JP2005296906A - Biomass treating method for treating biomass under supercritical or subcritical condition of alcohol using mixture solvent obtained by adding water to various aliphatic alcohol - Google Patents

Biomass treating method for treating biomass under supercritical or subcritical condition of alcohol using mixture solvent obtained by adding water to various aliphatic alcohol Download PDF

Info

Publication number
JP2005296906A
JP2005296906A JP2004121072A JP2004121072A JP2005296906A JP 2005296906 A JP2005296906 A JP 2005296906A JP 2004121072 A JP2004121072 A JP 2004121072A JP 2004121072 A JP2004121072 A JP 2004121072A JP 2005296906 A JP2005296906 A JP 2005296906A
Authority
JP
Japan
Prior art keywords
biomass
water
alcohol
supercritical
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004121072A
Other languages
Japanese (ja)
Other versions
JP4982036B2 (en
Inventor
Shiro Saka
志朗 坂
Eiji Minami
英治 南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Tsusho Corp
Original Assignee
Toyota Tsusho Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Tsusho Corp filed Critical Toyota Tsusho Corp
Priority to JP2004121072A priority Critical patent/JP4982036B2/en
Publication of JP2005296906A publication Critical patent/JP2005296906A/en
Application granted granted Critical
Publication of JP4982036B2 publication Critical patent/JP4982036B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Abstract

<P>PROBLEM TO BE SOLVED: To provide a treating solvent based system for biomass in a supercritical or subcritical condition which is easy to control and shows efficient decomposition/solubilization. <P>SOLUTION: In this biomass decomposing/liquefying method, one or more kinds selected from the group consisting of lignocellulose-type biomass, cellulose-type biomass, nitrogen-containing polysaccharide and protein type biomass are treated under the supercritical or subcritical condition of alcohol using a mixed solvent obtained by adding water of 5 to 20% by volume to an aliphatic alcohol having 1 to 8 carbon atoms in particular, a mixed solvent of water and methanol. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、バイオマスを超臨界乃至亜臨界状態の溶媒を用いて分解・液化する方法において、前記分解・液化を容易に制御でき、それに付随して得られる化成製品などの選択性が良い超臨界乃至亜臨界溶媒系に関する。
本発明において、アルコールに水を加えた混合溶媒を用いたアルコールの超臨界条件または亜臨界条件下での処理とは温度範囲100℃以上500℃以下、圧力範囲1MPa以上100MPa以下の条件下に維持された前記混合溶媒中における処理を意味する。また水添加率が5〜20体積%とは、水/アルコール混合溶媒の体積を100としたとき、加えた水の体積が5〜20であることを意味する。
The present invention is a method for decomposing and liquefying biomass using a solvent in a supercritical or subcritical state. The decomposition and liquefaction can be easily controlled, and the supercriticality having good selectivity such as a chemical conversion product obtained therewith. To a subcritical solvent system.
In the present invention, the treatment under a supercritical condition or subcritical condition of alcohol using a mixed solvent obtained by adding water to alcohol is maintained under conditions of a temperature range of 100 ° C. to 500 ° C. and a pressure range of 1 MPa to 100 MPa. Treatment in the mixed solvent. The water addition rate of 5 to 20% by volume means that the volume of added water is 5 to 20 when the volume of the water / alcohol mixed solvent is 100.

我が国におけるリグノセルロース系バイオマスを含む各種バイオマスの発生量は約3億7千万トンに達しているが、そのうち約7千7百万トンが利用されずに廃棄されており、その有効利用が望まれる。このような中で、前記バイオマスを有用な製品、特に燃料、化成品などとしてリサイクルするための技術開発に多くの科学者、技術者がたずさわっている。最終的なゴールは環境に排出される化学物質、エネルギーなどが自然の力により浄化できるものにすることが、地球環境の本当の安定維持につながることは明らかである。   The generation amount of various biomass including lignocellulosic biomass in Japan has reached about 370 million tons, of which about 77 million tons are discarded without being used, and its effective utilization is desired. It is. Under such circumstances, many scientists and engineers are involved in technological development for recycling the biomass as useful products, particularly fuels and chemical products. Clearly, the ultimate goal is to make chemical substances, energy, etc. released into the environment cleanable by natural forces, which will lead to the real stable maintenance of the global environment.

このような中で、反応、処理溶媒などとして水、アルコールなどは比較的循環して利用可能なものであることから、これらの溶媒を用いた化学システム、特にこれらの超臨界乃至亜臨界状態の条件を用いた化学システムにおいて、前記溶媒が超臨界乃至亜臨界において特有の反応系を構築可能であるので、多くの化学分野において研究されている。超臨界乃至亜臨界状態の水や脂肪族アルコールを用いた化学反応系において、植物体に含まれる芳香族化合物および/または植物体中の他の成分は容易に溶解・分解されて前記芳香族化合物や単糖類、および多糖類などを植物体外に遊離させることができるので、遊離した芳香族化合物、単糖類、および多糖類などから有用な化成品を単離し、またはこれらの重合体を製造することができることが知られている。   In such circumstances, since water, alcohol, and the like can be used relatively relatively as a reaction and treatment solvent, etc., chemical systems using these solvents, particularly those in the supercritical to subcritical state. In a chemical system using conditions, the solvent can be constructed in a supercritical to subcritical state, and thus has been studied in many chemical fields. In a chemical reaction system using supercritical or subcritical water or an aliphatic alcohol, the aromatic compound contained in the plant body and / or other components in the plant body are easily dissolved and decomposed, and the aromatic compound , Monosaccharides, polysaccharides, etc. can be released outside the plant body, so that useful chemical products can be isolated from the released aromatic compounds, monosaccharides, polysaccharides, etc., or polymers thereof can be produced It is known that

更に、超臨界乃至亜臨界状態のアルコール溶媒を利用する系については、超臨界メタノールによる植物油のバイオディーゼル燃料への変換において、植物油の主成分であるトリグリセリドをエステル交換反応によりメチルエステル化物に変換し、ディーゼルエンジン燃料に変換する技術が報告されている(非特許文献1)。また、本発明者は、リグノセルロース系バイオマス、セルロース系バイオマス、含窒素多糖類及びたんぱく質系バイオマスからなる群から選択される1種または2種以上を超臨界状態または亜臨界状態のアルコール溶媒中で処理して、前記バイオマスから燃料や有用な化成品などを得る方法を提案している(特許文献1)。
しかしながら、前記超臨界状態の水を利用するバイオマスなどの処理系においては反応速度がミリ秒単位と非常に速いため制御が難しく、また、被処理成分の過分解の問題や可溶化効率が良くないという問題があった。また、超臨界乃至亜臨界のアルコール類を利用するものにおいては、反応速度、被処理成分の可溶化効率などにおいて改善はみられるが、まだ十分ではなく、特に超臨界メタノールを用いる場合には被処理成分の可溶化効率が良くないなどの問題があった。
Furthermore, for systems using alcohol solvents in the supercritical or subcritical state, in the conversion of vegetable oil to biodiesel fuel with supercritical methanol, the triglyceride, which is the main component of vegetable oil, is converted to the methyl ester by a transesterification reaction. A technique for converting to diesel engine fuel has been reported (Non-Patent Document 1). In addition, the inventor of the present invention uses one or more selected from the group consisting of lignocellulosic biomass, cellulosic biomass, nitrogen-containing polysaccharides, and protein biomass in a supercritical or subcritical alcohol solvent. A method has been proposed in which a fuel or a useful chemical product is obtained from the biomass by processing (Patent Document 1).
However, in a processing system such as biomass using water in the supercritical state, the reaction rate is very fast, in milliseconds, so it is difficult to control, and the problem of over-decomposition of components to be processed and the solubilization efficiency are not good. There was a problem. In addition, in the case of using supercritical or subcritical alcohols, the reaction rate and the solubilization efficiency of the components to be treated are improved, but it is still not sufficient, especially when supercritical methanol is used. There were problems such as poor solubilization efficiency of the processing components.

特開2001−205070公報、特に、特許請求の範囲Japanese Patent Laid-Open No. 2001-205070, in particular, claims Jasco Report「超臨界最新技術特集第3号」日本分光、28−31(1999.5.28)、超臨界流体のポスト石油化学への応用Jasco Report "Special issue on the latest supercritical technology No.3" JASCO, 28-31 (May 28, 1999), Application of supercritical fluid to post petrochemistry

本発明の課題は、前記超臨界状態のメタノールなどの脂肪族アルコール溶媒を利用する系の分解・可溶化を容易に制御でき、それに伴って得られる化成製品などの選択性が良い超臨界乃至亜臨界溶媒系を提供することである。前記課題を解決するために、メタノールなどの脂肪族アルコール溶媒に水を添加すれば、超臨界乃至亜臨界水の高い酸触媒効果が期待でき、より効率的な木材の可溶化が実現できるのでは、と考えた。そこで、バイオマスを超臨界乃至亜臨界状態のアルコールで処理する系に水を加えた場合どのような反応系が構築できるかを、水を積極的に添加した場合、すなわち、バイオマスなどにもともと含まれる水により系内に持ち込まれる水分以上を添加した場合の反応系の特性を検討することを考え、水分の添加量とバイオマスの分解・可溶化特性の相関を考察し、水分の添加量が5〜20体積%において極めて顕著な可溶化効率などの溶媒機能を示すことを見出し、前記課題を解決することができた。   An object of the present invention is to easily control the decomposition and solubilization of a system using an aliphatic alcohol solvent such as methanol in the supercritical state, and to achieve superselectivity or sublimation with good selectivity of a chemical product to be obtained. It is to provide a critical solvent system. In order to solve the above problems, if water is added to an aliphatic alcohol solvent such as methanol, a high acid catalytic effect of supercritical or subcritical water can be expected, and more efficient solubilization of wood can be realized. I thought. Therefore, what kind of reaction system can be constructed when water is added to a system that treats biomass with supercritical or subcritical alcohol is included in the case of positively adding water, that is, biomass. Considering the characteristics of the reaction system when more than the water brought into the system by water is added, considering the correlation between the amount of water added and the decomposition and solubilization characteristics of the biomass, It was found that the solvent function such as solubilization efficiency was extremely remarkable at 20% by volume, and the above problems could be solved.

本発明は、(1)リグノセルロース系バイオマス、セルロース系バイオマス、含窒素多糖類及びたんぱく質系バイオマスからなる群から選択される1種または2種以上を、炭素数1〜8の脂肪族アルコールに5〜20体積%の水を加えた混合溶媒を用いて、アルコールの超臨界条件または亜臨界条件にて処理する前記バイオマスの分解・液化方法である。好ましくは、(2)バイオマスと混合溶媒との重量比の最大値が0.3wt/wtである前記(1)に記載のバイオマスの分解・液化方法であり、より好ましくは、バイオマスがリグノセルロース系バイオマスである前記(1)または(2)に記載のバイオマスの分解・液化方法であり、一層好ましくは、(3)脂肪族アルコールがメタノールである前記(1)、(2)または(3)に記載のバイオマスの分解・液化方法である。   The present invention provides (1) one or two or more selected from the group consisting of lignocellulosic biomass, cellulosic biomass, nitrogen-containing polysaccharides and protein-based biomass as aliphatic alcohols having 1 to 8 carbon atoms. This is a method for decomposing and liquefying biomass by using a mixed solvent to which ˜20% by volume of water is added, under the supercritical condition or subcritical condition of alcohol. Preferably, (2) the biomass decomposition and liquefaction method according to (1), wherein the maximum value of the weight ratio of the biomass to the mixed solvent is 0.3 wt / wt, more preferably the biomass is lignocellulose-based. The method for decomposing and liquefying biomass as described in (1) or (2) above, more preferably (3) in (1), (2) or (3) above, wherein the aliphatic alcohol is methanol It is a decomposition / liquefaction method of biomass as described.

発明の効果として、バイオマス、特にリグノセルロース系バイオマスの超臨界乃至亜臨界溶媒、特に炭素数1〜8の脂肪族アルコール系溶媒を用いる分解・可溶化処理系に5〜20体積%の水を加え、アルコールの超臨界乃至亜臨界条件にて処理することにより、可溶化効率が良く、制御が容易な超臨界乃至亜臨界溶媒分解・可溶化処理系を提供できたことを挙げることができる。
特にリグノセルロース系バイオマスからは、コニルフェリルアルコール、シナピルアルコール、及びこれらのγ−アルキルエーテルが高収率で得られ、特にメタノールを用いた場合、シナピルアルコールγ−メチルエーテルはリグニンベースでは28.5%(木材ベースでは7.6%)の高収率で分解・溶解により収集できるという作用効果がもたらされる。
As an effect of the invention, 5 to 20% by volume of water is added to a decomposition / solubilization treatment system using a supercritical or subcritical solvent of biomass, particularly lignocellulosic biomass, particularly an aliphatic alcohol solvent having 1 to 8 carbon atoms. It can be mentioned that the supercritical or subcritical solvent decomposition / solubilization treatment system having good solubilization efficiency and easy control can be provided by treating under the supercritical or subcritical conditions of alcohol.
In particular, from lignocellulosic biomass, conyl ferryl alcohol, sinapyr alcohol, and their γ-alkyl ethers are obtained in high yields. Especially when methanol is used, sinapyr alcohol γ-methyl ether is 28 on a lignin basis. The effect is that it can be collected by decomposition and dissolution at a high yield of 0.5% (7.6% on a wood base).

A,図1に、バイオマスの一例としてブナ木粉を使用して、処理温度350℃、処理時間5分のバッチ処理条件で水添加量を変化させたときの分解・可溶化の特性を不溶残渣量の相関として示す。ただし、バッチ処理のため処理圧力は制御できず、圧力は水添加量の増加とともに上昇し、水を添加しないとき43MPa、水100体積%のとき100MPaであった。この圧力の違いによる影響は小さいものと考えられる。水を添加しない場合、62%のブナ木粉がメタノールに可溶化し、38%の不溶残渣が回収された。これに対し、水を徐々に添加していくと不溶残渣量は減少し、水含有量が10体積%のとき残渣量が最小となり、100%近い木粉が可溶化された。これは超臨界乃至亜臨界水の酸触媒効果に起因して、木材がより効果的に分解されたためであると推測される。一方、水の添加量が多くなると水/メタノール混合溶媒の誘電率が上昇して溶解性が低下するため、不溶残渣量が増加したものと推測される。前記実験により、木材の可溶化には10体積%の水の添加が最適であることが見出された。このことは、図2に示すように処理温度350℃の条件では、水を添加しないと95%以上の木材を可溶化するのに30分の処理が必要なのに対し、水を10体積%添加すると約5分で可溶化がほぼ100%完了することからも明白である。ただし、処理圧力は水を添加しないとき43MPa、水を10体積%添加したとき50MPaであった。
前記水の添加効果は、他のアルコールを用い、他のバイオマスに適用した場合においてももたらされることは容易に推測できる。
バイオマスとしては、外接径が10mm以下となるように粉砕したものを使用するのが好ましい。
A, Fig. 1 shows the characteristics of decomposition and solubilization when beech wood flour is used as an example of biomass, and the amount of water added is changed under batch processing conditions of a processing temperature of 350 ° C and a processing time of 5 minutes. Shown as quantity correlation. However, the treatment pressure could not be controlled due to the batch treatment, and the pressure increased as the amount of water added increased, and was 43 MPa when no water was added and 100 MPa when water was 100% by volume. The effect of this pressure difference is considered to be small. When no water was added, 62% beech wood flour was solubilized in methanol and 38% insoluble residue was recovered. On the other hand, when water was gradually added, the amount of insoluble residue decreased. When the water content was 10% by volume, the amount of residue was minimized, and wood flour close to 100% was solubilized. This is presumably because wood was more effectively decomposed due to the acid catalytic effect of supercritical or subcritical water. On the other hand, if the amount of water added increases, the dielectric constant of the water / methanol mixed solvent increases and the solubility decreases, so it is presumed that the amount of insoluble residue has increased. From the above experiments, it was found that the addition of 10% by volume of water is optimal for solubilization of wood. As shown in FIG. 2, under the condition of a treatment temperature of 350 ° C., if water is not added, a treatment of 30 minutes is required to solubilize 95% or more of wood, whereas when 10% by volume of water is added. It is also evident from the fact that solubilization is almost 100% complete in about 5 minutes. However, the treatment pressure was 43 MPa when no water was added and 50 MPa when 10% by volume of water was added.
It can be easily guessed that the effect of adding water is also brought about when other alcohols are used and applied to other biomass.
As the biomass, it is preferable to use a pulverized one having a circumscribed diameter of 10 mm or less.

B.温度条件を270℃、処理時間を3分として、水を添加しなかった場合と10体積%水を添加した場合における、バイオマスの一例としてブナ木粉を処理して得られる化成品の比較を表1に示す。ただし、処理圧力は水を添加しないとき27MPa、水を10体積%添加したとき30MPaであった。
緩やかな処理条件において有用な化成品が高収率で得られることが分かった。
B. Comparison of chemical products obtained by treating beech wood flour as an example of biomass when temperature condition is 270 ° C., treatment time is 3 minutes, water is not added and 10% by volume water is added. It is shown in 1. However, the treatment pressure was 27 MPa when water was not added, and 30 MPa when water was added at 10 vol%.
It has been found that useful chemical products can be obtained in high yield under mild processing conditions.

Figure 2005296906
Figure 2005296906

C.前記反応に実験には、バッチ型の耐圧200MPa反応容器にバイオマスと水/アルコールとを充填し、100℃〜500℃に調整できるスズまたはオイル浴槽を用いて加熱し、時間経過後に20℃の水浴に漬けて急冷し反応を停止させる操作により実施した。
また、加熱浴として塩浴〔亜硫酸ナトリウム、亜硫酸カリウム(1:1)〕などを用いることもできる。
D.リグニン由来成分としてコニフェリルアルコール、シナピルアルコール、p−クマリルアルコールやそれらの誘導体などを回収することができる。また、セルロース及びヘミセルロース由来の成分としてセロオリゴ糖やそのメチル化誘導体、グルコース、キシロース、マンノース、フルクトースなど糖類及びそのメチル化誘導体、さらにレボグルコサン、ヒドロキシメチルフルフラール、フルフラール及びそれらの誘導体などを有用成分として回収することができる。
E.亜臨界とは、反応系の温度が水/アルコールの沸点以上、かつ、圧力が反応温度における水/アルコールの蒸気圧より大きい条件である。水/メタノールの混合溶媒においては、混合比により異なる。温度範囲100℃〜374℃、及び圧力範囲1MPa〜22MPaの条件をいう。
C. In the experiment for the reaction, a batch type pressure-resistant 200 MPa reaction vessel is filled with biomass and water / alcohol, heated using a tin or oil bath that can be adjusted to 100 ° C. to 500 ° C., and a 20 ° C. water bath after a lapse of time. It was carried out by an operation of immersing in water and quenching to stop the reaction.
Moreover, a salt bath [sodium sulfite, potassium sulfite (1: 1)] etc. can also be used as a heating bath.
D. Coniferyl alcohol, sinapyl alcohol, p-coumaryl alcohol, derivatives thereof, and the like can be recovered as lignin-derived components. Cellulooligosaccharide and its methylated derivatives, glucose and its methylated derivatives such as glucose, xylose, mannose and fructose as well as levoglucosan, hydroxymethylfurfural, furfural and their derivatives are recovered as useful components as components derived from cellulose and hemicellulose. can do.
E. Subcritical is a condition in which the temperature of the reaction system is equal to or higher than the boiling point of water / alcohol and the pressure is higher than the vapor pressure of water / alcohol at the reaction temperature. In the mixed solvent of water / methanol, it varies depending on the mixing ratio. It refers to conditions of a temperature range of 100 ° C. to 374 ° C. and a pressure range of 1 MPa to 22 MPa.

以下、実施例により本発明を具体的に説明するが、これは本発明をより理解し易くすることを目的とするものであり、これにより本発明を限定的に解釈されないことは当然である。   EXAMPLES Hereinafter, the present invention will be specifically described by way of examples. However, this is intended to make the present invention easier to understand, and it should be understood that the present invention is not construed as being limited thereto.

水/メタノール混合溶媒4.9mLをブナ木粉150mgとともに5mL容積の材質インコネル−625製反応管に封入し、圧力27〜100MPa、処理温度270℃及び350℃にて1〜30分間、高温高圧処理を行った。水添加率は0〜100体積%の範囲で変化させた。得られた反応物は0.2μmのメンブレンフィルタ(アドバンテックス社製、品名TO20A047A)で濾過し、不溶残渣と水/メタノール可溶部とに分離した。また、不溶残渣中のセルロース、ヘミセルロース及びリグニン含有量を硫酸法により評価した。結果を図3及び図4に示した。
また、水/メタノール可溶部は、高速液体クロマトグラフ(HPLC)(島津製作所社製、カラム STR-ODSII、移動相 水/メタノール=80/20〜0/100(60分)、温度 40℃、検出器 SPD(280nm))及び(カラム ULTRON PS-80P、移動相 水、温度 80℃、検出器 示差屈折計)により分解生成物を確認した。リグニン由来生成物の結果を表2に、セルロース由来生成物の結果を表3に示した。
ブナ木粉としては外接径が280μm以下となるように粉砕したものを使用した。
処理温度270℃の場合の、水を10体積%添加した場合と水の添加のない場合の処理時間と残渣量との相関を図3に示した。残渣中のリグニン量は水を添加した場合の方が少なく、水の添加によりリグニンの可溶化が促進されていることが判明した。ヘミセルロースではこの傾向がさらに顕著であり、水を添加しない場合では30分の処理で16%(木材重量ベース)のヘミセルロースが残存するのに対し、水を添加した場合には完全に可溶化した。一方、セルロースについてはいずれの場合にも可溶化が進行しておらず、この処理温度ではセルロースは分解しないことが判明した。これはセルロースの結晶性に由来すると考えられる。その結果として、270℃の条件で水を10体積%加えた場合、ほぼセルロース成分だけが残された不溶残渣が回収された。これはセルロースの単離法(木材のパルプ化)として有効であると考えられる。
4.9 mL of water / methanol mixed solvent and 150 mg of beech wood powder are sealed in a 5 mL volume Inconel-625 reaction tube, and the pressure is 27 to 100 MPa, the processing temperatures are 270 ° C. and 350 ° C. for 1 to 30 minutes, and the high temperature and high pressure treatment is performed. Went. The water addition rate was changed in the range of 0 to 100% by volume. The obtained reaction product was filtered through a 0.2 μm membrane filter (product name: TO20A047A, manufactured by Advantex Co., Ltd.), and separated into an insoluble residue and a water / methanol soluble part. Moreover, the cellulose, hemicellulose, and lignin content in an insoluble residue were evaluated by the sulfuric acid method. The results are shown in FIG. 3 and FIG.
The water / methanol soluble part is a high performance liquid chromatograph (HPLC) (manufactured by Shimadzu Corporation, column STR-ODSII, mobile phase water / methanol = 80/20 to 0/100 (60 minutes), temperature 40 ° C., The decomposition product was confirmed by detector SPD (280 nm) and (column ULTRON PS-80P, mobile phase water, temperature 80 ° C., detector differential refractometer). The results of the lignin-derived products are shown in Table 2, and the results of the cellulose-derived products are shown in Table 3.
As the beech wood powder, a pulverized powder having a circumscribed diameter of 280 μm or less was used.
FIG. 3 shows the correlation between the treatment time and the amount of residue when water is added at 10% by volume and when water is not added, at a treatment temperature of 270 ° C. The amount of lignin in the residue was less when water was added, and it was found that solubilization of lignin was promoted by the addition of water. In hemicellulose, this tendency is more prominent. When water was not added, 16% (wood weight basis) of hemicellulose remained after 30 minutes of treatment, whereas when water was added, it was completely solubilized. On the other hand, solubilization of cellulose did not proceed in any case, and it was found that cellulose does not decompose at this treatment temperature. This is considered to be derived from the crystallinity of cellulose. As a result, when 10% by volume of water was added at 270 ° C., an insoluble residue with only the cellulose component remaining was recovered. This is considered to be effective as a cellulose isolation method (wood pulping).

また、処理温度350℃の場合の、水を10体積%添加した場合と水の添加のない場合の処理時間と残渣量との相関を図4に示した。この温度では、いずれの場合もセルロースの可溶化が進行したが、特に水を添加した場合にはその可溶化が著しく促進されることが判明した。これは、270℃以上の温度条件ではセルロース分子間の水素結合が解離して、その結晶構造が緩むためであると考えられる。その結果、リグニンやヘミセルロースの場合と同様に、セルロースも水の酸触媒効果により可溶化が促進されたものと考えられる。
これらのことから、水の添加により木材の主要構成成分であるセルロース、ヘミセルロース及びリグニンすべての分解・可溶化が促進されことが確認でき、適当量の水の添加により、所望の化成品の製品との関連において木材の至適可溶化条件を設定できることが分かった。
Further, FIG. 4 shows the correlation between the treatment time and the amount of residue when water is added at 10% by volume when the treatment temperature is 350 ° C. and when water is not added. At this temperature, the solubilization of cellulose proceeded in any case, but it was found that the solubilization was remarkably promoted particularly when water was added. This is considered to be because hydrogen bonds between cellulose molecules are dissociated under the temperature condition of 270 ° C. or higher, and the crystal structure is loosened. As a result, as in the case of lignin and hemicellulose, it is considered that the solubilization of cellulose was also promoted by the acid catalytic effect of water.
From these facts, it can be confirmed that the addition of water promotes the decomposition and solubilization of all the main components of wood, cellulose, hemicellulose and lignin. It was found that optimal solubilization conditions for wood can be set in the context of

Figure 2005296906
Figure 2005296906

前記実施例では、バッチ処理の場合を示したが、本発明の製造方法を実施する装置の形式はこれに限定されず、連続式槽型反応器、ピストンフロー型流通式反応器、塔型流通式反応器など、これまで超臨界水などを用いた反応に使用されていたものと同様のものを用いることができる。   In the above embodiment, the case of batch processing was shown, but the type of the apparatus for carrying out the production method of the present invention is not limited to this, and a continuous tank reactor, a piston flow type flow reactor, a tower type flow is used. The same reactors as those used in the reactions using supercritical water can be used.

バイオマスとしてブナ木粉を処理して得た前記水/メタノール可溶部中のセルロース由来の分解生成物を前記高速液体クロマトグラフ(HPLC)で分析した結果を表3に示す。この結果から、水の添加により、処理時間を短縮でき、かつ、得られる化成品を制御できることが確認できた。 Table 3 shows the results of analyzing the decomposition product derived from cellulose in the water / methanol soluble part obtained by treating beech wood powder as biomass with the high performance liquid chromatograph (HPLC). From this result, it was confirmed that the treatment time can be shortened and the obtained chemical product can be controlled by adding water.

Figure 2005296906
Figure 2005296906

本発明において提案した、アルコールに水を添加した混合溶媒を用いてアルコールの超臨界条件または亜臨界条件にて処理するバイオマス処理においては、処理条件を被処理バイオマスにより、また、前記バイオマスから収得する化成品との関連で前記超臨界乃至亜臨界溶媒の反応条件を容易に制御できることから、コマーシャルなシステムの設計において有用である。   In the biomass treatment proposed in the present invention in which the mixed solvent obtained by adding water to the alcohol is used for the treatment under the supercritical condition or the subcritical condition of the alcohol, the treatment condition is obtained from the biomass to be treated and from the biomass. Since the reaction conditions of the supercritical or subcritical solvent can be easily controlled in relation to the chemical product, it is useful in designing a commercial system.

本発明の一態様である、超臨界乃至亜臨界状態の水/メタノール混合溶媒を用いてバイオマスの一例であるブナ木材を処理した場合の水の含有量と残渣量(重量%)との相関を示す。Correlation between water content and residue amount (% by weight) when beech wood, which is an example of biomass, is processed using a supercritical or subcritical water / methanol mixed solvent, which is one embodiment of the present invention. Show. 水を10体積%添加した水/メタノール混合溶媒を用いて、バイオマスの一例であるブナ木材を処理した場合の処理時間と残渣量(重量%)との相関を示す。○は水を10体積%添加した場合を、また●は水を添加しなかった場合をそれぞれ示す。The correlation of the processing time at the time of processing beech wood which is an example of biomass using the water / methanol mixed solvent which added water 10 volume%, and residue amount (weight%) is shown. ○ indicates the case where 10% by volume of water is added, and ● indicates the case where water is not added. 実施例1における、温度270℃、処理圧力30MPaの水/メタノール混合溶媒によるブナ木材を処理した場合の処理時間と残渣量(重量%)との相関を示す。The correlation with the processing time at the time of processing the beech wood by the water / methanol mixed solvent of temperature 270 degreeC and the processing pressure 30MPa in Example 1 is shown. 実施例1における、温度350℃、処理圧力50MPaの水/メタノール混合溶媒によるブナ木材を処理した場合の処理時間と残渣量(重量%)との相関を示す。The correlation of the processing time at the time of processing beech wood with the water / methanol mixed solvent of the temperature of 350 degreeC and the processing pressure of 50 MPa in Example 1 is shown.

Claims (4)

リグノセルロース系バイオマス、セルロース系バイオマス、含窒素多糖類及びたんぱく質系バイオマスからなる群から選択される1種または2種以上を、炭素数1〜8の脂肪族アルコールに5〜20体積%の水を加えた混合溶媒を用いて、アルコールの超臨界条件または亜臨界条件にて処理する前記バイオマスの分解・液化方法。 1 type or 2 or more types selected from the group consisting of lignocellulosic biomass, cellulosic biomass, nitrogen-containing polysaccharides and protein-based biomass, 5 to 20% by volume of water in an aliphatic alcohol having 1 to 8 carbon atoms. The method for decomposing and liquefying biomass, wherein the mixed solvent is used for treatment under supercritical conditions or subcritical conditions of alcohol. バイオマスと混合溶媒との重量比の最大値が0.3wt/wtである請求項1に記載のバイオマスの分解・液化方法。 The method for decomposing and liquefying biomass according to claim 1, wherein the maximum value of the weight ratio of the biomass and the mixed solvent is 0.3 wt / wt. バイオマスがリグノセルロース系バイオマスである請求項1または2に記載のバイオマスの分解・液化方法。 The method for decomposing and liquefying biomass according to claim 1 or 2, wherein the biomass is lignocellulosic biomass. 脂肪族アルコールがメタノールである請求項1、2または3に記載のバイオマスの分解・液化方法。
The method for decomposing and liquefying biomass according to claim 1, wherein the aliphatic alcohol is methanol.
JP2004121072A 2004-04-16 2004-04-16 Biomass decomposition and liquefaction method Expired - Fee Related JP4982036B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004121072A JP4982036B2 (en) 2004-04-16 2004-04-16 Biomass decomposition and liquefaction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004121072A JP4982036B2 (en) 2004-04-16 2004-04-16 Biomass decomposition and liquefaction method

Publications (2)

Publication Number Publication Date
JP2005296906A true JP2005296906A (en) 2005-10-27
JP4982036B2 JP4982036B2 (en) 2012-07-25

Family

ID=35329096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004121072A Expired - Fee Related JP4982036B2 (en) 2004-04-16 2004-04-16 Biomass decomposition and liquefaction method

Country Status (1)

Country Link
JP (1) JP4982036B2 (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007301468A (en) * 2006-05-11 2007-11-22 Matsushita Electric Ind Co Ltd Woody waste material decomposition method
JP2007313476A (en) * 2006-05-29 2007-12-06 Matsushita Electric Ind Co Ltd Decomposition treatment method of wood-based waste material
WO2009014225A1 (en) 2007-07-25 2009-01-29 Toyota Jidosha Kabushiki Kaisha Method for production of liquefied fuel oil using biomass as raw material
US20100043782A1 (en) * 2008-07-16 2010-02-25 Srinivas Kilambi Solvo-thermal fractionation of biomass
WO2010037178A1 (en) * 2008-10-01 2010-04-08 Licella Pty Ltd Bio-oil production method
US20100298555A1 (en) * 2007-12-27 2010-11-25 Kao Corporation Method for producing methyl cellulose
JP2010280851A (en) * 2009-06-05 2010-12-16 Toyota Motor Corp Manufacturing method for non-water soluble liquefied fuel oil including hydrocarbon from biomass as principal component
JP2010280850A (en) * 2009-06-05 2010-12-16 Toyota Motor Corp Manufacturing method for non-water soluble liquefied fuel oil from biomass
WO2011145519A1 (en) 2010-05-17 2011-11-24 国立大学法人長崎大学 Methods for producing glucoside
JP2012017373A (en) * 2010-07-07 2012-01-26 National Institute Of Advanced Industrial Science & Technology Method of manufacturing hydrocarbon
US8119823B2 (en) 2008-07-16 2012-02-21 Renmatix, Inc. Solvo-thermal hydrolysis of xylose
JP2012102297A (en) * 2010-11-12 2012-05-31 Idemitsu Kosan Co Ltd Method for solubilizing lignin
EP2520672A1 (en) 2006-10-26 2012-11-07 Kawasaki Jukogyo Kabushiki Kaisha Method and system for hydrolytic saccharification of a cellulosic biomass
US8383864B2 (en) 2009-12-08 2013-02-26 Iowa State University Research Foundation, Inc. Method for the conversion of cellulose and related carbohydrate materials to low-molecular-weight compounds
US8409357B2 (en) 2011-05-04 2013-04-02 Renmatix, Inc. Self-cleaning apparatus and method for thick slurry pressure control
US8546561B2 (en) 2008-07-16 2013-10-01 Renmatix, Inc. Nano-catalytic-solvo-thermal technology platform bio-refineries
US8546560B2 (en) 2008-07-16 2013-10-01 Renmatix, Inc. Solvo-thermal hydrolysis of cellulose
US8653312B2 (en) 2009-06-05 2014-02-18 Toyota Jidosha Kabushiki Kaisha Method for producing water-insoluble liquefied fuel oil from biomass
US8686192B2 (en) 2009-12-08 2014-04-01 Iowa State University Research Foundation, Inc. Method for the conversion of cellulose and related carbohydrate materials to low-molecular-weight compounds
US8759498B2 (en) 2011-12-30 2014-06-24 Renmatix, Inc. Compositions comprising lignin
US8840995B2 (en) 2011-05-04 2014-09-23 Renmatix, Inc. Lignin production from lignocellulosic biomass
CN105778547A (en) * 2016-03-17 2016-07-20 南京工业大学 Method for preparing wood-plastic composite by subcritical alcohol extrusion
CN106520171A (en) * 2016-11-02 2017-03-22 中国林业科学研究院林产化学工业研究所 Method for liquefaction of bamboo powder in water/n-butyl alcohol solvent system and separation of product thereof
CN107090303A (en) * 2017-05-22 2017-08-25 华南农业大学 Prepared by overcritical mixed solvent liquefaction lignin is rich in aromatic compound bio oil method
KR20180066564A (en) * 2016-12-09 2018-06-19 한국생산기술연구원 Method of biomass decoposition using solvothermolysis of 2 phase reaction system
US10053745B2 (en) 2010-01-19 2018-08-21 Renmatix, Inc. Production of fermentable sugars and lignin from biomass using supercritical fluids
KR101935947B1 (en) * 2017-05-01 2019-01-11 한국에너지기술연구원 Device for homogeneous mixing and continuous feeding of lignin and solvent
WO2019240306A1 (en) * 2018-06-12 2019-12-19 한국에너지기술연구원 Apparatus for homogeneous mixing and continuous injecting of lignin and solvent, lignin decomposition system using supercritical fluid comprising the same, and operating method thereof
US10793646B2 (en) 2014-09-26 2020-10-06 Renmatix, Inc. Adhesive compositions comprising type-II cellulose
KR20210079799A (en) * 2019-12-20 2021-06-30 한국에너지기술연구원 Lignin Decomposition System Using Supercritical Fluid and Its Operation Method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001170601A (en) * 1999-12-17 2001-06-26 Noritsu Koki Co Ltd Treatment process of biomass waste
JP2001205070A (en) * 2000-01-25 2001-07-31 Japan Science & Technology Corp Composition by supercritical solvent treatment of biomass and its production method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001170601A (en) * 1999-12-17 2001-06-26 Noritsu Koki Co Ltd Treatment process of biomass waste
JP2001205070A (en) * 2000-01-25 2001-07-31 Japan Science & Technology Corp Composition by supercritical solvent treatment of biomass and its production method

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4674723B2 (en) * 2006-05-11 2011-04-20 パナソニック株式会社 Decomposition method for woody waste
JP2007301468A (en) * 2006-05-11 2007-11-22 Matsushita Electric Ind Co Ltd Woody waste material decomposition method
JP2007313476A (en) * 2006-05-29 2007-12-06 Matsushita Electric Ind Co Ltd Decomposition treatment method of wood-based waste material
JP4666378B2 (en) * 2006-05-29 2011-04-06 パナソニック株式会社 Decomposition method for woody waste
EP2520673A1 (en) 2006-10-26 2012-11-07 Kawasaki Jukogyo Kabushiki Kaisha Method and system for hydrolytic saccharification of a cellulosic biomass
EP2520671A1 (en) 2006-10-26 2012-11-07 Kawasaki Jukogyo Kabushiki Kaisha Method and system for hydrolytic saccharification of a cellulosic biomass
EP2520672A1 (en) 2006-10-26 2012-11-07 Kawasaki Jukogyo Kabushiki Kaisha Method and system for hydrolytic saccharification of a cellulosic biomass
WO2009014225A1 (en) 2007-07-25 2009-01-29 Toyota Jidosha Kabushiki Kaisha Method for production of liquefied fuel oil using biomass as raw material
JP2009046661A (en) * 2007-07-25 2009-03-05 Toyota Motor Corp Method for producing liquefied fuel oil using biomass as raw material
US8945246B2 (en) 2007-07-25 2015-02-03 Toyota Jidosha Kabushiki Kaisha Method for producing liquefied fuel oil using biomass as feedstock
US8440817B2 (en) 2007-12-27 2013-05-14 Kao Corporation Method for producing methyl cellulose
US20100298555A1 (en) * 2007-12-27 2010-11-25 Kao Corporation Method for producing methyl cellulose
US20100043782A1 (en) * 2008-07-16 2010-02-25 Srinivas Kilambi Solvo-thermal fractionation of biomass
US8119823B2 (en) 2008-07-16 2012-02-21 Renmatix, Inc. Solvo-thermal hydrolysis of xylose
US8546561B2 (en) 2008-07-16 2013-10-01 Renmatix, Inc. Nano-catalytic-solvo-thermal technology platform bio-refineries
US8282738B2 (en) * 2008-07-16 2012-10-09 Renmatix, Inc. Solvo-thermal fractionation of biomass
US8546560B2 (en) 2008-07-16 2013-10-01 Renmatix, Inc. Solvo-thermal hydrolysis of cellulose
WO2010037178A1 (en) * 2008-10-01 2010-04-08 Licella Pty Ltd Bio-oil production method
JP2010280851A (en) * 2009-06-05 2010-12-16 Toyota Motor Corp Manufacturing method for non-water soluble liquefied fuel oil including hydrocarbon from biomass as principal component
JP2010280850A (en) * 2009-06-05 2010-12-16 Toyota Motor Corp Manufacturing method for non-water soluble liquefied fuel oil from biomass
US8653312B2 (en) 2009-06-05 2014-02-18 Toyota Jidosha Kabushiki Kaisha Method for producing water-insoluble liquefied fuel oil from biomass
US8383864B2 (en) 2009-12-08 2013-02-26 Iowa State University Research Foundation, Inc. Method for the conversion of cellulose and related carbohydrate materials to low-molecular-weight compounds
US8686192B2 (en) 2009-12-08 2014-04-01 Iowa State University Research Foundation, Inc. Method for the conversion of cellulose and related carbohydrate materials to low-molecular-weight compounds
US10858712B2 (en) 2010-01-19 2020-12-08 Renmatix, Inc. Production of fermentable sugars and lignin from biomass using supercritical fluids
US10053745B2 (en) 2010-01-19 2018-08-21 Renmatix, Inc. Production of fermentable sugars and lignin from biomass using supercritical fluids
WO2011145519A1 (en) 2010-05-17 2011-11-24 国立大学法人長崎大学 Methods for producing glucoside
JP2012017373A (en) * 2010-07-07 2012-01-26 National Institute Of Advanced Industrial Science & Technology Method of manufacturing hydrocarbon
JP2012102297A (en) * 2010-11-12 2012-05-31 Idemitsu Kosan Co Ltd Method for solubilizing lignin
US8409357B2 (en) 2011-05-04 2013-04-02 Renmatix, Inc. Self-cleaning apparatus and method for thick slurry pressure control
US8840995B2 (en) 2011-05-04 2014-09-23 Renmatix, Inc. Lignin production from lignocellulosic biomass
US9963555B2 (en) 2011-12-30 2018-05-08 Renmatix, Inc. Compositions comprising lignin
US8759498B2 (en) 2011-12-30 2014-06-24 Renmatix, Inc. Compositions comprising lignin
US10793646B2 (en) 2014-09-26 2020-10-06 Renmatix, Inc. Adhesive compositions comprising type-II cellulose
CN105778547A (en) * 2016-03-17 2016-07-20 南京工业大学 Method for preparing wood-plastic composite by subcritical alcohol extrusion
CN105778547B (en) * 2016-03-17 2018-07-17 南京工业大学 A kind of method that subcritical alcohol extrusion prepares wood plastic composite
CN106520171A (en) * 2016-11-02 2017-03-22 中国林业科学研究院林产化学工业研究所 Method for liquefaction of bamboo powder in water/n-butyl alcohol solvent system and separation of product thereof
KR20180066564A (en) * 2016-12-09 2018-06-19 한국생산기술연구원 Method of biomass decoposition using solvothermolysis of 2 phase reaction system
KR102087348B1 (en) * 2016-12-09 2020-03-10 한국생산기술연구원 Method of biomass decoposition using solvothermolysis of 2 phase reaction system
KR101935947B1 (en) * 2017-05-01 2019-01-11 한국에너지기술연구원 Device for homogeneous mixing and continuous feeding of lignin and solvent
CN107090303A (en) * 2017-05-22 2017-08-25 华南农业大学 Prepared by overcritical mixed solvent liquefaction lignin is rich in aromatic compound bio oil method
WO2019240306A1 (en) * 2018-06-12 2019-12-19 한국에너지기술연구원 Apparatus for homogeneous mixing and continuous injecting of lignin and solvent, lignin decomposition system using supercritical fluid comprising the same, and operating method thereof
KR20210079799A (en) * 2019-12-20 2021-06-30 한국에너지기술연구원 Lignin Decomposition System Using Supercritical Fluid and Its Operation Method
KR102297595B1 (en) * 2019-12-20 2021-09-03 한국에너지기술연구원 Lignin Decomposition System Using Supercritical Fluid and Its Operation Method

Also Published As

Publication number Publication date
JP4982036B2 (en) 2012-07-25

Similar Documents

Publication Publication Date Title
JP4982036B2 (en) Biomass decomposition and liquefaction method
Jędrzejczyk et al. Physical and chemical pretreatment of lignocellulosic biomass
Shao et al. Acidic seawater improved 5-hydroxymethylfurfural yield from sugarcane bagasse under microwave hydrothermal liquefaction
CA2730766C (en) Method of extraction of furfural and glucose from biomass using one or more supercritical fluids
Feng et al. Preparation of methyl levulinate from fractionation of direct liquefied bamboo biomass
US7960520B2 (en) Conversion of lignocellulosic biomass to chemicals and fuels
Hsu et al. Cellulosic conversion in ionic liquids (ILs): Effects of H2O/cellulose molar ratios, temperatures, times, and different ILs on the production of monosaccharides and 5-hydroxymethylfurfural (HMF)
JP4957661B2 (en) Method for producing liquefied fuel oil from biomass
JP3755076B2 (en) Composition by supercritical solvent treatment of biomass and method for producing the same
Trinh et al. Aqueous acidified ionic liquid pretreatment for bioethanol production and concentration of produced ethanol by pervaporation
US20100043782A1 (en) Solvo-thermal fractionation of biomass
New et al. The application of green solvent in a biorefinery using lignocellulosic biomass as a feedstock
Chen et al. Feasibility of enhancing production of 5-hydroxymethylfurfural using deep eutectic solvents as reaction media in a high-pressure reactor
Feng et al. Directional synergistic conversion of lignocellulosic biomass with matching-solvents for added-value chemicals
Chang et al. Synthesis of 5-hydroxymethylfurfural from glucose, fructose, cellulose and agricultural wastes over sulfur-doped peanut shell catalysts in ionic liquid
JP2010081855A (en) Method for producing saccharides
Cheng et al. Using solubility parameter analysis to understand delignification of poplar and rice straw with catalyzed organosolv fractionation processes
Wang et al. Pretreatment of moso bamboo with p-toluenesulfonic acid for the recovery and depolymerization of hemicellulose
Cañadas et al. Green solvents extraction-based detoxification to enhance the enzymatic hydrolysis of steam-exploded lignocellulosic biomass and recover bioactive compounds
JP4759227B2 (en) Biomass decomposition and liquefaction method
Fan et al. Comparative study about catalytic liquefaction of alkali lignin to aromatics by HZSM-5 in sub-and supercritical ethanol
Aida Fundamentals of Hydrothermal Processing of Biomass-Related Molecules for Converting Organic Solid Wastes into Chemical Products
Zhang et al. Pretreatment of lignocellulosic wheat straw in ethanolwater co-solvents
Sasaki et al. Rapid and selective conversion of cellulose to valuable chemical intermediates with supercritical water
JP2010280850A (en) Manufacturing method for non-water soluble liquefied fuel oil from biomass

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100518

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120417

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120423

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees