WO2019240162A1 - Water repellent agent, water repellent fiber product, and method for manufacturing same - Google Patents

Water repellent agent, water repellent fiber product, and method for manufacturing same Download PDF

Info

Publication number
WO2019240162A1
WO2019240162A1 PCT/JP2019/023256 JP2019023256W WO2019240162A1 WO 2019240162 A1 WO2019240162 A1 WO 2019240162A1 JP 2019023256 W JP2019023256 W JP 2019023256W WO 2019240162 A1 WO2019240162 A1 WO 2019240162A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
isocyanate
water
agent
water repellent
Prior art date
Application number
PCT/JP2019/023256
Other languages
French (fr)
Japanese (ja)
Inventor
達也 松村
知樹 藤田
橋本 貴史
Original Assignee
明成化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 明成化学工業株式会社 filed Critical 明成化学工業株式会社
Priority to JP2019554581A priority Critical patent/JP6633265B1/en
Publication of WO2019240162A1 publication Critical patent/WO2019240162A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/18Materials not provided for elsewhere for application to surfaces to minimize adherence of ice, mist or water thereto; Thawing or antifreeze materials for application to surfaces
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/10Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
    • D06M13/224Esters of carboxylic acids; Esters of carbonic acid
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/322Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen
    • D06M13/395Isocyanates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/263Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/643Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain

Definitions

  • the present invention relates to a water repellent, a water repellent fiber product, and a method for producing the same.
  • these products are not satisfied only by being excellent in flame retardancy, but are also required to have functionality such as water repellency, antifouling properties, and antibacterial properties.
  • water repellency for example, shower curtains used in hotel bathrooms For example, high water repellency is required.
  • Patent Document 1 As a technique for suppressing the decrease in flame retardancy due to a water repellent, for example, in Patent Document 1, flame retardant yarn is used to increase the flame retardancy of a fiber, and a very small amount of C8 fluorine-based repellent is used as a water repellent. A method for treating a flame retardant yarn with a liquid is disclosed. Since the C8 fluorine-based water repellent can impart strong water repellency, it can impart water repellency even with a small amount of treatment.
  • C6 fluorine-based water repellents and fluorine-free water repellents are inferior in water repellency compared to C8 fluorine-based water repellents. For this reason, in order to impart sufficient water repellency to textile products, it is necessary to increase the amount used, while flame retardance decreases with increasing amount used, so excellent flame resistance and water repellency It is difficult to achieve both.
  • Patent Document 2 describes that both flame retardancy and water repellency can be achieved by using a flame retardant yarn to increase the flame retardancy of a fiber and treating a small amount of a wax-based water repellent as a water repellent. ing. However, it is difficult to impart sufficient water repellency to the fiber with a wax-based water repellent.
  • the main object of the present invention is to provide a water-repellent agent that imparts excellent water repellency to a fiber and that hardly inhibits the flame retardancy of the fiber.
  • Another object of the present invention is to provide a water repellent fiber product using the water repellent and a method for producing the same.
  • the present inventors have intensively studied to solve the above problems.
  • at least a hydrocarbon compound having a functional group capable of reacting with an isocyanate group and an aqueous dispersion in which the isocyanate compound is dispersed in water, the isocyanate compound relative to the number of moles of the functional group of the hydrocarbon compound.
  • Item 1 At least a hydrocarbon compound having a functional group capable of reacting with an isocyanate group, and an aqueous dispersion in which the isocyanate compound is dispersed in water, A water repellent, wherein the molar ratio of the crosslinkable functional group of the isocyanate compound to the functional group of the hydrocarbon compound is 0.3 or more.
  • Item 2. Item 2. The water repellent according to Item 1, wherein the hydrocarbon compound having a functional group capable of reacting with the isocyanate group is a compound represented by the following general formula (1).
  • W is an (a + b) -valent organic group.
  • A is bonded to W and is —X—Y— or —Y—.
  • B is bonded to W and is —XZ or —Z.
  • a is an integer of 1 or more.
  • b is an integer of 1 or more.
  • (A + b) is 3 to 8.
  • X is a divalent polyalkylene ether group.
  • Y is a divalent group, and is an ether group, an ester group, an amide group, a urethane group, a urea group, or a thiourethane group.
  • R is a straight-chain or branched monovalent hydrocarbon group having 6 to 30 carbon atoms which may optionally contain at least one unsaturated bond.
  • Z is a hydroxy group, an amino group, a carboxy group or a thiol group. However, when B is -XZ, Z is a hydroxy group.
  • Item 3. The water repellent according to Item 1 or 2, wherein the isocyanate compound is a blocked isocyanate.
  • Item 4. The water repellent according to any one of Items 1 to 3, further comprising a surfactant.
  • Item 5. The water repellent according to any one of Items 1 to 4, further comprising an acrylic polymer.
  • Item 6. Item 6.
  • the water repellent according to Item 5 wherein the content of the acrylic polymer is 0.1 to 99 parts by mass with respect to a total of 100 parts by mass of the hydrocarbon compound and the isocyanate compound in the water repellent.
  • Item 7. Item 7. The water repellent according to Item 5 or 6, wherein the acrylic polymer is an acrylic polymer containing a halogen element.
  • Item 8. Item 8. The water repellent according to any one of Items 5 to 7, wherein the acrylic polymer is an acrylic polymer containing no fluorine atom.
  • Item 10. Item 10.
  • a first agent comprising at least a hydrocarbon compound having a functional group capable of reacting with an isocyanate group;
  • a kit for preparing a water repellent used as an aqueous dispersion in which the first agent and the second agent are dispersed in water The kit whose molar ratio of the crosslinkable functional group of the said isocyanate compound of the said 2nd agent with respect to the functional group of the said hydrocarbon compound of the said 1st agent is 0.3 or more.
  • a first agent comprising at least a hydrocarbon compound having a functional group capable of reacting with an isocyanate group;
  • At least a third agent comprising an acrylic polymer;
  • a kit for preparing a water repellent used as an aqueous dispersion in which the first agent, the second agent, and the third agent are dispersed in water The kit whose molar ratio of the crosslinkable functional group of the said isocyanate compound of the said 2nd agent with respect to the functional group of the said hydrocarbon compound of the said 1st agent is 0.3 or more.
  • the present invention it is possible to provide a water-repellent agent that imparts excellent water repellency to fibers and hardly inhibits the flame retardancy of the fibers. Moreover, according to this invention, the water-repellent fiber product using the said water-repellent agent and its manufacturing method can also be provided.
  • the water-repellent agent of the present invention comprises a hydrocarbon compound having a functional group capable of reacting with an isocyanate group (hereinafter sometimes referred to as “isocyanate-reactive hydrocarbon compound”) and an isocyanate compound dispersed in water.
  • the ratio of the number of moles of crosslinkable functional groups of the isocyanate compound to the number of moles of the functional groups of the hydrocarbon compound is 0.3 or more.
  • the water repellent of the present invention is provided with such a configuration, thereby imparting excellent water repellency to the fiber, and further inhibiting the inhibition of the flame retardancy of the fiber.
  • the water repellent of the present invention will be described in detail.
  • a one-component type water repellent composed of an aqueous dispersion in which an isocyanate-reactive hydrocarbon compound and an isocyanate compound are dispersed in water.
  • a two-component kit comprising a first agent containing an isocyanate-reactive hydrocarbon compound and a second agent containing an isocyanate compound, and in use, the first agent and the second agent are dispersed in water, It is good also as a form of the kit which prepares the water repellent of this invention as a dispersion.
  • the 3 liquid type kit provided with the 1st agent containing an isocyanate-reactive hydrocarbon compound, the 2nd agent containing an isocyanate compound, and the 3rd agent containing an acrylic polymer,
  • the agent, the second agent, and the third agent may be dispersed in water to form a kit for preparing the water repellent of the present invention as an aqueous dispersion.
  • the hydrocarbon compound having a functional group capable of reacting with an isocyanate group is a hydrocarbon compound in which a functional group capable of reacting with an isocyanate group is bonded to a hydrocarbon skeleton. Only one type of isocyanate-reactive hydrocarbon compound may be used, or two or more types may be mixed and used.
  • Preferred examples of the functional group capable of reacting with an isocyanate group include a hydroxy group, an amino group, a carboxy group, and a thiol group.
  • Examples of the isocyanate-reactive hydrocarbon compound include compounds represented by the following general formula (1). W [-A-R] a [-B] b (1)
  • W is an (a + b) -valent organic group.
  • A is bonded to W and is —X—Y— or —Y—.
  • B is bonded to W and is —XZ or —Z.
  • a is an integer of 1 or more.
  • b is an integer of 1 or more.
  • (A + b) is 3 to 8.
  • X is a divalent polyalkylene ether group.
  • Y is a divalent group, and is an ether group, an ester group, an amide group, a urethane group, a urea group, or a thiourethane group.
  • R is a straight-chain or branched monovalent hydrocarbon group having 6 to 30 carbon atoms which may optionally contain at least one unsaturated bond.
  • Z is a hydroxy group, an amino group, a carboxy group or a thiol group. However, when B is -XZ, Z is a hydroxy group.
  • the hydroxy group, amino group, carboxy group or thiol group of the group Z is a functional group capable of reacting with the isocyanate group.
  • the isocyanate-reactive hydrocarbon compound is a compound having a hydrocarbon group derived from the group R.
  • the group W is an (a + b) -valent organic group and is preferably a residue of a polyfunctional compound.
  • a group A and a group B are bonded to the group W.
  • a is an integer of 1 or more
  • b is an integer of 1 or more
  • (a + b) is 3 to 8. That is, the valence of the group W is 3-8.
  • a polyfunctional compound Preferably, a polyhydric alcohol compound, a polyvalent amine compound, a polyvalent carboxylic acid compound, and a polyvalent thiol compound are mentioned.
  • the polyhydric alcohol compound is not limited, and can be selected from, for example, trimethylolethane, trimethylolpropane, ditrimethylolpropane, 1,2,4-butanetriol, glycerin, and sugar alcohol.
  • Sugar alcohols include, but are not limited to, compounds derived from aldoses and ketoses such as tetroses, pentoses, hexoses and heptoses.
  • polyvalent amine compound examples include, but are not limited to, diethylenetriamine, triethylenetetramine, aminoethylethanolamine, diethanolamine, and triethanolamine.
  • polyvalent carboxylic acid compound examples include, but are not limited to, malic acid and citric acid.
  • polyvalent thiol compound examples include, but are not limited to, trimethylolpropane tris (3-mercaptopropionate), tris-[(3-mercaptopropionyloxy) -ethyl] -isocyanurate, pentaerythritol tetrakis (3-mercaptopropio And dipentaerythritol hexakis (3-mercaptopropionate).
  • the group X is a divalent polyalkylene ether group (that is, a polyoxyalkylene group).
  • Specific examples of the group X include single polymers such as ethylene oxide, propylene oxide, and butylene oxide, block copolymers obtained by combining two or more of these, and random copolymers.
  • the group Y is a divalent group, and is an ether group, an ester group, an amide group, a urethane group, a urea group, or a thiourethane group.
  • the group R is a linear or branched monovalent hydrocarbon group having 6 to 30 carbon atoms, which is bonded to the group Y and may optionally contain at least one unsaturated bond.
  • the lower limit of the number of carbon atoms of the hydrocarbon group is preferably 8 or more, more preferably 10 or more, still more preferably 12 or more, and the upper limit is preferably 28 or less, more preferably 26 or less, even more preferably.
  • Is 24 or less, and preferred ranges are 6 to 28, 6 to 26, 6 to 24, 8 to 30, 8 to 28, 8 to 26, 8 to 24, 10 to 30, 10 to 28, 10 to 26. 10-24, 12-30, 12-28, 12-26, 12-24, and 12-24 are particularly preferable.
  • hydrocarbon group examples include decyl group, undecyl group, dodecyl group (lauryl group), myristyl group, pentadecyl group, cetyl group, heptadecyl group, stearyl group, nonadecyl group, eicosyl group, heneicosyl group, behenyl group, oleyl Groups and the like.
  • higher fatty acids (note that the carbon number includes carbon of the carbonyl group), higher aliphatic alcohols, higher aliphatic monoisocyanates, higher aliphatic amines. , Alkyl halides, fatty acid chlorides, and the like, and a method of reacting the hydroxy group, carboxy group, thiol group, amino group and the like of the polyfunctional compound can be employed.
  • group Y and group R can be formed, and group R can be introduce
  • higher fatty acids examples include caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, arachidonic acid, behenic acid, lignoceric acid, palmitoleic acid, linoleic acid, arachidonic acid, oleic acid, and erucic acid. Can be mentioned.
  • higher aliphatic alcohols examples include lauryl alcohol, tridecyl alcohol, myristyl alcohol, pentadecyl alcohol, cetanol, stearyl alcohol, eicosanol, heneicosanol, behenyl alcohol, and oleyl alcohol.
  • Examples of the higher aliphatic monoisocyanate include decyl isocyanate, undecyl isocyanate, dodecyl isocyanate, myristyl isocyanate, pentadecyl isocyanate, cetyl isocyanate, stearyl isocyanate, eicosyl isocyanate, and behenyl isocyanate.
  • higher aliphatic amines examples include decylamine, laurylamine, myristylamine, stearylamine, behenylamine, and oleylamine.
  • alkyl halide examples include dodecyl chloride, hexadecyl chloride, octadecyl chloride, dodecyl bromide, hexadecyl bromide, octadecyl bromide and the like.
  • fatty acid chloride examples include caprylic acid chloride, capric acid chloride, lauric acid chloride, myristic acid chloride, palmitic acid chloride, stearic acid chloride, and oleic acid chloride.
  • the isocyanate-reactive hydrocarbon compound is preferably selected from the group consisting of the polyfunctional compound and the higher fatty acid, higher aliphatic alcohol, higher aliphatic monoisocyanate, higher aliphatic amine, alkyl halide, and fatty acid chloride.
  • the reaction product with at least one selected from the above is preferable.
  • the reaction product has a hydrocarbon skeleton derived from the polyfunctional compound and includes a functional group (preferably a hydroxy group, an amino group, a carboxy group, or a thiol group) that can react with an isocyanate group. Yes.
  • the number of functional groups capable of reacting with an isocyanate group in one molecule is preferably 1 or more for the lower limit, preferably 7 or less, more preferably 5 or less for the upper limit. More preferably, it is 3 or less, and the range is preferably 1 to 7, more preferably 1 to 5, and further preferably 1 to 3.
  • isocyanate compound As an isocyanate compound, the well-known isocyanate compound (polyfunctional isocyanate compound) which has a 2 or more crosslinkable functional group in 1 molecule can be used individually by 1 type or in combination of 2 or more types as appropriate.
  • the crosslinkable functional group of the isocyanate compound is specifically an isocyanate group or a blocked isocyanate group. Therefore, in the water repellent of the present invention, the total molar ratio of the isocyanate group of the isocyanate compound and the blocked isocyanate group to the functional group of the hydrocarbon compound is 0.3 or more.
  • a blocked isocyanate in which 50 mol% or more, preferably 60 mol% or more, more preferably 70 mol% or more of the isocyanate group is blocked with a blocking agent can be suitably used.
  • a blocked isocyanate various known blocked isocyanates can be used.
  • the blocked isocyanate can be prepared by reacting various known isocyanate compounds with various known blocking agents.
  • Isocyanate compounds may have self-emulsifying properties.
  • isocyanate compounds having self-emulsifying properties include nonionic hydrophilic groups, cationic hydrophilic groups, and anionic properties in part of isocyanate compounds.
  • an isocyanate compound into which a nonionic hydrophilic group having an oxyethylene group is preferably used can be used.
  • Monoalkyl ethers ethylene glycol or (poly) ethylene glycols such as diethylene glycol, triethylene glycol, and polyethylene glycol; block copolymers, random copolymers, and ethylene oxides of polyethylene glycol, polypropylene glycol, and polytetramethylene glycol And propylene oxide, ethylene oxide and butyleneo Random copolymers or block copolymers of the side; polyoxyalkylene monoamines, polyoxyalkylene diamines; and the like, polyethylene glycol monomethyl ether, polyethylene glycol monoethyl ether and the like are preferably used.
  • the said nonionic hydrophilic compound may be used individually by 1 type, or may be used in combination of 2 or more type.
  • the introduction amount of these compounds is preferably 1 mol% or more for the lower limit with respect to the isocyanate group, and preferably 50 mol% or less, more preferably 40 mol% or less, still more preferably 30 mol% or less for the upper limit.
  • the range is preferably about 1 to 50 mol%, more preferably about 1 to 40 mol%, and still more preferably about 1 to 30 mol%.
  • Examples of the isocyanate compound include aliphatic polyisocyanate, alicyclic polyisocyanate, aromatic polyisocyanate, and araliphatic polyisocyanate.
  • Examples of the aliphatic polyisocyanate include 1,4-tetramethylene diisocyanate, 1,5-pentamethylene diisocyanate, 1,6-hexamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, 2,4,4- Trimethylhexamethylene diisocyanate, lysine diisocyanate, dimer diisocyanate and the like.
  • alicyclic polyisocyanate examples include 1,3-bis (isocyanatomethyl) cyclohexane, 1,4-bis (isocyanatomethyl) cyclohexane, 3-isocyanatomethyl-3,3,5-trimethylcyclohexane (isophorone diisocyanate), bis- (4-isocyanatocyclohexyl) methane (hydrogenated MDI), norbornane diisocyanate, etc.
  • aromatic polyisocyanate examples include 2,4′-diphenylmethane diisocyanate, 4,4′-diphenylmethane diisocyanate, crude MDI, 1,4-phenylene diisocyanate, 2,4-tolylene diisocyanate, and 2,6-tolylene diisocyanate.
  • examples include diisocyanate, 3,3′-dimethyl-4,4′-diisocyanatobiphenyl, 3,3′-dimethyl-4,4′-diisocyanatodiphenylmethane, 1,5-naphthylene diisocyanate, and the like.
  • aliphatic polyisocyanate examples include 1,3-xylylene diisocyanate, 1,4-xylylene diisocyanate, ⁇ , ⁇ , ⁇ ′, ⁇ ′-tetramethylxylylene diisocyanate, and the reaction of these compounds.
  • adduct type polyisocyanate and urea It is also preferable to use an isocyanate-modified product obtained by a todionization reaction, an isocyanuration reaction, a carbodiimidization reaction, a ureton iminization reaction, a biuretization reaction, or a mixture thereof.
  • the blocking agent introduced into the isocyanate compound is a compound having at least one active hydrogen in the molecule, and can be used alone or in combination of two or more.
  • the blocking agent include alcohol compounds, alkylphenol compounds, phenol compounds, active methylene compounds, mercaptan compounds, acid amide compounds, acid imide compounds, imidazole compounds, imidazoline compounds, triazole compounds, Examples thereof include carbamic acid compounds, urea compounds, oxime compounds, amine compounds, imide compounds, imine compounds, pyrazole compounds, and bisulfites.
  • acid amide compounds active methylene compounds, oxime compounds, and pyrazole compounds are preferable, and ⁇ -caprolactam, acetylacetone, diethyl malonate, methyl ethyl ketone oxime, cyclohexanone oxime, 3-methylpyrazole, 3,5-dimethylpyrazole, and the like.
  • ⁇ -caprolactam acetylacetone, diethyl malonate
  • methyl ethyl ketone oxime cyclohexanone oxime
  • 3-methylpyrazole 3,5-dimethylpyrazole, and the like.
  • the ratio (molar ratio) of the number of moles of the crosslinkable functional group of the isocyanate compound to the number of moles of the functional group of the isocyanate-reactive hydrocarbon compound may be 0.3 or more, From the viewpoint of effectively suppressing the inhibition of the flame retardancy of the fiber while suitably imparting excellent water repellency to the fiber, the molar ratio is preferably about 0.4 or more, more preferably The upper limit is preferably 8 or less, more preferably 6 or less, and even more preferably 4 or less. Preferred ranges are about 0.3 to 8, about 0.3 to 6, About 3-4, about 0.4-8, about 0.4-6, about 0.4-4, about 0.5-8, about 0.5-6, about 0.5-4, In particular, about 0.5 to 4 is preferable.
  • the mass ratio of the isocyanate-reactive hydrocarbon compound to the isocyanate compound is not particularly limited, but preferably has excellent water repellency for the fiber. From the viewpoint of effectively suppressing the inhibition of the flame retardancy of the fiber while being applied, it is preferably 1: 0.001 to 1000, more preferably 1: 0.05 to 20, further preferably 1: 0.1 to 10 is mentioned.
  • the water repellent of the present invention may be a processing solution having a concentration for treating a fiber product as it is, or a stock solution (for example, 5 to 1000 times the stock solution) used by diluting with water before being used for treating a textile product. It may be used as a processing liquid after dilution).
  • the lower limit of the content (solid content) of the isocyanate-reactive hydrocarbon compound is preferably 0.01% by mass or more, more preferably 0.5% by mass or more.
  • the upper limit is preferably 60% by mass or less, more preferably 50% by mass or less, still more preferably 40% by mass or less, and a preferable range is 0.01% by mass or more. ⁇ 60 mass%, 0.01 ⁇ 50 mass%, 0.01 ⁇ 40 mass%, 0.5 ⁇ 60 mass%, 0.5 ⁇ 50 mass%, 0.5 ⁇ 40 mass% About 1.0 to 60% by mass, about 1.0 to 50% by mass, and about 1.0 to 40% by mass, and particularly preferably about 1.0 to 40% by mass.
  • the lower limit of the isocyanate compound content is preferably 0.01% by mass or more, more preferably 0.5% by mass or more. More preferably, it is 1.0% by mass or more, and the upper limit is preferably 60% by mass or less, more preferably 50% by mass or less, still more preferably 40% by mass or less.
  • the upper limit is preferably 60% by mass or less, more preferably 50% by mass or less, still more preferably 40% by mass or less.
  • the isocyanate-reactive hydrocarbon compound and the isocyanate compound may be an aqueous dispersion dispersed in water. More specifically, the water repellent of the present invention may be, for example, an aqueous dispersion in which particles of an isocyanate-reactive hydrocarbon compound and particles of an isocyanate compound are dispersed in water, or an isocyanate-reactive carbonization agent. An aqueous dispersion of particles in which a hydrogen compound and an isocyanate compound are contained in one particle may be used.
  • the aqueous dispersion in which the isocyanate-reactive hydrocarbon compound particles and the isocyanate compound particles are dispersed in water is obtained by mixing the aqueous dispersion of the isocyanate-reactive hydrocarbon compound and the aqueous dispersion of the isocyanate compound. It can be easily prepared. Also, an aqueous dispersion of particles in which an isocyanate-reactive hydrocarbon compound and an isocyanate compound are contained in one particle is also prepared by mixing the isocyanate-reactive hydrocarbon compound and the isocyanate compound and then dispersing in water. Can do.
  • the water repellent of the present invention may contain other components in addition to the isocyanate-reactive hydrocarbon compound, the isocyanate compound, and water.
  • Other components preferably include acrylic polymers, surfactants, flame retardants, silicone compounds, and other additives. Only one type of other components may be used, or two or more types may be mixed and used. However, it is preferable that the water repellent of the present invention does not contain a C8 fluorine-based water repellent (a compound having a perfluoroalkyl group having 8 or more carbon atoms).
  • an acrylic polymer can be suitably prepared as an aqueous dispersion, so that it can be blended even when the water repellent of the present invention is a stock solution, or the water repellent of the present invention is diluted with water.
  • the processing liquid it may be blended with water when the processing liquid is prepared.
  • the surfactant is preferably used to disperse the isocyanate-reactive hydrocarbon compound and isocyanate compound in water when the water-repellent agent of the present invention is used as an aqueous dispersion. It is also preferable to mix the liquid medicine when it is a stock solution. What is necessary is just to select suitably about the timing which adds another component to a water repellent.
  • other components will be described in detail.
  • the water repellent of the present invention may contain an acrylic polymer as necessary from the viewpoint of water repellency and flame retardancy. Only one type of acrylic polymer may be used, or two or more types may be mixed and used.
  • acrylic polymer those known as an aqueous dispersion can be used.
  • an acrylic polymer containing a fluorine atom is preferable from the viewpoint of imparting further excellent water repellency to the fiber.
  • an acrylic polymer containing a chlorine atom is preferable.
  • an acrylic polymer that does not contain a halogen element is also preferable.
  • the acrylic polymer is a polymer obtained by polymerizing at least a (meth) acrylate monomer.
  • an acrylic polymer containing a halogen atom is obtained by copolymerizing a monomer containing a halogen atom with a (meth) acrylate monomer.
  • the (meth) acrylate monomer preferably has an ester moiety having 12 or more carbon atoms, and the ester moiety is preferably a hydrocarbon group other than the ester group.
  • This hydrocarbon group may be linear or branched, may be saturated or unsaturated, and has an alicyclic or aromatic ring. You may do it. Among these, those that are linear are preferable, and those that are linear alkyl groups are more preferable.
  • the ester moiety preferably has 12 or more carbon atoms, more preferably 30 or less, and more preferably 12 to 30 carbon atoms.
  • the number of carbon atoms in the ester moiety is more preferably 21 or less, and further preferably 12 to 21. When the carbon number is within this range, the water repellency and texture are particularly excellent.
  • Particularly preferred as the ester moiety is a linear alkyl group having 12 to 18 carbon atoms.
  • Examples of the (meth) acrylate monomer include lauryl (meth) acrylate, hexadecyl (meth) acrylate, stearyl (meth) acrylate, isostearyl (meth) acrylate, behenyl (meth) acrylate, and the like. One or more types can be used.
  • (meth) acrylate monomer having a cyclic structure in the ester moiety benzyl (meth) acrylate, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, phenoxyethyl (meth) acrylate, naphthyl (meth) Acrylate, 4-morpholinoethyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, tetramethylpiperidinyl (meth) acrylate, glycidyl ( (Meth) acrylate etc. are mentioned, These 1 type or multiple can be used.
  • the (meth) acrylate monomer preferably contains a functional group having crosslinkability.
  • the functional group include a hydroxyl group, an epoxy group, a chloromethyl group, a blocked isocyanate group, an amino group, and a carboxyl group.
  • examples of the (meth) acrylate monomer include a radical reactive organopolysiloxane macromonomer.
  • the acrylic polymer when the radical-reactive organopolysiloxane macromonomer is copolymerized, the acrylic polymer becomes an acrylic-silicone polymer.
  • the radical-reactive organopolysiloxane macromonomer may have one or more radical-reactive groups in one molecule, and particularly preferably one.
  • the radical reactive group include an azo group, a mercapto group, a vinyl group, a styryl group, and a (meth) acryloyl group, and at least one of these can be used.
  • the reactive group is preferably a (meth) acryloyl group from the viewpoint of easiness of radical copolymerization, easiness of synthesis, and availability of commercially available products.
  • a commercially available product can be selected and used.
  • X-22-174ASX, X-22-174BX, X-22-2426, KF-2012, etc. manufactured by Shin-Etsu Chemical Co., Ltd. can be used.
  • Other monomers that can be copolymerized with the (meth) acrylate monomer include other polymerizable monomers that are not (meth) acrylate monomers, organopolysiloxanes having radical reactive groups, and Are different macromonomers.
  • examples of other monomers include styrene, vinyl chloride, vinylidene chloride, ethylene, vinyl acetate, vinyl alkyl ether, acrylonitrile, alkylol acrylamide, maleic acid diester, methoxypolyalkylene glycol (meth) acrylate, and the like. .
  • Other monomers are not limited to these examples.
  • an acrylic polymer containing chlorine atoms can be obtained by copolymerizing vinyl chloride or vinylidene chloride with a (meth) acrylate monomer.
  • an acrylic polymer containing a fluorine atom is obtained by copolymerizing a fluorine-containing monomer having a perfluoroalkyl group and an ethylenically unsaturated double bond with a (meth) acrylate monomer.
  • the carbon number of the perfluoroalkyl group is preferably 1 or more, preferably 6 or less, and preferably 1 to 6.
  • acrylic polymer examples include, for example, Japanese Patent No. 5572385, Japanese Patent No. 5585078, Japanese Patent No. 5678660, Japanese Patent Publication No. 2017-534713, Japanese Patent Publication No. 2017-536439, Japanese Patent Publication No. 2017-538793, Japanese Patent No. 4927760, Japanese Patent No. 5398723, Japanese Patent No. 5500368, Japanese Patent No. 5626337, Japanese Patent No. 6015003, Japanese Patent No. 6249048, Japanese Patent No. 6280298, Japanese Patent No. 4996875, etc. Can also be suitably used.
  • the acrylic polymer may be an acrylic polymer containing a halogen atom or an acrylic polymer not containing a halogen atom.
  • an acrylic polymer containing a fluorine atom is preferable.
  • an acrylic polymer containing a chlorine atom is preferable.
  • the acrylic polymer can be suitably prepared as an aqueous dispersion by, for example, emulsion polymerization. For this reason, a water repellent is simply obtained by mixing the isocyanate-reactive hydrocarbon compound and isocyanate compound prepared as an aqueous dispersion and the acrylic polymer prepared as an aqueous dispersion.
  • the content of the acrylic polymer is preferably 0.1 parts by mass or more with respect to the lower limit with respect to a total of 100 parts by mass of the hydrocarbon compound and the isocyanate compound.
  • the upper limit is preferably 0.5 parts by mass or more, more preferably 1.0 parts by mass or more, and the upper limit is preferably 99 parts by mass or less, more preferably 55 parts by mass or less, and further preferably 35 parts by mass or less.
  • the preferred range is 0.1 to 99 parts by weight, 0.1 to 55 parts by weight, 0.1 to 35 parts by weight, 0.5 to 99 parts by weight, 0.5 to 55 parts by weight, 0.5 They are ⁇ 35 parts by mass, 1.0 to 99 parts by mass, 1.0 to 55 parts by mass, 1.0 to 35 parts by mass, and particularly preferably 1.0 to 35 parts by mass.
  • surfactant As the surfactant, one or more of a nonionic surfactant, an anionic surfactant, a cationic surfactant, and an amphoteric surfactant can be used.
  • Nonionic surfactants include, for example, polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene fatty acid ester, sorbitan fatty acid ester, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene sorbitol fatty acid ester, glycerin fatty acid ester, Polyoxyethylene glycerin fatty acid ester, polyglycerin fatty acid ester, sucrose fatty acid ester, polyoxyethylene alkylamine, polyoxyethylene fatty acid amide, fatty acid alkylol amide, alkyl alkanol amide, acetylene glycol, oxyethylene adduct of acetylene glycol, polyethylene And glycol polypropylene glycol block copolymer.
  • anionic surfactant examples include sulfate esters of higher alcohols, higher alkyl sulfonates, higher carboxylates, alkyl benzene sulfonates, polyoxyethylene alkyl sulfate salts, polyoxyethylene alkyl phenyl ether sulfate salts, vinyl sulfone salts.
  • examples include succinate.
  • cationic surfactant examples include amine salts, amidoamine salts, quaternary ammonium salts, and imidazolinium salts. Specific examples include, but are not limited to, alkylamine salts, polyoxyethylene alkylamine salts, alkylamidoamine salts, amino alcohol fatty acid derivatives, polyamine fatty acid derivatives, amine salt type surfactants such as imidazoline, alkyltrimethylammonium salts, And quaternary ammonium salt type surfactants such as dialkyldimethylammonium salt, alkyldimethylbenzylammonium salt, alkylpyridinium salt, alkylisoquinolinium salt, benzethonium chloride, and the like.
  • amphoteric surfactants include alkylamine oxides, alanines, imidazolinium betaines, amide betaines, betaine acetate, and the like. Specific examples include long-chain amine oxides, lauryl betaines, stearyl betaines, lauryl carboxy. Examples include methylhydroxyethyl imidazolinium betaine, lauryl dimethylaminoacetic acid betaine, and fatty acid amidopropyldimethylaminoacetic acid betaine.
  • the content of the surfactant is preferably 0.5 parts by mass or more, more preferably about the lower limit with respect to 100 parts by mass of the water repellent solid content.
  • the upper limit is preferably 30 parts by mass or less, more preferably 20 parts by mass or less, and further preferably 10 parts by mass or less.
  • the ranges are about 0.5 to 30 parts by weight, about 0.5 to 20 parts by weight, about 0.5 to 10 parts by weight, about 1 to 30 parts by weight, about 1 to 20 parts by weight, and 1 to 10 parts by weight.
  • the water repellent of the present invention may further contain a flame retardant from the viewpoint of further improving the flame retardancy of the fiber.
  • the flame retardant is not particularly limited.
  • a known flame retardant such as a brominated flame retardant, a phosphorus flame retardant, a nitrogen flame retardant, a metal salt flame retardant, a silicon flame retardant, or an inorganic flame retardant is used. can do.
  • the fiber product to be treated by the water repellent of the present invention may be subjected to a flame retardant treatment in advance, and these flame retardants can be used for the flame retardant treatment.
  • the content (solid content) of the flame retardant in the working fluid is preferably 1% by mass or more for the lower limit, and preferably 40 for the upper limit. % By mass or less, more preferably 30% by mass or less, and further preferably 25% by mass or less. The range is preferably about 1 to 40% by mass, more preferably about 1 to 30% by mass, and further preferably 1 to About 25 mass% is mentioned.
  • siliconeone compound One or more silicone compounds can be used in the water repellent of the present invention.
  • amino-modified silicone can be used as the silicone compound.
  • any of those having an amino group introduced into the side chain of the siloxane structure, those having an amino group introduced into the terminal of the siloxane structure, or a mixture thereof may be used.
  • a diamine or a partly blocked diamine may be used.
  • the amine equivalent is preferably 300 g / mol or more, and preferably 20000 g / mol or less, more preferably about 300 to 20000 g / mol.
  • Such amino-modified silicone can be selected from commercial products.
  • WACKER FINISH WR301, WR1100, WR1200, WR1300, WR1600 manufactured by Asahi Kasei Wacker Silicone, KF-867, KF-869 and KF-8004 manufactured by Shin-Etsu Chemical Co., Ltd. can be used.
  • Carbinol-modified silicone can also be used.
  • the carbinol-modified silicone any of those having a hydroxyl group introduced into the side chain of the siloxane structure, those having a hydroxyl group introduced into the terminal of the siloxane structure, or a mixture thereof may be used.
  • Such carbinol-modified silicone can be selected from commercial products. For example, X-22-4039, X-22-4015, X-22-170BX, X-22-170DX, KF-6000, KF-6001, KF-6002, KF-6003 etc. manufactured by Shin-Etsu Chemical Co., Ltd. are used. Can do.
  • Diol-modified silicone can also be used.
  • the diol-modified silicone any of those having a diol group introduced into the side chain of the siloxane structure, those having a diol group introduced into the terminal of the siloxane structure, or a mixture thereof may be used.
  • Such a diol-modified silicone can be selected from commercial products. For example, X-22-176DX, X-22-176F, X-22-176GX-A manufactured by Shin-Etsu Chemical Co., Ltd. can be used.
  • phenol-modified silicone can be used.
  • any of those having a phenolic hydroxyl group introduced into the side chain of the siloxane structure, those having a phenolic hydroxyl group introduced to the terminal of the siloxane structure, or a mixture thereof may be used.
  • Such a phenol-modified silicone can be selected from commercial products. For example, KF-2201 manufactured by Shin-Etsu Chemical Co., Ltd. can be used.
  • carboxyl-modified silicone can be used.
  • carboxyl-modified silicone any of those having a carboxyl group introduced into the side chain of the siloxane structure, those having a carboxyl group introduced into the terminal of the siloxane structure, or a mixture thereof may be used.
  • Such carboxyl-modified silicone can be selected from commercial products. For example, X-22-3701E and X-22-162C manufactured by Shin-Etsu Chemical Co., Ltd. can be used.
  • Mercapto-modified silicone can also be used.
  • the mercapto-modified silicone any of those having a mercapto group introduced into the side chain of the siloxane structure, those having a mercapto group introduced into the terminal of the siloxane structure, or a mixture thereof may be used.
  • Such mercapto-modified silicone can be selected from commercial products. For example, KF-2001, KF-2004, X-22-167B, X-22-167C, etc. manufactured by Shin-Etsu Chemical Co., Ltd. can be used.
  • Epoxy-modified silicone can also be used.
  • the epoxy-modified silicone any of those having an epoxy group introduced into the side chain of the siloxane structure, those having an epoxy group introduced to the terminal of the siloxane structure, or a mixture thereof may be used.
  • Such epoxy-modified silicone can be selected from commercial products. For example, X-22-343, KF-101, KF-1001, X-22-163, X-22-163A, X-22-163B, X-22-163C, KF-105, X manufactured by Shin-Etsu Chemical Co., Ltd. -22-169AS, X-22-169B, X-22-173BX, X-22-173DX, and the like can be used.
  • Fluoroalkyl-modified silicone can also be used.
  • the fluoroalkyl-modified silicone can be selected from commercially available products, and examples thereof include Fluorosil J15, Fluorosil D2, Fluorosil H418, and Fluorosil L118 manufactured by SILTECH.
  • long chain alkyl-modified silicones can be used.
  • the long-chain alkyl-modified silicone can be selected from commercially available products, such as KF-412, KF-413, KF-414, KF-415, KF-4003, KF-4701, manufactured by Shin-Etsu Chemical Co., Ltd. KF-4917, KF-7235B, X-22-7322, BELSIL CDM 3526 VP, BELSIL CM 7026 VP, BELSIL SDM 5055 VP manufactured by Asahi Kasei Wacker Silicone Co., Ltd. can be used.
  • long-chain alkyl / aralkyl-modified silicones can be used.
  • the long-chain alkyl / aralkyl-modified silicone can be selected from commercially available products, for example, X-22-1877 manufactured by Shin-Etsu Chemical Co., Ltd. can be used.
  • long chain alkyl / polyether-modified silicones can be used.
  • the long-chain alkyl / polyether-modified silicone can be selected from commercially available products, and examples thereof include Silube T308-16, Silube T310-A16, Silube J208-812, etc. manufactured by SILTECH.
  • higher fatty acid amide-modified silicones can be used.
  • the higher fatty acid amide-modified silicone can be selected from commercially available products. For example, KF-3935 manufactured by Shin-Etsu Chemical Co., Ltd. can be used.
  • dimethyl silicone and methylphenyl silicone can be used.
  • Commercially available products can be selected and used as dimethyl silicone and methylphenyl silicone.
  • KF-96, KF-965, KF-968, KF-995 manufactured by Shin-Etsu Chemical Co., Ltd. are used for dimethyl silicone
  • KF-50, KF-54 manufactured by Shin-Etsu Chemical Co., Ltd. are used for methylphenyl silicone.
  • KF-56 or the like can be used.
  • Silanol-terminated silicone can also be used.
  • the silanol-terminated silicone can be selected from commercially available products, such as X-21-5841 and KF-9701 manufactured by Shin-Etsu Chemical Co., Ltd.
  • a silicone resin compound can also be used from a viewpoint of provision of slip prevention property.
  • the silicone resin known materials can be used.
  • Siloxane is preferred.
  • M, D, T, and Q represent (R ′) 3 SiO 0.5 unit, (R ′) 2 SiO unit, R′SiO 1.5 unit, and SiO 2 unit, respectively.
  • R ′ represents a monovalent aliphatic hydrocarbon group having 1 to 10 carbon atoms or a monovalent aromatic hydrocarbon group having 6 to 15 carbon atoms.
  • Silicone resins are commonly known as MQ resins, MT resins, or MDT resins, and may have portions designated as MDQ, MTQ, or MDTQ.
  • the silicone resin can also be obtained as a solution in which it is dissolved in an appropriate solvent.
  • the solvent include relatively low molecular weight methylpolysiloxane, decamethylcyclopentasiloxane, octamethylcyclotetrasiloxane, n-hexane, isopropyl alcohol, methylene chloride, 1,1,1-trichloroethane, and mixtures of these solvents. Etc.
  • Such a silicone resin can be selected from commercial products.
  • KF-7312J, KF-7312K, KF-7312L, KF-7312T, KF-9021L manufactured by Shin-Etsu Chemical Co., Ltd. can be used.
  • the silicone resin alone include KR-220L and KR-216 manufactured by Shin-Etsu Chemical Co., Ltd., DOWSIL MQ-1600 Solid Resin manufactured by Toray Dow Corning Co., Ltd., DOWSIL MQ-1640 Flask Resin, and SILRES MK POWDER manufactured by Asahi Kasei Silicone. SILRES MK FLAKE, SILRES 604, etc. can be used.
  • silane coupling agent examples include silane coupling agents containing an epoxy group, an amino group, a mercapto group, an isocyanate group, and the like.
  • a commercial item can be selected and used for such a silane coupling agent.
  • a silane coupling agent manufactured by Shin-Etsu Chemical Co., Ltd. can be used.
  • the epoxy group-containing silane coupling agent examples include KBM-303, KBM-402, KBM-403, KBE-402, KBE-403, etc.
  • silane coupling agents examples include KBM-602, KBM-608, KBM-903, KBE-903, and KBM-573.
  • mercapto group-containing silane coupling agents examples include KBM-802, KBM-803, and isocyanate groups.
  • KBE-9007 or the like can be used.
  • the content of the silicone compound is preferably 0.01 parts by mass or more with respect to the lower limit with respect to 100 parts by mass in total of the hydrocarbon compound and the isocyanate compound.
  • the upper limit is preferably 100 parts by mass or less, more preferably 70 parts by mass or less, still more preferably 45 parts by mass or less, and the range is preferably about 0.01 to 100 parts by mass, more preferably 0.
  • the amount is about 01 to 70 parts by mass, more preferably about 0.01 to 45 parts by mass.
  • the water repellent of the present invention may contain any additive as long as the effects of the present invention are produced, in addition to the other components described above.
  • additives include various sorbitan derivatives described in International Publication No. 2014/190905, fatty acid esters such as alkyl citrate derivatives and pentaerythritol derivatives, hydrophobic compounds described in US Publication No.
  • Hydrophobic compounds such as wax-based compounds, water-repellent auxiliary components, crosslinking agents (compounds different from isocyanate compounds), anti-slip agents, anti-wrinkle agents, flame retardants, anti-static agents, heat resistance
  • additives such as textile agents such as agents, antioxidants, ultraviolet absorbers, pigments, metal powder pigments, rheology control agents, curing accelerators, deodorants, and antibacterial agents.
  • examples of the water-repellent auxiliary component include zirconium compounds, and zirconium acetate, zirconium hydrochloride, and zirconium nitrate are particularly preferable. These additives can be used singly or in appropriate combination of two or more.
  • the isocyanate-reactive hydrocarbon compound and the isocyanate compound may be an aqueous dispersion dispersed in water.
  • the isocyanate-reactive hydrocarbon compound particles, the isocyanate compound particles, An aqueous dispersion in which is dispersed in water can be easily produced by mixing an aqueous dispersion of an isocyanate-reactive hydrocarbon compound and an aqueous dispersion of an isocyanate compound.
  • the water repellent which further contains an acrylic polymer by mixing the aqueous dispersion of an acrylic polymer can also be manufactured easily.
  • An aqueous dispersion of particles containing an isocyanate-reactive hydrocarbon compound and an isocyanate compound in one particle can be produced by producing the isocyanate-reactive hydrocarbon compound and the isocyanate compound in the same water.
  • various aqueous dispersions may be produced by a known method. For example, after mixing various components and a surfactant, water is added and dispersed, or a known disperser or the like is used. For example, a dispersion method. As a disperser, a homomixer, a homogenizer, a colloid mill, a line mixer, a bead mill, or the like can be used. Moreover, when carrying out aqueous dispersion, you may add a well-known organic solvent.
  • a two-component kit including a first agent containing an isocyanate-reactive hydrocarbon compound and a second agent containing an isocyanate compound is used, and the first agent and the second agent are used at the time of use. It is good also as a kit form which prepares the water repellent of this invention as water-based dispersion.
  • the 3 liquid type kit provided with the 1st agent containing an isocyanate-reactive hydrocarbon compound, the 2nd agent containing an isocyanate compound, and the 3rd agent containing an acrylic polymer,
  • the agent, the second agent, and the third agent may be dispersed in water to form a kit for preparing the water repellent of the present invention as an aqueous dispersion.
  • the two-pack type kit of the present invention comprises at least a first agent containing a hydrocarbon compound having a functional group capable of reacting with an isocyanate group, and at least a second agent containing an isocyanate compound,
  • the molar ratio of the crosslinkable functional group is 0.3 or more.
  • the three-component type kit of the present invention includes at least a first agent containing a hydrocarbon compound having a functional group capable of reacting with an isocyanate group, at least a second agent containing an isocyanate compound, and at least an acrylic polymer.
  • the molar ratio of the crosslinkable functional group of the isocyanate compound of the second agent to the functional group of the hydrogen compound is 0.3 or more.
  • the two-component type kit and the three-component type kit of the present invention are each used for preparing the above-described water repellent of the present invention. Therefore, the kind and content of the isocyanate-reactive hydrocarbon compound, isocyanate compound, acrylic polymer, and other components are the same as the water repellent of the present invention described above.
  • at least one of the acrylic polymer and other components can be blended with the first agent and the second agent.
  • another component can be mix
  • Water-repellent fiber product The water-repellent fiber product of the present invention is treated with the above-described water-repellent agent of the present invention. That is, the water-repellent fiber product of the present invention is produced by bringing the water-repellent agent of the present invention into contact with the fiber product. The details of the water repellent of the present invention are as described above.
  • the fiber product treated with the water repellent of the present invention is not particularly limited as long as it is an article composed of fibers, for example, natural fibers such as cotton, silk, hemp, wool, polyester, nylon, acrylic, Examples thereof include synthetic fibers such as spandex and fiber products using them.
  • natural fibers such as cotton, silk, hemp, wool, polyester, nylon, acrylic
  • synthetic fibers such as spandex and fiber products using them.
  • the form and shape of the textile product there are no restrictions on the form and shape of the textile product, and not only the shape of raw materials such as staples, filaments, tows, and yarns, but also various processes such as woven fabrics, knitted fabrics, stuffed cotton, non-woven fabrics, paper, sheets, and films. It may be in the form.
  • the flame retardant treatment may be applied to the textile product in advance.
  • flame retardancy treatment can be performed by appropriately selecting from the above-mentioned flame retardants in consideration of compatibility with the yarn-making property.
  • the treatment method using a flame retardant is not particularly limited, and may be mixed by a method of simply adding to a polymer or a method of copolymerizing with polyester at a molecular level.
  • a water repellent treatment can be performed on a fiber product (cloth or the like) by a known method.
  • Examples of the method for treating a fiber product with the water repellent of the present invention include a continuous method or a batch method. If the water repellent of the present invention is a stock solution, the concentration suitable for treatment (for example, the solid content concentration is 0.01% by mass or more, or 6% by mass or less, preferably 0.01 to 6% by mass).
  • the processing liquid is prepared by diluting the water repellent with water so as to be approximately%.
  • an object to be processed (that is, a fiber product) is continuously fed into the impregnation apparatus filled with the processing liquid, and the processing object is impregnated with the processing liquid, and then the unnecessary processing liquid is removed.
  • the impregnation device is not particularly limited, and a padder, a kiss roll type applicator, a gravure coater type applicator, a spray type applicator, a foam type applicator, a coating type applicator, etc. can be preferably employed, and a padder type is particularly preferable.
  • a dryer is not particularly limited, and a spread dryer such as a hot fluid or a tenter is preferable.
  • the continuous method is preferably employed when the object to be treated is a fabric such as a woven fabric.
  • the batch method includes a step of immersing the object to be processed in a processing liquid and a step of removing water remaining on the object to be processed.
  • the batch method is preferably employed when the object to be treated is not in the form of a fabric, for example, in the case of loose hair, top, sliver, skein, tow, yarn or the like, or when it is not suitable for continuous methods such as knitting.
  • a cotton dyeing machine, a cheese dyeing machine, a liquid dyeing machine, an industrial washing machine, a beam dyeing machine or the like can be used.
  • a hot air dryer such as a cheese dryer, a beam dryer or a tumble dryer, a high-frequency dryer or the like can be used. It is preferable to perform a dry heat treatment on the workpiece to which the water repellent of the present invention is attached.
  • the lower limit is preferably 120 ° C. or higher, more preferably 160 ° C. or higher, and the upper limit is preferably 180 ° C. or lower, and the range is preferably 120 to 180 ° C. In particular, 160 to 180 ° C. is preferable.
  • the time for the dry heat treatment the lower limit is preferably 10 seconds or more, more preferably 1 minute or more, and the upper limit is preferably 3 minutes or less, more preferably 2 minutes or less. For 10 seconds to 3 minutes, 10 seconds to 2 minutes, 1 to 3 minutes, and 1 to 2 minutes.
  • the method for the dry heat treatment is not particularly limited, but a tenter is preferable when the object to be processed is in the form of a fabric.
  • the reaction was stirred for 1 hour and cooled to room temperature. Vacuum filtration was performed and the collected solid was dried in an oven under reduced pressure overnight.
  • the obtained isocyanate-reactive hydrocarbon compound had a hydroxyl value of 123.2 mgKOH / g.
  • aqueous dispersion of isocyanate-reactive hydrocarbon compound was prepared by the following procedure using the composition shown in Table 1. To the flask, 20 g of an isocyanate-reactive hydrocarbon compound and 20 g of methyl isobutyl ketone were added and melted at 80 ° C.
  • Stearylamine 30EO adduct 1.0 g and acetic acid (90% aqueous solution) 0.3 g were dissolved in 78.7 g of ion-exchanged water at 80 ° C. and added dropwise.
  • the mixture was emulsified with a high-pressure homogenizer (400 bar) while maintaining the temperature. Thereafter, methyl isobutyl ketone was distilled off under reduced pressure, and ion-exchanged water was added to obtain an aqueous dispersion having a solid content concentration of 21%.
  • the content of the isocyanate-reactive functional group in each aqueous dispersion was calculated. Each average particle size was measured.
  • the average particle diameter is a particle diameter (median particle diameter) having a percentage integrated value (volume basis) of 50% measured by a laser diffraction / scattering particle diameter distribution measuring apparatus LA-300 (manufactured by Horiba, Ltd.). (The same applies to the following production examples).
  • the obtained mixed liquid was treated with a high-pressure homogenizer (400 bar) while maintaining the temperature at 50 ° C. to obtain an emulsion.
  • the obtained emulsion was put in an autoclave and cooled to 30 ° C. or lower.
  • VA-061 2,2′-azobis [2- (2-imidazolin-2-yl) propane]
  • the polymerization reaction was carried out at 65 ° C. for 15 hours with stirring, and ion exchange water was added to obtain an aqueous dispersion of an acrylic polymer having a solid content concentration of 20.7%.
  • the average particle size of this aqueous dispersion was 0.10 ⁇ m.
  • the obtained acrylic polymer contains a perfluoroal
  • the emulsion was processed by the high pressure homogenizer (400 bar), keeping at 40 degreeC, and obtained the emulsion.
  • 0.3 g of azobis (isobutylamidine) dihydrochloride was added and reacted at 60 ° C. for 10 hours in a nitrogen atmosphere.
  • Ion exchange water was added to adjust the solid content concentration to 21.8% to obtain an aqueous dispersion of an acrylic polymer.
  • the average particle size of this aqueous dispersion was 0.18 ⁇ m.
  • the resulting acrylic polymer is an acrylic-silicone polymer and does not contain halogen atoms.
  • the obtained acrylic polymer contains a perfluoroalkyl group and a fluorine atom and a chlorine atom derived from vinyl chloride.
  • Paragit ZS wax-zirconium-based water repellent; solid concentration 24%; manufactured by Meisei Chemical Co., Ltd.
  • Petrox P-200 wax-based water repellent; solid content concentration 34%; Meisei Chemical Industries
  • ⁇ Evaluation of water repellency and flame retardancy> As a test cloth, a PET tropical cloth (weighing 138 g / m 2 , undyed, flame retardant untreated) was prepared. Next, using the water repellent as a processing liquid, the test cloth is passed through the processing liquid by a continuous method, and an unnecessary solution is squeezed with a mangle at a constant pressure, dried at 110 ° C. for 1.5 minutes, and 170 ° C. And cured for 1 minute to obtain a processed cloth. The pickup was 92%.
  • Paragit ZS wax-zirconium-based water repellent; solid content concentration 24%; manufactured by Meisei Chemical Co., Ltd.
  • Petrox P-200 wax-based water repellent
  • solid content concentration 34% manufactured by Meisei Chemical Industry Co., Ltd.
  • the test cloth was passed through the processing liquid in a continuous manner in the same manner as in Examples 1 to 18 and Comparative Examples 1 to 5, and a mangle with a constant pressure was used.
  • the unnecessary solution was squeezed, dried at 110 ° C. for 1.5 minutes, and cured at 170 ° C. for 1 minute to obtain a processed cloth.
  • the pickup was 92%.
  • the water repellents of Examples 20 to 26 contain an acrylic polymer, but, as in Example 19, which does not contain an acrylic polymer, excellent water repellency for fibers. Further, it is understood that the inhibition of the flame retardancy of the fiber is effectively suppressed. On the other hand, the water repellents of Comparative Examples 6 to 8 were unable to achieve both excellent water repellency and flame retardance inhibiting effect.
  • a PET shower curtain (weighing 125 g / m 2 , undyed, using flame-retardant yarn) was prepared. Next, the following flame retardant treatment was performed on the PET shower curtain to obtain a test cloth.
  • test cloth was passed through the working fluid in a continuous manner in the same manner as in Examples 1 to 18 and Comparative Examples 1 to 5, and then with a mangle of constant pressure.
  • the unnecessary solution was squeezed, dried at 110 ° C. for 1.5 minutes, and cured at 170 ° C. for 1 minute to obtain a processed cloth.
  • the pickup was 42%.
  • Example 32 and Comparative Examples 13 to 15 ⁇ Preparation of water repellent> 100% by mass of an aqueous dispersion of an isocyanate-reactive hydrocarbon compound, an aqueous dispersion of an isocyanate compound, an aqueous dispersion of an acrylic polymer, and a phosphorus flame retardant together with water so as to have the composition shown in Table 6.
  • a water repellent was prepared by diluting and mixing.
  • Table 6 shows the molar ratio of the crosslinkable functional group of the isocyanate compound to the functional group of the isocyanate reactive hydrocarbon compound.
  • Table 6 shows the content (parts by mass) of the acrylic polymer with respect to 100 parts by mass in total of the hydrocarbon compound and the isocyanate compound.
  • K-19A phosphorus flame retardant; solid content concentration: 100%; manufactured by Meisei Chemical Industry Co., Ltd.
  • Comparative Example 13 a commercially available C6 fluorine-based water repellent, AsahiGuard E-SERIES AG-E550D (C6 fluorine-based water repellent; manufactured by Asahi Glass Co., Ltd.) and a phosphorus flame retardant were used in combination.
  • Nylon high-density taffeta (weighing 60 g / m 2 , dyed, flame retardant untreated (treated with a phosphorus flame retardant when treated with a water repellent)) was prepared as a test cloth.
  • the test cloth was passed through the processing liquid by a continuous method, and unnecessary solution was squeezed with a mangle at a constant pressure, and dried at 110 ° C. for 1.5 minutes, 170 A processed cloth was obtained by curing at 0 ° C. for 1 minute. The pickup was 42%.
  • the water repellent of Example 32 imparts excellent water repellency to the fiber, and further, the inhibition of the flame retardancy of the fiber is effectively suppressed. I understand. On the other hand, the water repellents of Comparative Examples 13 and 14 were unable to achieve both excellent water repellency and flame retardancy inhibiting effect.
  • Examples 33 to 34 ⁇ Preparation of water repellent> Dilute the aqueous dispersion of the isocyanate-reactive hydrocarbon compound, the aqueous dispersion of the isocyanate compound, and the aqueous dispersion of the acrylic polymer to 100% by mass with water so as to have the composition shown in Table 7.
  • Table 7 shows the molar ratio of the crosslinkable functional group of the isocyanate compound to the functional group of the isocyanate reactive hydrocarbon compound.
  • Table 7 shows the acrylic polymer content (parts by mass) with respect to 100 parts by mass in total of the hydrocarbon compound and the isocyanate compound.
  • test cloth was passed through the working fluid in a continuous manner in the same manner as in Examples 1 to 18 and Comparative Examples 1 to 5, and then with a mangle of constant pressure.
  • the unnecessary solution was squeezed, dried at 110 ° C. for 1.5 minutes, and cured at 170 ° C. for 1 minute to obtain a processed cloth.
  • the pickup was 92%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)

Abstract

Provided is a water repellent agent which imparts excellent water repellency to fibers without significantly reducing the flame retardancy thereof. The water repellent agent is an aqueous dispersion containing at least: a hydrocarbon compound having a functional group capable of reacting with an isocyanate group; and an isocyanate compound dispersed in water, wherein the molar ratio of a crosslinkable functional group in the isocyanate compound to the functional group in the hydrocarbon compound is at least 0.3.

Description

撥水剤、撥水性繊維製品及びその製造方法Water repellent, water repellent fiber product and method for producing the same
 本発明は、撥水剤、撥水性繊維製品及びその製造方法に関する。 The present invention relates to a water repellent, a water repellent fiber product, and a method for producing the same.
 従来、ホテル、旅館、学校、病院等の公共の建物に使用されるカーテン、敷物類などは、消防法で防炎物品として難燃性を付与することが義務づけられている。また、椅子張り地やパーティション、障子紙等も防炎物品として認定される動きがある。 Conventionally, curtains, rugs, etc. used in public buildings such as hotels, inns, schools, hospitals, etc., are obliged to give flame retardancy as flameproof articles under the Fire Service Act. There are also movements to certify chairs, partitions, shoji paper, etc. as flameproof articles.
 また、これらの製品では、難燃性が優れているだけでは満足されず、撥水性、防汚性、制菌性などの機能性もさらに要求され、例えば、ホテルの浴室で使用されるシャワーカーテンなどには、高い撥水性が要求される。 In addition, these products are not satisfied only by being excellent in flame retardancy, but are also required to have functionality such as water repellency, antifouling properties, and antibacterial properties. For example, shower curtains used in hotel bathrooms For example, high water repellency is required.
 また、例えば、カーシート等の車両内装材についても難燃性能を付与することは必須であるが、防汚性を付与する目的から、撥水剤を処理することが行われている。 Also, for example, it is essential to impart flame retardancy to vehicle interior materials such as car seats, but for the purpose of imparting antifouling properties, a water repellent is treated.
 このように、多くの物品において、優れた難燃性と撥水性を両立することが求められるが、従来のほとんどの撥水剤は、難燃性を著しく低下させることが知られている。 Thus, in many articles, it is required to achieve both excellent flame retardancy and water repellency, but most conventional water repellents are known to significantly reduce the flame retardancy.
 撥水剤による難燃性の低下を抑制する技術として、例えば、特許文献1では、繊維について難燃性を高めるために難燃糸を使用し、かつ、撥水剤としてごく少量のC8フッ素系撥水剤で難燃糸を処理する方法が開示されている。C8フッ素系撥水剤は、強力な撥水性を付与することができることから、少量の処理でも撥水性を付与することができる。しかしながら、近年、C8フッ素系撥水剤に不純物として含有されるパーフルオロオクタンスルホン酸(PFOS)やパーフルオロオクタン酸(PFOA)の生物への毒性、環境への負荷が指摘され、撥水剤として、これらの化合物を含まないC6フッ素系撥水剤、さらにはフッ素原子を含まないフッ素フリー撥水剤の使用へ転換されつつある。 As a technique for suppressing the decrease in flame retardancy due to a water repellent, for example, in Patent Document 1, flame retardant yarn is used to increase the flame retardancy of a fiber, and a very small amount of C8 fluorine-based repellent is used as a water repellent. A method for treating a flame retardant yarn with a liquid is disclosed. Since the C8 fluorine-based water repellent can impart strong water repellency, it can impart water repellency even with a small amount of treatment. However, in recent years, it has been pointed out that perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) contained as impurities in C8 fluorine-based water repellents are harmful to living organisms and have an impact on the environment. The C6 fluorine-based water repellent that does not contain these compounds and the use of fluorine-free water repellent that does not contain fluorine atoms are being converted.
 しかしながら、C6フッ素系撥水剤やフッ素フリー撥水剤は、C8フッ素系撥水剤と比較して撥水性能が劣る。このため、繊維製品に十分な撥水性を付与するためには、使用量の増加が必要となる一方、使用量の増加に伴って難燃性が低下するため、優れた難燃性と撥水性の両立は困難である。 However, C6 fluorine-based water repellents and fluorine-free water repellents are inferior in water repellency compared to C8 fluorine-based water repellents. For this reason, in order to impart sufficient water repellency to textile products, it is necessary to increase the amount used, while flame retardance decreases with increasing amount used, so excellent flame resistance and water repellency It is difficult to achieve both.
 また、特許文献2には、繊維の難燃性を高めるために難燃糸を使用し、撥水剤としてワックス系撥水剤を少量処理することで難燃性および撥水性を両立できることが記載されている。しかしながら、ワックス系撥水剤では、繊維に対して十分な撥水性を付与することは困難である。 Patent Document 2 describes that both flame retardancy and water repellency can be achieved by using a flame retardant yarn to increase the flame retardancy of a fiber and treating a small amount of a wax-based water repellent as a water repellent. ing. However, it is difficult to impart sufficient water repellency to the fiber with a wax-based water repellent.
特許第2944835号公報Japanese Patent No. 2944835 特開2013-155459号公報JP 2013-155659 A
 本発明は、繊維に対して優れた撥水性を付与し、さらに、繊維の難燃性を阻害し難い撥水剤を提供することを主な目的とする。また、本発明は、当該撥水剤を利用した撥水性繊維製品及びその製造方法を提供することも目的とする。 The main object of the present invention is to provide a water-repellent agent that imparts excellent water repellency to a fiber and that hardly inhibits the flame retardancy of the fiber. Another object of the present invention is to provide a water repellent fiber product using the water repellent and a method for producing the same.
 本発明者らは、前記課題を解決すべく鋭意検討を行った。その結果、少なくとも、イソシアネート基と反応可能な官能基を有する炭化水素化合物、及びイソシアネート化合物が水に分散された水系分散体であって、前記炭化水素化合物の官能基のモル数に対する、イソシアネート化合物の架橋性官能基のモル数の比(モル比)を所定の値に設定することにより、繊維に対して優れた撥水性が付与され、かつ、繊維の難燃性の低下が効果的に抑制されることを見出した。本発明は、これらの知見に基づいて、さらに検討を重ねることにより完成したものである。 The present inventors have intensively studied to solve the above problems. As a result, at least a hydrocarbon compound having a functional group capable of reacting with an isocyanate group, and an aqueous dispersion in which the isocyanate compound is dispersed in water, the isocyanate compound relative to the number of moles of the functional group of the hydrocarbon compound. By setting the ratio of the number of moles of the crosslinkable functional group (molar ratio) to a predetermined value, excellent water repellency is imparted to the fiber, and a decrease in the flame retardancy of the fiber is effectively suppressed. I found out. The present invention has been completed by further studies based on these findings.
 即ち、本発明は、下記に掲げる態様の発明を提供する。
項1. 少なくとも、イソシアネート基と反応可能な官能基を有する炭化水素化合物、及びイソシアネート化合物が水に分散された水系分散体であって、
 前記炭化水素化合物の官能基に対する、前記イソシアネート化合物の架橋性官能基のモル比が0.3以上である、撥水剤。
項2. 前記イソシアネート基と反応可能な官能基を有する炭化水素化合物が、下記一般式(1)で示される化合物である、項1に記載の撥水剤。
W[-A-R]a[-B]b   (1)
[一般式(1)において、Wは、(a+b)価の有機基である。Aは、Wに結合しており、-X-Y-または-Y-である。Bは、Wに結合しており、-X-Zまたは-Zである。aは、1以上の整数である。bは、1以上の整数である。(a+b)は、3~8である。Xは、2価のポリアルキレンエーテル基である。Yは、2価の基であって、エーテル基、エステル基、アミド基、ウレタン基、ウレア基、又はチオウレタン基である。Rは、任意選択的に少なくとも1つの不飽和結合を含んでもよい炭素数6~30の直鎖又は分岐の1価の炭化水素基である。Zは、ヒドロキシ基、アミノ基、カルボキシ基またはチオール基である。ただし、Bが-X-Zの場合、Zは、ヒドロキシ基である。]
項3. 前記イソシアネート化合物が、ブロックイソシアネートである、項1又は2に記載の撥水剤。
項4. 界面活性剤をさらに含む、項1~3のいずれか1項に記載の撥水剤。
項5. アクリルポリマーをさらに含む、項1~4のいずれか1項に記載の撥水剤。
項6. 前記撥水剤中の前記炭化水素化合物および前記イソシアネート化合物の合計100質量部に対して、前記アクリルポリマーの含有量が、0.1~99質量部である、項5に記載の撥水剤。
項7. 前記アクリルポリマーが、ハロゲン元素を含むアクリルポリマーである、項5又は6に記載の撥水剤。
項8. 前記アクリルポリマーが、フッ素原子を含まないアクリルポリマーである、項5~7のいずれか1項に記載の撥水剤。
項9. 前記アクリルポリマーが、ハロゲン元素を含まないアクリルポリマーである、項5又は6に記載の撥水剤。
項10. 前記アクリルポリマーが、アクリル-シリコーンポリマーである、項5~9のいずれか1項に記載の撥水剤。
項11. 項1~10のいずれか1項に記載の撥水剤で処理されてなる、撥水性繊維製品。
項12. 項1~10のいずれか1項に記載の撥水剤を、繊維製品に接触させる工程を含む、撥水性繊維製品の製造方法。
項13. 少なくとも、イソシアネート基と反応可能な官能基を有する炭化水素化合物を含む第1剤と、
 少なくとも、イソシアネート化合物を含む第2剤と、
を備え、
 前記第1剤及び前記第2剤を水に分散した、水系分散体として用いられる撥水剤を調製するためのキットであって、
 前記第1剤の前記炭化水素化合物の官能基に対する、前記第2剤の前記イソシアネート化合物の架橋性官能基のモル比が0.3以上である、キット。
項14. 少なくとも、イソシアネート基と反応可能な官能基を有する炭化水素化合物を含む第1剤と、
 少なくとも、イソシアネート化合物を含む第2剤と、
 少なくとも、アクリルポリマーを含む第3剤と、
を備え、
 前記第1剤、前記第2剤、及び前記第3剤を水に分散した、水系分散体として用いられる撥水剤を調製するためのキットであって、
 前記第1剤の前記炭化水素化合物の官能基に対する、前記第2剤の前記イソシアネート化合物の架橋性官能基のモル比が0.3以上である、キット。
That is, this invention provides the invention of the aspect hung up below.
Item 1. At least a hydrocarbon compound having a functional group capable of reacting with an isocyanate group, and an aqueous dispersion in which the isocyanate compound is dispersed in water,
A water repellent, wherein the molar ratio of the crosslinkable functional group of the isocyanate compound to the functional group of the hydrocarbon compound is 0.3 or more.
Item 2. Item 2. The water repellent according to Item 1, wherein the hydrocarbon compound having a functional group capable of reacting with the isocyanate group is a compound represented by the following general formula (1).
W [-A-R] a [-B] b (1)
[In General Formula (1), W is an (a + b) -valent organic group. A is bonded to W and is —X—Y— or —Y—. B is bonded to W and is —XZ or —Z. a is an integer of 1 or more. b is an integer of 1 or more. (A + b) is 3 to 8. X is a divalent polyalkylene ether group. Y is a divalent group, and is an ether group, an ester group, an amide group, a urethane group, a urea group, or a thiourethane group. R is a straight-chain or branched monovalent hydrocarbon group having 6 to 30 carbon atoms which may optionally contain at least one unsaturated bond. Z is a hydroxy group, an amino group, a carboxy group or a thiol group. However, when B is -XZ, Z is a hydroxy group. ]
Item 3. Item 3. The water repellent according to Item 1 or 2, wherein the isocyanate compound is a blocked isocyanate.
Item 4. Item 4. The water repellent according to any one of Items 1 to 3, further comprising a surfactant.
Item 5. Item 5. The water repellent according to any one of Items 1 to 4, further comprising an acrylic polymer.
Item 6. Item 6. The water repellent according to Item 5, wherein the content of the acrylic polymer is 0.1 to 99 parts by mass with respect to a total of 100 parts by mass of the hydrocarbon compound and the isocyanate compound in the water repellent.
Item 7. Item 7. The water repellent according to Item 5 or 6, wherein the acrylic polymer is an acrylic polymer containing a halogen element.
Item 8. Item 8. The water repellent according to any one of Items 5 to 7, wherein the acrylic polymer is an acrylic polymer containing no fluorine atom.
Item 9. Item 7. The water repellent according to Item 5 or 6, wherein the acrylic polymer is an acrylic polymer containing no halogen element.
Item 10. Item 10. The water repellent according to any one of Items 5 to 9, wherein the acrylic polymer is an acrylic-silicone polymer.
Item 11. Item 11. A water-repellent fiber product, which is treated with the water-repellent agent according to any one of Items 1 to 10.
Item 12. Item 11. A method for producing a water-repellent fiber product, comprising a step of bringing the water-repellent agent according to any one of Items 1 to 10 into contact with the fiber product.
Item 13. A first agent comprising at least a hydrocarbon compound having a functional group capable of reacting with an isocyanate group;
A second agent containing at least an isocyanate compound;
With
A kit for preparing a water repellent used as an aqueous dispersion in which the first agent and the second agent are dispersed in water,
The kit whose molar ratio of the crosslinkable functional group of the said isocyanate compound of the said 2nd agent with respect to the functional group of the said hydrocarbon compound of the said 1st agent is 0.3 or more.
Item 14. A first agent comprising at least a hydrocarbon compound having a functional group capable of reacting with an isocyanate group;
A second agent containing at least an isocyanate compound;
At least a third agent comprising an acrylic polymer;
With
A kit for preparing a water repellent used as an aqueous dispersion in which the first agent, the second agent, and the third agent are dispersed in water,
The kit whose molar ratio of the crosslinkable functional group of the said isocyanate compound of the said 2nd agent with respect to the functional group of the said hydrocarbon compound of the said 1st agent is 0.3 or more.
 本発明によれば、繊維に対して優れた撥水性を付与し、さらに、繊維の難燃性を阻害し難い撥水剤を提供することができる。また、本発明によれば、当該撥水剤を利用した撥水性繊維製品及びその製造方法を提供することもできる。 According to the present invention, it is possible to provide a water-repellent agent that imparts excellent water repellency to fibers and hardly inhibits the flame retardancy of the fibers. Moreover, according to this invention, the water-repellent fiber product using the said water-repellent agent and its manufacturing method can also be provided.
1.撥水剤
 本発明の撥水剤は、イソシアネート基と反応可能な官能基を有する炭化水素化合物(以下、「イソシアネート反応性炭化水素化合物」ということがある。)、及びイソシアネート化合物が水に分散された水系分散体であって、炭化水素化合物の前記官能基のモル数に対する、イソシアネート化合物の架橋性官能基のモル数の比(モル比)が0.3以上であることを特徴としている。本発明の撥水剤は、このような構成を備えることにより、繊維に対して優れた撥水性を付与し、さらに、繊維の難燃性の阻害が効果的に抑制されている。以下、本発明の撥水剤について、詳述する。なお、以下の説明においては、イソシアネート反応性炭化水素化合物とイソシアネート化合物とが水に分散された水系分散体からなる1液タイプの撥水剤を中心に説明するが、後述の通り、本発明においては、イソシアネート反応性炭化水素化合物を含む第1剤と、イソシアネート化合物を含む第2剤とを備える、2液タイプのキットとし、用時に第1剤及び前記第2剤を水に分散し、水系分散体として本発明の撥水剤を調製するキットの形態としてもよい。さらに、本発明においては、イソシアネート反応性炭化水素化合物を含む第1剤と、イソシアネート化合物を含む第2剤と、アクリルポリマーを含む第3剤とを備える3液タイプのキットとし、用時に第1剤、第2剤、及び第3剤を水に分散し、水系分散体として本発明の撥水剤を調製するキットの形態としてもよい。
1. Water-repellent agent The water-repellent agent of the present invention comprises a hydrocarbon compound having a functional group capable of reacting with an isocyanate group (hereinafter sometimes referred to as “isocyanate-reactive hydrocarbon compound”) and an isocyanate compound dispersed in water. The ratio of the number of moles of crosslinkable functional groups of the isocyanate compound to the number of moles of the functional groups of the hydrocarbon compound is 0.3 or more. The water repellent of the present invention is provided with such a configuration, thereby imparting excellent water repellency to the fiber, and further inhibiting the inhibition of the flame retardancy of the fiber. Hereinafter, the water repellent of the present invention will be described in detail. In the following description, the description will focus on a one-component type water repellent composed of an aqueous dispersion in which an isocyanate-reactive hydrocarbon compound and an isocyanate compound are dispersed in water. Is a two-component kit comprising a first agent containing an isocyanate-reactive hydrocarbon compound and a second agent containing an isocyanate compound, and in use, the first agent and the second agent are dispersed in water, It is good also as a form of the kit which prepares the water repellent of this invention as a dispersion. Furthermore, in this invention, it is set as the 3 liquid type kit provided with the 1st agent containing an isocyanate-reactive hydrocarbon compound, the 2nd agent containing an isocyanate compound, and the 3rd agent containing an acrylic polymer, The agent, the second agent, and the third agent may be dispersed in water to form a kit for preparing the water repellent of the present invention as an aqueous dispersion.
(イソシアネート反応性炭化水素化合物)
 イソシアネート基と反応可能な官能基を有する炭化水素化合物とは、炭化水素骨格に、イソシアネート基と反応可能な官能基が結合した炭化水素系化合物である。イソシアネート反応性炭化水素化合物は、1種類のみを用いてもよいし、2種類以上を混合して用いてもよい。イソシアネート基と反応可能な官能基としては、好ましくはヒドロキシ基、アミノ基、カルボキシ基、チオール基などが挙げられる。
(Isocyanate-reactive hydrocarbon compounds)
The hydrocarbon compound having a functional group capable of reacting with an isocyanate group is a hydrocarbon compound in which a functional group capable of reacting with an isocyanate group is bonded to a hydrocarbon skeleton. Only one type of isocyanate-reactive hydrocarbon compound may be used, or two or more types may be mixed and used. Preferred examples of the functional group capable of reacting with an isocyanate group include a hydroxy group, an amino group, a carboxy group, and a thiol group.
 イソシアネート反応性炭化水素化合物は、例えば、下記一般式(1)で示される化合物が挙げられる。
W[-A-R]a[-B]b   (1)
Examples of the isocyanate-reactive hydrocarbon compound include compounds represented by the following general formula (1).
W [-A-R] a [-B] b (1)
 一般式(1)において、Wは、(a+b)価の有機基である。Aは、Wに結合しており、-X-Y-または-Y-である。Bは、Wに結合しており、-X-Zまたは-Zである。aは、1以上の整数である。bは、1以上の整数である。(a+b)は、3~8である。Xは、2価のポリアルキレンエーテル基である。Yは、2価の基であって、エーテル基、エステル基、アミド基、ウレタン基、ウレア基、又はチオウレタン基である。Rは、任意選択的に少なくとも1つの不飽和結合を含んでもよい炭素数6~30の直鎖又は分岐の1価の炭化水素基である。Zは、ヒドロキシ基、アミノ基、カルボキシ基またはチオール基である。ただし、Bが-X-Zの場合、Zは、ヒドロキシ基である。 In the general formula (1), W is an (a + b) -valent organic group. A is bonded to W and is —X—Y— or —Y—. B is bonded to W and is —XZ or —Z. a is an integer of 1 or more. b is an integer of 1 or more. (A + b) is 3 to 8. X is a divalent polyalkylene ether group. Y is a divalent group, and is an ether group, an ester group, an amide group, a urethane group, a urea group, or a thiourethane group. R is a straight-chain or branched monovalent hydrocarbon group having 6 to 30 carbon atoms which may optionally contain at least one unsaturated bond. Z is a hydroxy group, an amino group, a carboxy group or a thiol group. However, when B is -XZ, Z is a hydroxy group.
 一般式(1)で表されるイソシアネート反応性炭化水素化合物において、基Zのヒドロキシ基、アミノ基、カルボキシ基またはチオール基が、イソシアネート基と反応可能な官能基となる。また、イソシアネート反応性炭化水素化合物は、基Rに由来の炭化水素基を有する化合物である。 In the isocyanate-reactive hydrocarbon compound represented by the general formula (1), the hydroxy group, amino group, carboxy group or thiol group of the group Z is a functional group capable of reacting with the isocyanate group. The isocyanate-reactive hydrocarbon compound is a compound having a hydrocarbon group derived from the group R.
 一般式(1)のイソシアネート反応性炭化水素化合物において、基Wは、(a+b)価の有機基であって、多官能化合物の残基であることが好ましい。基Wには、基A及び基Bが結合している。aは、1以上の整数であり、bは、1以上の整数であり、(a+b)は、3~8である。すなわち、基Wの価数は、3~8である。多官能化合物としては、好ましくは、多価アルコール化合物、多価アミン化合物、多価カルボン酸化合物、多価チオール化合物が挙げられる。 In the isocyanate-reactive hydrocarbon compound of the general formula (1), the group W is an (a + b) -valent organic group and is preferably a residue of a polyfunctional compound. A group A and a group B are bonded to the group W. a is an integer of 1 or more, b is an integer of 1 or more, and (a + b) is 3 to 8. That is, the valence of the group W is 3-8. As a polyfunctional compound, Preferably, a polyhydric alcohol compound, a polyvalent amine compound, a polyvalent carboxylic acid compound, and a polyvalent thiol compound are mentioned.
 多価アルコール化合物としては、限定されないが、例えばトリメチロールエタン、トリメチロールプロパン、ジトリメチロールプロパン、1,2,4-ブタントリオール、グリセリン、糖アルコールから選択できる。糖アルコールとしては、限定されないが、アルドース及びケトース、例えば、テトロース、ペントース、ヘキソース及びヘプトースから誘導される化合物が挙げられる。具体例としては、グルコース、グリセルアルデヒド、エリトロース、アラビノース、リボース、アラビノース、アロース、アルトロース、マンノース、キシロース、リキソース、グロース、ガラクトース、タロース、フルクトース、リブロース、マンノヘプツロース、セドヘプツロース、トレオース、エリスリトール、トレイトール、グルコピラノース、マンノピラノース、タロピラノース、アロピラノース、アルトロピラノース、イドピラノース、グロピラノース、グルシトール、マンニトール、エリスリトール、ソルビトール、アラビトール、キシリトール、リビトール、ガラクチトール、フシトール、イジトール、イノシトール、ペンタエリスリトール、ジペンタエリスリトール、ボレミトール、グルコン酸、グリセリン酸、キシロン酸、ガラクタル酸、アスコルビン酸、グルコン酸ラクトン、グリセリン酸ラクトン、キシロン酸ラクトン、グルコサミン、ガラクトサミン、又はこれらの混合物が挙げられる。 The polyhydric alcohol compound is not limited, and can be selected from, for example, trimethylolethane, trimethylolpropane, ditrimethylolpropane, 1,2,4-butanetriol, glycerin, and sugar alcohol. Sugar alcohols include, but are not limited to, compounds derived from aldoses and ketoses such as tetroses, pentoses, hexoses and heptoses. Specific examples include glucose, glyceraldehyde, erythrose, arabinose, ribose, arabinose, allose, altrose, mannose, xylose, lyxose, gulose, galactose, talose, fructose, ribulose, mannoheptulose, sedoheptulose, threose, erythritol , Threitol, glucopyranose, mannopyranose, talopyranose, allopyranose, altropyranose, idopyranose, gropyranose, glucitol, mannitol, erythritol, sorbitol, arabitol, xylitol, ribitol, galactitol, fucitol, inditol, inositol, penta Erythritol, dipentaerythritol, boremitol, gluconic acid, glyceric acid, xylon , Galactaric acid, ascorbic acid, gluconic acid lactone, lactones glyceric acid, xylonic acid lactone, glucosamine, galactosamine, or mixtures thereof.
 多価アミン化合物としては、限定されないが、例えばジエチレントリアミン、トリエチレンテトラミン、アミノエチルエタノールアミン、ジエタノールアミン、トリエタノールアミンなどが挙げられる。 Examples of the polyvalent amine compound include, but are not limited to, diethylenetriamine, triethylenetetramine, aminoethylethanolamine, diethanolamine, and triethanolamine.
 多価カルボン酸化合物としては、限定されないが、リンゴ酸、クエン酸などが挙げられる。 Examples of the polyvalent carboxylic acid compound include, but are not limited to, malic acid and citric acid.
 多価チオール化合物としては、限定されないが、トリメチロールプロパントリス(3-メルカプトプロピオネート)、トリス-[(3-メルカプトプロピオニルオキシ)-エチル]-イソシアヌレート、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ジペンタエリスリトールヘキサキス(3-メルカプトプロピオネート)などが挙げられる。 Examples of the polyvalent thiol compound include, but are not limited to, trimethylolpropane tris (3-mercaptopropionate), tris-[(3-mercaptopropionyloxy) -ethyl] -isocyanurate, pentaerythritol tetrakis (3-mercaptopropio And dipentaerythritol hexakis (3-mercaptopropionate).
 一般式(1)のA,Bにおいて、基Xは、2価のポリアルキレンエーテル基(すなわち、ポリオキシアルキレン基)である。基Xの具体例としては、エチレンオキサイド、プロピレンオキサイド、ブチレンオキサイドなどの単独の重合体、これらのうち2種類以上を組み合わせて得られるブロック共重合体、ランダム共重合体が挙げられる。 In A and B of the general formula (1), the group X is a divalent polyalkylene ether group (that is, a polyoxyalkylene group). Specific examples of the group X include single polymers such as ethylene oxide, propylene oxide, and butylene oxide, block copolymers obtained by combining two or more of these, and random copolymers.
 基Yは、前記の通り、2価の基であって、エーテル基、エステル基、アミド基、ウレタン基、ウレア基、又はチオウレタン基である。 As described above, the group Y is a divalent group, and is an ether group, an ester group, an amide group, a urethane group, a urea group, or a thiourethane group.
 基Rは、基Yと結合しており、任意選択的に少なくとも1つの不飽和結合を含んでもよい炭素数6~30の直鎖又は分岐の1価の炭化水素基である。当該炭化水素基の炭素数としては、下限については、好ましくは8以上、より好ましくは10以上、さらに好ましくは12以上であり、上限については、好ましくは28以下、より好ましくは26以下、さらに好ましくは24以下であり、好ましい範囲としては、6~28、6~26、6~24、8~30、8~28、8~26、8~24、10~30、10~28、10~26、10~24、12~30、12~28、12~26、12~24が挙げられ、特に好ましくは12~24である。炭化水素基の具体例としては、デシル基、ウンデシル基、ドデシル基(ラウリル基)、ミリスチル基、ペンタデシル基、セチル基、ヘプタデシル基、ステアリル基、ノナデシル基、エイコシル基、ヘンエイコシル基、ベヘニル基、オレイル基などが挙げられる。 The group R is a linear or branched monovalent hydrocarbon group having 6 to 30 carbon atoms, which is bonded to the group Y and may optionally contain at least one unsaturated bond. The lower limit of the number of carbon atoms of the hydrocarbon group is preferably 8 or more, more preferably 10 or more, still more preferably 12 or more, and the upper limit is preferably 28 or less, more preferably 26 or less, even more preferably. Is 24 or less, and preferred ranges are 6 to 28, 6 to 26, 6 to 24, 8 to 30, 8 to 28, 8 to 26, 8 to 24, 10 to 30, 10 to 28, 10 to 26. 10-24, 12-30, 12-28, 12-26, 12-24, and 12-24 are particularly preferable. Specific examples of the hydrocarbon group include decyl group, undecyl group, dodecyl group (lauryl group), myristyl group, pentadecyl group, cetyl group, heptadecyl group, stearyl group, nonadecyl group, eicosyl group, heneicosyl group, behenyl group, oleyl Groups and the like.
 基Rを一般式(1)に導入する方法としては、高級脂肪酸(なお、前記炭素数には、カルボニル基の炭素も含まれる)、高級脂肪族アルコール、高級脂肪族モノイソシアネート、高級脂肪族アミン、ハロゲン化アルキル、脂肪酸クロライドなどと、前記の多官能化合物のヒドロキシ基、カルボキシ基、チオール基、アミノ基などを反応させる方法を採用することができる。これにより、基Yと基Rとの結合を形成して、基Rを一般式(1)に導入することができる。 As a method for introducing the group R into the general formula (1), higher fatty acids (note that the carbon number includes carbon of the carbonyl group), higher aliphatic alcohols, higher aliphatic monoisocyanates, higher aliphatic amines. , Alkyl halides, fatty acid chlorides, and the like, and a method of reacting the hydroxy group, carboxy group, thiol group, amino group and the like of the polyfunctional compound can be employed. Thereby, the bond of group Y and group R can be formed, and group R can be introduce | transduced into General formula (1).
 高級脂肪酸としては、例えば、カプリル酸、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、アラキドン酸、ベヘン酸、リグノセリン酸、パルミトレイン酸、リノール酸、アラキドン酸、オレイル酸、エルカ酸などが挙げられる。 Examples of higher fatty acids include caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, arachidonic acid, behenic acid, lignoceric acid, palmitoleic acid, linoleic acid, arachidonic acid, oleic acid, and erucic acid. Can be mentioned.
 高級脂肪族アルコールとしては、例えば、ラウリルアルコール、トリデシルアルコール、ミリスチルアルコール、ペンタデシルアルコール、セタノール、ステアリルアルコール、エイコサノール、ヘンエイコサノール、ベヘニルアルコール、オレイルアルコールなどが挙げられる。 Examples of higher aliphatic alcohols include lauryl alcohol, tridecyl alcohol, myristyl alcohol, pentadecyl alcohol, cetanol, stearyl alcohol, eicosanol, heneicosanol, behenyl alcohol, and oleyl alcohol.
 高級脂肪族モノイソシアネートとしては、例えば、デシルイソシアネート、ウンデシルイソシアネート、ドデシルイソシアネート、ミリスチルイソシアネート、ペンタデシルイソシアネート、セチルイソシアネート、ステアリルイソシアネート、エイコシルイソシアネート、ベヘニルイソシアネートなどが挙げられる。 Examples of the higher aliphatic monoisocyanate include decyl isocyanate, undecyl isocyanate, dodecyl isocyanate, myristyl isocyanate, pentadecyl isocyanate, cetyl isocyanate, stearyl isocyanate, eicosyl isocyanate, and behenyl isocyanate.
 高級脂肪族アミンとしては、例えば、デシルアミン、ラウリルアミン、ミリスチルアミン、ステアリルアミン、ベヘニルアミン、オレイルアミンなどが挙げられる。 Examples of higher aliphatic amines include decylamine, laurylamine, myristylamine, stearylamine, behenylamine, and oleylamine.
 ハロゲン化アルキルとしては、ドデシルクロライド、ヘキサデシルクロライド、オクタデシルクロライド、ドデシルブロマイド、ヘキサデシルブロマイド、オクタデシルブロマイドなどが挙げられる。 Examples of the alkyl halide include dodecyl chloride, hexadecyl chloride, octadecyl chloride, dodecyl bromide, hexadecyl bromide, octadecyl bromide and the like.
 脂肪酸クロライドとしては、例えば、カプリル酸クロライド、カプリン酸クロライド、ラウリン酸クロライド、ミリスチン酸クロライド、パルミチン酸クロライド、ステアリン酸クロライド、オレイル酸クロライドなどが挙げられる。 Examples of the fatty acid chloride include caprylic acid chloride, capric acid chloride, lauric acid chloride, myristic acid chloride, palmitic acid chloride, stearic acid chloride, and oleic acid chloride.
 イソシアネート反応性炭化水素化合物は、好ましくは、前記多官能化合物と、前記の高級脂肪酸、高級脂肪族アルコール、高級脂肪族モノイソシアネート、高級脂肪族アミン、ハロゲン化アルキル、及び脂肪酸クロライドからなる群より選択される少なくとも1種との反応生成物であることが好ましい。当該反応生成物は、前記多官能化合物に由来する炭化水素骨格を有しており、かつ、イソシアネート基と反応可能な官能基(好ましくはヒドロキシ基、アミノ基、カルボキシ基、チオール基)を備えている。 The isocyanate-reactive hydrocarbon compound is preferably selected from the group consisting of the polyfunctional compound and the higher fatty acid, higher aliphatic alcohol, higher aliphatic monoisocyanate, higher aliphatic amine, alkyl halide, and fatty acid chloride. The reaction product with at least one selected from the above is preferable. The reaction product has a hydrocarbon skeleton derived from the polyfunctional compound and includes a functional group (preferably a hydroxy group, an amino group, a carboxy group, or a thiol group) that can react with an isocyanate group. Yes.
 イソシアネート反応性炭化水素化合物において、一分子中のイソシアネート基と反応可能な官能基の数は、下限については、好ましくは1以上であり、上限については、好ましくは7以下、より好ましくは5以下、さらに好ましくは3以下であり、範囲としては、好ましくは1~7、より好ましくは1~5、さらに好ましくは1~3である。 In the isocyanate-reactive hydrocarbon compound, the number of functional groups capable of reacting with an isocyanate group in one molecule is preferably 1 or more for the lower limit, preferably 7 or less, more preferably 5 or less for the upper limit. More preferably, it is 3 or less, and the range is preferably 1 to 7, more preferably 1 to 5, and further preferably 1 to 3.
(イソシアネート化合物)
 また、イソシアネート化合物としては、1分子中に2個以上の架橋性官能基を有する公知のイソシアネート化合物(多官能イソシアネート化合物)を、1種単独で又は2種以上を適宜組み合わせて用いることができる。なお、本発明において、イソシアネート化合物の架橋性官能基とは、具体的には、イソシアネート基又はブロックイソシアネート基である。よって、本発明の撥水剤において、炭化水素化合物の官能基に対する、イソシアネート化合物のイソシアネート基及びブロックイソシアネート基の合計モル比が0.3以上である。
(Isocyanate compound)
Moreover, as an isocyanate compound, the well-known isocyanate compound (polyfunctional isocyanate compound) which has a 2 or more crosslinkable functional group in 1 molecule can be used individually by 1 type or in combination of 2 or more types as appropriate. In the present invention, the crosslinkable functional group of the isocyanate compound is specifically an isocyanate group or a blocked isocyanate group. Therefore, in the water repellent of the present invention, the total molar ratio of the isocyanate group of the isocyanate compound and the blocked isocyanate group to the functional group of the hydrocarbon compound is 0.3 or more.
 また、イソシアネート化合物としては、イソシアネート基の50mol%以上、好ましくは60mol%以上、さらに好ましくは70mol%以上がブロック剤で封鎖されたブロックイソシアネートを好適に用いることができる。ブロックイソシアネートとしては、公知の各種ブロックイソシアネートを使用することができる。ブロックイソシアネートは、公知の各種イソシアネート化合物を公知の各種ブロック剤と反応せしめることにより調製することができる。 Further, as the isocyanate compound, a blocked isocyanate in which 50 mol% or more, preferably 60 mol% or more, more preferably 70 mol% or more of the isocyanate group is blocked with a blocking agent can be suitably used. As the blocked isocyanate, various known blocked isocyanates can be used. The blocked isocyanate can be prepared by reacting various known isocyanate compounds with various known blocking agents.
 イソシアネート化合物(ブロックイソシアネートを含む)は自己乳化性を有していてもよく、自己乳化性を有するイソシアネート化合物としては、例えば、イソシアネート化合物の一部にノニオン性親水基、カチオン性親水基、アニオン性親水基を導入したイソシアネート化合物を用いることができ、撥水性の観点から、好ましくはオキシエチレン基を有するノニオン性親水基を導入したイソシアネート化合物を用いることができる。自己乳化性を付与するためにイソシアネート化合物と反応される親水性化合物としては例えば、ポリエチレングリコールモノメチルエーテル、ポリエチレングリコールモノエチルエーテル、ポリエチレングリコールポリプロピレングリコールモノメチルエーテル、ポリプロピレングリコールポリエチレングリコールモノブチルエーテル等のポリオキシアルキレンモノアルキルエーテル類;エチレングリコール、または、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール等の(ポリ)エチレングリコール類;ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコールのブロック共重合体、ランダム共重合体、エチレンオキサイドとプロピレンオキサイド、エチレンオキサイドとブチレンオキサイドのランダム共重合体やブロック共重合体;ポリオキシアルキレンモノアミン類、ポリオキシアルキレンジアミン類;などが挙げられ、ポリエチレングリコールモノメチルエーテル、ポリエチレングリコールモノエチルエーテル等が好ましく用いられる。上記ノニオン性親水性化合物は、1種単独で用いてもよく、あるいは2種以上を組み合わせて用いてもよい。これらの化合物を、イソシアネート基に対して所定量導入することにより、イソシアネート化合物に自己乳化性を付与することができる。これらの化合物の導入量は、イソシアネート基に対して、下限については好ましくは1mol%以上、また、上限については好ましくは50mol%以下、より好ましくは40mol%以下、さらに好ましくは30mol%以下であり、範囲としては、好ましくは1~50mol%程度、より好ましくは1~40mol%程度、さらに好ましくは1~30mol%程度である。 Isocyanate compounds (including blocked isocyanates) may have self-emulsifying properties. Examples of isocyanate compounds having self-emulsifying properties include nonionic hydrophilic groups, cationic hydrophilic groups, and anionic properties in part of isocyanate compounds. From the viewpoint of water repellency, an isocyanate compound into which a nonionic hydrophilic group having an oxyethylene group is preferably used can be used. Examples of hydrophilic compounds that are reacted with isocyanate compounds to impart self-emulsifying properties include polyoxyalkylenes such as polyethylene glycol monomethyl ether, polyethylene glycol monoethyl ether, polyethylene glycol polypropylene glycol monomethyl ether, and polypropylene glycol polyethylene glycol monobutyl ether. Monoalkyl ethers; ethylene glycol or (poly) ethylene glycols such as diethylene glycol, triethylene glycol, and polyethylene glycol; block copolymers, random copolymers, and ethylene oxides of polyethylene glycol, polypropylene glycol, and polytetramethylene glycol And propylene oxide, ethylene oxide and butyleneo Random copolymers or block copolymers of the side; polyoxyalkylene monoamines, polyoxyalkylene diamines; and the like, polyethylene glycol monomethyl ether, polyethylene glycol monoethyl ether and the like are preferably used. The said nonionic hydrophilic compound may be used individually by 1 type, or may be used in combination of 2 or more type. By introducing a predetermined amount of these compounds with respect to the isocyanate group, self-emulsifying properties can be imparted to the isocyanate compound. The introduction amount of these compounds is preferably 1 mol% or more for the lower limit with respect to the isocyanate group, and preferably 50 mol% or less, more preferably 40 mol% or less, still more preferably 30 mol% or less for the upper limit. The range is preferably about 1 to 50 mol%, more preferably about 1 to 40 mol%, and still more preferably about 1 to 30 mol%.
 イソシアネート化合物としては、例えば、脂肪族ポリイソシアネート、脂環族ポリイソシアネート、芳香族ポリイソシアネート、芳香脂肪族ポリイソシアネート等が挙げられる。脂肪族ポリイソシアネートとしては、例えば、1,4-テトラメチレンジイソシアネート、1,5-ペンタメチレンジイソシアネート、1,6-ヘキサメチレンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート、リジンジイソシアネート、ダイマー酸ジイソシアネート等が挙げられ、脂環族ポリイソシアネートとしては、例えば、1,3-ビス(イソシアナトメチル)シクロヘキサン、1,4-ビス(イソシアナトメチル)シクロヘキサン、3-イソシアナトメチル-3,3,5-トリメチルシクロヘキサン(イソホロンジイソシアネート)、ビス-(4-イソシアナトシクロヘキシル)メタン(水添MDI)、ノルボルナンジイソシアネート等が挙げられ、芳香族ポリイソシアネートとしては、例えば、2,4’-ジフェニルメタンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、粗製MDI、1,4-フェニレンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、3,3’-ジメチル-4,4’-ジイソシアナトビフェニル、3,3’-ジメチル-4,4’-ジイソシアナトジフェニルメタン、1,5-ナフチレンジイソシアネート等が挙げられ、芳香脂肪族ポリイソシアネートとしては、例えば、1,3-キシリレンジイソシアネート、1,4-キシリレンジイソシアネート、α,α,α’,α’-テトラメチルキシリレンジイソシアネート等が挙げられ、これらの化合物の反応、例えばアダクト型ポリイソシアネートやウレトジオン化反応、イソシアヌレート化反応、カルボジイミド化反応、ウレトンイミン化反応、ビウレット化反応などによるイソシアネート変性体、およびこれらの混合物を用いることも好ましい。 Examples of the isocyanate compound include aliphatic polyisocyanate, alicyclic polyisocyanate, aromatic polyisocyanate, and araliphatic polyisocyanate. Examples of the aliphatic polyisocyanate include 1,4-tetramethylene diisocyanate, 1,5-pentamethylene diisocyanate, 1,6-hexamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, 2,4,4- Trimethylhexamethylene diisocyanate, lysine diisocyanate, dimer diisocyanate and the like. Examples of the alicyclic polyisocyanate include 1,3-bis (isocyanatomethyl) cyclohexane, 1,4-bis (isocyanatomethyl) cyclohexane, 3-isocyanatomethyl-3,3,5-trimethylcyclohexane (isophorone diisocyanate), bis- (4-isocyanatocyclohexyl) methane (hydrogenated MDI), norbornane diisocyanate, etc. Examples of the aromatic polyisocyanate include 2,4′-diphenylmethane diisocyanate, 4,4′-diphenylmethane diisocyanate, crude MDI, 1,4-phenylene diisocyanate, 2,4-tolylene diisocyanate, and 2,6-tolylene diisocyanate. Examples include diisocyanate, 3,3′-dimethyl-4,4′-diisocyanatobiphenyl, 3,3′-dimethyl-4,4′-diisocyanatodiphenylmethane, 1,5-naphthylene diisocyanate, and the like. Examples of the aliphatic polyisocyanate include 1,3-xylylene diisocyanate, 1,4-xylylene diisocyanate, α, α, α ′, α′-tetramethylxylylene diisocyanate, and the reaction of these compounds. For example, adduct type polyisocyanate and urea It is also preferable to use an isocyanate-modified product obtained by a todionization reaction, an isocyanuration reaction, a carbodiimidization reaction, a ureton iminization reaction, a biuretization reaction, or a mixture thereof.
 前記イソシアネート化合物に導入されるブロック剤としては、活性水素を分子内に1個以上有する化合物であり、1種単独で又は2種以上を適宜組み合わせて用いることができる。ブロック剤としては、例えば、アルコール系化合物、アルキルフェノール系化合物、フェノール系化合物、活性メチレン系化合物、メルカプタン系化合物、酸アミド系化合物、酸イミド系化合物、イミダゾール系化合物、イミダゾリン系化合物、トリアゾール系化合物、カルバミン酸系化合物、尿素系化合物、オキシム系化合物、アミン系化合物、イミド系化合物、イミン系化合物、ピラゾール系化合物、重亜硫酸塩等が挙げられる。中でも、酸アミド系化合物、活性メチレン系化合物、オキシム系化合物、ピラゾール系化合物が好ましく、ε-カプロラクタム、アセチルアセトン、マロン酸ジエチル、メチルエチルケトンオキシム、シクロヘキサノンオキシム、3-メチルピラゾール、3,5-ジメチルピラゾール等を好ましく用いることができる。 The blocking agent introduced into the isocyanate compound is a compound having at least one active hydrogen in the molecule, and can be used alone or in combination of two or more. Examples of the blocking agent include alcohol compounds, alkylphenol compounds, phenol compounds, active methylene compounds, mercaptan compounds, acid amide compounds, acid imide compounds, imidazole compounds, imidazoline compounds, triazole compounds, Examples thereof include carbamic acid compounds, urea compounds, oxime compounds, amine compounds, imide compounds, imine compounds, pyrazole compounds, and bisulfites. Of these, acid amide compounds, active methylene compounds, oxime compounds, and pyrazole compounds are preferable, and ε-caprolactam, acetylacetone, diethyl malonate, methyl ethyl ketone oxime, cyclohexanone oxime, 3-methylpyrazole, 3,5-dimethylpyrazole, and the like. Can be preferably used.
 本発明の撥水剤において、イソシアネート反応性炭化水素化合物の官能基のモル数に対する、イソシアネート化合物の架橋性官能基のモル数の比(モル比)は、0.3以上であればよいが、繊維に対して優れた撥水性を好適に付与しつつ、繊維の難燃性の阻害を効果的に抑制する観点から、当該モル比としては、下限については好ましくは0.4以上、より好ましくは0.5以上であり、上限については、好ましくは8以下、より好ましくは6以下、さらに好ましくは4以下であり、好ましい範囲としては、0.3~8程度、0.3~6程度、0.3~4程度、0.4~8程度、0.4~6程度、0.4~4程度、0.5~8程度、0.5~6程度、0.5~4程度であり、特に0.5~4程度が好ましい。 In the water repellent of the present invention, the ratio (molar ratio) of the number of moles of the crosslinkable functional group of the isocyanate compound to the number of moles of the functional group of the isocyanate-reactive hydrocarbon compound may be 0.3 or more, From the viewpoint of effectively suppressing the inhibition of the flame retardancy of the fiber while suitably imparting excellent water repellency to the fiber, the molar ratio is preferably about 0.4 or more, more preferably The upper limit is preferably 8 or less, more preferably 6 or less, and even more preferably 4 or less. Preferred ranges are about 0.3 to 8, about 0.3 to 6, About 3-4, about 0.4-8, about 0.4-6, about 0.4-4, about 0.5-8, about 0.5-6, about 0.5-4, In particular, about 0.5 to 4 is preferable.
 本発明の撥水剤において、イソシアネート反応性炭化水素化合物とイソシアネート化合物の質量比(イソシアネート反応性炭化水素化合物:イソシアネート化合物)としては、特に制限されないが、繊維に対して優れた撥水性を好適に付与しつつ、繊維の難燃性の阻害を効果的に抑制する観点から、好ましくは1:0.001~1000、より好ましくは1:0.05~20、さらに好ましくは1:0.1~10が挙げられる。 In the water repellent of the present invention, the mass ratio of the isocyanate-reactive hydrocarbon compound to the isocyanate compound (isocyanate-reactive hydrocarbon compound: isocyanate compound) is not particularly limited, but preferably has excellent water repellency for the fiber. From the viewpoint of effectively suppressing the inhibition of the flame retardancy of the fiber while being applied, it is preferably 1: 0.001 to 1000, more preferably 1: 0.05 to 20, further preferably 1: 0.1 to 10 is mentioned.
 本発明の撥水剤は、そのまま繊維製品を処理する濃度の加工液であってもよいし、繊維製品の処理に用いる前に水で薄めて使用する原液(例えば、原液を5~1000倍に希釈して加工液として使用される)であってもよい。 The water repellent of the present invention may be a processing solution having a concentration for treating a fiber product as it is, or a stock solution (for example, 5 to 1000 times the stock solution) used by diluting with water before being used for treating a textile product. It may be used as a processing liquid after dilution).
 本発明の撥水剤を原液とする場合、イソシアネート反応性炭化水素化合物の含有量(固形分量)としては、下限については、好ましくは0.01質量%以上、より好ましくは0.5質量%以上、さらに好ましくは1.0質量%以上であり、上限については、好ましくは60質量%以下、より好ましくは50質量%以下、さらに好ましくは40質量%以下であり、好ましい範囲としては、0.01~60質量%程度、0.01~50質量%程度、0.01~40質量%程度、0.5~60質量%程度、0.5~50質量%程度、0.5~40質量%程度、1.0~60質量%程度、1.0~50質量%程度、1.0~40質量%程度が挙げられ、特に1.0~40質量%程度が好ましい。 When the water repellent of the present invention is used as a stock solution, the lower limit of the content (solid content) of the isocyanate-reactive hydrocarbon compound is preferably 0.01% by mass or more, more preferably 0.5% by mass or more. The upper limit is preferably 60% by mass or less, more preferably 50% by mass or less, still more preferably 40% by mass or less, and a preferable range is 0.01% by mass or more. ˜60 mass%, 0.01˜50 mass%, 0.01˜40 mass%, 0.5˜60 mass%, 0.5˜50 mass%, 0.5˜40 mass% About 1.0 to 60% by mass, about 1.0 to 50% by mass, and about 1.0 to 40% by mass, and particularly preferably about 1.0 to 40% by mass.
 同様に、本発明の撥水剤を原液とする場合、イソシアネート化合物の含有量(固形分量)としては、下限については、好ましくは0.01質量%以上、より好ましくは0.5質量%以上、さらに好ましくは1.0質量%以上であり、上限については、好ましくは60質量%以下、より好ましくは50質量%以下、さらに好ましくは40質量%以下であり、好ましい範囲としては、0.01~60質量%程度、0.01~50質量%程度、0.01~40質量%程度、0.5~60質量%程度、0.5~50質量%程度、0.5~40質量%程度、1.0~60質量%程度、1.0~50質量%程度、1.0~40質量%程度が挙げられ、特に1.0~40質量%程度が好ましい。 Similarly, when the water repellent of the present invention is used as a stock solution, the lower limit of the isocyanate compound content (solid content) is preferably 0.01% by mass or more, more preferably 0.5% by mass or more. More preferably, it is 1.0% by mass or more, and the upper limit is preferably 60% by mass or less, more preferably 50% by mass or less, still more preferably 40% by mass or less. About 60 mass%, about 0.01 to 50 mass%, about 0.01 to 40 mass%, about 0.5 to 60 mass%, about 0.5 to 50 mass%, about 0.5 to 40 mass%, Examples thereof include about 1.0 to 60% by mass, about 1.0 to 50% by mass, and about 1.0 to 40% by mass, and particularly preferably about 1.0 to 40% by mass.
 本発明の撥水剤において、イソシアネート反応性炭化水素化合物及びイソシアネート化合物は、水中に分散した水系分散体であればよい。より具体的には、本発明の撥水剤は、例えば、イソシアネート反応性炭化水素化合物の粒子と、イソシアネート化合物の粒子とが水中に分散した水系分散体であってもよいし、イソシアネート反応性炭化水素化合物とイソシアネート化合物とが1粒子中に含まれる粒子の水系分散体であってもよい。イソシアネート反応性炭化水素化合物の粒子と、イソシアネート化合物の粒子とが水中に分散した水系分散体は、イソシアネート反応性炭化水素化合物の水系分散体と、イソシアネート化合物の水系分散体とを混合することによって、容易に調製することができる。また、イソシアネート反応性炭化水素化合物とイソシアネート化合物とが1粒子中に含まれる粒子の水系分散体についても、イソシアネート反応性炭化水素化合物とイソシアネート化合物とを混合した後、水系分散させることによって調製することができる。 In the water repellent of the present invention, the isocyanate-reactive hydrocarbon compound and the isocyanate compound may be an aqueous dispersion dispersed in water. More specifically, the water repellent of the present invention may be, for example, an aqueous dispersion in which particles of an isocyanate-reactive hydrocarbon compound and particles of an isocyanate compound are dispersed in water, or an isocyanate-reactive carbonization agent. An aqueous dispersion of particles in which a hydrogen compound and an isocyanate compound are contained in one particle may be used. The aqueous dispersion in which the isocyanate-reactive hydrocarbon compound particles and the isocyanate compound particles are dispersed in water is obtained by mixing the aqueous dispersion of the isocyanate-reactive hydrocarbon compound and the aqueous dispersion of the isocyanate compound. It can be easily prepared. Also, an aqueous dispersion of particles in which an isocyanate-reactive hydrocarbon compound and an isocyanate compound are contained in one particle is also prepared by mixing the isocyanate-reactive hydrocarbon compound and the isocyanate compound and then dispersing in water. Can do.
 本発明の撥水剤は、イソシアネート反応性炭化水素化合物、イソシアネート化合物、及び水に加えて、他の成分を含んでいてもよい。他の成分としては、好ましくは、アクリルポリマー、界面活性剤、難燃剤、シリコーン化合物、その他の添加剤などが挙げられる。他の成分は、1種類のみを用いてもよいし、2種類以上を混合して用いてもよい。ただし、本発明の撥水剤は、C8フッ素系撥水剤(炭素数8以上のパーフルオロアルキル基を有する化合物)を含まないことが好ましい。 The water repellent of the present invention may contain other components in addition to the isocyanate-reactive hydrocarbon compound, the isocyanate compound, and water. Other components preferably include acrylic polymers, surfactants, flame retardants, silicone compounds, and other additives. Only one type of other components may be used, or two or more types may be mixed and used. However, it is preferable that the water repellent of the present invention does not contain a C8 fluorine-based water repellent (a compound having a perfluoroalkyl group having 8 or more carbon atoms).
 なお、例えばアクリルポリマーについては、水系分散体として好適に調製できるため、本発明の撥水剤が原液である場合にも配合することもできるし、本発明の撥水剤を水で希釈して加工液とする場合には、加工液を調製する際に、水と共に配合してもよい。また、界面活性剤については、本発明の撥水剤を水系分散体とする際に、イソシアネート反応性炭化水素化合物、イソシアネート化合物を水に分散させるために好適に使用されるため、本発明の撥水剤が原液である場合にも配合することが好ましい。他の成分を撥水剤に加えるタイミングについては、適宜選択すればよい。以下、他の成分について詳述する。 For example, an acrylic polymer can be suitably prepared as an aqueous dispersion, so that it can be blended even when the water repellent of the present invention is a stock solution, or the water repellent of the present invention is diluted with water. When preparing the processing liquid, it may be blended with water when the processing liquid is prepared. The surfactant is preferably used to disperse the isocyanate-reactive hydrocarbon compound and isocyanate compound in water when the water-repellent agent of the present invention is used as an aqueous dispersion. It is also preferable to mix the liquid medicine when it is a stock solution. What is necessary is just to select suitably about the timing which adds another component to a water repellent. Hereinafter, other components will be described in detail.
(アクリルポリマー)
 本発明の撥水剤は、撥水性、難燃性の観点から、必要に応じてアクリルポリマーを含んでいてもよい。アクリルポリマーは、1種類のみを用いてもよいし、2種類以上を混合して用いてもよい。
(Acrylic polymer)
The water repellent of the present invention may contain an acrylic polymer as necessary from the viewpoint of water repellency and flame retardancy. Only one type of acrylic polymer may be used, or two or more types may be mixed and used.
 アクリルポリマーとしては、水系分散体として公知のものを使用することができる。例えば繊維に対してさらに優れた撥水性を付与する観点からは、フッ素原子を含むアクリルポリマーが好ましい。また、繊維の優れた難燃性を得る観点からは、塩素原子を含むアクリルポリマーが好ましい。また、環境への配慮の観点から、ハロゲン元素を含まないアクリルポリマーを使用することも好ましい。 As the acrylic polymer, those known as an aqueous dispersion can be used. For example, an acrylic polymer containing a fluorine atom is preferable from the viewpoint of imparting further excellent water repellency to the fiber. Further, from the viewpoint of obtaining excellent flame retardancy of the fiber, an acrylic polymer containing a chlorine atom is preferable. From the viewpoint of environmental considerations, it is also preferable to use an acrylic polymer that does not contain a halogen element.
 アクリルポリマーは、少なくとも(メタ)アクリレート単量体を重合して得られるポリマーである。後述の通り、ハロゲン原子を含む単量体を(メタ)アクリレート単量体と共重合することによって、ハロゲン原子を含むアクリルポリマーが得られる。 The acrylic polymer is a polymer obtained by polymerizing at least a (meth) acrylate monomer. As will be described later, an acrylic polymer containing a halogen atom is obtained by copolymerizing a monomer containing a halogen atom with a (meth) acrylate monomer.
 (メタ)アクリレート単量体は、炭素数が12以上のエステル部分を有することが好ましく、このエステル部分はエステル基以外が炭化水素基であることが好ましい。この炭化水素基は、直鎖状であっても分岐状であってもよく、飽和炭化水素であっても不飽和炭化水素であってもよく、更には脂環式又は芳香族の環状を有していてもよい。これらの中でも、直鎖状であるものが好ましく、直鎖状のアルキル基であるものがより好ましい。 The (meth) acrylate monomer preferably has an ester moiety having 12 or more carbon atoms, and the ester moiety is preferably a hydrocarbon group other than the ester group. This hydrocarbon group may be linear or branched, may be saturated or unsaturated, and has an alicyclic or aromatic ring. You may do it. Among these, those that are linear are preferable, and those that are linear alkyl groups are more preferable.
 撥水性を高める観点から、上記エステル部分の炭素数は、好ましくは12以上、また、好ましくは30以下であり、12~30であることがより好ましい。エステル部分の炭素数は、より好ましくは21以下であり、12~21であることがさらに好ましい。炭素数がこの範囲である場合は撥水性と風合が特に優れるようになる。エステル部分として特に好ましいのは、炭素数が12~18の直鎖状のアルキル基である。 From the viewpoint of improving water repellency, the ester moiety preferably has 12 or more carbon atoms, more preferably 30 or less, and more preferably 12 to 30 carbon atoms. The number of carbon atoms in the ester moiety is more preferably 21 or less, and further preferably 12 to 21. When the carbon number is within this range, the water repellency and texture are particularly excellent. Particularly preferred as the ester moiety is a linear alkyl group having 12 to 18 carbon atoms.
 (メタ)アクリレート単量体としては、例えば、ラウリル(メタ)アクリレート、ヘキサデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソステアリル(メタ)アクリレート、ベヘニル(メタ)アクリレート等が挙げられ、これらの1種類又は複数を使用することができる。 Examples of the (meth) acrylate monomer include lauryl (meth) acrylate, hexadecyl (meth) acrylate, stearyl (meth) acrylate, isostearyl (meth) acrylate, behenyl (meth) acrylate, and the like. One or more types can be used.
 また、エステル部分に環状構造を有する(メタ)アクリレート単量体としては、ベンジル(メタ)アクリレート、シクロへキシル(メタ)アクリレート、イソボロニル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、ナフチル(メタ)アクリレート、4-モルホリノエチル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、テトラメチルピペリジニル(メタ)アクリレート、グリシジル(メタ)アクリレート等が挙げられ、これらの1種類又は複数を使用することができる。 In addition, as the (meth) acrylate monomer having a cyclic structure in the ester moiety, benzyl (meth) acrylate, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, phenoxyethyl (meth) acrylate, naphthyl (meth) Acrylate, 4-morpholinoethyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, tetramethylpiperidinyl (meth) acrylate, glycidyl ( (Meth) acrylate etc. are mentioned, These 1 type or multiple can be used.
 また、(メタ)アクリレート単量体は、架橋性を有する官能基を含むことが好ましい。官能基としては、ヒドロキシル基、エポキシ基、クロロメチル基、ブロックイソシアネート基、アミノ基、カルボキシル基等が挙げられ、具体的には、ジアセトン(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、ヒドロキシメチル(メタ)アクリレート、ヒドロキシエチル(メタ)アクリレート、3-クロロ-2-ヒドロキシプロピル(メタ)アクリレート、2-アセトアセトキシエチル(メタ)アクリレート、モノクロロ酢酸ビニル、グリシジル(メタ)アクリレート、2-[(3,5-ジメチルピラゾリル)カルボニルアミノ]エチル(メタ)アクリレート等が挙げられる。これらの1種類又は複数を使用することが出来る。 The (meth) acrylate monomer preferably contains a functional group having crosslinkability. Examples of the functional group include a hydroxyl group, an epoxy group, a chloromethyl group, a blocked isocyanate group, an amino group, and a carboxyl group. Specifically, diacetone (meth) acrylamide, N-methylol (meth) acrylamide, hydroxymethyl (Meth) acrylate, hydroxyethyl (meth) acrylate, 3-chloro-2-hydroxypropyl (meth) acrylate, 2-acetoacetoxyethyl (meth) acrylate, vinyl monochloroacetate, glycidyl (meth) acrylate, 2-[(3 , 5-dimethylpyrazolyl) carbonylamino] ethyl (meth) acrylate and the like. One or more of these can be used.
 また、(メタ)アクリレート単量体としては、例えば、ラジカル反応性オルガノポリシロキサンマクロモノマーが挙げられる。アクリルポリマーにおいて、ラジカル反応性オルガノポリシロキサンマクロモノマーが共重合されていると、アクリルポリマーは、アクリル-シリコーンポリマーとなる。 Further, examples of the (meth) acrylate monomer include a radical reactive organopolysiloxane macromonomer. In the acrylic polymer, when the radical-reactive organopolysiloxane macromonomer is copolymerized, the acrylic polymer becomes an acrylic-silicone polymer.
 ラジカル反応性オルガノポリシロキサンマクロモノマーとしては、1分子中にラジカル反応性基を1つまたは2つ以上有してよく、特に1つであることが好ましい。ラジカル反応性基としては、アゾ基、メルカプト基、ビニル基、スチリル基、(メタ)アクリロイル基等が挙げられ、これらの少なくとも1つを使用することができる。該反応性基としては、ラジカル共重合のし易さや合成のし易さ、市販品の入手のし易さから、(メタ)アクリロイル基が好ましい。このようなラジカル反応性オルガノポリシロキサンマクロモノマーとしては、市販品を選択して使用できる。例えば、信越化学工業社製X-22-174ASX、X-22-174BX、X-22-2426、KF-2012などを用いることができる。 The radical-reactive organopolysiloxane macromonomer may have one or more radical-reactive groups in one molecule, and particularly preferably one. Examples of the radical reactive group include an azo group, a mercapto group, a vinyl group, a styryl group, and a (meth) acryloyl group, and at least one of these can be used. The reactive group is preferably a (meth) acryloyl group from the viewpoint of easiness of radical copolymerization, easiness of synthesis, and availability of commercially available products. As such radical reactive organopolysiloxane macromonomer, a commercially available product can be selected and used. For example, X-22-174ASX, X-22-174BX, X-22-2426, KF-2012, etc. manufactured by Shin-Etsu Chemical Co., Ltd. can be used.
 また、(メタ)アクリレート単量体と共重合し得る他の単量体としては、(メタ)アクリレート単量体ではない他の重合性単量体や、ラジカル反応性基を有するオルガノポリシロキサンとは異なる他のマクロモノマー等が挙げられる。他の単量体としては、例えば、スチレン、塩化ビニル、塩化ビニリデン、エチレン、酢酸ビニル、ビニルアルキルエーテル、アクリロニトリル、アルキロールアクリルアミド、マレイン酸ジエステル、(メタ)アクリル酸メトキシポリアルキレングリコール等が挙げられる。他の単量体としてはこれらの例に限定されない。 Other monomers that can be copolymerized with the (meth) acrylate monomer include other polymerizable monomers that are not (meth) acrylate monomers, organopolysiloxanes having radical reactive groups, and Are different macromonomers. Examples of other monomers include styrene, vinyl chloride, vinylidene chloride, ethylene, vinyl acetate, vinyl alkyl ether, acrylonitrile, alkylol acrylamide, maleic acid diester, methoxypolyalkylene glycol (meth) acrylate, and the like. . Other monomers are not limited to these examples.
 例えば、塩化ビニルや塩化ビニリデンを(メタ)アクリレート単量体と共重合することによって、塩素原子を含むアクリルポリマーが得られる。同様に、例えば、パーフルオロアルキル基とエチレン性不飽和二重結合を有する含フッ素単量体を(メタ)アクリレート単量体と共重合することによって、フッ素原子を含むアクリルポリマーが得られる。含フッ素単量体において、パーフルオロアルキル基の炭素数は、好ましくは1以上であり、また、好ましくは6以下であり、1~6であることが好ましい。 For example, an acrylic polymer containing chlorine atoms can be obtained by copolymerizing vinyl chloride or vinylidene chloride with a (meth) acrylate monomer. Similarly, for example, an acrylic polymer containing a fluorine atom is obtained by copolymerizing a fluorine-containing monomer having a perfluoroalkyl group and an ethylenically unsaturated double bond with a (meth) acrylate monomer. In the fluorine-containing monomer, the carbon number of the perfluoroalkyl group is preferably 1 or more, preferably 6 or less, and preferably 1 to 6.
 アクリルポリマーとしては、例えば、特許第5572385号公報、特許第5585078号公報、特許5678660号公報、特表2017-534713号公報、特表2017-536439号公報、特表2017-538793号公報、特許第4927760号公報、特許第5398723号公報、特許第5500238号公報、特許第5626337号公報、特許第6015003号公報、特許第6249048号公報、特許第6280298号公報、特許第4996875号公報などに記載のものも好適に使用することができる。 Examples of the acrylic polymer include, for example, Japanese Patent No. 5572385, Japanese Patent No. 5585078, Japanese Patent No. 5678660, Japanese Patent Publication No. 2017-534713, Japanese Patent Publication No. 2017-536439, Japanese Patent Publication No. 2017-538793, Japanese Patent No. No. 4927760, Japanese Patent No. 5398723, Japanese Patent No. 5500368, Japanese Patent No. 5626337, Japanese Patent No. 6015003, Japanese Patent No. 6249048, Japanese Patent No. 6280298, Japanese Patent No. 4996875, etc. Can also be suitably used.
 アクリルポリマーは、ハロゲン原子を含むアクリルポリマーであってもよいし、ハロゲン原子を含まないアクリルポリマーであってもよい。前記の通り、例えば繊維に対してさらに優れた撥水性を付与する観点からは、フッ素原子を含むアクリルポリマーが好ましい。また、繊維の優れた難燃性を得る観点からは、塩素原子を含むアクリルポリマーが好ましい。また、環境への配慮の観点から、フッ素原子や塩素原子などのハロゲン元素を含まないアクリルポリマーを使用することも好ましい。 The acrylic polymer may be an acrylic polymer containing a halogen atom or an acrylic polymer not containing a halogen atom. As described above, for example, from the viewpoint of imparting further excellent water repellency to the fiber, an acrylic polymer containing a fluorine atom is preferable. Further, from the viewpoint of obtaining excellent flame retardancy of the fiber, an acrylic polymer containing a chlorine atom is preferable. From the viewpoint of environmental considerations, it is also preferable to use an acrylic polymer that does not contain a halogen element such as a fluorine atom or a chlorine atom.
 なお、アクリルポリマーは、例えば乳化重合などによって水系分散体として好適に調製することができる。このため、水性分散体として調製されたイソシアネート反応性炭化水素化合物及びイソシアネート化合物と、水性分散体として調製されたアクリルポリマーとを混合することによって、簡便に撥水剤が得られる。 The acrylic polymer can be suitably prepared as an aqueous dispersion by, for example, emulsion polymerization. For this reason, a water repellent is simply obtained by mixing the isocyanate-reactive hydrocarbon compound and isocyanate compound prepared as an aqueous dispersion and the acrylic polymer prepared as an aqueous dispersion.
 本発明の撥水剤がアクリルポリマーを含む場合、アクリルポリマーの含有量としては、炭化水素化合物およびイソシアネート化合物の合計100質量部に対して、下限については、好ましくは0.1質量部以上、より好ましくは0.5質量部以上、さらに好ましくは1.0質量部以上であり、また、上限については、好ましくは99質量部以下、より好ましくは55質量部以下、さらに好ましくは35質量部以下であり、好ましい範囲としては、0.1~99質量部、0.1~55質量部、0.1~35質量部、0.5~99質量部、0.5~55質量部、0.5~35質量部、1.0~99質量部、1.0~55質量部、1.0~35質量部であり、特に好ましくは1.0~35質量部である。 When the water-repellent agent of the present invention contains an acrylic polymer, the content of the acrylic polymer is preferably 0.1 parts by mass or more with respect to the lower limit with respect to a total of 100 parts by mass of the hydrocarbon compound and the isocyanate compound. The upper limit is preferably 0.5 parts by mass or more, more preferably 1.0 parts by mass or more, and the upper limit is preferably 99 parts by mass or less, more preferably 55 parts by mass or less, and further preferably 35 parts by mass or less. The preferred range is 0.1 to 99 parts by weight, 0.1 to 55 parts by weight, 0.1 to 35 parts by weight, 0.5 to 99 parts by weight, 0.5 to 55 parts by weight, 0.5 They are ˜35 parts by mass, 1.0 to 99 parts by mass, 1.0 to 55 parts by mass, 1.0 to 35 parts by mass, and particularly preferably 1.0 to 35 parts by mass.
(界面活性剤)
 界面活性剤としては、ノニオン性界面活性剤、アニオン性界面活性剤、カチオン性界面活性剤、両性界面活性剤の1種類又は複数を用いることができる。
(Surfactant)
As the surfactant, one or more of a nonionic surfactant, an anionic surfactant, a cationic surfactant, and an amphoteric surfactant can be used.
 ノニオン性界面活性剤としては例えば、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレン脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンソルビトール脂肪酸エステル、グリセリン脂肪酸エステル、ポリオキシエチレングリセリン脂肪酸エステル、ポリグリセリン脂肪酸エステル、ショ糖脂肪酸エステル、ポリオキシエチレンアルキルアミン、ポリオキシエチレン脂肪酸アミド、脂肪酸アルキロールアミド、アルキルアルカノールアミド、アセチレングリコール、アセチレングリコールのオキシエチレン付加物、ポリエチレングリコールポリプロピレングリコールブロックコポリマー等が挙げられる。 Nonionic surfactants include, for example, polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene fatty acid ester, sorbitan fatty acid ester, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene sorbitol fatty acid ester, glycerin fatty acid ester, Polyoxyethylene glycerin fatty acid ester, polyglycerin fatty acid ester, sucrose fatty acid ester, polyoxyethylene alkylamine, polyoxyethylene fatty acid amide, fatty acid alkylol amide, alkyl alkanol amide, acetylene glycol, oxyethylene adduct of acetylene glycol, polyethylene And glycol polypropylene glycol block copolymer.
 アニオン性界面活性剤としては、例えば高級アルコールの硫酸エステル塩、高級アルキルスルホン酸塩、高級カルボン酸塩、アルキルベンゼンスルホン酸塩、ポリオキシエチレンアルキルサルフェート塩、ポリオキシエチレンアルキルフェニルエーテルサルフェート塩、ビニルスルホサクシネート等が挙げられる。 Examples of the anionic surfactant include sulfate esters of higher alcohols, higher alkyl sulfonates, higher carboxylates, alkyl benzene sulfonates, polyoxyethylene alkyl sulfate salts, polyoxyethylene alkyl phenyl ether sulfate salts, vinyl sulfone salts. Examples include succinate.
 カチオン性界面活性剤としては、アミン塩、アミドアミン塩、4級アンモニウム塩、およびイミダゾリニウム塩等が挙げられる。具体例としては、特に限定されないが、アルキルアミン塩、ポリオキシエチレンアルキルアミン塩、アルキルアミドアミン塩、アミノアルコール脂肪酸誘導体、ポリアミン脂肪酸誘導体、イミダゾリン等のアミン塩型界面活性剤、アルキルトリメチルアンモニム塩、ジアルキルジメチルアンモニウム塩、アルキルジメチルベンジルアンモニウム塩、アルキルピリジニウム塩、アルキルイソキノリニウム塩、塩化ベンゼトニウム等の4級アンモニウム塩型界面活性剤等が挙げられる。 Examples of the cationic surfactant include amine salts, amidoamine salts, quaternary ammonium salts, and imidazolinium salts. Specific examples include, but are not limited to, alkylamine salts, polyoxyethylene alkylamine salts, alkylamidoamine salts, amino alcohol fatty acid derivatives, polyamine fatty acid derivatives, amine salt type surfactants such as imidazoline, alkyltrimethylammonium salts, And quaternary ammonium salt type surfactants such as dialkyldimethylammonium salt, alkyldimethylbenzylammonium salt, alkylpyridinium salt, alkylisoquinolinium salt, benzethonium chloride, and the like.
 両性界面活性剤としては、アルキルアミンオキシド類、アラニン類、イミダゾリニウムベタイン類、アミドベタイン類、酢酸ベタイン等が挙げられ、具体的には、長鎖アミンオキシド、ラウリルベタイン、ステアリルベタイン、ラウリルカルボキシメチルヒドロキシエチルイミダゾリニウムベタイン、ラウリルジメチルアミノ酢酸ベタイン、脂肪酸アミドプロピルジメチルアミノ酢酸ベタイン等が挙げられる。 Examples of amphoteric surfactants include alkylamine oxides, alanines, imidazolinium betaines, amide betaines, betaine acetate, and the like. Specific examples include long-chain amine oxides, lauryl betaines, stearyl betaines, lauryl carboxy. Examples include methylhydroxyethyl imidazolinium betaine, lauryl dimethylaminoacetic acid betaine, and fatty acid amidopropyldimethylaminoacetic acid betaine.
 本発明の撥水剤が界面活性剤を含む場合、界面活性剤の含有量としては、撥水剤固形分量100質量部に対して、下限については、好ましくは0.5質量部以上、より好ましくは1質量部以上、さらに好ましくは1.5質量部以上であり、また、上限については、好ましくは30質量部以下、より好ましくは20質量部以下、さらに好ましくは10質量部以下であり、好ましい範囲としては、0.5~30質量部程度、0.5~20質量部程度、0.5~10質量部程度、1~30質量部程度、1~20質量部程度、1~10質量部程度、1.5~30質量部程度、1.5~20質量部程度、1.5~10質量部程度が挙げられ、特に好ましくは1.5~10質量部程度である。 When the water repellent of the present invention contains a surfactant, the content of the surfactant is preferably 0.5 parts by mass or more, more preferably about the lower limit with respect to 100 parts by mass of the water repellent solid content. Is 1 part by mass or more, more preferably 1.5 parts by mass or more, and the upper limit is preferably 30 parts by mass or less, more preferably 20 parts by mass or less, and further preferably 10 parts by mass or less. The ranges are about 0.5 to 30 parts by weight, about 0.5 to 20 parts by weight, about 0.5 to 10 parts by weight, about 1 to 30 parts by weight, about 1 to 20 parts by weight, and 1 to 10 parts by weight. About 1.5 to 30 parts by mass, about 1.5 to 20 parts by mass, and about 1.5 to 10 parts by mass, and particularly preferably about 1.5 to 10 parts by mass.
(難燃剤)
 本発明の撥水剤には、繊維の難燃性をさらに向上させる観点から、難燃剤をさらに配合してもよい。難燃剤としては、特に制限されず、例えば、臭素系難燃剤、リン系難燃剤、窒素系難燃剤、金属塩系難燃剤、シリコン系難燃剤、無機系難燃剤などの公知の難燃剤を使用することができる。なお、後述の通り、本発明の撥水剤が処理対象とする繊維製品には、予め難燃処理が施されていてもよく、難燃処理にはこれらの難燃剤を使用することができる。
(Flame retardants)
The water repellent of the present invention may further contain a flame retardant from the viewpoint of further improving the flame retardancy of the fiber. The flame retardant is not particularly limited. For example, a known flame retardant such as a brominated flame retardant, a phosphorus flame retardant, a nitrogen flame retardant, a metal salt flame retardant, a silicon flame retardant, or an inorganic flame retardant is used. can do. In addition, as described later, the fiber product to be treated by the water repellent of the present invention may be subjected to a flame retardant treatment in advance, and these flame retardants can be used for the flame retardant treatment.
 本発明の撥水剤に難燃剤を併用する場合、加工液中の難燃剤の含有量(固形分量)としては、下限については、好ましくは1質量%以上であり、上限については、好ましくは40質量%以下、より好ましくは30質量%以下、さらに好ましくは25質量%以下であり、範囲としては、好ましくは1~40質量%程度、より好ましくは1~30質量%程度、さらに好ましくは1~25質量%程度が挙げられる。 When a flame retardant is used in combination with the water repellent of the present invention, the content (solid content) of the flame retardant in the working fluid is preferably 1% by mass or more for the lower limit, and preferably 40 for the upper limit. % By mass or less, more preferably 30% by mass or less, and further preferably 25% by mass or less. The range is preferably about 1 to 40% by mass, more preferably about 1 to 30% by mass, and further preferably 1 to About 25 mass% is mentioned.
(シリコーン化合物)
 本発明の撥水剤には、シリコーン化合物を1種類又は複数を用いることができる。
(Silicone compound)
One or more silicone compounds can be used in the water repellent of the present invention.
 シリコーン系化合物としては、例えばアミノ変性シリコーンを用いることができる。アミノ変性シリコーンとしては、シロキサン構造の側鎖にアミノ基が導入されたもの、シロキサン構造の末端にアミノ基が導入されたもの、これらの混合体のいずれを用いてもよく、アミノ基としてはモノアミン、ジアミンまたは一部が封鎖されたものを用いてもよい。アミノ変性シリコーンにおいて、撥水性の観点から、アミン当量が好ましくは300g/mol以上、また、好ましくは20000g/mol以下であり、300~20000g/mol程度のものを用いることがより好ましく、繊維製品の撥水性、洗濯耐久性、風合いおよび価格等を考慮する場合、より好ましくは1000g/mol以上、また、より好ましくは7000g/mol以下であり、1000~7000g/molがさらに好ましい。このようなアミノ変性シリコーンは市販品を選択して用いることができる。例えば、旭化成ワッカーシリコーン社製WACKER FINISH WR301、WR1100、WR1200、WR1300、WR1600、信越化学工業社製KF-867、KF-869およびKF-8004等を用いることができる。 For example, amino-modified silicone can be used as the silicone compound. As the amino-modified silicone, any of those having an amino group introduced into the side chain of the siloxane structure, those having an amino group introduced into the terminal of the siloxane structure, or a mixture thereof may be used. A diamine or a partly blocked diamine may be used. In the amino-modified silicone, from the viewpoint of water repellency, the amine equivalent is preferably 300 g / mol or more, and preferably 20000 g / mol or less, more preferably about 300 to 20000 g / mol. In consideration of water repellency, washing durability, texture, price, and the like, it is more preferably 1000 g / mol or more, more preferably 7000 g / mol or less, and further preferably 1000 to 7000 g / mol. Such amino-modified silicone can be selected from commercial products. For example, WACKER FINISH WR301, WR1100, WR1200, WR1300, WR1600 manufactured by Asahi Kasei Wacker Silicone, KF-867, KF-869 and KF-8004 manufactured by Shin-Etsu Chemical Co., Ltd. can be used.
 また、カルビノール変性シリコーンも用いることができる。カルビノール変性シリコーンとしては、シロキサン構造の側鎖に水酸基が導入されたもの、シロキサン構造の末端に水酸基が導入されたもの、これらの混合体のいずれを用いてもよい。このようなカルビノール変性シリコーンは市販品を選択して用いることができる。例えば、信越化学工業社製X-22-4039、X-22-4015、X-22-170BX、X-22-170DX、KF-6000、KF-6001、KF-6002、KF-6003等を用いることができる。 Carbinol-modified silicone can also be used. As the carbinol-modified silicone, any of those having a hydroxyl group introduced into the side chain of the siloxane structure, those having a hydroxyl group introduced into the terminal of the siloxane structure, or a mixture thereof may be used. Such carbinol-modified silicone can be selected from commercial products. For example, X-22-4039, X-22-4015, X-22-170BX, X-22-170DX, KF-6000, KF-6001, KF-6002, KF-6003 etc. manufactured by Shin-Etsu Chemical Co., Ltd. are used. Can do.
 また、ジオール変性シリコーンも用いることができる。ジオール変性シリコーンとしては、シロキサン構造の側鎖にジオール基が導入されたもの、シロキサン構造の末端にジオール基が導入されたもの、これらの混合体のいずれを用いてもよい。このようなジオール変性シリコーンは市販品を選択して用いることができる。例えば、信越化学工業社製X-22-176DX、X-22-176F、X-22-176GX-A等を用いることができる。 Diol-modified silicone can also be used. As the diol-modified silicone, any of those having a diol group introduced into the side chain of the siloxane structure, those having a diol group introduced into the terminal of the siloxane structure, or a mixture thereof may be used. Such a diol-modified silicone can be selected from commercial products. For example, X-22-176DX, X-22-176F, X-22-176GX-A manufactured by Shin-Etsu Chemical Co., Ltd. can be used.
 また、フェノール変性シリコーンも用いることができる。フェノール変性シリコーンとしては、シロキサン構造の側鎖にフェノール性水酸基が導入されたもの、シロキサン構造の末端にフェノール性水酸基が導入されたもの、これらの混合体のいずれを用いてもよい。このようなフェノール変性シリコーンは市販品を選択して用いることができる。例えば、信越化学工業社製KF-2201等を用いることができる。 Also, phenol-modified silicone can be used. As the phenol-modified silicone, any of those having a phenolic hydroxyl group introduced into the side chain of the siloxane structure, those having a phenolic hydroxyl group introduced to the terminal of the siloxane structure, or a mixture thereof may be used. Such a phenol-modified silicone can be selected from commercial products. For example, KF-2201 manufactured by Shin-Etsu Chemical Co., Ltd. can be used.
 また、カルボキシル変性シリコーンも用いることができる。カルボキシル変性シリコーンとしては、シロキサン構造の側鎖にカルボキシル基が導入されたもの、シロキサン構造の末端にカルボキシル基が導入されたもの、これらの混合体のいずれを用いてもよい。このようなカルボキシル変性シリコーンは市販品を選択して用いることができる。例えば、信越化学工業社製X-22-3701E、X-22-162C等を用いることができる。 Also, carboxyl-modified silicone can be used. As the carboxyl-modified silicone, any of those having a carboxyl group introduced into the side chain of the siloxane structure, those having a carboxyl group introduced into the terminal of the siloxane structure, or a mixture thereof may be used. Such carboxyl-modified silicone can be selected from commercial products. For example, X-22-3701E and X-22-162C manufactured by Shin-Etsu Chemical Co., Ltd. can be used.
 また、メルカプト変性シリコーンも用いることができる。メルカプト変性シリコーンとしては、シロキサン構造の側鎖にメルカプト基が導入されたもの、シロキサン構造の末端にメルカプト基が導入されたもの、これらの混合体のいずれを用いてもよい。このようなメルカプト変性シリコーンは市販品を選択して用いることができる。例えば、信越化学工業社製KF-2001、KF-2004、X-22-167B、X-22-167C等を用いることができる。 Mercapto-modified silicone can also be used. As the mercapto-modified silicone, any of those having a mercapto group introduced into the side chain of the siloxane structure, those having a mercapto group introduced into the terminal of the siloxane structure, or a mixture thereof may be used. Such mercapto-modified silicone can be selected from commercial products. For example, KF-2001, KF-2004, X-22-167B, X-22-167C, etc. manufactured by Shin-Etsu Chemical Co., Ltd. can be used.
 また、エポキシ変性シリコーンも用いることができる。エポキシ変性シリコーンとしては、シロキサン構造の側鎖にエポキシ基が導入されたもの、シロキサン構造の末端にエポキシ基が導入されたもの、これらの混合体のいずれを用いてもよい。このようなエポキシ変性シリコーンは市販品を選択して用いることができる。例えば、信越化学工業社製X-22-343、KF-101、KF-1001、X-22-163、X-22-163A、X-22-163B、X-22-163C、KF-105、X-22-169AS、X-22-169B、X-22-173BX、X-22-173DX等を用いることができる。 Epoxy-modified silicone can also be used. As the epoxy-modified silicone, any of those having an epoxy group introduced into the side chain of the siloxane structure, those having an epoxy group introduced to the terminal of the siloxane structure, or a mixture thereof may be used. Such epoxy-modified silicone can be selected from commercial products. For example, X-22-343, KF-101, KF-1001, X-22-163, X-22-163A, X-22-163B, X-22-163C, KF-105, X manufactured by Shin-Etsu Chemical Co., Ltd. -22-169AS, X-22-169B, X-22-173BX, X-22-173DX, and the like can be used.
 また、フルオロアルキル変性シリコーンも用いることができる。フルオロアルキル変性シリコーンとしては、市販品から選択して用いることができ、例えば、SILTECH社製Fluorosil J15、Fluorosil D2、Fluorosil H418、Fluorosil L118等を用いることができる。 Fluoroalkyl-modified silicone can also be used. The fluoroalkyl-modified silicone can be selected from commercially available products, and examples thereof include Fluorosil J15, Fluorosil D2, Fluorosil H418, and Fluorosil L118 manufactured by SILTECH.
 また、長鎖アルキル変性シリコーンも用いることができる。長鎖アルキル変性シリコーンとしては、市販品から選択して用いることができ、例えば、信越化学工業社製KF-412、KF-413、KF-414、KF-415、KF-4003、KF-4701、KF-4917、KF-7235B、X-22-7322、旭化成ワッカーシリコーン社製BELSIL CDM 3526 VP、BELSIL CM 7026 VP、BELSIL SDM 5055 VP等を用いることができる。 Also, long chain alkyl-modified silicones can be used. The long-chain alkyl-modified silicone can be selected from commercially available products, such as KF-412, KF-413, KF-414, KF-415, KF-4003, KF-4701, manufactured by Shin-Etsu Chemical Co., Ltd. KF-4917, KF-7235B, X-22-7322, BELSIL CDM 3526 VP, BELSIL CM 7026 VP, BELSIL SDM 5055 VP manufactured by Asahi Kasei Wacker Silicone Co., Ltd. can be used.
 また、長鎖アルキル・アラルキル変性シリコーンも用いることができる。長鎖アルキル・アラルキル変性シリコーンとしては、市販品から選択して用いることができ、例えば、信越化学工業社製X-22-1877等を用いることができる。 Also, long-chain alkyl / aralkyl-modified silicones can be used. The long-chain alkyl / aralkyl-modified silicone can be selected from commercially available products, for example, X-22-1877 manufactured by Shin-Etsu Chemical Co., Ltd. can be used.
 また、長鎖アルキル・ポリエーテル変性シリコーンも用いることができる。長鎖アルキル・ポリエーテル変性シリコーンとしては、市販品から選択して用いることができ、例えば、SILTECH社製Silube T308-16、Silube T310-A16、Silube J208-812等を用いることができる。 Also, long chain alkyl / polyether-modified silicones can be used. The long-chain alkyl / polyether-modified silicone can be selected from commercially available products, and examples thereof include Silube T308-16, Silube T310-A16, Silube J208-812, etc. manufactured by SILTECH.
 また、高級脂肪酸アミド変性シリコーンも用いることができる。高級脂肪酸アミド変性シリコーンとしては、市販品から選択して用いることができ、例えば、信越化学工業社製KF-3935等を用いることができる。 Also, higher fatty acid amide-modified silicones can be used. The higher fatty acid amide-modified silicone can be selected from commercially available products. For example, KF-3935 manufactured by Shin-Etsu Chemical Co., Ltd. can be used.
 また、ジメチルシリコーンやメチルフェニルシリコーンも用いることができる。ジメチルシリコーンやメチルフェニルシリコーンとしては、市販品を選択して用いることができる。例えば、ジメチルシリコーンであれば、信越化学工業社製KF-96、KF-965、KF-968、KF-995等を、メチルフェニルシリコーンであれば、信越化学工業社製KF-50、KF-54、KF-56等を用いることができる。 Also, dimethyl silicone and methylphenyl silicone can be used. Commercially available products can be selected and used as dimethyl silicone and methylphenyl silicone. For example, KF-96, KF-965, KF-968, KF-995 manufactured by Shin-Etsu Chemical Co., Ltd. are used for dimethyl silicone, and KF-50, KF-54 manufactured by Shin-Etsu Chemical Co., Ltd. are used for methylphenyl silicone. KF-56 or the like can be used.
 また、シラノール末端シリコーンも用いることができる。シラノール末端シリコーンとしては、市販品から選択して用いることができ、例えば、信越化学工業社製X-21-5841、KF-9701等を用いることができる。 Silanol-terminated silicone can also be used. The silanol-terminated silicone can be selected from commercially available products, such as X-21-5841 and KF-9701 manufactured by Shin-Etsu Chemical Co., Ltd.
 また、スリップ防止性の付与の観点から、シリコーンレジン化合物も用いることができる。シリコーンレジンとしては公知の物が使用可能であり、例えば、構成成分としてMQ、MDQ、MT、MTQ、MDT又はMDTQなどを有し、25℃にて固形状であり、三次元構造を有するオルガノポリシロキサンであることが好ましい。ここで、M、D、T及びQは、それぞれ(R’)3SiO0.5単位、(R’)2SiO単位、R’SiO1.5単位及びSiO2単位を表す。R’は、炭素数1~10の1価の脂肪族炭化水素基、又は、炭素数6~15の1価の芳香族炭化水素基を表す。シリコーンレジンは、一般に、MQレジン、MTレジン又はMDTレジンとして知られており、MDQ、MTQ又はMDTQと示される部分を有することもある。 Moreover, a silicone resin compound can also be used from a viewpoint of provision of slip prevention property. As the silicone resin, known materials can be used. For example, organopolysiloxane having MQ, MDQ, MT, MTQ, MDT or MDTQ as a component, solid at 25 ° C., and having a three-dimensional structure. Siloxane is preferred. Here, M, D, T, and Q represent (R ′) 3 SiO 0.5 unit, (R ′) 2 SiO unit, R′SiO 1.5 unit, and SiO 2 unit, respectively. R ′ represents a monovalent aliphatic hydrocarbon group having 1 to 10 carbon atoms or a monovalent aromatic hydrocarbon group having 6 to 15 carbon atoms. Silicone resins are commonly known as MQ resins, MT resins, or MDT resins, and may have portions designated as MDQ, MTQ, or MDTQ.
 シリコーンレジンは、これを適当な溶媒に溶解させた溶液としても入手することができる。溶媒としては、例えば、比較的低分子量のメチルポリシロキサン、デカメチルシクロペンタシロキサン、オクタメチルシクロテトラシロキサン、n-ヘキサン、イソプロピルアルコール、塩化メチレン、1,1,1-トリクロロエタン及びこれらの溶媒の混合物等が挙げられる。 The silicone resin can also be obtained as a solution in which it is dissolved in an appropriate solvent. Examples of the solvent include relatively low molecular weight methylpolysiloxane, decamethylcyclopentasiloxane, octamethylcyclotetrasiloxane, n-hexane, isopropyl alcohol, methylene chloride, 1,1,1-trichloroethane, and mixtures of these solvents. Etc.
 このようなシリコーンレジンは市販品を選択して用いることができる。溶液としては、例えば、信越化学工業社製KF-7312J、KF-7312K、KF-7312L、KF-7312T、KF-9021L等を用いることができる。シリコーンレジン単独としては、例えば、信越化学工業社製KR-220L、KR-216、東レ・ダウコーニング社製DOWSIL MQ-1600 Solid Resin、DOWSIL MQ-1640 Flake Resin、旭化成ワッカーシリコーン社製SILRES MK POWDER、SILRES MK FLAKE、SILRES 604等を用いることができる。 Such a silicone resin can be selected from commercial products. As the solution, for example, KF-7312J, KF-7312K, KF-7312L, KF-7312T, KF-9021L manufactured by Shin-Etsu Chemical Co., Ltd. can be used. Examples of the silicone resin alone include KR-220L and KR-216 manufactured by Shin-Etsu Chemical Co., Ltd., DOWSIL MQ-1600 Solid Resin manufactured by Toray Dow Corning Co., Ltd., DOWSIL MQ-1640 Flask Resin, and SILRES MK POWDER manufactured by Asahi Kasei Silicone. SILRES MK FLAKE, SILRES 604, etc. can be used.
 また、公知のシランカップリング剤を使用することも可能である。シランカップリング剤としては、エポキシ基、アミノ基、メルカプト基、イソシアネート基等を含有するシランカップリング剤が挙げられる。このようなシランカップリング剤は市販品を選択して用いることができる。例えば、信越化学工業社製のシランカップリング剤が使用でき、エポキシ基含有シランカップリング剤としてはKBM-303、KBM-402、KBM-403、KBE-402、KBE-403等を、アミノ基含有シランカップリング剤としてはKBM-602、KBM-608、KBM-903、KBE-903、KBM-573等を、メルカプト基含有シランカップリング剤としては、KBM-802、KBM-803等を、イソシアネート基含有シランカップリング剤としてはKBE-9007等を用いることができる。 Also, it is possible to use a known silane coupling agent. Examples of the silane coupling agent include silane coupling agents containing an epoxy group, an amino group, a mercapto group, an isocyanate group, and the like. A commercial item can be selected and used for such a silane coupling agent. For example, a silane coupling agent manufactured by Shin-Etsu Chemical Co., Ltd. can be used. Examples of the epoxy group-containing silane coupling agent include KBM-303, KBM-402, KBM-403, KBE-402, KBE-403, etc. Examples of silane coupling agents include KBM-602, KBM-608, KBM-903, KBE-903, and KBM-573. Examples of mercapto group-containing silane coupling agents include KBM-802, KBM-803, and isocyanate groups. As the containing silane coupling agent, KBE-9007 or the like can be used.
 本発明の撥水剤がシリコーン化合物を含む場合、シリコーン化合物の含有量としては、炭化水素化合物およびイソシアネート化合物の合計100質量部に対して、下限については、好ましくは0.01質量部以上であり、上限については、好ましくは100質量部以下、より好ましくは70質量部以下、さらに好ましくは45質量部以下であり、範囲としては、好ましくは0.01~100質量部程度、より好ましくは0.01~70質量部程度、さらに好ましくは0.01~45質量部程度が挙げられる。 When the water repellent of the present invention contains a silicone compound, the content of the silicone compound is preferably 0.01 parts by mass or more with respect to the lower limit with respect to 100 parts by mass in total of the hydrocarbon compound and the isocyanate compound. The upper limit is preferably 100 parts by mass or less, more preferably 70 parts by mass or less, still more preferably 45 parts by mass or less, and the range is preferably about 0.01 to 100 parts by mass, more preferably 0. The amount is about 01 to 70 parts by mass, more preferably about 0.01 to 45 parts by mass.
(その他の添加剤)
 本発明の撥水剤は、上記の他の成分の他、本発明の効果を生じる限りにおいて任意の添加剤を含んでもよい。添加剤としては例えば、国際公開2014/190905号に記載された各種ソルビタン誘導体、クエン酸アルキル誘導体、ペンタエリスリトール誘導体などの脂肪酸エステル、米国公開公報第2010/0190397号に記載の疎水性化合物や、特開2017-222827号公報に記載の疎水性化合物、ワックス系化合物、撥水助剤成分、架橋剤(イソシアネート化合物との異なる化合物)、スリップ防止剤、防しわ剤、難燃剤、帯電防止剤、耐熱剤等の繊維用薬剤、酸化防止剤、紫外線吸収剤、顔料、金属粉顔料、レオロジーコントロール剤、硬化促進剤、消臭剤、抗菌剤等の公知の添加剤が挙げられる。例えば、撥水助剤成分としては、ジルコニウム系化合物などが挙げられ、特に酢酸ジルコニウム、塩酸ジルコニウム、硝酸ジルコニウムが好ましい。これらの添加剤は1種単独で又は2種以上を適宜組み合わせて用いることができる。
(Other additives)
The water repellent of the present invention may contain any additive as long as the effects of the present invention are produced, in addition to the other components described above. Examples of additives include various sorbitan derivatives described in International Publication No. 2014/190905, fatty acid esters such as alkyl citrate derivatives and pentaerythritol derivatives, hydrophobic compounds described in US Publication No. 2010/0190397, Hydrophobic compounds, wax-based compounds, water-repellent auxiliary components, crosslinking agents (compounds different from isocyanate compounds), anti-slip agents, anti-wrinkle agents, flame retardants, anti-static agents, heat resistance Examples include known additives such as textile agents such as agents, antioxidants, ultraviolet absorbers, pigments, metal powder pigments, rheology control agents, curing accelerators, deodorants, and antibacterial agents. For example, examples of the water-repellent auxiliary component include zirconium compounds, and zirconium acetate, zirconium hydrochloride, and zirconium nitrate are particularly preferable. These additives can be used singly or in appropriate combination of two or more.
 本発明の撥水剤において、イソシアネート反応性炭化水素化合物及びイソシアネート化合物は、水中に分散した水系分散体であればよく、前記の通り、イソシアネート反応性炭化水素化合物の粒子と、イソシアネート化合物の粒子とが水中に分散した水系分散体は、イソシアネート反応性炭化水素化合物の水系分散体と、イソシアネート化合物の水系分散体とを混合することによって、容易に製造することができる。また、アクリルポリマーの水系分散体を混合して、アクリルポリマーをさらに含む撥水剤も容易に製造することができる。イソシアネート反応性炭化水素化合物とイソシアネート化合物とが1粒子中に含まれる粒子の水系分散体は、イソシアネート反応性炭化水素化合物とイソシアネート化合物とを同じ水中で生成させることによって製造することができる。 In the water repellent of the present invention, the isocyanate-reactive hydrocarbon compound and the isocyanate compound may be an aqueous dispersion dispersed in water. As described above, the isocyanate-reactive hydrocarbon compound particles, the isocyanate compound particles, An aqueous dispersion in which is dispersed in water can be easily produced by mixing an aqueous dispersion of an isocyanate-reactive hydrocarbon compound and an aqueous dispersion of an isocyanate compound. Moreover, the water repellent which further contains an acrylic polymer by mixing the aqueous dispersion of an acrylic polymer can also be manufactured easily. An aqueous dispersion of particles containing an isocyanate-reactive hydrocarbon compound and an isocyanate compound in one particle can be produced by producing the isocyanate-reactive hydrocarbon compound and the isocyanate compound in the same water.
 本発明において、各種水系分散体は公知の方法で製造されてよく、例えば、各種成分と界面活性剤を混合後、水を添加して分散させる方法や、公知の分散機等を使用して機械的に分散させる方法が挙げられる。分散機としては、ホモミキサー、ホモジナイザー、コロイドミル、ラインミキサー、ビーズミル等を用いることができる。また、水系分散させる場合に公知の有機溶剤を添加してもよい。 In the present invention, various aqueous dispersions may be produced by a known method. For example, after mixing various components and a surfactant, water is added and dispersed, or a known disperser or the like is used. For example, a dispersion method. As a disperser, a homomixer, a homogenizer, a colloid mill, a line mixer, a bead mill, or the like can be used. Moreover, when carrying out aqueous dispersion, you may add a well-known organic solvent.
 前記の通り、本発明においては、イソシアネート反応性炭化水素化合物を含む第1剤と、イソシアネート化合物を含む第2剤とを備える、2液タイプのキットとし、用時に第1剤及び前記第2剤を水に分散し、水系分散体として本発明の撥水剤を調製するキットの形態としてもよい。さらに、本発明においては、イソシアネート反応性炭化水素化合物を含む第1剤と、イソシアネート化合物を含む第2剤と、アクリルポリマーを含む第3剤とを備える3液タイプのキットとし、用時に第1剤、第2剤、及び第3剤を水に分散し、水系分散体として本発明の撥水剤を調製するキットの形態としてもよい。 As described above, in the present invention, a two-component kit including a first agent containing an isocyanate-reactive hydrocarbon compound and a second agent containing an isocyanate compound is used, and the first agent and the second agent are used at the time of use. It is good also as a kit form which prepares the water repellent of this invention as water-based dispersion. Furthermore, in this invention, it is set as the 3 liquid type kit provided with the 1st agent containing an isocyanate-reactive hydrocarbon compound, the 2nd agent containing an isocyanate compound, and the 3rd agent containing an acrylic polymer, The agent, the second agent, and the third agent may be dispersed in water to form a kit for preparing the water repellent of the present invention as an aqueous dispersion.
 具体的には、本発明の2液タイプのキットは、少なくとも、イソシアネート基と反応可能な官能基を有する炭化水素化合物を含む第1剤と、少なくとも、イソシアネート化合物を含む第2剤とを備え、第1剤及び第2剤を水に分散した、水系分散体として用いられる撥水剤を調製するためのキットであって、第1剤の炭化水素化合物の官能基に対する、第2剤のイソシアネート化合物の架橋性官能基のモル比が0.3以上である。 Specifically, the two-pack type kit of the present invention comprises at least a first agent containing a hydrocarbon compound having a functional group capable of reacting with an isocyanate group, and at least a second agent containing an isocyanate compound, A kit for preparing a water repellent used as an aqueous dispersion in which a first agent and a second agent are dispersed in water, the isocyanate compound being a second agent for the functional group of the hydrocarbon compound of the first agent The molar ratio of the crosslinkable functional group is 0.3 or more.
 また、本発明の3液タイプのキットは、少なくとも、イソシアネート基と反応可能な官能基を有する炭化水素化合物を含む第1剤と、少なくとも、イソシアネート化合物を含む第2剤と、少なくとも、アクリルポリマーを含む第3剤とを備え、第1剤、第2剤、及び第3剤を水に分散した、水系分散体として用いられる撥水剤を調製するためのキットであって、第1剤記炭化水素化合物の官能基に対する、第2剤のイソシアネート化合物の架橋性官能基のモル比が0.3以上である。 The three-component type kit of the present invention includes at least a first agent containing a hydrocarbon compound having a functional group capable of reacting with an isocyanate group, at least a second agent containing an isocyanate compound, and at least an acrylic polymer. A kit for preparing a water repellent used as an aqueous dispersion, wherein the first agent, the second agent, and the third agent are dispersed in water. The molar ratio of the crosslinkable functional group of the isocyanate compound of the second agent to the functional group of the hydrogen compound is 0.3 or more.
 本発明の2液タイプのキット及び3液タイプのキットは、それぞれ、前述の本発明の撥水剤を調製するために用いられるものである。従って、イソシアネート反応性炭化水素化合物、イソシアネート化合物、アクリルポリマー、その他の成分の種類や含有量などについても、前述の本発明の撥水剤と同じである。なお、例えば2液タイプのキットであれば、アクリルポリマーやその他の成分は、第1剤及び第2剤に少なくとも一方の配合することができる。また、例えば3液タイプのキットであれば、その他の成分は、第1剤、第2剤、及び第3剤の少なくとも1つに配合することができる。 The two-component type kit and the three-component type kit of the present invention are each used for preparing the above-described water repellent of the present invention. Therefore, the kind and content of the isocyanate-reactive hydrocarbon compound, isocyanate compound, acrylic polymer, and other components are the same as the water repellent of the present invention described above. For example, in the case of a two-component type kit, at least one of the acrylic polymer and other components can be blended with the first agent and the second agent. For example, if it is a 3 liquid type kit, another component can be mix | blended with at least 1 of a 1st agent, a 2nd agent, and a 3rd agent.
2.撥水性繊維製品
 本発明の撥水性繊維製品は、前述の本発明の撥水剤によって処理されたものである。すなわち、本発明の撥水性繊維製品は、本発明の撥水剤を繊維製品に接触させることによって製造される。本発明の撥水剤の詳細については、前述の通りである。
2. Water-repellent fiber product The water-repellent fiber product of the present invention is treated with the above-described water-repellent agent of the present invention. That is, the water-repellent fiber product of the present invention is produced by bringing the water-repellent agent of the present invention into contact with the fiber product. The details of the water repellent of the present invention are as described above.
 本発明の撥水剤で処理される繊維製品としては、繊維によって構成された物品であれば、特に制限されず、例えば、綿、絹、麻、ウール等の天然繊維、ポリエステル、ナイロン、アクリル、スパンデックス等の合成繊維及びこれらを用いた繊維製品が挙げられる。また、繊維製品の形態、形状にも制限はなく、ステープル、フィラメント、トウ、糸等の様な原材料形状に限らず、織物、編み物、詰め綿、不織布、紙、シート、フィルム等の多様な加工形態のものであってもよい。 The fiber product treated with the water repellent of the present invention is not particularly limited as long as it is an article composed of fibers, for example, natural fibers such as cotton, silk, hemp, wool, polyester, nylon, acrylic, Examples thereof include synthetic fibers such as spandex and fiber products using them. In addition, there are no restrictions on the form and shape of the textile product, and not only the shape of raw materials such as staples, filaments, tows, and yarns, but also various processes such as woven fabrics, knitted fabrics, stuffed cotton, non-woven fabrics, paper, sheets, and films. It may be in the form.
 また、繊維製品には、予め難燃処理が施されていてもよい。例えばポリエステルであれば、製糸性との相性などを考慮して前述した難燃剤から適宜選択して難燃処理を施すことができる。また、難燃剤による処理方法としては、特に限定はなく、ポリマー中に単純に添加する方法や、ポリエステルと分子レベルで共重合させる方法で混入すればよい。 Moreover, the flame retardant treatment may be applied to the textile product in advance. For example, in the case of polyester, flame retardancy treatment can be performed by appropriately selecting from the above-mentioned flame retardants in consideration of compatibility with the yarn-making property. The treatment method using a flame retardant is not particularly limited, and may be mixed by a method of simply adding to a polymer or a method of copolymerizing with polyester at a molecular level.
 本発明の撥水剤を用いて、公知の方法で繊維製品(布帛など)に対して撥水処理を行うことができる。本発明の撥水剤による繊維製品の処理方法としては、例えば、連続法又はバッチ法等が挙げられる。なお、本発明の撥水剤が原液である場合であれば、処理に適した濃度(例えば、固形分濃度が0.01質量%以上、または6質量%以下、好ましくは0.01~6質量%程度)となるように、撥水剤を水で希釈して加工液を調製する。 Using the water repellent of the present invention, a water repellent treatment can be performed on a fiber product (cloth or the like) by a known method. Examples of the method for treating a fiber product with the water repellent of the present invention include a continuous method or a batch method. If the water repellent of the present invention is a stock solution, the concentration suitable for treatment (for example, the solid content concentration is 0.01% by mass or more, or 6% by mass or less, preferably 0.01 to 6% by mass). The processing liquid is prepared by diluting the water repellent with water so as to be approximately%.
 連続法としては、加工液を調製する際、水の他にも任意的に各種の薬剤、例えば架橋剤等を添加することも好ましい。次に、加工液で満たされた含浸装置に、被処理物(すなわち、繊維製品)を連続的に送り込み、被処理物に加工液を含浸させた後、不要な加工液を除去する。含浸装置としては特に限定されず、パッダ、キスロール式付与装置、グラビアコーター式付与装置、スプレー式付与装置、フォーム式付与装置、コーティング式付与装置等が好ましく採用でき、特にパッダ式が好ましい。続いて、乾燥機を用いて被処理物に残存する水を除去する操作を行う。乾燥機としては、特に限定されず、ホットフルー、テンター等の拡布乾燥機が好ましい。該連続法は、被処理物が織物等の布帛状の場合に採用するのが好ましい。 As a continuous method, it is also preferable to optionally add various agents such as a cross-linking agent in addition to water when preparing the processing liquid. Next, an object to be processed (that is, a fiber product) is continuously fed into the impregnation apparatus filled with the processing liquid, and the processing object is impregnated with the processing liquid, and then the unnecessary processing liquid is removed. The impregnation device is not particularly limited, and a padder, a kiss roll type applicator, a gravure coater type applicator, a spray type applicator, a foam type applicator, a coating type applicator, etc. can be preferably employed, and a padder type is particularly preferable. Subsequently, an operation of removing water remaining on the object to be processed is performed using a dryer. The dryer is not particularly limited, and a spread dryer such as a hot fluid or a tenter is preferable. The continuous method is preferably employed when the object to be treated is a fabric such as a woven fabric.
 また、バッチ法は、被処理物を加工液に浸漬する工程、処理を行った被処理物に残存する水を除去する工程からなる。該バッチ法は、被処理物が布帛状でない場合、たとえばバラ毛、トップ、スライバ、かせ、トウ、糸等の場合、または編物等連続法に適さない場合に採用するのが好ましい。浸漬する工程においては、たとえば、ワタ染機、チーズ染色機、液流染色機、工業用洗濯機、ビーム染色機等を用いることができる。水を除去する操作においては、チーズ乾燥機、ビーム乾燥機、タンブルドライヤー等の温風乾燥機、高周波乾燥機等を用いることができる。本発明の撥水剤を付着させた被処理物には、乾熱処理を行うことが好ましい。 Further, the batch method includes a step of immersing the object to be processed in a processing liquid and a step of removing water remaining on the object to be processed. The batch method is preferably employed when the object to be treated is not in the form of a fabric, for example, in the case of loose hair, top, sliver, skein, tow, yarn or the like, or when it is not suitable for continuous methods such as knitting. In the dipping step, for example, a cotton dyeing machine, a cheese dyeing machine, a liquid dyeing machine, an industrial washing machine, a beam dyeing machine or the like can be used. In the operation of removing water, a hot air dryer such as a cheese dryer, a beam dryer or a tumble dryer, a high-frequency dryer or the like can be used. It is preferable to perform a dry heat treatment on the workpiece to which the water repellent of the present invention is attached.
 乾熱処理の温度としては、下限については、好ましくは120℃以上、より好ましくは160℃以上であり、また、上限については、好ましくは180℃以下であり、範囲としては、120~180℃が好ましく、特に160~180℃が好ましい。該乾熱処理の時間としては、下限については好ましくは10秒間以上、より好ましくは1分間以上であり、また、上限については、好ましくは3分間以下、より好ましくは2分間以下であり、好ましい範囲としては、10秒間~3分間、10秒間~2分間、1~3分間、1~2分間が挙げられる。乾熱処理の方法としては、特に限定されないが、被処理物が布帛状である場合にはテンターが好ましい。 As the temperature of the dry heat treatment, the lower limit is preferably 120 ° C. or higher, more preferably 160 ° C. or higher, and the upper limit is preferably 180 ° C. or lower, and the range is preferably 120 to 180 ° C. In particular, 160 to 180 ° C. is preferable. As the time for the dry heat treatment, the lower limit is preferably 10 seconds or more, more preferably 1 minute or more, and the upper limit is preferably 3 minutes or less, more preferably 2 minutes or less. For 10 seconds to 3 minutes, 10 seconds to 2 minutes, 1 to 3 minutes, and 1 to 2 minutes. The method for the dry heat treatment is not particularly limited, but a tenter is preferable when the object to be processed is in the form of a fabric.
 以下に実施例及び比較例を示して本発明を詳細に説明する。但し本発明は実施例に限定されるものではない。なお、以下の実施例において、特に明示されていない場合、「%」は「質量%」を意味する。 Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples. However, the present invention is not limited to the examples. In the following examples, “%” means “% by mass” unless otherwise specified.
<イソシアネート反応性炭化水素化合物の合成>
(合成例1:ミオイノシトールラウレート)
 フラスコに、ミオイノシトール15.0g(0.083mol)、ラウリン酸75.1g(0.375mol)、トルエン90.0g、p-トルエンスルホン酸2.0g、及び硫酸0.5gを加えた。溶液を加熱還流して、ディーン-スタークトラップを用いて反応系から水を除去した。一旦水を全て除去したら、反応物を70℃に冷却し、10質量%水酸化ナトリウム溶液13.0gを添加した。反応物を1時間撹拌し、室温まで冷却した。真空濾過し、回収した固体を減圧下オーブン内で一晩乾燥させた。得られたイソシアネート反応性炭化水素化合物の水酸基価は123.2mgKOH/gであった。
<Synthesis of isocyanate-reactive hydrocarbon compound>
(Synthesis Example 1: Myo-inositol laurate)
To the flask, 15.0 g (0.083 mol) of myo-inositol, 75.1 g (0.375 mol) of lauric acid, 90.0 g of toluene, 2.0 g of p-toluenesulfonic acid, and 0.5 g of sulfuric acid were added. The solution was heated to reflux and water was removed from the reaction using a Dean-Stark trap. Once all the water was removed, the reaction was cooled to 70 ° C. and 13.0 g of 10 wt% sodium hydroxide solution was added. The reaction was stirred for 1 hour and cooled to room temperature. Vacuum filtration was performed and the collected solid was dried in an oven under reduced pressure overnight. The obtained isocyanate-reactive hydrocarbon compound had a hydroxyl value of 123.2 mgKOH / g.
(合成例2:ミオイノシトールステアレート)
 フラスコに、ミオイノシトール15.0g(0.083mol)、ステアリン酸106.5g(0.374mol)、トルエン90.0g、p-トルエンスルホン酸2.0g、及び硫酸0.5gを加えた。溶液を加熱還流して、ディーン-スタークトラップを用いて反応系から水を除去した。一旦水を全て除去したら、反応物を70℃に冷却し、10質量%水酸化ナトリウム溶液13.0gを添加した。反応物を1時間撹拌し、室温まで冷却した。真空濾過し、回収した固体を真空オーブン内で一晩乾燥させた。得られたイソシアネート反応性炭化水素化合物の水酸基価は89.6mgKOH/gであった。
(Synthesis Example 2: Myo-inositol stearate)
To the flask, 15.0 g (0.083 mol) of myo-inositol, 106.5 g (0.374 mol) of stearic acid, 90.0 g of toluene, 2.0 g of p-toluenesulfonic acid, and 0.5 g of sulfuric acid were added. The solution was heated to reflux and water was removed from the reaction using a Dean-Stark trap. Once all the water was removed, the reaction was cooled to 70 ° C. and 13.0 g of 10 wt% sodium hydroxide solution was added. The reaction was stirred for 1 hour and cooled to room temperature. Vacuum filtered and the collected solid was dried in a vacuum oven overnight. The obtained isocyanate-reactive hydrocarbon compound had a hydroxyl value of 89.6 mgKOH / g.
(合成例3:マンニトールベヘネート)
 フラスコに、マンニトール12g(0.066mol)、ベヘン酸56g(0.164mol)、及び10質量%水酸化ナトリウム溶液5.0gを加え、約220℃で4時間加熱した。反応物を80℃に冷却し、85質量%リン酸溶液0.48gを添加した。反応物を1時間撹拌し、室温まで冷却後、真空濾過した。固体を回収し、真空オーブン内で一晩乾燥させた。得られたイソシアネート反応性炭化水素化合物の水酸基価は268.8mgKOH/gであった。
(Synthesis Example 3: Mannitol behenate)
To the flask, 12 g (0.066 mol) of mannitol, 56 g (0.164 mol) of behenic acid, and 5.0 g of 10% by mass sodium hydroxide solution were added and heated at about 220 ° C. for 4 hours. The reaction was cooled to 80 ° C. and 0.48 g of 85 wt% phosphoric acid solution was added. The reaction was stirred for 1 hour, cooled to room temperature and then vacuum filtered. The solid was collected and dried overnight in a vacuum oven. The obtained isocyanate-reactive hydrocarbon compound had a hydroxyl value of 268.8 mgKOH / g.
(合成例4:キシリトールベヘネート)
 フラスコに、キシリトール12g(0.079mol)、ベヘン酸40.2g(0.118mol)、及び10質量%水酸化ナトリウム溶液5.0gを加えた。反応器を約220℃で4時間加熱した。反応物を80℃に冷却し、85質量%リン酸溶液0.48gを添加した。反応物を1時間撹拌し、室温まで冷却後、真空濾過した。固体を回収し、真空オーブン内で一晩乾燥させた。得られたイソシアネート反応性炭化水素化合物の水酸基価は470.4mgKOH/gであった。
(Synthesis Example 4: Xylitol behenate)
To the flask, 12 g (0.079 mol) of xylitol, 40.2 g (0.118 mol) of behenic acid, and 5.0 g of 10% by mass sodium hydroxide solution were added. The reactor was heated at about 220 ° C. for 4 hours. The reaction was cooled to 80 ° C. and 0.48 g of 85 wt% phosphoric acid solution was added. The reaction was stirred for 1 hour, cooled to room temperature and then vacuum filtered. The solid was collected and dried overnight in a vacuum oven. The obtained isocyanate-reactive hydrocarbon compound had a hydroxyl value of 470.4 mgKOH / g.
(合成例5:キシロースパルミテート)
 フラスコに、キシロース5.0g(0.033mol)、パルミチン酸クロライド22.9g(0.083mol)、及びジクロロメタン50.0gを加えた。反応物を室温で撹拌した。トリエチルアミン8.4gを10分間かけて滴下した。活性炭5.0gを反応器に加えた。反応物を1時間撹拌し、濾過した。ジクロロメタンを減圧下留去した。残りの液体を回収し、室温に冷却して固化させた。得られたイソシアネート反応性炭化水素化合物の水酸基価は179.2mgKOH/gであった。
(Synthesis Example 5: xylose palmitate)
To the flask, 5.0 g (0.033 mol) of xylose, 22.9 g (0.083 mol) of palmitic acid chloride, and 50.0 g of dichloromethane were added. The reaction was stirred at room temperature. 8.4 g of triethylamine was added dropwise over 10 minutes. 5.0 g of activated carbon was added to the reactor. The reaction was stirred for 1 hour and filtered. Dichloromethane was distilled off under reduced pressure. The remaining liquid was collected and cooled to room temperature to solidify. The obtained isocyanate-reactive hydrocarbon compound had a hydroxyl value of 179.2 mgKOH / g.
(合成例6:グルコースパルミテート)
 フラスコに、グルコース5.0g(0.028mol)、パルミチン酸クロライド26.7g(0.097mol)、及びジクロロメタン70gを加えた。反応物を室温で撹拌した。トリエチルアミン9.8gを10分間かけて滴下した。活性炭10gを反応器に加えた。反応物を1時間撹拌し、濾過した。ジクロロメタンを減圧下留去した。残りの液体を回収し、室温に冷却して固化させた。得られたイソシアネート反応性炭化水素化合物の水酸基価は123.2mgKOH/gであった。
(Synthesis Example 6: glucose palmitate)
Glucose 5.0 g (0.028 mol), palmitic acid chloride 26.7 g (0.097 mol), and dichloromethane 70 g were added to the flask. The reaction was stirred at room temperature. 9.8 g of triethylamine was added dropwise over 10 minutes. 10 g of activated carbon was added to the reactor. The reaction was stirred for 1 hour and filtered. Dichloromethane was distilled off under reduced pressure. The remaining liquid was collected and cooled to room temperature to solidify. The obtained isocyanate-reactive hydrocarbon compound had a hydroxyl value of 123.2 mgKOH / g.
(合成例7:クエン酸トリステアリル)
 フラスコに、クエン酸20.0g(0.104mol)、ステアリルアルコール100.0g(0.37mol)、トルエン150g、及び硫酸2gを加えた。溶液を加熱還流して、ディーン-スタークトラップを用いて反応系から水を除去した。0℃まで冷却し生成物を沈殿させた後濾過を行い、エタノールを用いて再結晶を行った。濾過により固体を回収し、真空オーブン内で一晩乾燥させた。得られたイソシアネート反応性炭化水素化合物の水酸基価は58.8mgKOH/gであった。
(Synthesis Example 7: Tristearyl citrate)
To the flask, 20.0 g (0.104 mol) of citric acid, 100.0 g (0.37 mol) of stearyl alcohol, 150 g of toluene, and 2 g of sulfuric acid were added. The solution was heated to reflux and water was removed from the reaction using a Dean-Stark trap. After cooling to 0 ° C. to precipitate the product, it was filtered and recrystallized using ethanol. The solid was collected by filtration and dried overnight in a vacuum oven. The resulting isocyanate-reactive hydrocarbon compound had a hydroxyl value of 58.8 mgKOH / g.
(合成例8:トリメチロールプロパンステアレート)
 フラスコに、トリメチロールプロパン190.6g(1.420mol)、ステアリン酸808.2g(2.84mol)及びp-トルエンスルホン酸1.2gを入れ、窒素気流下、140~210℃で3時間脱水反応を行った。得られたイソシアネート反応性炭化水素化合物の水酸基価は84.0mgKOH/gであった。
(Synthesis Example 8: trimethylolpropane stearate)
A flask was charged with 190.6 g (1.420 mol) of trimethylolpropane, 808.2 g (2.84 mol) of stearic acid and 1.2 g of p-toluenesulfonic acid, and dehydrated at 140 to 210 ° C. for 3 hours under a nitrogen stream. Went. The resulting isocyanate-reactive hydrocarbon compound had a hydroxyl value of 84.0 mgKOH / g.
(合成例9:ジトリメチロールプロパンステアレート)
 フラスコに、ジトリメチロールプロパン225.7g(0.902mol)、ステアリン酸769.4g(2.705mol)及びp-トルエンスルホン酸5.0gを入れ、窒素気流下、120~180℃で5.5時間脱水反応を行った。得られたイソシアネート反応性炭化水素化合物の水酸基価は53.2mgKOH/gであった。
(Synthesis Example 9: Ditrimethylolpropane stearate)
A flask was charged with 225.7 g (0.902 mol) of ditrimethylolpropane, 769.4 g (2.705 mol) of stearic acid and 5.0 g of p-toluenesulfonic acid, and the mixture was kept at 120 to 180 ° C. for 5.5 hours under a nitrogen stream. A dehydration reaction was performed. The obtained isocyanate-reactive hydrocarbon compound had a hydroxyl value of 53.2 mgKOH / g.
(合成例10:ジトリメチロールプロパンステアリルカルバメート)
 フラスコに、ジトリメチロールプロパン4.4g(0.018mol)、メチルイソブチルケトン4.6g及びステアリルイソシアネート15.6g(0.053mol)を入れ、窒素気流下で、80℃で1時間反応させた。真空オーブン内で一晩乾燥させた。得られたイソシアネート反応性炭化水素化合物の水酸基価は50.4mgKOH/gであった。
(Synthesis Example 10: ditrimethylolpropane stearyl carbamate)
Ditrimethylolpropane 4.4 g (0.018 mol), methyl isobutyl ketone 4.6 g and stearyl isocyanate 15.6 g (0.053 mol) were placed in the flask, and reacted at 80 ° C. for 1 hour in a nitrogen stream. Dry overnight in a vacuum oven. The obtained isocyanate-reactive hydrocarbon compound had a hydroxyl value of 50.4 mgKOH / g.
<イソシアネート反応性炭化水素化合物の水系分散体の調製>
 エマゾールS-30V(ソルビタントリステアレート、花王社製)、リケマールB-150(ソルビタントリベヘネート、理研ビタミン社製)、及び合成例1~10で得られた各イソシアネート反応性炭化水素化合物を用い、表1の組成となるようにして、以下の手順により、イソシアネート反応性炭化水素化合物の水系分散体を調製した。フラスコに、イソシアネート反応性炭化水素化合物20gおよびメチルイソブチルケトン20gを加え80℃で溶融させた。ステアリルアミン30EO付加物1.0g、酢酸(90%水溶液)0.3gをイオン交換水78.7gに80℃で溶解させ滴下した。温度を保ち高圧ホモジナイザー(400bar)にて乳化させた。その後メチルイソブチルケトンを減圧下留去し、イオン交換水を加え固形分濃度21%の水系分散体を得た。それぞれ水系分散体中のイソシアネート反応性官能基の含有量を算出した。また、それぞれ平均粒径を測定した。平均粒径は、レーザー回折/散乱式粒子径分布測定装置LA-300(株式会社堀場製作所製)にて測定された、百分率積算値(体積基準)が50%の粒径(メジアン粒径)である(以下の製造例においても同じである)。
<Preparation of aqueous dispersion of isocyanate-reactive hydrocarbon compound>
Emazole S-30V (sorbitan tristearate, manufactured by Kao Corporation), Riquemar B-150 (sorbitan tribehenate, manufactured by Riken Vitamin Co., Ltd.), and each isocyanate-reactive hydrocarbon compound obtained in Synthesis Examples 1 to 10 An aqueous dispersion of an isocyanate-reactive hydrocarbon compound was prepared by the following procedure using the composition shown in Table 1. To the flask, 20 g of an isocyanate-reactive hydrocarbon compound and 20 g of methyl isobutyl ketone were added and melted at 80 ° C. Stearylamine 30EO adduct 1.0 g and acetic acid (90% aqueous solution) 0.3 g were dissolved in 78.7 g of ion-exchanged water at 80 ° C. and added dropwise. The mixture was emulsified with a high-pressure homogenizer (400 bar) while maintaining the temperature. Thereafter, methyl isobutyl ketone was distilled off under reduced pressure, and ion-exchanged water was added to obtain an aqueous dispersion having a solid content concentration of 21%. The content of the isocyanate-reactive functional group in each aqueous dispersion was calculated. Each average particle size was measured. The average particle diameter is a particle diameter (median particle diameter) having a percentage integrated value (volume basis) of 50% measured by a laser diffraction / scattering particle diameter distribution measuring apparatus LA-300 (manufactured by Horiba, Ltd.). (The same applies to the following production examples).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<イソシアネート化合物の水系分散体の調製>
(製造例13)
 フラスコに、デュラネート24A-100(ヘキサメチレンジイソシアネートのビウレット体、旭化成ケミカルズ社製、NCO%=23.5)を100g(NCO基0.560mol)およびメチルイソブチルケトン(MIBK)65.9gを仕込んで撹拌を開始した。そこに、3,5-ジメチルピラゾール53.8g(0.560mol)を仕込み50℃で保持し、イソシアネート含量がゼロになるまで反応させることにより、ブロックイソシアネート化合物を得た。MIBK30.8g、プロピレングリコールモノメチルエーテル65.9g、カチオン性界面活性剤としてステアリルトリメチルアンモニウムクロライド0.31gを混合し、均一な溶液とした。撹拌しながら徐々にイオン交換水175.8gを仕込んだ後、高圧ホモジナイザー(400bar)にて乳化させた。その後有機溶剤を減圧下留去し、イオン交換水を加え固形分濃度20%のイソシアネート化合物の水系分散体を得た。得られた水系分散体は架橋性官能基(ブロックイソシアネート基)を0.73mmol/g含有している。この水系分散体の平均粒径は0.44μmであった。
<Preparation of aqueous dispersion of isocyanate compound>
(Production Example 13)
A flask was charged with 100 g (NCO group 0.560 mol) of duranate 24A-100 (biuret of hexamethylene diisocyanate, manufactured by Asahi Kasei Chemicals Corporation, NCO% = 23.5) and 65.9 g of methyl isobutyl ketone (MIBK). Started. Thereto, 53.8 g (0.560 mol) of 3,5-dimethylpyrazole was charged and held at 50 ° C., and reacted until the isocyanate content became zero to obtain a blocked isocyanate compound. 30.8 g of MIBK, 65.9 g of propylene glycol monomethyl ether, and 0.31 g of stearyltrimethylammonium chloride as a cationic surfactant were mixed to obtain a uniform solution. While gradually stirring, 175.8 g of ion-exchanged water was charged, and then emulsified with a high-pressure homogenizer (400 bar). Thereafter, the organic solvent was distilled off under reduced pressure, and ion-exchanged water was added to obtain an aqueous dispersion of an isocyanate compound having a solid content concentration of 20%. The obtained aqueous dispersion contains 0.73 mmol / g of a crosslinkable functional group (block isocyanate group). The average particle size of this aqueous dispersion was 0.44 μm.
(製造例14)
 フラスコに、コロネートL(トリレンジイソシアネートのトリメチロールプロパンアダクト体、東ソー社製、NCO%=13.4、固形分濃度75%酢酸エチル溶液)20.0g(NCO基0.064mol)およびメチルイソブチルケトン15.0gを加え撹拌した。続いて、メチルエチルケトンオキシム5.6g(0.064mol)を滴下漏斗にてゆっくり加え、50~55℃でNCO含有率が0%になるまで反応させた。冷却後、トリスチレン化フェノールのエチレンオキサイド30モル付加物1.4gを加え、均一にした。徐々にイオン交換水80gを仕込んだ後、高圧ホモジナイザー(400bar)にて乳化させた。乳化終了後、減圧下にて有機溶剤を留去し、イオン交換水を加え固形分濃度21.4%のイソシアネート化合物の水系分散体を得た。得られた水系分散体は架橋性官能基(ブロックイソシアネート基)を0.62mmol/g含有している。この水系分散体の平均粒径は0.46μmであった。
(Production Example 14)
In a flask, 20.0 g of coronate L (trimethylolpropane adduct of tolylene diisocyanate, manufactured by Tosoh Corporation, NCO% = 13.4, solid content 75% ethyl acetate solution) (NCO group 0.064 mol) and methyl isobutyl ketone 15.0 g was added and stirred. Subsequently, 5.6 g (0.064 mol) of methyl ethyl ketone oxime was slowly added through a dropping funnel and reacted at 50 to 55 ° C. until the NCO content became 0%. After cooling, 1.4 g of an ethylene oxide 30 mol adduct of tristyrenated phenol was added to make uniform. After gradually adding 80 g of ion-exchanged water, the mixture was emulsified with a high-pressure homogenizer (400 bar). After completion of emulsification, the organic solvent was distilled off under reduced pressure, and ion-exchanged water was added to obtain an aqueous dispersion of an isocyanate compound having a solid content concentration of 21.4%. The obtained aqueous dispersion contains 0.62 mmol / g of a crosslinkable functional group (block isocyanate group). The average particle size of this aqueous dispersion was 0.46 μm.
<アクリルポリマーの水系分散体の調製>
(製造例15)
 ビーカーに、C6FMA(C61324OC(O)C(CH3)=CH2)165.5g、4-ヒドロキシブチルアクリレート2.8g、n-ドデシルメルカプタン2.8g、エマルゲンE430(ポリオキシエチレン(EO:26)オレイルエーテル、花王社製)の10%希釈水溶液69.0g、アーカード18-63(アルキル(C16-18)トリメチルアンモニウムクロライド、ライオン社製)の10%希釈水溶液13.8g、プロノン204(エチレンオキサイドプロピレンオキサイド重合物(エチレンオキサイドの割合は40質量%)、日本油脂社製)の10%希釈水溶液13.8g、ジプロピレングリコール82.8g、イオン交換水の328.3gを入れ、55℃で30分間加温した後、ホモミキサーを用いて混合した。得られた混合液を、50℃に保ちながら高圧ホモジナイザーにて(400bar)で処理して乳化液を得た。得られた乳化液をオートクレーブに入れ、30℃ 以下に冷却した。塩化ビニリデン107.6g、VA-061(2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]、和光純薬社製)の酢酸塩の10%希釈水溶液13.8gを加えて、気相を窒素置換した後、撹拌しながら65℃で15時間重合反応を行い、イオン交換水を加え固形分濃度20.7%のアクリルポリマーの水系分散体を得た。この水系分散体の平均粒径は0.10μmであった。得られたアクリルポリマーは、パーフルオロアルキル基および塩化ビニリデン由来のフッ素原子と塩素原子を含有している。
<Preparation of aqueous dispersion of acrylic polymer>
(Production Example 15)
Beaker, C6FMA (C 6 F 13 C 2 H 4 OC (O) C (CH 3) = CH 2) 165.5g, 4- hydroxybutyl acrylate 2.8 g, n-dodecyl mercaptan 2.8 g, Emulgen E430 ( 6. 69.0 g of 10% diluted aqueous solution of polyoxyethylene (EO: 26) oleyl ether, manufactured by Kao Corporation), 10% diluted aqueous solution of Arcard 18-63 (alkyl (C16-18) trimethylammonium chloride, manufactured by Lion Corporation) 8 g, 10% diluted aqueous solution of pronone 204 (ethylene oxide propylene oxide polymer (the proportion of ethylene oxide is 40% by mass), manufactured by NOF Corporation), 82.8 g of dipropylene glycol, 328.3 g of ion-exchanged water And heated at 55 ° C. for 30 minutes and then mixed using a homomixer . The obtained mixed liquid was treated with a high-pressure homogenizer (400 bar) while maintaining the temperature at 50 ° C. to obtain an emulsion. The obtained emulsion was put in an autoclave and cooled to 30 ° C. or lower. Add 107.6 g of vinylidene chloride and 13.8 g of 10% diluted aqueous solution of VA-061 (2,2′-azobis [2- (2-imidazolin-2-yl) propane], manufactured by Wako Pure Chemical Industries, Ltd.) After replacing the gas phase with nitrogen, the polymerization reaction was carried out at 65 ° C. for 15 hours with stirring, and ion exchange water was added to obtain an aqueous dispersion of an acrylic polymer having a solid content concentration of 20.7%. The average particle size of this aqueous dispersion was 0.10 μm. The obtained acrylic polymer contains a perfluoroalkyl group and a fluorine atom and a chlorine atom derived from vinylidene chloride.
(製造例16)
 オートクレーブにステアリルアクリレート47.5g、グリシジルメタクリレート2.5g、純水145g、トリプロピレングリコール15g、ソルビタンモノオレエート1.5g、ポリオキシエチレン(EO:18)2級アルキル(C12-14)エーテル2g、ジオクタデシルジメチルアンモニウムクロライド1.5gを入れ、攪拌下に60℃で15分間、超音波で乳化分散させた。オートクレーブ内を窒素置換後、2,2-アゾビス(2-アミジノプロパン)2塩酸塩0.5gを添加し、60℃で3時間反応させた。イオン交換水を加え固形分濃度22%に調整して、アクリルポリマーの水系分散体を得た。この水系分散体の平均粒径は0.14μmであった。得られたアクリルポリマーは、ハロゲン原子を含有していない。
(Production Example 16)
In an autoclave, 47.5 g of stearyl acrylate, 2.5 g of glycidyl methacrylate, 145 g of pure water, 15 g of tripropylene glycol, 1.5 g of sorbitan monooleate, 2 g of polyoxyethylene (EO: 18) secondary alkyl (C12-14) ether, Dioctadecyldimethylammonium chloride (1.5 g) was added, and the mixture was emulsified and dispersed with ultrasonic waves at 60 ° C. for 15 minutes with stirring. After the atmosphere in the autoclave was replaced with nitrogen, 0.5 g of 2,2-azobis (2-amidinopropane) dihydrochloride was added and reacted at 60 ° C. for 3 hours. Ion exchange water was added to adjust the solid content concentration to 22% to obtain an aqueous dispersion of an acrylic polymer. The average particle size of this aqueous dispersion was 0.14 μm. The obtained acrylic polymer does not contain a halogen atom.
(製造例17)
 オートクレーブにステアリルアクリレート20g、ラウリルアクリレート17.5g、グリシジルメタクリレート2.5g、純水145g、トリプロピレングリコール15g、ソルビタンモノオレエート1.5g、ポリオキシエチレン(EO:18)2級アルキル(C12-14)エーテル2g、ジオクタデシルジメチルアンモニウムクロライド1.5gを入れ、攪拌下に60℃で15分間、超音波で乳化分散させた。オートクレーブ内を窒素置換後、塩化ビニルを10g圧入で仕込み、2,2-アゾビス(2-アミジノプロパン)2塩酸塩0.5gを添加し、60℃で3時間反応させた。イオン交換水を加え固形分濃度22%に調整して、アクリルポリマーの水系分散体を得た。この水系分散体の平均粒径は0.17μmであった。得られたアクリルポリマーは、塩化ビニル由来の塩素原子を含有している。
(Production Example 17)
Stearyl acrylate 20 g, lauryl acrylate 17.5 g, glycidyl methacrylate 2.5 g, pure water 145 g, tripropylene glycol 15 g, sorbitan monooleate 1.5 g, polyoxyethylene (EO: 18) secondary alkyl (C12-14) ) 2 g of ether and 1.5 g of dioctadecyldimethylammonium chloride were added and emulsified and dispersed with ultrasonic waves at 60 ° C. for 15 minutes with stirring. After the atmosphere in the autoclave was replaced with nitrogen, 10 g of vinyl chloride was charged by injection, 0.5 g of 2,2-azobis (2-amidinopropane) dihydrochloride was added, and the mixture was reacted at 60 ° C. for 3 hours. Ion exchange water was added to adjust the solid content concentration to 22% to obtain an aqueous dispersion of an acrylic polymer. The average particle size of this aqueous dispersion was 0.17 μm. The obtained acrylic polymer contains chlorine atoms derived from vinyl chloride.
(製造例18)
 フラスコにステアリルアクリレート94g、KF-2012(ラジカル反応性オルガノポリシロキサンマクロモノマー、信越化学工業社製)4g、2-ヒドロキシエチルメタクリレート2g、ステアリルトリメチルアンモニウムクロライド1g、ポリオキシエチレン(EO:7)ラウリルエーテル6g、ポリオキシエチレン(EO:21)ラウリルエーテル2g、ドデシルメルカプタン0.1g、ジプロピレングリコール30gおよびイオン交換水190gを入れ、50℃にて高速撹拌により乳化分散させる。その後、40℃に保ちながら高圧ホモジナイザー(400bar)にて処理し乳化物を得た。この乳化物にアゾビス(イソブチルアミジン)二塩酸塩0.3gを加え、窒素雰囲気下で60℃にて10時間反応させた。イオン交換水を加え固形分濃度21.8%に調整してアクリルポリマーの水系分散体を得た。この水系分散体の平均粒径は0.18μmであった。得られたアクリルポリマーは、アクリル-シリコーンポリマーであり、またハロゲン原子を含有していない。
(Production Example 18)
94 g of stearyl acrylate, 4 g of KF-2012 (radical reactive organopolysiloxane macromonomer, manufactured by Shin-Etsu Chemical Co., Ltd.), 2 g of 2-hydroxyethyl methacrylate, 1 g of stearyltrimethylammonium chloride, polyoxyethylene (EO: 7) lauryl ether 6 g, 2 g of polyoxyethylene (EO: 21) lauryl ether, 0.1 g of dodecyl mercaptan, 30 g of dipropylene glycol and 190 g of ion-exchanged water are added and emulsified and dispersed at 50 ° C. by high-speed stirring. Then, it processed by the high pressure homogenizer (400 bar), keeping at 40 degreeC, and obtained the emulsion. To this emulsion, 0.3 g of azobis (isobutylamidine) dihydrochloride was added and reacted at 60 ° C. for 10 hours in a nitrogen atmosphere. Ion exchange water was added to adjust the solid content concentration to 21.8% to obtain an aqueous dispersion of an acrylic polymer. The average particle size of this aqueous dispersion was 0.18 μm. The resulting acrylic polymer is an acrylic-silicone polymer and does not contain halogen atoms.
(製造例19)
 オートクレーブに、C6FMA(C61324OC(O)C(CH3)=CH2)209.5g、n-ブチルメタクリレート34.9g、ブレンマーPE-350(ポリエチレングリコールモノメタクリレート(ポリエチレングリコールジメタクリレートを約10質量%含む。)、日本油脂社製)6.98g 、プロノン204(エチレンオキサイドプロピレンオキサイド重合物(エチレンオキサイドの割合は40質量%)、日本油脂社製)3.1g、NIKKOL AM-3130N(ヤシ油脂肪酸アミドプロピルベタイン液、日本サーファクタント社製)3.1g、エマルゲンE430(ポリオキシエチレン(EO:26)オレイルエーテル、花王社製)10.8g、水434.2g、ジプロピレングリコール104.8g、およびn-ドデシルメルカプタン3.5gを入れて、60℃で60分間加温した後、高圧ホモジナイザーにて100barで前処理し、400barで本処理して乳化液を得た。得られた乳化液714.8gをオートクレーブに入れ、VA-061(2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]、和光純薬社製)1.4gを加えて、30℃以下に冷却した。気相を窒素置換し、塩化ビニル78.2gを導入した後、撹拌しながら55℃で1時間、60℃で10時間重合反応を行い、イオン交換水を加え固形分濃度20.9%のアクリルポリマーの水系分散体を得た。この水系分散体の平均粒径は0.11μmであった。得られたアクリルポリマーは、パーフルオロアルキル基および塩化ビニル由来のフッ素原子と塩素原子を含有している。
(Production Example 19)
Autoclave, C6FMA (C 6 F 13 C 2 H 4 OC (O) C (CH 3) = CH 2) 209.5g, n- butyl methacrylate 34.9 g, Blemmer PE-350 (polyethylene glycol monomethacrylate (polyethylene glycol (Contains about 10% by mass of dimethacrylate), manufactured by Nippon Oil & Fats Co., Ltd.) 6.98 g, Pronon 204 (ethylene oxide propylene oxide polymer (the proportion of ethylene oxide is 40% by mass), manufactured by Nippon Oil & Fats Co., Ltd.) 3.1 g, NIKKOL AM-3130N (coconut oil fatty acid amidopropyl betaine solution, manufactured by Nippon Surfactant) 3.1 g, Emulgen E430 (polyoxyethylene (EO: 26) oleyl ether, manufactured by Kao Corporation) 10.8 g, water 434.2 g, dipropylene 104.8 g of glycol, and n Put dodecyl mercaptan 3.5 g, After warming for 60 minutes at 60 ° C., were pretreated with 100bar at a high pressure homogenizer to obtain an emulsion and the treatment with 400 bar. 714.8 g of the obtained emulsion was put in an autoclave, and 1.4 g of VA-061 (2,2′-azobis [2- (2-imidazolin-2-yl) propane], manufactured by Wako Pure Chemical Industries, Ltd.) was added. And cooled to 30 ° C. or lower. After replacing the gas phase with nitrogen and introducing 78.2 g of vinyl chloride, the polymerization reaction was carried out with stirring at 55 ° C. for 1 hour and at 60 ° C. for 10 hours. An aqueous dispersion of polymer was obtained. The average particle size of this aqueous dispersion was 0.11 μm. The obtained acrylic polymer contains a perfluoroalkyl group and a fluorine atom and a chlorine atom derived from vinyl chloride.
[実施例1~18及び比較例1~5]
<撥水剤の調製>
 表2及び表3に記載の組成となるようにして、イソシアネート反応性炭化水素化合物の水系分散体と、イソシアネート化合物の水系分散体とを水と合わせて100質量%になるように希釈、混合して撥水剤を調製した。イソシアネート反応性炭化水素化合物の官能基に対する、イソシアネート化合物の架橋性官能基のモル比を表2及び表3に示す。なお、表3において、パラジットZS(ワックス-ジルコニウム系撥水剤;固形分濃度24%;明成化学工業社製)及びペトロックスP-200(ワックス系撥水剤;固形分濃度34%;明成化学工業社製)は、それぞれ、市販のワックス系撥水剤である。
[Examples 1 to 18 and Comparative Examples 1 to 5]
<Preparation of water repellent>
The aqueous dispersion of the isocyanate-reactive hydrocarbon compound and the aqueous dispersion of the isocyanate compound were diluted and mixed so as to be 100% by mass with water so that the compositions shown in Table 2 and Table 3 were obtained. To prepare a water repellent. Tables 2 and 3 show the molar ratio of the crosslinkable functional group of the isocyanate compound to the functional group of the isocyanate reactive hydrocarbon compound. In Table 3, Paragit ZS (wax-zirconium-based water repellent; solid concentration 24%; manufactured by Meisei Chemical Co., Ltd.) and Petrox P-200 (wax-based water repellent; solid content concentration 34%; Meisei Chemical Industries) Are commercially available wax-based water repellents.
<撥水性及び難燃性評価>
 試験布として、PETトロピカル布(目付け 138g/m2、未染色、難燃未処理)を用意した。次に、前記の撥水剤を加工液として用い、連続法にて、試験布を加工液中に通し、一定圧のマングルで不要な溶液を絞り、110℃で1.5分乾燥、170℃で1分キュアして加工布を得た。ピックアップは92%であった。
<Evaluation of water repellency and flame retardancy>
As a test cloth, a PET tropical cloth (weighing 138 g / m 2 , undyed, flame retardant untreated) was prepared. Next, using the water repellent as a processing liquid, the test cloth is passed through the processing liquid by a continuous method, and an unnecessary solution is squeezed with a mangle at a constant pressure, dried at 110 ° C. for 1.5 minutes, and 170 ° C. And cured for 1 minute to obtain a processed cloth. The pickup was 92%.
(撥水性評価)
 得られた加工布について、JIS L 1092:2009の7.2はっ水度試験(スプレー試験)に準拠して評価を行った。評価は下記の基準に従って行い、性能がわずかに良好な場合は等級に「+」をつけ、性能がわずかに劣る場合には等級に「-」をつけた。また、3-級以上を合格とした。結果を表2及び表3に示す。
 5:表面に湿潤や水滴の付着がないもの
 4:表面に湿潤しないが、小さな水滴の付着を示すもの
 3:表面に小さな個々の水滴上の湿潤を示すもの
 2:表面の半分に湿潤を示し、小さな個々の湿潤が布を浸透する状態のもの
 1:表面全体に湿潤を示すもの
(Water repellency evaluation)
The obtained work cloth was evaluated in accordance with 7.2 water repellency test (spray test) of JIS L 1092: 2009. The evaluation was performed according to the following criteria. When the performance was slightly good, “+” was assigned to the grade, and when the performance was slightly inferior, “−” was assigned to the grade. Also, the grade 3 or higher was accepted. The results are shown in Tables 2 and 3.
5: No wetting or water droplets on the surface 4: No wetting on the surface but showing small water droplets 3: Wetting on small individual water droplets on the surface 2: Wetting on half of the surface , With small individual wetness penetrating the fabric 1: showing wetness over the entire surface
(難燃性評価)
 FMVSS-302法(水平法、ISO3795)の規定に準拠し、前記で得られた加工布について、難燃性を評価した。標線前自消(難燃性)および自己消火性を合格とした。ここで、標線前自消とは試験片に着火しない又はA標線手前で自消することを指し、自己消火性とは燃焼距離51mm以内(且つ60秒以内)で自消すること、もしくは燃焼速度が102mm/min以下の場合を指す。結果を表2及び表3に示す。
(Flame retardance evaluation)
In accordance with the provisions of the FMVSS-302 method (horizontal method, ISO 3795), the processed fabric obtained above was evaluated for flame retardancy. The self-extinguishing (flame retardant) and self-extinguishing properties before the marked line were regarded as acceptable. Here, self-extinguishing before the marked line means that the test piece does not ignite or self-extinguishes before the A marked line, and self-extinguishing means self-extinguishing within a combustion distance of 51 mm (and within 60 seconds), or It refers to the case where the burning rate is 102 mm / min or less. The results are shown in Tables 2 and 3.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表2及び表3に示される結果から明らかなとおり、実施例1~18の撥水剤を用いた場合、繊維に対して優れた撥水性を付与し、さらに、繊維の難燃性の阻害が効果的に抑制されていることが分かる。これに対して、比較例1~4の撥水剤では、優れた撥水性と、難燃性の阻害抑制効果とが両立できていなかった。 As is apparent from the results shown in Tables 2 and 3, when the water repellents of Examples 1 to 18 were used, excellent water repellency was imparted to the fibers, and the flame retardancy of the fibers was inhibited. It turns out that it is suppressed effectively. On the other hand, the water repellents of Comparative Examples 1 to 4 could not achieve both excellent water repellency and flame retardance inhibiting effect.
[実施例19~26及び比較例6~9]
<撥水剤の調製>
 表4に記載の組成となるようにして、イソシアネート反応性炭化水素化合物の水系分散体、イソシアネート化合物の水系分散体、及びアクリルポリマーの水系分散体を水と合わせて100質量%になるように希釈、混合して撥水剤を調製した。イソシアネート反応性炭化水素化合物の官能基に対する、イソシアネート化合物の架橋性官能基のモル比を表4に示す。また、炭化水素化合物およびイソシアネート化合物の合計100質量部に対するアクリルポリマーの含有量(質量部)を表4に示す。比較例7,8としては、市販のワックス系撥水剤であるパラジットZS(ワックス-ジルコニウム系撥水剤;固形分濃度24%;明成化学工業社製)及びペトロックスP-200(ワックス系撥水剤;固形分濃度34%;明成化学工業社製)をそれぞれ用いた。
[Examples 19 to 26 and Comparative Examples 6 to 9]
<Preparation of water repellent>
Dilute the aqueous dispersion of the isocyanate-reactive hydrocarbon compound, the aqueous dispersion of the isocyanate compound, and the aqueous dispersion of the acrylic polymer to 100% by mass with water so as to have the composition shown in Table 4. To prepare a water repellent. Table 4 shows the molar ratio of the crosslinkable functional group of the isocyanate compound to the functional group of the isocyanate reactive hydrocarbon compound. Table 4 shows the acrylic polymer content (parts by mass) with respect to 100 parts by mass in total of the hydrocarbon compound and the isocyanate compound. As Comparative Examples 7 and 8, Paragit ZS (wax-zirconium-based water repellent; solid content concentration 24%; manufactured by Meisei Chemical Co., Ltd.) and Petrox P-200 (wax-based water repellent), which are commercially available wax-based water repellents Agent; solid content concentration 34%; manufactured by Meisei Chemical Industry Co., Ltd.).
<撥水性及び難燃性評価>
 PETトロピカル布(目付け 138g/m2、未染色、難燃未処理)を用意した。次に、PETトロピカル布に対して、以下の難燃処理を行い、試験布を得た。
<Evaluation of water repellency and flame retardancy>
A PET tropical cloth (weighing 138 g / m 2 , undyed, flame retardant untreated) was prepared. Next, the following flame retardant treatment was performed on the PET tropical cloth to obtain a test cloth.
(難燃処理)
 ミニカラー染色機を用い、浴比は1:15とした。ホスコンFR-V2(リン系難燃剤;固形分濃度44%;明成化学工業社製、20%o.w.f.)、ディスパーGS-400(分散剤;固形分濃度55%;明成化学工業社製;0.5g/L)、酢酸(90%水溶液;0.3g/L)を含む水溶液を用いて、PETトロピカル布に130℃で30分間吸尽処理を行った。
(Flame retardant treatment)
A mini color dyeing machine was used and the bath ratio was 1:15. Phoscon FR-V2 (phosphorus flame retardant; solid content concentration 44%; manufactured by Meisei Chemical Industry Co., Ltd., 20% owf), Disper GS-400 (dispersant; solid content concentration 55%; Meisei Chemical Industry Co., Ltd.) Manufactured; 0.5 g / L) and an aqueous solution containing acetic acid (90% aqueous solution; 0.3 g / L) were subjected to exhaust treatment at 130 ° C. for 30 minutes on a PET tropical cloth.
 次に、ソーピング工程として、ラッコールNB(ソーピング剤;固形分濃度71%;明成化学工業社製;2.0g/L)、ソーダ灰(2.0g/L)を含む水溶液を用いて、吸尽処理を行ったPETトロピカル布を80℃で15分間洗浄した。湯洗及び水洗を行った後、110℃で2分間乾燥させて、難燃処理を施した試験布を得た。 Next, as a soaping step, exhaustion was performed using an aqueous solution containing Rakkor NB (soaping agent; solid content concentration 71%; manufactured by Meisei Chemical Industry Co., Ltd .; 2.0 g / L) and soda ash (2.0 g / L). The treated PET tropical cloth was washed at 80 ° C. for 15 minutes. After performing hot water washing and water washing, it was dried at 110 ° C. for 2 minutes to obtain a test cloth subjected to flame retardant treatment.
 次に、表4の撥水剤を加工液として用い、実施例1~18及び比較例1~5と同様にして、連続法にて、試験布を加工液中に通し、一定圧のマングルで不要な溶液を絞り、110℃で1.5分乾燥、170℃で1分キュアして加工布を得た。ピックアップは92%であった。 Next, using the water repellent agent shown in Table 4 as the processing liquid, the test cloth was passed through the processing liquid in a continuous manner in the same manner as in Examples 1 to 18 and Comparative Examples 1 to 5, and a mangle with a constant pressure was used. The unnecessary solution was squeezed, dried at 110 ° C. for 1.5 minutes, and cured at 170 ° C. for 1 minute to obtain a processed cloth. The pickup was 92%.
(撥水性評価)
 実施例1~18及び比較例1~5と同様にして、撥水性評価を行った。結果を表4に示す。
(Water repellency evaluation)
The water repellency was evaluated in the same manner as in Examples 1 to 18 and Comparative Examples 1 to 5. The results are shown in Table 4.
(難燃性評価)
 実施例1~18及び比較例1~5と同様にして、難燃性評価を行った。結果を表4に示す。
(Flame retardance evaluation)
Flame retardancy was evaluated in the same manner as in Examples 1 to 18 and Comparative Examples 1 to 5. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4に示される結果から明らかなとおり、実施例20~26の撥水剤は、アクリルポリマーを含んでいるが、アクリルポリマーを含んでいない実施例19と同様、繊維に対して優れた撥水性を付与し、さらに、繊維の難燃性の阻害が効果的に抑制されていることが分かる。これに対して、比較例6~8の撥水剤では、優れた撥水性と、難燃性の阻害抑制効果とが両立できていなかった。 As is clear from the results shown in Table 4, the water repellents of Examples 20 to 26 contain an acrylic polymer, but, as in Example 19, which does not contain an acrylic polymer, excellent water repellency for fibers. Further, it is understood that the inhibition of the flame retardancy of the fiber is effectively suppressed. On the other hand, the water repellents of Comparative Examples 6 to 8 were unable to achieve both excellent water repellency and flame retardance inhibiting effect.
[実施例27~31及び比較例10~12]
<撥水剤の調製>
 表5に記載の組成となるようにして、イソシアネート反応性炭化水素化合物の水系分散体、イソシアネート化合物の水系分散体、及びアクリルポリマーの水系分散体を水と合わせて100質量%になるように希釈、混合して撥水剤を調製した。イソシアネート反応性炭化水素化合物の官能基に対する、イソシアネート化合物の架橋性官能基のモル比を表5に示す。また、炭化水素化合物およびイソシアネート化合物の合計100質量部に対するアクリルポリマーの含有量(質量部)を表5に示す。比較例10としては、市販のワックス系撥水剤であるパラジットZS(ワックス-ジルコニウム系撥水剤;固形分濃度24%;明成化学工業社製)を用いた。また、比較例11としては、市販のC6フッ素系撥水剤であるAsahiGuard E-SERIES AG-E550D(C6フッ素系撥水剤;旭硝子社製)を用いた。
[Examples 27 to 31 and Comparative Examples 10 to 12]
<Preparation of water repellent>
Dilute the aqueous dispersion of the isocyanate-reactive hydrocarbon compound, the aqueous dispersion of the isocyanate compound, and the aqueous dispersion of the acrylic polymer to 100% by mass with water so as to have the composition shown in Table 5. To prepare a water repellent. Table 5 shows the molar ratio of the crosslinkable functional group of the isocyanate compound to the functional group of the isocyanate reactive hydrocarbon compound. Table 5 shows the content (parts by mass) of the acrylic polymer with respect to 100 parts by mass in total of the hydrocarbon compound and the isocyanate compound. As Comparative Example 10, Paragit ZS (wax-zirconium-based water repellent; solid concentration 24%; manufactured by Meisei Chemical Co., Ltd.), which is a commercially available wax-based water repellent, was used. As Comparative Example 11, AsahiGuard E-SERIES AG-E550D (C6 fluorine-based water repellent; manufactured by Asahi Glass Co., Ltd.), which is a commercially available C6 fluorine-based water repellent, was used.
<撥水性及び難燃性評価>
 PETシャワーカーテン(目付け 125g/m2、未染色、難燃糸使用)を用意した。次に、PETシャワーカーテンに対して、以下の難燃処理を行い、試験布を得た。
<Evaluation of water repellency and flame retardancy>
A PET shower curtain (weighing 125 g / m 2 , undyed, using flame-retardant yarn) was prepared. Next, the following flame retardant treatment was performed on the PET shower curtain to obtain a test cloth.
(難燃処理)
 ミニカラー染色機を用い、浴比は1:20とした。ホスコンMK-PZ(臭素系難燃剤;固形分濃度48%;明成化学工業社製、20%o.w.f.)、ディスパーFR-21N(分散剤;固形分濃度77%;明成化学工業社製;2.0%o.w.f.)、酢酸(90%水溶液;0.3g/L)を含む水溶液を用いて、PETシャワーカーテンに130℃で30分間吸尽処理を行った。
(Flame retardant treatment)
A mini color dyeing machine was used and the bath ratio was 1:20. Phoscon MK-PZ (brominated flame retardant; solid content concentration 48%; manufactured by Meisei Chemical Industry Co., Ltd., 20% owf), Disper FR-21N (dispersant; solid content concentration 77%; Meisei Chemical Industry Co., Ltd.) Manufactured by 2.0% o.w.) and an aqueous solution containing acetic acid (90% aqueous solution; 0.3 g / L), a PET shower curtain was exhausted at 130 ° C. for 30 minutes.
 次に、ソーピング工程として、ユニソルトF-SP(ソーピング剤;固形分濃度79%;明成化学工業社製;2.0g/L)、セロポールPC-300(キレート剤;固形分濃度40%;明成化学工業社製;2.0g/L)、ソーダ灰(2.0g/L)を含む水溶液を用いて、吸尽処理を行ったPETシャワーカーテンを80℃で15分間洗浄した。湯洗及び水洗を行った後、110℃で2分間乾燥させて試験布を得た。 Next, as a soaping process, Unisort F-SP (soaping agent; solid content concentration 79%; manufactured by Meisei Chemical Industry Co., Ltd .; 2.0 g / L), Cellopol PC-300 (chelating agent; solid content concentration 40%; Meisei Chemical) A PET shower curtain subjected to exhaustion treatment using an aqueous solution containing 2.0 g / L) and soda ash (2.0 g / L) was washed at 80 ° C. for 15 minutes. After performing hot water washing and water washing, it was dried at 110 ° C. for 2 minutes to obtain a test cloth.
 次に、表5の撥水剤を加工液として用い、実施例1~18及び比較例1~5と同様にして、連続法にて、試験布を加工液中に通し、一定圧のマングルで不要な溶液を絞り、110℃で1.5分乾燥、170℃で1分キュアして加工布を得た。ピックアップは42%であった。 Next, using the water repellent agent shown in Table 5 as the working fluid, the test cloth was passed through the working fluid in a continuous manner in the same manner as in Examples 1 to 18 and Comparative Examples 1 to 5, and then with a mangle of constant pressure. The unnecessary solution was squeezed, dried at 110 ° C. for 1.5 minutes, and cured at 170 ° C. for 1 minute to obtain a processed cloth. The pickup was 42%.
(撥水性評価)
 実施例1~18及び比較例1~5と同様にして、撥水性評価を行った。さらに、当該撥水性評価に加えて、スプレー試験後に試験布の裏面に水が滲み出しているか否かの状態を目視で観察して、シミが生じていない場合を〇、シミが生じている場合を×と評価した。それぞれの結果を表5に示す。
(Water repellency evaluation)
The water repellency was evaluated in the same manner as in Examples 1 to 18 and Comparative Examples 1 to 5. Furthermore, in addition to the water repellency evaluation, the state of whether or not water has oozed out on the back surface of the test cloth after the spray test is visually observed. Was evaluated as x. The results are shown in Table 5.
(難燃性評価)
 日本防炎協会が定める防炎製品性能試験の45°ミクロバーナー法(3秒加熱試験)及び45°コイル法によって、難燃性を評価した。ミクロバーナー法は、残炎時間3秒以下、コイル法は接炎回数3回以上を合格とした。結果を表5に示す。
(Flame retardance evaluation)
Flame retardancy was evaluated by the 45 ° micro burner method (3-second heating test) and the 45 ° coil method of flameproof product performance tests established by the Japan Flameproof Association. In the micro burner method, the afterflame time was 3 seconds or less, and in the coil method, the number of flame contact was 3 times or more. The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表5に示される結果から明らかなとおり、実施例27~31の撥水剤は、繊維に対して優れた撥水性を付与し、さらに、繊維の難燃性の阻害が効果的に抑制されていることが分かる。これに対して、比較例10~11の撥水剤では、優れた撥水性と、難燃性の阻害抑制効果とが両立できていなかった。 As is apparent from the results shown in Table 5, the water repellents of Examples 27 to 31 impart excellent water repellency to the fibers, and further, the inhibition of the flame retardancy of the fibers is effectively suppressed. I understand that. In contrast, the water repellents of Comparative Examples 10 to 11 were unable to achieve both excellent water repellency and flame retardance inhibiting effect.
[実施例32及び比較例13~15]
<撥水剤の調製>
 表6に記載の組成となるようにして、イソシアネート反応性炭化水素化合物の水系分散体、イソシアネート化合物の水系分散体、アクリルポリマーの水系分散体、及びリン系難燃剤を水と合わせて100質量%になるように希釈、混合して撥水剤を調製した。イソシアネート反応性炭化水素化合物の官能基に対する、イソシアネート化合物の架橋性官能基のモル比を表6に示す。また、炭化水素化合物およびイソシアネート化合物の合計100質量部に対するアクリルポリマーの含有量(質量部)を表6に示す。リン系難燃剤としては、K-19A(リン系難燃剤;固形分濃度100%;明成化学工業社製)を用いた。また、比較例13においては、市販のC6フッ素系撥水剤であるAsahiGuard E-SERIES AG-E550D(C6フッ素系撥水剤;旭硝子社製)とリン系難燃剤とを併用した。
[Example 32 and Comparative Examples 13 to 15]
<Preparation of water repellent>
100% by mass of an aqueous dispersion of an isocyanate-reactive hydrocarbon compound, an aqueous dispersion of an isocyanate compound, an aqueous dispersion of an acrylic polymer, and a phosphorus flame retardant together with water so as to have the composition shown in Table 6. A water repellent was prepared by diluting and mixing. Table 6 shows the molar ratio of the crosslinkable functional group of the isocyanate compound to the functional group of the isocyanate reactive hydrocarbon compound. Table 6 shows the content (parts by mass) of the acrylic polymer with respect to 100 parts by mass in total of the hydrocarbon compound and the isocyanate compound. As a phosphorus flame retardant, K-19A (phosphorus flame retardant; solid content concentration: 100%; manufactured by Meisei Chemical Industry Co., Ltd.) was used. In Comparative Example 13, a commercially available C6 fluorine-based water repellent, AsahiGuard E-SERIES AG-E550D (C6 fluorine-based water repellent; manufactured by Asahi Glass Co., Ltd.) and a phosphorus flame retardant were used in combination.
<撥水性及び難燃性評価>
 試験布として、ナイロン高密度タフタ(目付け 60g/m2、染色済み、難燃未処理(撥水剤による処理時に、リン系難燃剤で難燃処理される))を用意した。次に、表6の撥水剤を加工液として用い、連続法にて、試験布を加工液中に通し、一定圧のマングルで不要な溶液を絞り、110℃で1.5分乾燥、170℃で1分キュアして加工布を得た。ピックアップは42%であった。
<Evaluation of water repellency and flame retardancy>
Nylon high-density taffeta (weighing 60 g / m 2 , dyed, flame retardant untreated (treated with a phosphorus flame retardant when treated with a water repellent)) was prepared as a test cloth. Next, using the water repellent of Table 6 as the processing liquid, the test cloth was passed through the processing liquid by a continuous method, and unnecessary solution was squeezed with a mangle at a constant pressure, and dried at 110 ° C. for 1.5 minutes, 170 A processed cloth was obtained by curing at 0 ° C. for 1 minute. The pickup was 42%.
(撥水性評価)
 実施例1~18及び比較例1~5と同様にして、撥水性評価を行った。結果を表6に示す。
(Water repellency evaluation)
The water repellency was evaluated in the same manner as in Examples 1 to 18 and Comparative Examples 1 to 5. The results are shown in Table 6.
(難燃性評価)
 実施例27~31及び比較例10~12と同様にして、撥水性評価を行った。結果を表6に示す。
(Flame retardance evaluation)
Water repellency was evaluated in the same manner as in Examples 27 to 31 and Comparative Examples 10 to 12. The results are shown in Table 6.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表6に示される結果から明らかなとおり、実施例32の撥水剤は、繊維に対して優れた撥水性を付与し、さらに、繊維の難燃性の阻害が効果的に抑制されていることが分かる。これに対して、比較例13,14の撥水剤では、優れた撥水性と、難燃性の阻害抑制効果とが両立できていなかった。 As is clear from the results shown in Table 6, the water repellent of Example 32 imparts excellent water repellency to the fiber, and further, the inhibition of the flame retardancy of the fiber is effectively suppressed. I understand. On the other hand, the water repellents of Comparative Examples 13 and 14 were unable to achieve both excellent water repellency and flame retardancy inhibiting effect.
[実施例33~34]
<撥水剤の調製>
 表7に記載の組成となるようにして、イソシアネート反応性炭化水素化合物の水系分散体、イソシアネート化合物の水系分散体、及びアクリルポリマーの水系分散体を水と合わせて100質量%になるように希釈、混合して撥水剤を調製した。イソシアネート反応性炭化水素化合物の官能基に対する、イソシアネート化合物の架橋性官能基のモル比を表7に示す。また、炭化水素化合物およびイソシアネート化合物の合計100質量部に対するアクリルポリマーの含有量(質量部)を表7に示す。
[Examples 33 to 34]
<Preparation of water repellent>
Dilute the aqueous dispersion of the isocyanate-reactive hydrocarbon compound, the aqueous dispersion of the isocyanate compound, and the aqueous dispersion of the acrylic polymer to 100% by mass with water so as to have the composition shown in Table 7. To prepare a water repellent. Table 7 shows the molar ratio of the crosslinkable functional group of the isocyanate compound to the functional group of the isocyanate reactive hydrocarbon compound. Table 7 shows the acrylic polymer content (parts by mass) with respect to 100 parts by mass in total of the hydrocarbon compound and the isocyanate compound.
<撥水性及び難燃性評価>
 PETトロピカル布(目付け 138g/m2、未染色、難燃未処理)を用意した。次に、PETトロピカル布に対して、以下の難燃処理を行い、試験布を得た。
<Evaluation of water repellency and flame retardancy>
A PET tropical cloth (weighing 138 g / m 2 , undyed, flame retardant untreated) was prepared. Next, the following flame retardant treatment was performed on the PET tropical cloth to obtain a test cloth.
(難燃処理)
 ミニカラー染色機を用い、浴比は1:15とした。ホスコンFR-V2(リン系難燃剤;固形分濃度44%;明成化学工業社製、20%o.w.f.)、ディスパーGS-400(分散剤;固形分濃度55%;明成化学工業社製;0.5g/L)、酢酸(90%水溶液;0.3g/L)を含む水溶液を用いて、PETトロピカル布に130℃で30分間吸尽処理を行った。
(Flame retardant treatment)
A mini color dyeing machine was used and the bath ratio was 1:15. Phoscon FR-V2 (phosphorus flame retardant; solid content concentration 44%; manufactured by Meisei Chemical Industry Co., Ltd., 20% owf), Disper GS-400 (dispersant; solid content concentration 55%; Meisei Chemical Industry Co., Ltd.) Manufactured; 0.5 g / L) and an aqueous solution containing acetic acid (90% aqueous solution; 0.3 g / L) were subjected to exhaust treatment at 130 ° C. for 30 minutes on a PET tropical cloth.
 次に、ソーピング工程として、ラッコールNB(ソーピング剤;固形分濃度71%;明成化学工業社製;2.0g/L)、ソーダ灰(2.0g/L)を含む水溶液を用いて、吸尽処理を行ったPETトロピカル布を80℃で15分間洗浄した。湯洗及び水洗を行った後、110℃で2分間乾燥させて、難燃処理を施した試験布を得た。 Next, as a soaping step, exhaustion was performed using an aqueous solution containing Rakkor NB (soaping agent; solid content concentration 71%; manufactured by Meisei Chemical Industry Co., Ltd .; 2.0 g / L) and soda ash (2.0 g / L). The treated PET tropical cloth was washed at 80 ° C. for 15 minutes. After performing hot water washing and water washing, it was dried at 110 ° C. for 2 minutes to obtain a test cloth subjected to flame retardant treatment.
 次に、表7の撥水剤を加工液として用い、実施例1~18及び比較例1~5と同様にして、連続法にて、試験布を加工液中に通し、一定圧のマングルで不要な溶液を絞り、110℃で1.5分乾燥、170℃で1分キュアして加工布を得た。ピックアップは92%であった。 Next, using the water-repellent agent shown in Table 7 as the working fluid, the test cloth was passed through the working fluid in a continuous manner in the same manner as in Examples 1 to 18 and Comparative Examples 1 to 5, and then with a mangle of constant pressure. The unnecessary solution was squeezed, dried at 110 ° C. for 1.5 minutes, and cured at 170 ° C. for 1 minute to obtain a processed cloth. The pickup was 92%.
(撥水性評価)
 実施例1~18及び比較例1~5と同様にして、撥水性評価を行った。結果を表7に示す。
(Water repellency evaluation)
The water repellency was evaluated in the same manner as in Examples 1 to 18 and Comparative Examples 1 to 5. The results are shown in Table 7.
(難燃性評価)
 実施例1~18及び比較例1~5と同様にして、難燃性評価を行った。結果を表7に示す。
(Flame retardance evaluation)
Flame retardancy was evaluated in the same manner as in Examples 1 to 18 and Comparative Examples 1 to 5. The results are shown in Table 7.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007

Claims (14)

  1.  少なくとも、イソシアネート基と反応可能な官能基を有する炭化水素化合物、及びイソシアネート化合物が水に分散された水系分散体であって、
     前記炭化水素化合物の官能基に対する、前記イソシアネート化合物の架橋性官能基のモル比が0.3以上である、撥水剤。
    At least a hydrocarbon compound having a functional group capable of reacting with an isocyanate group, and an aqueous dispersion in which the isocyanate compound is dispersed in water,
    A water repellent, wherein the molar ratio of the crosslinkable functional group of the isocyanate compound to the functional group of the hydrocarbon compound is 0.3 or more.
  2.  前記イソシアネート基と反応可能な官能基を有する炭化水素化合物が、下記一般式(1)で示される化合物である、請求項1に記載の撥水剤。
    W[-A-R]a[-B]b   (1)
    [一般式(1)において、Wは、(a+b)価の有機基である。Aは、Wに結合しており、-X-Y-または-Y-である。Bは、Wに結合しており、-X-Zまたは-Zである。aは、1以上の整数である。bは、1以上の整数である。(a+b)は、3~8である。Xは、2価のポリアルキレンエーテル基である。Yは、2価の基であって、エーテル基、エステル基、アミド基、ウレタン基、ウレア基、又はチオウレタン基である。Rは、任意選択的に少なくとも1つの不飽和結合を含んでもよい炭素数6~30の直鎖又は分岐の1価の炭化水素基である。Zは、ヒドロキシ基、アミノ基、カルボキシ基またはチオール基である。ただし、Bが-X-Zの場合、Zは、ヒドロキシ基である。]
    The water repellent according to claim 1, wherein the hydrocarbon compound having a functional group capable of reacting with the isocyanate group is a compound represented by the following general formula (1).
    W [-A-R] a [-B] b (1)
    [In General Formula (1), W is an (a + b) -valent organic group. A is bonded to W and is —X—Y— or —Y—. B is bonded to W and is —XZ or —Z. a is an integer of 1 or more. b is an integer of 1 or more. (A + b) is 3 to 8. X is a divalent polyalkylene ether group. Y is a divalent group, and is an ether group, an ester group, an amide group, a urethane group, a urea group, or a thiourethane group. R is a straight-chain or branched monovalent hydrocarbon group having 6 to 30 carbon atoms which may optionally contain at least one unsaturated bond. Z is a hydroxy group, an amino group, a carboxy group or a thiol group. However, when B is -XZ, Z is a hydroxy group. ]
  3.  前記イソシアネート化合物が、ブロックイソシアネートである、請求項1又は2に記載の撥水剤。 The water repellent according to claim 1 or 2, wherein the isocyanate compound is a blocked isocyanate.
  4.  界面活性剤をさらに含む、請求項1~3のいずれか1項に記載の撥水剤。 The water repellent according to any one of claims 1 to 3, further comprising a surfactant.
  5.  アクリルポリマーをさらに含む、請求項1~4のいずれか1項に記載の撥水剤。 The water repellent according to any one of claims 1 to 4, further comprising an acrylic polymer.
  6.  前記撥水剤中の前記炭化水素化合物および前記イソシアネート化合物の合計100質量部に対して、前記アクリルポリマーの含有量が、0.1~99質量部である、請求項5に記載の撥水剤。 The water repellent according to claim 5, wherein the content of the acrylic polymer is 0.1 to 99 parts by mass with respect to a total of 100 parts by mass of the hydrocarbon compound and the isocyanate compound in the water repellent. .
  7.  前記アクリルポリマーが、ハロゲン元素を含むアクリルポリマーである、請求項5又は6に記載の撥水剤。 The water repellent according to claim 5 or 6, wherein the acrylic polymer is an acrylic polymer containing a halogen element.
  8.  前記アクリルポリマーが、フッ素原子を含まないアクリルポリマーである、請求項5~7のいずれか1項に記載の撥水剤。 The water repellent according to any one of claims 5 to 7, wherein the acrylic polymer is an acrylic polymer containing no fluorine atom.
  9.  前記アクリルポリマーが、ハロゲン元素を含まないアクリルポリマーである、請求項5又は6に記載の撥水剤。 The water repellent according to claim 5 or 6, wherein the acrylic polymer is an acrylic polymer containing no halogen element.
  10.  前記アクリルポリマーが、アクリル-シリコーンポリマーである、請求項5~9のいずれか1項に記載の撥水剤。 The water repellent according to any one of claims 5 to 9, wherein the acrylic polymer is an acrylic-silicone polymer.
  11.  請求項1~10のいずれか1項に記載の撥水剤で処理されてなる、撥水性繊維製品。 A water-repellent fiber product, which is treated with the water-repellent agent according to any one of claims 1 to 10.
  12.  請求項1~10のいずれか1項に記載の撥水剤を、繊維製品に接触させる工程を含む、撥水性繊維製品の製造方法。 A method for producing a water-repellent fiber product, comprising the step of bringing the water-repellent agent according to any one of claims 1 to 10 into contact with the fiber product.
  13.  少なくとも、イソシアネート基と反応可能な官能基を有する炭化水素化合物を含む第1剤と、
     少なくとも、イソシアネート化合物を含む第2剤と、
    を備え、
     前記第1剤及び前記第2剤を水に分散した、水系分散体として用いられる撥水剤を調製するためのキットであって、
     前記第1剤の前記炭化水素化合物の官能基に対する、前記第2剤の前記イソシアネート化合物の架橋性官能基のモル比が0.3以上である、キット。
    A first agent comprising at least a hydrocarbon compound having a functional group capable of reacting with an isocyanate group;
    A second agent containing at least an isocyanate compound;
    With
    A kit for preparing a water repellent used as an aqueous dispersion in which the first agent and the second agent are dispersed in water,
    The kit whose molar ratio of the crosslinkable functional group of the said isocyanate compound of the said 2nd agent with respect to the functional group of the said hydrocarbon compound of the said 1st agent is 0.3 or more.
  14.  少なくとも、イソシアネート基と反応可能な官能基を有する炭化水素化合物を含む第1剤と、
     少なくとも、イソシアネート化合物を含む第2剤と、
     少なくとも、アクリルポリマーを含む第3剤と、
    を備え、
     前記第1剤、前記第2剤、及び前記第3剤を水に分散した、水系分散体として用いられる撥水剤を調製するためのキットであって、
     前記第1剤の前記炭化水素化合物の官能基に対する、前記第2剤の前記イソシアネート化合物の架橋性官能基のモル比が0.3以上である、キット。
    A first agent comprising at least a hydrocarbon compound having a functional group capable of reacting with an isocyanate group;
    A second agent containing at least an isocyanate compound;
    At least a third agent comprising an acrylic polymer;
    With
    A kit for preparing a water repellent used as an aqueous dispersion in which the first agent, the second agent, and the third agent are dispersed in water,
    The kit whose molar ratio of the crosslinkable functional group of the said isocyanate compound of the said 2nd agent with respect to the functional group of the said hydrocarbon compound of the said 1st agent is 0.3 or more.
PCT/JP2019/023256 2018-06-12 2019-06-12 Water repellent agent, water repellent fiber product, and method for manufacturing same WO2019240162A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019554581A JP6633265B1 (en) 2018-06-12 2019-06-12 Water repellent, water repellent fiber product and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-112006 2018-06-12
JP2018112006 2018-06-12

Publications (1)

Publication Number Publication Date
WO2019240162A1 true WO2019240162A1 (en) 2019-12-19

Family

ID=68841900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/023256 WO2019240162A1 (en) 2018-06-12 2019-06-12 Water repellent agent, water repellent fiber product, and method for manufacturing same

Country Status (3)

Country Link
JP (1) JP6633265B1 (en)
TW (1) TWI812733B (en)
WO (1) WO2019240162A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021132172A1 (en) * 2019-12-24 2021-07-01 三井化学株式会社 Water repellent composition, method for producing water repellent composition, and textile product
JP7307788B1 (en) 2021-12-28 2023-07-12 日華化学株式会社 Water repellent composition and method for producing the same, and water repellent textile product and method for producing the same
WO2024095652A1 (en) * 2022-10-31 2024-05-10 日華化学株式会社 Non-fluorine water-repellent composition and method for producing water-repellent fiber product

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220163486A (en) * 2020-06-03 2022-12-09 메이세이 카가쿠고교 가부시키가이샤 Water repellent composition, kit, water repellent textile product and manufacturing method thereof
JP6830710B1 (en) * 2020-09-09 2021-02-17 竹本油脂株式会社 Polyolefin-based synthetic fiber treatment agent, polyolefin-based synthetic fiber, and thermal bond non-woven fabric

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016522330A (en) * 2013-03-29 2016-07-28 ザ ケマーズ カンパニー エフシー リミテッド ライアビリティ カンパニー Urethane polymer extenders for compositions that modify the surface properties of substrates
JP2016524628A (en) * 2013-03-29 2016-08-18 ザ ケマーズ カンパニー エフシー リミテッド ライアビリティ カンパニー Non-fluorinated urethane coating
WO2017199726A1 (en) * 2016-05-17 2017-11-23 明成化学工業株式会社 Water repellent and production process therefor
JP2017222827A (en) * 2016-06-17 2017-12-21 日華化学株式会社 Water-repellent composition, water-repellent fiber product and method for producing water-repellent fiber product
JP2018062720A (en) * 2016-10-14 2018-04-19 松本油脂製薬株式会社 Water repellant composition, water-repellent fiber product and method for producing water-repellent fiber product

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5922706B2 (en) * 2014-05-23 2016-05-24 明成化学工業株式会社 Water repellent composition not containing fluorine and water repellent processing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016522330A (en) * 2013-03-29 2016-07-28 ザ ケマーズ カンパニー エフシー リミテッド ライアビリティ カンパニー Urethane polymer extenders for compositions that modify the surface properties of substrates
JP2016524628A (en) * 2013-03-29 2016-08-18 ザ ケマーズ カンパニー エフシー リミテッド ライアビリティ カンパニー Non-fluorinated urethane coating
WO2017199726A1 (en) * 2016-05-17 2017-11-23 明成化学工業株式会社 Water repellent and production process therefor
JP2017222827A (en) * 2016-06-17 2017-12-21 日華化学株式会社 Water-repellent composition, water-repellent fiber product and method for producing water-repellent fiber product
JP2018062720A (en) * 2016-10-14 2018-04-19 松本油脂製薬株式会社 Water repellant composition, water-repellent fiber product and method for producing water-repellent fiber product

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021132172A1 (en) * 2019-12-24 2021-07-01 三井化学株式会社 Water repellent composition, method for producing water repellent composition, and textile product
JPWO2021132172A1 (en) * 2019-12-24 2021-07-01
JP7307788B1 (en) 2021-12-28 2023-07-12 日華化学株式会社 Water repellent composition and method for producing the same, and water repellent textile product and method for producing the same
JP2023101422A (en) * 2021-12-28 2023-07-21 日華化学株式会社 Water repellent composition and method for producing the same, and water repellent fiber product and method for producing the same
WO2024095652A1 (en) * 2022-10-31 2024-05-10 日華化学株式会社 Non-fluorine water-repellent composition and method for producing water-repellent fiber product

Also Published As

Publication number Publication date
TW202001035A (en) 2020-01-01
JP6633265B1 (en) 2020-01-22
TWI812733B (en) 2023-08-21
JPWO2019240162A1 (en) 2020-06-25

Similar Documents

Publication Publication Date Title
JP6633265B1 (en) Water repellent, water repellent fiber product and method for producing the same
JP6272588B1 (en) Water repellent agent and method for producing the same
JP7300395B2 (en) Water repellent composition and method for producing water repellent textile product
US7615592B2 (en) Process for producing water- and oil-repellent agent
JP6435320B2 (en) Urethane polymer extenders for compositions that modify the surface properties of substrates
EP1001073A1 (en) Aqueous dispersion type antisoiling composition and textile fibres treated therewith
JPH10306137A (en) Isocyanate/hydroxy compound reaction product used in finishing fibrous material
EP2480713B1 (en) Composition for oil- and/or water-repellent finishing of fiber materials
TW201816064A (en) Water repellent agent composition and method for producing water repellent fiber product
US20160108577A1 (en) Water-repellent fabrics
DE102013224140A1 (en) Finishing agents with blocked polyisocyanates
US5548022A (en) Aqueous dispersion type stain-proofing agent and method for its production
JP7276797B2 (en) Surface treatment agents for textiles and textile products
JP2009542844A (en) How to give rebound
JP4375856B2 (en) Aqueous dispersions for textile processing
JP2000186130A6 (en) Aqueous dispersions for textile processing
DE102005056864B4 (en) Preparations based on ammonium- and polyether-modified organopolysiloxanes and their use for the finishing of textile substrates
JP7009675B1 (en) Water repellent composition, kit, water repellent fiber product and its manufacturing method
TW201829720A (en) Water repellent/oil repellent agent composition and method for producing water repellent/oil repellent textile product
JP7422972B2 (en) Textile products that have both water absorption and water repellency
JP2021195407A (en) Water repellent composition, kit, water repellent fiber product and method for manufacturing the same
JP2001107031A (en) Water- and oil-repellent composition having low dynamic surface tension and water- and oil-repellent treatment process
JP2024509689A (en) Long-lasting hydrophobizing agent
CN114144554A (en) Antistatic agent for fiber and use thereof
TW201632684A (en) Fluorochemical compositions, methods, and articles

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019554581

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19820044

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19820044

Country of ref document: EP

Kind code of ref document: A1