged out through the fourth valve 118 at the upper end of the cylinder. When a certain amount of the mixed raw material of lignin and the solvent is filled in the raw material receiving portion, the feeding is stopped and the first valve is completely closed.
또한, 제4 밸브(118)도 완전히 닫고 제3 밸브(117)를 열어 유체 저장조(150) 내 유체를 고압펌프(151)를 이용하여 유체 수용부(113)로 투입한다. 유체를 계속 투입하면 제1 밸브(142), 제4 밸브(118) 및 제5 밸브(119)가 닫힌 상태이므로 실린더(100) 내 압력이 올라가게 된다. 실린더 내부 압력은 반응압력보다 1 bar 내지 2 bar 정도 높게 유지할 수 있다. 실린더 내부 압력을 반응압력보다 1 bar 내지 2 bar 정도 높게 유지될 때까지 고압펌프를 이용하여 유체를 유체 수용부로 투입하고 목표 압력에 도달하면 투입을 중단한다.In addition, the fourth valve 118 is also completely closed and the third valve 117 is opened to inject the fluid in the fluid reservoir 150 into the fluid receiving part 113 using the high pressure pump 151. If the fluid is continuously added, the pressure in the cylinder 100 increases because the first valve 142, the fourth valve 118, and the fifth valve 119 are closed. The pressure inside the cylinder can be maintained at about 1 bar to 2 bar higher than the reaction pressure. The fluid is introduced into the fluid receiving portion using a high pressure pump until the pressure inside the cylinder is maintained at about 1 bar to 2 bar higher than the reaction pressure, and stops when the target pressure is reached.
다음으로, 본 발명에 따른 분해 시스템(1000)의 운전방법에 있어서, 단계 2는 액화 반응부(300) 및 촉매 반응부(400)를 초임계유체용 용매로 채운 후 반응압력 및 반응온도로 설정하는 단계이다.Next, in the operating method of the decomposition system 1000 according to the present invention, step 2 is to set the reaction pressure and reaction temperature after filling the liquefaction reaction unit 300 and the catalyst reaction unit 400 with a supercritical fluid solvent Step.
상기 단계 2는 리그닌의 분해반응 전에 반응장치들을 초임계유체 상태로 형성하는 단계로, 반응부인 액화 반응부(300) 및 촉매 반응부(400)를 초임계유체용 용매로 채운 후 초임계 조건을 설정한다. Step 2 is a step of forming the reaction apparatus in a supercritical fluid state before the decomposition reaction of lignin, the supercritical conditions after filling the liquefaction reaction unit 300 and the catalytic reaction unit 400, the reaction unit with a supercritical fluid solvent is set do.
구체적인 일례로, 상기 단계 2는 공급장치(100)의 배출부(130)와 연결된 제5 밸브(119)가 닫힌 상태에서 초임계유체용 용매 저장조(500) 및 고압펌프(510)와 연결된 제2 밸브(511)를 열고 고압펌프를 이용하여 초임계유체용 용매(예를 들어, 에탄올 등)를 저장조에서 액화 반응기(310)로 투입한다. 촉매 반응기로 투입된 용매는 고상 생성물 분리기(320), 촉매 반응기(410), 열교환기(600), 후압 제어기(700)를 통과하여 기액 분리기(800)로 나온다. 상기 용매가 기액 분리기에 나오는 것이 확인될 때까지 고압펌프를 통하여 계속 투입한다. 용매가 기액 분리기에서 나오면 후압 제어기(back-pressure regulator)를 이용하여 용매가 통과하는 장치들의 압력을 동일하게 반응압력까지 올린다. 압력이 반응압력까지 올라갈 때까지 기액 분리기에서 용매가 배출되지 않다가 반응압력에 도달하면 다시 배출된다. 이때 반응압력은 고압 유지 및 원료 교반을 수행하고 있는 공급장치(100)의 압력보다 1 bar 내지 2 bar 낮게 유지한다. 반응압력에서 고압펌프를 이용하여 초임계유체용 용매를 계속 반응장치에 투입하면서 온도를 반응온도까지 승온시킨다. 액화 반응기, 고상 생성물 분리기, 촉매 반응기 등의 온도가 목표온도에 도달하고 안정적으로 유지되도록 하는 것이 바람직하다.As a specific example, the step 2 is the second valve connected to the solvent reservoir 500 and the high pressure pump 510 for the supercritical fluid in a state in which the fifth valve 119 connected to the outlet 130 of the supply device 100 is closed. 511 is opened and a supercritical fluid solvent (for example, ethanol, etc.) is introduced into the liquefaction reactor 310 using a high pressure pump. The solvent introduced into the catalytic reactor passes through the solid phase product separator 320, the catalytic reactor 410, the heat exchanger 600, and the back pressure controller 700, and exits the gas-liquid separator 800. Continue to feed through the high pressure pump until it is confirmed that the solvent exits the gas-liquid separator. When the solvent exits the gas-liquid separator, use a back-pressure regulator to raise the pressure of the device through which the solvent passes to equal reaction pressure. The solvent is not discharged from the gas-liquid separator until the pressure rises to the reaction pressure, and is discharged again when the reaction pressure is reached. At this time, the reaction pressure is maintained at 1 bar to 2 bar lower than the pressure of the supply device 100 performing high pressure maintenance and raw material stirring. Using a high pressure pump at a reaction pressure, the temperature of the supercritical fluid is continuously added to the reactor while the temperature is raised to the reaction temperature. It is desirable for the temperatures of the liquefaction reactor, solid product separator, catalytic reactor, etc. to reach the target temperature and remain stable.
다음으로, 본 발명에 따른 분해 시스템(1000)의 운전방법에 있어서, 단계 3은 공급장치(100)의 격벽(112)을 이용하여 원료 수용부(111)의 압력을 반응부의 반응압력과 동일하게 설정한 후, 반응부로 원료를 공급하여 액화반응 및 촉매반응을 수행하는 단계이다.Next, in the operating method of the decomposition system 1000 according to the present invention, step 3 uses the partition 112 of the supply device 100 to make the pressure of the raw material accommodating part 111 equal to the reaction pressure of the reaction part. After setting, the raw material is supplied to the reaction unit to perform a liquefaction reaction and a catalytic reaction.
상기 단계 3에서는 상기 단계 1에서 준비된 혼합 원료를 상기 단계 2에서 준비된 반응부 내로 공급하여 리그닌의 분해반응을 수행한다.In step 3, the mixed raw material prepared in step 1 is supplied into the reaction unit prepared in step 2 to perform the decomposition reaction of lignin.
구체적인 일례로, 상기 단계 3은 제5 밸브(119)를 열고 동시에 고압펌프(151)를 이용하여 용매를 실린더(100)의 유체 수용부(113)에 투입하여 혼합 원료를 액화 반응기(310)로 투입시킬 수 있다. 이때, 거의 동시에 고압펌프(510)를 통한 초임계유체용 용매 투입은 정지하고 제2 밸브(511)를 완전히 닫는다. 이후 고압펌프(151)와 공급장치(100)를 이용한 원료의 반응부로의 투입을 계속하면서 리그닌의 초임계유체 연속 액화 반응 운전을 수행한다. As a specific example, the step 3 is to open the fifth valve 119 and at the same time using a high pressure pump 151 to inject a solvent into the fluid receiving portion 113 of the cylinder 100 to the mixed raw material to the liquefaction reactor 310 Can be put in. At this time, the solvent input for the supercritical fluid through the high pressure pump 510 is stopped at the same time and the second valve 511 is completely closed. Thereafter, while continuously supplying the raw materials using the high pressure pump 151 and the supply device 100 to the reaction unit, a supercritical fluid liquefaction operation of lignin is performed.
또한, 상기 분해 시스템(1000)은 촉매 반응부(400) 후단에 위치하여 촉매 반응부에서 형성된 반응 생성물을 냉각시키는 열교환기(600)를 포함하고, 반응 생성물을 냉각하는 단계(단계 4)를 더 포함할 수 있다.In addition, the decomposition system 1000 includes a heat exchanger 600 positioned at the rear end of the catalytic reaction unit 400 to cool the reaction product formed in the catalytic reaction unit, and further comprising the step of cooling the reaction product (step 4). It may include.
촉매 반응기(410)를 통과한 생성물은 냉각, 갑압 과정을 거쳐 기상과 액상으로 분리하고 기상은 가스유속 측정기로 실시간 발생량을 측정한다. 또한 기액 분리기(800)와 가스유속 측정기 사이에 시료 채취구를 두어 가스 시료를 채취하여 조성분석에 활용한다. 액상 생성물은 일정시간 동안 기액 분리기 하단에서 채취하여 발생량, 연료특성 분석 등에 활용한다. 액화 반응 조건 중에서 투입유속은 유체 저장조(150)와 연결된 고압펌프(151)의 유속을 변화하면서 수행하고 리그닌 농도 제어는 초임계유체용 용매 저장조(500)와 연결된 고압펌프(510)의 가동 및 유속 변화를 통하여 수행할 수 있다. 또한, 반응압력은 후압 제어기(700)를 통하여 제어할 수 있고 반응온도는 온도제어기를 통하여 제어가 가능하다.The product passed through the catalytic reactor 410 is separated into a gaseous phase and a liquid phase through cooling and pressure reduction processes, and the gaseous phase is measured in real time with a gas flow meter. In addition, a gas sample is placed between the gas-liquid separator 800 and the gas flow rate meter to collect a gas sample and use it for composition analysis. The liquid product is collected from the bottom of the gas-liquid separator for a certain period of time and used for analysis of generation amount and fuel characteristics. In the liquefaction conditions, the input flow rate is performed while changing the flow rate of the high pressure pump 151 connected to the fluid reservoir 150, and the lignin concentration control is performed and the flow rate change of the high pressure pump 510 connected to the solvent reservoir 500 for the supercritical fluid. This can be done via: In addition, the reaction pressure may be controlled through the after pressure controller 700 and the reaction temperature may be controlled through the temperature controller.
<부호의 설명><Description of the code>
공급장치 : 100 실린더 : 110Feeder: 100 cylinder: 110
원료 수용부 : 111 격벽 : 112Raw material receptacle: 111 bulkhead: 112
유체 수용부 : 113 고압용 커버 : 114Fluid reservoir: 113 High pressure cover: 114
유체 주입용 관로 : 115 공기 배출용 관로 : 116Pipe for fluid injection: 115 Pipe for air discharge: 116
교반 수단 : 120 배출부 : 130Stirring means: 120 outlet: 130
원료 저장부 : 140 상압 펌프 : 141Raw material storage: 140 atmospheric pressure pump: 141
제1 밸브 : 142 유체 저장조 : 150First valve: 142 Fluid reservoir: 150
원료 공급부 : 200 액화 반응부 : 300Raw material supply part: 200 Liquefaction reaction part: 300
액화 반응기 : 310 고상 생성물 분리기 : 320Liquefaction Reactor: 310 Solid Phase Product Separator: 320
배출 밸브 : 322 필터 : 330Discharge Valve: 322 Filter: 330
밸브 : 340 원료 투입용 튜브 : 350VALVE: 340 TUBE: 350
촉매 반응부 : 400 촉매 반응기 : 410Catalytic Reactor: 400 Catalytic Reactor: 410
초임계 유체용 용매 저장조 : 500Solvent reservoir for supercritical fluids: 500
열교환기 : 600 후압 제어기 : 700Heat Exchanger: 600 After Pressure Controller: 700
기액 분리기 : 800Gas-liquid separator: 800
이하, 본 발명을 실시예 및 실험예에 의해 상세히 설명한다.Hereinafter, the present invention will be described in detail by Examples and Experimental Examples.
단, 하기 실시예 및 실험예는 본 발명을 예시하는 것일 뿐, 본 발명이 하기 실시예 및 실험예에 의해 제한되는 것은 아니다.However, the following Examples and Experimental Examples are only illustrative of the present invention, the present invention is not limited by the following Examples and Experimental Examples.
<< 실험예Experimental Example 1> 수평형 블레이드(blade) 교반기가 장착된 아크릴 반응기에서 리그닌과 에탄올의 혼합특성 실험 1> Experimental mixing of lignin and ethanol in an acrylic reactor equipped with a horizontal blade stirrer
1-1. 실험방법1-1. Experiment method
본 실험에서는 나무의 강산 가수분해 과정에서 부산물로 발생한 리그닌과 액체로 에탄올을 사용하였다.In this experiment, lignin and ethanol were used as by-products generated by strong acid hydrolysis of wood.
도 3에 나타낸 바와 같이, 내경이 90 mm, 높이가 600 mm이며, 교반기가 하부에 장착된 아크릴 혼합반응기를 제작하고 높이에 따라 균일한 간격으로 1/4 인치(inch) 관로를 갖는 4개의 시료 채취구를 설치하였다. 4개의 시료 채취구는 혼합 반응기 높이에 따른 혼합율을 측정하기 위함이다. 에탄올에 가수분해 리그닌 25-30 wt%를 잘 혼합하여 아크릴 반응기에 투입하고 250 rpm에서 교반하면서 충분한 시간(약 30분)이 경과한 후 시료 채취구의 밸브를 서서히 열어 시료를 채취하여 반응기 높이별로 리그닌 함량을 측정하였다. 이때 교반기는 도 3의 우측 하단에 나타낸 바와 같은 수평형 블레이드(blade)가 달린 교반기를 사용하였다.As shown in FIG. 3, four samples having an internal diameter of 90 mm and a height of 600 mm, having an acrylic mixer reactor equipped with a stirrer at the bottom and having a 1/4 inch pipeline at uniform intervals according to the height. A harvesting port was installed. The four sampling ports are for measuring the mixing rate according to the mixing reactor height. After mixing 25-30 wt% of hydrolyzed lignin in ethanol, it was added to the acrylic reactor, and after sufficient time (about 30 minutes) while stirring at 250 rpm, the valve of the sampling port was slowly opened to collect a sample and lignin by the reactor height. The content was measured. The stirrer used a stirrer with a horizontal blade (blade) as shown in the lower right of FIG.
1-2. 실험결과1-2. Experiment result
수평형 교반기를 사용한 실험에서는 도 4에 나타낸 바와 같이 4개의 샘플 모두에서 리그닌 함량이 6 wt% 이하로 매우 낮게 나타났고, 시료 채취구 높이가 높을수록 농도가 낮았다. 즉, 이와 같은 교반 조건에서 리그닌과 에탄올의 혼합은 잘 일어나지 않았고 리그닌은 대부분 반응기 바닥에 침전되어 존재하였다.In the experiment using a horizontal stirrer, as shown in FIG. 4, the lignin content of all four samples was very low, 6 wt% or less, and the higher the sampling height, the lower the concentration. That is, the mixing of lignin and ethanol did not occur well under such stirring conditions, and most of the lignin was precipitated at the bottom of the reactor.
<< 실험예Experimental Example 2> 수직형 블레이드(blade) 교반기가 장착된 아크릴 반응기에서 리그닌과 에탄올의 혼합특성 실험 2> Experimental mixing of lignin and ethanol in an acrylic reactor equipped with a vertical blade stirrer
2-1. 실험방법2-1. Experiment method
도 5에 나타낸 바와 같이, 교반기를 수직형으로 개조하여 상기 실험예 1의 실험방법과 동일한 방법으로 실험을 수행하였다. 다만 리그닌 초기 혼합율을 30 wt%로 높였다.As shown in Figure 5, the stirrer was converted to a vertical type and the experiment was carried out in the same manner as the experimental method of Experimental Example 1. However, the initial lignin mixing rate was increased to 30 wt%.
2-2. 실험결과2-2. Experiment result
도 6에 나타낸 바와 같이, 모든 조건에서 육안으로 상분리를 확인하는 것이 어려울 정도로 혼합이 잘 일어났다. 4개의 채취구에서 얻은 시료의 리그닌 함량은 23-27 wt%로 유사하였으나 원액인 30 wt%보다 낮았다. 이로써 교반기의 블레이드(blade) 형태에 따라서 리그닌과 에탄올의 혼합율에 상당한 차이가 있음이 확인되었으며, 수직형 블레이드(blade)를 사용할 경우가 수평형 블레이드(blade)를 사용할 때보다 혼합율이 현저히 증가함을 확인하였다.As shown in FIG. 6, the mixing occurred well enough that it was difficult to visually confirm phase separation under all conditions. The lignin content of the samples from the four harvesting ports was similar at 23-27 wt%, but lower than that of the undiluted 30 wt%. This shows that there is a significant difference in the mixing ratio of lignin and ethanol according to the blade shape of the stirrer, and the mixing rate is significantly increased when the vertical blade is used than when the horizontal blade is used. Confirmed.
<< 실험예Experimental Example 3> 십자형 수직형 블레이드(blade) 교반기가 장착된 아크릴 반응기에서 리그닌과 에탄올의 혼합특성 실험 3> Experimental Mixing of Lignin and Ethanol in Acrylic Reactor Equipped with a Cross Vertical Blade Stirrer
3-1. 실험방법3-1. Experiment method
수직형 블레이드(blade)를 장착한 교반기가 리그닌과 에탄올 혼합에 효과적인 것을 확인하였으므로 좀 더 교반 효율을 높이기 위하여 도 7에 나타낸 바와 같이 십자형 블레이드(blade)를 장착한 교반기를 제작, 사용하여 상기 실시예 1과 같은 방법으로 실험을 수행하였다.Since it was confirmed that the stirrer equipped with a vertical blade was effective for lignin and ethanol mixing, the stirrer equipped with a cross blade was manufactured and used as shown in FIG. The experiment was carried out in the same manner as 1.
3-2. 실험결과3-2. Experiment result
도 7에 나타낸 바와 같이 반응기 높이에 따른 혼합율 차이는 다소 개선되었으나 (특히 4번 시료 채취구의 리그닌 농도) 여전히 원액의 리그닌 농도인 30 wt%와는 차이가 있었다.As shown in FIG. 7, the mixing ratio difference according to the height of the reactor was somewhat improved (particularly, the lignin concentration of sample sampling No. 4) was still different from that of 30 wt% of the lignin concentration of the stock solution.
<< 실험예Experimental Example 4> 십자형 수직형 블레이드(blade) 교반기가 장착된 아크릴 반응기에서 관로 개선에 따른 리그닌과 에탄올의 혼합특성 실험 4> Experimental Study of Lignin and Ethanol Mixtures with Improved Pipe in Acrylic Reactor with Cross Blade Agitator
4-1. 실험방법4-1. Experiment method
시료 채취구 높이에 따른 리그닌 함량이 일정하다는 결과로부터 교반 효과는 좋은데 시료 채취구 관로가 좁아 시료 채취가 정상적으로 이루어 지지 않았을 가능성이 있다고 판단되어 채취구 관로를 외경 3/8 인치(inch)로 개선하여 도 8에 나타낸 바와 같이 상기 실험예 1과 같은 방법으로 실험을 수행하였다.From the result that the lignin content is constant according to the height of the sampling port, the stirring effect is good, but it is judged that the sampling channel may not have been normally performed because the sampling port pipe is narrow, and the channel pipe is improved to the outer diameter of 3/8 inch (inch). As shown in FIG. 8, the experiment was performed in the same manner as in Experiment 1.
4-2. 실험결과4-2. Experiment result
도 9에 나타낸 바와 같이 반응기 높이에 따른 리그닌 농도 차이는 거의 없었고 모든 시료 채취구의 리그닌 함량은 29.5 wt% 이상으로 초기 리그닌 함량 30 wt%의 99% 정도를 보였다.As shown in FIG. 9, there was almost no difference in the lignin concentration according to the height of the reactor, and the lignin content of all the sample collection ports was 29.5 wt% or more and about 99% of the initial lignin content of 30 wt%.
시료 채취구의 관로 영향은 리그닌이 엉기는 성질이 있어서 1/4 인치(inch)의 좁은 시료 채취구 관로를 통과하면서 관로벽에 부착되어 에탄올과 다소 분리되었기 때문임을 확인하였다.It was confirmed that the pipeline effect of the sample port was due to the lignin being entangled and attached to the pipe wall while passing through the narrow 1 / 4-inch channel tube and separated from the ethanol.
<< 실험예Experimental Example 5> 에탄올을 이용한 분해 시스템 성능 확인 5> Confirmation of decomposition system performance using ethanol
5-1. 실험방법5-1. Experiment method
도 2에 모식도로 나타낸 바와 같은 리그닌 분해 시스템을 구성하였으며, 촉매 반응기는 Inconel 625 재질로서 내경 17.5 mm, 길이 150 mm, 부피 35 mL로 제작하였다. 촉매층에는 고상물이 통과할 수 없고 액상 및 기상 생성물만 통과하면서 탈산소 반응이 진행된다. 실험방법은 다음과 같다. The lignin decomposition system as shown in the schematic diagram in FIG. 2 was configured, and the catalytic reactor was made of Inconel 625 material having an inner diameter of 17.5 mm, a length of 150 mm, and a volume of 35 mL. The deoxidation reaction proceeds while the solid phase cannot pass through the catalyst layer and passes only the liquid and gaseous products. The experimental method is as follows.
먼저, 촉매를 사용하는 실험에서는 촉매 반응기에 Mg-Ni-Mo/AC 촉매 4 g을 넣고 반응기를 체결하였다. 촉매는 활성차콜(AC)에 Ni, Mo, Mg 전구체를 녹인 수용액을 초기습윤법(incipient wetness method)로 담지하여 제조하였다. First, in an experiment using a catalyst, 4 g of Mg-Ni-Mo / AC catalyst was put into a catalytic reactor and the reactor was fastened. The catalyst was prepared by supporting an aqueous solution in which Ni, Mo, and Mg precursors were dissolved in activated charcoal (AC) by an incipient wetness method.
이후, 에탄올을 고압펌프를 이용하여 액화 반응기, 촉매 반응기 내부를 채운 뒤 후압 제어기(BPR)를 이용하여 300 bar까지 승압하고 30분간 유지하며 압력이 새는지 확인하였다. 압력이 안정적인 상태에서 반응기 외부에 장착된 전기 가열로를 이용하여 반응기 내부를 350℃까지 승온하였다. 반응기 촉매층 외부에 냉각장치를 설치하여 과도한 발열반응의 경우 반응온도를 제어하였다. 반응기 온도가 목표치에 도달하면, 반응기와 모든 튜브 라인에 압력이 새는지 다시 확인하였다. 주사기형 실린더 내 원료 수용부에 리그닌 50 g(5 wt%) 또는 250 g(25 wt%)와 에탄올 950 g 또는 750 g을 넣고 교반기를 이용하여 일정한 속도 (> 300 rpm)로 혼합시켰다. 실린더를 300 bar까지 승압하여 압력 리크 테스트를 실시한 후, 고압펌프를 사용하여 유체 저장조 내 에탄올을 격벽 상부의 유체 수용부로 투입하였다. 격벽 상부에 에탄올이 투입되어 압력이 올라가면 반응물질이 있는 하부와 압력차가 발생하는데 이를 이용하여 리그닌-에탄올 원료 혼합물을 연속 액화, 촉매 반응기에 투입하였다. 원료 혼합물이 반응기에 도달하면 리그닌의 급속한 액화 반응이 진행되어 이로부터 1차 분해 생성물이 생성된다. Thereafter, ethanol was filled with the liquefaction reactor and the catalytic reactor using a high pressure pump, and then boosted to 300 bar using a back pressure controller (BPR) and maintained for 30 minutes to check whether the pressure was leaked. In a stable pressure state, the inside of the reactor was heated up to 350 ° C. using an electric furnace mounted outside the reactor. A cooling device was installed outside the reactor catalyst layer to control the reaction temperature in case of excessive exothermic reaction. Once the reactor temperature reached the target value, the reactor and all tube lines were rechecked for leaks. 50 g (5 wt%) or 250 g (25 wt%) of lignin and 950 g or 750 g of ethanol were added to a raw material container in a syringe-type cylinder and mixed at a constant speed (> 300 rpm) using an agitator. After the pressure leak test was performed by raising the cylinder to 300 bar, ethanol in the fluid reservoir was introduced into the fluid receiving portion above the partition wall using a high pressure pump. When the ethanol is added to the upper part of the partition wall and the pressure increases, a pressure difference occurs with the lower part of the reactant. The lignin-ethanol raw material mixture is continuously liquefied and introduced into the catalytic reactor. When the raw material mixture reaches the reactor, a rapid liquefaction of lignin proceeds to produce a first decomposition product.
1차 분해 생성물은 촉매층을 통과하고 여기서 탈산소 반응이 진행된다. 촉매층을 통과한 생성물은 냉각, 감압 과정을 거쳐 기-액 분리기에 유입되어 가스와 액상 생성물로 분리된다. 분리된 가스 생성물은 습식 가스미터(wet gas meter)를 이용하여 생성유속을 실시간으로 확인하였다. 액상 생성물은 기-액 분리기 하단에서 정해진 시간 동안 수집하여 무게와 생성속도를 측정하였다. 반응이 종료되면 가열로 가열을 중지하고 반응기를 상온까지 냉각시켰다. 반응기 내부 온도가 상온에 도달하면 반응기 내부를 열어 고상 생성물 및 촉매를 회수하였다. 고상은 105℃의 상압 건조기에서 12시간 건조한 후 냉각하여 무게를 측정하였다. 액상 생성물은 60℃의 감압 증류장치에서 감압 증류하여 용매인 에탄올을 제거하고 남은 물질을 액화된 오일 생성물로 수확하였다.The primary decomposition product passes through the catalyst bed where the deoxygenation reaction proceeds. After passing through the catalyst bed, the product is cooled and decompressed to enter the gas-liquid separator to separate gas and liquid product. The separated gas product was identified in real time using a wet gas meter (wet gas meter). Liquid products were collected for a defined time at the bottom of the gas-liquid separator to determine the weight and rate of production. At the end of the reaction, the heating was stopped and the reactor was cooled down to room temperature. When the temperature inside the reactor reached room temperature, the inside of the reactor was opened to recover the solid product and the catalyst. The solid phase was dried in an atmospheric pressure dryer at 105 ° C. for 12 hours, cooled, and weighed. The liquid product was distilled under reduced pressure in a vacuum distillation apparatus at 60 ° C. to remove ethanol as a solvent, and the remaining material was harvested as a liquefied oil product.
5-2. 실험결과5-2. Experiment result
1) One) 처리유속Treatment flow rate 영향 분석 Impact Analysis
순수 에탄올 투입유속을 0.8, 1.5, 2.2, 3.1, 3.9 g/min으로 증가시키면서 반응기에 투입하여 반응기 온도와 압력을 350 ℃, 300 bar로 유지하기 위한 운전조건을 확립하고자 하였다. 이 실험에서 촉매는 사용하지 않았다. 각 에탄올 투입유속에서 목표한 온도와 압력에 도달하면 30분 동안 안정상태를 유지한 후 생성물을 채취하고 다음 유속으로 변경하여 동일한 실험을 수행하였으며, 그 결과를 표 1에 나타내었다.The pure ethanol input flow rate was increased to 0.8, 1.5, 2.2, 3.1, and 3.9 g / min, and the reactor was operated to establish the operating conditions for maintaining the reactor temperature and pressure at 350 ° C and 300 bar. No catalyst was used in this experiment. After reaching the target temperature and pressure at each ethanol input flow rate, the product was collected for 30 minutes and then the product was collected and changed to the next flow rate. The results were shown in Table 1 below.
운전시간(분)Driving time (minutes) 액화층 온도(℃)Liquefied layer temperature (℃) 촉매층 온도(℃)Catalyst bed temperature (℃) 압력 (bar)Pressure (bar) 에탄올 유속(g/min)Ethanol Flow Rate (g / min) 생성물 유속(g/min)Product flow rate (g / min)
3030 353353 302302 348.5348.5 0.80.8 0.70.7
6060 350350 301301 348.9348.9 1.51.5 1.41.4
9090 348348 304304 347.9347.9 2.22.2 2.12.1
120120 347347 308308 348.1348.1 3.13.1 2.92.9
150150 349349 307307 349.2349.2 3.93.9 3.73.7
상기 표 1에 나타낸 바와 같이 당초 투입유속 목표인 0.1 kg/h 유속보다 높은 에탄올 투입유속인 3.9 g/min(0.23 kg/h)에서 반응기 액화층 온도를 350℃로 유지할 수 있었다. 액화층과 촉매층의 가열로가 독립적으로 설치, 운전되고 있으므로 촉매층의 온도는 필요시 300℃ 이상으로 승온할 수 있다.As shown in Table 1, the reactor liquefied bed temperature was maintained at 350 ° C. at 3.9 g / min (0.23 kg / h), which is an ethanol input flow rate higher than the initial input flow target 0.1 kg / h flow rate. Since the heating furnaces of the liquefied layer and the catalyst layer are installed and operated independently, the temperature of the catalyst layer can be raised to 300 ° C or more if necessary.
2) 운전시간 영향 분석2) Operation time effect analysis
운전시간 경과에 따른 반응기 온도 350℃와 압력 300 bar이 유지되는지 확인하기 위하여 에탄올 유속 2.37 g/min(0.14 kg/h) 조건에서 4시간 동안 반응기를 가동하였으며, 그 결과를 도 10에 나타내었고, 운전시간 동안 매 1시간 간격으로 액상 생성물과 가스 생성물 시료를 채취하여 분석하였으며, 그 결과를 도 11 및 도 12에 나타내었다.The reactor was operated for 4 hours at a ethanol flow rate of 2.37 g / min (0.14 kg / h) in order to confirm that the reactor temperature of 350 ° C. and the pressure of 300 bar were maintained over time. The results are shown in FIG. 10. Liquid and gaseous product samples were collected and analyzed every 1 hour during operation, and the results are shown in FIGS. 11 and 12.
도 10에 나타낸 바와 같이, 온도 및 압력은 운전기간 중 일정하게 유지됨을 확인할 수 있다. As shown in Figure 10, it can be seen that the temperature and pressure are kept constant during the operation period.
도 11 및 도 12에 나타낸 바와 같이, GC-MS 분석결과, 에탄올 함량이 약 79 area%이고 아세트산과 프로판산이 각각 10 area%이었다. 이러한 결과는 KOH를 촉매로 사용한 실험결과와 매우 다르다. KOH 상에서는 에탄올의 90%가 부탄올, 헥산올, 가스 등으로 전환된다. 한편 가스 생성량은 평균 3 ml/min로 매우 낮았고 주요 성분은 수소와 이산화탄소이다.As shown in FIG. 11 and FIG. 12, the GC-MS analysis showed that the ethanol content was about 79 area% and the acetic acid and propanoic acid were 10 area%, respectively. These results are very different from the experimental results using KOH as a catalyst. On KOH, 90% of ethanol is converted to butanol, hexanol, gas and the like. On the other hand, gas production was very low at an average of 3 ml / min, and the main components were hydrogen and carbon dioxide.
3) 촉매 영향 분석3) Catalyst Impact Analysis
촉매 영향 실험에서는 Mg-Ni-Mo/AC 촉매를 촉매층에 4 g 충전하고 에탄올을 연속 투입하면서 반응기 온도 350℃와 압력 300 bar 유지조건을 조사하였다. 운전은 WHSV(반응물질 질량유속(g/h)/촉매 무게(g)) 35.6 h-1 조건에서 4시간 동안 실시했다. 운전시간 경과에 따른 온도 및 압력 변화를 도 13에 나타냈다. In the catalyst effect experiment, 4 g of Mg-Ni-Mo / AC catalyst was charged to the catalyst layer and ethanol was continuously added to investigate the reactor temperature of 350 ° C. and the pressure of 300 bar. Operation was carried out for 4 hours under conditions of WHSV (reactant mass flow rate (g / h) / catalyst weight (g)) 35.6 h −1 . 13 illustrates changes in temperature and pressure over time.
또한, 촉매를 충전한 상태에서 수행한 에탄올 연속 투입 실험에서 얻은 액상과 가스 생성물 조성을 도 14 및 도 15에 나타내었다.In addition, the liquid and gas product compositions obtained in the ethanol continuous dosing experiment performed with the catalyst charged are shown in FIGS. 14 and 15.
도 13에 나타낸 바와 같이, 반응기 온도 및 압력은 촉매 영향 실험 중 대체적으로 일정하게 유지되었다. As shown in FIG. 13, the reactor temperature and pressure remained generally constant during the catalyst influence experiment.
또한, 도 14 및 도 15에 나타낸 바와 같이, 상기 2)의 실험(무촉매 실험, 도 12 참조)와 비교하면 촉매 실험의 경우 얻은 액상 생성물이 매우 다양한 유기화합물들로 구성되었음을 알 수 있다. 액상 생성물은 propanoic acid ethyl ester와 acitic acid propyl ester 이외에도 1,1-diethoxy ethane, acetaldehyde, ethyl ether, 1-ethoxy butane, butanoic acid ethyl ester 등 다양한 ether류와 aldehydes류가 생성되었다. 특히, 1,1-diethoxy ethane은 에탄올의 탈수반응(dehydration)과 탈수소화반응(dehydrogenation)으로부터 생성되고, acetaldehyde은 에탄올의 탈수소반응으로부터 생성된다. 이러한 결과로부터 Mg-Ni-Mo/AC 촉매가 에탄올의 탈수 및 탈수소화 반응을 촉진함을 알 수 있다.In addition, as shown in FIG. 14 and FIG. 15, it can be seen that the liquid product obtained in the case of the catalyst experiment was composed of a wide variety of organic compounds in comparison with the experiment of 2) (the catalyst-free experiment, see FIG. 12). In addition to propanoic acid ethyl ester and acitic acid propyl ester, the liquid product produced various ethers and aldehydes such as 1,1-diethoxy ethane, acetaldehyde, ethyl ether, 1-ethoxy butane and butanoic acid ethyl ester. In particular, 1,1-diethoxy ethane is produced from dehydration and dehydrogenation of ethanol, and acetaldehyde is produced from dehydrogenation of ethanol. These results indicate that the Mg-Ni-Mo / AC catalyst promotes the dehydration and dehydrogenation of ethanol.
또한, 촉매상에서 1-butanol과 1-hexanol과 같은 고탄소 알콜들이 생성되었는데, 이는 Mg와 같은 알칼리 금속이 Gurbet 반응을 촉진하여 에탄올 커플링이 일어났기 때문으로 해석된다. 가스 생성량은 94ml/min으로 무촉매보다 약 30배 이상 크게 증가하였다. 가스 생성물은 수소가 대부분이고 그 이외에 CH4, CO, CO2와 파라핀(paraffin) 또는 올레핀(olefin) 계열의 저급 탄화수소가 생성되었다. 특히, 촉매 상에서 메탄의 함량이 무촉매 경우보다 증가하였는데 이는 니켈 기반 촉매 상에서 개질반응 능력이 촉진되었음을 의미한다. 결론적으로 Mg-Ni-Mo/AC 촉매가 에탄올의 분해로부터 활성 수소를 생산하는 반응을 활성화한다고 말할 수 있다.In addition, high carbon alcohols such as 1-butanol and 1-hexanol were produced on the catalyst, which is interpreted as alkali metals such as Mg promoted the Gurbet reaction and ethanol coupling occurred. The amount of gas produced was 94 ml / min, which was about 30 times higher than that of the noncatalyst. The gaseous products were mostly hydrogen, and in addition to CH 4 , CO, CO 2 and paraffinic or olefin based lower hydrocarbons. In particular, the content of methane on the catalyst was increased compared to the noncatalytic case, indicating that the reforming capacity was promoted on the nickel-based catalyst. In conclusion, it can be said that the Mg-Ni-Mo / AC catalyst activates the reaction of producing active hydrogen from the decomposition of ethanol.
4) 5 4) 5 wt%wt% 리그닌 슬러리 혼합물의 반응 분석 Reaction Analysis of Lignin Slurry Mixtures
리그닌 5 wt%와 에탄올 95 wt%를 실린더 원료 수용부에 넣어 교반기로 혼합하면서 반응기에 투입하여 액화반응 실험을 수행하였다. 반응조건은 액화층 온도 350℃, Mg-Ni-Mo/AC 촉매층 온도 350℃, 반응기 압력 300 bar, 반응물질 교반 속도 400rpm, WHSV 244.7, 122.3, 61.2, 36.8 h-1이다.5 wt% of lignin and 95 wt% of ethanol were added to the cylinder raw material receiving unit, mixed with a stirrer, and added to the reactor to conduct a liquefaction experiment. The reaction conditions are liquefied bed temperature 350 ℃, Mg-Ni-Mo / AC catalyst bed temperature 350 ℃, reactor pressure 300 bar, reactant stirring speed 400rpm, WHSV 244.7, 122.3, 61.2, 36.8 h -1 .
도 16에 운전시간 경과에 따른 반응온도와 반응압력의 변화를 도시하였다. 약 2시간 반 동안 진행된 실험에서 온도와 압력은 상당히 일정하게 유지되었다. 반응기의 액화층과 촉매층 온도는 별도의 가열로를 이용하여 독립적인 제어가 가능하므로 필요시 400℃ 이상 승온할 수 있었다.Figure 16 shows the change in reaction temperature and reaction pressure over time. In the experiment, which lasted about two and a half hours, the temperature and pressure remained fairly constant. The temperature of the liquefied layer and the catalyst bed of the reactor can be independently controlled by using a separate heating furnace, so that the temperature of the liquefied layer and the catalyst bed can be raised to 400 ° C. or more if necessary.
도 17에 5 wt% 리그닌의 초임계에탄올 연소 액화반응으로부터 생성된 가스와 액상 생성물의 분리 과정에서 채취한 액상 생성물의 색상 변화 및 조건을 나타내었으며, 액상, 기상 및 고상 생성물의 분포를 표 2에 나타내었다. 투입속도가 낮을수록 액상 생성물이 연한 갈색을 보였는데 이는 리그닌 분해산물의 2차 반응에 의한 것으로 해석된다.FIG. 17 shows the color changes and conditions of the liquid product obtained in the separation process of the gas and the liquid product generated from the supercritical ethanol combustion liquefaction of 5 wt% lignin, and the distribution of the liquid, gaseous and solid products is shown in Table 2. Indicated. At lower feed rates, the liquid product had a lighter brown color, which is interpreted as a secondary reaction of the lignin degradation products.
액상 생성물Liquid products 97.2%97.2%
기상 생성물Weather products 2.6%2.6%
고상 생성물Solid product 0.1%0.1%
합계Sum 100%100%
상기 표 2에 나타낸 바와 같이, 회분식 반응기 실험에 비하여 연속 반응기 실험의 경우에는 액상 생성물의 수율은 높고 고상 생성물의 수율은 낮게 나타났다. As shown in Table 2, in the case of continuous reactor experiments, the yield of the liquid product was high and the yield of the solid product was low as compared to the batch reactor experiment.
또한, 리그닌 액화반응 실험 종료 후 실린더 내부, 투입라인, 그리고 반응기 내부를 육안으로 관찰하였다. 교반기 주위에 리그닌과 에탄올 혼합물은 보이지 않았고 실린더 내부에 소량의 리그닌이 남아있을 뿐이었다. 실린더 토출구와 반응기 투입라인은 리그닌의 plugging으로 인한 막힘 현상이 전혀 관찰되지 않아 리그닌의 반응기 투입이 안정적으로 진행되었다고 판단되었다. 사용 촉매를 수거하여 105℃에서 12시간 건조하여 무게를 측정한 결과 4.03 g이었다. 반응 중 카본 형성으로 무게는 소량 증가하였다. In addition, after completion of the lignin liquefaction experiment, the inside of the cylinder, the input line, and the inside of the reactor were visually observed. There was no lignin and ethanol mixture around the stirrer and only a small amount of lignin remained inside the cylinder. The cylinder outlet and the reactor input line were not observed at all due to plugging of lignin, and thus, it was judged that the reactor injection of lignin proceeded stably. The used catalyst was collected, dried at 105 ° C. for 12 hours, and weighed to 4.03 g. The weight increased slightly by the formation of carbon during the reaction.
리그닌 5 wt% 액화반응으로부터 얻은 액상 생성물의 GC-MS 분석 결과를 도 19에 나타내었다. 액상생성물은 N-compounds, phenols, aromatics, acids, esters, aldehydes, ketones, alcohols, ethers, hydrocarbons, 기타물질(others)로 분류했다. 특히 기타물질에는 alpha.-d-6,3-Furanos, levoglucosan, ethyl .alpha.-d-glucopyranoside, 1,6-Anhydro-.alpha.-d-galactofuranose, 3-Methylmannoside, Methyl .beta.-d-ribofuranoside d-allose와 같은 화합물들이 포함되어 있었다. 19 shows the results of GC-MS analysis of the liquid product obtained from the lignin 5 wt% liquefaction. Liquid products were classified into N-compounds, phenols, aromatics, acids, esters, aldehydes, ketones, alcohols, ethers, hydrocarbons, and others. In particular, other substances include alpha.-d-6,3-Furanos, levoglucosan, ethyl .alpha.-d-glucopyranoside, 1,6-Anhydro-.alpha.-d-galactofuranose, 3-Methylmannoside, Methyl .beta.-d Compounds such as -ribofuranoside d-allose were included.
WHSV가 244.7 h-1에서는 위와 같은 기타물질이 다량 포함되어 있는데, WHSV가 감소할수록 기타물질의 area%가 급격히 줄어드는 것을 확인하였다. 이는 산소가 다량 포함된 기타물질의 탈산소화 반응과 초임계 에탄올의 수소화 반응으로 인해 다른 그룹의 물질들로 전환되었기 때문으로 해석된다. WHSV가 감소함에 따라 phenols 그룹은 증가하였다. 특히 초임계 에탄올 조건에서 Mg-Ni-Mo/AC 촉매상에서 벤젠고리 알킬화(ring-alkylation) 반응에 의한 alkyl phenols이 증가하였다. WHSV가 감소할수록 알콜류는 증가하는 경향을 보였다. 특히, WHSV 36.8h-1에서는 직쇄형 고탄소 알콜류 뿐만 아니라, benzeneethanol, 2-methyl-benzenemethanol, 2-Naphthalenol과 같은 벤젠고리를 갖는 알콜류들의 존재가 확인되었다.In the WHSV of 244.7 h -1 , a large amount of other substances were included. As WHSV decreased, the area% of other substances decreased drastically. This is interpreted as being converted to other groups of substances by the deoxygenation of other substances containing a large amount of oxygen and the hydrogenation of supercritical ethanol. As WHSV decreased, the phenols group increased. In particular, alkyl phenols increased by ring-alkylation reaction on Mg-Ni-Mo / AC catalyst under supercritical ethanol conditions. As WHSV decreased, alcohols tended to increase. In particular, in WHSV 36.8h- 1 , not only linear high carbon alcohols but also benzeneethanols such as benzeneethanol, 2-methyl-benzenemethanol, and 2-Naphthalenol were identified.
도 18 및 도 19에 5 wt% 리그닌의 연속 액화반응으로부터 얻은 가스 생성물 조성을 나타내었다. WHSV가 감소함에 따라 CO 선택도는 증가하고 CO2 선택도는 감소하는 경향을 보였다. 이는 WHSV가 감소할수록 decarbonylation 반응이 강화되고, decarboxylation 반응이 상대적으로 약화됨을 알 수 있다. 또한 WHSV가 244.7 h-1에서 61.2 h-1까지 감소함에 따라 수소 농도는 감소하였다. 한편 WHSV가 61.2 h-1에서 36.8 h-1까지 감소함에 따라 수소 선택도는 증가하였다. WHSV가 감소할수록 메탄 선택도는 증가하는 경향을 보였다. 이는 Mg-Ni-Mo/AC 촉매 상에서의 cracking 반응이 강화되었음을 알 수 있다. 또한 WHSV가 감소함에 따라 C2 파라핀 및 올레핀의 선택도는 감소하고 C3 파라핀 및 올레핀의 선택도는 증가하는 경향을 보였다.18 and 19 show the gas product composition obtained from the continuous liquefaction of 5 wt% lignin. As WHSV decreased, CO selectivity increased and CO 2 selectivity decreased. It can be seen that as the WHSV decreases, the decarbonylation reaction is intensified and the decarboxylation reaction is relatively weakened. In addition, the hydrogen concentration decreased as the WHSV decreased from 244.7 h −1 to 61.2 h −1 . On the other hand, hydrogen selectivity increased as WHSV decreased from 61.2 h −1 to 36.8 h −1 . As the WHSV decreased, the methane selectivity tended to increase. This shows that the cracking reaction on the Mg-Ni-Mo / AC catalyst was enhanced. Also, as the WHSV decreased, the selectivity of C 2 paraffins and olefins decreased and the selectivity of C 3 paraffins and olefins increased.
하기 표 3에 5 wt% 리그닌 액화반응으로부터 얻은 액상 생성물의 원소 분석 결과와 이를 이용하여 계산한 고위발열량(HHV)를 나타내었다. WHSV가 감소함에 따라 탄소와 수소 함량은 증가하고 산소 함량은 감소하는 경향을 보였다. 특히 WHSV 36.8 h-1에서 산소함량이 17.6 wt%로서 리그닌의 산소함량 41.5 wt% 대비 약 57.5% 감소하였다. 또한 산소함량이 감소함에 따라 고위발열량은 증가하였다. 특히 WHSV 36.8 h-1에서 고위발열량(HHV)이 33.33 MJ/kg로서 리그닌의 20.50 MJ/kg에 비하여 약 62.6 % 증가하였다. Table 3 shows the results of elemental analysis of the liquid product obtained from the 5 wt% lignin liquefaction and the calculated high calorific value (HHV). As WHSV decreased, the carbon and hydrogen contents increased and the oxygen contents tended to decrease. In particular, oxygen content of 17.6 wt% in WHSV 36.8 h- 1 was reduced by 57.5% compared to 41.5 wt% of lignin. As the oxygen content decreased, the high calorific value increased. In particular, the high calorific value (HHV) of WHSV 36.8 h -1 was 33.33 MJ / kg, which was 62.6% higher than that of 20.50 MJ / kg of lignin.
WHSV(h-1)WHSV (h-1) 원소조성 (wt%)Elemental Composition (wt%) O/C(mol/mol)O / C (mol / mol) H/C(mol/mol)H / C (mol / mol) HHVa(MJ/kg)HHVa (MJ / kg)
CC HH OO NN SS
리그닌Lignin 52.852.8 5.35.3 41.541.5 0.40.4 0.00.0 0.590.59 1.201.20 20.5020.50
244.7244.7 63.863.8 6.86.8 29.229.2 0.10.1 0.10.1 0.340.34 1.281.28 27.3127.31
122.3122.3 69.269.2 7.57.5 22.722.7 0.50.5 0.10.1 0.250.25 1.291.29 30.6030.60
61.261.2 71.471.4 7.57.5 20.520.5 0.50.5 0.10.1 0.210.21 1.261.26 31.6931.69
36.836.8 73.773.7 8.08.0 17.617.6 0.60.6 0.10.1 0.180.18 1.301.30 33.3333.33
5) 25 5) 25 wt%wt% 리그닌 슬러리 혼합물의 반응 분석 Reaction Analysis of Lignin Slurry Mixtures
리그닌 25 wt%와 에탄올 75 wt%를 실린더 원료 수용부에서 혼합하면서 반응기에 연속 투입하여 액화반응 실험을 수행하였다. 반응조건은 Mg-Ni-Mo/AC 촉매 상에서 반응기 온도 350℃, 반응기 압력 300 bar, 교반 속도 400 rpm, WHSV 244.7, 122.3, 61.2, 36.8 h-1이다. The liquefaction experiment was carried out by continuously adding 25 wt% of lignin and 75 wt% of ethanol to the reactor while mixing in the cylinder raw material receiving portion. The reaction conditions are reactor temperature 350 ° C., reactor pressure 300 bar, stirring speed 400 rpm, WHSV 244.7, 122.3, 61.2, 36.8 h −1 on Mg-Ni-Mo / AC catalyst.
도 20에 운전시간 경과에 따른 반응온도와 반응압력 변화를 나타내었다.20 shows the change in reaction temperature and reaction pressure as the operation time elapses.
도 21에 25 wt% 리그닌의 초임계에탄올 연속 액화반응으로부터 얻은 생성물의 색상 변화 및 조건을 나타내었으며, 액상, 기상 및 고상 생성물의 분포를 표 4에 나타내었다. 21 shows the color change and conditions of the product obtained from the continuous liquefaction of 25 wt% lignin in supercritical ethanol, and the distribution of liquid, gas and solid products is shown in Table 4.
액상 생성물Liquid products 97.2%97.2%
기상 생성물Weather products 2.6%2.6%
고상 생성물Solid product 0.1%0.1%
합계Sum 100%100%
5 wt% 리그닌 실험과 유사하게 반응물질 투입속도가 낮을수록 액상 생성물이 연한 갈색을 보였다. 또한, 상기 표 4에 나타낸 바와 같이, 25 wt% 리그닌의 액화 실험에서는 가스 생성량이 매우 많았다. 이는 촉매상에서 리그닌 1차 분해물의 가스화가 활발히 진행되었기 때문으로 해석된다.Similar to the 5 wt% lignin experiment, the lower the reactant input rate, the lighter the liquid product appeared. In addition, as shown in Table 4, the amount of gas produced was very large in the liquefaction experiment of 25 wt% lignin. This is interpreted as the gasification of the lignin primary decomposition proceeded actively on the catalyst.
반응 종료 후 실린더 내부, 투입라인, 그리고 촉매층을 조사한 결과, 교반기 주위에 리그닌과 에탄올 혼합물은 거의 보이지 않았다. 공급장치 토출부와 반응기 사이의 투입라인에 약간의 리그닌이 존재하였으나 이로 인한 라인 막힘 현상은 일어나지 않았을 것으로 추정된다. 사용 촉매를 105℃에서 12시간 건조하여 무게 측정 결과 4.28 g이었다. 그 외 고상 생성물은 약 54.5 g 이었다.After completion of the reaction, the inside of the cylinder, the input line, and the catalyst layer were examined, and almost no lignin and ethanol mixtures were observed around the stirrer. Some lignin was present in the input line between the feeder outlet and the reactor, but line clogging was not expected. The used catalyst was dried at 105 ° C. for 12 hours to obtain 4.28 g as a result of weight measurement. The other solid product was about 54.5 g.
25 wt% 리그닌 초임계에탄올 연속 액화반응에서 얻은 액상생성물의 조성에 미치는 반응물질 투입유속 영향을 도 22에 나타내었다. 액상생성물 조성은 리그닌 5 wt% 경우와 차이가 있었다. 먼저, WHSV가 감소함에 따라 방향족 화합물이 증가하는 경향을 보였다. 이는 산소를 다량 함유한 물질들의 탈산소화, 수소화, 탈수 반응 등에 의해서 방향족 화합물로 전환되었기 때문으로 해석된다. 또한 페놀류는 WHSV가 244.7 h-1에서 122.3 h-1로 줄어들 때까지 증가하였다가 이 후 36.8 h-1까지는 감소하였다. 이러한 결과로부터 리그닌 1차 분해산물인 페놀류가 탈수 또는 수소화 반응에 의하여 방향족 화합물로 전환되기 위해서는 일정한 반응기체류시간이 필요함을 알 수 있다. 유기산은 WHSV가 122.3 h-1보다 낮은 경우(반응기체류시간이 더 긴 경우)에는 검출되지 않았다. 긴 반응기체류시간에서는 유기산이 빠르게 다른 물질로 전환되었기 때문으로 해석된다. 한편, WHSV가 감소할수록 고탄소 알콜들이 줄어드는 경향을 보였는데, 이를 통하여 반응기체류시간이 길수록 초임계에탄올의 가스화 분해반응이 상대적으로 활발히 진행된다고 말할 수 있다.The influence of reactant input flow rate on the composition of the liquid product obtained in 25 wt% lignin supercritical ethanol continuous liquefaction is shown in FIG. 22. The liquid product composition was different from that of lignin 5 wt%. First, there was a tendency for aromatic compounds to increase as the WHSV decreased. This is interpreted as being converted into an aromatic compound by deoxygenation, hydrogenation, and dehydration of oxygen-containing materials. Phenols also increased until WHSV decreased from 244.7 h -1 to 122.3 h -1 and then decreased to 36.8 h -1 . From these results, it can be seen that a constant reactor residence time is required to convert phenol, which is a lignin primary decomposition product, to an aromatic compound by dehydration or hydrogenation. Organic acids were not detected when the WHSV was lower than 122.3 h −1 (longer residence time). At long reactor residence times, it is interpreted that the organic acid is rapidly converted to another material. On the other hand, as the WHSV decreases, high carbon alcohols tended to decrease, and as a result, the gasification cracking reaction of supercritical ethanol proceeds more actively as the reactor residence time increases.
도 23에 25 wt% 리그닌의 초임계에탄올 연속 액화반응으로부터 얻은 기상 생성물 조성을 나타내었다. 수소 선택도는 WHSV 244.7 h-1에서 122.3 h-1까지 소량 감소하지만, 그 이후 36.8 h-1까지 급격히 증가하는 경향을 보였다. 이는 높은 반응기체류시간에서 초임계에탄올의 탈수화 반응에 이은 가스화 반응이 활발히 진행됨을 시사한다. WHSV가 감소함에 따라 CO 농도는 감소하였고 CO2 농도는 증가하였는데, 이를 통하여 반응기체류시간이 길면 decarboxylation 반응이 decarbonylation 반응보다 더 활성화됨을 알 수 있다.23 shows the gas phase product composition obtained from the supercritical ethanol continuous liquefaction of 25 wt% lignin. Hydrogen selectivity decreased slightly from WHSV 244.7 h −1 to 122.3 h −1 , but then increased rapidly to 36.8 h −1 . This suggests that the dehydration of supercritical ethanol followed by the gasification proceeds actively at high reactor residence time. As the WHSV decreased, the CO concentration decreased and the CO 2 concentration increased, indicating that the decarboxylation reaction was more activated than the decarbonylation reaction with longer reactor residence time.
하기 표 5에 25 wt% 리그닌의 초임계에탄올 연속 액화반응 실험에서 얻은 액상 생성물의 원소 분석 결과와 이를 토대로 계산한 고위 발열량(HHV)를 나타내었다. 전반적으로 5 wt% 리그닌의 액화반응에서보다 산소함량이 낮게 나타났고 반응기체류시간이 길수록 (WHSV가 낮을수록) 탄소함량은 증가하고 산소함량은 감소하는 경향을 보였다. 최고 발열량은 WHSV 36.8 h-1에서 34.78 MJ/kg이었다.Table 5 below shows the elemental analysis results of the liquid product obtained in the 25 wt% lignin supercritical ethanol continuous liquefaction experiment and the calculated high calorific value (HHV). Overall, oxygen content was lower than that of 5 wt% lignin, and carbon content increased and oxygen content decreased with longer reactor residence time (lower WHSV). The maximum calorific value was 34.78 MJ / kg at WHSV 36.8 h −1 .
WHSV(h-1)WHSV (h-1) 원소조성 (wt%)Elemental Composition (wt%) O/C(mol/mol)O / C (mol / mol) H/C(mol/mol)H / C (mol / mol) HHVa(MJ/kg)HHVa (MJ / kg)
CC HH OO NN SS
리그닌Lignin 52.852.8 5.35.3 41.541.5 0.40.4 0.00.0 0.590.59 1.201.20 20.5020.50
244.7244.7 66.566.5 7.37.3 25.525.5 0.50.5 0.20.2 0.280.28 1.321.32 29.3029.30
122.3122.3 77.177.1 7.67.6 13.913.9 0.90.9 0.50.5 0.140.14 1.181.18 34.4434.44
61.261.2 76.476.4 7.57.5 11.611.6 1.41.4 3.23.2 0.110.11 1.171.17 34.8334.83
36.836.8 77.277.2 7.67.6 12.812.8 1.01.0 1.41.4 0.120.12 1.181.18 34.7834.78

Claims (28)

  1. 리그닌 및 용매의 혼합물을 원료로 공급받아 수용하는 원료 수용부; 원료 수용부와 유체 수용부를 구분하면서 움직일 수 있는 격벽; 상기 격벽에 압을 가할 수 있는 유체를 수용할 수 있는 유체 수용부를 포함하는 실린더;A raw material receiving unit receiving and receiving a mixture of lignin and a solvent as raw materials; A partition wall which is movable while distinguishing a raw material container and a fluid container; A cylinder including a fluid receiving portion capable of receiving a fluid capable of applying pressure to the partition wall;
    상기 원료 수용부 내에 구비되어 원료를 교반시켜 주는 교반 수단; 및Stirring means provided in the raw material accommodating portion to stir the raw materials; And
    상기 원료 수용부 일부분에 배치되어 상기 교반 수단에 의해 교반된 원료를 배출하는 배출부를 포함하는 원료 혼합물의 액화 반응기로의 공급장치.And a discharge part disposed in a portion of the raw material accommodating part and discharging the raw material stirred by the stirring means.
  2. 제1항에 있어서,The method of claim 1,
    상기 교반 수단이 위치하는 원료 수용부 일부분의 직경은 격벽의 직경보다 작은 공급장치.And a diameter of a portion of the raw material receiving portion in which the stirring means is located is smaller than the diameter of the partition wall.
  3. 제1항에 있어서,The method of claim 1,
    상기 실린더는 상층실과 하층실로 나뉘되, 상기 상층실과 하층실은 서로로부터 탈부착이 가능한 공급장치.The cylinder is divided into an upper chamber and a lower chamber, wherein the upper chamber and the lower chamber is detachable from each other supply apparatus.
  4. 제3항에 있어서,The method of claim 3,
    상기 공급장치는 상층실과 하층실이 탈부착되는 부위를 포함하여 상층실의 압력을 유지시키는 고압용 커버를 포함하는 공급장치.The supply apparatus includes a high pressure cover for maintaining the pressure of the upper chamber, including a portion of the upper chamber and the lower chamber detachable.
  5. 제3항에 있어서,The method of claim 3,
    상기 상층실과 하층실의 탈부착은 스크류 타입을 통해 달성되는 공급장치.Supply and detachment of the upper chamber and the lower chamber is achieved through a screw type.
  6. 제3항에 있어서,The method of claim 3,
    상기 상층실은 상단 중앙에 유체 주입용 관로가 형성되어 있는 공급장치.The upper chamber is a supply device is a fluid inlet pipe is formed in the center of the top.
  7. 제1항에 있어서,The method of claim 1,
    상기 교반 수단은 교반기를 포함하며, 상기 교반기는 수평형 블레이드 또는 수직형 블레이드를 포함하는 공급장치.The stirring means comprises a stirrer, the stirrer comprises a horizontal blade or a vertical blade.
  8. 제7항에 있어서,The method of claim 7, wherein
    상기 교반기는 일자형 또는 십자형으로 블레이드가 배향된 공급장치.The stirrer is a blade orientated feeder in the straight or cross shape.
  9. 제1항에 있어서,The method of claim 1,
    상기 용매는 초임계 유체 또는 아임계 유체인 공급장치.And the solvent is a supercritical fluid or a subcritical fluid.
  10. 제1항에 있어서,The method of claim 1,
    상기 배출부는 원료 수용부 하단에 배치된 공급장치.The discharge unit is disposed in the lower portion of the raw material receiving unit.
  11. 제1항에 있어서,The method of claim 1,
    상기 공급장치는,The supply device,
    리그닌 및 용매를 혼합 및 저장하는 원료 저장조; 및 상기 원료를 원료 수용부로 이송시키는 상압 펌프를 포함하는 공급장치.A raw material storage tank for mixing and storing lignin and a solvent; And an atmospheric pressure pump for transferring the raw material to a raw material accommodating part.
  12. 제1항에 있어서,The method of claim 1,
    상기 공급장치는,The supply device,
    유체를 저장하는 유체 저장조; 및 상기 유체를 유체 수용부로 공급하기 위한 고압펌프를 포함하는 공급장치.A fluid reservoir for storing fluid; And a high pressure pump for supplying the fluid to the fluid receiving portion.
  13. 제1항 내지 제12항 중 어느 한 항에 따른 공급장치를 포함하는 원료 공급부;A raw material supply unit including a supply device according to any one of claims 1 to 12;
    초임계 상태의 유체로 채워지고, 상기 원료 공급부로부터 배출되는 교반된 원료를 공급받아 액화 반응을 수행하는 액화 반응부; 및 A liquefaction reaction unit filled with a fluid in a supercritical state and receiving a stirred raw material discharged from the raw material supply unit to perform a liquefaction reaction; And
    초임계 상태의 유체로 채워지고, 상기 액화 반응부에서 발생하는 반응 생성물을 공급받아 촉매 반응을 수행하는 촉매 반응부를 포함하는 초임계유체를 이용한 리그닌 분해 시스템.A lignin decomposition system using a supercritical fluid filled with a fluid in a supercritical state and including a catalytic reaction unit receiving a reaction product generated in the liquefaction reaction unit and performing a catalytic reaction.
  14. 제13항에 있어서,The method of claim 13,
    상기 액화 반응부는,The liquefaction reaction unit,
    상기 공급장치의 배출부로부터 배출되는 원료를 공급받아 액화 반응을 수행하는 액화 반응기; 및A liquefaction reactor for receiving a raw material discharged from a discharge part of the supply device and performing a liquefaction reaction; And
    상기 액화 반응기에서 발생하는 고상 생성물을 분리하는 고상 생성물 분리기를 포함하는 초임계유체를 이용한 리그닌 분해 시스템.Lignin decomposition system using a supercritical fluid comprising a solid phase product separator for separating the solid product generated in the liquefaction reactor.
  15. 제14항에 있어서,The method of claim 14,
    상기 액화 반응부는 액화 반응기와 고상 생성물 분리기 사이에 필터를 포함하는 초임계유체를 이용한 리그닌 분해 시스템.The liquefaction reaction unit lignin decomposition system using a supercritical fluid comprising a filter between the liquefaction reactor and the solid phase product separator.
  16. 제14항에 있어서,The method of claim 14,
    상기 액화 반응부는 액화 반응기 상단에 밸브를 포함하는 초임계유체를 이용한 리그닌 분해 시스템.The liquefaction reaction unit lignin decomposition system using a supercritical fluid comprising a valve on the top of the liquefaction reactor.
  17. 제14항에 있어서,The method of claim 14,
    상기 액화 반응부는 상기 액화 반응기 내부로 원료를 투입할 수 있는 튜브를 포함하는 초임계유체를 이용한 리그닌 분해 시스템.Wherein the liquefaction reaction unit lignin decomposition system using a supercritical fluid comprising a tube for introducing the raw material into the liquefaction reactor.
  18. 제17항에 있어서,The method of claim 17,
    상기 튜브는 원료 공급부 하단으로부터 액화 반응기를 통과하여 고상 생성물 분리기로 연장된 초임계유체를 이용한 리그닌 분해 시스템.The tube is a lignin decomposition system using a supercritical fluid extending from the bottom of the raw material feed through the liquefaction reactor to the solid phase product separator.
  19. 제13항에 있어서,The method of claim 13,
    상기 액화 반응부는 가열 수단을 포함하는 초임계유체를 이용한 리그닌 분해 시스템.The liquefaction reaction unit lignin decomposition system using a supercritical fluid comprising a heating means.
  20. 제13항에 있어서,The method of claim 13,
    상기 촉매 반응부는 가열기를 포함하는 초임계유체를 이용한 리그닌 분해 시스템.The catalytic reaction unit lignin decomposition system using a supercritical fluid comprising a heater.
  21. 제13항에 있어서,The method of claim 13,
    상기 분해 시스템은,The decomposition system,
    초임계유체용 용매를 저장하는 초임계유체용 용매 저장조; 및A solvent reservoir for the supercritical fluid which stores the solvent for the supercritical fluid; And
    상기 용매를 반응기에 공급하기 위한 고압펌프를 포함하는 초임계유체를 이용한 리그닌 분해 시스템.Lignin decomposition system using a supercritical fluid comprising a high pressure pump for supplying the solvent to the reactor.
  22. 제13항에 있어서,The method of claim 13,
    상기 분해 시스템은,The decomposition system,
    촉매 반응부 후단에 위치하여 촉매 반응부에서 형성된 반응 생성물을 냉각시키는 열교환기를 포함하는 초임계유체를 이용한 리그닌 분해 시스템.A lignin decomposition system using a supercritical fluid including a heat exchanger located at a rear end of the catalytic reaction part and cooling a reaction product formed in the catalytic reaction part.
  23. 제13항에 있어서,The method of claim 13,
    상기 분해 시스템은,The decomposition system,
    분해 시스템 내 압력을 일정하게 제어하는 후압 제어기(back-pressure regulator)를 포함하는 초임계유체를 이용한 리그닌 분해 시스템.A lignin digestion system using a supercritical fluid that includes a back-pressure regulator that constantly controls the pressure in the digestion system.
  24. 제13항에 있어서,The method of claim 13,
    상기 분해 시스템은, The decomposition system,
    촉매 반응부 후단에 위치하여 반응 생성물을 기상 및 액상으로 분리하는 기액 분리기를 포함하는 초임계유체를 이용한 리그닌 분해 시스템.A lignin decomposition system using a supercritical fluid, which is located at the rear of the catalytic reaction unit and includes a gas-liquid separator for separating the reaction product into gas and liquid phase.
  25. 제13항에 있어서,The method of claim 13,
    상기 분해 시스템은 복수 개의 공급장치가 액화 반응부로 병렬 연결된 분해 시스템.The decomposition system is a decomposition system in which a plurality of feeders are connected in parallel to the liquefaction reactor.
  26. 제1항의 공급장치의 원료 수용부에 리그닌 및 용매를 공급하는 단계(단계 1);Supplying lignin and a solvent to the raw material receiving portion of the feeder of claim 1 (step 1);
    상기 원료 수용부로 공급된 리그닌 및 용매를 교반 수단으로 혼합하는 단계(단계 2); 및Mixing the lignin and the solvent supplied to the raw material accommodating part with stirring means (step 2); And
    격벽에 압을 가하여 상기 단계 2에서 혼합된 리그닌 및 용매 혼합물을 배출부를 통해 액화 반응부로 투입하는 단계(단계 3)를 포함하는 제1항의 공급장치의 사용방법.The method of using the feeder according to claim 1, comprising the step of applying pressure to the partition wall and injecting the lignin and solvent mixture mixed in the step 2 into the liquefaction reaction unit through the discharge unit (step 3).
  27. 제13항의 리그닌 분해 시스템의 공급장치로 리그닌 및 용매의 혼합물인 원료를 공급하는 단계(단계 1);Supplying a raw material which is a mixture of lignin and a solvent to a feeder of the lignin decomposition system of claim 13 (step 1);
    액화 반응부 및 촉매 반응부를 초임계유체용 용매로 채운 후 반응압력 및 반응온도로 설정하는 단계(단계 2); 및Filling the liquefaction reaction unit and the catalyst reaction unit with a supercritical fluid solvent and setting the reaction pressure and the reaction temperature (step 2); And
    공급장치의 격벽을 이용하여 원료 수용부의 압력을 반응부의 반응압력과 동일하게 설정한 후, 반응부로 원료를 공급하여 액화반응 및 촉매반응을 수행하는 단계(단계 3)를 포함하는 제13항의 분해 시스템의 운전방법.The decomposition system according to claim 13, comprising the step of setting the pressure of the raw material accommodating part to be equal to the reaction pressure of the reaction part by using the partition wall of the feeder, and then supplying the raw material to the reaction part to perform liquefaction and catalytic reaction (step 3). How to operate.
  28. 제27항에 있어서,The method of claim 27,
    상기 분해 시스템은 촉매 반응부 후단에 위치하여 촉매 반응부에서 형성된 반응 생성물을 냉각시키는 열교환기를 포함하고,The decomposition system includes a heat exchanger located at the rear end of the catalytic reaction portion to cool the reaction product formed in the catalytic reaction portion,
    반응 생성물을 냉각하는 단계(단계 4)를 더 포함하는 분해 시스템의 운전방법.Further comprising the step of cooling the reaction product (step 4).
PCT/KR2018/006645 2018-06-12 2018-06-12 Apparatus for homogeneous mixing and continuous injecting of lignin and solvent, lignin decomposition system using supercritical fluid comprising the same, and operating method thereof WO2019240306A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2018/006645 WO2019240306A1 (en) 2018-06-12 2018-06-12 Apparatus for homogeneous mixing and continuous injecting of lignin and solvent, lignin decomposition system using supercritical fluid comprising the same, and operating method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2018/006645 WO2019240306A1 (en) 2018-06-12 2018-06-12 Apparatus for homogeneous mixing and continuous injecting of lignin and solvent, lignin decomposition system using supercritical fluid comprising the same, and operating method thereof

Publications (1)

Publication Number Publication Date
WO2019240306A1 true WO2019240306A1 (en) 2019-12-19

Family

ID=68842272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/006645 WO2019240306A1 (en) 2018-06-12 2018-06-12 Apparatus for homogeneous mixing and continuous injecting of lignin and solvent, lignin decomposition system using supercritical fluid comprising the same, and operating method thereof

Country Status (1)

Country Link
WO (1) WO2019240306A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116351372A (en) * 2023-05-05 2023-06-30 广州御达电子科技有限公司 Preparation method of aqueous polyurethane dispersion

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005296906A (en) * 2004-04-16 2005-10-27 Shiro Saka Biomass treating method for treating biomass under supercritical or subcritical condition of alcohol using mixture solvent obtained by adding water to various aliphatic alcohol
JP2007313476A (en) * 2006-05-29 2007-12-06 Matsushita Electric Ind Co Ltd Decomposition treatment method of wood-based waste material
KR20140070845A (en) * 2012-11-28 2014-06-11 연세대학교 산학협력단 Method for decomposition of biomass in sub- and supercritical solnent
JP2016193387A (en) * 2015-03-31 2016-11-17 住友金属鉱山株式会社 Slurry liquid feeding device and equipment
KR20160141356A (en) * 2015-05-28 2016-12-08 성균관대학교산학협력단 Method for upgrading bio-oil using supercritical alcohols and upgraded bio-oil by the method
KR20180121812A (en) * 2017-05-01 2018-11-09 한국에너지기술연구원 Device for homogeneous mixing and continuous feeding of lignin and solvent

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005296906A (en) * 2004-04-16 2005-10-27 Shiro Saka Biomass treating method for treating biomass under supercritical or subcritical condition of alcohol using mixture solvent obtained by adding water to various aliphatic alcohol
JP2007313476A (en) * 2006-05-29 2007-12-06 Matsushita Electric Ind Co Ltd Decomposition treatment method of wood-based waste material
KR20140070845A (en) * 2012-11-28 2014-06-11 연세대학교 산학협력단 Method for decomposition of biomass in sub- and supercritical solnent
JP2016193387A (en) * 2015-03-31 2016-11-17 住友金属鉱山株式会社 Slurry liquid feeding device and equipment
KR20160141356A (en) * 2015-05-28 2016-12-08 성균관대학교산학협력단 Method for upgrading bio-oil using supercritical alcohols and upgraded bio-oil by the method
KR20180121812A (en) * 2017-05-01 2018-11-09 한국에너지기술연구원 Device for homogeneous mixing and continuous feeding of lignin and solvent

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116351372A (en) * 2023-05-05 2023-06-30 广州御达电子科技有限公司 Preparation method of aqueous polyurethane dispersion
CN116351372B (en) * 2023-05-05 2023-09-29 广州御达电子科技有限公司 Preparation method of aqueous polyurethane dispersion

Similar Documents

Publication Publication Date Title
WO2019240306A1 (en) Apparatus for homogeneous mixing and continuous injecting of lignin and solvent, lignin decomposition system using supercritical fluid comprising the same, and operating method thereof
WO2012091335A2 (en) Apparatus and method for drying coking coal
WO2017026718A1 (en) Novel 3-(isoxazol-3-yl)-pyrazolo[3,4-d]pyrimidin-4-amine compound, which is ret kinase inhibitor
CN115087634A (en) Method for preparing N6- ((2-azidoethoxy) carbonyl) lysine
WO2012138018A1 (en) Continuous manufacturing apparatus and method for carbon nanotubes having gas seperation units
Jadsadajerm et al. Degradative solvent extraction of biomass using petroleum based solvents
Pindoria et al. Hydropyrolysis of sugar cane bagasse: effect of sample configuration on bio-oil yields and structures from two bench-scale reactors
US20130118886A1 (en) Thermal Treatment
WO2011122815A2 (en) Novel quinoxaline derivatives
WO2018048179A1 (en) Method and system for thermochemically converting combustible material by circulating thermal medium
EP2621915A2 (en) Novel method of preparing benzoimidazole derivatives
US20150033755A1 (en) Treatment of a feedstock material
WO2012091382A9 (en) Hydrocracking process of heavy hydrocarbon distillates using supercritical solvent
WO2017111301A1 (en) Method and apparatus for preparing additive for coke
WO2019216701A1 (en) Catalyst regenerator
WO2023033595A1 (en) Reforming system and method therefor
WO2022045837A1 (en) Method for preparing deuterated aromatic compound and deuterated composition
WO2020045904A1 (en) Ink composition for organic light-emitting device
Roy et al. Characterization and catalytic gasification of the aqueous by‐product from vacuum pyrolysis of biomass
WO2020235725A1 (en) Method and apparatus for collecting bio-oil produced through slow pyrolysis
WO2022146088A1 (en) Isocyanate compound preparation method
WO2018012847A1 (en) Integrated system comprising electrocatalysis device of glycerol and chemical catalysis device of biomass
WO2022054974A1 (en) Apparatus for producing fouling-inhibiting hydrophobic cornstalk fuel for power generation using superheated steam
CN101522679A (en) Fluorinated catharanthine derivatives, their preparation and their utilisation as vinca dimeric alkaloid precursors
TR201816526T4 (en) Device and method for gasification of carbon containing materials.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18922864

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18922864

Country of ref document: EP

Kind code of ref document: A1