WO2024095652A1 - Non-fluorine water-repellent composition and method for producing water-repellent fiber product - Google Patents

Non-fluorine water-repellent composition and method for producing water-repellent fiber product Download PDF

Info

Publication number
WO2024095652A1
WO2024095652A1 PCT/JP2023/035738 JP2023035738W WO2024095652A1 WO 2024095652 A1 WO2024095652 A1 WO 2024095652A1 JP 2023035738 W JP2023035738 W JP 2023035738W WO 2024095652 A1 WO2024095652 A1 WO 2024095652A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
mass
parts
compound
polyisocyanate
Prior art date
Application number
PCT/JP2023/035738
Other languages
French (fr)
Japanese (ja)
Inventor
由枝 南嶋
圭一郎 定
君之 末定
高輔 前田
Original Assignee
日華化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日華化学株式会社 filed Critical 日華化学株式会社
Publication of WO2024095652A1 publication Critical patent/WO2024095652A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/06Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain multicolour or other optical effects
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/18Materials not provided for elsewhere for application to surfaces to minimize adherence of ice, mist or water thereto; Thawing or antifreeze materials for application to surfaces
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/02Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with hydrocarbons
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/322Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen
    • D06M13/395Isocyanates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/564Polyureas, polyurethanes or other polymers having ureide or urethane links; Precondensation products forming them
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/643Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain

Definitions

  • This application discloses a non-fluorine-based water repellent composition and a method for producing a water-repellent textile product.
  • Fluorine-based water repellents containing fluorine-based compounds are produced, for example, by polymerizing a monomer having a fluoroalkyl group. Articles treated with such fluorine-based water repellents have excellent water repellency. However, monomers having a fluoroalkyl group are an environmental burden. For this reason, non-fluorine-based water repellents that exhibit excellent water repellency have been internationally sought.
  • Patent Document 1 discloses a water-based water repellent treatment agent that contains a non-fluorine-based water repellent component and a crosslinking component that can react with the water repellent component, and is composed of a hybrid emulsion in which the water repellent component and the crosslinking component are contained in one particle.
  • Patent Document 2 also discloses a water repellent composition that contains an amino-modified silicone, a silicone resin, and a polyfunctional isocyanate compound.
  • A at least one non-fluorine-based water-repellent component selected from the group consisting of an acrylic compound, a silicone compound, a wax compound, a urethane compound, and a dendrimer compound;
  • B an alicyclic polyisocyanate;
  • a non-fluorine-based water repellent composition comprising:
  • the alicyclic polyisocyanate is at least one of isophorone diisocyanate and hydrogenated MDI;
  • a method for producing a water-repellent textile product comprising:
  • the articles can have excellent initial water repellency, washing-durable water repellency, and also excellent water repellency during actual use (abrasion-resistant water repellency).
  • Non-fluorinated water repellent composition contains (A) at least one non-fluorinated water repellent component selected from the group consisting of an acrylic compound, a silicone compound, a wax compound, a urethane compound, and a dendrimer compound, and (B) an alicyclic polyisocyanate.
  • the non-fluorine-based water repellent composition includes, as the non-fluorine-based water repellent component (A), at least one selected from the group consisting of an acrylic compound, a silicone compound, a wax compound, a urethane compound, and a dendrimer compound.
  • the non-fluorine-based compound (A) may be at least one of an acrylic compound and a silicone compound, or may be at least one of a wax compound, a urethane compound, and a dendrimer compound. In particular, when the non-fluorine-based compound (A) is at least one of an acrylic compound and a silicone compound, better performance can be expected.
  • the acrylic compound has, for example, a structural unit derived from a (meth)acrylic acid ester monomer (hereinafter also referred to as "(A1) component”) represented by the following general formula (A1).
  • the acrylic compound may further have a structural unit derived from a compound (hereinafter also referred to as "(A2) component”) represented by the following general formula (A2).
  • (meth)acrylic acid ester means “acrylic acid ester” or the corresponding "methacrylic acid ester”, and the same applies to "(meth)acrylic acid", "(meth)acrylamide", etc.
  • R 1 is a hydrogen atom or a methyl group
  • R 2 is a monovalent hydrocarbon group having 12 to 30 carbon atoms which may have a substituent.
  • R 11 is hydrogen or a methyl group
  • R 12 is a divalent hydrocarbon group having 1 to 6 carbon atoms
  • Z is an ester group or an amide group
  • W is a group represented by -CO-R 13 (R 13 is a monovalent hydrocarbon group having 1 to 4 carbon atoms), a group represented by -NH-CO-NH 2 , or a group represented by the following formula (W1):
  • the component (A1) has a monovalent hydrocarbon group having 12 to 30 carbon atoms, which may have a substituent.
  • the hydrocarbon group may be linear or branched, may be a saturated or unsaturated hydrocarbon group, and may have an alicyclic or aromatic ring structure.
  • a linear one is preferable, and a linear alkyl group is more preferable. In this case, the water repellency is more excellent.
  • the substituent may be one or more of a hydroxyl group, an amino group, a carboxyl group, an epoxy group, an isocyanate group, a blocked isocyanate group, and a (meth)acryloyloxy group.
  • R 2 is preferably an unsubstituted hydrocarbon group.
  • the number of carbon atoms in the hydrocarbon group is preferably 12 to 24, and more preferably 12 to 22. When the number of carbon atoms is within this range, the water repellency and texture are particularly excellent.
  • a linear alkyl group having 18 to 22 carbon atoms is particularly preferred as the hydrocarbon group.
  • Examples of the (A1) component include at least one selected from stearyl (meth)acrylate, cetyl (meth)acrylate, lauryl (meth)acrylate, myristyl (meth)acrylate, pentadecyl (meth)acrylate, heptadecyl (meth)acrylate, nonadecyl (meth)acrylate, eicosyl (meth)acrylate, heneicosyl (meth)acrylate, and behenyl (meth)acrylate.
  • the (A1) component may have at least one functional group selected from the group consisting of a hydroxyl group, an amino group, a carboxyl group, an epoxy group, and an isocyanate group that can react with a crosslinking agent.
  • the durable water repellency can be further improved.
  • the isocyanate group may be protected with a blocking agent to form a blocked isocyanate group.
  • the texture can be further improved.
  • the above component (A1) is preferably a monofunctional (meth)acrylic acid ester monomer having one polymerizable unsaturated group in one molecule.
  • the above (A1) component may be used alone or in combination of two or more types.
  • R 12 may be linear or branched, may be a saturated or unsaturated hydrocarbon group, and may further have an alicyclic ring structure.
  • R 12 when Z is an ester group, R 12 is preferably a hydrocarbon group having 2 to 4 carbon atoms, and W is preferably a group represented by -NH-CO- NH2 or a group represented by the above formula (W1).
  • W is preferably a group represented by -CO-R 13 , and R 13 preferably has 1 to 2 carbon atoms.
  • the above-mentioned (A2) component is not particularly limited, but examples thereof include diacetone acrylamide, 2-methylpropenoic acid [2-(2-oxo-2-imidazolidinyl)ethyl], and N-[2-(2-oxoimidazolidin-3-yl)ethyl]methacrylamide.
  • diacetone acrylamide and 2-methylpropenoic acid [2-(2-oxo-2-imidazolidinyl)ethyl] are preferred as the above-mentioned (A2) component.
  • the above (A2) component may be used alone or in combination of two or more types.
  • the content ratio of the structural units derived from component (A1) and the structural units derived from component (A2) in the acrylic compound is preferably the ratio (A1)/(A2) of the mass of component (A1) to the mass of component (A2) to be blended, 100/0 to 70/30, more preferably 99.9/0.1 to 70/30, even more preferably 99.8/0.2 to 80/20, and particularly preferably 99.7/0.3 to 90/10. If (A1)/(A2) is within the above range, durable water repellency and water repellency will be better.
  • the total mass of the (A1) component and the (A2) component is preferably 60 to 100% by mass, more preferably 70 to 99% by mass, and even more preferably 80 to 98% by mass, based on the total amount of the monomer components constituting the acrylic compound.
  • the acrylic compound preferably contains, in addition to the (A1) component and the optional (A2) component, at least one monomer (A3) selected from vinyl chloride and vinylidene chloride (hereinafter also referred to as "(A3) component") as a monomer component.
  • A3 component at least one monomer selected from vinyl chloride and vinylidene chloride
  • the (A3) component is preferably vinyl chloride from the viewpoint of maintaining the texture of the textile product.
  • the mass of the (A3) component to be blended is preferably 10 parts by mass or more, and more preferably 20 parts by mass or more, based on the total mass of the (A1) and (A2) components to be blended (100), from the viewpoints of water repellency, durable water repellency, and peel strength.
  • the mass of the (A3) component to be blended is preferably 100 parts by mass or less, and more preferably 75 parts by mass or less, 60 parts by mass or less, 50 parts by mass or less, 30 parts by mass or less, or 25 parts by mass or less, based on the total mass of the (A1) and (A2) components to be blended (100), from the viewpoints of water repellency, durable water repellency, and texture.
  • the acrylic compound preferably contains, in addition to component (A1) and any component (A2), at least one reactive emulsifier (A4) (hereinafter also referred to as "component (A4)") selected from compounds having an HLB of 7 to 18 and represented by the following general formula (A4-1), compounds having an HLB of 7 to 18 and represented by the following general formula (A4-2), and compounds (A4-3) having an HLB of 7 to 18 and formed by adding an alkylene oxide having 2 to 4 carbon atoms to an oil or fat having a hydroxyl group and a polymerizable unsaturated group.
  • component (A4) at least one reactive emulsifier
  • R3 is hydrogen or a methyl group
  • X is a linear or branched alkylene group having 1 to 6 carbon atoms
  • Y1 is a divalent group containing an alkyleneoxy group having 2 to 4 carbon atoms.
  • R4 is a monovalent unsaturated hydrocarbon group having 13 to 17 carbon atoms and having a polymerizable unsaturated group
  • Y2 is a divalent group containing an alkyleneoxy group having 2 to 4 carbon atoms.
  • reactive emulsifier refers to an emulsifying dispersant having radical reactivity, i.e., a surfactant having one or more polymerizable unsaturated groups in the molecule, which can be copolymerized with a monomer such as a (meth)acrylic acid ester.
  • HLB refers to the HLB value calculated using the Griffin method, assuming that the ethyleneoxy group is a hydrophilic group and all other groups are lipophilic groups.
  • the HLB of the above compounds (A4-1) to (A4-3) is 7 to 18, and from the viewpoint of emulsion stability in the composition during and after emulsion polymerization or dispersion polymerization of the acrylic compound (hereinafter simply referred to as emulsion stability), it is preferably 9 to 15. Furthermore, from the viewpoint of storage stability of the water repellent composition, it is more preferable to use two or more reactive emulsifiers (A4) having different HLBs within the above range in combination.
  • R 3 is hydrogen or a methyl group, and is more preferably a methyl group in terms of copolymerizability with the (A1) component and/or the (A2) component.
  • X is a linear or branched alkylene group having 1 to 6 carbon atoms, and is more preferably a linear alkylene group having 2 to 3 carbon atoms in terms of emulsion stability of the acrylic compound.
  • Y 1 is a divalent group containing an alkyleneoxy group having 2 to 4 carbon atoms. The type, combination and number of additions of the alkyleneoxy group in Y 1 can be appropriately selected so as to be within the above HLB range. In addition, when there are two or more types of alkyleneoxy groups, they can have a block addition structure or a random addition structure.
  • R 3 is hydrogen or a methyl group
  • X is a linear or branched alkylene group having 1 to 6 carbon atoms
  • a 1 O is an alkyleneoxy group having 2 to 4 carbon atoms
  • m can be appropriately selected so as to be within the above-mentioned HLB range, and specifically, an integer of 1 to 80 is preferable, and when m is 2 or more, m A 1 O may be the same or different.
  • R 3 is hydrogen or a methyl group, and is more preferably a methyl group in terms of copolymerizability with the (A1) component and/or the (A2) component.
  • X is a linear or branched alkylene group having 1 to 6 carbon atoms, and is more preferably a linear alkylene group having 2 to 3 carbon atoms in terms of emulsion stability of the acrylic compound.
  • a 1 O is an alkyleneoxy group having 2 to 4 carbon atoms. The type and combination of A 1 O and the number of m can be appropriately selected so as to be within the above HLB range.
  • m is preferably an integer of 1 to 80, and more preferably an integer of 1 to 60.
  • m A 1 O may be the same or different.
  • they can have a block addition structure or a random addition structure.
  • the reactive emulsifier represented by the above general formula (A4-1-1) can be obtained by a conventionally known method and is not particularly limited. It can also be easily obtained from commercial products, such as "Latemul PD-420", “Latemul PD-430", and “Latemul PD-450” manufactured by Kao Corporation.
  • R 4 is a monovalent unsaturated hydrocarbon group having 13 to 17 carbon atoms and having a polymerizable unsaturated group.
  • the unsaturated hydrocarbon group include a tridecenyl group, a tridecadienyl group, a tetradecenyl group, a tetradienyl group, a pentadecenyl group, a pentadecadienyl group, a pentadecatrienyl group, a heptadecenyl group, a heptadecadienyl group, and a heptadecatrienyl group.
  • R 4 is more preferably a monovalent unsaturated hydrocarbon group having 14 to 16 carbon atoms.
  • Y2 is a divalent group containing an alkyleneoxy group having 2 to 4 carbon atoms.
  • the type, combination and number of added alkyleneoxy groups in Y2 can be appropriately selected so as to fall within the above-mentioned HLB range.
  • they can have a block addition structure or a random addition structure.
  • the alkyleneoxy group is an ethyleneoxy group.
  • R 4 is a monovalent unsaturated hydrocarbon group having 13 to 17 carbon atoms and a polymerizable unsaturated group
  • a 2 O is an alkyleneoxy group having 2 to 4 carbon atoms
  • n can be appropriately selected so as to be within the above-mentioned HLB range, and specifically, an integer of 1 to 50 is preferable, and when n is 2 or more, the n A 2 O may be the same or different.
  • R 4 in the compound represented by the above general formula (A4-2-1) include the same as R 4 in the above general formula (A4-2).
  • a 2 O is an alkyleneoxy group having 2 to 4 carbon atoms.
  • the type and combination of A 2 O and the number of n can be appropriately selected so as to be within the above HLB range.
  • a 2 O is more preferably an ethyleneoxy group, and n is preferably an integer of 1 to 50, more preferably an integer of 5 to 20, and even more preferably an integer of 8 to 14.
  • n is 2 or more, the n A 2 O may be the same or different.
  • they may have a block addition structure or a random addition structure.
  • the reactive emulsifier represented by the above general formula (A4-2-1) can be synthesized, for example, by adding an alkylene oxide to a phenol having a corresponding unsaturated hydrocarbon group, but is not limited to this.
  • it can be synthesized by adding a predetermined amount of alkylene oxide under pressure at 120 to 170°C using an alkaline catalyst such as caustic soda or caustic potassium.
  • Phenols having the corresponding unsaturated hydrocarbon group include pure products or mixtures produced industrially, as well as those that exist as pure products or mixtures extracted and purified from plants, etc. Examples include 3-[8(Z),11(Z),14-pentadecatrienyl]phenol, 3-[8(Z),11(Z)-pentadecadienyl]phenol, 3-[8(Z)-pentadecenyl]phenol, 3-[11(Z)-pentadecenyl]phenol, etc., which are extracted from cashew nut shells, etc. and are collectively known as cardanol.
  • Compound (A4-3) is an oil having an HLB of 7 to 18 and having a hydroxyl group and a polymerizable unsaturated group to which an alkylene oxide having 2 to 4 carbon atoms has been added.
  • oils having a hydroxyl group and a polymerizable unsaturated group include mono- or diglycerides of fatty acids that may contain hydroxyunsaturated fatty acids (palmitoleic acid, oleic acid, linoleic acid, ⁇ -linolenic acid, arachidonic acid, eicosapentaenoic acid, docosapentaenoic acid, etc.), and triglycerides of fatty acids containing at least one hydroxyunsaturated fatty acid (ricinoleic acid, ricinoelaidic acid, 2-hydroxytetracosenoic acid, etc.).
  • alkylene oxide adducts of triglycerides of fatty acids containing at least one hydroxyunsaturated fatty acid are preferred
  • alkylene oxide adducts of castor oil (triglycerides of fatty acids containing ricinoleic acid) having 2 to 4 carbon atoms are more preferred
  • ethylene oxide adducts of castor oil are even more preferred.
  • the number of moles of alkylene oxide added can be appropriately selected so as to fall within the above HLB range, and from the viewpoint of emulsion stability of the acrylic compound, 20 to 50 moles is more preferable, and 25 to 45 moles is even more preferable.
  • they can have a block addition structure or a random addition structure.
  • Compound (A4-3) can be synthesized, for example, by adding an alkylene oxide to an oil or fat having a hydroxyl group and a polymerizable unsaturated group, but is not limited to this.
  • it can be synthesized by adding a predetermined amount of alkylene oxide to a triglyceride of a fatty acid containing ricinoleic acid, i.e., castor oil, using an alkaline catalyst such as caustic soda or caustic potassium, under pressure at 120 to 170°C.
  • the monomer composition ratio of the above component (A4) in the acrylic compound is preferably 0.5 to 20% by mass, more preferably 1 to 15% by mass, and even more preferably 3 to 10% by mass, based on the total amount of monomer components constituting the acrylic compound, from the viewpoint of improving water repellency and emulsion stability in the composition during and after emulsion polymerization or dispersion polymerization of the acrylic compound.
  • the acrylic compound may contain, in addition to the (A1) component and the optional (A2) component, at least one second (meth)acrylic acid ester monomer (A5) (hereinafter also referred to as "A5 component") selected from the group consisting of a monomer represented by the following general formula (A5-1), a monomer represented by the following general formula (A5-2), a monomer represented by the following general formula (A5-3), and a monomer represented by the following general formula (A5-4) as a monomer component.
  • A5 component selected from the group consisting of a monomer represented by the following general formula (A5-1), a monomer represented by the following general formula (A5-2), a monomer represented by the following general formula (A5-3), and a monomer represented by the following general formula (A5-4) as a monomer component.
  • R5 is hydrogen or a methyl group
  • R6 is a monovalent chain hydrocarbon group having 1 to 11 carbon atoms and having at least one functional group selected from the group consisting of a hydroxyl group, an amino group, a carboxyl group, an epoxy group, an isocyanate group, and a (meth)acryloyloxy group, provided that the number of (meth)acryloyloxy groups in the molecule is 2 or less.
  • R7 is a hydrogen atom or a methyl group
  • R8 is a monovalent cyclic hydrocarbon group having 1 to 11 carbon atoms which may have a substituent.
  • R 9 is an unsubstituted monovalent chain hydrocarbon group having 1 to 4 carbon atoms.
  • R 10 is hydrogen or a methyl group
  • p is an integer of 2 or more
  • S is a (p+1)-valent organic group
  • T is a monovalent organic group having a polymerizable unsaturated group.
  • the monomer (A5-1) is a (meth)acrylic acid ester monomer having a monovalent chain hydrocarbon group having 1 to 11 carbon atoms, which has at least one functional group selected from the group consisting of a hydroxyl group, an amino group, a carboxyl group, an epoxy group, an isocyanate group, and a (meth)acryloyloxy group in the ester portion.
  • the monovalent chain hydrocarbon group having 1 to 11 carbon atoms preferably has at least one functional group selected from the group consisting of a hydroxyl group, an amino group, a carboxyl group, an epoxy group, and an isocyanate group.
  • the isocyanate group may be a blocked isocyanate group protected by a blocking agent.
  • the chain-like hydrocarbon group may be linear or branched, and may be a saturated or unsaturated hydrocarbon group.
  • the chain-like hydrocarbon group may further have a substituent in addition to the functional group. Of these, it is preferable that the chain-like hydrocarbon group is linear and/or that the chain-like hydrocarbon group is a saturated hydrocarbon group, in terms of improving durable water repellency.
  • the monomer (A5-1) examples include 2-hydroxyethyl (meth)acrylate, dimethylaminoethyl (meth)acrylate, glycidyl (meth)acrylate, and 1,1-bis(acryloyloxymethyl)ethyl isocyanate. These monomers may be used alone or in combination of two or more. Among them, 2-hydroxyethyl (meth)acrylate, glycidyl (meth)acrylate, and 1,1-bis(acryloyloxymethyl)ethyl isocyanate are preferred in terms of improving durable water repellency. Furthermore, dimethylaminoethyl (meth)acrylate is preferred in terms of improving texture.
  • the mass of the (A5-1) component to be blended is preferably 3 parts by mass or more, and more preferably 5 parts by mass or more, per 100 parts by mass of the combined mass of the (A1) and (A2) components to be blended, from the viewpoint of water repellency.
  • the mass of the (A5-1) component to be blended is preferably 30 parts by mass or less, and more preferably 25 parts by mass or less, per 100 parts by mass of the combined mass of the (A1) and (A2) components to be blended, from the viewpoint of water repellency.
  • the monomer (A5-2) is a (meth)acrylic acid ester monomer having a monovalent cyclic hydrocarbon group having 1 to 11 carbon atoms in the ester portion.
  • the cyclic hydrocarbon group include isobornyl, cyclohexyl, and dicyclopentanyl groups. These cyclic hydrocarbon groups may have a substituent such as an alkyl group. However, when the substituent is a hydrocarbon group, a hydrocarbon group is selected in which the total number of carbon atoms in the substituent and the cyclic hydrocarbon group is 11 or less. In addition, from the viewpoint of improving durable water repellency, it is preferable that these cyclic hydrocarbon groups are directly bonded to an ester bond.
  • the cyclic hydrocarbon group may be alicyclic or aromatic, and when it is alicyclic, it may be a saturated or unsaturated hydrocarbon group.
  • Specific examples of the monomer include isobornyl (meth)acrylate, cyclohexyl (meth)acrylate, and dicyclopentanyl (meth)acrylate. These monomers may be used alone or in combination of two or more. Among these, isobornyl (meth)acrylate and cyclohexyl methacrylate are preferred, with isobornyl methacrylate being more preferred, in terms of improving durable water repellency.
  • the mass of the (A5-2) component to be blended is preferably 3 parts by mass or more, and more preferably 5 parts by mass or more, per 100 parts by mass of the combined total of the (A1) and (A2) components to be blended, from the viewpoint of water repellency.
  • the mass of the (A5-2) component to be blended is preferably 30 parts by mass or less, and more preferably 25 parts by mass or less, per 100 parts by mass of the combined total of the (A1) and (A2) components to be blended, from the viewpoint of water repellency.
  • the monomer (A5-3) is a methacrylic acid ester monomer in which an unsubstituted monovalent chain hydrocarbon group having 1 to 4 carbon atoms is directly bonded to the ester bond of the ester moiety.
  • chain hydrocarbon group having 1 to 4 carbon atoms a linear hydrocarbon group having 1 to 2 carbon atoms and a branched hydrocarbon group having 3 to 4 carbon atoms are preferable.
  • chain hydrocarbon group having 1 to 4 carbon atoms for example, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a t-butyl group, etc. are mentioned.
  • Specific compounds include methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, and t-butyl methacrylate. These monomers may be used alone or in combination of two or more. Among them, methyl methacrylate, isopropyl methacrylate, and t-butyl methacrylate are preferable in terms of improving durable water repellency, and methyl methacrylate is more preferable.
  • the mass of the (A5-3) component to be blended is preferably 3 parts by mass or more, and more preferably 5 parts by mass or more, per 100 parts by mass of the combined total of the (A1) and (A2) components to be blended, from the viewpoint of water repellency.
  • the mass of the (A5-3) component to be blended is preferably 30 parts by mass or less, and more preferably 25 parts by mass or less, per 100 parts by mass of the combined total of the (A1) and (A2) components to be blended, from the viewpoint of water repellency.
  • the monomer (A5-4) is a (meth)acrylic acid ester monomer having three or more polymerizable unsaturated groups in one molecule.
  • T is a (meth)acryloyloxy group, and a polyfunctional (meth)acrylic acid ester monomer having three or more (meth)acryloyloxy groups in one molecule is preferred.
  • the p Ts may be the same or different.
  • compounds include ethoxylated isocyanuric acid triacrylate, tetramethylolmethane tetraacrylate, tetramethylolmethane tetramethacrylate, trimethylolpropane triacrylate, trimethylolpropane trimethacrylate, pentaerythritol triacrylate, pentaerythritol trimethacrylate, dipentaerythritol hexaacrylate, and dipentaerythritol hexamethacrylate.
  • These monomers may be used alone or in combination of two or more.
  • tetramethylolmethane tetraacrylate and ethoxylated isocyanuric acid triacrylate are more preferred because they can improve durable water repellency.
  • the mass of the (A5-4) component to be blended is preferably 3 parts by mass or more, and more preferably 5 parts by mass or more, per 100 parts by mass of the combined total of the (A1) and (A2) components to be blended, from the viewpoint of water repellency.
  • the mass of the (A5-4) component to be blended is preferably 30 parts by mass or less, and more preferably 25 parts by mass or less, per 100 parts by mass of the combined total of the (A1) and (A2) components to be blended, from the viewpoint of water repellency.
  • the total composition ratio of the monomers of the above-mentioned (A5) component in the acrylic compound is preferably 1 to 30 mass %, more preferably 3 to 25 mass %, and even more preferably 5 to 20 mass %, based on the total amount of the monomer components constituting the acrylic compound, from the viewpoints of water repellency and texture.
  • the mass of the (A5) component to be blended is preferably 3 parts by mass or more, and more preferably 5 parts by mass or more, per 100 parts by mass of the combined total of the (A1) and (A2) components to be blended, from the viewpoint of water repellency.
  • the mass of the (A5) component to be blended is preferably 30 parts by mass or less, and more preferably 25 parts by mass or less, per 100 parts by mass of the combined total of the (A1) and (A2) components to be blended, from the viewpoint of water repellency.
  • the acrylic compound may contain, in addition to the (A1) component and the optional (A2) component, a monofunctional monomer (A6) (hereinafter also referred to as "(A6) component”) that is copolymerizable with these components, within a range that does not impair the effects of the present invention.
  • a monofunctional monomer (A6) (hereinafter also referred to as "(A6) component") that is copolymerizable with these components, within a range that does not impair the effects of the present invention.
  • Examples of the (A6) component include (meth)acryloylmorpholine, (meth)acrylic acid esters having a hydrocarbon group other than the above (A1), (A2), and (A5), (meth)acrylic acid, fumaric acid esters, maleic acid esters, fumaric acid, maleic acid, (meth)acrylamide, N-methylol acrylamide, vinyl ethers, vinyl esters, ethylene, styrene, and other fluorine-free vinyl monomers other than the (A3) component.
  • the (meth)acrylic acid esters having a hydrocarbon group other than the (A1), (A2), and (A5) components may have substituents such as vinyl groups, hydroxyl groups, amino groups, epoxy groups, isocyanate groups, and blocked isocyanate groups in the hydrocarbon group, and may have substituents other than groups that can react with crosslinking agents, such as quaternary ammonium groups, and may have ether bonds, ester bonds, amide bonds, urethane bonds, and the like.
  • Examples of (meth)acrylic acid esters other than components (A1), (A2), and (A5) include methyl acrylate, 2-ethylhexyl (meth)acrylate, benzyl (meth)acrylate, ethylene glycol di(meth)acrylate, etc.
  • (meth)acryloylmorpholine is more preferred in that it can improve the peel strength of the resulting textile product against coating.
  • the mass of the (A6) component to be blended is preferably 3 parts by mass or more, and more preferably 5 parts by mass or more, per 100 parts by mass of the combined total of the (A1) and (A2) components to be blended, from the viewpoint of water repellency.
  • the mass of the (A6) monomer to be blended is preferably 40 parts by mass or less, and more preferably 35 parts by mass or less, per 100 parts by mass of the combined total of the (A1) and (A2) components to be blended, from the viewpoint of water repellency.
  • the acrylic compound has at least one functional group selected from the group consisting of a hydroxyl group, an amino group, a carboxyl group, an epoxy group, and an isocyanate group that can react with a crosslinking agent, as this improves durable water repellency.
  • the isocyanate group may be protected with a blocking agent to form a blocked isocyanate group.
  • the acrylic compound has an amino group, as this improves the texture.
  • the weight-average molecular weight of the acrylic compound is preferably 30,000 or more. When the weight-average molecular weight is 30,000 or more, water repellency tends to be further improved. Furthermore, the weight-average molecular weight of the acrylic compound is more preferably 50,000 or more. In this case, water repellency can be more fully exerted.
  • the upper limit of the weight-average molecular weight of the acrylic compound is preferably about 5 million.
  • the weight average molecular weight of acrylic compounds is measured using a GPC device (Tosoh Corporation's GPC "HLC-8020") at a column temperature of 40°C and a flow rate of 1.0 ml/min, using tetrahydrofuran as the eluent, and is expressed in terms of standard polystyrene.
  • the columns used are three connected columns manufactured by Tosoh Corporation under the trade names TSK-GELG5000HHR, G4000HHR, and G3000HHR.
  • the melt viscosity of the acrylic compound at 105°C is preferably 1000 Pa ⁇ s or less.
  • the texture tends to be easily maintained.
  • the melt viscosity of the acrylic compound is 1000 Pa ⁇ s or less, when the acrylic compound is emulsified or dispersed to form a water repellent composition, the acrylic compound can be prevented from precipitating or settling, and therefore the storage stability of the water repellent composition tends to be easily maintained.
  • the melt viscosity at 105°C is 500 Pa ⁇ s or less. In this case, the texture is more excellent while sufficient water repellency is exhibited.
  • the "melt viscosity at 105°C” refers to the viscosity measured using an elevated flow tester (e.g., CFT-500 manufactured by Shimadzu Corporation) by placing 1 g of a non-fluorinated polymer in a cylinder equipped with a die (length 10 mm, diameter 1 mm), holding the temperature at 105°C for 6 minutes, and applying a load of 100 kg f/ cm2 with a plunger.
  • an elevated flow tester e.g., CFT-500 manufactured by Shimadzu Corporation
  • the silicone-based compound is, for example, at least one of silicone resin and silicone oil.
  • silicone resin is preferred from the viewpoint of water repellency.
  • the silicone-based compound may be used alone or in combination of two or more kinds.
  • the silicone resin may be an organopolysiloxane containing MQ, MDQ, MT, MTQ, MDT or MDTQ as a constituent, being solid at 25° C. and having a three-dimensional structure, where M, D, T and Q respectively represent (R′′) 3 SiO 0.5 units, (R′′) 2 SiO units, R′′SiO 1.5 units and SiO 2 units.
  • R′′ represents a monovalent aliphatic hydrocarbon group having 1 to 10 carbon atoms or a monovalent aromatic hydrocarbon group having 6 to 15 carbon atoms.
  • Silicone resins are commonly known as MQ resins, MT resins or MDT resins and may also have moieties designated as MDQ, MTQ or MDTQ.
  • Silicone resins can also be obtained as solutions in suitable solvents.
  • suitable solvents include relatively low molecular weight methylpolysiloxanes, decamethylcyclopentasiloxane, octamethylcyclotetrasiloxane, n-hexane, isopropyl alcohol, methylene chloride, 1,1,1-trichloroethane, and mixtures of these solvents.
  • silicone resin solutions examples include KF7312J (a 50:50 mixture of trimethylsilyl-containing polysiloxane: decamethylcyclopentasiloxane), KF7312F (a 50:50 mixture of trimethylsilyl-containing polysiloxane: octamethylcyclotetrasiloxane), KF9021L (a 50:50 mixture of trimethylsilyl-containing polysiloxane: low-viscosity methylpolysiloxane), and KF7312L (a 50:50 mixture of trimethylsilyl-containing polysiloxane: low-viscosity methylpolysiloxane), all of which are commercially available from Shin-Etsu Chemical Co., Ltd.
  • silicone resins alone include MQ-1600 solid Resin (trimethylsilyl group-containing polysiloxane) and MQ-1640 Flake Resin (trimethylsilyl group-containing polysiloxane, polypropylsilsesquioxane), both of which are commercially available from Toray Dow Corning Co., Ltd.
  • the above commercially available products contain trimethylsilyl group-containing polysiloxane, and include MQ, MDQ, MT, MTQ, MDT, or MDTQ.
  • the silicone oil is a linear organopolysiloxane, and may have an organic group at least in one of the side chains and the terminals of the organopolysiloxane.
  • Such silicone oils can be the same as hydrophobic silicone oils and functionalized silicone oils, and examples of such silicone oils include straight silicone oils such as dimethyl silicone oil, methylphenyl silicone oil, and methylhydrogen silicone oil; modified silicone oils such as amino-modified silicone oil, epoxy-modified silicone oil, carbinol-modified silicone oil, mercapto-modified silicone oil, carboxyl-modified silicone oil, polyether-modified silicone oil, alkyl-modified silicone oil, aralkyl-modified silicone oil, alkylaralkyl-modified silicone oil, higher fatty acid ester-modified silicone oil, and higher aliphatic amide-modified silicone oil.
  • the amino-modified silicone oil may be a compound having an organic group containing an amino group and/or an imino group at least on the side chain or end of the organopolysiloxane.
  • Such an organic group may be an organic group represented by -R- NH2 or an organic group represented by -R-NH-R'- NH2 .
  • R and R' include divalent groups such as an ethylene group and a propylene group.
  • a part or all of the amino group and/or imino group may be a blocked amino group and/or imino group. The blocked amino group and/or imino group may be obtained, for example, by treating the amino group and/or imino group with a blocking agent.
  • the blocking agent examples include fatty acids having 2 to 22 carbon atoms, acid anhydrides of fatty acids having 2 to 22 carbon atoms, acid halides of fatty acids having 2 to 22 carbon atoms, and aliphatic monoisocyanates having 1 to 22 carbon atoms.
  • the functional group equivalent of the amino-modified silicone oil is preferably 100 to 20,000 g/mol, more preferably 150 to 12,000 g/mol, and even more preferably 200 to 4,000 g/mol.
  • the amino-modified silicone oil is preferably liquid at 25° C.
  • the kinetic viscosity of the amino-modified silicone oil at 25° C. is preferably 10 to 100,000 mm 2 /s, more preferably 10 to 30,000 mm 2 /s, and even more preferably 10 to 5,000 mm 2 /s. If the kinetic viscosity at 25° C. is greater than 100,000 mm 2 /s, the viscosity is too high and workability tends to deteriorate.
  • the kinetic viscosity at 25° C. refers to a value measured by the method described in JIS K2283:2000 (Ubbelohde viscometer).
  • Amino-modified silicone oils are readily available as commercial products.
  • commercial products include KF8005, KF-868, KF-864, KF-393, and KF-8021 (all of which are product names manufactured by Shin-Etsu Chemical Co., Ltd.), TSF-4709 and XF42-B1989 (product names manufactured by Momentive Performance Materials Japan Co., Ltd.), BY16-872, SF-8417, BY16-853U, and BY16-892 (product names manufactured by Dow Corning Toray Co., Ltd.), KF-8010 (manufactured by Shin-Etsu Chemical Co., Ltd.), and WACKER (registered trademark) FINISH WR 301 (manufactured by Asahi Kasei Wacker Silicone).
  • Silicone oils other than amino-modified silicone oils are also readily available as commercially available products.
  • Examples of commercially available products include KF-101 (manufactured by Shin-Etsu Chemical Co., Ltd., product name: epoxy-modified silicone oil), X-22-3701E (manufactured by Shin-Etsu Chemical Co., Ltd., product name: carboxyl-modified silicone oil), SF8428 (manufactured by Dow Corning Toray Co., Ltd., product name: carbinol-modified silicone oil), KF-9901 (manufactured by Shin-Etsu Chemical Co., Ltd., product name: methyl hydrogen silicone oil), and X-22-715 (manufactured by Shin-Etsu Chemical Co., Ltd., product name: methyl hydrogen silicone oil).
  • the silicone compound may be an organo-modified silicone represented by the following general formula (1).
  • the structural units may be arranged in a block, random, or alternating fashion.
  • R 20 , R 21 and R 22 are each independently a hydrogen atom, a methyl group, an ethyl group or an alkoxy group having 1 to 4 carbon atoms
  • R 23 is a hydrocarbon group having 8 to 40 carbon atoms and an aromatic ring, or an alkyl group having 8 to 40 carbon atoms
  • R 30 , R 31 , R 32 , R 33 , R 34 and R 35 are each independently a hydrogen atom, a methyl group, an ethyl group, an alkoxy group having 1 to 4 carbon atoms, a hydrocarbon group having 8 to 40 carbon atoms and an aromatic ring, or an alkyl group having 3 to 22 carbon atoms
  • a is an integer of 0 or more
  • b is an integer of 1 or more
  • (a+b) is 10 to 200, when a is 2 or more, the multiple R 20 and R 21 may be the same or different, and when b is 2 or more, the multiple R 22 and R 23 may be the same or
  • the alkoxyl group having 1 to 4 carbon atoms may be linear or branched.
  • the alkoxyl group having 1 to 4 carbon atoms include a methoxy group, an ethoxy group, a propoxy group, and a butoxy group.
  • R 20 , R 21 , and R 22 are each preferably independently a hydrogen atom or a methyl group, and more preferably a methyl group.
  • Examples of the above-mentioned hydrocarbon group having 8 to 40 carbon atoms and an aromatic ring include aralkyl groups having 8 to 40 carbon atoms and groups represented by the following general formula (2) or (3).
  • R 40 is an alkylene group having 2 to 6 carbon atoms
  • R 41 is a single bond or an alkylene group having 1 to 4 carbon atoms
  • c is an integer of 0 to 3.
  • the multiple R 41s may be the same or different.
  • the above alkylene groups may be linear or branched.
  • R 42 is an alkylene group having 2 to 6 carbon atoms
  • R 43 is a single bond or an alkylene group having 1 to 4 carbon atoms
  • d is an integer of 0 to 3.
  • d is 2 or 3
  • the multiple R 43s may be the same or different.
  • the above alkylene groups may be linear or branched.
  • Examples of the aralkyl group having 8 to 40 carbon atoms include a phenylethyl group, a phenylpropyl group, a phenylbutyl group, a phenylpentyl group, a phenylhexyl group, and a naphthylethyl group.
  • the phenylethyl group and the phenylpropyl group are preferred because they are easy to produce industrially and are readily available.
  • R 40 is preferably an alkylene group having 2 to 4 carbon atoms, and c is preferably 0 or 1, and more preferably 0.
  • R 42 is preferably an alkylene group having 2 to 4 carbon atoms, and d is preferably 0 or 1, and more preferably 0.
  • the above-mentioned hydrocarbon group having an aromatic ring and a carbon number of 8 to 40 the above-mentioned aralkyl group having a carbon number of 8 to 40 and the group represented by the above-mentioned general formula (2) are preferred in that they are easy to produce industrially and are readily available, and the above-mentioned aralkyl group having a carbon number of 8 to 40 is more preferred in that it can improve water repellency.
  • the alkyl group having 8 to 40 carbon atoms may be linear or branched.
  • Examples of the alkyl group having 8 to 40 carbon atoms include octyl, nonyl, decyl, undecyl, dodecyl, myristyl, cetyl, stearyl, behenyl, hexacosyl, octacosyl, triacontyl, and dotriacontyl.
  • an alkyl group having 12 to 36 carbon atoms is preferred, and an alkyl group having 16 to 34 carbon atoms is more preferred, in terms of improving water repellency.
  • R 30 , R 31 , R 32 , R 33 , R 34 , and R 35 are each independently a hydrogen atom, a methyl group, an ethyl group, an alkoxy group having 1 to 4 carbon atoms, a hydrocarbon group having an aromatic ring and having 8 to 40 carbon atoms, or an alkyl group having 3 to 22 carbon atoms.
  • R 30 , R 31 , R 32 , R 33 , R 34 , and R 35 are each independently a hydrogen atom, a methyl group, an ethyl group, or an alkoxy group having 1 to 4 carbon atoms, and among these, a methyl group is more preferable.
  • a is an integer of 0 or more. In terms of ease of industrial production, availability, and superior peel strength, a is preferably 40 or less, and more preferably 30 or less.
  • (a+b) is 10 to 200. From the viewpoint of ease of industrial production and availability, (a+b) is preferably 20 to 100, and more preferably 40 to 60. When (a+b) is within the above range, the silicone itself tends to be easier to produce and handle.
  • Organo-modified silicones can be synthesized by conventional methods.
  • organo-modified silicones can be obtained by subjecting silicones having SiH groups to a hydrosilylation reaction with aromatic compounds and/or ⁇ -olefins having vinyl groups.
  • silicones having SiH groups include methylhydrogensilicones with a degree of polymerization of 10 to 200, or copolymers of dimethylsiloxane and methylhydrogensiloxane.
  • methylhydrogensilicones are preferred because they are easy to manufacture industrially and are readily available.
  • the aromatic compound having a vinyl group is a compound from which the hydrocarbon group having an aromatic ring and 8 to 40 carbon atoms in R 23 in the above general formula (1) is derived.
  • aromatic compounds having a vinyl group include styrene, ⁇ -methylstyrene, vinylnaphthalene, allyl phenyl ether, allyl naphthyl ether, allyl-p-cumyl phenyl ether, allyl-o-phenyl phenyl ether, allyl-tri(phenylethyl)-phenyl ether, and allyl-tri(2-phenylpropyl)phenyl ether.
  • the above ⁇ -olefin is a compound from which the alkyl group having 8 to 40 carbon atoms in R 23 in the above general formula (1) is derived.
  • the ⁇ -olefin include ⁇ -olefins having 8 to 40 carbon atoms such as 1-octene, 1-nonene, 1-decene, 1-undecene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-hexacosene (C26), 1-octacosene (C28), 1-triacontene (C30), and 1-dotriacontene (C32).
  • the hydrosilylation reaction may be carried out by reacting the silicone having a SiH group with the aromatic compound having a vinyl group and the ⁇ -olefin in a stepwise or all-at-once reaction, if necessary, in the presence of a catalyst.
  • the amounts of the silicone having a SiH group, the aromatic compound having a vinyl group, and the ⁇ -olefin used in the hydrosilylation reaction can be appropriately selected according to the SiH group equivalent weight of the silicone having a SiH group, the number average molecular weight, etc.
  • Catalysts used in hydrosilylation reactions include, for example, platinum and palladium compounds, with platinum compounds being preferred.
  • platinum compounds include platinum(IV) chloride.
  • the reaction conditions for the hydrosilylation reaction are not particularly limited and can be adjusted as appropriate.
  • the reaction temperature is, for example, 10 to 200°C, preferably 50 to 150°C.
  • the reaction time can be, for example, 3 to 12 hours when the reaction temperature is 50 to 150°C.
  • the hydrosilylation reaction is preferably carried out in an inert gas atmosphere.
  • inert gas include nitrogen and argon.
  • the reaction proceeds without a solvent, but a solvent may be used.
  • solvents include dioxane, methyl isobutyl ketone, toluene, xylene, and butyl acetate.
  • the water repellent component it is preferable to use the above acrylic compound and the above silicone compound in combination from the viewpoint of water repellency and chalk marks.
  • the mass ratio of the acrylic compound ( ⁇ ) and the silicone compound ( ⁇ ) is not particularly limited.
  • the silicone compound ( ⁇ ) when the silicone compound ( ⁇ ) is a silicone resin, the silicone compound ( ⁇ ) may occupy 1 to 99 parts by mass, assuming that the total of the acrylic compound ( ⁇ ) and the silicone compound ( ⁇ ) is 100 parts by mass. It is preferably 5 to 98 parts by mass, more preferably 10 to 97 parts by mass, and even more preferably 15 to 95 parts by mass.
  • the silicone compound ( ⁇ ) when the silicone compound ( ⁇ ) is an organo-modified silicone, the silicone compound ( ⁇ ) may occupy 10 to 90 parts by mass, assuming that the total of the acrylic compound ( ⁇ ) and the silicone compound ( ⁇ ) is 100 parts by mass. It is preferably 10 to 80 parts by mass, more preferably 15 to 70 parts by mass, and even more preferably 20 to 60 parts by mass. By keeping the proportion of silicone compound ( ⁇ ) within this range, the coating has excellent water repellency and is less likely to produce chalk marks.
  • the wax-based compound is, for example, at least one type selected from paraffin wax, microcrystalline wax, Fischer-Tropsch wax, polyethylene wax, animal and vegetable waxes, and mineral waxes. From the viewpoints of water repellency, durable water repellency, and texture, paraffin wax is preferable.
  • the wax-based compound may be, for example, one or both of a normal alkane and a normal alkene. From the viewpoints of water repellency, durable water repellency, and texture, the wax-based compound is preferably a normal alkane.
  • the normal alkane may be, for example, at least one selected from tricosane, tetracosane, pentacosane, hexacosane, heptacosane, octacosane, nonacosane, triacontane, hentriacontane, dotriacontane, tritriacontane, tetratriacontane, pentatriacontane, and hexatriacontane.
  • the normal alkane is preferably triacontane, hentriacontane, or dotriacontane.
  • the normal alkene may be, for example, at least one selected from 1-eicosene, 1-docosene, 1-tricosene, 1-tetracosene, 1-pentacosene, 1-hexacosene, 1-heptacosene, 1-octacosene, nonacosene, triacontene, hentriacontene, dotriacontene, tritriacontene, tetratriacontene, pentatriacontene, and hexatriacontene. From the viewpoints of water repellency, durable water repellency, and texture, it is preferable that the normal alkene is at least one selected from triacontene, hentriacontene, and dotriacontene.
  • the number of carbon atoms in the wax-based compound is not particularly limited, but may be 20 to 60, and from the standpoint of water repellency, durable water repellency, and texture, it is preferably 25 to 45.
  • the weight average molecular weight of the wax-based compound is not particularly limited, but may be from 300 to 850, and from the viewpoints of water repellency, durable water repellency, and texture, it is preferably from 300 to 700.
  • the melting point of the wax-based compound is preferably 35 to 90°C, more preferably 40 to 85°C, more preferably 45 to 80°C, and even more preferably 50 to 75°C.
  • the melting point of the wax-based compound refers to a value measured using the same method as JIS K2235-1991.
  • the penetration of the wax-based compound is not particularly limited, but may be, for example, 30 or less, and from the viewpoint of water repellency and durable water repellency, is preferably 20 or less, more preferably 15 or less, and even more preferably 10 or less.
  • the penetration of the wax-based compound is not particularly limited, but may be, for example, 0.1 or more, or 1 or more.
  • the penetration of the wax-based compound refers to a value measured by the same method as JIS K2235-1991.
  • the urethane-based compound is, for example, a reaction product of an aliphatic polyisocyanate derivative, a long-chain active hydrogen compound, a cationic active hydrogen compound, and an acid compound. More specifically, for example, (U1) an aliphatic polyisocyanate derivative having an average number of isocyanate groups of 2 or more; (U2) a long-chain active hydrogen compound having both a hydrocarbon group and an active hydrogen group and having from 12 to 30 carbon atoms; (U3) a cationic active hydrogen compound having both an active hydrogen group and a cationic group; (U4) an acid compound that forms a salt with a cationic group;
  • the concentration of the hydrocarbon group may be 30% or more and 85% or less.
  • the aliphatic polyisocyanate derivative may contain an isocyanurate derivative of an aliphatic polyisocyanate.
  • the cationic group may be a tertiary amino group
  • the active hydrogen group may be a hydroxyl group
  • the cationic active hydrogen compound may have two or more hydroxyl groups per molecule.
  • Examples of the aliphatic polyisocyanate constituting the aliphatic polyisocyanate derivative (U1) include aliphatic diisocyanates such as hexamethylene diisocyanate (hexane diisocyanate) (HDI), pentamethylene diisocyanate (pentane diisocyanate) (PDI), tetramethylene diisocyanate, trimethylene diisocyanate, 1,2-, 2,3- or 1,3-butylene diisocyanate, and 2,4,4- or 2,2,4-trimethylhexamethylene diisocyanate.
  • the term "aliphatic polyisocyanate” is a concept that includes alicyclic polyisocyanates.
  • alicyclic polyisocyanates include alicyclic diisocyanates such as 3-isocyanatomethyl-3,5,5-trimethylcyclohexyl isocyanate (isophorone diisocyanate, IPDI), 4,4'-, 2,4'-, or 2,2'-methylene bis(cyclohexyl isocyanate) or mixtures thereof (H12MDI), 1,3- or 1,4-bis(isocyanatomethyl)cyclohexane or mixtures thereof (H6XDI), bis(isocyanatomethyl)norbornane (NBDI), 1,3-cyclopentene diisocyanate, 1,4-cyclohexane diisocyanate, 1,3-cyclohexane diisocyanate, methyl-2,4-cyclohexane diisocyanate, and methyl-2,6-cyclohexane diisocyanate.
  • alicyclic diisocyanates such as 3-isocyanatomethyl-3,
  • the aliphatic polyisocyanate is preferably one or both of hexamethylene diisocyanate and 1,3-bis(isocyanatomethyl)cyclohexane (hereinafter simply referred to as bis(isocyanatomethyl)cyclohexane), and more preferably hexamethylene diisocyanate.
  • aliphatic polyisocyanate derivatives examples include polymers of the above-mentioned aliphatic polyisocyanates (e.g., dimers, trimers (e.g., isocyanurate derivatives, iminooxadiazinedione derivatives), pentamers, heptamers, etc.), allophanate derivatives (e.g., allophanate derivatives produced by the reaction of the above-mentioned aliphatic polyisocyanates with monohydric alcohols or dihydric alcohols), polyol derivatives (e.g., polyol derivatives produced by the reaction of the above-mentioned aliphatic polyisocyanates with trihydric alcohols (e.g., trimethylolpropane, etc.) (alcohol adducts, preferably trimethylolpropane, etc.), Pan adducts), biuret derivatives (for example, biuret derivatives produced by the reaction of the above-mentioned
  • the aliphatic polyisocyanate derivative is preferably at least one of an isocyanurate derivative, a trimethylolpropane adduct, an allophanate derivative, and a biuret derivative, and is more preferably an isocyanurate derivative.
  • an isocyanurate derivative When the aliphatic polyisocyanate derivative contains an isocyanurate derivative, the texture becomes good.
  • the aliphatic polyisocyanate derivative is more preferably at least one of an isocyanurate derivative of hexamethylene diisocyanate, a trimethylolpropane adduct of hexamethylene diisocyanate, an allophanate derivative of hexamethylene diisocyanate, a biuret derivative of hexamethylene diisocyanate, and an isocyanurate derivative of bis(isocyanatomethyl)cyclohexane, and is even more preferably an isocyanurate derivative of hexamethylene diisocyanate.
  • the aliphatic polyisocyanate derivatives may be used alone or in combination of two or more.
  • an isocyanurate derivative of hexamethylene diisocyanate is used alone, or an isocyanurate derivative of hexamethylene diisocyanate is used in combination with at least one selected from the group consisting of an isocyanurate derivative of bis(isocyanatomethyl)cyclohexane, a trimethylolpropane adduct of hexamethylene diisocyanate, an allophanate derivative of hexamethylene diisocyanate, and a biuret derivative of hexamethylene diisocyanate.
  • the mixing ratio of the isocyanurate derivative of hexamethylene diisocyanate is, for example, 60 parts by mass or more relative to 100 parts by mass of the total amount of the isocyanurate derivative of hexamethylene diisocyanate and at least one selected from the group consisting of an isocyanurate derivative of bis(isocyanatomethyl)cyclohexane, a trimethylolpropane adduct of hexamethylene diisocyanate, an allophanate derivative of hexamethylene diisocyanate, and a biuret derivative of hexamethylene diisocyanate.
  • hexamethylene diisocyanate preferably 70 parts by mass or more, and for example, 85 parts by mass or less, and the blending ratio of at least one selected from the group consisting of isocyanurate derivatives of bis(isocyanatomethyl)cyclohexane, trimethylolpropane adducts of hexamethylene diisocyanate, allophanate derivatives of hexamethylene diisocyanate, and biuret derivatives of hexamethylene diisocyanate is, for example, 15 parts by mass or more, and for example, 40 parts by mass or less, preferably 30 parts by mass or less.
  • Aliphatic polyisocyanate derivatives can be produced by known methods.
  • the average number of isocyanate groups of the aliphatic polyisocyanate derivative is 2 or more, preferably 2.5, more preferably 2.9, and for example, 3.8 or less. If the average number of isocyanate groups is equal to or greater than the lower limit, the water repellency can be further improved.
  • the average number of isocyanate groups is calculated from the isocyanate group concentration A of the aliphatic polyisocyanate derivative, the solid content concentration B, and the number average molecular weight C of gel permeation chromatography measured using the following device and conditions, according to the following formula (1). When two or more types of aliphatic polyisocyanate derivatives are used in combination, the average number of isocyanate groups is calculated from the weight ratio of the aliphatic polyisocyanate derivatives and their average number of isocyanate functional groups.
  • Average isocyanate functionality A/B ⁇ C/42.02 (1) (In the formula, A represents the isocyanate group concentration of the aliphatic polyisocyanate derivative, B represents the solid content concentration, and C represents the number average molecular weight.)
  • Apparatus HLC-8220GPC (manufactured by Tosoh) Column: TSKgel G1000HXL, TSKgel G2000HXL, and TSKgel G3000HXL (manufactured by Tosoh) connected in series Detector: differential refractometer Injection volume: 100 ⁇ L Eluent: tetrahydrofuran Flow rate: 0.8 mL/min Temperature: 40°C Calibration curve: Standard polyethylene oxide in the range of 106 to 22450 (manufactured by Tosoh Corporation, product name: TSK Standard Polyethylene Oxide)
  • Long-chain active hydrogen compounds have both a hydrocarbon group with 12 to 30 carbon atoms and an active hydrogen group that reacts with an aliphatic polyisocyanate derivative.
  • the hydrocarbon group having 12 to 30 carbon atoms may be, for example, a linear or branched saturated hydrocarbon group having 12 to 30 carbon atoms (e.g., an alkyl group, etc.), or a linear or branched unsaturated hydrocarbon group having 12 to 30 carbon atoms (e.g., an alkenyl group, etc.).
  • the active hydrogen group may be, for example, a hydroxyl group.
  • the long-chain active hydrogen compound having both a hydrocarbon group and an active hydrogen group may be, for example, at least one of a linear saturated hydrocarbon group-containing active hydrogen compound, a branched saturated hydrocarbon group-containing active hydrogen compound, a linear unsaturated hydrocarbon group-containing active hydrogen compound, and a branched unsaturated hydrocarbon group-containing active hydrogen compound.
  • the linear saturated hydrocarbon group-containing active hydrogen compound is an active hydrogen compound that contains a linear saturated hydrocarbon group having 12 to 30 carbon atoms, and examples of such compounds include linear saturated hydrocarbon group-containing alcohols such as n-tridecanol, n-tetradecanol, n-pentadecanol, n-hexadecanol, n-heptadecanol, n-octadecanol (stearyl alcohol), n-nonadecanol, and eicosanol, and linear saturated hydrocarbon group-containing sorbitan esters such as sorbitan tristearate.
  • linear saturated hydrocarbon group-containing alcohols such as n-tridecanol, n-tetradecanol, n-pentadecanol, n-hexadecanol, n-heptadecanol, n-octadecanol (stearyl alcohol), n-nonadecan
  • the branched chain saturated hydrocarbon group-containing active hydrogen compound is an active hydrogen compound that contains a branched chain saturated hydrocarbon group having 12 to 30 carbon atoms, and examples of such compounds include branched chain saturated hydrocarbon group-containing alcohols such as isomyristyl alcohol, isocetyl alcohol, isostearyl alcohol, and isoicosyl alcohol.
  • the linear unsaturated hydrocarbon group-containing active hydrogen compound is an active hydrogen compound that contains a linear unsaturated hydrocarbon group having 12 to 30 carbon atoms, and examples of such compounds include linear unsaturated hydrocarbon group-containing alcohols such as tetradecenyl alcohol, hexadecenyl alcohol, oleyl alcohol, icosenyl alcohol, docosenyl alcohol, tetracosenyl alcohol, hexacosenyl alcohol, and octacosenyl alcohol.
  • linear unsaturated hydrocarbon group-containing alcohols such as tetradecenyl alcohol, hexadecenyl alcohol, oleyl alcohol, icosenyl alcohol, docosenyl alcohol, tetracosenyl alcohol, hexacosenyl alcohol, and octacosenyl alcohol.
  • the branched unsaturated hydrocarbon group-containing active hydrogen compound is an active hydrogen compound that contains a branched unsaturated hydrocarbon group having 12 to 30 carbon atoms, and examples thereof include phytol.
  • the long-chain active hydrogen compound is preferably one or both of a linear saturated hydrocarbon group-containing active hydrogen compound and a linear unsaturated hydrocarbon group-containing active hydrogen compound.
  • the long-chain active hydrogen compound can be used alone or in combination of two or more types.
  • a linear saturated hydrocarbon group-containing active hydrogen compound When using a long-chain active hydrogen compound alone, it is preferable to use a linear saturated hydrocarbon group-containing active hydrogen compound alone, more preferably to use a linear saturated hydrocarbon group-containing alcohol alone, and even more preferably to use stearyl alcohol alone.
  • two or more long-chain active hydrogen compounds in combination it is preferable to use a linear saturated hydrocarbon group-containing active hydrogen compound in combination with a linear unsaturated hydrocarbon group-containing active hydrogen compound, more preferably to use a linear saturated hydrocarbon group-containing alcohol in combination with a linear unsaturated hydrocarbon group-containing alcohol, or to use a linear saturated hydrocarbon group-containing alcohol in combination with a linear saturated hydrocarbon group-containing sorbitan ester and a linear unsaturated hydrocarbon group-containing alcohol.
  • the blending ratio of the linear saturated hydrocarbon group-containing alcohol is, for example, 40 parts by mass or more, preferably 55 parts by mass or more, and more preferably 70 parts by mass or more, relative to 100 parts by mass of the total amount of the linear saturated hydrocarbon group-containing alcohol and the linear unsaturated hydrocarbon group-containing alcohol.
  • the blending ratio of the linear unsaturated hydrocarbon group-containing alcohol is, for example, 60 parts by mass or less, preferably 45 parts by mass or less, and more preferably 30 parts by mass or less, relative to 100 parts by mass of the total amount of the linear saturated hydrocarbon group-containing alcohol and the linear unsaturated hydrocarbon group-containing alcohol. If the blending ratio of the linear saturated hydrocarbon group-containing alcohol is equal to or more than the above lower limit, the crystallinity of the hydrocarbon group is improved, and as a result, the water repellency can be improved.
  • the blending ratio of the linear saturated hydrocarbon group-containing alcohol is, for example, 30 parts by mass or more and, for example, 60 parts by mass or less, per 100 parts by mass of the total amount of the linear saturated hydrocarbon group-containing alcohol, the linear saturated hydrocarbon group-containing sorbitan ester, and the linear unsaturated hydrocarbon group-containing alcohol.
  • the blending ratio of the linear saturated hydrocarbon group-containing sorbitan ester is, for example, 20 parts by mass or more and, for example, 50 parts by mass or less, per 100 parts by mass of the total amount of the linear saturated hydrocarbon group-containing alcohol, the linear saturated hydrocarbon group-containing sorbitan ester, and the linear unsaturated hydrocarbon group-containing alcohol.
  • the blending ratio of the linear unsaturated hydrocarbon group-containing alcohol is, for example, 10 parts by mass or more and, for example, 20 parts by mass or less, per 100 parts by mass of the total amount of the linear saturated hydrocarbon group-containing alcohol, the linear saturated hydrocarbon group-containing sorbitan ester, and the linear unsaturated hydrocarbon group-containing alcohol.
  • Cationic active hydrogen compounds have both active hydrogen groups and cationic groups. Cationic active hydrogen compounds can be used alone or in combination of two or more types.
  • the active hydrogen group is an active hydrogen group that reacts with an aliphatic polyisocyanate derivative, and examples of the active hydrogen group include hydroxyl groups.
  • the cationic active hydrogen compound preferably has two or more hydroxyl groups per molecule.
  • the cationic group may also be a tertiary amino group.
  • the cationic active hydrogen compound preferably has two or more hydroxyl groups per molecule as the active hydrogen group, and a tertiary amino group as the cationic group. More preferably, the cationic active hydrogen compound has two hydroxyl groups per molecule as the active hydrogen group, and a tertiary amino group as the cationic group.
  • Such a cationic active hydrogen compound can impart good dispersibility in water, and can also introduce cationic groups that have affinity for fibers, thereby improving washing durability.
  • Such cationic active hydrogen compounds include, for example, alkyl dialkanolamines such as N-methyldiethanolamine, N-ethyldiethanolamine, N-propyldiethanolamine, N-butyldiethanolamine, and N-methyldipropanolamine, and preferably N-methyldiethanolamine.
  • the acid compound is a compound that forms a salt with a cationic group.
  • the acid compound include one or both of an organic acid and an inorganic acid.
  • the organic acid include acetic acid, lactic acid, tartaric acid, malic acid, etc., and preferably acetic acid or lactic acid, and more preferably acetic acid.
  • the inorganic acid include hydrochloric acid, sulfuric acid, phosphoric acid, etc., and preferably hydrochloric acid.
  • the acid compound is preferably an organic acid. When the acid compound contains an organic acid, the acid is volatilized by heat treatment, which reduces the ionicity and improves water resistance, thereby improving water repellency. In addition, the acid is volatilized by heat treatment, which makes it easier for the cationic group to adsorb to the fiber, and improves washing durability.
  • the acid compounds can be used alone or in combination of two or more types.
  • the above-mentioned aliphatic polyisocyanate derivative, a long-chain active hydrogen compound, a cationic active hydrogen compound, and an acid compound are reacted to obtain a urethane-based compound as a reaction product.
  • the aliphatic polyisocyanate derivative, the long-chain active hydrogen compound, the cationic active hydrogen compound, and the acid compound first, the aliphatic polyisocyanate derivative is mixed with the long-chain active hydrogen compound, and the aliphatic polyisocyanate derivative is reacted with the long-chain active hydrogen compound.
  • the long-chain active hydrogen compound is preferably mixed so that two isocyanate groups of the isocyanurate derivative of the aliphatic polyisocyanate are modified by the long-chain active hydrogen compound to a hydrocarbon group having 12 to 30 carbon atoms, and one isocyanate group remains in the isocyanurate derivative of the aliphatic polyisocyanate, and no unreacted isocyanurate derivative of the aliphatic polyisocyanate remains.
  • the long-chain active hydrogen compound is blended with the aliphatic polyisocyanate derivative so that the equivalent ratio of isocyanate groups to active hydrogen groups (isocyanate groups/active hydrogen groups) is, for example, 1.2 or more, preferably 1.5 or more, and, for example, 2.0 or less.
  • the molecular terminals of the reaction product of the aliphatic polyisocyanate derivative and the long-chain active hydrogen compound (hereinafter referred to as the first intermediate reaction product) become hydrocarbon groups and isocyanate groups having 12 to 30 carbon atoms.
  • the above reaction is carried out under a nitrogen atmosphere.
  • the reaction conditions are, for example, a reaction temperature of 70°C to 120°C and a reaction time of 1 hour to 6 hours.
  • the above reaction is carried out until the isocyanate concentration of the first intermediate reaction product reaches a predetermined calculated value.
  • the isocyanate concentration can be measured using a potentiometric titration device by the n-dibutylamine method in accordance with JIS K-1556.
  • a known solvent such as methyl ethyl ketone can be added in an appropriate ratio.
  • a cationic active hydrogen compound is added to the reaction liquid containing the first intermediate reaction product, and the first intermediate reaction product is reacted with the cationic active hydrogen compound.
  • the cationic active hydrogen compound is added to the first intermediate reaction product so that the equivalent ratio of isocyanate groups to active hydrogen groups of the cationic active hydrogen compound (isocyanate groups/active hydrogen groups) is, for example, 0.95 or more and, for example, 1.05 or less.
  • the above reaction is carried out under a nitrogen atmosphere.
  • the reaction conditions are, for example, a reaction temperature of 70°C to 120°C and a reaction time of 0.5 to 4 hours.
  • the above reaction is carried out until the reaction between the first intermediate reaction product and the cationic active hydrogen compound is completed.
  • a known solvent such as methyl ethyl ketone can also be added in an appropriate ratio.
  • the second intermediate reaction product has a hydrocarbon group having 12 to 30 carbon atoms and a cationic group.
  • an acid compound is mixed with the second intermediate reaction product.
  • the mixing ratio of the acid compound is, for example, 0.5 moles or more, preferably 3 moles or more, and for example, 10 moles or less, preferably 4 moles or less, per mole of the cationic group of the cationic active hydrogen compound.
  • the acid compound forms a salt with the cationic group of the second intermediate reaction product, and a reaction liquid containing a reaction product (i.e., a urethane-based compound) of the aliphatic polyisocyanate derivative, the long-chain active hydrogen compound, the cationic active hydrogen compound, and the acid compound is obtained.
  • the above reaction product has a hydrocarbon group having a carbon number of 12 to 30 and has a cationic group.
  • the above reaction product since the above reaction product has a hydrocarbon group having a carbon number of 12 to 30, it can self-disperse (self-emulsify) in water without relying on a dispersant (emulsifier). In other words, the above reaction product can be internally emulsified.
  • aqueous dispersion containing the above-mentioned reaction product (i.e., a urethane-based compound).
  • the solids concentration of the aqueous dispersion is, for example, 10% by mass or higher and, for example, 30% by mass or lower.
  • urethane compounds are reaction products obtained using long-chain active hydrogen compounds, they have excellent water repellency, oil repellency, oil resistance, and stain resistance. Furthermore, since such urethane compounds are reaction products obtained using cationic active hydrogen compounds, they have improved affinity with fibers, resulting in excellent washing durability for fibers.
  • the concentration of the hydrocarbon group is 30% or more and 85% or less, preferably 50%. If the concentration of the hydrocarbon group is equal to or more than the above-mentioned lower limit, the water repellency can be improved. If the concentration of the hydrocarbon group is equal to or less than the above-mentioned upper limit, the stability of the urethane-based compound can be improved.
  • the concentration of the hydrocarbon group can be calculated from the amount of each component charged.
  • the aliphatic polyisocyanate derivative is reacted with a long-chain active hydrogen compound to obtain a reaction liquid containing a first intermediate reaction product, then the first intermediate reaction product is reacted with a cationic active hydrogen compound to obtain a reaction liquid containing a second intermediate reaction product, and then the second intermediate reaction product is reacted with an acid compound.
  • the order of the reactions is not particularly limited, and for example, the aliphatic polyisocyanate derivative can be reacted with a cationic active hydrogen compound, and then the long-chain active hydrogen compound can be reacted with an acid compound.
  • the aliphatic polyisocyanate derivative, the long-chain active hydrogen compound, the cationic active hydrogen compound, and the acid compound can be mixed together and reacted.
  • the dendrimer-based compounds may be, for example, dendritic polymer compounds having a structure that is radially and regularly branched from the center. In order to obtain water repellency, the dendritic polymer compounds may have linear or branched hydrocarbon groups having one or more carbon atoms at the terminal branches.
  • the dendritic polymer compound for example, the "apolymerextender" disclosed in International Publication WO 2014/160906 can be used.
  • a compound obtained by reacting at least one isocyanate group-containing compound selected from isocyanate, diisocyanate, polyisocyanate, or a mixture thereof with at least one isocyanate-reactive compound selected from the following formula (Ia), (Ib), or (Ic) can be used.
  • R 50 is each independently -H, R 51 , -C(O)R 51 , -(CH 2 CH 2 O) n (CH(CH 3 )CH 2 O) m R 52 , or -(CH 2 CH 2 O) n (CH(CH 3 )CH 2 O) m C(O)R 51 , each n is independently 0 to 20, each m is independently 0 to 20, and m + n exceeds 0.
  • Each R 51 is independently a linear or branched alkyl group having 5 to 29 carbon atoms which may contain one or more unsaturated bonds
  • each R 52 is independently -H or a linear or branched alkyl group having 6 to 30 carbon atoms which may contain one or more unsaturated bonds.
  • R 50 or R 52 is —H.
  • R 53 is independently -H, -R 51 , -C(O)R 51 , -(CH 2 CH 2 O(CH(CH 3 )CH 2 O) m R 52 , or -(CH 2 CH 2 O(CH(CH 3 )CH 2 OC(O)R 51
  • R 54 is independently -H, or a linear or branched alkyl group having 6 to 30 carbon atoms which may contain one or more unsaturated bonds, -(CH 2 CH 2 O) n' (CH(CH 3 )CH 2 O) m' R 52 , or -(CH 2 CH 2 O(CH(CH 3 )CH 2 OC(O)R 51 , each n' is independently 0 to 20, each m' is independently 0 to 20, and m+n is greater than 0.
  • R 52 , R 53 and R 54 is —H.
  • R 55 is -H, -C(O)R 51 , or -CH 2 C[CH 2 OR 50 ] 3 .
  • At least one of R 55 or R 50 is —H.
  • the isocyanate group-containing compound is not particularly limited, and examples thereof include aliphatic polyisocyanates, alicyclic polyisocyanates, aromatic polyisocyanates, and modified polyisocyanates such as dimers and trimers thereof.
  • Commercially available products such as "DESMODURN-100” (product name, manufactured by Bayer), "Duranate THA-100” (product name, manufactured by Asahi Kasei Corporation), and “Duranate 24A-100” (product name, manufactured by Asahi Kasei Corporation) can be used.
  • the reaction can be carried out, for example, at 80°C for 1 hour or more.
  • polyisocyanates examples include polyisocyanate monomers and polyisocyanate derivatives.
  • Polyisocyanate refers to an isocyanate compound having multiple isocyanate groups in the compound molecule.
  • diisocyanate compound refers to an isocyanate compound having two isocyanate groups in the compound molecule.
  • the polyisocyanate monomer is not particularly limited, and examples thereof include aromatic polyisocyanates, araliphatic polyisocyanates, aliphatic polyisocyanates, and alicyclic polyisocyanates. These polyisocyanate monomers can be used alone or in combination of two or more types.
  • the polyisocyanate derivative is not particularly limited, and examples thereof include polymers of polyisocyanate monomers (e.g., dimers, trimers (e.g., isocyanurate modified products, iminooxadiazinedione modified products), pentamers, heptamers, etc.), allophanate modified products (e.g., allophanate modified products produced by further adding an isocyanate group of a polyisocyanate monomer to a urethane group formed by the reaction of the above-mentioned polyisocyanate monomer with a low molecular weight polyol described later), adducts (e.g., adducts (alcohol adducts) produced by the reaction of a polyisocyanate monomer with a low molecular weight polyol described later), biuret modified products (e.g., , biuret modified products produced by the reaction of the above-mentioned polyisocyanate monomer with water or amine
  • the non-fluorinated water repellent composition contains an alicyclic polyisocyanate as a polyisocyanate.
  • the alicyclic polyisocyanate include 1,3-cyclopentane diisocyanate, 1,3-cyclopentene diisocyanate, cyclohexane diisocyanate (1,4-cyclohexane diisocyanate, 1,3-cyclohexane diisocyanate), 3-isocyanatomethyl-3,5,5-trimethylcyclohexyl isocyanate (isophorone diisocyanate) (IPDI), methylene bis(cyclohexyl isocyanate) (4,4'-, 2,4'- or 2,2'-methylene bis(cyclohexyl isocyanate), trans, trans thereof, and the like.
  • the isocyanate may be at least one selected from the group consisting of methyl cyclohexane diisocyanate (methyl-2,4-cyclohexane diisocyanate, methyl-2,6-cyclohexane diisocyanate), norbornane diisocyanate (various isomers or mixtures thereof) (NBDI), bis(isocyanatomethyl)cyclohexane (1,3- or 1,4-bis(isocyanatomethyl)cyclohexane or mixtures thereof) (H6XDI, hydrogenated XDI), and the like.
  • NBDI norbornane diisocyanate
  • H6XDI bis(isocyanatomethyl)cyclohexane (1,3- or 1,4-bis(isocyanatomethyl)cyclohexane or mixtures thereof)
  • the (B) alicyclic polyisocyanate is preferably at least one of isophorone diisocyanate (IPDI), hydrogenated MDI, and hydrogenated XDI, more preferably at least one of isophorone diisocyanate (IPDI) and hydrogenated MDI, and even more preferably isophorone diisocyanate (IPDI).
  • the alicyclic polyisocyanate is preferably a polymer of the above-mentioned monomers.
  • the alicyclic polyisocyanate is a trimer
  • the abrasion resistance and water repellency are more likely to be improved.
  • the alicyclic polyisocyanate is a trimer
  • the initial Bundesmann and abrasion resistance Bundesmann are more improved.
  • the polyisocyanate may be composed of only the above-mentioned alicyclic isocyanate, or may be a combination of an alicyclic isocyanate and another polyisocyanate. Alternatively, the alicyclic isocyanate may be reacted with another isocyanate.
  • the non-fluorinated water repellent composition may contain an aliphatic polyisocyanate in addition to the alicyclic polyisocyanate (B).
  • the aliphatic polyisocyanate may be at least one selected from, for example, trimethylene diisocyanate, 1,2-propylene diisocyanate, butylene diisocyanate (tetramethylene diisocyanate, 1,2-butylene diisocyanate, 2,3-butylene diisocyanate, 1,3-butylene diisocyanate), 1,5-pentamethylene diisocyanate (PDI), 1,6-hexamethylene diisocyanate (HDI), 2,4,4- or 2,2,4-trimethylhexamethylene diisocyanate, 2,6-diisocyanate methylcaproate, lysine diisocyanate, dimer acid diisocyanate, and the like.
  • 1,6-hexamethylene diisocyanate 1,2-propylene diisocyanate
  • the non-fluorinated water repellent composition may contain an aromatic polyisocyanate in addition to the alicyclic polyisocyanate (B).
  • the aromatic polyisocyanate may be at least one selected from, for example, tolylene diisocyanate (2,4- or 2,6-tolylene diisocyanate or a mixture thereof) (TDI), phenylene diisocyanate (m-, p-phenylene diisocyanate or a mixture thereof), 4,4'-diphenyl diisocyanate, 1,5-naphthalene diisocyanate (NDI), diphenylmethane diisocyanate (4,4'-, 2,4'-, or 2,2'-diphenylmethane diisocyanate or a mixture thereof) (MDI), 4,4'-toluidine diisocyanate (TODI), 4,4'-diphenyl ether diisocyanate, and the like.
  • TKI tolylene diisocyanate
  • the non-fluorinated water repellent composition may contain an araliphatic polyisocyanate in addition to the alicyclic polyisocyanate (B).
  • the araliphatic polyisocyanate may be at least one selected from, for example, xylylene diisocyanate (1,3- or 1,4-xylylene diisocyanate or a mixture thereof) (XDI), tetramethyl xylylene diisocyanate (1,3- or 1,4-tetramethyl xylylene diisocyanate or a mixture thereof) (TMXDI), ⁇ , ⁇ '-diisocyanato-1,4-diethylbenzene, and the like.
  • the non-fluorine-based water repellent composition may contain at least one of an aliphatic polyisocyanate, an aromatic polyisocyanate, and an araliphatic polyisocyanate in addition to the alicyclic polyisocyanate (B).
  • the mass ratio of the alicyclic polyisocyanate to the other polyisocyanates may be 99/1 to 1/99, 95/5 to 5/95, 90/10 to 10/90, or 85/15 to 25/75.
  • the above polyisocyanate may be blocked with a blocking agent.
  • the blocked polyisocyanate can be obtained by reacting the above polyisocyanate with a blocking agent.
  • the blocking agent may be used alone or in combination of two or more.
  • the blocking agent may be, for example, a compound having one or more active hydrogen atoms in the molecule.
  • the blocking agent may be, for example, at least one selected from alcohol compounds, alkylphenol compounds, phenol compounds, active methylene compounds, mercaptan compounds, acid amide compounds, acid imide compounds, imidazole compounds, imidazoline compounds, triazole compounds, carbamic acid compounds, urea compounds, oxime compounds, amine compounds, imide compounds, imine compounds, pyrazole compounds, and bisulfites.
  • At least one selected from acid amide compounds, active methylene compounds, oxime compounds, and pyrazole compounds is preferred, for example, at least one selected from ⁇ -caprolactam, acetylacetone, diethyl malonate, methyl ethyl ketone oxime, cyclohexanone oxime, 3-methylpyrazole, and 3,5-dimethylpyrazole is preferred, and among them, one or both of dimethylpyrazole and malonic acid diester are more preferred from the viewpoint of washing durability and water repellency.
  • the above polyisocyanates may or may not have self-emulsifying property. From the viewpoint of initial water pressure resistance, polyisocyanates without self-emulsifying property are more preferable than those with self-emulsifying property. Examples of polyisocyanates with self-emulsifying property include polyisocyanates with nonionic hydrophilic groups, cationic hydrophilic groups, and anionic hydrophilic groups introduced into a part of the polyisocyanate. From the viewpoint of water repellency, polyisocyanates with nonionic hydrophilic groups having oxyethylene groups can be preferably used.
  • the non-fluorinated water repellent composition may contain the above-mentioned non-fluorinated water repellent component and alicyclic polyisocyanate, and may further contain other components.
  • the non-fluorinated water repellent composition according to one embodiment may contain an aqueous medium, an emulsifier, etc.
  • the non-fluorinated water repellent composition may contain an aqueous medium.
  • the aqueous medium may be water or a mixture of water and an organic solvent.
  • the amount of the organic solvent may be, for example, 0.1% by mass or more and 30% by mass or less, or 0.1% by mass or more and 10% by mass or less, relative to the aqueous medium. It is preferable that the aqueous medium consists of water only.
  • the amount of the aqueous medium may be 30 to 99% by mass, or 50 to 90% by mass, with the entire non-fluorinated water repellent composition being 100% by mass.
  • the non-fluorinated water repellent composition may contain an emulsifier to improve the dispersibility of the composition in an aqueous medium.
  • the emulsifier may be at least one selected from a nonionic surfactant, a cationic surfactant, an anionic surfactant, and an amphoteric surfactant.
  • the emulsifier is preferably a nonionic surfactant alone, or a combination of a nonionic surfactant and a cationic surfactant.
  • the mass ratio of the nonionic surfactant to the cationic surfactant may be, for example, 99.5:0.5 to 50:50, or 99:1 to 90:10.
  • nonionic surfactants include polyoxyethylene alkyl ethers, polyoxyethylene alkylphenyl ethers, polyoxyethylene fatty acid esters, sorbitan fatty acid esters, polyoxyethylene sorbitan fatty acid esters, polyoxyethylene sorbitol fatty acid esters, glycerin fatty acid esters, polyoxyethylene glycerin fatty acid esters, polyglycerin fatty acid esters, sucrose fatty acid esters, polyoxyethylene alkylamines, polyoxyethylene fatty acid amides, fatty acid alkylol amides, alkyl alkanol amides, acetylene glycol, oxyethylene adducts of acetylene glycol, polyethylene glycol polypropylene glycol block copolymers, etc.
  • anionic surfactants include sulfate ester salts of higher alcohols, higher alkyl sulfonates, higher carboxylate salts, alkylbenzene sulfonates, polyoxyethylene alkyl sulfate salts, polyoxyethylene alkyl phenyl ether sulfate salts, vinyl sulfosuccinate, polyoxyalkylene alkyl ether phosphates, etc.
  • cationic surfactants include amine salts, amidoamine salts, quaternary ammonium salts, and imidazolinium salts, etc.
  • alkylamine salts include, but are not limited to, alkylamine salts, polyoxyethylene alkylamine salts, alkylamide amine salts, amino alcohol fatty acid derivatives, polyamine fatty acid derivatives, amine salt surfactants such as imidazoline, alkyl trimethyl ammonium salts, dialkyl dimethyl ammonium salts, alkyl dimethyl benzyl ammonium salts, alkyl pyridinium salts, alkyl isoquinolinium salts, quaternary ammonium salt surfactants such as benzethonium chloride, etc.
  • alkylamine salts such as imidazoline, alkyl trimethyl ammonium salts, dialkyl dimethyl ammonium salts, alkyl dimethyl benzyl ammonium salts, alkyl pyridinium salts, alkyl isoquinolinium salts, quaternary ammonium salt surfactants such as benzethonium chloride, etc.
  • amphoteric surfactants include alkylamine oxides, alanines, imidazolinium betaines, amido betaines, and betaine acetate, and more specifically, long-chain amine oxides, lauryl betaine, stearyl betaine, lauryl carboxymethyl hydroxyethyl imidazolinium betaine, lauryl dimethyl amino acetate betaine, fatty acid amido propyl dimethyl amino acetate betaine, etc.
  • the amount of these surfactants used is not particularly limited, but is preferably 1 to 20% by mass, more preferably 1.5 to 10% by mass, of the solid content of the emulsion.
  • the hydrophilic-lipophilic balance (HLB) of the emulsifier is not particularly limited.
  • the average HLB of the nonionic emulsifier in the non-fluorinated water repellent composition according to one embodiment is preferably 6.0 to 16.0, 6.5 to 15.5, 7.0 to 15.0, or 7.5 to 14.5. If the HLB is outside this range, the initial Heilmann, Farbmann after abrasion, and initial water pressure resistance tend to decrease.
  • the ratio of the non-fluorine-based water repellent component to the crosslinking component (polyisocyanate) in the solid content contained in the composition is preferably 20 to 90% by mass of the non-fluorine-based water repellent component and 10 to 80% by mass of the crosslinking component.
  • the non-fluorine-based water repellent component is 30 to 85% by mass
  • the crosslinking component is 15 to 70% by mass, even more preferably, the non-fluorine-based water repellent component is 40 to 80% by mass
  • the crosslinking component is 20 to 60% by mass, and particularly preferably, the non-fluorine-based water repellent component is 55 to 80% by mass
  • the crosslinking component is 20 to 45% by mass.
  • the particle size in the aqueous emulsion is not particularly limited, but the average particle size is preferably 10 ⁇ m or less, more preferably 1 ⁇ m or less, and particularly preferably 50 to 500 nm. If the average particle size is too large, the stability of the emulsion tends to decrease.
  • the average particle size is measured by a laser diffraction/scattering type particle size distribution measuring device, and means the particle size (median particle size) at a percentage integrated value (volume basis) of 50%.
  • the non-fluorine-based water repellent composition can be obtained by mixing the non-fluorine-based water repellent component and the polyisocyanate.
  • the ratio of the non-fluorine-based water repellent component to the polyisocyanate in the non-fluorine-based water repellent composition can be the preferred ratio described above.
  • the non-fluorine-based water repellent composition may be, for example, a one-component type in which the non-fluorine-based water repellent component and the polyisocyanate are premixed, or a two-component type in which one component contains at least one of the above components and one component contains the other component. From the viewpoint of ease of handling, it is preferable that the non-fluorine-based water repellent composition has each component dispersed (including emulsified and dissolved) in an aqueous medium.
  • a one-component non-fluorinated water repellent composition containing each component can be obtained, for example, by simultaneously dispersing (including emulsifying and dissolving) each component in an aqueous medium, or by mixing a dispersion in which at least one of the components is dispersed in an aqueous medium with a dispersion in which the other component is dispersed in an aqueous medium.
  • a method for dispersing each of the above components in an aqueous medium can be, for example, mixing and stirring each component with the aqueous medium and, if necessary, a dispersant.
  • a conventionally known emulsifying and dispersing machine such as a Milder, high-speed agitator, homogenizer, ultrasonic homogenizer, homomixer, bead mill, pearl mill, dyno mill, aspek mill, basket mill, ball mill, nanomizer, 8%zer, or starburst may be used.
  • emulsifying and dispersing machines can be used alone or in combination of two or more types.
  • aqueous media and emulsifiers are as described above.
  • the non-fluorinated water repellent composition prepared as a dispersion as described above may be used as a treatment liquid as is, or may be further diluted with an aqueous medium or a hydrophobic organic solvent to prepare a treatment liquid.
  • the non-fluorinated water repellent composition of the present disclosure may be produced, for example, by the following procedure.
  • a polyisocyanate is reacted with a hydrophilic compound capable of reacting with an isocyanate group of the polyisocyanate, and a blocking agent capable of reacting with an isocyanate group of the polyisocyanate until the NCO content becomes 0%, to obtain a blocked isocyanate.
  • a non-fluorine-based water-repellent component and water are added to and mixed with the liquid containing the blocked isocyanate obtained in (I) above to obtain an emulsion.
  • the organic solvent is optionally removed from the emulsion obtained in (II) above to obtain an aqueous emulsion.
  • the polyisocyanate may be any of those mentioned above, and the hydrophilic compound capable of reacting with the isocyanate group may be polyethylene glycol monoalkyl ether or the like.
  • the reaction between the polyisocyanate and the hydrophilic compound or blocking agent may be carried out by a known method, and may be carried out regardless of the presence or absence of a solvent. When a solvent is used, it is necessary to use a solvent that is inactive against the isocyanate group.
  • an organic metal salt of tin, zinc, lead, or the like, a metal alcoholate, a tertiary amine, or the like may be used as a catalyst.
  • the blocking reaction can generally be carried out at -20 to 150°C, but preferably 0 to 100°C. If the temperature exceeds 150°C, a side reaction may occur, and if the temperature is too low, the reaction rate becomes slow, which is disadvantageous.
  • 50 mol% or more of the isocyanate group may be blocked with the blocking agent, preferably 75 mol% or more, and particularly preferably 90 mol% or more.
  • the hydrophilic compound is introduced in an amount of 1 to 50 mol% relative to the isocyanate group.
  • the blocked isocyanate has self-emulsifying properties, and a water-repellent treatment agent containing a water-repellent component and a crosslinking component in one particle can be obtained without using a surfactant or with a small amount of surfactant. It is preferable to carry out the reaction in step (I) until the NCO content becomes 0%.
  • the NCO content can be measured by a known method such as the method described in JIS K6806:2003, 5.10 NCO content, and 0% may be a level at which it is judged that substantially all of the NCO groups have disappeared, and may be below the detection limit in a known measurement method or in a range that is considered to be equivalent thereto.
  • solvent for the above reaction system examples include acetone, methyl ethyl ketone, methyl isobutyl ketone, ethyl acetate, n-butyl acetate, cellosolve acetate, toluene, etc. These solvents can be used alone or in combination of two or more.
  • the water-repellent component may be any of those mentioned above.
  • An organic solvent may be added together with the water-repellent component. It is preferable to add water after confirming that the reaction liquid (liquid containing blocked isocyanate) of step (I), the water-repellent component, and the organic solvent are uniformly mixed. An emulsion can be obtained by stirring while adding water dropwise.
  • the method for removing the organic solvent from the emulsion may be appropriately selected from known methods, for example, evaporation under reduced pressure.
  • the non-fluorinated water repellent composition of the present disclosure further comprises: (a) reacting a polyisocyanate with a blocking agent capable of reacting with an isocyanate group of the polyisocyanate until the NCO content becomes 0%, thereby obtaining a blocked isocyanate; (b) adding a water-repellent component, a surfactant, and water to the liquid containing the blocked isocyanate obtained in the step (a) and mixing them to obtain an emulsion; and (c) removing the organic solvent from the emulsion obtained in the step (b) to obtain an aqueous emulsion;
  • the water repellent treatment agent can also be obtained by a method for producing the water repellent treatment agent, which includes the steps of:
  • the polyisocyanate and blocking agent used in the above step (a) are as described above.
  • the NCO content can be measured by a known method such as the method described in JIS K6806:2003, 5.10 NCO content, and 0% is sufficient if it is determined that substantially all NCO groups have disappeared, and may be below the detection limit in a known measurement method or in a range that is considered to be equivalent thereto.
  • the solvent used in the reaction system is not particularly limited as long as it is possible to uniformly proceed with the reaction in the reaction system, and for example, the same solvent as that used in the above step (I) can be used.
  • the water-repellent component and the surfactant may be the same as those mentioned above.
  • An organic solvent may be added together with the water-repellent component.
  • the surfactant may be dissolved or dispersed in water beforehand and added by a method such as dropwise addition, or may be dissolved or dispersed in the organic solvent together with the water-repellent component beforehand.
  • a known emulsifying device may be used for mixing, such as a homomixer, homogenizer, colloid mill, or line mixer.
  • the mixed solution of the water-repellent component and the crosslinking component is forcibly emulsified using a surfactant, so that the emulsion contains both the water-repellent component and the crosslinking component in one particle, resulting in a hybrid emulsion.
  • the method for removing the organic solvent from the emulsion may be appropriately selected from known methods, for example, evaporation under reduced pressure.
  • the non-fluorinated water repellent composition of the present disclosure can impart water repellency (abrasion-resistant water repellency) to textile products during actual use, for example.
  • water repellency abrasion-resistant water repellency
  • the non-fluorinated water repellent composition of the present disclosure may be able to impart excellent abrasion-resistant water repellency to various articles other than textile products.
  • a method for producing a water-repellent textile product includes treating textiles with a treatment liquid containing the non-fluorinated water repellent composition of the present disclosure. Through this process, a water-repellent textile product is obtained.
  • the fiber material is not particularly limited, and examples thereof include natural fibers such as cotton, linen, silk, and wool; semi-synthetic fibers such as rayon and acetate; synthetic fibers such as nylon, polyester, polyurethane, polypropylene, and acrylic; and composite and blended fibers of these.
  • the form of the fiber is not particularly limited, and is not limited to raw material forms such as staple, filament, tow, and thread, but may be in any form such as woven fabric, knitted fabric, wadding, nonwoven fabric, paper, sheet, and film.
  • the fiber may be a textile product.
  • Methods for treating fibers with the treatment liquid include, for example, immersion, spraying, coating, and other processing methods.
  • the non-fluorine-based water repellent composition contains water, it is preferable to dry the composition after it has been applied to the fibers in order to remove the water.
  • the amount of non-fluorine-based water repellent composition applied to the fiber can be adjusted as appropriate depending on the level of water repellency required, but it is preferable to adjust the amount of non-fluorine-based water repellent composition applied to 100 g of fiber to 0.1 to 5 g, and more preferably 0.1 to 3 g. If the amount of non-fluorine-based water repellent composition applied is too small, the fiber will tend not to exhibit sufficient water repellency, and if it is too large, the texture of the fiber will tend to become rough and hard, and it will also be economically disadvantageous.
  • the treatment with the treatment liquid may be performed by a continuous method or a batch method.
  • the water repellent composition is first diluted with water to prepare the treatment liquid.
  • the treated object textile product
  • the treated object is continuously sent to an impregnation device filled with the treatment liquid, and the treated object is impregnated with the treatment liquid, and then unnecessary treatment liquid is removed.
  • the impregnation device is not particularly limited, and a padder, a kiss roll type application device, a gravure coater type application device, a spray type application device, a foam type application device, a coating type application device, etc. can be preferably used, and a padder type is particularly preferred.
  • an operation is performed to remove the water remaining in the treated object using a dryer.
  • the dryer is not particularly limited, and a hot flue, a tenter, or other spread dryer is preferred.
  • the continuous method is preferably used when the treated object is in the form of a fabric such as a woven fabric.
  • the batch method includes, for example, a process of immersing the treated object in the treatment liquid and a process of removing the water remaining in the treated object after the treatment.
  • the batch method is preferably used when the object to be treated is not in the form of a fabric, for example, loose fibers, tops, slivers, skeins, tows, yarns, etc., or when the object is not suitable for the continuous method, such as knitted fabrics.
  • a cotton dyeing machine, a cheese dyeing machine, a liquid jet dyeing machine, an industrial washing machine, a beam dyeing machine, etc. can be used.
  • a hot air dryer such as a cheese dryer, a beam dryer, a tumble dryer, a high frequency dryer, etc.
  • the temperature of the dry heat treatment is preferably 100 to 200°C, particularly preferably 120 to 180°C.
  • the time of the dry heat treatment is preferably 10 seconds to 3 minutes, particularly preferably 1 to 2 minutes.
  • the method of dry heat treatment is not particularly limited, but when the object to be treated is in the form of a fabric, a tenter is preferable.
  • water-repellent textile products have excellent abrasion resistance and water repellency, they are ideally suited for a variety of uses, including clothing and non-clothing items, such as down jacket coverings, coats, blousons, windbreakers, blouses, dress shirts, skirts, slacks, gloves, hats, futon coverings, futon drying covers, curtains, and tents.
  • clothing and non-clothing items such as down jacket coverings, coats, blousons, windbreakers, blouses, dress shirts, skirts, slacks, gloves, hats, futon coverings, futon drying covers, curtains, and tents.
  • the mixed liquid was irradiated with ultrasonic waves to emulsify and disperse all the monomers.
  • 0.2 parts by mass of azobis (isobutylamidine) dihydrochloride was added to the dispersion, and under a nitrogen atmosphere, 4.0 parts by mass of vinyl chloride was continuously pressed into the autoclave so that the internal pressure of the autoclave was maintained at 0.3 MPa, and radical polymerization was performed at 60 ° C. for 6 hours to obtain a dispersion containing 20% by mass of acrylic resin.
  • the inside of the kettle was heated to 120°C, and an addition reaction was carried out for 6 hours to obtain an alkyl-modified silicone in which R 20 , R 21 and R 22 are CH 3 , R 23 is C 26 H 53 , a is 60, b is 90, a:b is 2:3, and R 30 to R 35 are CH 3 in the above formula (1).
  • Completion of the addition reaction was confirmed by subjecting the resulting alkyl-modified silicone to Fourier transform infrared (FT-IR) spectroscopic analysis and confirming that the absorption spectrum derived from the SiH group of the methylhydrogen silicone had disappeared.
  • FT-IR Fourier transform infrared
  • the inside of the kettle was heated to 120°C, and an addition reaction was carried out for 6 hours to obtain an alkyl-modified silicone in which R 20 , R 21 , and R 22 are CH 3 , R 23 is C 32 H 65 , a is 140, b is 60, a:b is 7.3, and R 30 to R 35 are CH 3 in the above formula (1).
  • Completion of the addition reaction was confirmed by subjecting the resulting alkyl-modified silicone to Fourier transform infrared (FT-IR) spectroscopic analysis and confirming that the absorption spectrum derived from the SiH group of the methylhydrogen silicone had disappeared.
  • FT-IR Fourier transform infrared
  • compositions of Preparation Examples A-4 to A-6 and the average HLB of the nonionic surfactants are summarized in Table 2 below.
  • the nonionic surfactants are SPAN65: HLB 2.1 (manufactured by Croda), Noigen XL-160: HLB 16.3 (manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), and NIKKOL BC-30: HLB 19.5 (manufactured by Nikko Chemicals Co., Ltd.).
  • Noigen XL-40 is as described above.
  • this reaction mixture was passed through a thin-film distillation apparatus (temperature 150°C, degree of vacuum 93.3 Pa) and distilled until the amount of remaining HDI monomer was 0.5% or less, thereby obtaining an aliphatic polyisocyanate derivative (isocyanurate derivative of hexamethylene diisocyanate).
  • the obtained aliphatic polyisocyanate derivative had an isocyanate group content of 20.9% and an average number of isocyanate functional groups of 3.0.
  • methyl ethyl ketone 50 parts by mass of methyl ethyl ketone was added as a solvent and reacted at 80°C until it was confirmed by infrared absorption spectrum that the isocyanate group had disappeared.
  • MEK methyl ethyl ketone
  • Preparation Example B-2 DMP Blocked IPDI Trimer
  • 150 parts by mass (NCO equivalent: 0.62 mol) of Vestanat 1890/100 isophorone diisocyanate trimer, manufactured by Evonik, NCO group content: 17.3%, NV: 100%
  • DMP dimethylpyrazole
  • Preparation Example B-3 DMP blocked IPDI trimer
  • 150 parts by mass (NCO equivalent: 0.62 mol) of Vestanat 1890/100 isophorone diisocyanate trimer, manufactured by Evonik, NCO group content: 17.3%, NV: 100%
  • DMP dimethylpyrazole
  • Preparation Example B-4 DMP blocked IPDI trimer
  • 150 parts by mass (NCO equivalent: 0.62 mol) of Vestanat 1890/100 isophorone diisocyanate trimer, manufactured by Evonik, NCO group content: 17.3%, NV: 100%
  • DMP dimethylpyrazole
  • Preparation Example B-6 MEKO blocked IPDI trimer
  • polyisocyanate 150 parts by mass (NCO equivalent: 0.62 mol) of Vestanat 1890/100 (isophorone diisocyanate trimer, manufactured by Evonik, NCO group content: 17.3%, NV: 100%) was used.
  • the blocking agent 54.0 parts by mass (0.62 mol) of 2-Butanone Oxime (methyl ethyl ketoxime, MEKO, Tokyo Chemical Industry) was used. The same preparation as in Preparation Example B-1 was used.
  • Preparation Example B-8 DMP Blocked Product of Hydrogenated MDI Monomer
  • polyisocyanate 167 parts by mass (NCO equivalent: 1.27 mol) of dicyclohexylmethane 4,4'-diisocyanate (hydrogenated MDI monomer, Tokyo Chemical Industry, NCO group content: 32.0%, NV: 90%) and 122 parts by mass (1.27 mol) of dimethylpyrazole (DMP) were used as the blocking agent, but the same preparation as in Preparation Example B-1 was used.
  • NCO equivalent 1.27 mol
  • DMP dimethylpyrazole
  • Preparation Example B-9 DMP blocked product of HDI monomer Except for using 150 parts by mass (NCO equivalent: 1.78 mol) of hexamethylene diisocyanate (hexamethylene diisocyanate monomer, Tokyo Chemical Industry Co., Ltd., NCO group content: 49.9%, NV: 100%) as the polyisocyanate and 171 parts by mass (1.78 mol) of dimethylpyrazole (DMP) as the blocking agent, it was prepared in the same manner as in Preparation Example B-1.
  • NCO equivalent 1.78 mol
  • DMP dimethylpyrazole
  • Preparation Example B-10 DMP Blocked HDI Trimer (Biuret Type)
  • DMP dimethylpyrazole
  • Preparation Example B-11 DMP Blocked Product of HDI Trimer (Isocyanurate Type)
  • polyisocyanate 150 parts by mass (NCO equivalent: 0.825 mol) of Duranate TPA-100 (isocyanurate type of hexamethylene diisocyanate, Asahi Kasei, NCO group content: 23.1%, NV: 100%) and 79.3 parts by mass (0.825 mol) of dimethylpyrazole (DMP) were used as the blocking agent, except that it was prepared in the same manner as in Preparation Example B-1.
  • NCO equivalent 0.825 mol
  • DMP dimethylpyrazole
  • Preparation Example B-12 MEKO Blocked HDI Trimer (Isocyanurate Type)
  • the polyisocyanate 150 parts by mass (NCO equivalent: 0.825 mol) of Duranate TPA-100 (isocyanurate type of hexamethylene diisocyanate, Asahi Kasei, NCO group content: 23.1%, NV: 100%) and 71.87 parts by mass (0.825 mol) of 2-Butanone Oxime (methyl ethyl ketoxime, MEKO, Tokyo Kasei) were used as the blocking agent. Except for this, the same preparation as in Preparation Example B-1 was used.
  • DMP dimethylpyrazole
  • the emulsion of Preparation Example B-15 is a hybrid emulsion containing silicone and blocked isocyanate, which are water-repellent components, in a ratio of 59:41 (parts by mass).
  • IPDI trimer In a reactor equipped with a stirrer, a thermometer, a cooler, and a nitrogen gas inlet tube, 150 parts by mass (NCO equivalent: 0.62 mol) of isophorone diisocyanate trimer (IPDI trimer) (Vestanat 1890/100, manufactured by Evonik, NCO group content: 17.3%, NV: 100%) as a polyisocyanate and propylene glycol diacetate (Dowanol (registered trademark) PGDA, Ando Parachemie Co., Ltd.) as a solvent were mixed at room temperature to completely dissolve the polyisocyanate, thereby obtaining a PGDA solution of IPDI trimer.
  • IPDI trimer isophorone diisocyanate trimer
  • Uniox M-2000 polyethylene glycol monomethyl ether with average molecular weight of 2000, manufactured by NOF Corporation, solid content 100%
  • 0.001 parts by mass of diazabicycloundecene and 4.5 parts by mass of acetone were added and reacted at 60 ° C. for 2 hours, and it was confirmed that the NCO content became 0%, and the mixture was cooled with water to 40 ° C.
  • WACKER FINISH WR 301 amino-modified silicone, manufactured by Asahi Kasei Wacker Silicone Co., Ltd., amine equivalent 3700, solid content 100%
  • acetone 24.1 parts by mass of acetone
  • 110 parts by mass of ion-exchanged water was slowly dropped to emulsify.
  • the solvent was distilled off under reduced pressure, and 0.74 parts by mass of 90% acetic acid and 109 parts by mass of ion-exchanged water were added to obtain an emulsion with a total concentration of amino-modified silicone and blocked isocyanate of 20%.
  • This emulsion is a hybrid emulsion containing amino-modified silicone and blocked isocyanate, which are water-repellent components, in a ratio of 5:2 (by mass).
  • this blocked isocyanate has polyethylene glycol monomethyl ether introduced into a part of its structure, and has self-emulsifying properties.
  • Preparation Example C-2 Except for changing the amounts of ingredients, the same operation as in Preparation Example C-1 was carried out to obtain a hybrid emulsion containing water-repellent components, amino-modified silicone and blocked isocyanate, in a ratio of 5:1 (mass ratio) (the total concentration of amino-modified silicone and blocked isocyanate was 20%.
  • This blocked isocyanate has polyethylene glycol monomethyl ether introduced into part of its structure and has self-emulsifying properties).
  • Emazol S-30V sorbitan tristearate, manufactured by Kao Corporation, hydroxyl value 68.6 mgKOH/g
  • MIBK MIBK
  • emulsion is a hybrid emulsion containing sorbitan tristearate and blocked isocyanate, which are water-repellent components, in a ratio of 5:2 (mass ratio).
  • This preparation example is a hybrid emulsion in which the water-repellent component and the cross-linking component are emulsified with Tergitol TMN-10, a nonionic surfactant, and dimethylstearylamine acetate, a cationic surfactant.
  • the non-fluorine-based water repellent composition is used to impart water repellency to textile products, but the technology of the present disclosure is not limited to this form.
  • the non-fluorine-based water repellent composition of the present disclosure is believed to be capable of imparting water repellency and abrasion-resistant water repellency to various articles other than textile products, but is particularly suitable for imparting water repellency and abrasion-resistant water repellency to textile products, as shown in the above examples.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

Disclosed is a non-fluorine water-repellent composition that is capable of improving water repellency during actual use of various articles. A non-fluorine water-repellent composition according to the present disclosure contains: (A) at least one non-fluorine water-repellent component selected from the group consisting of acrylic compounds, silicone compounds, wax compounds, urethane compounds, and dendrimer compounds; and (B) an alicyclic polyisocyanate.

Description

非フッ素系撥水剤組成物、及び、撥水性繊維製品の製造方法Fluorine-free water repellent composition and method for producing water repellent textile product
 本願は、非フッ素系撥水剤組成物、及び、撥水性繊維製品の製造方法を開示する。 This application discloses a non-fluorine-based water repellent composition and a method for producing a water-repellent textile product.
 フッ素系化合物を含むフッ素系撥水剤は、例えば、フルオロアルキル基を有する単量体(モノマー)を重合させることにより製造される。このようなフッ素系撥水剤で処理された物品は、優れた撥水性を有する。しかしながら、フルオロアルキル基を有する単量体は、環境負荷の懸念がある。そのため、優れた撥水性能を発現する非フッ素系撥水剤が、国際的に求められるようになってきた。例えば、特許文献1には、非フッ素系の撥水成分と、前記撥水成分と反応し得る架橋成分とを含み、前記撥水成分と前記架橋成分とが1つの粒子中に含有されているハイブリッドエマルションからなる、水系の撥水処理剤が開示されている。また、特許文献2には、アミノ変性シリコーンと、シリコーンレジンと、多官能イソシアネート化合物とを含む、撥水剤組成物が開示されている。 Fluorine-based water repellents containing fluorine-based compounds are produced, for example, by polymerizing a monomer having a fluoroalkyl group. Articles treated with such fluorine-based water repellents have excellent water repellency. However, monomers having a fluoroalkyl group are an environmental burden. For this reason, non-fluorine-based water repellents that exhibit excellent water repellency have been internationally sought. For example, Patent Document 1 discloses a water-based water repellent treatment agent that contains a non-fluorine-based water repellent component and a crosslinking component that can react with the water repellent component, and is composed of a hybrid emulsion in which the water repellent component and the crosslinking component are contained in one particle. Patent Document 2 also discloses a water repellent composition that contains an amino-modified silicone, a silicone resin, and a polyfunctional isocyanate compound.
国際公開2017/199726号International Publication No. 2017/199726 特開2017-226946号公報JP 2017-226946 A
 各種の撥水性物品は、実使用時にその表面が摩擦等によって摩耗し、撥水性が低下し易い。従来技術においては、このような撥水性物品の実使用時の撥水性(耐摩耗撥水性)に関して、改善の余地がある。 Various water-repellent articles have their surfaces worn away by friction during actual use, and the water repellency is easily reduced. In conventional technology, there is room for improvement in the water repellency (abrasion-resistant water repellency) of such water-repellent articles during actual use.
 本願は上記課題を解決するための手段として、以下の複数の態様を開示する。
<態様1>
 (A)アクリル系化合物、シリコーン系化合物、ワックス系化合物、ウレタン系化合物、及び、デンドリマー系化合物からなる群より選択される少なくとも1種の非フッ素系撥水成分と、
 (B)脂環族ポリイソシアネートと、
 を含む、非フッ素系撥水剤組成物。
<態様2>
 (B)脂環族ポリイソシアネートが、イソホロンジイソシアネート及び水添MDIのうちの少なくとも1種である、
 態様1の非フッ素系撥水剤組成物。
<態様3>
 (B)脂環族ポリイソシアネートが、3量体である、
 態様1又は2の非フッ素系撥水剤組成物。
<態様4>
 (B)脂環族ポリイソシアネートに加えて、脂肪族ポリイソシアネート、芳香族ポリイソシアネート及び芳香脂肪族ポリイソシアネートのうちの少なくとも1種を含む、
 態様1~3のいずれかの非フッ素系撥水剤組成物。
<態様5>
 態様1~4のいずれかの非フッ素系撥水剤組成物を含む処理液で繊維を処理すること、
 を含む、撥水性繊維製品の製造方法。
The present application discloses the following aspects as means for solving the above problems.
<Aspect 1>
(A) at least one non-fluorine-based water-repellent component selected from the group consisting of an acrylic compound, a silicone compound, a wax compound, a urethane compound, and a dendrimer compound;
(B) an alicyclic polyisocyanate;
A non-fluorine-based water repellent composition comprising:
<Aspect 2>
(B) the alicyclic polyisocyanate is at least one of isophorone diisocyanate and hydrogenated MDI;
The non-fluorinated water repellent composition according to embodiment 1.
<Aspect 3>
(B) the alicyclic polyisocyanate is a trimer;
The non-fluorinated water repellent composition according to embodiment 1 or 2.
<Aspect 4>
(B) In addition to the alicyclic polyisocyanate, at least one of an aliphatic polyisocyanate, an aromatic polyisocyanate, and an araliphatic polyisocyanate is included;
The non-fluorinated water repellent composition according to any one of Aspects 1 to 3.
<Aspect 5>
Treating a fiber with a treatment liquid containing the non-fluorinated water repellent composition according to any one of Aspects 1 to 4;
A method for producing a water-repellent textile product, comprising:
 各種の物品の表面を本開示の非フッ素系撥水剤組成物によって処理することで、当該物品に優れた撥水性が付与される。例えば、当該物品は、初期撥水性、洗濯耐久撥水性のほか、実使用時の撥水性(耐摩耗撥水性)にも優れたものとなり得る。 By treating the surfaces of various articles with the non-fluorinated water repellent composition of the present disclosure, excellent water repellency is imparted to the articles. For example, the articles can have excellent initial water repellency, washing-durable water repellency, and also excellent water repellency during actual use (abrasion-resistant water repellency).
ブンデスマン降雨試験における評価基準を示している。The evaluation criteria in the Bundesmann rain test are shown.
1.非フッ素系撥水剤組成物
 以下、一実施形態に係る非フッ素系撥水剤組成物について説明するが、本開示の非フッ素系撥水剤組成物は、この形態に限定されるものではない。一実施形態に係る非フッ素系撥水剤組成物は、(A)アクリル系化合物、シリコーン系化合物、ワックス系化合物、ウレタン系化合物、及び、デンドリマー系化合物からなる群より選択される少なくとも1種の非フッ素系撥水成分と、(B)脂環族ポリイソシアネートと、を含む。
1. Non-fluorinated water repellent composition Hereinafter, a non-fluorinated water repellent composition according to one embodiment will be described, but the non-fluorinated water repellent composition of the present disclosure is not limited to this form. The non-fluorinated water repellent composition according to one embodiment contains (A) at least one non-fluorinated water repellent component selected from the group consisting of an acrylic compound, a silicone compound, a wax compound, a urethane compound, and a dendrimer compound, and (B) an alicyclic polyisocyanate.
1.1 (A)非フッ素系撥水成分
 一実施形態に係る非フッ素系撥水剤組成物は、(A)非フッ素系撥水成分として、アクリル系化合物、シリコーン系化合物、ワックス系化合物、ウレタン系化合物、及び、デンドリマー系化合物からなる群より選択される少なくとも1種を含む。(A)非フッ素系化合物は、アクリル系化合物及びシリコーン系化合物のうちの少なくとも1種であってもよく、ワックス系化合物、ウレタン系化合物及びデンドリマー系化合物のうちの少なくとも1種であってもよい。特に、(A)非フッ素系化合物が、アクリル系化合物及びシリコーン系化合物のうちの少なくとも1種である場合、より優れた性能が期待できる。
1.1 (A) Non-fluorine-based water repellent component The non-fluorine-based water repellent composition according to one embodiment includes, as the non-fluorine-based water repellent component (A), at least one selected from the group consisting of an acrylic compound, a silicone compound, a wax compound, a urethane compound, and a dendrimer compound. The non-fluorine-based compound (A) may be at least one of an acrylic compound and a silicone compound, or may be at least one of a wax compound, a urethane compound, and a dendrimer compound. In particular, when the non-fluorine-based compound (A) is at least one of an acrylic compound and a silicone compound, better performance can be expected.
1.1.1 アクリル系化合物
 アクリル系化合物は、例えば、下記一般式(A1)で表される(メタ)アクリル酸エステル単量体(以下、「(A1)成分」ともいう)に由来する構成単位を有する。アクリル系化合物は、さらに、下記一般式(A2)で表される化合物(以下、「(A2)成分」ともいう)に由来する構成単位を有していてもよい。尚、本願において「(メタ)アクリル酸エステル」とは、「アクリル酸エステル」又はそれに対応する「メタクリル酸エステル」を意味し、「(メタ)アクリル酸」、「(メタ)アクリルアミド」等においても同様である。
1.1.1 Acrylic Compound The acrylic compound has, for example, a structural unit derived from a (meth)acrylic acid ester monomer (hereinafter also referred to as "(A1) component") represented by the following general formula (A1). The acrylic compound may further have a structural unit derived from a compound (hereinafter also referred to as "(A2) component") represented by the following general formula (A2). In the present application, "(meth)acrylic acid ester" means "acrylic acid ester" or the corresponding "methacrylic acid ester", and the same applies to "(meth)acrylic acid", "(meth)acrylamide", etc.
Figure JPOXMLDOC01-appb-C000001
[式(A1)中、Rは水素又はメチル基であり、Rは置換基を有していてもよい炭素数12~30の1価の炭化水素基である。]
Figure JPOXMLDOC01-appb-C000001
[In formula (A1), R 1 is a hydrogen atom or a methyl group, and R 2 is a monovalent hydrocarbon group having 12 to 30 carbon atoms which may have a substituent.]
Figure JPOXMLDOC01-appb-C000002
[式(A2)中、R11は水素又はメチル基であり、R12は炭素数1~6の2価の炭化水素基であり、Zはエステル基又はアミド基であり、Wは-CO-R13(R13は炭素数1~4の1価の炭化水素基である)で表される基、-NH-CO-NHで表される基、又は下記式(W1)で表される基である。
Figure JPOXMLDOC01-appb-C000002
[In formula (A2), R 11 is hydrogen or a methyl group, R 12 is a divalent hydrocarbon group having 1 to 6 carbon atoms, Z is an ester group or an amide group, and W is a group represented by -CO-R 13 (R 13 is a monovalent hydrocarbon group having 1 to 4 carbon atoms), a group represented by -NH-CO-NH 2 , or a group represented by the following formula (W1):
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 上記(A1)成分は、置換基を有していてもよい炭素数が12~30の1価の炭化水素基を有する。この炭化水素基は、直鎖状であっても分岐状であってもよく、飽和炭化水素基であっても不飽和炭化水素基であってもよく、更には脂環式又は芳香族の環状構造を有していてもよい。これらの中でも、撥水性の観点から、直鎖状であるものが好ましく、直鎖状のアルキル基であるものがより好ましい。この場合、撥水性がより優れるものとなる。炭素数12~30の1価の炭化水素基が置換基を有する場合、その置換基としては、ヒドロキシル基、アミノ基、カルボキシル基、エポキシ基、イソシアネート基、ブロックドイソシアネート基及び(メタ)アクリロイルオキシ基等のうちの1種以上が挙げられる。上記一般式(A-1)において、Rは無置換の炭化水素基であることが好ましい。 The component (A1) has a monovalent hydrocarbon group having 12 to 30 carbon atoms, which may have a substituent. The hydrocarbon group may be linear or branched, may be a saturated or unsaturated hydrocarbon group, and may have an alicyclic or aromatic ring structure. Among these, from the viewpoint of water repellency, a linear one is preferable, and a linear alkyl group is more preferable. In this case, the water repellency is more excellent. When the monovalent hydrocarbon group having 12 to 30 carbon atoms has a substituent, the substituent may be one or more of a hydroxyl group, an amino group, a carboxyl group, an epoxy group, an isocyanate group, a blocked isocyanate group, and a (meth)acryloyloxy group. In the general formula (A-1), R 2 is preferably an unsubstituted hydrocarbon group.
 上記炭化水素基の炭素数は、12~24であることが好ましく、12~22であることがより好ましい。炭素数がこの範囲である場合は、撥水性と風合いが特に優れるようになる。炭化水素基として特に好ましいのは、炭素数が18~22の直鎖状のアルキル基である。 The number of carbon atoms in the hydrocarbon group is preferably 12 to 24, and more preferably 12 to 22. When the number of carbon atoms is within this range, the water repellency and texture are particularly excellent. A linear alkyl group having 18 to 22 carbon atoms is particularly preferred as the hydrocarbon group.
 上記(A1)成分としては、例えば、(メタ)アクリル酸ステアリル、(メタ)アクリル酸セチル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸ミリスチル、(メタ)アクリル酸ペンタデシル、(メタ)アクリル酸ヘプタデシル、(メタ)アクリル酸ノナデシル、(メタ)アクリル酸エイコシル、(メタ)アクリル酸ヘンエイコシル及び(メタ)アクリル酸ベヘニルから選ばれる少なくとも1種が挙げられる。 Examples of the (A1) component include at least one selected from stearyl (meth)acrylate, cetyl (meth)acrylate, lauryl (meth)acrylate, myristyl (meth)acrylate, pentadecyl (meth)acrylate, heptadecyl (meth)acrylate, nonadecyl (meth)acrylate, eicosyl (meth)acrylate, heneicosyl (meth)acrylate, and behenyl (meth)acrylate.
 上記(A1)成分は、架橋剤と反応可能なヒドロキシル基、アミノ基、カルボキシル基、エポキシ基及びイソシアネート基からなる群より選ばれる少なくとも1種の官能基を有することができる。この場合、耐久撥水性を更に向上させることができる。イソシアネート基は、ブロック化剤で保護されたブロックドイソシアネート基を形成していてもよい。また、上記(A1)成分がアミノ基を有する場合、風合いを更に向上させることができる。 The (A1) component may have at least one functional group selected from the group consisting of a hydroxyl group, an amino group, a carboxyl group, an epoxy group, and an isocyanate group that can react with a crosslinking agent. In this case, the durable water repellency can be further improved. The isocyanate group may be protected with a blocking agent to form a blocked isocyanate group. In addition, when the (A1) component has an amino group, the texture can be further improved.
 上記(A1)成分は、1分子内に重合性不飽和基を1つ有する単官能の(メタ)アクリル酸エステル単量体であることが好ましい。 The above component (A1) is preferably a monofunctional (meth)acrylic acid ester monomer having one polymerizable unsaturated group in one molecule.
 上記(A1)成分は、1種を単独で用いてよく、2種以上を組み合わせて用いてもよい。 The above (A1) component may be used alone or in combination of two or more types.
 上記式(A2)中、R12は、直鎖状であっても分岐状であってもよく、飽和炭化水素基であっても不飽和炭化水素基であってもよく、更には脂環式の環状構造を有していてもよい。 In the above formula (A2), R 12 may be linear or branched, may be a saturated or unsaturated hydrocarbon group, and may further have an alicyclic ring structure.
 上記式(A2)中、Zがエステル基の場合、R12は、炭素数2~4の炭化水素基であることが好ましく、Wは、-NH-CO-NHで表される基又は上記式(W1)で表される基であることが好ましい。Zがアミド基である場合、R12は、炭素数2~4の炭化水素基であることが好ましく、Wは-CO-R13で表される基であることが好ましく、R13の炭素数が1~2であることが好ましい。 In the above formula (A2), when Z is an ester group, R 12 is preferably a hydrocarbon group having 2 to 4 carbon atoms, and W is preferably a group represented by -NH-CO- NH2 or a group represented by the above formula (W1). When Z is an amide group, R 12 is preferably a hydrocarbon group having 2 to 4 carbon atoms, and W is preferably a group represented by -CO-R 13 , and R 13 preferably has 1 to 2 carbon atoms.
 上記(A2)成分としては、特に限定されないが、例えば、ダイアセトンアクリルアミド、2-メチルプロペン酸[2-(2-オキソ-2-イミダゾリジニル)エチル]、N-[2-(2-オキソイミダゾリジン-3-イル)エチル]メタクリルアミドが挙げられる。これらの中でも、耐久撥水性の観点から、上記(A2)成分としては、ダイアセトンアクリルアミド、2-メチルプロペン酸[2-(2-オキソ-2-イミダゾリジニル)エチル]が好ましい。 The above-mentioned (A2) component is not particularly limited, but examples thereof include diacetone acrylamide, 2-methylpropenoic acid [2-(2-oxo-2-imidazolidinyl)ethyl], and N-[2-(2-oxoimidazolidin-3-yl)ethyl]methacrylamide. Among these, from the viewpoint of durable water repellency, diacetone acrylamide and 2-methylpropenoic acid [2-(2-oxo-2-imidazolidinyl)ethyl] are preferred as the above-mentioned (A2) component.
 上記(A2)成分は、1種を単独で用いてよく、2種以上を組み合わせて用いてもよい。 The above (A2) component may be used alone or in combination of two or more types.
 アクリル系化合物における(A1)成分に由来する構成単位と(A2)成分に由来する構成単位との含有割合は、配合する(A1)成分の質量と(A2)成分の質量との比(A1)/(A2)が、100/0~70/30であることが好ましく、99.9/0.1~70/30であることがより好ましく、99.8/0.2~80/20であることがさらに好ましく、99.7/0.3~90/10であることが特に好ましい。(A1)/(A2)が上記の範囲内であると、耐久撥水性や水はじき性がより良好となる。 The content ratio of the structural units derived from component (A1) and the structural units derived from component (A2) in the acrylic compound is preferably the ratio (A1)/(A2) of the mass of component (A1) to the mass of component (A2) to be blended, 100/0 to 70/30, more preferably 99.9/0.1 to 70/30, even more preferably 99.8/0.2 to 80/20, and particularly preferably 99.7/0.3 to 90/10. If (A1)/(A2) is within the above range, durable water repellency and water repellency will be better.
 配合する(A1)成分の質量と(A2)成分の質量との合計質量は、アクリル系化合物を構成する単量体成分の全量に対して、60~100質量%が好ましく、70~99質量%がより好ましく、80~98質量%がさらに好ましい。 The total mass of the (A1) component and the (A2) component is preferably 60 to 100% by mass, more preferably 70 to 99% by mass, and even more preferably 80 to 98% by mass, based on the total amount of the monomer components constituting the acrylic compound.
 アクリル系化合物は、剥離強度の観点から、(A1)成分、及び、任意の(A2)成分に加えて、塩化ビニル及び塩化ビニリデンのうちの少なくとも1種の単量体(A3)(以下、「(A3)成分」ともいう。)を単量体成分として含有していることが好ましい。 From the viewpoint of peel strength, the acrylic compound preferably contains, in addition to the (A1) component and the optional (A2) component, at least one monomer (A3) selected from vinyl chloride and vinylidene chloride (hereinafter also referred to as "(A3) component") as a monomer component.
 (A3)成分は、繊維製品の風合いを維持する観点から、塩化ビニルが好ましい。 The (A3) component is preferably vinyl chloride from the viewpoint of maintaining the texture of the textile product.
 配合する(A3)成分の質量は、配合する(A1)成分の質量と(A2)成分の質量との合計100質量に対して、撥水性、耐久撥水性及び剥離強度の観点から、10質量部以上であることが好ましく、20質量部以上であることがより好ましい。配合する(A3)成分の質量は、配合する(A1)成分の質量と(A2)成分の質量との合計100質量に対して、撥水性、耐久撥水性及び風合いの観点から、100質量部以下であることが好ましく、75質量部以下、60質量部以下、50質量部以下、30質量部以下、又は、25質量部以下であることがより好ましい。 The mass of the (A3) component to be blended is preferably 10 parts by mass or more, and more preferably 20 parts by mass or more, based on the total mass of the (A1) and (A2) components to be blended (100), from the viewpoints of water repellency, durable water repellency, and peel strength. The mass of the (A3) component to be blended is preferably 100 parts by mass or less, and more preferably 75 parts by mass or less, 60 parts by mass or less, 50 parts by mass or less, 30 parts by mass or less, or 25 parts by mass or less, based on the total mass of the (A1) and (A2) components to be blended (100), from the viewpoints of water repellency, durable water repellency, and texture.
 アクリル系化合物は、その乳化重合又は分散重合時及び重合後の組成物中での乳化安定性を向上できる点で、(A1)成分、及び、任意の(A2)成分に加えて、HLBが7~18であり、且つ、下記一般式(A4-1)で表される化合物、HLBが7~18であり、且つ、下記一般式(A4-2)で表される化合物、及び、HLBが7~18であり、且つ、ヒドロキシル基及び重合性不飽和基を有する油脂に炭素数2~4のアルキレンオキサイドを付加した化合物(A4-3)、のうちから選ばれる少なくとも1種の反応性乳化剤(A4)(以下、「(A4)成分」ともいう)を単量体成分として含有していることが好ましい。 In order to improve emulsion stability during and after emulsion polymerization or dispersion polymerization, and in the composition after polymerization, the acrylic compound preferably contains, in addition to component (A1) and any component (A2), at least one reactive emulsifier (A4) (hereinafter also referred to as "component (A4)") selected from compounds having an HLB of 7 to 18 and represented by the following general formula (A4-1), compounds having an HLB of 7 to 18 and represented by the following general formula (A4-2), and compounds (A4-3) having an HLB of 7 to 18 and formed by adding an alkylene oxide having 2 to 4 carbon atoms to an oil or fat having a hydroxyl group and a polymerizable unsaturated group.
Figure JPOXMLDOC01-appb-C000004
[式(A4-1)中、Rは水素又はメチル基であり、Xは炭素数1~6の直鎖又は分岐のアルキレン基であり、Yは炭素数2~4のアルキレンオキシ基を含む2価の基である。]
Figure JPOXMLDOC01-appb-C000004
[In formula (A4-1), R3 is hydrogen or a methyl group, X is a linear or branched alkylene group having 1 to 6 carbon atoms, and Y1 is a divalent group containing an alkyleneoxy group having 2 to 4 carbon atoms.]
Figure JPOXMLDOC01-appb-C000005
[式(A4-2)中、Rは重合性不飽和基を有する炭素数13~17の1価の不飽和炭化水素基であり、Yは炭素数2~4のアルキレンオキシ基を含む2価の基である。]
Figure JPOXMLDOC01-appb-C000005
[In formula (A4-2), R4 is a monovalent unsaturated hydrocarbon group having 13 to 17 carbon atoms and having a polymerizable unsaturated group, and Y2 is a divalent group containing an alkyleneoxy group having 2 to 4 carbon atoms.]
 本願において「反応性乳化剤」とは、ラジカル反応性を有する乳化分散剤、すなわち、分子内に1つ以上の重合性不飽和基を有する界面活性剤のことであり、(メタ)アクリル酸エステルのような単量体と共重合させることができるものである。 In this application, the term "reactive emulsifier" refers to an emulsifying dispersant having radical reactivity, i.e., a surfactant having one or more polymerizable unsaturated groups in the molecule, which can be copolymerized with a monomer such as a (meth)acrylic acid ester.
 また、「HLB」とは、エチレンオキシ基を親水基、それ以外を全て親油基と見なし、グリフィン法により算出したHLB値のことである。 "HLB" refers to the HLB value calculated using the Griffin method, assuming that the ethyleneoxy group is a hydrophilic group and all other groups are lipophilic groups.
 上記(A4-1)~(A4-3)の化合物のHLBは、7~18であり、アクリル系化合物の乳化重合又は分散重合時及び重合後の組成物中での乳化安定性(以降、単に乳化安定性という)の点で、9~15が好ましい。さらには、撥水剤組成物の貯蔵安定性の点で上記範囲内の異なるHLBを有する2種以上の反応性乳化剤(A4)を併用することがより好ましい。 The HLB of the above compounds (A4-1) to (A4-3) is 7 to 18, and from the viewpoint of emulsion stability in the composition during and after emulsion polymerization or dispersion polymerization of the acrylic compound (hereinafter simply referred to as emulsion stability), it is preferably 9 to 15. Furthermore, from the viewpoint of storage stability of the water repellent composition, it is more preferable to use two or more reactive emulsifiers (A4) having different HLBs within the above range in combination.
 上記一般式(A4-1)中、Rは水素又はメチル基であり、(A1)成分及び/又は(A2)成分との共重合性の点でメチル基であることがより好ましい。Xは炭素数1~6の直鎖もしくは分岐のアルキレン基であり、アクリル系化合物の乳化安定性の点で、炭素数2~3の直鎖アルキレン基であることがより好ましい。Yは炭素数2~4のアルキレンオキシ基を含む2価の基である。Yにおけるアルキレンオキシ基の種類、組み合わせ及び付加数については、上記HLBの範囲内になるように適宜選択することができる。また、アルキレンオキシ基が2種以上の場合、それらはブロック付加構造又はランダム付加構造を有することができる。 In the above general formula (A4-1), R 3 is hydrogen or a methyl group, and is more preferably a methyl group in terms of copolymerizability with the (A1) component and/or the (A2) component. X is a linear or branched alkylene group having 1 to 6 carbon atoms, and is more preferably a linear alkylene group having 2 to 3 carbon atoms in terms of emulsion stability of the acrylic compound. Y 1 is a divalent group containing an alkyleneoxy group having 2 to 4 carbon atoms. The type, combination and number of additions of the alkyleneoxy group in Y 1 can be appropriately selected so as to be within the above HLB range. In addition, when there are two or more types of alkyleneoxy groups, they can have a block addition structure or a random addition structure.
 上記一般式(A4-1)で表される化合物としては、下記一般式(A4-1-1)で表される化合物が好ましい。 As the compound represented by the above general formula (A4-1), the compound represented by the following general formula (A4-1-1) is preferred.
Figure JPOXMLDOC01-appb-C000006
[式(A4-1-1)中、Rは水素又はメチル基であり、Xは炭素数1~6の直鎖又は分岐のアルキレン基であり、AOは炭素数2~4のアルキレンオキシ基であり、mは上記HLBの範囲内になるように適宜選択することができ、具体的には、1~80の整数が好ましく、mが2以上のときm個のAOは同一であっても異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000006
[In formula (A4-1-1), R 3 is hydrogen or a methyl group, X is a linear or branched alkylene group having 1 to 6 carbon atoms, A 1 O is an alkyleneoxy group having 2 to 4 carbon atoms, and m can be appropriately selected so as to be within the above-mentioned HLB range, and specifically, an integer of 1 to 80 is preferable, and when m is 2 or more, m A 1 O may be the same or different.]
 上記一般式(A4-1-1)で表される化合物において、Rは水素又はメチル基であり、(A1)成分及び/又は(A2)成分との共重合性の点でメチル基であることがより好ましい。Xは炭素数1~6の直鎖もしくは分岐のアルキレン基であり、アクリル系化合物の乳化安定性の点で、炭素数2~3の直鎖アルキレン基であることがより好ましい。AOは炭素数2~4のアルキレンオキシ基である。AOの種類及び組み合わせ、並びにmの数については、上記HLBの範囲内になるように適宜選択することができる。アクリル系化合物の乳化安定性の点で、mは1~80の整数が好ましく、1~60の整数であることがより好ましい。mが2以上のときm個のAOは同一であっても異なっていてもよい。また、AOが2種以上の場合、それらはブロック付加構造又はランダム付加構造を有することができる。 In the compound represented by the general formula (A4-1-1), R 3 is hydrogen or a methyl group, and is more preferably a methyl group in terms of copolymerizability with the (A1) component and/or the (A2) component. X is a linear or branched alkylene group having 1 to 6 carbon atoms, and is more preferably a linear alkylene group having 2 to 3 carbon atoms in terms of emulsion stability of the acrylic compound. A 1 O is an alkyleneoxy group having 2 to 4 carbon atoms. The type and combination of A 1 O and the number of m can be appropriately selected so as to be within the above HLB range. In terms of emulsion stability of the acrylic compound, m is preferably an integer of 1 to 80, and more preferably an integer of 1 to 60. When m is 2 or more, m A 1 O may be the same or different. In addition, when there are two or more types of A 1 O, they can have a block addition structure or a random addition structure.
 上記一般式(A4-1-1)で表される反応性乳化剤は、従来公知の方法で得ることができ、特に限定されるものではない。また、市販品より容易に入手することができ、例えば、花王株式会社製の「ラテムルPD-420」、「ラテムルPD-430」、「ラテムルPD-450」等を挙げることができる。 The reactive emulsifier represented by the above general formula (A4-1-1) can be obtained by a conventionally known method and is not particularly limited. It can also be easily obtained from commercial products, such as "Latemul PD-420", "Latemul PD-430", and "Latemul PD-450" manufactured by Kao Corporation.
 上記一般式(A4-2)中、Rは重合性不飽和基を有する炭素数13~17の1価の不飽和炭化水素基である。当該不飽和炭化水素基としては、トリデセニル基、トリデカジエニル基、テトラデセニル基、テトラジエニル基、ペンタデセニル基、ペンタデカジエニル基、ペンタデカトリエニル基、ヘプタデセニル基、ヘプタデカジエニル基、ヘプタデカトリエニル基等が挙げられる。アクリル系化合物の乳化安定性の点で、Rは炭素数14~16の1価の不飽和炭化水素基がより好ましい。 In the above general formula (A4-2), R 4 is a monovalent unsaturated hydrocarbon group having 13 to 17 carbon atoms and having a polymerizable unsaturated group. Examples of the unsaturated hydrocarbon group include a tridecenyl group, a tridecadienyl group, a tetradecenyl group, a tetradienyl group, a pentadecenyl group, a pentadecadienyl group, a pentadecatrienyl group, a heptadecenyl group, a heptadecadienyl group, and a heptadecatrienyl group. From the viewpoint of emulsion stability of the acrylic compound, R 4 is more preferably a monovalent unsaturated hydrocarbon group having 14 to 16 carbon atoms.
 Yは炭素数2~4のアルキレンオキシ基を含む2価の基である。Yにおけるアルキレンオキシ基の種類、組み合わせ及び付加数については、上記HLBの範囲内になるように適宜選択することができる。また、アルキレンオキシ基が2種以上の場合、それらはブロック付加構造又はランダム付加構造を有することができる。アクリル系化合物の乳化安定性の点で、アルキレンオキシ基はエチレンオキシ基であることがより好ましい。 Y2 is a divalent group containing an alkyleneoxy group having 2 to 4 carbon atoms. The type, combination and number of added alkyleneoxy groups in Y2 can be appropriately selected so as to fall within the above-mentioned HLB range. In addition, when there are two or more types of alkyleneoxy groups, they can have a block addition structure or a random addition structure. In terms of emulsion stability of the acrylic compound, it is more preferable that the alkyleneoxy group is an ethyleneoxy group.
 上記一般式(A4-2)で表される化合物としては、下記一般式(A4-2-1)で表される化合物が好ましい。 As the compound represented by the above general formula (A4-2), the compound represented by the following general formula (A4-2-1) is preferred.
Figure JPOXMLDOC01-appb-C000007
[式(A4-2-1)中、Rは重合性不飽和基を有する炭素数13~17の1価の不飽和炭化水素基であり、AOは炭素数2~4のアルキレンオキシ基であり、nは上記HLBの範囲内になるように適宜選択することができ、具体的には、1~50の整数が好ましく、nが2以上のときn個のAOは同一であっても異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000007
[In formula (A4-2-1), R 4 is a monovalent unsaturated hydrocarbon group having 13 to 17 carbon atoms and a polymerizable unsaturated group, A 2 O is an alkyleneoxy group having 2 to 4 carbon atoms, and n can be appropriately selected so as to be within the above-mentioned HLB range, and specifically, an integer of 1 to 50 is preferable, and when n is 2 or more, the n A 2 O may be the same or different.]
 上記一般式(A4-2-1)で表される化合物におけるRは、上述した一般式(A4-2)におけるRと同様のものが挙げられる。 Examples of R 4 in the compound represented by the above general formula (A4-2-1) include the same as R 4 in the above general formula (A4-2).
 AOは炭素数2~4のアルキレンオキシ基である。アクリル系化合物の乳化安定性の点で、AOの種類及び組み合わせ、並びにnの数については、上記HLBの範囲内になるように適宜選択することができる。アクリル系化合物の乳化安定性の点で、AOはエチレンオキシ基がより好ましく、nは1~50の整数が好ましく、5~20の整数がより好ましく、8~14の整数がさらに好ましい。nが2以上のときn個のAOは同一であっても異なっていてもよい。また、AOが2種以上の場合、それらはブロック付加構造又はランダム付加構造を有することができる。 A 2 O is an alkyleneoxy group having 2 to 4 carbon atoms. In terms of emulsion stability of the acrylic compound, the type and combination of A 2 O and the number of n can be appropriately selected so as to be within the above HLB range. In terms of emulsion stability of the acrylic compound, A 2 O is more preferably an ethyleneoxy group, and n is preferably an integer of 1 to 50, more preferably an integer of 5 to 20, and even more preferably an integer of 8 to 14. When n is 2 or more, the n A 2 O may be the same or different. In addition, when there are two or more types of A 2 O, they may have a block addition structure or a random addition structure.
 上記一般式(A4-2-1)で表される反応性乳化剤は、例えば、対応する不飽和炭化水素基を有するフェノールにアルキレンオキサイドを付加することにより合成することができるが、これに限定されるものではない。例えば、苛性ソーダ、苛性カリウム等のアルカリ触媒を用い、加圧下、120~170℃にて、所定量のアルキレンオキサイドを付加することにより合成することができる。 The reactive emulsifier represented by the above general formula (A4-2-1) can be synthesized, for example, by adding an alkylene oxide to a phenol having a corresponding unsaturated hydrocarbon group, but is not limited to this. For example, it can be synthesized by adding a predetermined amount of alkylene oxide under pressure at 120 to 170°C using an alkaline catalyst such as caustic soda or caustic potassium.
 上記対応する不飽和炭化水素基を有するフェノールには、工業的に製造された純品または混合物のほか、植物等から抽出・精製された純品又は混合物として存在するものも含まれる。例えば、カシューナッツの殻等から抽出され、カルダノールと総称される、3-[8(Z),11(Z),14-ペンタデカトリエニル]フェノール、3-[8(Z),11(Z)-ペンタデカジエニル]フェノール、3-[8(Z)-ペンタデセニル]フェノール、3-[11(Z)-ペンタデセニル]フェノール等が挙げられる。 Phenols having the corresponding unsaturated hydrocarbon group include pure products or mixtures produced industrially, as well as those that exist as pure products or mixtures extracted and purified from plants, etc. Examples include 3-[8(Z),11(Z),14-pentadecatrienyl]phenol, 3-[8(Z),11(Z)-pentadecadienyl]phenol, 3-[8(Z)-pentadecenyl]phenol, 3-[11(Z)-pentadecenyl]phenol, etc., which are extracted from cashew nut shells, etc. and are collectively known as cardanol.
 化合物(A4-3)は、HLBが7~18であり、且つ、ヒドロキシル基及び重合性不飽和基を有する油脂に炭素数2~4のアルキレンオキサイドを付加したものである。ヒドロキシル基及び重合性不飽和基を有する油脂としては、ヒドロキシ不飽和脂肪酸(パルミトレイン酸、オレイン酸、リノール酸、α-リノレン酸、アラキドン酸、エイコサペンタエン酸、ドコサペンタエン酸等)を含んでいてもよい脂肪酸のモノ又はジグリセライド、少なくとも1種のヒドロキシ不飽和脂肪酸(リシノール酸、リシノエライジン酸、2-ヒドロキシテトラコセン酸等)を含む脂肪酸のトリグリセライドを挙げることができる。アクリル系化合物の乳化安定性の点で、少なくとも1種のヒドロキシ不飽和脂肪酸を含む脂肪酸のトリグリセライドのアルキレンオキサイド付加物が好ましく、ヒマシ油(リシノール酸を含む脂肪酸のトリグリセライド)の炭素数2~4のアルキレンオキサイド付加物がより好ましく、ヒマシ油のエチレンオキサイド付加物がさらに好ましい。さらに、アルキレンオキサイドの付加モル数は、上記HLBの範囲内になるように適宜選択することができ、アクリル系化合物の乳化安定性の点で、20~50モルがより好ましく、25~45モルがさらに好ましい。また、アルキレンオキサイドが2種以上の場合、それらはブロック付加構造又はランダム付加構造を有することができる。 Compound (A4-3) is an oil having an HLB of 7 to 18 and having a hydroxyl group and a polymerizable unsaturated group to which an alkylene oxide having 2 to 4 carbon atoms has been added. Examples of oils having a hydroxyl group and a polymerizable unsaturated group include mono- or diglycerides of fatty acids that may contain hydroxyunsaturated fatty acids (palmitoleic acid, oleic acid, linoleic acid, α-linolenic acid, arachidonic acid, eicosapentaenoic acid, docosapentaenoic acid, etc.), and triglycerides of fatty acids containing at least one hydroxyunsaturated fatty acid (ricinoleic acid, ricinoelaidic acid, 2-hydroxytetracosenoic acid, etc.). In terms of emulsion stability of acrylic compounds, alkylene oxide adducts of triglycerides of fatty acids containing at least one hydroxyunsaturated fatty acid are preferred, alkylene oxide adducts of castor oil (triglycerides of fatty acids containing ricinoleic acid) having 2 to 4 carbon atoms are more preferred, and ethylene oxide adducts of castor oil are even more preferred. Furthermore, the number of moles of alkylene oxide added can be appropriately selected so as to fall within the above HLB range, and from the viewpoint of emulsion stability of the acrylic compound, 20 to 50 moles is more preferable, and 25 to 45 moles is even more preferable. Furthermore, when there are two or more types of alkylene oxide, they can have a block addition structure or a random addition structure.
 化合物(A4-3)は、例えば、ヒドロキシル基及び重合性不飽和基を有する油脂にアルキレンオキサイドを付加することにより合成することができるが、これに限定されるものではない。例えば、リシノール酸を含む脂肪酸のトリグリセライド、すなわちヒマシ油に苛性ソーダ、苛性カリウム等のアルカリ触媒を用い、加圧下、120~170℃にて、所定量のアルキレンオキサイドを付加することにより合成することができる。 Compound (A4-3) can be synthesized, for example, by adding an alkylene oxide to an oil or fat having a hydroxyl group and a polymerizable unsaturated group, but is not limited to this. For example, it can be synthesized by adding a predetermined amount of alkylene oxide to a triglyceride of a fatty acid containing ricinoleic acid, i.e., castor oil, using an alkaline catalyst such as caustic soda or caustic potassium, under pressure at 120 to 170°C.
 アクリル系化合物における上記(A4)成分の単量体の構成割合は、撥水性、及びアクリル系化合物の乳化重合又は分散重合時及び重合後の組成物中での乳化安定性を向上できる観点で、アクリル系化合物を構成する単量体成分の全量に対して、0.5~20質量%であることが好ましく、1~15質量%であることがより好ましく、3~10質量%であることがさらに好ましい。 The monomer composition ratio of the above component (A4) in the acrylic compound is preferably 0.5 to 20% by mass, more preferably 1 to 15% by mass, and even more preferably 3 to 10% by mass, based on the total amount of monomer components constituting the acrylic compound, from the viewpoint of improving water repellency and emulsion stability in the composition during and after emulsion polymerization or dispersion polymerization of the acrylic compound.
 アクリル系化合物は、耐久撥水性を向上できる点で、(A1)成分、及び、任意の(A2)成分に加えて、下記一般式(A5-1)で表される単量体、下記一般式(A5-2)で表される単量体、下記一般式(A5-3)で表される単量体、及び、下記一般式(A5-4)で表される単量体、からなる群より選ばれる少なくとも1種の第2の(メタ)アクリル酸エステル単量体(A5)(以下、「A5成分」ともいう)を単量体成分として含有しても良い。 In order to improve durable water repellency, the acrylic compound may contain, in addition to the (A1) component and the optional (A2) component, at least one second (meth)acrylic acid ester monomer (A5) (hereinafter also referred to as "A5 component") selected from the group consisting of a monomer represented by the following general formula (A5-1), a monomer represented by the following general formula (A5-2), a monomer represented by the following general formula (A5-3), and a monomer represented by the following general formula (A5-4) as a monomer component.
Figure JPOXMLDOC01-appb-C000008
[式(A5-1)中、Rは水素又はメチル基であり、Rはヒドロキシル基、アミノ基、カルボキシル基、エポキシ基、イソシアネート基及び(メタ)アクリロイルオキシ基からなる群より選ばれる少なくとも1種の官能基を有する炭素数1~11の1価の鎖状炭化水素基である。ただし、分子内における(メタ)アクリロイルオキシ基の数は2以下である。]
Figure JPOXMLDOC01-appb-C000008
[In formula (A5-1), R5 is hydrogen or a methyl group, and R6 is a monovalent chain hydrocarbon group having 1 to 11 carbon atoms and having at least one functional group selected from the group consisting of a hydroxyl group, an amino group, a carboxyl group, an epoxy group, an isocyanate group, and a (meth)acryloyloxy group, provided that the number of (meth)acryloyloxy groups in the molecule is 2 or less.]
Figure JPOXMLDOC01-appb-C000009
[式(A5-2)中、Rは水素又はメチル基であり、Rは置換基を有していてもよい炭素数1~11の1価の環状炭化水素基である。]
Figure JPOXMLDOC01-appb-C000009
[In formula (A5-2), R7 is a hydrogen atom or a methyl group, and R8 is a monovalent cyclic hydrocarbon group having 1 to 11 carbon atoms which may have a substituent.]
Figure JPOXMLDOC01-appb-C000010
[式(A5-3)中、Rは無置換の炭素数1~4の1価の鎖状炭化水素基である。]
Figure JPOXMLDOC01-appb-C000010
[In formula (A5-3), R 9 is an unsubstituted monovalent chain hydrocarbon group having 1 to 4 carbon atoms.]
Figure JPOXMLDOC01-appb-C000011
[式(A5-4)中、R10は水素又はメチル基であり、pは2以上の整数であり、Sは(p+1)価の有機基であり、Tは重合性不飽和基を有する1価の有機基である。]
Figure JPOXMLDOC01-appb-C000011
[In formula (A5-4), R 10 is hydrogen or a methyl group, p is an integer of 2 or more, S is a (p+1)-valent organic group, and T is a monovalent organic group having a polymerizable unsaturated group.]
 上記(A5-1)の単量体は、エステル部分にヒドロキシル基、アミノ基、カルボキシル基、エポキシ基、イソシアネート基及び(メタ)アクリロイルオキシ基からなる群より選ばれる少なくとも1種の官能基を有する炭素数1~11の1価の鎖状炭化水素基を有する(メタ)アクリル酸エステル単量体である。架橋剤と反応可能な点から、上記炭素数1~11の1価の鎖状炭化水素基は、ヒドロキシル基、アミノ基、カルボキシル基、エポキシ基及びイソシアネート基からなる群より選ばれる少なくとも1種の官能基を有することが好ましい。これらの架橋剤と反応可能な基を有する(A5-1)の単量体を含有するアクリル系化合物を、架橋剤とともに繊維製品に処理した場合に、得られる繊維製品の風合いを維持したまま、耐久撥水性を向上することができる。イソシアネート基は、ブロック化剤で保護されたブロックドイソシアネート基であってもよい。 The monomer (A5-1) is a (meth)acrylic acid ester monomer having a monovalent chain hydrocarbon group having 1 to 11 carbon atoms, which has at least one functional group selected from the group consisting of a hydroxyl group, an amino group, a carboxyl group, an epoxy group, an isocyanate group, and a (meth)acryloyloxy group in the ester portion. In terms of being capable of reacting with a crosslinking agent, the monovalent chain hydrocarbon group having 1 to 11 carbon atoms preferably has at least one functional group selected from the group consisting of a hydroxyl group, an amino group, a carboxyl group, an epoxy group, and an isocyanate group. When an acrylic compound containing the monomer (A5-1) having a group capable of reacting with these crosslinking agents is applied to a textile product together with the crosslinking agent, the durable water repellency of the resulting textile product can be improved while maintaining the texture. The isocyanate group may be a blocked isocyanate group protected by a blocking agent.
 上記鎖状炭化水素基は、直鎖状であっても分岐状であってもよく、飽和炭化水素基であっても不飽和炭化水素基であってもよい。また、鎖状炭化水素基は、上記官能基の他に置換基を更に有していてもよい。中でも耐久撥水性を向上できる点で、直鎖状であること、及び/又は、飽和炭化水素基であることが好ましい。 The chain-like hydrocarbon group may be linear or branched, and may be a saturated or unsaturated hydrocarbon group. The chain-like hydrocarbon group may further have a substituent in addition to the functional group. Of these, it is preferable that the chain-like hydrocarbon group is linear and/or that the chain-like hydrocarbon group is a saturated hydrocarbon group, in terms of improving durable water repellency.
 具体的な(A5-1)の単量体としては、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸ジメチルアミノエチル、(メタ)アクリル酸グリシジル、1,1-ビス(アクリロイルオキシメチル)エチルイソシアネート等が挙げられる。これら単量体は、1種を単独で用いてよく、2種以上を組み合わせて用いてもよい。中でも耐久撥水性を向上できる点で、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸グリシジル、1,1-ビス(アクリロイルオキシメチル)エチルイソシアネートが好ましい。さらに風合いを向上させる点で、(メタ)アクリル酸ジメチルアミノエチルが好ましい。 Specific examples of the monomer (A5-1) include 2-hydroxyethyl (meth)acrylate, dimethylaminoethyl (meth)acrylate, glycidyl (meth)acrylate, and 1,1-bis(acryloyloxymethyl)ethyl isocyanate. These monomers may be used alone or in combination of two or more. Among them, 2-hydroxyethyl (meth)acrylate, glycidyl (meth)acrylate, and 1,1-bis(acryloyloxymethyl)ethyl isocyanate are preferred in terms of improving durable water repellency. Furthermore, dimethylaminoethyl (meth)acrylate is preferred in terms of improving texture.
 配合する(A5-1)成分の質量は、配合する(A1)成分の質量と(A2)成分の質量との合計100質量に対して、撥水性の観点から、3質量部以上であることが好ましく、5質量部以上であることがより好ましい。配合する(A5-1)成分の質量は、配合する(A1)成分の質量と(A2)成分の質量との合計100質量に対して、撥水性の観点から、30質量部以下であることが好ましく、25質量部以下であることがより好ましい。 The mass of the (A5-1) component to be blended is preferably 3 parts by mass or more, and more preferably 5 parts by mass or more, per 100 parts by mass of the combined mass of the (A1) and (A2) components to be blended, from the viewpoint of water repellency. The mass of the (A5-1) component to be blended is preferably 30 parts by mass or less, and more preferably 25 parts by mass or less, per 100 parts by mass of the combined mass of the (A1) and (A2) components to be blended, from the viewpoint of water repellency.
 上記(A5-2)の単量体は、エステル部分に炭素数1~11の1価の環状炭化水素基を有する(メタ)アクリル酸エステル単量体である。環状炭化水素基としては、イソボルニル基、シクロヘキシル基、ジシクロペンタニル基等が挙げられる。これら環状炭化水素基はアルキル基等の置換基を有していてもよい。ただし、置換基が炭化水素基の場合、置換基及び環状炭化水素基の炭素数の合計が11以下となる炭化水素基が選ばれる。また、これら環状炭化水素基は、エステル結合に直接結合していることが、耐久撥水性向上の観点から好ましい。環状炭化水素基は、脂環式であっても芳香族であってもよく、脂環式の場合、飽和炭化水素基であっても不飽和炭化水素基であってもよい。具体的な単量体としては、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸ジシクロペンタニル等が挙げられる。これら単量体は、1種を単独で用いてよく、2種以上を組み合わせて用いてもよい。中でも耐久撥水性を向上できる点で、(メタ)アクリル酸イソボルニル、メタクリル酸シクロヘキシルが好ましく、メタクリル酸イソボルニルがより好ましい。 The monomer (A5-2) is a (meth)acrylic acid ester monomer having a monovalent cyclic hydrocarbon group having 1 to 11 carbon atoms in the ester portion. Examples of the cyclic hydrocarbon group include isobornyl, cyclohexyl, and dicyclopentanyl groups. These cyclic hydrocarbon groups may have a substituent such as an alkyl group. However, when the substituent is a hydrocarbon group, a hydrocarbon group is selected in which the total number of carbon atoms in the substituent and the cyclic hydrocarbon group is 11 or less. In addition, from the viewpoint of improving durable water repellency, it is preferable that these cyclic hydrocarbon groups are directly bonded to an ester bond. The cyclic hydrocarbon group may be alicyclic or aromatic, and when it is alicyclic, it may be a saturated or unsaturated hydrocarbon group. Specific examples of the monomer include isobornyl (meth)acrylate, cyclohexyl (meth)acrylate, and dicyclopentanyl (meth)acrylate. These monomers may be used alone or in combination of two or more. Among these, isobornyl (meth)acrylate and cyclohexyl methacrylate are preferred, with isobornyl methacrylate being more preferred, in terms of improving durable water repellency.
 配合する(A5-2)成分の質量は、配合する(A1)成分の質量と(A2)成分の質量との合計100質量部に対して、撥水性の観点から、3質量部以上であることが好ましく、5質量部以上であることがより好ましい。配合する(A5-2)成分の質量は、配合する(A1)成分の質量と(A2)成分の質量との合計100質量部に対して、撥水性の観点から、30質量部以下であることが好ましく、25質量部以下であることがより好ましい。 The mass of the (A5-2) component to be blended is preferably 3 parts by mass or more, and more preferably 5 parts by mass or more, per 100 parts by mass of the combined total of the (A1) and (A2) components to be blended, from the viewpoint of water repellency. The mass of the (A5-2) component to be blended is preferably 30 parts by mass or less, and more preferably 25 parts by mass or less, per 100 parts by mass of the combined total of the (A1) and (A2) components to be blended, from the viewpoint of water repellency.
 上記(A5-3)の単量体は、エステル部分のエステル結合に、無置換の炭素数1~4の1価の鎖状炭化水素基が直接結合したメタクリル酸エステル単量体である。炭素数1~4の鎖状炭化水素基としては、炭素数1~2の直鎖炭化水素基、及び、炭素数3~4の分岐炭化水素基が好ましい。炭素数1~4の鎖状炭化水素基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、t-ブチル基等が挙げられる。具体的な化合物としては、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸イソプロピル、メタクリル酸n-ブチル、メタクリル酸イソブチル、メタクリル酸t-ブチルが挙げられる。これら単量体は、1種を単独で用いてよく、2種以上を組み合わせて用いてもよい。中でも耐久撥水性を向上できる点で、メタクリル酸メチル、メタクリル酸イソプロピル、メタクリル酸t-ブチルが好ましく、メタクリル酸メチルがより好ましい。 The monomer (A5-3) is a methacrylic acid ester monomer in which an unsubstituted monovalent chain hydrocarbon group having 1 to 4 carbon atoms is directly bonded to the ester bond of the ester moiety. As the chain hydrocarbon group having 1 to 4 carbon atoms, a linear hydrocarbon group having 1 to 2 carbon atoms and a branched hydrocarbon group having 3 to 4 carbon atoms are preferable. As the chain hydrocarbon group having 1 to 4 carbon atoms, for example, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a t-butyl group, etc. are mentioned. Specific compounds include methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, and t-butyl methacrylate. These monomers may be used alone or in combination of two or more. Among them, methyl methacrylate, isopropyl methacrylate, and t-butyl methacrylate are preferable in terms of improving durable water repellency, and methyl methacrylate is more preferable.
 配合する(A5-3)成分の質量は、配合する(A1)成分の質量と(A2)成分の質量との合計100質量部に対して、撥水性の観点から、3質量部以上であることが好ましく、5質量部以上であることがより好ましい。配合する(A5-3)成分の質量は、配合する(A1)成分の質量と(A2)成分の質量との合計100質量部に対して、撥水性の観点から、30質量部以下であることが好ましく、25質量部以下であることがより好ましい。 The mass of the (A5-3) component to be blended is preferably 3 parts by mass or more, and more preferably 5 parts by mass or more, per 100 parts by mass of the combined total of the (A1) and (A2) components to be blended, from the viewpoint of water repellency. The mass of the (A5-3) component to be blended is preferably 30 parts by mass or less, and more preferably 25 parts by mass or less, per 100 parts by mass of the combined total of the (A1) and (A2) components to be blended, from the viewpoint of water repellency.
 上記(A5-4)の単量体は、1分子内に3以上の重合性不飽和基を有する(メタ)アクリル酸エステル単量体である。上記一般式(A5-4)におけるTが(メタ)アクリロイルオキシ基である、1分子内に3以上の(メタ)アクリロイルオキシ基を有する多官能の(メタ)アクリル酸エステル単量体が好ましい。式(A5-4)において、p個のTは同一であっても異なっていてもよい。具体的な化合物としては、例えば、エトキシ化イソシアヌル酸トリアクリレート、テトラメチロールメタンテトラアクリレート、テトラメチロールメタンテトラメタクリレート、トリメチロールプロパントリアクリレート、トリメチロールプロパントリメタクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールトリメタクリレート、ジペンタエリスリトールヘキサアクリレート、ジペンタエリスリトールヘキサメタクリレート等が挙げられる。これら単量体は、1種を単独で用いてよく、2種以上を組み合わせて用いてもよい。中でも耐久撥水性を向上できる点で、テトラメチロールメタンテトラアクリレート及びエトキシ化イソシアヌル酸トリアクリレートがより好ましい。 The monomer (A5-4) is a (meth)acrylic acid ester monomer having three or more polymerizable unsaturated groups in one molecule. In the above general formula (A5-4), T is a (meth)acryloyloxy group, and a polyfunctional (meth)acrylic acid ester monomer having three or more (meth)acryloyloxy groups in one molecule is preferred. In formula (A5-4), the p Ts may be the same or different. Specific examples of compounds include ethoxylated isocyanuric acid triacrylate, tetramethylolmethane tetraacrylate, tetramethylolmethane tetramethacrylate, trimethylolpropane triacrylate, trimethylolpropane trimethacrylate, pentaerythritol triacrylate, pentaerythritol trimethacrylate, dipentaerythritol hexaacrylate, and dipentaerythritol hexamethacrylate. These monomers may be used alone or in combination of two or more. Among these, tetramethylolmethane tetraacrylate and ethoxylated isocyanuric acid triacrylate are more preferred because they can improve durable water repellency.
 配合する(A5-4)成分の質量は、配合する(A1)成分の質量と(A2)成分の質量との合計100質量部に対して、撥水性の観点から、3質量部以上であることが好ましく、5質量部以上であることがより好ましい。配合する(A5-4)成分の質量は、配合する(A1)成分の質量と(A2)成分の質量との合計100質量部に対して、撥水性の観点から、30質量部以下であることが好ましく、25質量部以下であることがより好ましい。 The mass of the (A5-4) component to be blended is preferably 3 parts by mass or more, and more preferably 5 parts by mass or more, per 100 parts by mass of the combined total of the (A1) and (A2) components to be blended, from the viewpoint of water repellency. The mass of the (A5-4) component to be blended is preferably 30 parts by mass or less, and more preferably 25 parts by mass or less, per 100 parts by mass of the combined total of the (A1) and (A2) components to be blended, from the viewpoint of water repellency.
 アクリル系化合物における上記の(A5)成分の単量体の合計構成割合は、撥水性及び風合いの観点で、アクリル系化合物を構成する単量体成分の全量に対して、1~30質量%であることが好ましく、3~25質量%であることがより好ましく、5~20質量%であることがさらに好ましい。 The total composition ratio of the monomers of the above-mentioned (A5) component in the acrylic compound is preferably 1 to 30 mass %, more preferably 3 to 25 mass %, and even more preferably 5 to 20 mass %, based on the total amount of the monomer components constituting the acrylic compound, from the viewpoints of water repellency and texture.
 配合する(A5)成分の質量は、配合する(A1)成分の質量と(A2)成分の質量との合計100質量部に対して、撥水性の観点から、3質量部以上であることが好ましく、5質量部以上であることがより好ましい。配合する(A5)成分の質量は、配合する(A1)成分の質量と(A2)成分の質量との合計100質量部に対して、撥水性の観点から、30質量部以下であることが好ましく、25質量部以下であることがより好ましい。 The mass of the (A5) component to be blended is preferably 3 parts by mass or more, and more preferably 5 parts by mass or more, per 100 parts by mass of the combined total of the (A1) and (A2) components to be blended, from the viewpoint of water repellency. The mass of the (A5) component to be blended is preferably 30 parts by mass or less, and more preferably 25 parts by mass or less, per 100 parts by mass of the combined total of the (A1) and (A2) components to be blended, from the viewpoint of water repellency.
 アクリル系化合物は、(A1)成分、及び、任意の(A2)成分に加えて、これらと共重合可能な単官能の単量体(A6)(以下、「(A6)成分」ともいう)を、本発明の効果を損なわない範囲において含有することができる。 The acrylic compound may contain, in addition to the (A1) component and the optional (A2) component, a monofunctional monomer (A6) (hereinafter also referred to as "(A6) component") that is copolymerizable with these components, within a range that does not impair the effects of the present invention.
 (A6)成分としては、例えば、(メタ)アクリロイルモルホリン、上記(A1)、(A2)、(A5)以外の炭化水素基を有する(メタ)アクリル酸エステル、(メタ)アクリル酸、フマル酸エステル、マレイン酸エステル、フマル酸、マレイン酸、(メタ)アクリルアミド、N-メチロールアクリルアミド、ビニルエーテル類、ビニルエステル類、エチレン、スチレン等のフッ素を含まない(A3)成分以外のビニル系単量体等が挙げられる。なお、(A1)成分、(A2)成分及び(A5)成分以外の炭化水素基を有する(メタ)アクリル酸エステルは、炭化水素基に、ビニル基、ヒドロキシル基、アミノ基、エポキシ基及びイソシアネート基、ブロックドイソシアネート基等の置換基を有していてもよく、第4級アンモニウム基等の架橋剤と反応可能な基以外の置換基を有していてもよく、エーテル結合、エステル結合、アミド結合、又はウレタン結合等を有していてもよい。(A1)成分、(A2)成分及び(A5)成分以外の(メタ)アクリル酸エステルとしては、例えば、アクリル酸メチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ベンジル、エチレングリコールジ(メタ)アクリレート等が挙げられる。中でも得られる繊維製品のコーティングに対する剥離強度を向上できる点で、(メタ)アクリロイルモルホリンがより好ましい。 Examples of the (A6) component include (meth)acryloylmorpholine, (meth)acrylic acid esters having a hydrocarbon group other than the above (A1), (A2), and (A5), (meth)acrylic acid, fumaric acid esters, maleic acid esters, fumaric acid, maleic acid, (meth)acrylamide, N-methylol acrylamide, vinyl ethers, vinyl esters, ethylene, styrene, and other fluorine-free vinyl monomers other than the (A3) component. Note that the (meth)acrylic acid esters having a hydrocarbon group other than the (A1), (A2), and (A5) components may have substituents such as vinyl groups, hydroxyl groups, amino groups, epoxy groups, isocyanate groups, and blocked isocyanate groups in the hydrocarbon group, and may have substituents other than groups that can react with crosslinking agents, such as quaternary ammonium groups, and may have ether bonds, ester bonds, amide bonds, urethane bonds, and the like. Examples of (meth)acrylic acid esters other than components (A1), (A2), and (A5) include methyl acrylate, 2-ethylhexyl (meth)acrylate, benzyl (meth)acrylate, ethylene glycol di(meth)acrylate, etc. Among these, (meth)acryloylmorpholine is more preferred in that it can improve the peel strength of the resulting textile product against coating.
 配合する(A6)成分の質量は、配合する(A1)成分の質量と(A2)成分の質量との合計100質量部に対して、撥水性の観点から、3質量部以上であることが好ましく、5質量部以上であることがより好ましい。配合する上記(A6)の単量体の質量は、配合する(A1)成分の質量と(A2)成分の質量との合計100質量部に対して、撥水性の観点から、40質量部以下であることが好ましく、35質量部以下であることがより好ましい。 The mass of the (A6) component to be blended is preferably 3 parts by mass or more, and more preferably 5 parts by mass or more, per 100 parts by mass of the combined total of the (A1) and (A2) components to be blended, from the viewpoint of water repellency. The mass of the (A6) monomer to be blended is preferably 40 parts by mass or less, and more preferably 35 parts by mass or less, per 100 parts by mass of the combined total of the (A1) and (A2) components to be blended, from the viewpoint of water repellency.
 アクリル系化合物は、架橋剤と反応可能なヒドロキシル基、アミノ基、カルボキシル基、エポキシ基及びイソシアネート基からなる群より選ばれる少なくとも1種の官能基を有することが、耐久撥水性を向上させることから好ましい。イソシアネート基は、ブロック化剤で保護されたブロックドイソシアネート基を形成していてもよい。また、アクリル系化合物は、アミノ基を有することが、風合を向上させることから好ましい。 It is preferable that the acrylic compound has at least one functional group selected from the group consisting of a hydroxyl group, an amino group, a carboxyl group, an epoxy group, and an isocyanate group that can react with a crosslinking agent, as this improves durable water repellency. The isocyanate group may be protected with a blocking agent to form a blocked isocyanate group. It is also preferable that the acrylic compound has an amino group, as this improves the texture.
 アクリル系化合物の重量平均分子量は、3万以上であることが好ましい。重量平均分子量が3万以上であると、撥水性が一層向上する傾向がある。さらに、アクリル系化合物の重量平均分子量は、5万以上であることがより好ましい。この場合、より十分に撥水性を発揮させることができる。アクリル系化合物の重量平均分子量の上限は500万程度が好ましい。 The weight-average molecular weight of the acrylic compound is preferably 30,000 or more. When the weight-average molecular weight is 30,000 or more, water repellency tends to be further improved. Furthermore, the weight-average molecular weight of the acrylic compound is more preferably 50,000 or more. In this case, water repellency can be more fully exerted. The upper limit of the weight-average molecular weight of the acrylic compound is preferably about 5 million.
 アクリル系化合物の重量平均分子量とは、GPC装置(東ソー(株)製GPC「HLC-8020」)により、カラム温度40℃、流量1.0ml/分の条件下で、溶離液にテトラヒドロフランを用いて測定し、標準ポリスチレン換算での値をいう。なお、カラムは、東ソー(株)製の商品名TSK-GELG5000HHR、G4000HHR、G3000HHRの3本を接続したものを用いる。 The weight average molecular weight of acrylic compounds is measured using a GPC device (Tosoh Corporation's GPC "HLC-8020") at a column temperature of 40°C and a flow rate of 1.0 ml/min, using tetrahydrofuran as the eluent, and is expressed in terms of standard polystyrene. The columns used are three connected columns manufactured by Tosoh Corporation under the trade names TSK-GELG5000HHR, G4000HHR, and G3000HHR.
 アクリル系化合物の105℃における溶融粘度は、1000Pa・s以下であることが好ましい。105℃における溶融粘度が1000Pa・s以下である場合、風合いを良好に維持しやすくなる傾向にある。また、アクリル系化合物の溶融粘度が1000Pa・s以下である場合、アクリル系化合物を乳化又は分散して撥水剤組成物とした際に、アクリル系化合物が析出したり沈降したりすることを抑制できるため、撥水剤組成物の貯蔵安定性を良好に維持しやすくなる傾向にある。なお、105℃における溶融粘度は、500Pa・s以下であることがより好ましい。この場合、十分な撥水性を発揮しつつ、風合いもより優れたものとなる。 The melt viscosity of the acrylic compound at 105°C is preferably 1000 Pa·s or less. When the melt viscosity at 105°C is 1000 Pa·s or less, the texture tends to be easily maintained. In addition, when the melt viscosity of the acrylic compound is 1000 Pa·s or less, when the acrylic compound is emulsified or dispersed to form a water repellent composition, the acrylic compound can be prevented from precipitating or settling, and therefore the storage stability of the water repellent composition tends to be easily maintained. It is more preferable that the melt viscosity at 105°C is 500 Pa·s or less. In this case, the texture is more excellent while sufficient water repellency is exhibited.
 「105℃における溶融粘度」とは、高架式フローテスター(例えば、島津製作所製CFT-500)を用い、ダイ(長さ10mm、直径1mm)を取り付けたシリンダー内に非フッ素系ポリマーを1g入れ、105℃で6分間保持し、プランジャーにより100kg・f/cmの荷重を加えて測定したときの粘度をいう。 The "melt viscosity at 105°C" refers to the viscosity measured using an elevated flow tester (e.g., CFT-500 manufactured by Shimadzu Corporation) by placing 1 g of a non-fluorinated polymer in a cylinder equipped with a die (length 10 mm, diameter 1 mm), holding the temperature at 105°C for 6 minutes, and applying a load of 100 kg f/ cm2 with a plunger.
1.1.2 シリコーン系化合物
 シリコーン系化合物は、例えば、シリコーンレジン及びシリコーンオイルのうちの少なくとも一方である。このようなシリコーン系化合物の中でも、撥水性の観点からシリコーンレジンが好ましい。シリコーン系化合物は、1種を単独で又は2種以上を組み合わせて用いてもよい。
1.1.2 Silicone-based compound The silicone-based compound is, for example, at least one of silicone resin and silicone oil. Among such silicone-based compounds, silicone resin is preferred from the viewpoint of water repellency. The silicone-based compound may be used alone or in combination of two or more kinds.
 シリコーンレジンは、構成成分としてMQ、MDQ、MT、MTQ、MDT又はMDTQを含み、25℃にて固形状であり、三次元構造を有するオルガノポリシロキサンであってもよい。ここで、M、D、T及びQは、それぞれ(R’’)SiO0.5単位、(R’’)SiO単位、R’’SiO1.5単位及びSiO単位を表す。R’’は、炭素数1~10の1価の脂肪族炭化水素基、又は、炭素数6~15の1価の芳香族炭化水素基を表す。 The silicone resin may be an organopolysiloxane containing MQ, MDQ, MT, MTQ, MDT or MDTQ as a constituent, being solid at 25° C. and having a three-dimensional structure, where M, D, T and Q respectively represent (R″) 3 SiO 0.5 units, (R″) 2 SiO units, R″SiO 1.5 units and SiO 2 units. R″ represents a monovalent aliphatic hydrocarbon group having 1 to 10 carbon atoms or a monovalent aromatic hydrocarbon group having 6 to 15 carbon atoms.
 シリコーンレジンは、一般に、MQレジン、MTレジン又はMDTレジンとして知られており、MDQ、MTQ又はMDTQと示される部分を有することもある。 Silicone resins are commonly known as MQ resins, MT resins or MDT resins and may also have moieties designated as MDQ, MTQ or MDTQ.
 シリコーンレジンは、これを適当な溶媒に溶解させた溶液としても入手することができる。溶媒としては、例えば、比較的低分子量のメチルポリシロキサン、デカメチルシクロペンタシロキサン、オクタメチルシクロテトラシロキサン、n-ヘキサン、イソプロピルアルコール、塩化メチレン、1,1,1-トリクロロエタン及びこれらの溶媒の混合物等が挙げられる。 Silicone resins can also be obtained as solutions in suitable solvents. Examples of solvents include relatively low molecular weight methylpolysiloxanes, decamethylcyclopentasiloxane, octamethylcyclotetrasiloxane, n-hexane, isopropyl alcohol, methylene chloride, 1,1,1-trichloroethane, and mixtures of these solvents.
 シリコーンレジンの溶液としては、例えば、信越化学工業(株)より市販されているKF7312J(トリメチルシリル基含有ポリシロキサン:デカメチルシクロペンタシロキサン=50:50混合物)、KF7312F(トリメチルシリル基含有ポリシロキサン:オクタメチルシクロテトラシロキサン)、KF9021L(トリメチルシリル基含有ポリシロキサン:低粘度メチルポリシロキサン=50:50混合物)、KF7312L(トリメチルシリル基含有ポリシロキサン:低粘度メチルポリシロキサン=50:50混合物)等が挙げられる。 Examples of silicone resin solutions include KF7312J (a 50:50 mixture of trimethylsilyl-containing polysiloxane: decamethylcyclopentasiloxane), KF7312F (a 50:50 mixture of trimethylsilyl-containing polysiloxane: octamethylcyclotetrasiloxane), KF9021L (a 50:50 mixture of trimethylsilyl-containing polysiloxane: low-viscosity methylpolysiloxane), and KF7312L (a 50:50 mixture of trimethylsilyl-containing polysiloxane: low-viscosity methylpolysiloxane), all of which are commercially available from Shin-Etsu Chemical Co., Ltd.
 シリコーンレジン単独としては、例えば、東レダウコーニング(株)より市販されているMQ-1600solidResin(トリメチルシリル基含有ポリシロキサン)、MQ-1640FlakeResin(トリメチルシリル基含有ポリシロキサン、ポリプロピルシルセスキオキサン)などが挙げられる。上記市販品は、トリメチルシリル基含有ポリシロキサンを含み、MQ、MDQ、MT、MTQ、MDT又はMDTQを含むものである。 Examples of silicone resins alone include MQ-1600 solid Resin (trimethylsilyl group-containing polysiloxane) and MQ-1640 Flake Resin (trimethylsilyl group-containing polysiloxane, polypropylsilsesquioxane), both of which are commercially available from Toray Dow Corning Co., Ltd. The above commercially available products contain trimethylsilyl group-containing polysiloxane, and include MQ, MDQ, MT, MTQ, MDT, or MDTQ.
 シリコーンオイルは、直鎖状のオルガノポリシロキサンであり、オルガノポリシロキサンの側鎖及び末端の少なくともいずれかに有機基を有するものであってもよい。このようなシリコーンオイルとしては、疎水化シリコーンオイル、官能基化シリコーンオイルと同じものを使用することができ、例えば、ジメチルシリコーンオイル、メチルフェニルシリコーンオイル、メチルハイドロジェンシリコーンオイルなどのストレートシリコーンオイル;アミノ変性シリコーンオイル、エポキシ変性シリコーンオイル、カルビノール変性シリコーンオイル、メルカプト変性シリコーンオイル、カルボキシル変性シリコーンオイル、ポリエーテル変性シリコーンオイル、アルキル変性シリコーンオイル、アラルキル変性シリコーンオイル、アルキルアラルキル変性シリコーンオイル、高級脂肪酸エステル変性シリコーンオイル、高級脂肪族アミド変性シリコーンオイルなどの変性シリコーンオイルなどを挙げることができる。 The silicone oil is a linear organopolysiloxane, and may have an organic group at least in one of the side chains and the terminals of the organopolysiloxane. Such silicone oils can be the same as hydrophobic silicone oils and functionalized silicone oils, and examples of such silicone oils include straight silicone oils such as dimethyl silicone oil, methylphenyl silicone oil, and methylhydrogen silicone oil; modified silicone oils such as amino-modified silicone oil, epoxy-modified silicone oil, carbinol-modified silicone oil, mercapto-modified silicone oil, carboxyl-modified silicone oil, polyether-modified silicone oil, alkyl-modified silicone oil, aralkyl-modified silicone oil, alkylaralkyl-modified silicone oil, higher fatty acid ester-modified silicone oil, and higher aliphatic amide-modified silicone oil.
 アミノ変性シリコーンオイルとしては、オルガノポリシロキサンの側鎖及び末端の少なくともいずれかにアミノ基及び/又はイミノ基を含む有機基を有する化合物が挙げられる。このような有機基としては、-R-NHで表される有機基、-R-NH-R’-NHで表される有機基が挙げられる。R及びR’としては、エチレン基、プロピレン基等の2価の基が挙げられる。アミノ基及び/又はイミノ基の一部又は全部が、封鎖されたアミノ基及び/又はイミノ基であってもよい。封鎖されたアミノ基及び/又はイミノ基は、例えば、アミノ基及び/又はイミノ基を封鎖剤で処理することにより得られる。封鎖剤としては、例えば、炭素数2~22の脂肪酸、炭素数2~22の脂肪酸の酸無水物、炭素数2~22の脂肪酸の酸ハライド、炭素数1~22の脂肪族モノイソシアネートなどが挙げられる。 The amino-modified silicone oil may be a compound having an organic group containing an amino group and/or an imino group at least on the side chain or end of the organopolysiloxane. Such an organic group may be an organic group represented by -R- NH2 or an organic group represented by -R-NH-R'- NH2 . Examples of R and R' include divalent groups such as an ethylene group and a propylene group. A part or all of the amino group and/or imino group may be a blocked amino group and/or imino group. The blocked amino group and/or imino group may be obtained, for example, by treating the amino group and/or imino group with a blocking agent. Examples of the blocking agent include fatty acids having 2 to 22 carbon atoms, acid anhydrides of fatty acids having 2 to 22 carbon atoms, acid halides of fatty acids having 2 to 22 carbon atoms, and aliphatic monoisocyanates having 1 to 22 carbon atoms.
 アミノ変性シリコーンオイルの官能基当量は、撥水性の観点から、100~20000g/molが好ましく、150~12000g/molがより好ましく、200~4000g/molがより好ましい。 From the viewpoint of water repellency, the functional group equivalent of the amino-modified silicone oil is preferably 100 to 20,000 g/mol, more preferably 150 to 12,000 g/mol, and even more preferably 200 to 4,000 g/mol.
 アミノ変性シリコーンオイルは25℃で液状であることが好ましい。アミノ変性シリコーンオイルの25℃における動粘度は、10~100,000mm/sであることが好ましく、10~30,000mm/sであることがより好ましく、10~5,000mm/sであることがさらに好ましい。25℃における動粘度が100,000mm/sより大きい場合、粘度が高すぎて作業性が悪くなる傾向にある。25℃における動粘度とは、JISK2283:2000(ウベローデ粘度計)に記載の方法で測定した値を意味する。 The amino-modified silicone oil is preferably liquid at 25° C. The kinetic viscosity of the amino-modified silicone oil at 25° C. is preferably 10 to 100,000 mm 2 /s, more preferably 10 to 30,000 mm 2 /s, and even more preferably 10 to 5,000 mm 2 /s. If the kinetic viscosity at 25° C. is greater than 100,000 mm 2 /s, the viscosity is too high and workability tends to deteriorate. The kinetic viscosity at 25° C. refers to a value measured by the method described in JIS K2283:2000 (Ubbelohde viscometer).
 アミノ変性シリコーンオイルとしては、市販品としても容易に入手することが可能である。市販品としては、例えば、KF8005、KF-868、KF-864、KF-393、KF-8021(いずれも、信越化学工業(株)製、商品名)、TSF-4709、XF42-B1989(モメンティブ・パフォーマンス・マテリアルズ・ジャパン(合)製、商品名)、BY16-872、SF-8417、BY16-853U、BY16-892(いずれも、東レ・ダウコーニング(株)製、商品名)、KF-8010(信越化学工業(株)製)、WACKER(登録商標) FINISH WR 301(旭化成ワッカーシリコーン製)などが挙げられる。 Amino-modified silicone oils are readily available as commercial products. Examples of commercial products include KF8005, KF-868, KF-864, KF-393, and KF-8021 (all of which are product names manufactured by Shin-Etsu Chemical Co., Ltd.), TSF-4709 and XF42-B1989 (product names manufactured by Momentive Performance Materials Japan Co., Ltd.), BY16-872, SF-8417, BY16-853U, and BY16-892 (product names manufactured by Dow Corning Toray Co., Ltd.), KF-8010 (manufactured by Shin-Etsu Chemical Co., Ltd.), and WACKER (registered trademark) FINISH WR 301 (manufactured by Asahi Kasei Wacker Silicone).
 また、アミノ変性シリコーンオイル以外のシリコーンオイルも同様に市販品として容易に入手することが可能である。市販品としては、例えば、KF-101(信越化学工業(株)製、商品名、エポキシ変性シリコーンオイル)、X-22-3701E(信越化学工業(株)製、商品名、カルボキシル変性シリコーンオイル)、SF8428(東レ・ダウコーニング(株)製、商品名、カルビノール変性シリコーンオイル)、KF-9901(信越化学工業(株)製、商品名、メチルハイドロジェンシリコーンオイル)、X-22-715(信越化学工業(株)製、商品名、高級脂肪酸エステル変性シリコーンオイル)、KF-96-3000cp(信越化学工業(株)製、商品名、ジメチルシリコーンオイル)、SF8416(東レ・ダウコーニング(株)製、商品名、アルキル変性シリコーンオイル)、SH203(東レ・ダウコーニング(株)製、商品名、アルキルアラルキル変性シリコーンオイル)、SF8410(東レ・ダウコーニング(株)製、商品名、ポリエーテル変性シリコーンオイル)などが挙げられる。 Silicone oils other than amino-modified silicone oils are also readily available as commercially available products. Examples of commercially available products include KF-101 (manufactured by Shin-Etsu Chemical Co., Ltd., product name: epoxy-modified silicone oil), X-22-3701E (manufactured by Shin-Etsu Chemical Co., Ltd., product name: carboxyl-modified silicone oil), SF8428 (manufactured by Dow Corning Toray Co., Ltd., product name: carbinol-modified silicone oil), KF-9901 (manufactured by Shin-Etsu Chemical Co., Ltd., product name: methyl hydrogen silicone oil), and X-22-715 (manufactured by Shin-Etsu Chemical Co., Ltd., product name: methyl hydrogen silicone oil). , higher fatty acid ester modified silicone oil), KF-96-3000cp (manufactured by Shin-Etsu Chemical Co., Ltd., product name: dimethyl silicone oil), SF8416 (manufactured by Dow Corning Toray Co., Ltd., product name: alkyl modified silicone oil), SH203 (manufactured by Dow Corning Toray Co., Ltd., product name: alkyl aralkyl modified silicone oil), SF8410 (manufactured by Dow Corning Toray Co., Ltd., product name: polyether modified silicone oil), etc.
 シリコーン系化合物は、下記一般式(1)で表されるオルガノ変性シリコーンであってもよい。なお、下記一般式(1)において、各構造単位はブロックであっても、ランダムであっても、交互に配列していてもよい。 The silicone compound may be an organo-modified silicone represented by the following general formula (1). In the following general formula (1), the structural units may be arranged in a block, random, or alternating fashion.
Figure JPOXMLDOC01-appb-C000012
[式(1)中、R20、R21及びR22は、それぞれ独立に、水素原子、メチル基、エチル基又は炭素数1~4のアルコキシ基であり、R23は、芳香族環を有する炭素数8~40の炭化水素基、又は炭素数8~40のアルキル基であり、R30、R31、R32、R33、R34及びR35は、それぞれ独立に、水素原子、メチル基、エチル基、炭素数1~4のアルコキシ基、芳香族環を有する炭素数8~40の炭化水素基、又は炭素数3~22のアルキル基であり、aは0以上の整数であり、bは1以上の整数であり、(a+b)は10~200であり、aが2以上の場合、複数存在するR20及びR21はそれぞれ同一であっても異なっていてもよく、bが2以上の場合、複数存在するR22及びR23はそれぞれ同一であっても異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000012
[In formula (1), R 20 , R 21 and R 22 are each independently a hydrogen atom, a methyl group, an ethyl group or an alkoxy group having 1 to 4 carbon atoms, R 23 is a hydrocarbon group having 8 to 40 carbon atoms and an aromatic ring, or an alkyl group having 8 to 40 carbon atoms, R 30 , R 31 , R 32 , R 33 , R 34 and R 35 are each independently a hydrogen atom, a methyl group, an ethyl group, an alkoxy group having 1 to 4 carbon atoms, a hydrocarbon group having 8 to 40 carbon atoms and an aromatic ring, or an alkyl group having 3 to 22 carbon atoms, a is an integer of 0 or more, b is an integer of 1 or more, (a+b) is 10 to 200, when a is 2 or more, the multiple R 20 and R 21 may be the same or different, and when b is 2 or more, the multiple R 22 and R 23 may be the same or different.]
 オルガノ変性シリコーンにおいて、上記の炭素数1~4のアルコキシル基は、直鎖状であっても分岐状であってもよい。炭素数1~4のアルコキシル基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基等が挙げられる。工業的に製造し易く、入手が容易であるという点で、R20、R21及びR22は、それぞれ独立に、水素原子又はメチル基であることが好ましく、メチル基であることがより好ましい。 In the organo-modified silicone, the alkoxyl group having 1 to 4 carbon atoms may be linear or branched. Examples of the alkoxyl group having 1 to 4 carbon atoms include a methoxy group, an ethoxy group, a propoxy group, and a butoxy group. From the viewpoint of ease of industrial production and availability, R 20 , R 21 , and R 22 are each preferably independently a hydrogen atom or a methyl group, and more preferably a methyl group.
 上記の芳香族環を有する炭素数8~40の炭化水素基としては、例えば、炭素数8~40のアラルキル基、下記一般式(2)又は(3)で表される基等が挙げられる。 Examples of the above-mentioned hydrocarbon group having 8 to 40 carbon atoms and an aromatic ring include aralkyl groups having 8 to 40 carbon atoms and groups represented by the following general formula (2) or (3).
Figure JPOXMLDOC01-appb-C000013
[式(2)中、R40は、炭素数2~6のアルキレン基であり、R41は、単結合又は炭素数1~4のアルキレン基であり、cは0~3の整数である。cが2又は3の場合、複数存在するR41は同一であっても異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000013
[In formula (2), R 40 is an alkylene group having 2 to 6 carbon atoms, R 41 is a single bond or an alkylene group having 1 to 4 carbon atoms, and c is an integer of 0 to 3. When c is 2 or 3, the multiple R 41s may be the same or different.]
 上記のアルキレン基は、直鎖状であっても分岐状であってもよい。 The above alkylene groups may be linear or branched.
Figure JPOXMLDOC01-appb-C000014
[式(3)中、R42は、炭素数2~6のアルキレン基であり、R43は、単結合又は炭素数1~4のアルキレン基であり、dは0~3の整数である。dが2又は3の場合、複数存在するR43は同一であっても異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000014
[In formula (3), R 42 is an alkylene group having 2 to 6 carbon atoms, R 43 is a single bond or an alkylene group having 1 to 4 carbon atoms, and d is an integer of 0 to 3. When d is 2 or 3, the multiple R 43s may be the same or different.]
 上記のアルキレン基は、直鎖状であっても分岐状であってもよい。 The above alkylene groups may be linear or branched.
 上記の炭素数8~40のアラルキル基としては、例えば、フェニルエチル基、フェニルプロピル基、フェニルブチル基、フェニルペンチル基、フェニルヘキシル基、ナフチルエチル基等が挙げられる。中でも、工業的に製造しやすく、入手が容易であるという点で、フェニルエチル基及びフェニルプロピル基が好ましい。 Examples of the aralkyl group having 8 to 40 carbon atoms include a phenylethyl group, a phenylpropyl group, a phenylbutyl group, a phenylpentyl group, a phenylhexyl group, and a naphthylethyl group. Among these, the phenylethyl group and the phenylpropyl group are preferred because they are easy to produce industrially and are readily available.
 上記一般式(2)で表される基において、工業的に製造しやすく、入手が容易であるという点で、R40は炭素数2~4のアルキレン基であることが好ましく、cは、0又は1であることが好ましく、0であることがより好ましい。 In the group represented by the above general formula (2), from the viewpoints of ease of industrial production and availability, R 40 is preferably an alkylene group having 2 to 4 carbon atoms, and c is preferably 0 or 1, and more preferably 0.
 上記一般式(3)で表される基において、工業的に製造しやすく、入手が容易であるという点で、R42は炭素数2~4のアルキレン基であることが好ましく、dは、0又は1であることが好ましく、0であることがより好ましい。 In the group represented by the above general formula (3), from the viewpoints of ease of industrial production and availability, R 42 is preferably an alkylene group having 2 to 4 carbon atoms, and d is preferably 0 or 1, and more preferably 0.
 上記の芳香族環を有する炭素数8~40の炭化水素基としては、工業的に製造しやすく、入手が容易であるという点で、上記炭素数8~40のアラルキル基、及び上記一般式(2)で表される基が好ましく、撥水性を向上できる点で、上記炭素数8~40のアラルキル基がより好ましい。 As the above-mentioned hydrocarbon group having an aromatic ring and a carbon number of 8 to 40, the above-mentioned aralkyl group having a carbon number of 8 to 40 and the group represented by the above-mentioned general formula (2) are preferred in that they are easy to produce industrially and are readily available, and the above-mentioned aralkyl group having a carbon number of 8 to 40 is more preferred in that it can improve water repellency.
 上記の炭素数8~40のアルキル基は、直鎖状であっても分岐状であってもよい。炭素数8~40のアルキル基としては、例えば、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、ミリスチル基、セチル基、ステアリル基、ベヘニル基、ヘキサコシル基、オクタコシル基、トリアコンチル基、ドトリアコンチル基等が挙げられる。炭素数8~40のアルキル基としては、撥水性を向上できる点で、炭素数12~36のアルキル基が好ましく、炭素数16~34のアルキル基がより好ましい。尚、アルキル基の炭素数が少ない方が、チョークマークが優れる傾向にある。また、アルキル基の炭素数が大きい方が、撥水性が優れる傾向にある。また、炭素数40を超えると、分散物の安定性が低下する傾向にある。さらに、炭素数が8未満である場合、撥水性が不良となる傾向にある。 The alkyl group having 8 to 40 carbon atoms may be linear or branched. Examples of the alkyl group having 8 to 40 carbon atoms include octyl, nonyl, decyl, undecyl, dodecyl, myristyl, cetyl, stearyl, behenyl, hexacosyl, octacosyl, triacontyl, and dotriacontyl. As the alkyl group having 8 to 40 carbon atoms, an alkyl group having 12 to 36 carbon atoms is preferred, and an alkyl group having 16 to 34 carbon atoms is more preferred, in terms of improving water repellency. The fewer the carbon atoms in the alkyl group, the better the chalk mark. The larger the carbon number in the alkyl group, the better the water repellency. If the number of carbon atoms exceeds 40, the stability of the dispersion tends to decrease. Furthermore, if the number of carbon atoms is less than 8, the water repellency tends to be poor.
 オルガノ変性シリコーンにおいて、R30、R31、R32、R33、R34及びR35は、それぞれ独立に、水素原子、メチル基、エチル基、炭素数1~4のアルコキシ基、芳香族環を有する炭素数8~40の炭化水素基、又は炭素数3~22のアルキル基である。工業的に製造しやすく、入手が容易であるという点で、R30、R31、R32、R33、R34及びR35は、それぞれ独立に、水素原子、メチル基、エチル基又は炭素数1~4のアルコキシ基であることが好ましく、中でもメチル基であることがより好ましい。 In the organo-modified silicone, R 30 , R 31 , R 32 , R 33 , R 34 , and R 35 are each independently a hydrogen atom, a methyl group, an ethyl group, an alkoxy group having 1 to 4 carbon atoms, a hydrocarbon group having an aromatic ring and having 8 to 40 carbon atoms, or an alkyl group having 3 to 22 carbon atoms. From the viewpoints of ease of industrial production and availability, it is preferable that R 30 , R 31 , R 32 , R 33 , R 34 , and R 35 are each independently a hydrogen atom, a methyl group, an ethyl group, or an alkoxy group having 1 to 4 carbon atoms, and among these, a methyl group is more preferable.
 オルガノ変性シリコーンにおいて、aは0以上の整数である。工業的に製造しやすく、入手が容易であり、剥離強度がより優れるという点で、aは、40以下であることが好ましく、30以下であることがより好ましい。 In the organo-modified silicone, a is an integer of 0 or more. In terms of ease of industrial production, availability, and superior peel strength, a is preferably 40 or less, and more preferably 30 or less.
 オルガノ変性シリコーンにおいて、(a+b)は10~200である。工業的に製造しやすく、入手が容易であるという点で、(a+b)は、20~100であることが好ましく、40~60であることがより好ましい。(a+b)が上記範囲内であると、シリコーン自体の製造や取り扱いが容易になる傾向にある。 In organo-modified silicones, (a+b) is 10 to 200. From the viewpoint of ease of industrial production and availability, (a+b) is preferably 20 to 100, and more preferably 40 to 60. When (a+b) is within the above range, the silicone itself tends to be easier to produce and handle.
 オルガノ変性シリコーンは、従来公知の方法により合成することができる。オルガノ変性シリコーンは、例えば、SiH基を有するシリコーンに、ビニル基を有する芳香族化合物及び/又はα-オレフィンをヒドロシリル化反応させることにより得ることができる。 Organo-modified silicones can be synthesized by conventional methods. For example, organo-modified silicones can be obtained by subjecting silicones having SiH groups to a hydrosilylation reaction with aromatic compounds and/or α-olefins having vinyl groups.
 上記のSiH基を有するシリコーンとしては、例えば、重合度が10~200であるメチルハイドロジェンシリコーン、又は、ジメチルシロキサンとメチルハイドロジェンシロキサンとの共重合体等が挙げられる。これらの中でも、工業的に製造しやすく、入手が容易であるという点で、メチルハイドロジェンシリコーンが好ましい。 Examples of silicones having SiH groups include methylhydrogensilicones with a degree of polymerization of 10 to 200, or copolymers of dimethylsiloxane and methylhydrogensiloxane. Among these, methylhydrogensilicones are preferred because they are easy to manufacture industrially and are readily available.
 上記のビニル基を有する芳香族化合物は、上記一般式(1)中のR23において、芳香族環を有する炭素数8~40の炭化水素基の由来となる化合物である。ビニル基を有する芳香族化合物としては、例えば、スチレン、α-メチルスチレン、ビニルナフタレン、アリルフェニルエーテル、アリルナフチルエーテル、アリル-p-クミルフェニルエーテル、アリル-o-フェニルフェニルエーテル、アリル-トリ(フェニルエチル)-フェニルエーテル、アリル-トリ(2-フェニルプロピル)フェニルエーテル等が挙げられる。 The aromatic compound having a vinyl group is a compound from which the hydrocarbon group having an aromatic ring and 8 to 40 carbon atoms in R 23 in the above general formula (1) is derived. Examples of aromatic compounds having a vinyl group include styrene, α-methylstyrene, vinylnaphthalene, allyl phenyl ether, allyl naphthyl ether, allyl-p-cumyl phenyl ether, allyl-o-phenyl phenyl ether, allyl-tri(phenylethyl)-phenyl ether, and allyl-tri(2-phenylpropyl)phenyl ether.
 上記のα-オレフィンは、上記一般式(1)中のR23において、炭素数8~40のアルキル基の由来となる化合物である。α-オレフィンとしては、例えば、1-オクテン、1-ノネン、1-デセン、1-ウンデセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-ヘキサコセン(C26)、1-オクタコセン(C28)、1-トリアコンテン(C30)、1-ドトリアコンテン(C32)等の炭素数8~40のα-オレフィンが挙げられる。 The above α-olefin is a compound from which the alkyl group having 8 to 40 carbon atoms in R 23 in the above general formula (1) is derived. Examples of the α-olefin include α-olefins having 8 to 40 carbon atoms such as 1-octene, 1-nonene, 1-decene, 1-undecene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-hexacosene (C26), 1-octacosene (C28), 1-triacontene (C30), and 1-dotriacontene (C32).
 上記のヒドロシリル化反応は、必要に応じて触媒の存在下、上記SiH基を有するシリコーンに、上記ビニル基を有する芳香族化合物及び上記α-オレフィンを段階的に或いは一度に反応させることにより行ってもよい。 The hydrosilylation reaction may be carried out by reacting the silicone having a SiH group with the aromatic compound having a vinyl group and the α-olefin in a stepwise or all-at-once reaction, if necessary, in the presence of a catalyst.
 ヒドロシリル化反応に用いられるSiH基を有するシリコーン、ビニル基を有する芳香族化合物及びα-オレフィンの使用量はそれぞれ、SiH基を有するシリコーンのSiH基当量、又は数平均分子量等に応じて適宜選択され得る。 The amounts of the silicone having a SiH group, the aromatic compound having a vinyl group, and the α-olefin used in the hydrosilylation reaction can be appropriately selected according to the SiH group equivalent weight of the silicone having a SiH group, the number average molecular weight, etc.
 ヒドロシリル化反応に用いられる触媒としては、例えば、白金、パラジウム等の化合物が挙げられ、中でも白金化合物が好ましい。白金化合物としては、例えば、塩化白金(IV)等が挙げられる。 Catalysts used in hydrosilylation reactions include, for example, platinum and palladium compounds, with platinum compounds being preferred. Examples of platinum compounds include platinum(IV) chloride.
 ヒドロシリル化反応の反応条件は、特に制限はなく、適宜調整することができる。反応温度は、例えば10~200℃、好ましくは50~150℃である。反応時間は、例えば、反応温度が50~150℃のとき、3~12時間とすることができる。 The reaction conditions for the hydrosilylation reaction are not particularly limited and can be adjusted as appropriate. The reaction temperature is, for example, 10 to 200°C, preferably 50 to 150°C. The reaction time can be, for example, 3 to 12 hours when the reaction temperature is 50 to 150°C.
 また、ヒドロシリル化反応は、不活性ガス雰囲気下で行うことが好ましい。不活性ガスとしては、例えば、窒素、アルゴン等が挙げられる。無溶媒下でも反応は進行するが、溶媒を使用してもよい。溶媒としては、例えば、ジオキサン、メチルイソブチルケトン、トルエン、キシレン、酢酸ブチル等が挙げられる。 The hydrosilylation reaction is preferably carried out in an inert gas atmosphere. Examples of inert gas include nitrogen and argon. The reaction proceeds without a solvent, but a solvent may be used. Examples of solvents include dioxane, methyl isobutyl ketone, toluene, xylene, and butyl acetate.
 撥水剤成分としては、撥水性とチョークマークの観点から、上記のアクリル系化合物と上記のシリコーン系化合物とを併用することが好ましい。アクリル系化合物(α)とシリコーン系化合物(β)との質量比は特に限定されるものではない。例えば、シリコーン系化合物(β)がシリコーンレジンである場合、アクリル系化合物(α)とシリコーン系化合物(β)との合計を100質量部として、シリコーン系化合物(β)が1~99質量部を占めていてもよい。好ましくは5~98質量部、より好ましくは10~97質量部、さらに好ましくは15~95質量部である。シリコーン系化合物(β)の割合がこの範囲であることで、摩耗後の撥水性・ブンデスマンに優れたものとなる。或いは、シリコーン系化合物(β)がオルガノ変性シリコーンである場合、アクリル系化合物(α)とシリコーン系化合物(β)との合計を100質量部として、シリコーン系化合物(β)が10~90質量部を占めていてもよい。好ましくは10~80質量部、より好ましくは15~70質量部、さらに好ましくは20~60質量部である。シリコーン系化合物(β)の割合がこの範囲であることで、撥水性に優れ、また、チョークマークが生じ難いものとなる。 As the water repellent component, it is preferable to use the above acrylic compound and the above silicone compound in combination from the viewpoint of water repellency and chalk marks. The mass ratio of the acrylic compound (α) and the silicone compound (β) is not particularly limited. For example, when the silicone compound (β) is a silicone resin, the silicone compound (β) may occupy 1 to 99 parts by mass, assuming that the total of the acrylic compound (α) and the silicone compound (β) is 100 parts by mass. It is preferably 5 to 98 parts by mass, more preferably 10 to 97 parts by mass, and even more preferably 15 to 95 parts by mass. By having the ratio of the silicone compound (β) in this range, the water repellency and Bundesmann after wear are excellent. Alternatively, when the silicone compound (β) is an organo-modified silicone, the silicone compound (β) may occupy 10 to 90 parts by mass, assuming that the total of the acrylic compound (α) and the silicone compound (β) is 100 parts by mass. It is preferably 10 to 80 parts by mass, more preferably 15 to 70 parts by mass, and even more preferably 20 to 60 parts by mass. By keeping the proportion of silicone compound (β) within this range, the coating has excellent water repellency and is less likely to produce chalk marks.
1.1.3 ワックス系化合物
 ワックス系化合物は、例えば、パラフィンワックス、マイクロクリスタリンワックス、フィッシャートロプシュワックス、ポリエチレンワックス、動植物蝋及び鉱物蝋から選ばれる少なくとも1種であり、撥水性、耐久撥水性及び風合いの観点から、パラフィンワックスであることが好ましい。
1.1.3 Wax-Based Compound The wax-based compound is, for example, at least one type selected from paraffin wax, microcrystalline wax, Fischer-Tropsch wax, polyethylene wax, animal and vegetable waxes, and mineral waxes. From the viewpoints of water repellency, durable water repellency, and texture, paraffin wax is preferable.
 ワックス系化合物は、例えば、ノルマルアルカン及びノルマルアルケンのうちの一方又は両方であってもよい。ワックス系化合物は、撥水性、耐久撥水性及び風合いの観点から、ノルマルアルカンであることが好ましい。 The wax-based compound may be, for example, one or both of a normal alkane and a normal alkene. From the viewpoints of water repellency, durable water repellency, and texture, the wax-based compound is preferably a normal alkane.
 ノルマルアルカンとしては、例えば、トリコサン、テトラコサン、ペンタコサン、ヘキサコサン、ヘプタコサン、オクタコサン、ノナコサン、トリアコンタン、ヘントリアコンタン、ドトリアコンタン、トリトリアコンタン、テトラトリアコンタン、ペンタトリアコンタン及びヘキサトリアコンタンから選ばれる少なくとも1種が挙げられる。ノルマルアルカンは、撥水性、耐久撥水性及び風合いの観点から、トリアコンタン、ヘントリアコンタン及びドトリアコンタンであることが好ましい。 The normal alkane may be, for example, at least one selected from tricosane, tetracosane, pentacosane, hexacosane, heptacosane, octacosane, nonacosane, triacontane, hentriacontane, dotriacontane, tritriacontane, tetratriacontane, pentatriacontane, and hexatriacontane. From the viewpoints of water repellency, durable water repellency, and texture, the normal alkane is preferably triacontane, hentriacontane, or dotriacontane.
 ノルマルアルケンとしては、例えば、1-エイコセン、1-ドコセン、1-トリコセン、1-テトラコセン、1-ペンタコセン、1-ヘキサコセン、1-ヘプタコセン、1-オクタコセン、ノナコセン、トリアコンテン、ヘントリアコンテン、ドトリアコンテン、トリトリアコンテン、テトラトリアコンテン、ペンタトリアコンテン及びヘキサトリアコンテンから選ばれる少なくとも1種が挙げられる。ノルマルアルケンは、撥水性、耐久撥水性及び風合いの観点から、トリアコンテン、ヘントリアコンテン及びドトリアコンテンのうちの少なくとも1種であることが好ましい。 The normal alkene may be, for example, at least one selected from 1-eicosene, 1-docosene, 1-tricosene, 1-tetracosene, 1-pentacosene, 1-hexacosene, 1-heptacosene, 1-octacosene, nonacosene, triacontene, hentriacontene, dotriacontene, tritriacontene, tetratriacontene, pentatriacontene, and hexatriacontene. From the viewpoints of water repellency, durable water repellency, and texture, it is preferable that the normal alkene is at least one selected from triacontene, hentriacontene, and dotriacontene.
 ワックス系化合物の炭素数は、特に制限されないが、20~60であってよく、撥水性、耐久撥水性及び風合いの観点から、25~45であることが好ましい。 The number of carbon atoms in the wax-based compound is not particularly limited, but may be 20 to 60, and from the standpoint of water repellency, durable water repellency, and texture, it is preferably 25 to 45.
 ワックス系化合物の重量平均分子量は、特に制限されないが、300~850であってよく、撥水性、耐久撥水性及び風合いの観点から、300~700であることが好ましい。 The weight average molecular weight of the wax-based compound is not particularly limited, but may be from 300 to 850, and from the viewpoints of water repellency, durable water repellency, and texture, it is preferably from 300 to 700.
 ワックス系化合物の融点は、良好な撥水性及び耐久撥水性、特に綿に対する良好な撥水性及び耐久撥水性の観点から、35~90℃であることが好ましく、40~85℃であることがより好ましく、45~80℃であることがより好ましく、50~75℃であることが更に好ましい。ワックス系化合物の融点は、JIS K2235-1991と同じ方法で測定される値を指す。 From the viewpoint of good water repellency and durable water repellency, particularly good water repellency and durable water repellency for cotton, the melting point of the wax-based compound is preferably 35 to 90°C, more preferably 40 to 85°C, more preferably 45 to 80°C, and even more preferably 50 to 75°C. The melting point of the wax-based compound refers to a value measured using the same method as JIS K2235-1991.
 ワックス系化合物の針入度は、特に制限されないが、例えば、30以下であってよく、撥水性及び耐久撥水性の観点から、20以下であることが好ましく、15以下であることがより好ましく、10以下であることが更に好ましい。ワックス系化合物の針入度は、特に制限されないが、例えば、0.1以上であってよく、1以上であってよい。ワックス系化合物の針入度は、JIS K2235-1991と同じ方法で測定される値を指す。 The penetration of the wax-based compound is not particularly limited, but may be, for example, 30 or less, and from the viewpoint of water repellency and durable water repellency, is preferably 20 or less, more preferably 15 or less, and even more preferably 10 or less. The penetration of the wax-based compound is not particularly limited, but may be, for example, 0.1 or more, or 1 or more. The penetration of the wax-based compound refers to a value measured by the same method as JIS K2235-1991.
1.1.4 ウレタン系化合物
 ウレタン系化合物は、例えば、脂肪族ポリイソシアネート誘導体と、長鎖活性水素化合物と、カチオン性活性水素化合物と、酸化合物との反応生成物である。より具体的には、例えば、
 (U1)平均イソシアネート基数2以上の脂肪族ポリイソシアネート誘導体と、
 (U2)炭素数12以上30以下の炭化水素基および活性水素基を併有する長鎖活性水素化合物と、
 (U3)活性水素基およびカチオン性基を併有するカチオン性活性水素化合物と、
 (U4)カチオン性基と塩を形成する酸化合物と、
の反応生成物であってよい。ここで、上記の炭化水素基の濃度は、30%以上85%以下であってよい。また、前記脂肪族ポリイソシアネート誘導体が、脂肪族ポリイソシアネートのイソシアヌレート誘導体を含んでいてもよい。さらに、前記カチオン性活性水素化合物において、前記カチオン性基が、3級アミノ基であってもよく、前記活性水素基が、水酸基であってもよく、前記カチオン性活性水素化合物が、1分子あたり2つ以上の水酸基を有するものであってもよい。ウレタン系化合物が長鎖活性水素化合物を用いて得られる反応生成物であり、且つ、炭化水素基の濃度が所定の割合である場合、撥水性に優れたものとなり易い。また、ウレタン系化合物がカチオン性活性水素化合物を用いて得られる反応生成物である場合、例えば、繊維との親和性が向上し、これにより洗濯耐久性が向上し易い。
1.1.4 Urethane-based Compound The urethane-based compound is, for example, a reaction product of an aliphatic polyisocyanate derivative, a long-chain active hydrogen compound, a cationic active hydrogen compound, and an acid compound. More specifically, for example,
(U1) an aliphatic polyisocyanate derivative having an average number of isocyanate groups of 2 or more;
(U2) a long-chain active hydrogen compound having both a hydrocarbon group and an active hydrogen group and having from 12 to 30 carbon atoms;
(U3) a cationic active hydrogen compound having both an active hydrogen group and a cationic group;
(U4) an acid compound that forms a salt with a cationic group;
Here, the concentration of the hydrocarbon group may be 30% or more and 85% or less. The aliphatic polyisocyanate derivative may contain an isocyanurate derivative of an aliphatic polyisocyanate. Furthermore, in the cationic active hydrogen compound, the cationic group may be a tertiary amino group, the active hydrogen group may be a hydroxyl group, and the cationic active hydrogen compound may have two or more hydroxyl groups per molecule. When the urethane compound is a reaction product obtained by using a long-chain active hydrogen compound and the concentration of the hydrocarbon group is a predetermined ratio, the water repellency is likely to be excellent. When the urethane compound is a reaction product obtained by using a cationic active hydrogen compound, for example, the affinity with fibers is improved, and thus the washing durability is likely to be improved.
 脂肪族ポリイソシアネート誘導体(U1)を構成する脂肪族ポリイソシアネートとしては、例えば、ヘキサメチレンジイソシアネート(ヘキサンジイソシアネート)(HDI)、ペンタメチレンジイソシアネート(ペンタンジイソシアネート)(PDI)、テトラメチレンジイソシアネート、トリメチレンジイソシアネート、1,2-、2,3-または1,3-ブチレンジイソシアネート、2,4,4-または2,2,4-トリメチルヘキサメチレンジイソシアネートなどの脂肪族ジイソシアネートが挙げられる。尚、本願において「脂肪族ポリイソシアネート」は、脂環族ポリイソシアネートを含む概念である。 Examples of the aliphatic polyisocyanate constituting the aliphatic polyisocyanate derivative (U1) include aliphatic diisocyanates such as hexamethylene diisocyanate (hexane diisocyanate) (HDI), pentamethylene diisocyanate (pentane diisocyanate) (PDI), tetramethylene diisocyanate, trimethylene diisocyanate, 1,2-, 2,3- or 1,3-butylene diisocyanate, and 2,4,4- or 2,2,4-trimethylhexamethylene diisocyanate. In this application, the term "aliphatic polyisocyanate" is a concept that includes alicyclic polyisocyanates.
 脂環族ポリイソシアネートとしては、例えば、3-イソシアナトメチル-3,5,5-トリメチルシクロヘキシルイソシアネート(イソホロンジイソシアネート、IPDI)、4,4′-、2,4′-若しくは2,2′-メチレンビス(シクロヘキシルイソシアネート)又はその混合物(H12MDI)、1,3-若しくは1,4-ビス(イソシアナトメチル)シクロヘキサン又はその混合物(H6XDI)、ビス(イソシアナトメチル)ノルボルナン(NBDI)、1,3-シクロペンテンジイソシアネート、1,4-シクロヘキサンジイソシアネート、1,3-シクロヘキサンジイソシアネート、メチル-2,4-シクロヘキサンジイソシアネート、メチル-2,6-シクロヘキサンジイソシアネートなどの脂環族ジイソシアネートが挙げられる。 Examples of alicyclic polyisocyanates include alicyclic diisocyanates such as 3-isocyanatomethyl-3,5,5-trimethylcyclohexyl isocyanate (isophorone diisocyanate, IPDI), 4,4'-, 2,4'-, or 2,2'-methylene bis(cyclohexyl isocyanate) or mixtures thereof (H12MDI), 1,3- or 1,4-bis(isocyanatomethyl)cyclohexane or mixtures thereof (H6XDI), bis(isocyanatomethyl)norbornane (NBDI), 1,3-cyclopentene diisocyanate, 1,4-cyclohexane diisocyanate, 1,3-cyclohexane diisocyanate, methyl-2,4-cyclohexane diisocyanate, and methyl-2,6-cyclohexane diisocyanate.
 脂肪族ポリイソシアネートは、好ましくは、ヘキサメチレンジイソシアネート、及び、1,3-ビス(イソシアナトメチル)シクロヘキサン(以下、単に、ビス(イソシアナトメチル)シクロヘキサンという。)のうちの一方又は両方であり、より好ましくは、ヘキサメチレンジイソシアネートである。 The aliphatic polyisocyanate is preferably one or both of hexamethylene diisocyanate and 1,3-bis(isocyanatomethyl)cyclohexane (hereinafter simply referred to as bis(isocyanatomethyl)cyclohexane), and more preferably hexamethylene diisocyanate.
 脂肪族ポリイソシアネート誘導体としては、例えば、上記した脂肪族ポリイソシアネートの多量体(例えば、2量体、3量体(例えば、イソシアヌレート誘導体、イミノオキサジアジンジオン誘導体)、5量体、7量体など)、アロファネート誘導体(例えば、上記した脂肪族ポリイソシアネートと、1価アルコールまたは2価アルコールとの反応より生成するアロファネート誘導体など)、ポリオール誘導体(例えば、上記した脂肪族ポリイソシアネートと3価アルコール(例えば、トリメチロールプロパンなど)との反応より生成するポリオール誘導体(アルコール付加体、好ましくは、トリメチロールプロパン付加体)など)、ビウレット誘導体(例えば、上記した脂肪族ポリイソシアネートと、水またはアミン類との反応により生成するビウレット誘導体など)、ウレア誘導体(例えば、上記した脂肪族ポリイソシアネートとジアミンとの反応により生成するウレア誘導体など)、オキサジアジントリオン誘導体(例えば、上記した脂肪族ポリイソシアネートと炭酸ガスとの反応により生成するオキサジアジントリオンなど)、カルボジイミド誘導体(上記した脂肪族ポリイソシアネートの脱炭酸縮合反応により生成するカルボジイミド誘導体など)、ウレトジオン誘導体、ウレトンイミン誘導体などが挙げられる。 Examples of the aliphatic polyisocyanate derivatives include polymers of the above-mentioned aliphatic polyisocyanates (e.g., dimers, trimers (e.g., isocyanurate derivatives, iminooxadiazinedione derivatives), pentamers, heptamers, etc.), allophanate derivatives (e.g., allophanate derivatives produced by the reaction of the above-mentioned aliphatic polyisocyanates with monohydric alcohols or dihydric alcohols), polyol derivatives (e.g., polyol derivatives produced by the reaction of the above-mentioned aliphatic polyisocyanates with trihydric alcohols (e.g., trimethylolpropane, etc.) (alcohol adducts, preferably trimethylolpropane, etc.), Pan adducts), biuret derivatives (for example, biuret derivatives produced by the reaction of the above-mentioned aliphatic polyisocyanates with water or amines), urea derivatives (for example, urea derivatives produced by the reaction of the above-mentioned aliphatic polyisocyanates with diamines), oxadiazinetrione derivatives (for example, oxadiazinetriones produced by the reaction of the above-mentioned aliphatic polyisocyanates with carbon dioxide), carbodiimide derivatives (carbodiimide derivatives produced by the decarboxylation condensation reaction of the above-mentioned aliphatic polyisocyanates), uretdione derivatives, uretonimine derivatives, etc.
 脂肪族ポリイソシアネート誘導体は、好ましくは、イソシアヌレート誘導体、トリメチロールプロパン付加体、アロファネート誘導体、及び、ビウレット誘導体のうちの少なくとも1種であり、より好ましくは、イソシアヌレート誘導体である。脂肪族ポリイソシアネート誘導体が、イソシアヌレート誘導体を含むと、風合いが良好になる。 The aliphatic polyisocyanate derivative is preferably at least one of an isocyanurate derivative, a trimethylolpropane adduct, an allophanate derivative, and a biuret derivative, and is more preferably an isocyanurate derivative. When the aliphatic polyisocyanate derivative contains an isocyanurate derivative, the texture becomes good.
 脂肪族ポリイソシアネート誘導体は、より好ましくは、ヘキサメチレンジイソシアネートのイソシアヌレート誘導体、ヘキサメチレンジイソシアネートのトリメチロールプロパン付加体、ヘキサメチレンジイソシアネートのアロファネート誘導体、ヘキサメチレンジイソシアネートのビウレット誘導体、及び、ビス(イソシアナトメチル)シクロヘキサンのイソシアヌレート誘導体のうちの少なくとも1種であり、さらに好ましくは、ヘキサメチレンジイソシアネートのイソシアヌレート誘導体である。 The aliphatic polyisocyanate derivative is more preferably at least one of an isocyanurate derivative of hexamethylene diisocyanate, a trimethylolpropane adduct of hexamethylene diisocyanate, an allophanate derivative of hexamethylene diisocyanate, a biuret derivative of hexamethylene diisocyanate, and an isocyanurate derivative of bis(isocyanatomethyl)cyclohexane, and is even more preferably an isocyanurate derivative of hexamethylene diisocyanate.
 脂肪族ポリイソシアネート誘導体は、1種のみを単独で、又は、2種類以上を組み合わせて用いることができる。好ましくは、ヘキサメチレンジイソシアネートのイソシアヌレート誘導体の単独使用、ヘキサメチレンジイソシアネートのイソシアヌレート誘導体と、ビス(イソシアナトメチル)シクロヘキサンのイソシアヌレート誘導体、ヘキサメチレンジイソシアネートのトリメチロールプロパン付加体、ヘキサメチレンジイソシアネートのアロファネート誘導体、及び、ヘキサメチレンジイソシアネートのビウレット誘導体からなる群から選択される少なくとも1種との併用が挙げられる。この場合、ヘキサメチレンジイソシアネートのイソシアヌレート誘導体の配合割合は、ヘキサメチレンジイソシアネートのイソシアヌレート誘導体と、ビス(イソシアナトメチル)シクロヘキサンのイソシアヌレート誘導体、ヘキサメチレンジイソシアネートのトリメチロールプロパン付加体、ヘキサメチレンジイソシアネートのアロファネート誘導体、及び、ヘキサメチレンジイソシアネートのビウレット誘導体からなる群から選択される少なくとも1種との総量100質量部に対して、例えば、60質量部以上、好ましくは、70質量部以上であり、また、例えば、85質量部以下であり、また、ビス(イソシアナトメチル)シクロヘキサンのイソシアヌレート誘導体、ヘキサメチレンジイソシアネートのトリメチロールプロパン付加体、ヘキサメチレンジイソシアネートのアロファネート誘導体、及び、ヘキサメチレンジイソシアネートのビウレット誘導体からなる群から選択される少なくとも1種の配合割合は、例えば、15質量部以上であり、また、例えば、40質量部以下、好ましくは、30質量部以下である。 The aliphatic polyisocyanate derivatives may be used alone or in combination of two or more. Preferably, an isocyanurate derivative of hexamethylene diisocyanate is used alone, or an isocyanurate derivative of hexamethylene diisocyanate is used in combination with at least one selected from the group consisting of an isocyanurate derivative of bis(isocyanatomethyl)cyclohexane, a trimethylolpropane adduct of hexamethylene diisocyanate, an allophanate derivative of hexamethylene diisocyanate, and a biuret derivative of hexamethylene diisocyanate. In this case, the mixing ratio of the isocyanurate derivative of hexamethylene diisocyanate is, for example, 60 parts by mass or more relative to 100 parts by mass of the total amount of the isocyanurate derivative of hexamethylene diisocyanate and at least one selected from the group consisting of an isocyanurate derivative of bis(isocyanatomethyl)cyclohexane, a trimethylolpropane adduct of hexamethylene diisocyanate, an allophanate derivative of hexamethylene diisocyanate, and a biuret derivative of hexamethylene diisocyanate. , preferably 70 parts by mass or more, and for example, 85 parts by mass or less, and the blending ratio of at least one selected from the group consisting of isocyanurate derivatives of bis(isocyanatomethyl)cyclohexane, trimethylolpropane adducts of hexamethylene diisocyanate, allophanate derivatives of hexamethylene diisocyanate, and biuret derivatives of hexamethylene diisocyanate is, for example, 15 parts by mass or more, and for example, 40 parts by mass or less, preferably 30 parts by mass or less.
 脂肪族ポリイソシアネート誘導体は、公知の方法により製造することができる。 Aliphatic polyisocyanate derivatives can be produced by known methods.
 脂肪族ポリイソシアネート誘導体の平均イソシアネート基数は、2以上、好ましくは、2.5、より好ましくは、2.9であり、また、例えば、3.8以下である。上記平均イソシアネート基数が、上記下限以上であれば、撥水性を一層向上させることができる。なお、平均イソシアネート基数は、脂肪族ポリイソシアネート誘導体のイソシアネート基濃度A、固形分濃度B、および、以下の装置および条件にて測定されるゲルパーミエーションクロマトグラフィーの数平均分子量Cから、下記式(1)により算出する。また、脂肪族ポリイソシアネート誘導体が、2種類以上併用される場合の上記の平均イソシアネート基数は、脂肪族ポリイソシアネート誘導体の重量比とその平均イソシアネート官能基数とにより、算出される。 The average number of isocyanate groups of the aliphatic polyisocyanate derivative is 2 or more, preferably 2.5, more preferably 2.9, and for example, 3.8 or less. If the average number of isocyanate groups is equal to or greater than the lower limit, the water repellency can be further improved. The average number of isocyanate groups is calculated from the isocyanate group concentration A of the aliphatic polyisocyanate derivative, the solid content concentration B, and the number average molecular weight C of gel permeation chromatography measured using the following device and conditions, according to the following formula (1). When two or more types of aliphatic polyisocyanate derivatives are used in combination, the average number of isocyanate groups is calculated from the weight ratio of the aliphatic polyisocyanate derivatives and their average number of isocyanate functional groups.
 平均イソシアネート官能基数=A/B×C/42.02  (1)
 (式中、Aは、脂肪族ポリイソシアネート誘導体のイソシアネート基濃度を示し、Bは、固形分濃度を示し、Cは、数平均分子量を示す。)
Average isocyanate functionality=A/B×C/42.02 (1)
(In the formula, A represents the isocyanate group concentration of the aliphatic polyisocyanate derivative, B represents the solid content concentration, and C represents the number average molecular weight.)
(数平均分子量の測定条件)
 装置:HLC-8220GPC(東ソー製)
 カラム:TSKgelG1000HXL、TSKgelG2000HXL、およびTSKgelG3000HXL(東ソー製)を直列に連結
 検出器:示差屈折率計
 注入量:100μL
 溶離液:テトラヒドロフラン
 流量:0.8mL/min
 温度:40℃
 検量線:106~22450の範囲の標準ポリエチレンオキシド(東ソー製、商品名:TSK標準ポリエチレンオキシド)
(Conditions for measuring number average molecular weight)
Apparatus: HLC-8220GPC (manufactured by Tosoh)
Column: TSKgel G1000HXL, TSKgel G2000HXL, and TSKgel G3000HXL (manufactured by Tosoh) connected in series Detector: differential refractometer Injection volume: 100 μL
Eluent: tetrahydrofuran Flow rate: 0.8 mL/min
Temperature: 40°C
Calibration curve: Standard polyethylene oxide in the range of 106 to 22450 (manufactured by Tosoh Corporation, product name: TSK Standard Polyethylene Oxide)
 長鎖活性水素化合物は、炭素数12以上30以下の炭化水素基、及び、脂肪族ポリイソシアネート誘導体と反応する活性水素基を併有する。 Long-chain active hydrogen compounds have both a hydrocarbon group with 12 to 30 carbon atoms and an active hydrogen group that reacts with an aliphatic polyisocyanate derivative.
 炭素数12以上30以下の炭化水素基は、例えば、炭素数12以上30以下の直鎖状または分岐鎖状の飽和炭化水素基(例えば、アルキル基など)、又は、炭素数12以上30以下の直鎖状または分岐鎖状の不飽和炭化水素基(例えば、アルケニル基など)であってもよい。 The hydrocarbon group having 12 to 30 carbon atoms may be, for example, a linear or branched saturated hydrocarbon group having 12 to 30 carbon atoms (e.g., an alkyl group, etc.), or a linear or branched unsaturated hydrocarbon group having 12 to 30 carbon atoms (e.g., an alkenyl group, etc.).
 活性水素基は、例えば、水酸基であってもよい。 The active hydrogen group may be, for example, a hydroxyl group.
 このような炭化水素基および活性水素基を併有する長鎖活性水素化合物は、例えば、直鎖状飽和炭化水素基含有活性水素化合物、分岐鎖状飽和炭化水素基含有活性水素化合物、直鎖状不飽和炭化水素基含有活性水素化合物、及び、分岐鎖状不飽和炭化水素基含有活性水素化合物のうちの少なくとも1種であってよい。 The long-chain active hydrogen compound having both a hydrocarbon group and an active hydrogen group may be, for example, at least one of a linear saturated hydrocarbon group-containing active hydrogen compound, a branched saturated hydrocarbon group-containing active hydrogen compound, a linear unsaturated hydrocarbon group-containing active hydrogen compound, and a branched unsaturated hydrocarbon group-containing active hydrogen compound.
 直鎖状飽和炭化水素基含有活性水素化合物は、炭素数12以上30以下の直鎖状飽和炭化水素基を含有する活性水素化合物であって、例えば、n-トリデカノール、n-テトラデカノール、n-ペンタデカノール、n-ヘキサデカノール、n-ヘプタデカノール、n-オクタデカノール(ステアリルアルコール)、n-ノナデカノール、エイコサノールなどの直鎖状飽和炭化水素基含有アルコール、例えば、ソルビタントリステアレートなどの直鎖状飽和炭化水素基含有ソルビタンエステルなどが挙げられる。 The linear saturated hydrocarbon group-containing active hydrogen compound is an active hydrogen compound that contains a linear saturated hydrocarbon group having 12 to 30 carbon atoms, and examples of such compounds include linear saturated hydrocarbon group-containing alcohols such as n-tridecanol, n-tetradecanol, n-pentadecanol, n-hexadecanol, n-heptadecanol, n-octadecanol (stearyl alcohol), n-nonadecanol, and eicosanol, and linear saturated hydrocarbon group-containing sorbitan esters such as sorbitan tristearate.
 分岐鎖状飽和炭化水素基含有活性水素化合物は、炭素数12以上30以下の分岐鎖状の飽和炭化水素基を含有する活性水素化合物であって、例えば、イソミリスチルアルコール、イソセチルアルコール、イソステアリルアルコール、イソイコシルアルコールなどの分岐鎖状飽和炭化水素基含有アルコールなどが挙げられる。 The branched chain saturated hydrocarbon group-containing active hydrogen compound is an active hydrogen compound that contains a branched chain saturated hydrocarbon group having 12 to 30 carbon atoms, and examples of such compounds include branched chain saturated hydrocarbon group-containing alcohols such as isomyristyl alcohol, isocetyl alcohol, isostearyl alcohol, and isoicosyl alcohol.
 直鎖状不飽和炭化水素基含有活性水素化合物は、炭素数12以上30以下の直鎖状不飽和炭化水素基を含有する活性水素化合物であって、例えば、テトラデセニルアルコール、ヘキサデセニルアルコール、オレイルアルコール、イコセニルアルコール、ドコセニルアルコール、テトラコセニルアルコール、ヘキサコセニルアルコール、オクタコセニルアルコールなどの直鎖状不飽和炭化水素基含有アルコールなどが挙げられる。 The linear unsaturated hydrocarbon group-containing active hydrogen compound is an active hydrogen compound that contains a linear unsaturated hydrocarbon group having 12 to 30 carbon atoms, and examples of such compounds include linear unsaturated hydrocarbon group-containing alcohols such as tetradecenyl alcohol, hexadecenyl alcohol, oleyl alcohol, icosenyl alcohol, docosenyl alcohol, tetracosenyl alcohol, hexacosenyl alcohol, and octacosenyl alcohol.
 分岐鎖状不飽和炭化水素基含有活性水素化合物は、炭素数12以上30以下の分岐鎖状の不飽和炭化水素基を含有する活性水素化合物であって、例えば、フィトールなどが挙げられる。 The branched unsaturated hydrocarbon group-containing active hydrogen compound is an active hydrogen compound that contains a branched unsaturated hydrocarbon group having 12 to 30 carbon atoms, and examples thereof include phytol.
 長鎖活性水素化合物は、好ましくは、直鎖状飽和炭化水素基含有活性水素化合物、及び、直鎖状不飽和炭化水素基含有活性水素化合物のうちの一方又は両方である。長鎖活性水素化合物は、単独使用または2種類以上併用することができる。 The long-chain active hydrogen compound is preferably one or both of a linear saturated hydrocarbon group-containing active hydrogen compound and a linear unsaturated hydrocarbon group-containing active hydrogen compound. The long-chain active hydrogen compound can be used alone or in combination of two or more types.
 長鎖活性水素化合物を単独使用する場合、好ましくは、直鎖状飽和炭化水素基含有活性水素化合物を単独使用、より好ましくは、直鎖状飽和炭化水素基含有アルコールを単独使用、さらに好ましくは、ステアリルアルコールを単独使用する。長鎖活性水素化合物を2種類以上併用する場合には、好ましくは、直鎖状飽和炭化水素基含有活性水素化合物と直鎖状不飽和炭化水素基含有活性水素化合物とを併用し、より好ましくは、直鎖状飽和炭化水素基含有アルコールと直鎖状不飽和炭化水素基含有アルコールとを併用し、或いは、直鎖状飽和炭化水素基含有アルコールと直鎖状飽和炭化水素基含有ソルビタンエステルと直鎖状不飽和炭化水素基含有アルコールとを併用する。 When using a long-chain active hydrogen compound alone, it is preferable to use a linear saturated hydrocarbon group-containing active hydrogen compound alone, more preferably to use a linear saturated hydrocarbon group-containing alcohol alone, and even more preferably to use stearyl alcohol alone. When using two or more long-chain active hydrogen compounds in combination, it is preferable to use a linear saturated hydrocarbon group-containing active hydrogen compound in combination with a linear unsaturated hydrocarbon group-containing active hydrogen compound, more preferably to use a linear saturated hydrocarbon group-containing alcohol in combination with a linear unsaturated hydrocarbon group-containing alcohol, or to use a linear saturated hydrocarbon group-containing alcohol in combination with a linear saturated hydrocarbon group-containing sorbitan ester and a linear unsaturated hydrocarbon group-containing alcohol.
 直鎖状飽和炭化水素基含有アルコールと直鎖状不飽和炭化水素基含有アルコールとを併用する場合には、直鎖状飽和炭化水素基含有アルコールの配合割合は、直鎖状飽和炭化水素基含有アルコールと直鎖状不飽和炭化水素基含有アルコールとの総量100質量部に対して、例えば、40質量部以上、好ましくは、55質量部以上、より好ましくは、70質量部以上である。また、直鎖状不飽和炭化水素基含有アルコールの配合割合は、直鎖状飽和炭化水素基含有アルコール及び直鎖状不飽和炭化水素基含有アルコールの総量100質量部に対して、例えば、60質量部以下、好ましくは、45質量部以下、より好ましくは、30質量部以下である。直鎖状飽和炭化水素基含有アルコールの配合割合が、上記下限以上であれば、炭化水素基の結晶性が向上し、その結果、撥水性を向上させることができる。 When a linear saturated hydrocarbon group-containing alcohol and a linear unsaturated hydrocarbon group-containing alcohol are used in combination, the blending ratio of the linear saturated hydrocarbon group-containing alcohol is, for example, 40 parts by mass or more, preferably 55 parts by mass or more, and more preferably 70 parts by mass or more, relative to 100 parts by mass of the total amount of the linear saturated hydrocarbon group-containing alcohol and the linear unsaturated hydrocarbon group-containing alcohol. The blending ratio of the linear unsaturated hydrocarbon group-containing alcohol is, for example, 60 parts by mass or less, preferably 45 parts by mass or less, and more preferably 30 parts by mass or less, relative to 100 parts by mass of the total amount of the linear saturated hydrocarbon group-containing alcohol and the linear unsaturated hydrocarbon group-containing alcohol. If the blending ratio of the linear saturated hydrocarbon group-containing alcohol is equal to or more than the above lower limit, the crystallinity of the hydrocarbon group is improved, and as a result, the water repellency can be improved.
 直鎖状飽和炭化水素基含有アルコールと直鎖状飽和炭化水素基含有ソルビタンエステルと直鎖状不飽和炭化水素基含有アルコールとを併用する場合には、直鎖状飽和炭化水素基含有アルコールの配合割合は、直鎖状飽和炭化水素基含有アルコールと直鎖状飽和炭化水素基含有ソルビタンエステルと直鎖状不飽和炭化水素基含有アルコールとの総量100質量部に対して、例えば、30質量以上であり、また、例えば、60質量部以下である。また、直鎖状飽和炭化水素基含有ソルビタンエステルの配合割合は、直鎖状飽和炭化水素基含有アルコールと直鎖状飽和炭化水素基含有ソルビタンエステルと直鎖状不飽和炭化水素基含有アルコールとの総量100質量部に対して、例えば、20質量部以上であり、また、例えば、50質量部以下である。また、直鎖状不飽和炭化水素基含有アルコールの配合割合は、直鎖状飽和炭化水素基含有アルコールと直鎖状飽和炭化水素基含有ソルビタンエステルと直鎖状不飽和炭化水素基含有アルコールとの総量100質量部に対して、例えば、10質量部以上であり、また、例えば、20質量部以下である。 When a linear saturated hydrocarbon group-containing alcohol, a linear saturated hydrocarbon group-containing sorbitan ester, and a linear unsaturated hydrocarbon group-containing alcohol are used in combination, the blending ratio of the linear saturated hydrocarbon group-containing alcohol is, for example, 30 parts by mass or more and, for example, 60 parts by mass or less, per 100 parts by mass of the total amount of the linear saturated hydrocarbon group-containing alcohol, the linear saturated hydrocarbon group-containing sorbitan ester, and the linear unsaturated hydrocarbon group-containing alcohol. The blending ratio of the linear saturated hydrocarbon group-containing sorbitan ester is, for example, 20 parts by mass or more and, for example, 50 parts by mass or less, per 100 parts by mass of the total amount of the linear saturated hydrocarbon group-containing alcohol, the linear saturated hydrocarbon group-containing sorbitan ester, and the linear unsaturated hydrocarbon group-containing alcohol. The blending ratio of the linear unsaturated hydrocarbon group-containing alcohol is, for example, 10 parts by mass or more and, for example, 20 parts by mass or less, per 100 parts by mass of the total amount of the linear saturated hydrocarbon group-containing alcohol, the linear saturated hydrocarbon group-containing sorbitan ester, and the linear unsaturated hydrocarbon group-containing alcohol.
 長鎖活性水素化合物を2種類以上併用する場合には、さらに好ましくは、直鎖状飽和炭化水素基含有アルコールと直鎖状不飽和炭化水素基含有アルコールとを併用し、特に好ましくは、ステアリルアルコールとオレイルアルコールとを併用する。 When two or more long-chain active hydrogen compounds are used in combination, it is more preferable to use a linear saturated hydrocarbon group-containing alcohol in combination with a linear unsaturated hydrocarbon group-containing alcohol, and it is particularly preferable to use stearyl alcohol in combination with oleyl alcohol.
 カチオン性活性水素化合物は、活性水素基、および、カチオン性基を併有する。カチオン性活性水素化合物は、単独使用または2種類以上併用することができる。 Cationic active hydrogen compounds have both active hydrogen groups and cationic groups. Cationic active hydrogen compounds can be used alone or in combination of two or more types.
 活性水素基は、上記したように、脂肪族ポリイソシアネート誘導体と反応する活性水素基であって、例えば、水酸基が挙げられる。カチオン性活性水素化合物は、好ましくは、1分子あたり2つ以上の水酸基を有する。また、カチオン性基は、例えば、3級アミノ基が挙げられる。つまり、カチオン性活性水素化合物は、好ましくは、活性水素基として、1分子あたり2つ以上の水酸基と、カチオン性基として、3級アミノ基とを併有する。より好ましくは、カチオン性活性水素化合物は、活性水素基として、1分子あたり2つの水酸基と、カチオン性基として、3級アミノ基とを併有する。このようなカチオン性活性水素化合物によれば、水への良好な分散性を付与でき、また、繊維に親和性を持つカチオン基を導入することができるため洗濯耐久性を向上させることができる。 As described above, the active hydrogen group is an active hydrogen group that reacts with an aliphatic polyisocyanate derivative, and examples of the active hydrogen group include hydroxyl groups. The cationic active hydrogen compound preferably has two or more hydroxyl groups per molecule. The cationic group may also be a tertiary amino group. In other words, the cationic active hydrogen compound preferably has two or more hydroxyl groups per molecule as the active hydrogen group, and a tertiary amino group as the cationic group. More preferably, the cationic active hydrogen compound has two hydroxyl groups per molecule as the active hydrogen group, and a tertiary amino group as the cationic group. Such a cationic active hydrogen compound can impart good dispersibility in water, and can also introduce cationic groups that have affinity for fibers, thereby improving washing durability.
 このようなカチオン性活性水素化合物としては、例えば、N-メチルジエタノールアミン、N-エチルジエタノールアミン、N-プロピルジエタノールアミン、N-ブチルジエタノールアミン、N-メチルジプロパノールアミンなどのアルキルジアルカノールアミンなどが挙げられ、好ましくは、N-メチルジエタノールアミンが挙げられる。 Such cationic active hydrogen compounds include, for example, alkyl dialkanolamines such as N-methyldiethanolamine, N-ethyldiethanolamine, N-propyldiethanolamine, N-butyldiethanolamine, and N-methyldipropanolamine, and preferably N-methyldiethanolamine.
 酸化合物は、カチオン性基と塩を形成する化合物である。酸化合物としては、例えば、有機酸及び無機酸のうちの一方又は両方が挙げられる。有機酸としては、例えば、酢酸、乳酸、酒石酸又はリンゴ酸などが挙げられ、好ましくは、酢酸又は乳酸、より好ましくは、酢酸である。無機酸としては、例えば、塩酸、硫酸又はリン酸などが挙げられ、好ましくは、塩酸である。酸化合物は、好ましくは、有機酸である。酸化合物が有機酸を含む場合、熱処理により酸が揮発することにより、イオン性が低下し耐水性が向上し、撥水性を向上させることができる。また、熱処理により酸が揮発することにより、カチオン基が繊維に吸着し易くなり、洗濯耐久性を向上させることができる。酸化合物は、単独使用または2種類以上併用することができる。 The acid compound is a compound that forms a salt with a cationic group. Examples of the acid compound include one or both of an organic acid and an inorganic acid. Examples of the organic acid include acetic acid, lactic acid, tartaric acid, malic acid, etc., and preferably acetic acid or lactic acid, and more preferably acetic acid. Examples of the inorganic acid include hydrochloric acid, sulfuric acid, phosphoric acid, etc., and preferably hydrochloric acid. The acid compound is preferably an organic acid. When the acid compound contains an organic acid, the acid is volatilized by heat treatment, which reduces the ionicity and improves water resistance, thereby improving water repellency. In addition, the acid is volatilized by heat treatment, which makes it easier for the cationic group to adsorb to the fiber, and improves washing durability. The acid compounds can be used alone or in combination of two or more types.
 上記の脂肪族ポリイソシアネート誘導体と、長鎖活性水素化合物と、カチオン性活性水素化合物と、酸化合物とを反応させることで、反応生成物としてのウレタン系化合物が得られる。脂肪族ポリイソシアネート誘導体と、長鎖活性水素化合物と、カチオン性活性水素化合物と、酸化合物とを反応させるには、まず、脂肪族ポリイソシアネート誘導体に、長鎖活性水素化合物を配合し、脂肪族ポリイソシアネート誘導体と、長鎖活性水素化合物とを反応させる。このとき、長鎖活性水素化合物は、例えば、脂肪族ポリイソシアネートのイソシアヌレート誘導体の平均イソシアネート基数が3の場合には、好ましくは、脂肪族ポリイソシアネートのイソシアヌレート誘導体のうち、2つのイソシアネート基が、長鎖活性水素化合物によって、炭素数12以上30以下の炭化水素基に変性され、脂肪族ポリイソシアネートのイソシアヌレート誘導体のうち、1つのイソシアネート基が残存するように、かつ、未反応の脂肪族ポリイソシアネートのイソシアヌレート誘導体が残存しないように、配合される。具体的には、活性水素基に対するイソシアネート基の当量比(イソシアネート基/活性水素基)が、例えば、1.2以上、好ましくは、1.5以上、また、例えば、2.0以下となるように、脂肪族ポリイソシアネート誘導体に、長鎖活性水素化合物を配合する。これによって、脂肪族ポリイソシアネート誘導体と長鎖活性水素化合物との反応生成物(以下、第1中間反応生成物とする)の分子末端が、炭素数12以上30以下の炭化水素基およびイソシアネート基となる。 The above-mentioned aliphatic polyisocyanate derivative, a long-chain active hydrogen compound, a cationic active hydrogen compound, and an acid compound are reacted to obtain a urethane-based compound as a reaction product. To react the aliphatic polyisocyanate derivative, the long-chain active hydrogen compound, the cationic active hydrogen compound, and the acid compound, first, the aliphatic polyisocyanate derivative is mixed with the long-chain active hydrogen compound, and the aliphatic polyisocyanate derivative is reacted with the long-chain active hydrogen compound. At this time, when the average number of isocyanate groups of the isocyanurate derivative of the aliphatic polyisocyanate is 3, the long-chain active hydrogen compound is preferably mixed so that two isocyanate groups of the isocyanurate derivative of the aliphatic polyisocyanate are modified by the long-chain active hydrogen compound to a hydrocarbon group having 12 to 30 carbon atoms, and one isocyanate group remains in the isocyanurate derivative of the aliphatic polyisocyanate, and no unreacted isocyanurate derivative of the aliphatic polyisocyanate remains. Specifically, the long-chain active hydrogen compound is blended with the aliphatic polyisocyanate derivative so that the equivalent ratio of isocyanate groups to active hydrogen groups (isocyanate groups/active hydrogen groups) is, for example, 1.2 or more, preferably 1.5 or more, and, for example, 2.0 or less. As a result, the molecular terminals of the reaction product of the aliphatic polyisocyanate derivative and the long-chain active hydrogen compound (hereinafter referred to as the first intermediate reaction product) become hydrocarbon groups and isocyanate groups having 12 to 30 carbon atoms.
 上記の反応は、窒素雰囲気下で実施される。また、反応条件は、反応温度が、例えば、70℃以上120℃以下であり、また、反応時間が、1時間以上6時間以下である。また、上記の反応は、第1中間反応生成物のイソシアネート濃度が、所定の計算値に到達するまで、実施する。尚、イソシアネート濃度は、電位差滴定装置を用いて、JIS K-1556に準拠したn-ジブチルアミン法により、測定することができる。 The above reaction is carried out under a nitrogen atmosphere. The reaction conditions are, for example, a reaction temperature of 70°C to 120°C and a reaction time of 1 hour to 6 hours. The above reaction is carried out until the isocyanate concentration of the first intermediate reaction product reaches a predetermined calculated value. The isocyanate concentration can be measured using a potentiometric titration device by the n-dibutylamine method in accordance with JIS K-1556.
 また、上記の反応において、メチルエチルケトンなどの公知の溶媒(溶剤)を、適宜の割合で配合することもできる。 In addition, in the above reaction, a known solvent such as methyl ethyl ketone can be added in an appropriate ratio.
 次いで、第1中間反応生成物を含む反応液に、カチオン性活性水素化合物を配合し、第1中間反応生成物と、カチオン性活性水素化合物とを反応させる。このとき、カチオン性活性水素化合物は、カチオン性活性水素化合物の活性水素基に対するイソシアネート基の当量比(イソシアネート基/活性水素基)が、例えば、0.95以上、また、例えば、1.05以下となるように、第1中間反応生成物に対して、配合される。 Then, a cationic active hydrogen compound is added to the reaction liquid containing the first intermediate reaction product, and the first intermediate reaction product is reacted with the cationic active hydrogen compound. At this time, the cationic active hydrogen compound is added to the first intermediate reaction product so that the equivalent ratio of isocyanate groups to active hydrogen groups of the cationic active hydrogen compound (isocyanate groups/active hydrogen groups) is, for example, 0.95 or more and, for example, 1.05 or less.
 上記の反応は、窒素雰囲気下で実施される。また、反応条件は、反応温度が、例えば、70℃以上120℃以下であり、また、反応時間が、0.5時間以上4時間以下である。また、上記の反応は、第1中間反応生成物と、カチオン性活性水素化合物との反応が完結するまで、実施する。また、上記の反応において、メチルエチルケトンなどの公知の溶媒を、適宜の割合で配合することもできる。これにより、第1中間反応生成物と、カチオン性活性水素化合物との反応生成物(以下、第2中間反応生成物とする。)が得られる。第2中間反応生成物は、炭素数12以上30以下の炭化水素基およびカチオン性基を有する。 The above reaction is carried out under a nitrogen atmosphere. The reaction conditions are, for example, a reaction temperature of 70°C to 120°C and a reaction time of 0.5 to 4 hours. The above reaction is carried out until the reaction between the first intermediate reaction product and the cationic active hydrogen compound is completed. In the above reaction, a known solvent such as methyl ethyl ketone can also be added in an appropriate ratio. This results in a reaction product between the first intermediate reaction product and the cationic active hydrogen compound (hereinafter referred to as the second intermediate reaction product). The second intermediate reaction product has a hydrocarbon group having 12 to 30 carbon atoms and a cationic group.
 次いで、第2中間反応生成物に、酸化合物を配合する。酸化合物の配合割合は、カチオン性活性水素化合物のカチオン性基1モルに対して、例えば、0.5モル以上、好ましくは、3モル以上であり、また、例えば、10モル以下、好ましくは、4モル以下である。これにより、酸化合物は、第2中間反応生成物のカチオン性基と塩を形成し、脂肪族ポリイソシアネート誘導体と、長鎖活性水素化合物と、カチオン性活性水素化合物と、酸化合物との反応生成物(すなわち、ウレタン系化合物)を含む反応液が得られる。上記の反応生成物は、炭素数12以上30以下の炭化水素基を有し、かつ、カチオン性基を有する。また、上記の反応生成物は、炭素数12以上30以下の炭化水素基を有するため、分散剤(乳化剤)によらず、水中で、自己分散(自己乳化)することができる。換言すれば、上記の反応生成物は、内部乳化することができる。 Then, an acid compound is mixed with the second intermediate reaction product. The mixing ratio of the acid compound is, for example, 0.5 moles or more, preferably 3 moles or more, and for example, 10 moles or less, preferably 4 moles or less, per mole of the cationic group of the cationic active hydrogen compound. As a result, the acid compound forms a salt with the cationic group of the second intermediate reaction product, and a reaction liquid containing a reaction product (i.e., a urethane-based compound) of the aliphatic polyisocyanate derivative, the long-chain active hydrogen compound, the cationic active hydrogen compound, and the acid compound is obtained. The above reaction product has a hydrocarbon group having a carbon number of 12 to 30 and has a cationic group. In addition, since the above reaction product has a hydrocarbon group having a carbon number of 12 to 30, it can self-disperse (self-emulsify) in water without relying on a dispersant (emulsifier). In other words, the above reaction product can be internally emulsified.
 次いで、この反応液の温度を、例えば、50℃以上100℃以下に保ちながら、この反応液に、水を加えて、乳化する。その後、この反応液から、溶媒を除去する。これにより、上記の反応生成物(すなわち、ウレタン系化合物)を含む水分散液が得られる。水分散液の固形分濃度は、例えば、10質量%以上であり、また、例えば、30質量%以下である。 Then, while maintaining the temperature of the reaction liquid at, for example, 50°C or higher and 100°C or lower, water is added to the reaction liquid to emulsify it. After that, the solvent is removed from the reaction liquid. This results in an aqueous dispersion containing the above-mentioned reaction product (i.e., a urethane-based compound). The solids concentration of the aqueous dispersion is, for example, 10% by mass or higher and, for example, 30% by mass or lower.
 このようなウレタン系化合物は、長鎖活性水素化合物を用いて得られる反応生成物であるため、撥水性に優れるとともに、撥油性、耐油性および防汚性に優れる。また、このようなウレタン系化合物は、カチオン性活性水素化合物を用いて得られる反応生成物であるため、繊維との親和性が向上し、その結果、繊維に対する洗濯耐久性に優れる。 Since such urethane compounds are reaction products obtained using long-chain active hydrogen compounds, they have excellent water repellency, oil repellency, oil resistance, and stain resistance. Furthermore, since such urethane compounds are reaction products obtained using cationic active hydrogen compounds, they have improved affinity with fibers, resulting in excellent washing durability for fibers.
 このようなウレタン系化合物において、炭化水素基の濃度は、30%以上であり、また、85%以下、好ましくは、50%である。炭化水素基の濃度が上記下限以上であれば、撥水性を向上させることができる。また、炭化水素基の濃度が上記上限以下であれば、ウレタン系化合物の安定性を向上させることができる。なお、上記の炭化水素基の濃度は、上記した各成分の仕込み量から算出することができる。 In such a urethane-based compound, the concentration of the hydrocarbon group is 30% or more and 85% or less, preferably 50%. If the concentration of the hydrocarbon group is equal to or more than the above-mentioned lower limit, the water repellency can be improved. If the concentration of the hydrocarbon group is equal to or less than the above-mentioned upper limit, the stability of the urethane-based compound can be improved. The concentration of the hydrocarbon group can be calculated from the amount of each component charged.
 なお、上記説明では、まず、脂肪族ポリイソシアネート誘導体と、長鎖活性水素化合物とを反応させ、第1中間反応生成物を含む反応液を得、次いで、第1中間反応生成物と、カチオン性活性水素化合物とを反応させ、第2中間反応生成物を含む反応液を得、次いで、第2中間反応生成物と、酸化合物とを反応させたが、反応の順序は特に制限されず、例えば、脂肪族ポリイソシアネート誘導体とカチオン性活性水素化合物とを反応させた後に、長鎖活性水素化合物と酸化合物とを反応させることでもきる。また、脂肪族ポリイソシアネート誘導体と、長鎖活性水素化合物と、カチオン性活性水素化合物と、酸化合物とを一括で配合して、これらを反応させることもできる。 In the above explanation, first, the aliphatic polyisocyanate derivative is reacted with a long-chain active hydrogen compound to obtain a reaction liquid containing a first intermediate reaction product, then the first intermediate reaction product is reacted with a cationic active hydrogen compound to obtain a reaction liquid containing a second intermediate reaction product, and then the second intermediate reaction product is reacted with an acid compound. However, the order of the reactions is not particularly limited, and for example, the aliphatic polyisocyanate derivative can be reacted with a cationic active hydrogen compound, and then the long-chain active hydrogen compound can be reacted with an acid compound. Also, the aliphatic polyisocyanate derivative, the long-chain active hydrogen compound, the cationic active hydrogen compound, and the acid compound can be mixed together and reacted.
1.1.5 デンドリマー系化合物
 デンドリマー系化合物は、例えば、放射状でかつ中心から規則的に分枝した構造を持つ樹状高分子化合物であってよい。樹状高分子化合物は、撥水性を得るために末端の枝部分に直鎖状もしくは分岐状の炭素数1以上の炭化水素基を有するものを用いることができる。
1.1.5 Dendrimer-based compounds The dendrimer-based compounds may be, for example, dendritic polymer compounds having a structure that is radially and regularly branched from the center. In order to obtain water repellency, the dendritic polymer compounds may have linear or branched hydrocarbon groups having one or more carbon atoms at the terminal branches.
 樹状高分子化合物としては、例えば、国際公開2014/160906号に開示の「apolymerextender(増量剤)」を用いることができる。例えば、イソシアネート、ジイソシアネート、ポリイソシアネート又はその混合物から選択されるイソシアネート基含有化合物の少なくとも1種と、下記式(Ia)、(Ib)又は(Ic)から選択されるイソシアネート反応性化合物の少なくとも1種とを反応させて得られる化合物を用いることができる。 As the dendritic polymer compound, for example, the "apolymerextender" disclosed in International Publication WO 2014/160906 can be used. For example, a compound obtained by reacting at least one isocyanate group-containing compound selected from isocyanate, diisocyanate, polyisocyanate, or a mixture thereof with at least one isocyanate-reactive compound selected from the following formula (Ia), (Ib), or (Ic) can be used.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 上記式中、R50は、それぞれ独立に、-H、R51、-C(O)R51、-(CHCHO)(CH(CH)CHO)52、又は、-(CHCHO)(CH(CH)CHO)C(O)R51であり、nは、それぞれ独立に、0~20であり、mは、それぞれ独立に、0~20であり、m+nは0を超える。また、R51は、それぞれ独立に、1以上の不飽和結合を含んでいてもよい、直鎖又は分岐鎖の炭素数5~29のアルキル基であり、R52は、それぞれ独立に、-H、又は1以上の不飽和結合を含んでいてもよい、直鎖又は分岐鎖の炭素数6~30のアルキル基である。 In the above formula, R 50 is each independently -H, R 51 , -C(O)R 51 , -(CH 2 CH 2 O) n (CH(CH 3 )CH 2 O) m R 52 , or -(CH 2 CH 2 O) n (CH(CH 3 )CH 2 O) m C(O)R 51 , each n is independently 0 to 20, each m is independently 0 to 20, and m + n exceeds 0. Each R 51 is independently a linear or branched alkyl group having 5 to 29 carbon atoms which may contain one or more unsaturated bonds, and each R 52 is independently -H or a linear or branched alkyl group having 6 to 30 carbon atoms which may contain one or more unsaturated bonds.
 なお、式(Ia)においては、R50又はR52の少なくとも一つが-Hである。 In addition, in formula (Ia), at least one of R 50 or R 52 is —H.
 上記式中、R53は、それぞれ独立に、-H、-R51、-C(O)R51、-(CHCHO(CH(CH)CHO)52、又は-(CHCHO(CH(CH)CHOC(O)R51であり、R54は、それぞれ独立に、-H、又は1以上の不飽和結合を含んでいてもよい、直鎖又は分岐鎖の炭素数6~30のアルキル基、-(CHCHO)n’(CH(CH)CHO)m’52、又は-(CHCHO(CH(CH)CHOC(O)R51であり、n’は、それぞれ独立に、0~20であり、m’は、それぞれ独立に、0~20であり、m+nは0を超える。 In the above formula, R 53 is independently -H, -R 51 , -C(O)R 51 , -(CH 2 CH 2 O(CH(CH 3 )CH 2 O) m R 52 , or -(CH 2 CH 2 O(CH(CH 3 )CH 2 OC(O)R 51 , and R 54 is independently -H, or a linear or branched alkyl group having 6 to 30 carbon atoms which may contain one or more unsaturated bonds, -(CH 2 CH 2 O) n' (CH(CH 3 )CH 2 O) m' R 52 , or -(CH 2 CH 2 O(CH(CH 3 )CH 2 OC(O)R 51 , each n' is independently 0 to 20, each m' is independently 0 to 20, and m+n is greater than 0.
 なお、式(Ib)においては、R52、R53又はR54の少なくとも一つが-Hである。 In formula (Ib), at least one of R 52 , R 53 and R 54 is —H.
 上記式中、R55は、-H、-C(O)R51、又は-CHC[CHOR50である。 In the above formula, R 55 is -H, -C(O)R 51 , or -CH 2 C[CH 2 OR 50 ] 3 .
 なお、式(Ic)においては、R55又はR50の少なくとも一つが-Hである。 In addition, in formula (Ic), at least one of R 55 or R 50 is —H.
 イソシアネート基含有化合物としては、特に制限されず、例えば、脂肪族ポリイソシアネート、脂環族ポリイソシアネート、芳香族ポリイソシアネート、及びこれらの二量体や三量体などの変性ポリイソシアネートが挙げられる。「DESMODURN-100」(Bayer社製、商品名)、「デュラネートTHA-100」(旭化成株式会社製、商品名)、「デュラネート24A-100」(旭化成株式会社製、商品名)などの市販品を用いることができる。また、反応は、例えば、80℃で1時間以上行うことができる。 The isocyanate group-containing compound is not particularly limited, and examples thereof include aliphatic polyisocyanates, alicyclic polyisocyanates, aromatic polyisocyanates, and modified polyisocyanates such as dimers and trimers thereof. Commercially available products such as "DESMODURN-100" (product name, manufactured by Bayer), "Duranate THA-100" (product name, manufactured by Asahi Kasei Corporation), and "Duranate 24A-100" (product name, manufactured by Asahi Kasei Corporation) can be used. The reaction can be carried out, for example, at 80°C for 1 hour or more.
1.2 ポリイソシアネート
 ポリイソシアネートは、例えば、ポリイソシアネート単量体、ポリイソシアネート誘導体などが挙げられる。ポリイソシアネートは、同化合物分子中に、複数のイソシアネート基を有するイソシアネート化合物を意味する。同様に、ジイソシアネート化合物は、同化合物分子中、2つのイソシアネート基を有するイソシアネート化合物を意味する。これらポリイソシアネートは、1種のみを単独で、又は、2種類以上を組み合わせて使用することができる。
1.2 Polyisocyanate Examples of polyisocyanates include polyisocyanate monomers and polyisocyanate derivatives. Polyisocyanate refers to an isocyanate compound having multiple isocyanate groups in the compound molecule. Similarly, diisocyanate compound refers to an isocyanate compound having two isocyanate groups in the compound molecule. These polyisocyanates can be used alone or in combination of two or more types.
 ポリイソシアネート単量体としては、特に限定はなく、例えば、芳香族ポリイソシアネート、芳香脂肪族ポリイソシアネート、脂肪族ポリイソシアネート、脂環族ポリイソシアネートなどが挙げられる。これらポリイソシアネート単量体は、1種のみを単独で、又は、2種類以上を組み合わせて使用することができる。 The polyisocyanate monomer is not particularly limited, and examples thereof include aromatic polyisocyanates, araliphatic polyisocyanates, aliphatic polyisocyanates, and alicyclic polyisocyanates. These polyisocyanate monomers can be used alone or in combination of two or more types.
 ポリイソシアネート誘導体としては、特に限定はなく、例えば、ポリイソシアネート単量体の多量体(例えば、2量体、3量体(例えば、イソシアヌレート変性体、イミノオキサジアジンジオン変性体)、5量体、7量体など)、アロファネート変性体(例えば、上記したポリイソシアネート単量体と、後述する低分子量ポリオールとの反応より形成されたウレタン基に更にポリイソシアネート単量体のイソシアネート基が付加することにより生成するアロファネート変性体など)、アダクト体(例えば、ポリイソシアネート単量体と後述する低分子量ポリオールとの反応より生成するアダクト体(アルコール付加体)など)、ビウレット変性体(例えば、上記したポリイソシアネート単量体と、水またはアミン類との反応により生成するビウレット変性体など)、ウレア変性体(例えば、上記したポリイソシアネート単量体とジアミンとの反応により形成されたウレア基に更にポリイソシアネート単量体のイソシアネート基が付加することにより生成するウレア変性体など)、オキサジアジントリオン変性体(例えば、上記したポリイソシアネート単量体と炭酸ガスとの反応により生成するオキサジアジントリオンなど)、カルボジイミド変性体(上記したポリイソシアネート単量体の脱炭酸縮合反応により生成するカルボジイミド変性体など)、ウレトジオン変性体、ウレトンイミン変性体などが挙げられる。さらに、ポリイソシアネート誘導体として、ポリメチレンポリフェニルポリイソシアネート(クルードMDI、ポリメリックMDI)なども挙げられる。これらポリイソシアネート誘導体は、1種のみを単独で、又は、2種類以上を組み合わせて使用することができる。 The polyisocyanate derivative is not particularly limited, and examples thereof include polymers of polyisocyanate monomers (e.g., dimers, trimers (e.g., isocyanurate modified products, iminooxadiazinedione modified products), pentamers, heptamers, etc.), allophanate modified products (e.g., allophanate modified products produced by further adding an isocyanate group of a polyisocyanate monomer to a urethane group formed by the reaction of the above-mentioned polyisocyanate monomer with a low molecular weight polyol described later), adducts (e.g., adducts (alcohol adducts) produced by the reaction of a polyisocyanate monomer with a low molecular weight polyol described later), biuret modified products (e.g., , biuret modified products produced by the reaction of the above-mentioned polyisocyanate monomer with water or amines), urea modified products (e.g., urea modified products produced by the addition of an isocyanate group of a polyisocyanate monomer to a urea group formed by the reaction of the above-mentioned polyisocyanate monomer with a diamine), oxadiazinetrione modified products (e.g., oxadiazinetrione produced by the reaction of the above-mentioned polyisocyanate monomer with carbon dioxide), carbodiimide modified products (carbodiimide modified products produced by the decarboxylation condensation reaction of the above-mentioned polyisocyanate monomer), uretdione modified products, uretonimine modified products, etc. Further, examples of polyisocyanate derivatives include polymethylene polyphenyl polyisocyanate (crude MDI, polymeric MDI). These polyisocyanate derivatives can be used alone or in combination of two or more types.
1.2.1 (B)脂環族ポリイソシアネート
 一実施形態に係る非フッ素系撥水剤組成物は、ポリイソシアネートとして、脂環族ポリイソシアネートを含む。脂環族ポリイソシアネートは、例えば、1,3-シクロペンタンジイソシアネート、1,3-シクロペンテンジイソシアネート、シクロヘキサンジイソシアネート(1,4-シクロヘキサンジイソシアネート、1,3-シクロヘキサンジイソシアネート)、3-イソシアナトメチル-3,5,5-トリメチルシクロヘキシルイソシアネート(イソホロンジイソシアネート)(IPDI)、メチレンビス(シクロヘキシルイソシアネート)(4,4’-、2,4’-または2,2’-メチレンビス(シクロヘキシルイソシアネート、これらのTrans,Trans-体、Trans,Cis-体、Cis,Cis-体、もしくはその混合物))(H12MDI、水添MDI)、メチルシクロヘキサンジイソシアネート(メチル-2,4-シクロヘキサンジイソシアネート、メチル-2,6-シクロヘキサンジイソシアネート)、ノルボルナンジイソシアネート(各種異性体もしくはその混合物)(NBDI)、ビス(イソシアナトメチル)シクロヘキサン(1,3-または1,4-ビス(イソシアナトメチル)シクロヘキサンもしくはその混合物)(H6XDI、水添XDI)などから選ばれる少なくとも1種であってよい。(B)脂環族ポリイソシアネートは、摩耗後の撥水性・ブンデスマンに優れる観点、及び、耐久撥水性に優れる観点から、好ましくは、イソホロンジイソシアネート(IPDI)、水添MDI及び水添XDIのうちの少なくとも1種、より好ましくは、イソホロンジイソシアネート(IPDI)及び水添MDIのうちの少なくとも1種、さらに好ましくは、イソホロンジイソシアネート(IPDI)である。
1.2.1 (B) Alicyclic polyisocyanate The non-fluorinated water repellent composition according to one embodiment contains an alicyclic polyisocyanate as a polyisocyanate. Examples of the alicyclic polyisocyanate include 1,3-cyclopentane diisocyanate, 1,3-cyclopentene diisocyanate, cyclohexane diisocyanate (1,4-cyclohexane diisocyanate, 1,3-cyclohexane diisocyanate), 3-isocyanatomethyl-3,5,5-trimethylcyclohexyl isocyanate (isophorone diisocyanate) (IPDI), methylene bis(cyclohexyl isocyanate) (4,4'-, 2,4'- or 2,2'-methylene bis(cyclohexyl isocyanate), trans, trans thereof, and the like. [0043] The isocyanate may be at least one selected from the group consisting of methyl cyclohexane diisocyanate (methyl-2,4-cyclohexane diisocyanate, methyl-2,6-cyclohexane diisocyanate), norbornane diisocyanate (various isomers or mixtures thereof) (NBDI), bis(isocyanatomethyl)cyclohexane (1,3- or 1,4-bis(isocyanatomethyl)cyclohexane or mixtures thereof) (H6XDI, hydrogenated XDI), and the like. From the viewpoint of excellent water repellency and Bundesmann resistance after abrasion, and excellent durable water repellency, the (B) alicyclic polyisocyanate is preferably at least one of isophorone diisocyanate (IPDI), hydrogenated MDI, and hydrogenated XDI, more preferably at least one of isophorone diisocyanate (IPDI) and hydrogenated MDI, and even more preferably isophorone diisocyanate (IPDI).
 脂環族ポリイソシアネートは、耐摩耗撥水性の観点から、上記の単量体の多量体であることが好ましい。特に、脂環族ポリイソシアネートが、3量体である場合に、耐摩耗撥水性が一層向上し易い。より具体的には、脂環族ポリイソシアネートが、3量体である場合、初期ブンデスマン及び耐摩耗ブンデスマンが一層向上する。 From the viewpoint of abrasion resistance and water repellency, the alicyclic polyisocyanate is preferably a polymer of the above-mentioned monomers. In particular, when the alicyclic polyisocyanate is a trimer, the abrasion resistance and water repellency are more likely to be improved. More specifically, when the alicyclic polyisocyanate is a trimer, the initial Bundesmann and abrasion resistance Bundesmann are more improved.
 ポリイソシアネートは、上記の脂環族イソシアネートのみで構成されていてもよく、脂環族イソシアネートとその他のポリイソシアネートとの組み合わせであってもよい。或いは、脂環族イソシアネートとその他のイソシアネートとが反応していてもよい。 The polyisocyanate may be composed of only the above-mentioned alicyclic isocyanate, or may be a combination of an alicyclic isocyanate and another polyisocyanate. Alternatively, the alicyclic isocyanate may be reacted with another isocyanate.
1.2.2 脂環族ポリイソシアネート以外のポリイソシアネート
 一実施形態に係る非フッ素系撥水剤組成物は、(B)脂環族ポリイソシアネートに加えて、脂肪族ポリイソシアネートを含んでいてもよい。脂肪族ポリイソシアネートは、例えば、トリメチレンジイソシアネート、1,2-プロピレンジイソシアネート、ブチレンジイソシアネート(テトラメチレンジイソシアネート、1,2-ブチレンジイソシアネート、2,3-ブチレンジイソシアネート、1,3-ブチレンジイソシアネート)、1,5-ペンタメチレンジイソシアネート(PDI)、1,6-ヘキサメチレンジイソシアネート(HDI)、2,4,4-または2,2,4-トリメチルヘキサメチレンジイソシアネート、2,6-ジイソシアネートメチルカプロエート、リジンジイソシアネート、ダイマー酸ジイソシアネートなどから選ばれる少なくとも1種であってもよい。特に、1,6-ヘキサメチレンジイソシアネート(HDI)が好ましい。
1.2.2 Polyisocyanate other than alicyclic polyisocyanate The non-fluorinated water repellent composition according to an embodiment may contain an aliphatic polyisocyanate in addition to the alicyclic polyisocyanate (B). The aliphatic polyisocyanate may be at least one selected from, for example, trimethylene diisocyanate, 1,2-propylene diisocyanate, butylene diisocyanate (tetramethylene diisocyanate, 1,2-butylene diisocyanate, 2,3-butylene diisocyanate, 1,3-butylene diisocyanate), 1,5-pentamethylene diisocyanate (PDI), 1,6-hexamethylene diisocyanate (HDI), 2,4,4- or 2,2,4-trimethylhexamethylene diisocyanate, 2,6-diisocyanate methylcaproate, lysine diisocyanate, dimer acid diisocyanate, and the like. In particular, 1,6-hexamethylene diisocyanate (HDI) is preferred.
 一実施形態に係る非フッ素系撥水剤組成物は、(B)脂環族ポリイソシアネートに加えて、芳香族ポリイソシアネートを含んでいてもよい。芳香族ポリイソシアネートは、例えば、トリレンジイソシアネート(2,4-または2,6-トリレンジイソシアネートもしくはその混合物)(TDI)、フェニレンジイソシアネート(m-、p-フェニレンジイソシアネートもしくはその混合物)、4,4’-ジフェニルジイソシアネート、1,5-ナフタレンジイソシアネート(NDI)、ジフェニルメタンジイソシネート(4,4’-、2,4’-または2,2’-ジフェニルメタンジイソシネートもしくはその混合物)(MDI)、4,4’-トルイジンジイソシアネート(TODI)、4,4’-ジフェニルエーテルジイソシアネートなどから選ばれる少なくとも1種であってもよい。非フッ素系撥水剤組成物が、(B)脂環族ポリイソシアネートに加えて、芳香族ポリイソシアネートを含む場合、初期耐水圧と耐久耐水圧が向上する傾向にある。 The non-fluorinated water repellent composition according to one embodiment may contain an aromatic polyisocyanate in addition to the alicyclic polyisocyanate (B). The aromatic polyisocyanate may be at least one selected from, for example, tolylene diisocyanate (2,4- or 2,6-tolylene diisocyanate or a mixture thereof) (TDI), phenylene diisocyanate (m-, p-phenylene diisocyanate or a mixture thereof), 4,4'-diphenyl diisocyanate, 1,5-naphthalene diisocyanate (NDI), diphenylmethane diisocyanate (4,4'-, 2,4'-, or 2,2'-diphenylmethane diisocyanate or a mixture thereof) (MDI), 4,4'-toluidine diisocyanate (TODI), 4,4'-diphenyl ether diisocyanate, and the like. When the non-fluorinated water repellent composition contains an aromatic polyisocyanate in addition to the (B) alicyclic polyisocyanate, the initial water pressure resistance and durable water pressure resistance tend to be improved.
 一実施形態に係る非フッ素系撥水剤組成物は、(B)脂環族ポリイソシアネートに加えて、芳香脂肪族ポリイソシアネートを含んでいてもよい。芳香脂肪族ポリイソシアネートは、例えば、キシリレンジイソシアネート(1,3-または1,4-キシリレンジイソシアネートもしくはその混合物)(XDI)、テトラメチルキシリレンジイソシアネート(1,3-または1,4-テトラメチルキシリレンジイソシアネートもしくはその混合物)(TMXDI)、ω,ω’-ジイソシアネート-1,4-ジエチルベンゼンなどから選ばれる少なくとも1種であってもよい。 The non-fluorinated water repellent composition according to one embodiment may contain an araliphatic polyisocyanate in addition to the alicyclic polyisocyanate (B). The araliphatic polyisocyanate may be at least one selected from, for example, xylylene diisocyanate (1,3- or 1,4-xylylene diisocyanate or a mixture thereof) (XDI), tetramethyl xylylene diisocyanate (1,3- or 1,4-tetramethyl xylylene diisocyanate or a mixture thereof) (TMXDI), ω,ω'-diisocyanato-1,4-diethylbenzene, and the like.
 以上の通り、一実施形態に係る非フッ素系撥水剤組成物は、(B)脂環族ポリイソシアネートに加えて、脂肪族ポリイソシアネート、芳香族ポリイソシアネート及び芳香脂肪族ポリイソシアネートのうちの少なくとも1種を含んでいてもよい。一実施形態に係る非フッ素系撥水剤組成物が、(B)脂環族ポリイソシアネートに加えてその他のポリイソシアネートを含む場合、脂環族ポリイソシアネートとその他のポリイソシアネートとの質量比(脂環族ポリイソシアネート/その他のポリイソシアネート)は、99/1~1/99、95/5~5/95、90/10~10/90、又は、85/15~25/75であってもよい。特に、脂環族ポリイソシアネートと脂肪族ポリイソシアネートとをこの比率で含む場合、初期ブンデスマンと摩耗後のブンデスマンと摩耗後の撥水性が一層向上する。 As described above, the non-fluorine-based water repellent composition according to one embodiment may contain at least one of an aliphatic polyisocyanate, an aromatic polyisocyanate, and an araliphatic polyisocyanate in addition to the alicyclic polyisocyanate (B). When the non-fluorine-based water repellent composition according to one embodiment contains other polyisocyanates in addition to the alicyclic polyisocyanate (B), the mass ratio of the alicyclic polyisocyanate to the other polyisocyanates (alicyclic polyisocyanate/other polyisocyanates) may be 99/1 to 1/99, 95/5 to 5/95, 90/10 to 10/90, or 85/15 to 25/75. In particular, when the alicyclic polyisocyanate and the aliphatic polyisocyanate are contained in this ratio, the water repellency of the initial Bundesmann and the Bundesmann after abrasion and the water repellency after abrasion are further improved.
1.2.3 ブロックポリイソシアネート
 上記のポリイソシアネートは、ブロック化剤によってブロックされていてもよい。ブロックポリイソシアネートは、上記のポリイソシアネートと、ブロック化剤とを反応させることにより、得ることができる。ブロック化剤は、1種のみを単独で、又は、2種以上を組み合わせて用いてもよい。
1.2.3 Blocked polyisocyanate The above polyisocyanate may be blocked with a blocking agent. The blocked polyisocyanate can be obtained by reacting the above polyisocyanate with a blocking agent. The blocking agent may be used alone or in combination of two or more.
 ブロック化剤は、例えば、活性水素を分子内に1個以上有する化合物であってもよい。ブロック剤は、例えば、アルコール系化合物、アルキルフェノール系化合物、フェノール系化合物、活性メチレン系化合物、メルカプタン系化合物、酸アミド系化合物、酸イミド系化合物、イミダゾール系化合物、イミダゾリン系化合物、トリアゾール系化合物、カルバミン酸系化合物、尿素系化合物、オキシム系化合物、アミン系化合物、イミド系化合物、イミン系化合物、ピラゾール系化合物、及び、重亜硫酸塩などから選ばれる少なくとも1種であってもよい。中でも、酸アミド系化合物、活性メチレン系化合物、オキシム系化合物及びピラゾール系化合物から選ばれる少なくとも1種が好ましく、例えば、ε-カプロラクタム、アセチルアセトン、マロン酸ジエチル、メチルエチルケトンオキシム、シクロヘキサノンオキシム、3-メチルピラゾール及び3,5-ジメチルピラゾールから選ばれる少なくとも1種が好ましく、その中でも、洗濯耐久撥水性の観点から、ジメチルピラゾール及びマロン酸ジエステルのうちの一方又は両方がより好ましい。 The blocking agent may be, for example, a compound having one or more active hydrogen atoms in the molecule. The blocking agent may be, for example, at least one selected from alcohol compounds, alkylphenol compounds, phenol compounds, active methylene compounds, mercaptan compounds, acid amide compounds, acid imide compounds, imidazole compounds, imidazoline compounds, triazole compounds, carbamic acid compounds, urea compounds, oxime compounds, amine compounds, imide compounds, imine compounds, pyrazole compounds, and bisulfites. Among them, at least one selected from acid amide compounds, active methylene compounds, oxime compounds, and pyrazole compounds is preferred, for example, at least one selected from ε-caprolactam, acetylacetone, diethyl malonate, methyl ethyl ketone oxime, cyclohexanone oxime, 3-methylpyrazole, and 3,5-dimethylpyrazole is preferred, and among them, one or both of dimethylpyrazole and malonic acid diester are more preferred from the viewpoint of washing durability and water repellency.
1.2.4 自己乳化性
 上記のポリイソシアネートは、自己乳化性を有していてもよいし、有していなくてもよい。初期耐水圧性の観点からは、自己乳化性を有するものよりも、自己乳化性を有しないもののほうが好ましい。自己乳化性を有するポリイソシアネートとしては、例えば、ポリイソシアネートの一部にノニオン性親水基、カチオン性親水基、アニオン性親水基を導入したものが挙げられる。撥水性の観点からは、好ましくはオキシエチレン基を有するノニオン性親水基を導入したポリイソシアネートを用いることができる。自己乳化性を付与するためにポリイソシアネートと反応される親水性化合物としては例えば、ポリエチレングリコールモノメチルエーテル、ポリエチレングリコールモノエチルエーテル、ポリエチレングリコールポリプロピレングリコールモノメチルエーテル、ポリプロピレングリコールポリエチレングリコールモノブチルエーテル等のポリオキシアルキレンモノアルキルエーテル類;エチレングリコール、または、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール等の(ポリ)エチレングリコール類;ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコールのブロック共重合体、ランダム共重合体、エチレンオキサイドとプロピレンオキサイド、エチレンオキサイドとブチレンオキサイドのランダム共重合体やブロック共重合体;ポリオキシアルキレンモノアミン類、ポリオキシアルキレンジアミン類;などが挙げられ、ポリエチレングリコールモノメチルエーテル、ポリエチレングリコールモノエチルエーテル等が好ましく用いられる。上記ノニオン性親水性化合物は、1種のみを単独で、又は、2種以上を組み合わせて用いてもよい。これらの化合物を、イソシアネート基に対して1~50mol%程度導入することにより、ポリイソシアネートに自己乳化性を付与することができる。
1.2.4 Self-emulsifying property The above polyisocyanates may or may not have self-emulsifying property. From the viewpoint of initial water pressure resistance, polyisocyanates without self-emulsifying property are more preferable than those with self-emulsifying property. Examples of polyisocyanates with self-emulsifying property include polyisocyanates with nonionic hydrophilic groups, cationic hydrophilic groups, and anionic hydrophilic groups introduced into a part of the polyisocyanate. From the viewpoint of water repellency, polyisocyanates with nonionic hydrophilic groups having oxyethylene groups can be preferably used. Examples of hydrophilic compounds that react with polyisocyanates to impart self-emulsifying properties include polyoxyalkylene monoalkyl ethers such as polyethylene glycol monomethyl ether, polyethylene glycol monoethyl ether, polyethylene glycol polypropylene glycol monomethyl ether, and polypropylene glycol polyethylene glycol monobutyl ether; ethylene glycol, or (poly)ethylene glycols such as diethylene glycol, triethylene glycol, and polyethylene glycol; block copolymers and random copolymers of polyethylene glycol, polypropylene glycol, and polytetramethylene glycol, random copolymers and block copolymers of ethylene oxide and propylene oxide, and random copolymers and block copolymers of ethylene oxide and butylene oxide; polyoxyalkylene monoamines, and polyoxyalkylene diamines; and preferably polyethylene glycol monomethyl ether and polyethylene glycol monoethyl ether are used. The nonionic hydrophilic compounds may be used alone or in combination of two or more. By introducing about 1 to 50 mol% of these compounds relative to the isocyanate group, self-emulsifying properties can be imparted to the polyisocyanate.
1.3 (C)その他の成分
 非フッ素系撥水剤組成物は、上述の非フッ素系撥水成分と脂環族ポリイソシアネートを含むものであればよく、これらに加えて、その他の成分を含んでいてもよい。例えば、一実施形態に係る非フッ素系撥水剤組成物は、水性媒体や乳化剤等を含んでいてもよい。
1.3 (C) Other Components The non-fluorinated water repellent composition may contain the above-mentioned non-fluorinated water repellent component and alicyclic polyisocyanate, and may further contain other components. For example, the non-fluorinated water repellent composition according to one embodiment may contain an aqueous medium, an emulsifier, etc.
 一実施形態に係る非フッ素系撥水剤組成物は、水性媒体を含んでいてもよい。水性媒体は、水、又は、水と有機溶媒との混合物であってよい。有機溶媒の量は、水性媒体に対して、例えば、0.1質量%以上30質量%以下、又は、0.1質量%以上10質量%以下であってよい。水性媒体は、水のみからなることが好ましい。水性媒体の量は、非フッ素系撥水剤組成物の全体を100質量%として、30~99質量%、又は50~90質量%であってよい。 The non-fluorinated water repellent composition according to one embodiment may contain an aqueous medium. The aqueous medium may be water or a mixture of water and an organic solvent. The amount of the organic solvent may be, for example, 0.1% by mass or more and 30% by mass or less, or 0.1% by mass or more and 10% by mass or less, relative to the aqueous medium. It is preferable that the aqueous medium consists of water only. The amount of the aqueous medium may be 30 to 99% by mass, or 50 to 90% by mass, with the entire non-fluorinated water repellent composition being 100% by mass.
 一実施形態に係る非フッ素系撥水剤組成物は、当該組成物の水性媒体への分散性を向上するために、乳化剤を含んでいてもよい。乳化剤は、ノニオン性界面活性剤、カチオン性界面活性剤、アニオン性界面活性剤及び両性界面活性剤の中から選択された少なくとも1種であってよい。乳化剤は、ノニオン性界面活性剤の単独、あるいはノニオン性界面活性剤とカチオン性界面活性剤との組み合わせであることが好ましい。ノニオン性界面活性剤とカチオン性界面活性剤との組み合わせにおいて、ノニオン性界面活性剤とカチオン性界面活性剤との質量比は、例えば、99.5:0.5~50:50、又は、99:1~90:10であってよい。 The non-fluorinated water repellent composition according to one embodiment may contain an emulsifier to improve the dispersibility of the composition in an aqueous medium. The emulsifier may be at least one selected from a nonionic surfactant, a cationic surfactant, an anionic surfactant, and an amphoteric surfactant. The emulsifier is preferably a nonionic surfactant alone, or a combination of a nonionic surfactant and a cationic surfactant. In the combination of a nonionic surfactant and a cationic surfactant, the mass ratio of the nonionic surfactant to the cationic surfactant may be, for example, 99.5:0.5 to 50:50, or 99:1 to 90:10.
 ノニオン性界面活性剤としては例えば、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレン脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンソルビトール脂肪酸エステル、グリセリン脂肪酸エステル、ポリオキシエチレングリセリン脂肪酸エステル、ポリグリセリン脂肪酸エステル、ショ糖脂肪酸エステル、ポリオキシエチレンアルキルアミン、ポリオキシエチレン脂肪酸アミド、脂肪酸アルキロールアミド、アルキルアルカノールアミド、アセチレングリコール、アセチレングリコールのオキシエチレン付加物、ポリエチレングリコールポリプロピレングリコールブロックコポリマー等が挙げられる。アニオン性界面活性剤としては、例えば高級アルコールの硫酸エステル塩、高級アルキルスルホン酸塩、高級カルボン酸塩、アルキルベンゼンスルホン酸塩、ポリオキシエチレンアルキルサルフェート塩、ポリオキシエチレンアルキルフェニルエーテルサルフェート塩、ビニルスルホサクシネート、ポリオキシアルキレンアルキルエーテルホスフェート等が挙げられる。カチオン性界面活性剤としては、アミン塩、アミドアミン塩、4級アンモニウム塩、およびイミダゾリニウム塩等が挙げられる。具体例としては、特に限定されないが、アルキルアミン塩、ポリオキシエチレンアルキルアミン塩、アルキルアミドアミン塩、アミノアルコール脂肪酸誘導体、ポリアミン脂肪酸誘導体、イミダゾリン等のアミン塩型界面活性剤、アルキルトリメチルアンモニム塩、ジアルキルジメチルアンモニウム塩、アルキルジメチルベンジルアンモニウム塩、アルキルピリジニウム塩、アルキルイソキノリニウム塩、塩化ベンゼトニウム等の4級アンモニウム塩型界面活性剤等が挙げられる。両性界面活性剤としては、アルキルアミンオキシド類、アラニン類、イミダゾリニウムベタイン類、アミドベタイン類、酢酸ベタイン等が挙げられ、具体的には、長鎖アミンオキシド、ラウリルベタイン、ステアリルベタイン、ラウリルカルボキシメチルヒドロキシエチルイミダゾリニウムベタイン、ラウリルジメチルアミノ酢酸ベタイン、脂肪酸アミドプロピルジメチルアミノ酢酸ベタイン等が挙げられる。これら界面活性剤の使用量は、特に制限されないが、例えば、エマルションの固形分のうち、1~20質量%が好ましく、より好ましくは1.5~10質量%である。 Examples of nonionic surfactants include polyoxyethylene alkyl ethers, polyoxyethylene alkylphenyl ethers, polyoxyethylene fatty acid esters, sorbitan fatty acid esters, polyoxyethylene sorbitan fatty acid esters, polyoxyethylene sorbitol fatty acid esters, glycerin fatty acid esters, polyoxyethylene glycerin fatty acid esters, polyglycerin fatty acid esters, sucrose fatty acid esters, polyoxyethylene alkylamines, polyoxyethylene fatty acid amides, fatty acid alkylol amides, alkyl alkanol amides, acetylene glycol, oxyethylene adducts of acetylene glycol, polyethylene glycol polypropylene glycol block copolymers, etc. Examples of anionic surfactants include sulfate ester salts of higher alcohols, higher alkyl sulfonates, higher carboxylate salts, alkylbenzene sulfonates, polyoxyethylene alkyl sulfate salts, polyoxyethylene alkyl phenyl ether sulfate salts, vinyl sulfosuccinate, polyoxyalkylene alkyl ether phosphates, etc. Examples of cationic surfactants include amine salts, amidoamine salts, quaternary ammonium salts, and imidazolinium salts, etc. Specific examples include, but are not limited to, alkylamine salts, polyoxyethylene alkylamine salts, alkylamide amine salts, amino alcohol fatty acid derivatives, polyamine fatty acid derivatives, amine salt surfactants such as imidazoline, alkyl trimethyl ammonium salts, dialkyl dimethyl ammonium salts, alkyl dimethyl benzyl ammonium salts, alkyl pyridinium salts, alkyl isoquinolinium salts, quaternary ammonium salt surfactants such as benzethonium chloride, etc. Examples of amphoteric surfactants include alkylamine oxides, alanines, imidazolinium betaines, amido betaines, and betaine acetate, and more specifically, long-chain amine oxides, lauryl betaine, stearyl betaine, lauryl carboxymethyl hydroxyethyl imidazolinium betaine, lauryl dimethyl amino acetate betaine, fatty acid amido propyl dimethyl amino acetate betaine, etc. The amount of these surfactants used is not particularly limited, but is preferably 1 to 20% by mass, more preferably 1.5 to 10% by mass, of the solid content of the emulsion.
 上記の乳化剤の親水性親油性バランス(HLB)は、特に限定されるものではない。一実施形態に係る非フッ素系撥水剤組成物におけるノニオン性乳化剤の平均HLBは、6.0~16.0、6.5~15.5、7.0~15.0、又は、7.5~14.5が好ましい。HLBがこの範囲を外れると、初期ブンデスマン・摩耗後のブンデスマン・初期耐水圧が低下の傾向にある。尚、乳化剤のHLBは、グリフィン法により次式から求めた値か、
  HLB=20×[(界面活性剤中に含まれる親水基の分子量)/(界面活性剤の分子量)]
文献1(界面活性剤ハンドブック、1998年5月1日3版)に記載されている値か、
文献2(The HLB SYSTEM, 1989.7 ICI Americas Inc)に記載されている値である。特定の界面活性剤について、グリフィン法によりHLBの数値を求める。グリフィン法により計算できない場合に、文献1(または文献2)に記載されている数値を採用する。HLBの数値が文献1に記載されていない場合には、文献2に記載されている数値を採用する。二種類以上の乳化剤を含む混合系において、混合系のHLBは、それぞれ単独乳化剤のHLBの加重平均で算出できる。
The hydrophilic-lipophilic balance (HLB) of the emulsifier is not particularly limited. The average HLB of the nonionic emulsifier in the non-fluorinated water repellent composition according to one embodiment is preferably 6.0 to 16.0, 6.5 to 15.5, 7.0 to 15.0, or 7.5 to 14.5. If the HLB is outside this range, the initial Bundesmann, Bundesmann after abrasion, and initial water pressure resistance tend to decrease. The HLB of the emulsifier is determined by the following formula using the Griffin method, or by the following formula:
HLB = 20 x [(molecular weight of hydrophilic group contained in surfactant)/(molecular weight of surfactant)]
The value is given in the literature 1 (Surfactant Handbook, 3rd edition, May 1, 1998) or
This is the value described in Reference 2 (The HLB SYSTEM, July 1989, ICI Americas Inc.). For a specific surfactant, the HLB value is determined using the Griffin method. If calculation using the Griffin method is not possible, the value described in Reference 1 (or Reference 2) is used. If the HLB value is not described in Reference 1, the value described in Reference 2 is used. In a mixed system containing two or more types of emulsifiers, the HLB of the mixed system can be calculated as the weighted average of the HLB of each individual emulsifier.
1.4 非フッ素系撥水成分とポリイソシアネートとの比率
 非フッ素系撥水剤組成物が水系エマルションである場合、当該組成物に含まれる固形分中、非フッ素系撥水成分と架橋成分(ポリイソシアネート)との比は、非フッ素系撥水成分が20~90質量%、架橋成分が10~80質量%であることが好ましい。より好ましくは、非フッ素系撥水成分が30~85質量%、架橋成分が15~70質量%、さらに好ましくは、非フッ素系撥水成分が40~80質量%、架橋成分が20~60質量%、特に好ましくは、非フッ素系撥水成分が55~80質量%、架橋成分が20~45質量%である。非フッ素系撥水成分及び架橋成分の比率を調整することで、撥水性を損なうことなく、優れた洗濯耐久撥水性を確保ことができる。水系エマルションにおける固形分の割合は、特に制限されないが、20~60質量%とすることが好ましい。水系エマルションにおける粒子径は、特に制限されないが、平均粒径が10μm以下であることが好ましく、さらには1μm以下であることがより好ましく、特に、50~500nmであることがさらに好ましい。平均粒径が大き過ぎると、エマルションの安定性が低下する傾向にある。尚、当該平均粒径は、レーザー回折/散乱式粒子径分布測定装置にて測定され、百分率積算値(体積基準)が50%の粒径(メジアン粒径)を意味する。
1.4 Ratio of non-fluorine-based water repellent component and polyisocyanate When the non-fluorine-based water repellent composition is an aqueous emulsion, the ratio of the non-fluorine-based water repellent component to the crosslinking component (polyisocyanate) in the solid content contained in the composition is preferably 20 to 90% by mass of the non-fluorine-based water repellent component and 10 to 80% by mass of the crosslinking component. More preferably, the non-fluorine-based water repellent component is 30 to 85% by mass, the crosslinking component is 15 to 70% by mass, even more preferably, the non-fluorine-based water repellent component is 40 to 80% by mass, the crosslinking component is 20 to 60% by mass, and particularly preferably, the non-fluorine-based water repellent component is 55 to 80% by mass, and the crosslinking component is 20 to 45% by mass. By adjusting the ratio of the non-fluorine-based water repellent component and the crosslinking component, excellent washing durable water repellency can be ensured without impairing the water repellency. The ratio of the solid content in the aqueous emulsion is not particularly limited, but is preferably 20 to 60% by mass. The particle size in the aqueous emulsion is not particularly limited, but the average particle size is preferably 10 μm or less, more preferably 1 μm or less, and particularly preferably 50 to 500 nm. If the average particle size is too large, the stability of the emulsion tends to decrease. The average particle size is measured by a laser diffraction/scattering type particle size distribution measuring device, and means the particle size (median particle size) at a percentage integrated value (volume basis) of 50%.
2.非フッ素系撥水剤組成物の製造方法
 以下、本開示の非フッ素系撥水剤組成物の製造方法の一例について説明する。上述の通り、非フッ素系撥水剤組成物は、非フッ素系撥水成分とポリイソシアネートとを混合することにより得ることができる。非フッ素系撥水剤組成物における非フッ素系撥水成分とポリイソシアネートとの比率は、上述した好ましい比率とすることができる。
2. Manufacturing method of the non-fluorine-based water repellent composition Hereinafter, an example of the manufacturing method of the non-fluorine-based water repellent composition of the present disclosure will be described. As described above, the non-fluorine-based water repellent composition can be obtained by mixing the non-fluorine-based water repellent component and the polyisocyanate. The ratio of the non-fluorine-based water repellent component to the polyisocyanate in the non-fluorine-based water repellent composition can be the preferred ratio described above.
 非フッ素系撥水剤組成物は、例えば、非フッ素系撥水成分とポリイソシアネートとを予め混合した1剤型であってもよいし、上記成分中の少なくとも1成分を含む1剤と、他の成分を含む1剤とに分けられている2剤型であってもよい。非フッ素系撥水剤組成物は、取り扱いの簡便性の観点から、各成分が水性媒体に分散(乳化、溶解を含む)していることが好ましい。 The non-fluorine-based water repellent composition may be, for example, a one-component type in which the non-fluorine-based water repellent component and the polyisocyanate are premixed, or a two-component type in which one component contains at least one of the above components and one component contains the other component. From the viewpoint of ease of handling, it is preferable that the non-fluorine-based water repellent composition has each component dispersed (including emulsified and dissolved) in an aqueous medium.
 各成分を含む1剤型の非フッ素系撥水剤組成物は、例えば、各成分を水性媒体に同時に分散(乳化、溶解を含む)させることにより、又は、各成分のうちの少なくとも1成分を水性媒体に分散させた分散液と、他の成分を水性媒体に分散させた分散液とを混合することにより得ることができる。 A one-component non-fluorinated water repellent composition containing each component can be obtained, for example, by simultaneously dispersing (including emulsifying and dissolving) each component in an aqueous medium, or by mixing a dispersion in which at least one of the components is dispersed in an aqueous medium with a dispersion in which the other component is dispersed in an aqueous medium.
 上記の各成分を水性媒体に分散する方法としては、例えば、各成分と、水性媒体と、必要により分散剤とを混合攪拌することが挙げられる。混合攪拌する場合、マイルダー、高速攪拌機、ホモジナイザー、超音波ホモジナイザー、ホモミキサー、ビーズミル、パールミル、ダイノーミル、アスペックミル、バスケットミル、ボールミル、ナノマイザー、アルチマイザー、スターバーストなどの従来公知の乳化分散機を用いてよい。これらの乳化分散機は、1種のみを単独で又は2種類以上を組み合わせて用いることができる。 A method for dispersing each of the above components in an aqueous medium can be, for example, mixing and stirring each component with the aqueous medium and, if necessary, a dispersant. When mixing and stirring, a conventionally known emulsifying and dispersing machine such as a Milder, high-speed agitator, homogenizer, ultrasonic homogenizer, homomixer, bead mill, pearl mill, dyno mill, aspek mill, basket mill, ball mill, nanomizer, ultimizer, or starburst may be used. These emulsifying and dispersing machines can be used alone or in combination of two or more types.
 水性媒体や乳化剤(界面活性剤)の種類については上述の通りである。  The types of aqueous media and emulsifiers (surfactants) are as described above.
 上記のように分散液とされた非フッ素系撥水剤組成物は、そのまま処理液として使用してもよいし、さらに水性媒体又は疎水性有機溶媒で希釈することによって処理液とすることもできる。 The non-fluorinated water repellent composition prepared as a dispersion as described above may be used as a treatment liquid as is, or may be further diluted with an aqueous medium or a hydrophobic organic solvent to prepare a treatment liquid.
 本開示の非フッ素系撥水剤組成物は、例えば、下記の手順で製造されたものであってもよい。
(I)ポリイソシアネートと、当該ポリイソシアネートのイソシアネート基と反応しうる親水性化合物と、当該ポリイソシアネートのイソシアネート基と反応しうるブロック化剤とを、NCO含有率が0%となるまで反応させて、ブロックイソシアネートを得る。
(II)前記(I)で得られたブロックイソシアネートを含む液体中に、非フッ素系撥水成分及び水を加えて混合し、エマルションを得る。
(III)前記(II)で得られたエマルションから、場合によっては有機溶媒を除去し、水系エマルションを得る。
The non-fluorinated water repellent composition of the present disclosure may be produced, for example, by the following procedure.
(I) A polyisocyanate is reacted with a hydrophilic compound capable of reacting with an isocyanate group of the polyisocyanate, and a blocking agent capable of reacting with an isocyanate group of the polyisocyanate until the NCO content becomes 0%, to obtain a blocked isocyanate.
(II) A non-fluorine-based water-repellent component and water are added to and mixed with the liquid containing the blocked isocyanate obtained in (I) above to obtain an emulsion.
(III) The organic solvent is optionally removed from the emulsion obtained in (II) above to obtain an aqueous emulsion.
 前記工程(I)において、ポリイソシアネートとしては上述のものを用いることができ、イソシアネート基と反応し得る親水性化合物としてはポリエチレングリコールモノアルキルエーテル等を用いることができる。ポリイソシアネートと、親水性化合物やブロック化剤との反応は、公知の方法にて行えばよく、また、溶媒の存在の有無に関わらず行うことができる。溶媒を用いる場合、イソシアネート基に対して不活性な溶媒を用いる必要がある。ブロック化反応に際して、錫、亜鉛、鉛等の有機金属塩、金属アルコラート及び3級アミン等を触媒として用いてもよい。ブロック化反応は、一般に-20~150℃で行うことができるが、好ましくは0~100℃である。150℃を超えると、副反応を起こす可能性があり、他方、あまり低温になると反応速度が小さくなり不利である。ブロックイソシアネートは、上記ブロック化剤でイソシアネート基の50mol%以上がブロックされていてもよく、75mol%以上ブロックされていることが好ましく、90mol%以上ブロックされていることが特に好ましい。 In the step (I), the polyisocyanate may be any of those mentioned above, and the hydrophilic compound capable of reacting with the isocyanate group may be polyethylene glycol monoalkyl ether or the like. The reaction between the polyisocyanate and the hydrophilic compound or blocking agent may be carried out by a known method, and may be carried out regardless of the presence or absence of a solvent. When a solvent is used, it is necessary to use a solvent that is inactive against the isocyanate group. In the blocking reaction, an organic metal salt of tin, zinc, lead, or the like, a metal alcoholate, a tertiary amine, or the like may be used as a catalyst. The blocking reaction can generally be carried out at -20 to 150°C, but preferably 0 to 100°C. If the temperature exceeds 150°C, a side reaction may occur, and if the temperature is too low, the reaction rate becomes slow, which is disadvantageous. In the blocked isocyanate, 50 mol% or more of the isocyanate group may be blocked with the blocking agent, preferably 75 mol% or more, and particularly preferably 90 mol% or more.
 また、親水性化合物がイソシアネート基に対して1~50mol%導入されていることが好ましい。イソシアネート基の一部に親水性化合物が導入されていることによってブロックイソシアネートが自己乳化性を有し、界面活性剤を用いることなく、或いは、少量の界面活性剤を用いて、撥水成分と架橋成分とを1粒子中に含有する撥水処理剤とすることができる。工程(I)の反応はNCO含有率が0%となるまで行うことが好ましい。NCO含有率は、例えば、JISK6806:2003の5.10NCO量に記載の方法等の公知の方法で測定することができ、0%とは実質的にほぼ全てのNCO基が消失したと判断される程度であればよく、公知の測定方法において検出限界以下、もしくは、それと同等と見なされる範囲であればよい。 Furthermore, it is preferable that the hydrophilic compound is introduced in an amount of 1 to 50 mol% relative to the isocyanate group. By introducing a hydrophilic compound into some of the isocyanate groups, the blocked isocyanate has self-emulsifying properties, and a water-repellent treatment agent containing a water-repellent component and a crosslinking component in one particle can be obtained without using a surfactant or with a small amount of surfactant. It is preferable to carry out the reaction in step (I) until the NCO content becomes 0%. The NCO content can be measured by a known method such as the method described in JIS K6806:2003, 5.10 NCO content, and 0% may be a level at which it is judged that substantially all of the NCO groups have disappeared, and may be below the detection limit in a known measurement method or in a range that is considered to be equivalent thereto.
 上記の反応系の溶媒としては例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、酢酸エチル、酢酸-n-ブチル、酢酸セロソルブ、トルエン等が挙げられる。これらの溶媒は1種のみを単独で、又は、2種以上を組み合わせて用いることができる。 Examples of the solvent for the above reaction system include acetone, methyl ethyl ketone, methyl isobutyl ketone, ethyl acetate, n-butyl acetate, cellosolve acetate, toluene, etc. These solvents can be used alone or in combination of two or more.
 前記工程(II)において、撥水成分としては上述のものを用いることができる。撥水成分と併せて有機溶媒を添加してもよい。工程(I)の反応液(ブロックイソシアネートを含む液)と撥水成分、有機溶媒が均一に混合されたことを確認した後に、水を添加することが好ましい。水を滴下しながら撹拌することによってエマルションを得ることができる。 In the step (II), the water-repellent component may be any of those mentioned above. An organic solvent may be added together with the water-repellent component. It is preferable to add water after confirming that the reaction liquid (liquid containing blocked isocyanate) of step (I), the water-repellent component, and the organic solvent are uniformly mixed. An emulsion can be obtained by stirring while adding water dropwise.
 前記工程(III)において、エマルションから有機溶媒を除去する方法は公知の方法を適宜選択すればよく、例えば減圧留去によることができる。 In the step (III), the method for removing the organic solvent from the emulsion may be appropriately selected from known methods, for example, evaporation under reduced pressure.
 また本開示の非フッ素系撥水剤組成物は、
(a)ポリイソシアネートと、当該ポリイソシアネートのイソシアネート基と反応しうるブロック化剤とを、NCO含有率が0%となるまで反応させて、ブロックイソシアネートを得る工程、
(b)前記工程(a)で得られたブロックイソシアネートを含む液体中に、撥水成分、界面活性剤及び水を加えて混合し、エマルションを得る工程、及び、
(c)前記工程(b)で得られたエマルションから、場合によっては有機溶媒を除去し、水系エマルションを得る工程、
を含む、撥水処理剤の製造方法によって得ることもできる。
The non-fluorinated water repellent composition of the present disclosure further comprises:
(a) reacting a polyisocyanate with a blocking agent capable of reacting with an isocyanate group of the polyisocyanate until the NCO content becomes 0%, thereby obtaining a blocked isocyanate;
(b) adding a water-repellent component, a surfactant, and water to the liquid containing the blocked isocyanate obtained in the step (a) and mixing them to obtain an emulsion; and
(c) removing the organic solvent from the emulsion obtained in the step (b) to obtain an aqueous emulsion;
The water repellent treatment agent can also be obtained by a method for producing the water repellent treatment agent, which includes the steps of:
 上記工程(a)において用いるポリイソシアネート及びブロック化剤は上述のとおりである。また、NCO含有率は例えばJISK6806:2003の5.10NCO量に記載の方法等の公知の方法で測定することができ、0%とは実質的にほぼ全てのNCO基が消失したと判断される程度であればよく、公知の測定方法において検出限界以下、もしくは、それと同等と見なされる範囲であればよい。反応系に用いる溶媒は、反応系内で反応を均一に進行させることが可能であれば特に制限されないが、例えば上述の工程(I)と同様のものを用いることができる。 The polyisocyanate and blocking agent used in the above step (a) are as described above. The NCO content can be measured by a known method such as the method described in JIS K6806:2003, 5.10 NCO content, and 0% is sufficient if it is determined that substantially all NCO groups have disappeared, and may be below the detection limit in a known measurement method or in a range that is considered to be equivalent thereto. The solvent used in the reaction system is not particularly limited as long as it is possible to uniformly proceed with the reaction in the reaction system, and for example, the same solvent as that used in the above step (I) can be used.
 上記工程(b)において、撥水成分及び界面活性剤としては上述のものを用いることができる。撥水成分と併せて有機溶媒を加えてもよい。界面活性剤は、予め水に溶解又は分散しておいたものを、滴下等の方法で加えてもよく、また予め撥水成分とともに有機溶媒に溶解又は分散させてもよい。混合の際には公知の乳化装置を用いることができ、例えば、ホモミキサー、ホモジナイザー、コロイドミル、ラインミキサー等の乳化装置を用いることができる。かかる製造方法では、撥水成分と架橋成分とを混合した混合溶液を、界面活性剤を用いて強制的に乳化するため、エマルションにおいて、1粒子中に撥水成分と架橋成分とが含有されており、ハイブリットエマルションとなる。 In the above step (b), the water-repellent component and the surfactant may be the same as those mentioned above. An organic solvent may be added together with the water-repellent component. The surfactant may be dissolved or dispersed in water beforehand and added by a method such as dropwise addition, or may be dissolved or dispersed in the organic solvent together with the water-repellent component beforehand. A known emulsifying device may be used for mixing, such as a homomixer, homogenizer, colloid mill, or line mixer. In this manufacturing method, the mixed solution of the water-repellent component and the crosslinking component is forcibly emulsified using a surfactant, so that the emulsion contains both the water-repellent component and the crosslinking component in one particle, resulting in a hybrid emulsion.
 上記工程(c)において、エマルションから有機溶媒を除去する方法は公知の方法を適宜選択すればよく、例えば減圧留去によることができる。 In the above step (c), the method for removing the organic solvent from the emulsion may be appropriately selected from known methods, for example, evaporation under reduced pressure.
2.撥水性繊維製品の製造方法
 本開示の非フッ素系撥水剤組成物によれば、例えば、繊維製品に対して実使用時の撥水性(耐摩耗撥水性)を付与することができる。以下、本開示の非フッ素系撥水剤組成物を繊維製品に適用する場合について例示するが、本開示の非フッ素系撥水剤組成物は、繊維製品以外の各種の物品に対して優れた耐摩耗撥水性を付与することができる可能性がある。
2. Manufacturing method of water-repellent textile products The non-fluorinated water repellent composition of the present disclosure can impart water repellency (abrasion-resistant water repellency) to textile products during actual use, for example. Hereinafter, the case where the non-fluorinated water repellent composition of the present disclosure is applied to textile products will be illustrated, but the non-fluorinated water repellent composition of the present disclosure may be able to impart excellent abrasion-resistant water repellency to various articles other than textile products.
 一実施形態に係る撥水性繊維製品の製造方法は、本開示の非フッ素系撥水剤組成物を含む処理液で繊維を処理すること、を含む。この工程を経て、撥水性繊維製品が得られる。 A method for producing a water-repellent textile product according to one embodiment includes treating textiles with a treatment liquid containing the non-fluorinated water repellent composition of the present disclosure. Through this process, a water-repellent textile product is obtained.
 繊維の素材としては特に制限はなく、綿、麻、絹、羊毛などの天然繊維、レーヨン、アセテートなどの半合成繊維、ナイロン、ポリエステル、ポリウレタン、ポリプロピレン、アクリルなどの合成繊維及びこれらの複合繊維、混紡繊維などが挙げられる。繊維の形態は、特に制限はなく、ステープル、フィラメント、トウ、糸等のような原材料形態に限らず、織物、編物、詰め綿、不織布、紙、シート、フィルム等のいずれの形態であってもよい。繊維は、繊維製品であってもよい。 The fiber material is not particularly limited, and examples thereof include natural fibers such as cotton, linen, silk, and wool; semi-synthetic fibers such as rayon and acetate; synthetic fibers such as nylon, polyester, polyurethane, polypropylene, and acrylic; and composite and blended fibers of these. The form of the fiber is not particularly limited, and is not limited to raw material forms such as staple, filament, tow, and thread, but may be in any form such as woven fabric, knitted fabric, wadding, nonwoven fabric, paper, sheet, and film. The fiber may be a textile product.
 上記処理液で繊維を処理する方法としては、例えば、浸漬、噴霧、塗布等の加工方法が挙げられる。また、非フッ素系撥水剤組成物が水を含有する場合は、繊維に付着させた後に水を除去するために乾燥させることが好ましい。 Methods for treating fibers with the treatment liquid include, for example, immersion, spraying, coating, and other processing methods. In addition, when the non-fluorine-based water repellent composition contains water, it is preferable to dry the composition after it has been applied to the fibers in order to remove the water.
 非フッ素系撥水剤組成物の繊維への付着量は、要求される撥水性の度合いに応じて適宜調整可能であるが、繊維100gに対して、非フッ素系撥水剤組成物の付着量が0.1~5gとなるように調整することが好ましく、0.1~3gとなるように調整することがより好ましい。非フッ素系撥水剤組成物の付着量が少な過ぎると、繊維が十分な撥水性を発揮できない傾向にあり、多過ぎると、繊維の風合いが粗硬となり、また経済的にも不利となる傾向にある。 The amount of non-fluorine-based water repellent composition applied to the fiber can be adjusted as appropriate depending on the level of water repellency required, but it is preferable to adjust the amount of non-fluorine-based water repellent composition applied to 100 g of fiber to 0.1 to 5 g, and more preferably 0.1 to 3 g. If the amount of non-fluorine-based water repellent composition applied is too small, the fiber will tend not to exhibit sufficient water repellency, and if it is too large, the texture of the fiber will tend to become rough and hard, and it will also be economically disadvantageous.
 上記の処理液による処理は、連続法又はバッチ法で行われてもよい。連続法においては、まず、撥水剤組成物を水に希釈して処理液を調製する。次に、処理液で満たされた含浸装置に、被処理物(繊維製品)を連続的に送り込み、被処理物に加工液を含浸させた後、不要な加工液を除去する。含浸装置としては特に限定されず、パッダ、キスロール式付与装置、グラビアコーター式付与装置、スプレー式付与装置、フォーム式付与装置、コーティング式付与装置等が好ましく採用でき、特にパッダ式が好ましい。続いて、乾燥機を用いて被処理物に残存する水を除去する操作を行う。乾燥機としては、特に限定されず、ホットフルー、テンター等の拡布乾燥機が好ましい。該連続法は、被処理物が織物等の布帛状の場合に採用するのが好ましい。一方で、バッチ法は、例えば、被処理物を加工液に浸漬する工程、処理を行った被処理物に残存する水を除去する工程からなる。該バッチ法は、被処理物が布帛状でない場合、例えば、バラ毛、トップ、スライバ、かせ、トウ、糸等の場合、または編物等連続法に適さない場合に採用するのが好ましい。浸漬する工程においては、たとえば、ワタ染機、チーズ染色機、液流染色機、工業用洗濯機、ビーム染色機等を用いることができる。水を除去する操作においては、チーズ乾燥機、ビーム乾燥機、タンブルドライヤー等の温風乾燥機、高周波乾燥機等を用いることができる。撥水剤組成物を付着させた被処理物には、乾熱処理を行うことが好ましい。乾熱処理の温度としては、100~200℃が好ましく、特に120~180℃が好ましい。該乾熱処理の時間としては、10秒間~3分間が好ましく、特に1~2分間が好ましい。乾熱処理の方法としては、特に限定されないが、被処理物が布帛状である場合にはテンターが好ましい。 The treatment with the treatment liquid may be performed by a continuous method or a batch method. In the continuous method, the water repellent composition is first diluted with water to prepare the treatment liquid. Next, the treated object (textile product) is continuously sent to an impregnation device filled with the treatment liquid, and the treated object is impregnated with the treatment liquid, and then unnecessary treatment liquid is removed. The impregnation device is not particularly limited, and a padder, a kiss roll type application device, a gravure coater type application device, a spray type application device, a foam type application device, a coating type application device, etc. can be preferably used, and a padder type is particularly preferred. Next, an operation is performed to remove the water remaining in the treated object using a dryer. The dryer is not particularly limited, and a hot flue, a tenter, or other spread dryer is preferred. The continuous method is preferably used when the treated object is in the form of a fabric such as a woven fabric. On the other hand, the batch method includes, for example, a process of immersing the treated object in the treatment liquid and a process of removing the water remaining in the treated object after the treatment. The batch method is preferably used when the object to be treated is not in the form of a fabric, for example, loose fibers, tops, slivers, skeins, tows, yarns, etc., or when the object is not suitable for the continuous method, such as knitted fabrics. In the immersion step, for example, a cotton dyeing machine, a cheese dyeing machine, a liquid jet dyeing machine, an industrial washing machine, a beam dyeing machine, etc. can be used. In the operation of removing water, a hot air dryer such as a cheese dryer, a beam dryer, a tumble dryer, a high frequency dryer, etc. can be used. It is preferable to perform a dry heat treatment on the object to be treated to which the water repellent composition is attached. The temperature of the dry heat treatment is preferably 100 to 200°C, particularly preferably 120 to 180°C. The time of the dry heat treatment is preferably 10 seconds to 3 minutes, particularly preferably 1 to 2 minutes. The method of dry heat treatment is not particularly limited, but when the object to be treated is in the form of a fabric, a tenter is preferable.
 撥水性繊維製品は、優れた耐摩耗撥水性を有することから、ダウン用側地、コート、ブルゾン、ウインドブレーカー、ブラウス、ドレスシャツ、スカート、スラックス、手袋、帽子、布団側地、布団干しカバー、カーテンまたはテント類など、衣類用途品、非衣類用途品などの様々な用途に好適に使用される。 Because water-repellent textile products have excellent abrasion resistance and water repellency, they are ideally suited for a variety of uses, including clothing and non-clothing items, such as down jacket coverings, coats, blousons, windbreakers, blouses, dress shirts, skirts, slacks, gloves, hats, futon coverings, futon drying covers, curtains, and tents.
 以上の通り、本開示の技術の一実施形態について説明したが、本開示の技術は、その要旨を逸脱しない範囲で上記の実施形態以外に種々変更が可能である。以下、実施例を示しつつ、本開示の技術についてさらに詳細に説明するが、本開示の技術は以下の実施例に限定されるものではない。 As described above, one embodiment of the technology disclosed herein has been described, but the technology disclosed herein can be modified in various ways other than the above embodiment without departing from the gist of the technology. Below, the technology disclosed herein will be described in more detail while showing examples, but the technology disclosed herein is not limited to the following examples.
1.非フッ素系撥水成分の準備
1.1 アクリル系化合物の分散液の調製
(調製例A-1)
 オートクレーブに、ステアリルアクリレート15.6質量部、ダイアセトンアクリルアミド0.4質量部、ノイゲンXL-100(第一工業製薬株式会社製、ポリオキシアルキレン分岐デシルエーテル、HLB=14.7)0.8質量部、ステアリルトリメチルアンモニウム硫酸塩0.2質量部、トリプロピレングリコール10質量部及び水68.8質量部を入れ、45℃にて混合攪拌し混合液とした。この混合液に超音波を照射して全単量体を乳化分散させた。次いで、アゾビス(イソブチルアミジン)二塩酸塩0.2質量部を分散液に添加し、窒素雰囲気下で、塩化ビニル4.0質量部をオートクレーブの内圧が0.3MPaを保つよう継続的に圧入しながら、60℃にて6時間ラジカル重合させて、アクリル樹脂を20質量%含む分散液を得た。
1. Preparation of non-fluorinated water-repellent component 1.1 Preparation of dispersion of acrylic compound (Preparation Example A-1)
Into an autoclave, 15.6 parts by mass of stearyl acrylate, 0.4 parts by mass of diacetone acrylamide, 0.8 parts by mass of Noigen XL-100 (manufactured by Daiichi Kogyo Seiyaku Co., Ltd., polyoxyalkylene branched decyl ether, HLB = 14.7), 0.2 parts by mass of stearyl trimethylammonium sulfate, 10 parts by mass of tripropylene glycol, and 68.8 parts by mass of water were added and mixed and stirred at 45 ° C. to obtain a mixed liquid. The mixed liquid was irradiated with ultrasonic waves to emulsify and disperse all the monomers. Next, 0.2 parts by mass of azobis (isobutylamidine) dihydrochloride was added to the dispersion, and under a nitrogen atmosphere, 4.0 parts by mass of vinyl chloride was continuously pressed into the autoclave so that the internal pressure of the autoclave was maintained at 0.3 MPa, and radical polymerization was performed at 60 ° C. for 6 hours to obtain a dispersion containing 20% by mass of acrylic resin.
(調製例A-2及びA-3)
 下記表1に示される仕込み量にしたがって、調製例A-1と同様の手順でアクリル樹脂を20質量%含む分散液を得た。
(Preparation Examples A-2 and A-3)
According to the charge amounts shown in Table 1 below, a dispersion containing 20% by mass of an acrylic resin was obtained in the same manner as in Preparation Example A-1.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
1.2 シリコーン系化合物の分散液の調製
1.2.1 アルキル変性シリコーン分散液
(調製例A-4:オクタデシルジメチコン分散液)
 SiH:SiCHモル比=5:5(1H NMR(核磁気共鳴)で測定)であるメチルハイドロジェンシリコーン、ヒドロシリル化触媒として、塩化白金(IV)のエチレングリコールモノブチルエーテル・トルエン混合溶液を、系内の反応物に対して白金濃度が5ppmとなるようにフラスコ内に仕込んだ。フラスコ内を窒素置換し、メチルハイドロジェンシリコーンの反応基(Si-H)1モル当量に対して、1モル当量の1-オクタデセンを、滴下しながらフラスコ内の混合物に仕込んだ。釜内部を120℃まで加温し、6時間付加反応させて、下記式(1)中、R20、R21及びR22がCHであり、R23がC1837であり、aが40、bが40、a:bが1:1であり、R30~R35がCHであるアルキル変性シリコーンを得た。付加反応完了の確認は、得られたアルキル変性シリコーンのFT-IR(フーリエ変換赤外)分光分析を行い、メチルハイドロジェンシリコーンのSiH基由来の吸収スペクトルが消失したことを確認することで行った。
1.2 Preparation of silicone compound dispersion 1.2.1 Alkyl-modified silicone dispersion (Preparation Example A-4: Octadecyl dimethicone dispersion)
Methyl hydrogen silicone with a molar ratio of SiH: SiCH3 = 5:5 (measured by 1H NMR (nuclear magnetic resonance)) and a mixed solution of platinum chloride (IV) in ethylene glycol monobutyl ether and toluene as a hydrosilylation catalyst were charged into a flask so that the platinum concentration in the reactants in the system was 5 ppm. The atmosphere in the flask was replaced with nitrogen, and 1 molar equivalent of 1-octadecene was added dropwise to the mixture in the flask for 1 molar equivalent of reactive group (Si-H) of the methyl hydrogen silicone. The inside of the kettle was heated to 120°C, and an addition reaction was carried out for 6 hours to obtain an alkyl-modified silicone in which R 20 , R 21 and R 22 are CH 3 , R 23 is C 18 H 37 , a is 40, b is 40, a:b is 1:1, and R 30 to R 35 are CH 3 in the following formula (1). Completion of the addition reaction was confirmed by subjecting the resulting alkyl-modified silicone to Fourier transform infrared (FT-IR) spectroscopic analysis and confirming that the absorption spectrum derived from the SiH group of the methylhydrogen silicone had disappeared.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 得られたアルキル変性シリコーン20質量部と、SPAN40(ソルビタン系非イオン界面活性剤、HLB=6.7)1.2質量部と、TWEEN40(ソルビタン系非イオン界面活性剤、HLB=15.6)1.3質量部と、ノイゲン XL-40(第一工業製薬株式会社製、ポリオキシアルキレン分岐デシルエーテル、HLB=10.5)0.5質量部と、ノイゲン XL-60(第一工業製薬株式会社製、ポリオキシアルキレン分岐デシルエーテル、HLB=12.5)0.5質量部と、ステアリルトリメチルアンモニウム硫酸塩0.5質量部と、ジプロピレングリコール10質量部と、を加熱しながら混合した。次いで、得られた混合物に、水66.0質量部を少量ずつ混合しながら添加することで、オクタデシルジメチコンを20質量%含む分散液を得た(非イオン界面活性剤の平均HLB=11.4)。 20 parts by mass of the obtained alkyl-modified silicone, 1.2 parts by mass of SPAN40 (sorbitan-based nonionic surfactant, HLB = 6.7), 1.3 parts by mass of TWEEN40 (sorbitan-based nonionic surfactant, HLB = 15.6), 0.5 parts by mass of Noigen XL-40 (manufactured by Daiichi Kogyo Seiyaku Co., Ltd., polyoxyalkylene branched decyl ether, HLB = 10.5), 0.5 parts by mass of Noigen XL-60 (manufactured by Daiichi Kogyo Seiyaku Co., Ltd., polyoxyalkylene branched decyl ether, HLB = 12.5), 0.5 parts by mass of stearyl trimethylammonium sulfate, and 10 parts by mass of dipropylene glycol were mixed while heating. Next, 66.0 parts by mass of water was added to the obtained mixture little by little while mixing, to obtain a dispersion containing 20% by mass of octadecyl dimethicone (average HLB of nonionic surfactants = 11.4).
(調製例A-5:ヘキサコシルジメチコン分散液)
 SiH:SiCHモル比=4:6(1H NMR(核磁気共鳴)で測定)であるメチルハイドロジェンシリコーン、ヒドロシリル化触媒として、塩化白金(IV)のエチレングリコールモノブチルエーテル・トルエン混合溶液を、系内の反応物に対して白金濃度が5ppmとなるようにフラスコ内に仕込んだ。フラスコ内を窒素置換し、メチルハイドロジェンシリコーンの反応基(Si-H)1モル当量に対して、1モル当量の1-ヘキサコセンを、滴下しながらフラスコ内の混合物に仕込んだ。釜内部を120℃まで加温し、6時間付加反応させて、上記式(1)中、R20、R21及びR22がCHであり、R23がC2653であり、aが60、bが90、a:bが2:3であり、R30~R35がCHであるアルキル変性シリコーンを得た。付加反応完了の確認は、得られたアルキル変性シリコーンのFT-IR(フーリエ変換赤外)分光分析を行い、メチルハイドロジェンシリコーンのSiH基由来の吸収スペクトルが消失したことを確認することで行った。
(Preparation Example A-5: Hexacosyl Dimethicone Dispersion)
Methyl hydrogen silicone with a molar ratio of SiH: SiCH3 =4:6 (measured by 1H NMR (nuclear magnetic resonance)) and a mixed solution of platinum chloride (IV) in ethylene glycol monobutyl ether and toluene as a hydrosilylation catalyst were charged into a flask so that the platinum concentration was 5 ppm relative to the reactants in the system. The atmosphere in the flask was replaced with nitrogen, and 1 molar equivalent of 1-hexacosene was added dropwise to the mixture in the flask relative to 1 molar equivalent of the reactive group (Si-H) of the methyl hydrogen silicone. The inside of the kettle was heated to 120°C, and an addition reaction was carried out for 6 hours to obtain an alkyl-modified silicone in which R 20 , R 21 and R 22 are CH 3 , R 23 is C 26 H 53 , a is 60, b is 90, a:b is 2:3, and R 30 to R 35 are CH 3 in the above formula (1). Completion of the addition reaction was confirmed by subjecting the resulting alkyl-modified silicone to Fourier transform infrared (FT-IR) spectroscopic analysis and confirming that the absorption spectrum derived from the SiH group of the methylhydrogen silicone had disappeared.
 得られたアルキル変性シリコーンを用いて、調製例A-4と同様にして、ヘキサコシルジメチコンを20質量%含む分散液を得た(非イオン界面活性剤の平均HLB=9.8)。 The resulting alkyl-modified silicone was used to obtain a dispersion containing 20% by mass of hexacosyl dimethicone in the same manner as in Preparation Example A-4 (average HLB of nonionic surfactants = 9.8).
(調製例A-6:ドトリアコンチルジメチコン分散液)
 SiH:SiCHモル比=3:7(1H NMR(核磁気共鳴)で測定)であるメチルハイドロジェンシリコーン、ヒドロシリル化触媒として、塩化白金(IV)のエチレングリコールモノブチルエーテル・トルエン混合溶液を、系内の反応物に対して白金濃度が5ppmとなるようにフラスコ内に仕込んだ。フラスコ内を窒素置換し、メチルハイドロジェンシリコーンの反応基(Si-H)1モル当量に対して、1モル当量の1-ドトリアコンテンを、滴下しながらフラスコ内の混合物に仕込んだ。釜内部を120℃まで加温し、6時間付加反応させて、上記式(1)中、R20、R21、R22がCHであり、R23がC3265であり、aが140、bが60、a:bが7.3であり、R30~R35がCHであるアルキル変性シリコーンを得た。付加反応完了の確認は、得られたアルキル変性シリコーンのFT-IR(フーリエ変換赤外)分光分析を行い、メチルハイドロジェンシリコーンのSiH基由来の吸収スペクトルが消失したことを確認することで行った。
(Preparation Example A-6: Dotriacontyl Dimethicone Dispersion)
Methyl hydrogen silicone with a molar ratio of SiH: SiCH3 = 3:7 (measured by 1H NMR (nuclear magnetic resonance)) and a mixed solution of platinum chloride (IV) in ethylene glycol monobutyl ether and toluene as a hydrosilylation catalyst were charged into a flask so that the platinum concentration was 5 ppm relative to the reactants in the system. The atmosphere in the flask was replaced with nitrogen, and 1 molar equivalent of 1-dotriacontene was added dropwise to the mixture in the flask relative to 1 molar equivalent of the reactive group (Si-H) of the methyl hydrogen silicone. The inside of the kettle was heated to 120°C, and an addition reaction was carried out for 6 hours to obtain an alkyl-modified silicone in which R 20 , R 21 , and R 22 are CH 3 , R 23 is C 32 H 65 , a is 140, b is 60, a:b is 7.3, and R 30 to R 35 are CH 3 in the above formula (1). Completion of the addition reaction was confirmed by subjecting the resulting alkyl-modified silicone to Fourier transform infrared (FT-IR) spectroscopic analysis and confirming that the absorption spectrum derived from the SiH group of the methylhydrogen silicone had disappeared.
 得られたアルキル変性シリコーンを用いて、調製例A-4と同様にして、ドトリアコンチルジメチコンを20質量%含む分散液を得た(非イオン界面活性剤の平均HLB=8.1)。 The resulting alkyl-modified silicone was used to obtain a dispersion containing 20% by mass of dotriacontyl dimethicone in the same manner as in Preparation Example A-4 (average HLB of nonionic surfactants = 8.1).
 下記表2に、調整例A-4~A-6の組成及び非イオン界面活性剤の平均HLBをまとめた。 The compositions of Preparation Examples A-4 to A-6 and the average HLB of the nonionic surfactants are summarized in Table 2 below.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
1.2.2 シリコーンレジンとジメチルシリコーンとアミノ変性シリコーンとの分散液
(調製例A-7)
 300mLのステンポットにシリコーンレジンとしてMQ-1600(トリメチルシリル基含有ポリシロキサン、東レ・ダウコーニング(株)製、商品名)を5.8質量部、ジメチルシリコーンとしてKF-96A-100cs(信越シリコーン社製)を13.4質量部加え、シリコーンレジンが均一に溶解するまで加熱攪拌した。得られた均一な溶液に、アミノ変性シリコーンとしてKF-8012(信越化学(株)製、両末端アミノ変性シリコーン、官能基当量2200)を0.8質量部添加し、混合物を得た。次いで、ノイゲンXL-40 1.6質量部を加え、水78.4質量部を少量ずつ添加しながら混合し、超音波乳化機を用いて、60~70℃で10分間超音波処理を行った後、室温まで冷却し、シリコーン系化合物を20質量%含む分散液を得た(非イオン界面活性剤の平均HLB=10.5)。
1.2.2 Dispersion of silicone resin, dimethyl silicone, and amino-modified silicone (Preparation Example A-7)
5.8 parts by mass of MQ-1600 (trimethylsilyl group-containing polysiloxane, Toray Dow Corning Co., Ltd., trade name) as silicone resin, 13.4 parts by mass of KF-96A-100cs (Shin-Etsu Silicone Co., Ltd.) as dimethyl silicone were added to a 300 mL stainless steel pot, and the mixture was heated and stirred until the silicone resin was uniformly dissolved. 0.8 parts by mass of KF-8012 (Shin-Etsu Chemical Co., Ltd., both terminal amino-modified silicone, functional group equivalent 2200) was added to the obtained homogeneous solution as an amino-modified silicone to obtain a mixture. Next, 1.6 parts by mass of Noigen XL-40 was added, and 78.4 parts by mass of water were added little by little while mixing, and ultrasonic treatment was performed for 10 minutes at 60 to 70 ° C. using an ultrasonic emulsifier, and then cooled to room temperature to obtain a dispersion containing 20% by mass of a silicone compound (average HLB of nonionic surfactants = 10.5).
(調製例A-8)
 下記表3に示される配合比としたこと以外は、調製例A-7と同様にして、シリコーン系化合物を20質量%含む分散液を得た(非イオン界面活性剤の平均HLB=4.7)。
(Preparation Example A-8)
A dispersion containing 20% by mass of a silicone compound was obtained in the same manner as in Preparation Example A-7, except that the blending ratio shown in Table 3 below was used (average HLB of nonionic surfactants = 4.7).
(調製例A-9)
 下記表3に示される配合比としたこと以外は、調製例A-7と同様にして、シリコーン系化合物を20質量%含む分散液を得た(非イオン界面活性剤の平均HLB=18.3)。
(Preparation Example A-9)
A dispersion containing 20% by mass of a silicone compound was obtained in the same manner as in Preparation Example A-7, except that the blending ratio shown in Table 3 below was used (average HLB of nonionic surfactants = 18.3).
(調製例A-10)
 下記表3に示される配合比としたこと以外は、調製例A-7と同様にして、シリコーン系化合物を20質量%含む分散液を得た(非イオン界面活性剤の平均HLB=10.5)。
(Preparation Example A-10)
A dispersion containing 20% by mass of a silicone compound was obtained in the same manner as in Preparation Example A-7, except that the blending ratio shown in Table 3 below was used (average HLB of nonionic surfactants = 10.5).
1.2.3 アミノ変性シリコーンの分散液
(調製例A-11)
 アミノ変性シリコーンとしてWACKER FINISH WR 301(旭化成ワッカーシリコーン社製、アミン等量3700、固形分100%)を用い、下記表3に示される配合比としたこと以外は、調製例A-7と同様にして、シリコーン系化合物を20質量%含む分散液を得た(非イオン界面活性剤の平均HLB=12.0)。
1.2.3 Dispersion of Amino-Modified Silicone (Preparation Example A-11)
A dispersion containing 20% by mass of a silicone compound was obtained in the same manner as in Preparation Example A-7, except that WACKER FINISH WR 301 (manufactured by Asahi Kasei Wacker Silicone Co., Ltd., amine equivalent 3700, solid content 100%) was used as the amino-modified silicone and the blending ratio was as shown in Table 3 below (average HLB of nonionic surfactants = 12.0).
Figure JPOXMLDOC01-appb-T000019
 尚、非イオン活性剤については、SPAN65:HLB2.1(Croda社製)、ノイゲンXL-160:HLB16.3(第一工業製薬社製)、NIKKOL BC-30:HLB19.5(日光ケミカルズ社製)である。ノイゲンXL-40については上述の通りである。
Figure JPOXMLDOC01-appb-T000019
The nonionic surfactants are SPAN65: HLB 2.1 (manufactured by Croda), Noigen XL-160: HLB 16.3 (manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), and NIKKOL BC-30: HLB 19.5 (manufactured by Nikko Chemicals Co., Ltd.). Noigen XL-40 is as described above.
1.3 ワックス系化合物の分散液の調製
(調製例A-12)
 高圧反応容器にParaffin Wax-155(日本精蝋(株)製、融点69℃)20質量部、水78質量部、ソルビタンモノステアレート(HLB=4.5)1.0質量部、モノステアリン酸ポリオキシエチレンソルビタン(HLB=14.9)1.0質量部を入れ密封した。次いで、容器内を攪拌しながら110~120℃まで昇温した。その後、容器内を高圧に保ちながら30分間高圧乳化し、パラフィンワックスを20質量%含む乳化物を得た(非イオン界面活性剤の平均HLB=9.7)。
1.3 Preparation of Dispersion of Wax-Based Compound (Preparation Example A-12)
20 parts by mass of Paraffin Wax-155 (manufactured by Nippon Seiro Co., Ltd., melting point 69°C), 78 parts by mass of water, 1.0 part by mass of sorbitan monostearate (HLB = 4.5), and 1.0 part by mass of polyoxyethylene sorbitan monostearate (HLB = 14.9) were placed in a high-pressure reaction vessel and sealed. The vessel was then heated to 110 to 120°C with stirring. Thereafter, high-pressure emulsification was performed for 30 minutes while maintaining high pressure in the vessel, and an emulsion containing 20% by mass of paraffin wax was obtained (average HLB of nonionic surfactants = 9.7).
1.4 ウレタン系化合物の分散液の調製
1.4.1 ポリウレタン樹脂の合成
(合成例U-1)
 温度計、攪拌装置、窒素導入管および冷却管が装着された反応器において、窒素雰囲気下、1,6-ヘキサメチレンジイソシアネート(HDI、三井化学社製、商品名:タケネート700)500質量部、2,6-ジ(tert-ブチル)-4-メチルフェノール(別名:ジブチルヒドロキシトルエン、BHT、ヒンダードフェノール系酸化防止剤)0.25質量部、テトラフェニル・ジプロピレングリコール・ジホスファイト(有機亜リン酸エステル、助触媒)0.25質量を混合した後、この混合液に1,3-ブタンジオール10.7質量部を加え、窒素を、その液相に1時間導入した。その後、混合液を80℃に昇温し3時間反応後、60℃に降温した。その後、イソシアヌレート化触媒として、トリメチル-N-2-ヒドロキシプロピルアンモニウム・2-エチルヘキサノエートを0.2質量部加え、1.5時間反応させた。その後、HDI 100質量部に対して、o-トルエンスルホンアミドを0.04質量部添加した。その後、この反応混合液を、薄膜蒸留装置(温度150℃、真空度93.3Pa)に通液して、残存HDIモノマー量が0.5%以下になるまで蒸留し、脂肪族ポリイソシアネート誘導体(ヘキサメチレンジイソシアネートのイソシアヌレート誘導体)を得た。得られた脂肪族ポリイソシアネート誘導体の、イソシアネート基含有率は20.9%、平均イソシアネート官能基数は3.0であった。
1.4 Preparation of dispersion of urethane compound 1.4.1 Synthesis of polyurethane resin (Synthesis Example U-1)
In a reactor equipped with a thermometer, a stirrer, a nitrogen inlet tube and a cooling tube, 500 parts by mass of 1,6-hexamethylene diisocyanate (HDI, manufactured by Mitsui Chemicals, Inc., trade name: Takenate 700), 0.25 parts by mass of 2,6-di(tert-butyl)-4-methylphenol (also known as dibutylhydroxytoluene, BHT, hindered phenol-based antioxidant), and 0.25 parts by mass of tetraphenyl dipropylene glycol diphosphite (organic phosphorous ester, cocatalyst) were mixed under a nitrogen atmosphere, and then 10.7 parts by mass of 1,3-butanediol was added to the mixture, and nitrogen was introduced into the liquid phase for 1 hour. Thereafter, the mixture was heated to 80°C and reacted for 3 hours, and then cooled to 60°C. Then, 0.2 parts by mass of trimethyl-N-2-hydroxypropylammonium 2-ethylhexanoate was added as an isocyanurate catalyst and reacted for 1.5 hours. Then, 0.04 parts by mass of o-toluenesulfonamide was added to 100 parts by mass of HDI. Then, this reaction mixture was passed through a thin-film distillation apparatus (temperature 150°C, degree of vacuum 93.3 Pa) and distilled until the amount of remaining HDI monomer was 0.5% or less, thereby obtaining an aliphatic polyisocyanate derivative (isocyanurate derivative of hexamethylene diisocyanate). The obtained aliphatic polyisocyanate derivative had an isocyanate group content of 20.9% and an average number of isocyanate functional groups of 3.0.
1.4.2 ポリウレタン樹脂の分散液の調製
(調製例A-13)
 攪拌機、温度計、冷却器および窒素ガス導入管を備えた反応器に、脂肪族ポリイソシアネート誘導体として、合成例U-1の脂肪族ポリイソシアネート誘導体100.08質量部、長鎖活性水素化合物として、カルコール8098(ステアリルアルコール、花王株式会社製)90.03質量部を混合し、窒素雰囲気化110℃で、イソシアネート基の濃度が3.67%になるまで4時間反応させた。次いで、反応液を80℃に冷却し、カチオン性活性水素化合物として、N-メチルジエタノールアミン9.89質量部を加え、80℃で1時間反応させた。溶剤として、メチルエチルケトン50質量部を加え、80℃で、赤外吸収スペクトルによりイソシアネート基が消失したことが確認できるまで反応させた。次いで、反応液にメチルエチルケトン(MEK)57.7質量部を加え、80℃に昇温し、反応液が完全に溶解するまで混合した後、75℃に冷却した。その後、酸化合物として酢酸18.93質量部を加えて中和させた。次いで、反応液を75℃に保ちながら、NIKKOL Hexaglyn 1-SV(HLB=9.0、日光ケミカルズ社製)20質量部を加え混合し、70℃に加温したイオン交換水800質量部を徐々に加えて乳化させた。次いで、エバポレーターにて、水浴温度60℃減圧下で、MEKを留去した。次いで、固形分濃度が20質量%となるようにイオン交換水にて調整することにより、ポリウレタン樹脂を含む分散液を得た(非イオン界面活性剤の平均HLB=9.0、固形分20質量%)。
1.4.2 Preparation of polyurethane resin dispersion (Preparation Example A-13)
In a reactor equipped with a stirrer, a thermometer, a cooler and a nitrogen gas inlet tube, 100.08 parts by mass of the aliphatic polyisocyanate derivative of Synthesis Example U-1 and 90.03 parts by mass of Kalcol 8098 (stearyl alcohol, manufactured by Kao Corporation) as a long-chain active hydrogen compound were mixed and reacted for 4 hours at 110°C in a nitrogen atmosphere until the concentration of the isocyanate group reached 3.67%. Next, the reaction liquid was cooled to 80°C, and 9.89 parts by mass of N-methyldiethanolamine was added as a cationic active hydrogen compound and reacted at 80°C for 1 hour. 50 parts by mass of methyl ethyl ketone was added as a solvent and reacted at 80°C until it was confirmed by infrared absorption spectrum that the isocyanate group had disappeared. Next, 57.7 parts by mass of methyl ethyl ketone (MEK) was added to the reaction liquid, the temperature was raised to 80°C, and the reaction liquid was mixed until it was completely dissolved, and then cooled to 75°C. Thereafter, 18.93 parts by mass of acetic acid was added as an acid compound to neutralize. Next, while maintaining the reaction solution at 75°C, 20 parts by mass of NIKKOL Hexaglyn 1-SV (HLB = 9.0, manufactured by Nikko Chemicals Co., Ltd.) was added and mixed, and 800 parts by mass of ion-exchanged water heated to 70°C was gradually added to emulsify. Next, MEK was distilled off in an evaporator under reduced pressure with a water bath temperature of 60°C. Next, a dispersion containing a polyurethane resin was obtained by adjusting the solid content concentration to 20% by mass with ion-exchanged water (average HLB of nonionic surfactants = 9.0, solid content 20% by mass).
1.5.デンドリマー系化合物の分散液の調製
(調製例A-14)
 オーバーヘッド撹拌器、熱電対、ディーンスターク/冷却管を装備した四口丸底フラスコに、ソルビタントリステアレート(水酸基価=77.2mgKOH/g)15.3質量部、及び、4-メチル-2-ペンタノン(MIBK)を24.7質量部添加した。溶液を1時間還流させて、残留した湿気を除去した。1時間後、溶液を50℃まで冷却させ、DESMODUR N-100を4.0質量部、続いて触媒を添加し、80℃になるまで1時間超、溶液を加熱して、デンドリマー溶液を得た。
1.5. Preparation of Dispersion of Dendrimer Compound (Preparation Example A-14)
To a four-neck round bottom flask equipped with an overhead stirrer, thermocouple, and Dean-Stark/condenser was added 15.3 parts by weight of sorbitan tristearate (hydroxyl number = 77.2 mg KOH/g) and 24.7 parts by weight of 4-methyl-2-pentanone (MIBK). The solution was refluxed for 1 hour to remove residual moisture. After 1 hour, the solution was cooled to 50°C and 4.0 parts by weight of DESMODUR N-100 was added followed by catalyst and the solution was heated to 80°C for 1 hour more to give a dendrimer solution.
 水52.7質量部と、ARMEEN DM-18D 0.7質量部と、TERGITOL TMN-10 2.0質量部と、酢酸0.6質量部とを、ビーカーに加えて撹拌し、界面活性剤溶液を作製し、60℃に加熱した。上記で調製したデンドリマー溶液を60℃まで冷却し、加熱した界面活性剤溶液をゆっくりと添加して白濁したエマルジョンを作製した。41.37MPa(6000psi)で均質化した後、減圧下で蒸留して溶媒を除去し、デンドリマー系化合物を20%含む分散液を得た(非イオン界面活性剤の平均HLB=14.4、固形分20質量%)。 52.7 parts by mass of water, 0.7 parts by mass of ARMEEN DM-18D, 2.0 parts by mass of TERGITOL TMN-10, and 0.6 parts by mass of acetic acid were added to a beaker and stirred to prepare a surfactant solution, which was then heated to 60°C. The dendrimer solution prepared above was cooled to 60°C, and the heated surfactant solution was slowly added to prepare a cloudy emulsion. After homogenization at 41.37 MPa (6000 psi), the solvent was removed by distillation under reduced pressure to obtain a dispersion containing 20% dendrimer-based compounds (average HLB of nonionic surfactants = 14.4, solids content 20% by mass).
2.ポリイソシアネート分散液の調製
(調製例B-1:IPDI単量体のDMPブロック化物)
 撹拌機、温度計、冷却器、および窒素ガス導入管を備えた反応器において、室温で、ポリイソシアネートとして、Isophorone Diisocyanate(イソホロンジイソシアネートモノマー、以下IPDIと略す場合がある、東京化成、NCO基含有量:37.8%、NV:100%)を150質量部(NCO等量:1.35mol)と、溶媒としてのジエチレングリコールエチルメチルエーテル(以下、MEDGと略す場合がある)150質量部とを混合し、ブロック化剤として、ジメチルピラゾール(以下、DMPと略す場合がある。東京化成)130質量部(1.35mol)を、反応溶液の温度が50℃超えないよう数回に分けて加え、1時間攪拌した。その後、フーリエ変換赤外(FT-IR)スペクトルを測定することにより、NCO基由来のピーク(2260cm-1付近)が消失し、ブロック化されていることを確認した。次いでノイゲンXL-100(HLB=14.7、第一工業製薬社製)28質量部を加え、純水を少量ずつ添加しながら混合し、IPDI単量体・DMPブロック化物を20質量%含む分散液を得た(非イオン界面活性剤の平均HLB=14.7)。
2. Preparation of polyisocyanate dispersion (Preparation Example B-1: DMP blocked product of IPDI monomer)
In a reactor equipped with a stirrer, a thermometer, a cooler, and a nitrogen gas inlet tube, 150 parts by mass (NCO equivalent: 1.35 mol) of isophorone diisocyanate (hereinafter sometimes abbreviated as IPDI, Tokyo Chemical Industry, NCO group content: 37.8%, NV: 100%) as a polyisocyanate and 150 parts by mass of diethylene glycol ethyl methyl ether (hereinafter sometimes abbreviated as MEDG) as a solvent were mixed at room temperature, and 130 parts by mass (1.35 mol) of dimethylpyrazole (hereinafter sometimes abbreviated as DMP, Tokyo Chemical Industry) as a blocking agent was added in several portions so that the temperature of the reaction solution did not exceed 50°C, and the mixture was stirred for 1 hour. Thereafter, by measuring the Fourier transform infrared (FT-IR) spectrum, it was confirmed that the peak derived from the NCO group (near 2260 cm -1 ) disappeared and blocking was performed. Next, 28 parts by mass of Noigen XL-100 (HLB=14.7, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) was added, and the mixture was mixed while adding pure water little by little to obtain a dispersion containing 20% by mass of IPDI monomer-DMP blocked product (average HLB of nonionic surfactants=14.7).
(調製例B-2:IPDI三量体のDMPブロック化物)
 調製例B-1と同様の方法で、ポリイソシアネートとして、Vestanat 1890/100(イソホロンジイソシアネートトリマー、Evonik社製、NCO基含有量:17.3%、NV:100%)を150質量部(NCO等量:0.62mol)と、ブロック化剤として、ジメチルピラゾール(DMP)59.6質量部(0.62mol)を使用して、IPDI三量体DMPブロック化物を得た。次いで、ノイゲンXL-40(HLB=10.5、第一工業製薬社製)21質量部を加え、純水を少量ずつ添加しながら混合し、IPDI三量体・DMPブロック化物を20質量%含む分散液を得た(非イオン界面活性剤の平均HLB=10.5)。
(Preparation Example B-2: DMP Blocked IPDI Trimer)
In the same manner as in Preparation Example B-1, 150 parts by mass (NCO equivalent: 0.62 mol) of Vestanat 1890/100 (isophorone diisocyanate trimer, manufactured by Evonik, NCO group content: 17.3%, NV: 100%) was used as a polyisocyanate, and 59.6 parts by mass (0.62 mol) of dimethylpyrazole (DMP) was used as a blocking agent to obtain an IPDI trimer DMP blocked product. Next, 21 parts by mass of Noigen XL-40 (HLB = 10.5, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) was added, and pure water was added little by little while mixing to obtain a dispersion containing 20% by mass of IPDI trimer-DMP blocked product (average HLB of nonionic surfactants = 10.5).
(調製例B-3:IPDI三量体のDMPブロック化物)
 調製例B-1と同様の方法で、ポリイソシアネートとして、Vestanat 1890/100(イソホロンジイソシアネートトリマー、Evonik社製、NCO基含有量:17.3%、NV:100%)を150質量部(NCO等量:0.62mol)と、ブロック化剤として、ジメチルピラゾール(DMP)59.6質量部(0.62mol)を使用して、IPDI三量体DMPブロック化物を得た。次いで、NIKKOL SI-10RV(HLB=5.0、日光ケミカルズ(株)社製)21.0質量部、ステアリルトリメチルアンモニウム塩酸塩2.1質量部を加え、純水を少量ずつ添加しながら混合し、IPDI三量体・DMPブロック化物を20質量%含む分散液を得た(非イオン界面活性剤の平均HLB=5.0)。
(Preparation Example B-3: DMP blocked IPDI trimer)
In the same manner as in Preparation Example B-1, 150 parts by mass (NCO equivalent: 0.62 mol) of Vestanat 1890/100 (isophorone diisocyanate trimer, manufactured by Evonik, NCO group content: 17.3%, NV: 100%) was used as a polyisocyanate, and 59.6 parts by mass (0.62 mol) of dimethylpyrazole (DMP) was used as a blocking agent to obtain an IPDI trimer DMP blocked product. Next, 21.0 parts by mass of NIKKOL SI-10RV (HLB = 5.0, manufactured by Nikko Chemicals Co., Ltd.) and 2.1 parts by mass of stearyl trimethylammonium hydrochloride were added, and pure water was added little by little while mixing to obtain a dispersion containing 20% by mass of IPDI trimer-DMP blocked product (average HLB of nonionic surfactant = 5.0).
(調製例B-4:IPDI三量体のDMPブロック化物)
 調製例B-1と同様の方法で、ポリイソシアネートとして、Vestanat 1890/100(イソホロンジイソシアネートトリマー、Evonik社製、NCO基含有量:17.3%、NV:100%)を150質量部(NCO等量:0.62mol)と、ブロック化剤として、ジメチルピラゾール(DMP)59.6質量部(0.62mol)を使用して、IPDI三量体DMPブロック化物を得た。次いで、NIKKOL BC-25(HLB=18.5、日光ケミカルズ(株)社製)21質量部、純水を少量ずつ添加しながら混合し、IPDI三量体・DMPブロック化物を20質量%含む分散液を得た(非イオン界面活性剤の平均HLB=18.5)。
(Preparation Example B-4: DMP blocked IPDI trimer)
In the same manner as in Preparation Example B-1, 150 parts by mass (NCO equivalent: 0.62 mol) of Vestanat 1890/100 (isophorone diisocyanate trimer, manufactured by Evonik, NCO group content: 17.3%, NV: 100%) was used as the polyisocyanate, and 59.6 parts by mass (0.62 mol) of dimethylpyrazole (DMP) was used as the blocking agent to obtain an IPDI trimer DMP blocked product. Next, 21 parts by mass of NIKKOL BC-25 (HLB = 18.5, manufactured by Nikko Chemicals Co., Ltd.) and pure water were added little by little while mixing, and a dispersion containing 20% by mass of IPDI trimer-DMP blocked product was obtained (average HLB of nonionic surfactants = 18.5).
(調製例B-5:IPDI三量体のマロン酸ジエチルブロック化物)
 ポリイソシアネートとして、Vestanat 1890/100(イソホロンジイソシアネートトリマー、Evonik社製、NCO基含有量:17.3%、NV:100%)を150質量部(NCO等量:0.62mol)と、ブロック剤として、Diethyl Malonate(DEM、東京化成)99.3質量部(0.62mol)を使用したこと以外は、調整例B-1と同様に調製した。次いで、ノイゲンXL-100(HLB=14.7、第一工業製薬社製)13.6質量部、ノイゲンXL-60(HLB=12.5、第一工業製薬社製)11.4質量部を加え、純水を少量ずつ添加しながら混合し、IPDI三量体・マロン酸ジエチルブロック化物を20質量%含む分散液を得た(非イオン界面活性剤の平均HLB=13.7)。
(Preparation Example B-5: IPDI trimer blocked with diethyl malonate)
As the polyisocyanate, 150 parts by mass (NCO equivalent: 0.62 mol) of Vestanat 1890/100 (isophorone diisocyanate trimer, manufactured by Evonik, NCO group content: 17.3%, NV: 100%) and 99.3 parts by mass (0.62 mol) of Diethyl Malonate (DEM, Tokyo Chemical Industry Co., Ltd.) were used as the blocking agent, except that it was prepared in the same manner as in Preparation Example B-1. Next, 13.6 parts by mass of Noigen XL-100 (HLB = 14.7, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) and 11.4 parts by mass of Noigen XL-60 (HLB = 12.5, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) were added, and pure water was added little by little while mixing to obtain a dispersion containing 20% by mass of IPDI trimer-diethyl malonate blocked product (average HLB of nonionic surfactants = 13.7).
(調製例B-6:IPDI三量体のMEKOブロック化物)
 ポリイソシアネートとして、Vestanat 1890/100(イソホロンジイソシアネートトリマー、Evonik社製、NCO基含有量:17.3%、NV:100%)を150質量部(NCO等量:0.62mol)と、ブロック剤として、2-Butanone Oxime(メチルエチルケトキシム、MEKO、東京化成)54.0質量部(0.62mol)を使用したこと以外は、調整例B-1と同様に調製した。次いで、ノイゲンXL-100(HLB=14.7、第一工業製薬社製)6.9質量部、ノイゲンXL-60(HLB=12.5、第一工業製薬社製)13.6質量部を加え、純水を少量ずつ添加しながら混合し、IPDI三量体・MEKOブロック化物を20質量%含む分散液を得た(非イオン界面活性剤の平均HLB=13.2)。
(Preparation Example B-6: MEKO blocked IPDI trimer)
As the polyisocyanate, 150 parts by mass (NCO equivalent: 0.62 mol) of Vestanat 1890/100 (isophorone diisocyanate trimer, manufactured by Evonik, NCO group content: 17.3%, NV: 100%) was used. As the blocking agent, 54.0 parts by mass (0.62 mol) of 2-Butanone Oxime (methyl ethyl ketoxime, MEKO, Tokyo Chemical Industry) was used. The same preparation as in Preparation Example B-1 was used. Next, 6.9 parts by mass of Noigen XL-100 (HLB=14.7, manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.) and 13.6 parts by mass of Noigen XL-60 (HLB=12.5, manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.) were added, and mixed while adding pure water little by little, to obtain a dispersion containing 20% by mass of IPDI trimer-MEKO blocked product (average HLB of nonionic surfactants=13.2).
(調製例B-7:IPDI三量体のDMPブロック化物の自己乳化タイプ)
 撹拌機、温度計、冷却器、および窒素ガス導入管を備えた反応器において、室温で、ポリイソシアネートとして、Vestanat 1890/100(イソホロンジイソシアネートトリマー、Evonik社製、NCO基含有量:17.3%、NV:100%)を150質量部(NCO等量:0.62mol)と、溶媒としてのジエチレングリコールエチルメチルエーテル(以下、MEDGと略す場合がある)150質量部とを混合し、次いで、活性水素基を含有する親水性化合物として、メトキシPEG#1000(数平均分子量1000:東邦化学工業株式会社製)を23.7質量部(OH:0.024mol、当量比:OH/NCO=0.038)を充填し、90℃において残存するイソシアネート量に変化がなくなるまでウレタン化反応させ、親水性基含有ポリイソシアネートを合成した。その後、ブロック剤として、ジメチルピラゾール(DMP)57.3質量部(0.596mol)を、反応溶液の温度が50℃超えないよう数回に分けて加え、1時間攪拌した。次いで純水を少量ずつ添加しながら混合し、IPDI三量体・DMPブロック化物を20質量%含む分散液を得た(非イオン界面活性剤の平均HLB:12.7)。
(Preparation Example B-7: Self-emulsifying type of DMP blocked IPDI trimer)
In a reactor equipped with a stirrer, a thermometer, a cooler, and a nitrogen gas inlet tube, 150 parts by mass (NCO equivalent: 0.62 mol) of Vestanat 1890/100 (isophorone diisocyanate trimer, manufactured by Evonik Corporation, NCO group content: 17.3%, NV: 100%) as a polyisocyanate and 150 parts by mass of diethylene glycol ethyl methyl ether (hereinafter sometimes abbreviated as MEDG) as a solvent were mixed at room temperature, and then 23.7 parts by mass (OH: 0.024 mol, equivalent ratio: OH/NCO = 0.038) of methoxy PEG # 1000 (number average molecular weight 1000: manufactured by Toho Chemical Industry Co., Ltd.) as a hydrophilic compound containing an active hydrogen group was charged, and a urethane reaction was carried out at 90 ° C. until there was no change in the amount of remaining isocyanate, thereby synthesizing a hydrophilic group-containing polyisocyanate. Thereafter, 57.3 parts by mass (0.596 mol) of dimethylpyrazole (DMP) was added as a blocking agent in several portions so that the temperature of the reaction solution did not exceed 50° C., and the mixture was stirred for 1 hour. Next, pure water was added little by little while mixing, to obtain a dispersion containing 20% by mass of IPDI trimer-DMP blocked product (average HLB of nonionic surfactant: 12.7).
(調製例B-8:水添MDI単量体のDMPブロック化物)
 ポリイソシアネートとして、Dicyclohexylmethane 4,4'-Diisocyanate(水添MDIモノマー、東京化成、NCO基含有量:32.0%、NV:90%)を167質量部(NCO等量:1.27mol)と、ブロック化剤として、ジメチルピラゾール(DMP)122質量部(1.27mol)を使用したこと以外は、調製例B-1と同様に調製した。次いで、ノイゲンXL-40(HLB=10.5、第一工業製薬社製)3.3質量部、ノイゲンXL-60(HLB=12.5、第一工業製薬社製)25.6質量部を加え、純水を少量ずつ添加しながら混合し、水添MDI単量体・DMPブロック化物を20質量%含む分散液を得た(非イオン界面活性剤の平均HLB=12.27)。
(Preparation Example B-8: DMP Blocked Product of Hydrogenated MDI Monomer)
As the polyisocyanate, 167 parts by mass (NCO equivalent: 1.27 mol) of dicyclohexylmethane 4,4'-diisocyanate (hydrogenated MDI monomer, Tokyo Chemical Industry, NCO group content: 32.0%, NV: 90%) and 122 parts by mass (1.27 mol) of dimethylpyrazole (DMP) were used as the blocking agent, but the same preparation as in Preparation Example B-1 was used. Next, 3.3 parts by mass of Noigen XL-40 (HLB = 10.5, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) and 25.6 parts by mass of Noigen XL-60 (HLB = 12.5, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) were added, and pure water was added little by little while mixing to obtain a dispersion containing 20% by mass of hydrogenated MDI monomer-DMP blocked product (average HLB of nonionic surfactant = 12.27).
(調製例B-9:HDI単量体のDMPブロック化物)
 ポリイソシアネートとして、Hexamethylene Diisocyanate(ヘキサメチレンジイソシアナートモノマー、東京化成、NCO基含有量:49.9%、NV:100%)を150質量部(NCO等量:1.78mol)と、ブロック化剤として、ジメチルピラゾール(DMP)171質量部(1.78mol)を使用したこと以外は、調製例B-1と同様に調製した。次いで、ノイゲンXL-40(HLB=10.5、第一工業製薬社製)19.0質量部、ノイゲンXL-60(HLB=12.5、第一工業製薬社製)12.9質量部を加え、純水を少量ずつ添加しながら混合し、HDI単量体・DMPブロック化物を20質量%含む分散液を得た(非イオン界面活性剤の平均HLB=11.3)。
(Preparation Example B-9: DMP blocked product of HDI monomer)
Except for using 150 parts by mass (NCO equivalent: 1.78 mol) of hexamethylene diisocyanate (hexamethylene diisocyanate monomer, Tokyo Chemical Industry Co., Ltd., NCO group content: 49.9%, NV: 100%) as the polyisocyanate and 171 parts by mass (1.78 mol) of dimethylpyrazole (DMP) as the blocking agent, it was prepared in the same manner as in Preparation Example B-1. Next, 19.0 parts by mass of Noigen XL-40 (HLB = 10.5, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) and 12.9 parts by mass of Noigen XL-60 (HLB = 12.5, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) were added, and pure water was added little by little while mixing to obtain a dispersion containing 20% by mass of HDI monomer-DMP blocked product (average HLB of nonionic surfactants = 11.3).
(調製例B-10:HDI三量体(ビウレット型)のDMPブロック化物)
 ポリイソシアネートとして、デュラネート 24A-100(ヘキサメチレンジイソシアナートのビウレット型、旭化成、NCO基含有量:23.5%、NV:100%)を150質量部(NCO等量:0.839mol)と、ブロック化剤として、ジメチルピラゾール(DMP)80.7質量部(0.839mol)を使用したこと以外は、調製例B-1と同様に調製した。次いで、ノイゲンXL-40(HLB=10.5、第一工業製薬社製)19.4質量部、ノイゲンXL-60(HLB=12.5、第一工業製薬社製)3.7質量部を加え、純水を少量ずつ添加しながら混合し、HDI三量体・DMPブロック化物を20質量%含む分散液を得た(非イオン界面活性剤の平均HLB=10.8)。
(Preparation Example B-10: DMP Blocked HDI Trimer (Biuret Type))
As the polyisocyanate, 150 parts by mass (NCO equivalent: 0.839 mol) of Duranate 24A-100 (biuret type of hexamethylene diisocyanate, Asahi Kasei, NCO group content: 23.5%, NV: 100%) and 80.7 parts by mass (0.839 mol) of dimethylpyrazole (DMP) were used as the blocking agent, except that it was prepared in the same manner as in Preparation Example B-1. Next, 19.4 parts by mass of Noigen XL-40 (HLB = 10.5, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) and 3.7 parts by mass of Noigen XL-60 (HLB = 12.5, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) were added, and pure water was added little by little while mixing to obtain a dispersion containing 20% by mass of HDI trimer-DMP blocked product (average HLB of nonionic surfactants = 10.8).
(調製例B-11:HDI三量体(イソシアヌレート型)のDMPブロック化物)
 ポリイソシアネートとして、デュラネート TPA-100(ヘキサメチレンジイソシアナートのイソシアヌレート型、旭化成、NCO基含有量:23.1%、NV:100%)を150質量部(NCO等量:0.825mol)と、ブロック化剤として、ジメチルピラゾール(DMP)79.3質量部(0.825mol)を使用したこと以外は、調製例B-1と同様に調製した。次いで、ノイゲンXL-40(HLB=10.5、第一工業製薬社製)21.3質量部、ステアリルアルコールのエチレンオキサイド4モル付加物(HLB=8.4)1.7質量部を加え、純水を少量ずつ添加しながら混合し、HDI三量体・DMPブロック化物を20質量%含む分散液を得た(非イオン界面活性剤の平均HLB=10.3)。
(Preparation Example B-11: DMP Blocked Product of HDI Trimer (Isocyanurate Type))
As the polyisocyanate, 150 parts by mass (NCO equivalent: 0.825 mol) of Duranate TPA-100 (isocyanurate type of hexamethylene diisocyanate, Asahi Kasei, NCO group content: 23.1%, NV: 100%) and 79.3 parts by mass (0.825 mol) of dimethylpyrazole (DMP) were used as the blocking agent, except that it was prepared in the same manner as in Preparation Example B-1. Next, 21.3 parts by mass of Noigen XL-40 (HLB = 10.5, Daiichi Kogyo Seiyaku Co., Ltd.) and 1.7 parts by mass of ethylene oxide 4 mole adduct of stearyl alcohol (HLB = 8.4) were added, and mixed while adding pure water little by little to obtain a dispersion containing 20% by mass of HDI trimer-DMP blocked product (average HLB of nonionic surfactant = 10.3).
(調製例B-12:HDI三量体(イソシアヌレート型)のMEKOブロック化物)
 ポリイソシアネートとして、デュラネート TPA-100(ヘキサメチレンジイソシアナートのイソシアヌレート型、旭化成、NCO基含有量:23.1%、NV:100%)を150質量部(NCO等量:0.825mol)と、ブロック化剤として、2-Butanone Oxime(メチルエチルケトオキシム、MEKO、東京化成)71.87質量部(0.825mol)を使用したこと以外は、調製例B-1と同様に調製した。次いで、ノイゲンXL-40(HLB=10.5、第一工業製薬社製)19.3質量部、ステアリルアルコールのエチレンオキサイド4モル付加物(HLB=8.4)8.9質量部を加え、純水を少量ずつ添加しながら混合し、HDI三量体・MEKOブロック化物を20質量%含む分散液を得た(非イオン界面活性剤の平均HLB=9.84)。
(Preparation Example B-12: MEKO Blocked HDI Trimer (Isocyanurate Type))
As the polyisocyanate, 150 parts by mass (NCO equivalent: 0.825 mol) of Duranate TPA-100 (isocyanurate type of hexamethylene diisocyanate, Asahi Kasei, NCO group content: 23.1%, NV: 100%) and 71.87 parts by mass (0.825 mol) of 2-Butanone Oxime (methyl ethyl ketoxime, MEKO, Tokyo Kasei) were used as the blocking agent. Except for this, the same preparation as in Preparation Example B-1 was used. Next, 19.3 parts by mass of Noigen XL-40 (HLB = 10.5, Daiichi Kogyo Seiyaku Co., Ltd.) and 8.9 parts by mass of ethylene oxide 4 mole adduct of stearyl alcohol (HLB = 8.4) were added, and pure water was added little by little while mixing to obtain a dispersion containing 20% by mass of HDI trimer-MEKO blocked product (average HLB of nonionic surfactant = 9.84).
(調製例B-13:HDI三量体のDMPブロック化物の自己乳化タイプ)
 Trixene Aqua BI-220(Lanxess社製、固形分40%)を、純水で固形分が20%となるように希釈した。
(Preparation Example B-13: Self-emulsifying type of DMP blocked HDI trimer)
Trixene Aqua BI-220 (manufactured by Lanxess, solid content 40%) was diluted with pure water to a solid content of 20%.
(調製例B-14:IPDI/HDI三量体のDMPブロック化物の自己乳化タイプ)
 Trixene Aqua BI-522(Lanxess社製、固形分40%)を、純水で固形分が20%となるように希釈した。
(Preparation Example B-14: Self-emulsifying type of DMP blocked IPDI/HDI trimer)
Trixene Aqua BI-522 (manufactured by Lanxess, solid content 40%) was diluted with pure water to a solid content of 20%.
(調製例B-15:ハイブリッドエマルション)
 撹拌機、温度計、冷却器、および窒素ガス導入管を備えた反応器において、室温で、ポリイソシアネートとして、Vestanat 1890/100(イソホロンジイソシアネートトリマー、Evonik社製、NCO基含有量:17.3%、NV:100%)を150質量部(NCO等量:0.62mol)と、溶媒としてのジエチレングリコールエチルメチルエーテル(MEDG)150質量部とを混合し、次いで、活性水素基を含有する親水性化合物として、メトキシPEG#1000(数平均分子量1000:東邦化学工業株式会社製)を23.7質量部(OH:0.024mol、当量比:OH/NCO=0.038)を充填し、90℃において残存するイソシアネート量に変化がなくなるまでウレタン化反応させ、親水性基含有ポリイソシアネートを合成した。その後、ブロック化剤として、ジメチルピラゾール(DMP)57.3質量部(0.596mol)を、反応溶液の温度が50℃超えないよう数回に分けて加え、1時間攪拌した。この溶液に、アセトン100質量部を加え、WACKER FINISH WR 301(アミノ変性シリコーン、旭化成ワッカーシリコーン社製、アミン等量3700、固形分100%)332.4質量部(アミノ基0.09mol)を加え溶液が均一になった後、イオン交換水を700質量部ゆっくり滴下し乳化した。乳化終了後、減圧下で溶媒を留去し、90%酢酸を6.0質量部およびイオン交換水を加え固形分20%のエマルションを得た。調製例B-15のエマルションは、撥水成分であるシリコーンとブロックイソシアネートとを59:41(質量部)で含有するハイブリットエマルションである。
(Preparation Example B-15: Hybrid Emulsion)
In a reactor equipped with a stirrer, a thermometer, a cooler, and a nitrogen gas inlet tube, 150 parts by mass (NCO equivalent: 0.62 mol) of Vestanat 1890/100 (isophorone diisocyanate trimer, manufactured by Evonik Corporation, NCO group content: 17.3%, NV: 100%) as a polyisocyanate and 150 parts by mass of diethylene glycol ethyl methyl ether (MEDG) as a solvent were mixed at room temperature, and then 23.7 parts by mass (OH: 0.024 mol, equivalent ratio: OH/NCO = 0.038) of methoxy PEG # 1000 (number average molecular weight 1000: manufactured by Toho Chemical Industry Co., Ltd.) as a hydrophilic compound containing an active hydrogen group was charged, and a urethane reaction was carried out at 90 ° C. until there was no change in the amount of remaining isocyanate, thereby synthesizing a hydrophilic group-containing polyisocyanate. Thereafter, 57.3 parts by mass (0.596 mol) of dimethylpyrazole (DMP) was added as a blocking agent in several portions so that the temperature of the reaction solution did not exceed 50°C, and the mixture was stirred for 1 hour. 100 parts by mass of acetone was added to this solution, and 332.4 parts by mass (amino group 0.09 mol) of WACKER FINISH WR 301 (amino-modified silicone, manufactured by Asahi Kasei Wacker Silicone Co., Ltd., amine equivalent 3700, solid content 100%) was added, and after the solution became uniform, 700 parts by mass of ion-exchanged water was slowly dropped to emulsify. After the emulsification was completed, the solvent was distilled off under reduced pressure, and 6.0 parts by mass of 90% acetic acid and ion-exchanged water were added to obtain an emulsion with a solid content of 20%. The emulsion of Preparation Example B-15 is a hybrid emulsion containing silicone and blocked isocyanate, which are water-repellent components, in a ratio of 59:41 (parts by mass).
(調製例B-16:トリメチロールプロパンとトルエンジイソシアネート(TDI)のMEKOブロック化物)
 トリメチロールプロパンとトルエンジイソシアネートとの反応生成物として、Polurene AD(トリメチロールプロパンとトルエンジイソシアネート(2,4異性体と2,6異性体との質量比は80:20)との反応生成物の含有量75質量%、溶剤:酢酸エチル、SAPICI社製、商品名)を用意した。上記で用意したトリメチロールプロパンとトルエンジイソシアネートとの反応生成物1モルを60~70℃まで加熱した。次いで、メチルエチルケトオキシム3モルをゆっくりと仕込み、60~70℃で赤外分光光度計にて確認されるイソシアネート含量がゼロになるまで反応させ、酢酸エチルを添加して、メチルエチルケトオキシムブロックポリイソシアネートを98.7質量%含む無色透明の粘稠液状組成物を得た。上記で得られた組成物180質量部と、非イオン界面活性剤として3スチレン化フェノールのエチレンオキサイド30モル付加物20質量部とを混合し、均一化した。撹拌しながら徐々に水を仕込んだ後、30MPaにてホモジナイザー処理を行い、トリメチロールプロパンとトルエンジイソシアネートとの反応生成物のメチルエチルケトオキシムブロック化物を20質量%含む分散液を得た。
(Preparation Example B-16: MEKO blocked product of trimethylolpropane and toluene diisocyanate (TDI))
As a reaction product of trimethylolpropane and toluene diisocyanate, Polurene AD (content of reaction product of trimethylolpropane and toluene diisocyanate (mass ratio of 2,4 isomer to 2,6 isomer is 80:20) is 75% by mass, solvent: ethyl acetate, manufactured by SAPIC Corporation, trade name) was prepared. 1 mole of the reaction product of trimethylolpropane and toluene diisocyanate prepared above was heated to 60 to 70°C. Next, 3 moles of methyl ethyl ketoxime were slowly charged and reacted at 60 to 70°C until the isocyanate content confirmed by an infrared spectrophotometer became zero, and ethyl acetate was added to obtain a colorless, transparent, viscous liquid composition containing 98.7% by mass of methyl ethyl ketoxime-blocked polyisocyanate. 180 parts by mass of the composition obtained above and 20 parts by mass of an ethylene oxide 30 mole adduct of 3-styrenated phenol as a nonionic surfactant were mixed and homogenized. Water was gradually added with stirring, and then the mixture was homogenized at 30 MPa to obtain a dispersion containing 20% by mass of a methyl ethyl ketoxime-blocked product of the reaction product of trimethylolpropane and toluene diisocyanate.
(調製例B-17:IPDI三量体)
 撹拌機、温度計、冷却器、および窒素ガス導入管を備えた反応器において、室温で、ポリイソシアネートとしてのイソホロンジイソシアネートトリマー(IPDI三量体)(Vestanat 1890/100、Evonik社製、NCO基含有量:17.3%、NV:100%)を150質量部(NCO等量:0.62mol)と、溶媒としてのプロピレングリコールジアセテート(ダワノール(登録商標)PGDA、安藤パラケミー株式会社)とを混合してポリイソシアネートを完全に溶解させ、IPDI三量体のPGDA溶液を得た。次いで、PGDA溶液にN,N-ジメチルシクロヘキシルアミン(関東化学株式会社)4.3質量部を混合した。ここに、乳化剤としてのポリオキシエチレントリデシルエーテルホスフェート(Rhodafac(登録商標) range、Rhodia社製、EO:7mol)12.8質量部を加え、混合液の温度が50℃以下になるように適宜冷却しながら混合し、IPDI三量体を40質量%含む溶液を得た。
(Preparation Example B-17: IPDI trimer)
In a reactor equipped with a stirrer, a thermometer, a cooler, and a nitrogen gas inlet tube, 150 parts by mass (NCO equivalent: 0.62 mol) of isophorone diisocyanate trimer (IPDI trimer) (Vestanat 1890/100, manufactured by Evonik, NCO group content: 17.3%, NV: 100%) as a polyisocyanate and propylene glycol diacetate (Dowanol (registered trademark) PGDA, Ando Parachemie Co., Ltd.) as a solvent were mixed at room temperature to completely dissolve the polyisocyanate, thereby obtaining a PGDA solution of IPDI trimer. Next, 4.3 parts by mass of N,N-dimethylcyclohexylamine (Kanto Chemical Co., Ltd.) was mixed with the PGDA solution. To this was added 12.8 parts by mass of polyoxyethylene tridecyl ether phosphate (Rhodafac (registered trademark) range, manufactured by Rhodia, EO: 7 mol) as an emulsifier, and the mixture was mixed while appropriately cooling so that the temperature of the mixed liquid was 50° C. or less, thereby obtaining a solution containing 40% by mass of IPDI trimer.
(調製例B-18:IPDI三量体/HDI三量体ヌレート)
 調製例B-17と同様の反応器において、室温で、ポリイソシアネートとして、イソホロンジイソシアネートトリマー(IPDI三量体)(Vestanat 1890/100、Evonik社製、NCO基含有量:17.3%、NV:100%)を42質量部(NCO等量:0.62mol)と、ヘキサメチレンジイソシアナート(HDI)のイソシアヌレート型(デュラネート TPA-100、旭化成社製、NCO基含有量:23.1%、NV:100%)を98質量部(NCO等量:0.825mol)と、溶媒としてのプロピレングリコールジアセテート(ダワノール(登録商標)PGDA、安藤パラケミー株式会社)とを混合して、ポリイソシアネートを完全に溶解させ、IPDI三量体/HDI三量体のPGDA溶液を得た。次いで、当該溶液にN,N-ジメチルシクロヘキシルアミン(関東化学株式会社)4.0質量部を混合した。次いで、乳化剤としてのポリオキシエチレントリデシルエーテルホスフェート(Rhodafac(登録商標) range、Rhodia社製、EO:10mol)11.9質量部を加え、混合液の温度が50℃以下になるように適宜冷却しながら混合し、IPDI三量体/HDI三量体ヌレートを70質量%含む溶液を得た。
(Preparation Example B-18: IPDI trimer/HDI trimer nurate)
In the same reactor as in Preparation Example B-17, at room temperature, 42 parts by mass (NCO equivalent: 0.62 mol) of isophorone diisocyanate trimer (IPDI trimer) (Vestanat 1890/100, manufactured by Evonik, NCO group content: 17.3%, NV: 100%) as polyisocyanate, 98 parts by mass (NCO equivalent: 0.825 mol) of isocyanurate type of hexamethylene diisocyanate (HDI) (Duranate TPA-100, manufactured by Asahi Kasei Corporation, NCO group content: 23.1%, NV: 100%), and propylene glycol diacetate (Dowanol (registered trademark) PGDA, Ando Parachemie Co., Ltd.) as a solvent were mixed to completely dissolve the polyisocyanate, and a PGDA solution of IPDI trimer / HDI trimer was obtained. Next, 4.0 parts by mass of N,N-dimethylcyclohexylamine (Kanto Chemical Co., Ltd.) was mixed into the solution. Next, 11.9 parts by mass of polyoxyethylene tridecyl ether phosphate (Rhodafac (registered trademark) range, manufactured by Rhodia, EO: 10 mol) was added as an emulsifier, and the mixture was mixed while appropriately cooling so that the temperature of the mixture was 50° C. or less, to obtain a solution containing 70% by mass of IPDI trimer/HDI trimer nurate.
(調製例B-19:IPDI三量体/HDI三量体ビウレット)
 調製例B-17と同様の反応器において、室温で、ポリイソシアネートとして、イソホロンジイソシアネートトリマー(IPDI三量体)(Vestanat 1890/100、Evonik社製、NCO基含有量:17.3%、NV:100%)を42質量部(NCO等量:0.62mol)と、ヘキサメチレンジイソシアナート(HDI)のビウレット型(デュラネート 24A-100、旭化成社製、NCO基含有量:23.5%、NV:100%)を98質量部(NCO等量:0.839mol)と、溶媒としてのプロピレングリコールジアセテート(ダワノール(登録商標)PGDA、安藤パラケミー株式会社)とを混合して、ポリイソシアネートを完全に溶解させ、IPDI三量体/HDI三量体のPGDA溶液を得た。次いで、当該溶液にN,N-ジメチルシクロヘキシルアミン(関東化学株式会社)4.0質量部を混合した。次いで、乳化剤としてのポリオキシエチレントリデシルエーテルホスフェート(Rhodafac(登録商標) range、Rhodia社製、EO:10mol)11.9質量部を加え、混合液の温度が50℃以下になるように適宜冷却しながら混合し、IPDI三量体/HDI三量体ビウレットを70質量%含む溶液を得た。
(Preparation Example B-19: IPDI trimer/HDI trimer biuret)
In the same reactor as in Preparation Example B-17, at room temperature, 42 parts by mass (NCO equivalent: 0.62 mol) of isophorone diisocyanate trimer (IPDI trimer) (Vestanat 1890/100, manufactured by Evonik, NCO group content: 17.3%, NV: 100%) as polyisocyanate, 98 parts by mass (NCO equivalent: 0.839 mol) of biuret type hexamethylene diisocyanate (HDI) (Duranate 24A-100, manufactured by Asahi Kasei Corporation, NCO group content: 23.5%, NV: 100%), and propylene glycol diacetate (Dowanol (registered trademark) PGDA, Ando Parachemie Co., Ltd.) as a solvent were mixed to completely dissolve the polyisocyanate, and a PGDA solution of IPDI trimer / HDI trimer was obtained. Next, 4.0 parts by mass of N,N-dimethylcyclohexylamine (Kanto Chemical Co., Ltd.) was mixed into the solution. Next, 11.9 parts by mass of polyoxyethylene tridecyl ether phosphate (Rhodafac (registered trademark) range, manufactured by Rhodia, EO: 10 mol) was added as an emulsifier, and the mixture was mixed while appropriately cooling so that the temperature of the mixture was 50° C. or less, thereby obtaining a solution containing 70% by mass of IPDI trimer/HDI trimer biuret.
 調整例B-1~B-19の各々のポリイソシアネート分散液又は溶液の性状を下記表4にまとめた。 The properties of each of the polyisocyanate dispersions or solutions of Preparation Examples B-1 to B-19 are summarized in Table 4 below.
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
3.比較用のハイブリッドエマルションの調製
(調製例C-1)
 セパラブルフラスコに、コロネートL(トリレンジイソシアネートのトリメチロールプロパンアダクト体、東ソー社製、NCO%=13.4、固形分75%酢酸エチル溶液)15.9質量部およびアセトン3.6質量部を加え撹拌した。続いて、メチルエチルケトンオキシム4.3質量部を滴下漏斗にてゆっくり加え、50~55℃で1時間反応させた。続いて、ユニオックスM-2000(平均分子量2000のポリエチレングリコールモノメチルエーテル、日油社製、固形分100%)2.7質量部、ジアザビシクロウンデセン0.001質量部およびアセトン4.5質量部を加え60℃で2時間反応させ、NCO含有率が0%になることを確認し、40℃まで水冷した。WACKER FINISH WR 301(アミノ変性シリコーン、旭化成ワッカーシリコーン社製、アミン等量3700、固形分100%)40.5質量部およびアセトン24.1質量部を加え、溶液が均一になったのを確認しイオン交換水110質量部をゆっくり滴下し乳化した。乳化終了後、減圧下にて溶媒を留去し、90%酢酸0.74質量部およびイオン交換水109質量部を加え、アミノ変性シリコーンとブロックドイソシアネートの合計濃度が20%のエマルションを得た。このエマルションは、撥水成分であるアミノ変性シリコーンとブロックドイソシアネートとを 5:2(質量比)で含有するハイブリッドエマルションである。また、このブロックドイソシアネートはその構造の一部にポリエチレングリコールモノメチルエーテルが導入されており、自己乳化性を有する。
3. Preparation of Comparative Hybrid Emulsion (Preparation Example C-1)
In a separable flask, 15.9 parts by mass of Coronate L (trimethylolpropane adduct of tolylene diisocyanate, manufactured by Tosoh Corporation, NCO%=13.4, solid content 75% ethyl acetate solution) and 3.6 parts by mass of acetone were added and stirred. Then, 4.3 parts by mass of methyl ethyl ketone oxime were slowly added using a dropping funnel and reacted at 50 to 55 ° C. for 1 hour. Then, 2.7 parts by mass of Uniox M-2000 (polyethylene glycol monomethyl ether with average molecular weight of 2000, manufactured by NOF Corporation, solid content 100%), 0.001 parts by mass of diazabicycloundecene and 4.5 parts by mass of acetone were added and reacted at 60 ° C. for 2 hours, and it was confirmed that the NCO content became 0%, and the mixture was cooled with water to 40 ° C. 40.5 parts by mass of WACKER FINISH WR 301 (amino-modified silicone, manufactured by Asahi Kasei Wacker Silicone Co., Ltd., amine equivalent 3700, solid content 100%) and 24.1 parts by mass of acetone were added, and after confirming that the solution became uniform, 110 parts by mass of ion-exchanged water was slowly dropped to emulsify. After the emulsification was completed, the solvent was distilled off under reduced pressure, and 0.74 parts by mass of 90% acetic acid and 109 parts by mass of ion-exchanged water were added to obtain an emulsion with a total concentration of amino-modified silicone and blocked isocyanate of 20%. This emulsion is a hybrid emulsion containing amino-modified silicone and blocked isocyanate, which are water-repellent components, in a ratio of 5:2 (by mass). In addition, this blocked isocyanate has polyethylene glycol monomethyl ether introduced into a part of its structure, and has self-emulsifying properties.
(調製例C-2)
 仕込み量を変更した以外は調製例C-1と同様に操作を行って、撥水成分であるアミノ変性シリコーンとブロックドイソシアネートとを5:1(質量比)で含有するハイブリッドエマルション(アミノ変性シリコーンとブロックドイソシアネートの合計濃度が20%。このブロックドイソシアネートはその構造の一部にポリエチレングリコールモノメチルエーテルが導入されており、自己乳化性を有する。)を得た。
(Preparation Example C-2)
Except for changing the amounts of ingredients, the same operation as in Preparation Example C-1 was carried out to obtain a hybrid emulsion containing water-repellent components, amino-modified silicone and blocked isocyanate, in a ratio of 5:1 (mass ratio) (the total concentration of amino-modified silicone and blocked isocyanate was 20%. This blocked isocyanate has polyethylene glycol monomethyl ether introduced into part of its structure and has self-emulsifying properties).
(調製例C-3)
 セパラブルフラスコに、デュラネート24A-100(ヘキサメチレンジイソシアネートのビウレット体、旭化成ケミカルズ社製、NCO%=23.5)を16.3質量部、メチルイソブチルケトン(MIBK)10質量部を加え撹拌した。そこに、3,5-ジメチルピラゾール8.8質量部を加え50℃で加熱し、イソシアネート含有率が0%になるまで反応させることにより、ブロックドイソシアネートを得た。続いて、エマゾールS-30V(ソルビタントリステアレート、花王社製、水酸基価68.6mgKOH/g)62.9質量部およびMIBK75質量部を加え60℃で溶融させた。ジメチルステアリルアミン2.8質量部、酢酸(90%水溶液)1.9質量部およびTergitol TMN-10(HLB=14.4、ポリエチレングリコールトリメチルノニルエーテル、ダウ・ケミカル社製、90%水溶液)1.4質量部をイオン交換水150質量部に60℃で溶解させ滴下した。温度を保ち高圧ホモジナイザー(400bar)にて乳化させた。その後、イオン交換水80質量部を加えMIBKを減圧下留去した。最後にイオン交換水163質量部を加え、ソルビタントリステアレートとブロックドイソシアネートの合計濃度が20%のエマルションを得た(HLB=14.4)。このエマルションは、撥水成分であるソルビタントリステアレートとブロックドイソシアネートとを5:2(質量比)で含有するハイブリッドエマルションである。また、この調製例は、撥水成分と架橋成分とが、ノニオン性界面活性剤であるTergitol TMN-10及びカチオン性界面活性剤であるジメチルステアリルアミン酢酸塩で乳化されているハイブリッドエマルションである。
(Preparation Example C-3)
In a separable flask, 16.3 parts by mass of Duranate 24A-100 (biuret form of hexamethylene diisocyanate, manufactured by Asahi Kasei Chemicals Corporation, NCO%=23.5) and 10 parts by mass of methyl isobutyl ketone (MIBK) were added and stirred. 8.8 parts by mass of 3,5-dimethylpyrazole were added thereto and heated at 50°C, and reacted until the isocyanate content reached 0%, thereby obtaining a blocked isocyanate. Next, 62.9 parts by mass of Emazol S-30V (sorbitan tristearate, manufactured by Kao Corporation, hydroxyl value 68.6 mgKOH/g) and 75 parts by mass of MIBK were added and melted at 60°C. 2.8 parts by mass of dimethylstearylamine, 1.9 parts by mass of acetic acid (90% aqueous solution) and 1.4 parts by mass of Tergitol TMN-10 (HLB = 14.4, polyethylene glycol trimethylnonyl ether, manufactured by Dow Chemical Company, 90% aqueous solution) were dissolved in 150 parts by mass of ion-exchanged water at 60 ° C. and dropped. The temperature was maintained and emulsified with a high-pressure homogenizer (400 bar). Then, 80 parts by mass of ion-exchanged water was added and MIBK was distilled off under reduced pressure. Finally, 163 parts by mass of ion-exchanged water was added to obtain an emulsion with a total concentration of sorbitan tristearate and blocked isocyanate of 20% (HLB = 14.4). This emulsion is a hybrid emulsion containing sorbitan tristearate and blocked isocyanate, which are water-repellent components, in a ratio of 5:2 (mass ratio). This preparation example is a hybrid emulsion in which the water-repellent component and the cross-linking component are emulsified with Tergitol TMN-10, a nonionic surfactant, and dimethylstearylamine acetate, a cationic surfactant.
3.撥水剤組成物の調製
(実施例1~39、比較例1~10)
 上記の非フッ素系撥水成分を含む分散液、ポリイソシアネートを含む分散液若しくは溶液、ハイブリッドエマルション、及び/又は、純水を用いて、表5~8に示される組成となるように、撥水剤組成物(処理液)を得た。尚、表5~8において、組成に関する数値の単位は「質量%」である。
3. Preparation of Water Repellent Compositions (Examples 1 to 39, Comparative Examples 1 to 10)
Water repellent compositions (treatment liquids) were obtained using the above-mentioned dispersions containing non-fluorinated water repellent components, dispersions or solutions containing polyisocyanates, hybrid emulsions, and/or pure water so as to have the compositions shown in Tables 5 to 8. In Tables 5 to 8, the units of numerical values relating to the compositions are "mass %."
4.繊維製品の処理
 処理液にポリエステル(PET)100%織布、又は、ナイロン(Ny)100%織布を浸漬処理した後、140℃で2分間熱処理することで、評価用の繊維製品を得た。
4. Treatment of Textile Products A 100% polyester (PET) woven fabric or a 100% nylon (Ny) woven fabric was immersed in the treatment solution and then heat-treated at 140° C. for 2 minutes to obtain a textile product for evaluation.
5.評価方法
5.1 繊維製品の初期撥水性の評価
 JIS L1092(2009)のスプレー法に準じてシャワー水温を20℃として試験を行い、上記の繊維製品の撥水性を評価した。結果は目視にて下記の等級で評価した。なお、特性がわずかに良好な場合は等級に「+」をつけ、特性がわずかに劣る場合は等級に「-」をつけた。
 撥水性:状態
   5:表面に付着湿潤のないもの
   4:表面にわずかに付着湿潤を示すもの
   3:表面に部分的湿潤を示すもの
   2:表面に湿潤を示すもの
   1:表面全体に湿潤を示すもの
   0:表裏両面が完全に湿潤を示すもの
5. Evaluation method 5.1 Evaluation of initial water repellency of textile products Tests were conducted according to the spray method of JIS L1092 (2009) with a shower water temperature of 20°C to evaluate the water repellency of the above textile products. The results were visually evaluated according to the following grades. If the characteristics were slightly better, a grade of "+" was given, and if the characteristics were slightly worse, a grade of "-" was given.
Water repellency: Condition 5: No adhesion or wetting on the surface 4: Slight adhesion or wetting on the surface 3: Partial wetting on the surface 2: Wetting on the surface 1: Wetting on the entire surface 0: Complete wetting on both the front and back surfaces
5.2 繊維製品の洗濯耐久撥水性の評価
 上記の繊維製品に対して、JIS L0217(1995)の103法による洗濯を20回(L-20)行い、風乾後の撥水性を上記と同様の手順及び等級で評価した。
5.2 Evaluation of Washing Durable Water Repellency of Textile Products The above textile products were washed 20 times (L-20) according to the 103 method of JIS L0217 (1995), and the water repellency after air drying was evaluated according to the same procedure and grade as above.
5.3 繊維製品の耐摩耗撥水性の評価
5.3.1 摩耗布の準備
 JIS L1096:2010 E法 マーチンデール法に従い、上記の繊維製品からなる試験片をマーチンデール摩耗試験機の試料ホルダに取り付け、標準摩擦布を摩耗試験機の摩擦台に取り付け、その上に試料ホルダをのせ9kPaの押圧荷重を加え、1000回摩擦することで、評価用の摩耗布を得た。
5.3 Evaluation of Abrasion Resistance and Water Repellency of Textile Products 5.3.1 Preparation of Abrasion Cloth According to JIS L1096:2010 Method E Martindale method, a test piece made of the above-mentioned textile product was attached to the sample holder of a Martindale abrasion tester, a standard abrasion cloth was attached to the friction table of the abrasion tester, the sample holder was placed on top of it, a pressure load of 9 kPa was applied, and abrasion was performed 1000 times to obtain an abrasion cloth for evaluation.
5.3.2 摩耗布の撥水性評価
 上記の摩耗布の撥水性を上記同様の手順及び等級で評価した。
5.3.2 Evaluation of Water Repellency of Abraded Fabric The water repellency of the above abraded fabric was evaluated using the same procedure and grade as above.
5.4 初期の繊維製品に対するブンデスマン降雨試験
 上記のようにして撥水処理が施されたポリエステル(PET)100%織布について、JIS L1092:2009 7.3 雨試験(シャワー試験)A法に記載の方法にしたがって降雨試験を行った後の撥水度、吸水量、吸水率を評価した。降雨時間は10分とした。撥水度は、図1に示した湿潤状態によってその等級を1~5級で定めた。点数が大きいほど良好であることを示す。等級に+(-)を記したものは、それぞれの性質がわずかに良い(悪い)ことを示す。
5.4 Bundesmann Rain Test for Initial Textile Products The water repellency, water absorption, and water absorption rate of the 100% polyester (PET) woven fabric treated for water repellency as described above were evaluated after a rain test according to the method described in JIS L1092:2009 7.3 Rain Test (Shower Test) Method A. The rainfall time was 10 minutes. The water repellency was graded from 1 to 5 according to the wet condition shown in Figure 1. The higher the score, the better the result. + (-) next to the grade indicates that the respective property is slightly better (worse).
5.5 摩耗布に対するブンデスマン降雨試験
 上記の摩耗布を用いたこと以外は上記と同様にしてブンデスマン降雨試験を行い、撥水度、吸水量、吸水率を評価した。
5.5 Bundesmann Rainfall Test on Abraded Fabric The Bundesmann rainfall test was carried out in the same manner as above except that the above abraded fabric was used, and the water repellency, water absorption amount, and water absorption rate were evaluated.
5.6 初期の繊維製品の耐水圧
 上記のようにして撥水処理が施されたポリエステル(PET)100%織布について、JIS-L1092:2009 7.1 A法(低水圧法)に準拠して耐水圧を測定した。
5.6 Water Pressure Resistance of Initial Textile Products The water pressure resistance of the 100% polyester (PET) woven fabric that had been subjected to the water repellent treatment as described above was measured in accordance with JIS-L1092:2009 7.1 Method A (low water pressure method).
5.7 洗濯後の耐水圧
 上記の繊維製品に対して、JIS L0217(1995)の103法による洗濯を20回(L-20)行い、その後、上記と同様にして耐水圧を測定した。
5.7 Water Pressure Resistance After Washing The above textile products were washed 20 times (L-20) according to the 103 method of JIS L0217 (1995), and then the water pressure resistance was measured in the same manner as above.
6.評価結果
 評価結果を下記表5~8に示す。
6. Evaluation Results The evaluation results are shown in Tables 5 to 8 below.
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
 表5~8に示される結果から、以下のことが分かる。
(1)非フッ素系撥水成分とポリイソシアネートとを含む撥水剤組成物を用いて繊維製品を処理した場合、当該ポリイソシアネートが脂環族を含まないものである場合(比較例1~9)よりも、当該ポリイソシアネートが脂環族を含むものである場合(実施例1~39)のほうが、摩耗後の繊維製品の撥水性が顕著に優れたものとなる。この効果は、非フッ素系撥水成分と脂環族ポリイソシアネートとの組み合わせによる特有の効果と認められる。
(2)上記の脂環族ポリイソシアネートによる効果は、ポリイソシアネートが当該脂環族ポリイソシアネートとともにその他のポリイソシアネートを含むものである場合にも発揮される(実施例9~16、18、19、33、34及び39)。
(3)繊維製品の初期撥水性や洗濯耐久撥水性については、ポリイソシアネートが脂環族を含まないものである場合(比較例1~9)と、ポリイソシアネートが脂環族を含むものである場合(実施例1~39)とで、大きな差は無い。
(4)ブンデスマン降雨試験に係る性能についても、初期については、ポリイソシアネートが脂環族を含まないものである場合(比較例1~9)と、ポリイソシアネートが脂環族を含むものである場合(実施例1~39)とで、大きな差は無いが、摩耗後については、当該ポリイソシアネートが脂環族を含まないものである場合(比較例1~9)よりも、当該ポリイソシアネートが脂環族を含むものである場合(実施例1~39)のほうが優れたものとなる。
The results shown in Tables 5 to 8 reveal the following:
(1) When textile products are treated with a water repellent composition containing a non-fluorinated water repellent component and a polyisocyanate, the water repellency of the textile products after abrasion is significantly superior in the case where the polyisocyanate contains an alicyclic group (Examples 1 to 39) than in the case where the polyisocyanate does not contain an alicyclic group (Comparative Examples 1 to 9). This effect is considered to be a unique effect due to the combination of a non-fluorinated water repellent component and an alicyclic polyisocyanate.
(2) The above-mentioned effects of the alicyclic polyisocyanate are also exhibited when the polyisocyanate contains other polyisocyanates in addition to the alicyclic polyisocyanate (Examples 9 to 16, 18, 19, 33, 34 and 39).
(3) Regarding the initial water repellency and washing-durable water repellency of the textile products, there is no significant difference between the cases where the polyisocyanate does not contain an alicyclic group (Comparative Examples 1 to 9) and the cases where the polyisocyanate contains an alicyclic group (Examples 1 to 39).
(4) With regard to performance in the Bundesmann Rainfall Test, there is no significant difference in the initial performance between the polyisocyanate containing no alicyclic group (Comparative Examples 1 to 9) and the polyisocyanate containing an alicyclic group (Examples 1 to 39). However, after abrasion, the polyisocyanate containing an alicyclic group (Examples 1 to 39) is superior to the polyisocyanate not containing an alicyclic group (Comparative Examples 1 to 9).
 尚、上記実施例では、非フッ素系撥水剤組成物を用いて繊維製品に撥水性を付与する形態を例示したが、本開示の技術はこの形態に限定されるものではない。本開示の非フッ素系撥水剤組成物は、繊維製品以外の様々な物品に撥水性及び耐摩耗撥水性を付与することができるものと考えられるが、特に、上記実施例にて示されたように、繊維製品に撥水性及び耐摩耗撥水性を付与する場合に好適である。 In the above examples, the non-fluorine-based water repellent composition is used to impart water repellency to textile products, but the technology of the present disclosure is not limited to this form. The non-fluorine-based water repellent composition of the present disclosure is believed to be capable of imparting water repellency and abrasion-resistant water repellency to various articles other than textile products, but is particularly suitable for imparting water repellency and abrasion-resistant water repellency to textile products, as shown in the above examples.

Claims (5)

  1.  (A)アクリル系化合物、シリコーン系化合物、ワックス系化合物、ウレタン系化合物、及び、デンドリマー系化合物からなる群より選択される少なくとも1種の非フッ素系撥水成分と、
     (B)脂環族ポリイソシアネートと、
     を含む、非フッ素系撥水剤組成物。
    (A) at least one non-fluorine-based water-repellent component selected from the group consisting of an acrylic compound, a silicone compound, a wax compound, a urethane compound, and a dendrimer compound;
    (B) an alicyclic polyisocyanate;
    A non-fluorine-based water repellent composition comprising:
  2.  (B)脂環族ポリイソシアネートが、イソホロンジイソシアネート及び水添MDIのうちの少なくとも1種である、
     請求項1に記載の非フッ素系撥水剤組成物。
    (B) the alicyclic polyisocyanate is at least one of isophorone diisocyanate and hydrogenated MDI;
    The non-fluorinated water repellent composition according to claim 1.
  3.  (B)脂環族ポリイソシアネートが、3量体である、
     請求項1又は2に記載の非フッ素系撥水剤組成物。
    (B) the alicyclic polyisocyanate is a trimer;
    The non-fluorinated water repellent composition according to claim 1 or 2.
  4.  (B)脂環族ポリイソシアネートに加えて、脂肪族ポリイソシアネート、芳香族ポリイソシアネート及び芳香脂肪族ポリイソシアネートのうちの少なくとも1種を含む、
     請求項1又は2に記載の非フッ素系撥水剤組成物。
    (B) In addition to the alicyclic polyisocyanate, at least one of an aliphatic polyisocyanate, an aromatic polyisocyanate, and an araliphatic polyisocyanate is included;
    The non-fluorinated water repellent composition according to claim 1 or 2.
  5.  請求項1又は2に記載の非フッ素系撥水剤組成物を含む処理液で繊維を処理すること、
     を含む、撥水性繊維製品の製造方法。
    Treating a fiber with a treatment liquid containing the non-fluorinated water repellent composition according to claim 1 or 2;
    A method for producing a water-repellent textile product, comprising:
PCT/JP2023/035738 2022-10-31 2023-09-29 Non-fluorine water-repellent composition and method for producing water-repellent fiber product WO2024095652A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022174586 2022-10-31
JP2022-174586 2022-10-31

Publications (1)

Publication Number Publication Date
WO2024095652A1 true WO2024095652A1 (en) 2024-05-10

Family

ID=90930336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/035738 WO2024095652A1 (en) 2022-10-31 2023-09-29 Non-fluorine water-repellent composition and method for producing water-repellent fiber product

Country Status (1)

Country Link
WO (1) WO2024095652A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006143866A (en) * 2004-11-19 2006-06-08 Kansai Paint Co Ltd Water repellent, method for forming water repellent coating using the same, and water repellent coating formed by the method
CN1844282A (en) * 2005-04-08 2006-10-11 厚生股份有限公司 Method for preparing paint excellent in water resistance and coat thereof
JP2019026998A (en) * 2017-08-02 2019-02-21 株式会社ミマキエンジニアリング Coloring method of media and water repellent
WO2019240162A1 (en) * 2018-06-12 2019-12-19 明成化学工業株式会社 Water repellent agent, water repellent fiber product, and method for manufacturing same
WO2021132170A1 (en) * 2019-12-24 2021-07-01 三井化学株式会社 Polyurethane resin composition, repellant, water repellant for fibers, and stainproof coating agent
JP2023117014A (en) * 2022-02-10 2023-08-23 日本ペイント・オートモーティブコーティングス株式会社 Composition for coating material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006143866A (en) * 2004-11-19 2006-06-08 Kansai Paint Co Ltd Water repellent, method for forming water repellent coating using the same, and water repellent coating formed by the method
CN1844282A (en) * 2005-04-08 2006-10-11 厚生股份有限公司 Method for preparing paint excellent in water resistance and coat thereof
JP2019026998A (en) * 2017-08-02 2019-02-21 株式会社ミマキエンジニアリング Coloring method of media and water repellent
WO2019240162A1 (en) * 2018-06-12 2019-12-19 明成化学工業株式会社 Water repellent agent, water repellent fiber product, and method for manufacturing same
WO2021132170A1 (en) * 2019-12-24 2021-07-01 三井化学株式会社 Polyurethane resin composition, repellant, water repellant for fibers, and stainproof coating agent
JP2023117014A (en) * 2022-02-10 2023-08-23 日本ペイント・オートモーティブコーティングス株式会社 Composition for coating material

Similar Documents

Publication Publication Date Title
TWI746550B (en) Water-repellent composition and method for manufacturing water-repellent fiber products
CN105377935B (en) Nonfluorinated carbamate base coating
CN109153908B (en) Water repellent agent and process for producing the same
TWI812664B (en) Water-repellent composition and method for producing water-repellent fiber product
US9845410B2 (en) Wax and urethane based extender blends for surface effect compositions
JPH10306137A (en) Isocyanate/hydroxy compound reaction product used in finishing fibrous material
US20230235113A1 (en) Polymers for hydrophobic and oleophobic textile finishing
US20230037578A1 (en) Water repellent composition, method for producing water repellent composition, and fiber product
TWI747115B (en) Water-repellent composition, water-repellent fiber product, and method for manufacturing water-repellent fiber product
WO2024095652A1 (en) Non-fluorine water-repellent composition and method for producing water-repellent fiber product
TWI734187B (en) Water-repellent composition for fiber, water-repellent fiber product, and method for manufacturing water-repellent fiber product
JP2021143292A (en) Water repellent agent composition, water repellent fiber product, and method for producing water repellent fiber product
JP7307788B1 (en) Water repellent composition and method for producing the same, and water repellent textile product and method for producing the same
US20240034840A1 (en) Hydrophobizing agent having a permanent effect
TW202031860A (en) Water repellent agent composition and method for producing water repellent fiber product