WO2019240033A1 - Method for producing dicyclohexanedicarboxylic acid diester and method for producing dicyclohexanedicarboxylic acid - Google Patents

Method for producing dicyclohexanedicarboxylic acid diester and method for producing dicyclohexanedicarboxylic acid Download PDF

Info

Publication number
WO2019240033A1
WO2019240033A1 PCT/JP2019/022717 JP2019022717W WO2019240033A1 WO 2019240033 A1 WO2019240033 A1 WO 2019240033A1 JP 2019022717 W JP2019022717 W JP 2019022717W WO 2019240033 A1 WO2019240033 A1 WO 2019240033A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
acid diester
producing
substituent
Prior art date
Application number
PCT/JP2019/022717
Other languages
French (fr)
Japanese (ja)
Inventor
和宏 綱
基将 ▲高▼橋
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN201980039443.2A priority Critical patent/CN112272661B/en
Priority to JP2020525523A priority patent/JP7027541B2/en
Publication of WO2019240033A1 publication Critical patent/WO2019240033A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/09Preparation of carboxylic acids or their salts, halides or anhydrides from carboxylic acid esters or lactones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C61/00Compounds having carboxyl groups bound to carbon atoms of rings other than six-membered aromatic rings
    • C07C61/12Saturated polycyclic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/30Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/333Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by isomerisation; by change of size of the carbon skeleton
    • C07C67/343Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/74Esters of carboxylic acids having an esterified carboxyl group bound to a carbon atom of a ring other than a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/74Esters of carboxylic acids having an esterified carboxyl group bound to a carbon atom of a ring other than a six-membered aromatic ring
    • C07C69/753Esters of carboxylic acids having an esterified carboxyl group bound to a carbon atom of a ring other than a six-membered aromatic ring of polycyclic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods

Definitions

  • the present invention relates to a method for producing dicyclohexane dicarboxylic acid diester and a method for producing dicyclohexane dicarboxylic acid.
  • Optical films such as optical compensation sheets and retardation films are used in various image display devices in order to eliminate image coloring and expand the viewing angle.
  • a stretched birefringent film has been used as the optical film, but in recent years, it has been proposed to use an optical film having an optically anisotropic layer made of a liquid crystalline compound instead of the stretched birefringent film.
  • the liquid crystalline compound used for forming such an optically anisotropic layer includes, for example, a hydroxy compound for forming a skeleton (hereinafter also referred to as “core portion”) located at the molecular center of the liquid crystalline compound, It is known to synthesize by utilizing an esterification reaction with a carboxylic acid compound for forming a side chain portion of a liquid crystal compound (see, for example, Patent Documents 1 to 4).
  • the present inventors use dicyclohexanedicarboxylic acid represented by the following formula (3) (hereinafter also abbreviated as “DCHDA”) as a carboxylic acid compound for forming the side chain portion of the liquid crystalline compound. I found out.
  • DCHDA dicyclohexanedicarboxylic acid represented by the following formula (3)
  • the inventors of the present invention have studied a method for synthesizing DCHDA.
  • JP2013-544281 hereinafter abbreviated as “Current Method 1” and Helvetica Chem. Act.
  • the method described in “Current method 2”) is considered applicable.
  • the present inventors have obtained many stereoisomers as a by-product in the step of obtaining dicyclohexanedicarboxylic acid diester which is a precursor of DCHDA. It was clarified that it is necessary to separate the isomers by a complicated operation before or after the production.
  • the present invention provides a method for producing dicyclohexane dicarboxylic acid diester and a method for producing dicyclohexane dicarboxylic acid, which can suppress by-production of stereoisomers and can separate isomers by a simple operation. This is the issue.
  • the present inventors have reacted a predetermined cyclohexane compound having a leaving group and an ester group (—COOR) in the presence of a nickel catalyst and a reducing agent (coupling reaction). It was found that by obtaining dicyclohexanedicarboxylic acid diester, the by-production of stereoisomers was suppressed, and the isomers could be separated by a simple operation, and the present invention was completed. That is, it has been found that the above-described problem can be achieved by the following configuration.
  • a compound represented by the following formula (1) is reacted in the presence of a nickel catalyst and a reducing agent to obtain a dicyclohexane dicarboxylic acid diester represented by the following formula (2).
  • Method for producing acid diester is a linear or branched alkyl group having 1 to 6 carbon atoms which may have a substituent, or a carbon number which may have a substituent.
  • a cyclic alkyl group having 3 to 8 carbon atoms, a linear or branched alkenyl group having 1 to 6 carbon atoms which may have a substituent, and a cyclic alkenyl group having 3 to 8 carbon atoms which may have a substituent Represents a group, an alkynyl group having 1 to 6 carbon atoms which may have a substituent, an aryl group which may have a substituent, or a heterocyclic group which may have a substituent; ),
  • X represents a leaving group.
  • X in the formula (1) represents at least one selected from the group consisting of a bromine atom, a methanesulfonyloxy group, and a toluenesulfonyloxy group.
  • X represents a methanesulfonyloxy group or a toluenesulfonyloxy group
  • the reducing agent is a combination of a cobalt compound and manganese.
  • the manufacturing method of the dicyclohexane dicarboxylic acid diester in any one.
  • the nickel catalyst is a catalyst prepared from a nickel compound and a ligand compound, The method for producing dicyclohexanedicarboxylic acid diester according to any one of [1] to [8], wherein the ligand compound is 2,2′-bipyridine.
  • R is a linear or branched alkyl group having 1 to 6 carbon atoms which may have a substituent, or a carbon number which may have a substituent.
  • a cyclic alkyl group having 3 to 8 carbon atoms, a linear or branched alkenyl group having 1 to 6 carbon atoms which may have a substituent, and a cyclic alkenyl group having 3 to 8 carbon atoms which may have a substituent Represents a group, an alkynyl group having 1 to 6 carbon atoms which may have a substituent, an aryl group which may have a substituent, or a heterocyclic group which may have a substituent; ),
  • X represents a leaving group.
  • separate an isomer by simple operation are provided. be able to.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the method for producing dicyclohexanedicarboxylic acid diester of the present invention comprises a compound represented by the following formula (1) in the presence of a nickel catalyst and a reducing agent. It has the process (henceforth a "diesterification process") obtained by making it react and obtaining the dicyclohexane dicarboxylic acid diester represented by following formula (2).
  • R is a linear or branched alkyl group having 1 to 6 carbon atoms which may have a substituent, or a carbon number which may have a substituent.
  • a cyclic alkyl group having 3 to 8 carbon atoms, a linear or branched alkenyl group having 1 to 6 carbon atoms which may have a substituent, and a cyclic alkenyl group having 3 to 8 carbon atoms which may have a substituent Represents a group, an alkynyl group having 1 to 6 carbon atoms which may have a substituent, an aryl group which may have a substituent, or a heterocyclic group which may have a substituent; ),
  • X represents a leaving group.
  • the compound represented by the above formula (1) is reacted in the presence of a nickel catalyst and a reducing agent, and the dicyclohexanedicarboxylic acid represented by the above formula (2).
  • the diester By obtaining the diester, the by-production of stereoisomers is suppressed, and the isomers can be separated by a simple operation.
  • the present inventors presume as follows. That is, after the leaving group in the above formula (1) is eliminated by the reducing agent, the carbon radical generated at the elimination site and the nickel atom of the nickel catalyst are bound to each other in an energetically advantageous direction (equatorial).
  • the trans isomer was preferentially obtained, so that the trans isomer was also preferentially obtained in the subsequent coupling reaction.
  • the isomers could be separated by a simple operation such as recrystallization. It is thought.
  • the diesterification process which the manufacturing method of the diester of this invention has is explained in full detail.
  • the starting material used in the diesterification step is a compound represented by the following formula (1).
  • R is a linear or branched alkyl group having 1 to 6 carbon atoms which may have a substituent, or a cyclic group having 3 to 8 carbon atoms which may have a substituent. It has an alkyl group, a linear or branched alkenyl group having 1 to 6 carbon atoms which may have a substituent, a cyclic alkenyl group having 3 to 8 carbon atoms which may have a substituent, or a substituent. And an alkynyl group having 1 to 6 carbon atoms, an aryl group which may have a substituent, or a heterocyclic group which may have a substituent.
  • X represents a leaving group.
  • linear or branched alkyl group having 1 to 6 carbon atoms represented by R in the above formula (1) include, for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, and n-butyl. Group, isobutyl group, sec-butyl group, t-butyl group and the like.
  • cyclic alkyl group having 3 to 8 carbon atoms represented by R include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, and a cyclohexyl group.
  • linear or branched alkenyl group having 1 to 6 carbon atoms represented by R include, for example, vinyl group, 1-propenyl group, allyl group, isopropenyl group, 1-butenyl group, And 2-butenyl group.
  • cyclic alkenyl group having 3 to 8 carbon atoms represented by R include a 2-cyclopenten-1-yl group and a 2-cyclohexen-1-yl group.
  • alkynyl group having 1 to 6 carbon atoms include ethynyl group and propargyl group.
  • aryl group include a phenyl group, a p-tolyl group, a naphthyl group, an m-chlorophenyl group, and an o-hexadecanoylaminophenyl group.
  • heterocyclic group examples include monocyclic aromatic heterocyclic groups such as a furyl group, a pyrrolyl group, a thienyl group, a pyridinyl group, and a thiazolyl group; a benzothiazolyl group, a benzofuryl group, and a benzothienyl group.
  • polycyclic aromatic heterocyclic groups including fused polycyclic aromatic heterocyclic groups
  • non-aromatic heterocyclic groups such as morpholinyl groups; and the like.
  • examples of the substituent that R in formula (1) may have include an alkyl group, an alkoxy group, and a halogen atom.
  • the alkyl group for example, a linear, branched or cyclic alkyl group having 1 to 18 carbon atoms is preferable, and an alkyl group having 1 to 8 carbon atoms (for example, a methyl group, an ethyl group, a propyl group, an isopropyl group).
  • an alkoxy group for example, an alkoxy group having 1 to 18 carbon atoms is preferable, an alkoxy group having 1 to 8 carbon atoms (for example, a methoxy group, an ethoxy group, an n-butoxy group, a methoxyethoxy group, etc.) is more preferable.
  • An alkoxy group having a number of 1 to 4 is more preferable, and a methoxy group or an ethoxy group is particularly preferable.
  • the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. Among them, a fluorine atom and a chlorine atom are preferable.
  • R in the above formula (1) preferably represents a linear or branched alkyl group having 1 to 6 carbon atoms, and among them, a methyl group, an ethyl group , T-butyl group or trityl group is more preferable.
  • the leaving group represented by X in the above formula (1) is a group X1 directly bonded to the carbon atom constituting the cyclohexane ring, and is easily eliminated by taking in an electron pair of C—X1 bond.
  • Represents a group capable of Examples of the leaving group include a halogen atom, an alkylthio group, an alkylsulfonyloxy group, and an arylsulfonyloxy group.
  • Specific examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. Among these, a bromine atom and an iodine atom are preferable, and availability and reaction (coupling) are preferred.
  • alkylthio group examples include a methylthio group and an ethylthio group.
  • alkylsulfonyloxy group examples include a methanesulfonyloxy group, an ethanesulfonyloxy group, an n-propanesulfonyloxy group, and an n-butanesulfonyloxy group, and among them, a methanesulfonyloxy group. It is preferable.
  • the arylsulfonyloxy group include a toluenesulfonyloxy group, a 4-nitrophenylsulfonyloxy group, a 4-methoxyphenylsulfonyloxy group, a 2-nitrophenylsulfonyloxy group, a 3-chlorophenylsulfonyloxy group, and the like.
  • a toluenesulfonyloxy group is preferable, and a p-toluenesulfonyloxy group is more preferable.
  • such leaving groups at least one selected from the group consisting of a bromine atom, a methanesulfonyloxy group, and a toluenesulfonyloxy group is preferable.
  • the nickel catalyst used in the diesterification step is not particularly limited, and examples thereof include those having a nickel atom valence of 0 to 2.
  • the nickel catalyst for example, Metal catalysts such as nickel (II) chloride; [1,3-bis (diphenylphosphino) propane] nickel (II) dichloride, bis (triphenylphosphine) nickel (II) dichloride, [1,2-bis (diphenylphosphino) ethane] nickel (II) dichloride, [1,1′-bis (diphenylphosphino) ferrocene] nickel (II) dichloride, bis (1,5-cyclooctadiene) nickel (0), [1,3-bis (2,6-diisopropylphenyl) imidazole -2-ylidene] triphenylphosphine nickel (II) dichloride, bromo [(2,6-pyridinediyl) bis (3-
  • the nickel catalyst is preferably a catalyst prepared from a nickel compound and a ligand compound (ligand) (for example, the above-described metal complex catalyst).
  • the nickel compound include nickel halide (eg, nickel fluoride, nickel chloride, nickel bromide, nickel iodide), nickel carboxylate (eg, nickel formate, nickel acetate, 2-ethyl).
  • nickel chloride nickel halide
  • nickel halide nickel halide
  • the ligand compound include a nitrogen-containing bidentate ligand.
  • Specific examples of the nitrogen-containing bidentate ligand include 2,2′-bipyridine and 1,10-phenanthroline. , Methylenebisoxazoline, N, N, N ′, N′-tetramethylethylenediamine and the like. Among them, 2,2′-bipyridine is preferable from the viewpoint of availability.
  • the amount of nickel catalyst used in the diesterification step is preferably 0.05 to 0.5 mol, preferably 0.1 to 0.5 mol, relative to 1 mol of the compound represented by the formula (1).
  • the molar ratio is more preferably 0.1 to 0.2 mol.
  • the reducing agent used in the diesterification step is not particularly limited, and specific examples thereof include cobalt compounds, magnesium, zinc, manganese, etc., and these may be used alone or in combination of two or more. May be.
  • Examples of the cobalt compound include a cobalt salt of an organic acid, a cobalt metal complex, and the like, and a cobalt salt of an organic acid is preferable.
  • cobalt salt of organic acid examples include, for example, cobalt naphthenate, cobalt stearate, cobalt neodecanoate, cobalt rosinate, cobalt versatate, cobalt tall oil, cobalt oleate, cobalt linoleate, and linolenic acid.
  • cobalt and cobalt palmitate examples include cobalt and cobalt palmitate.
  • X in the above formula (1) is a compound represented by a halogen atom.
  • X in the formula (1) is a compound represented by a methanesulfonyloxy group or a toluenesulfonyloxy group, it is preferable to use a combination of a cobalt compound and manganese. .
  • the amount of the reducing agent used in the diesterification step is preferably 1 to 5 mol and more preferably 1 to 2.5 mol with respect to 1 mol of the compound represented by the formula (1).
  • the amount is preferably 1.3 to 1.7 mol.
  • a solvent In the diesterification step, it is preferable to use a solvent.
  • the solvent include pyridines such as pyridine and methylpyridine; nitriles such as acetonitrile and propionitrile; amides such as dimethylformamide, dimethylacetamide and N-methylpyrrolidone; and the like. You may use independently and may use 2 or more types together. Of these, it is preferable to use a pyridine solvent and a nitrile solvent in combination.
  • the amount of the solvent used is preferably 1 to 10 times (ml / g), preferably 1 to 5 times (ml / g) of the compound represented by the formula (1).
  • the amount is more preferably 1 to 3 times (ml / g).
  • reaction conditions in the said diesterification process are not specifically limited, Since the nickel catalyst and reducing agent mentioned above are used, compared with the above-mentioned current method 1 etc., milder conditions can be employ
  • the reaction temperature is preferably 0 to 60 ° C., more preferably 5 to 50 ° C.
  • the reaction time is preferably 30 minutes to 10 hours, more preferably 4 to 8 hours.
  • the dicyclohexane dicarboxylic acid diester represented by following formula (2) by which the by-product of the stereoisomer was suppressed by the diesterification process mentioned above can be obtained.
  • dicyclohexane dicarboxylic acid diester represented by the following formula (2) can separate isomers by simple operations such as extraction, crystallization, distillation and column chromatography.
  • the dicyclohexane dicarboxylic acid diester represented by following formula (2) for the manufacturing method of the dicyclohexane dicarboxylic acid of this invention mentioned later, it uses for the process of obtaining dicyclohexane dicarboxylic acid, without performing separation operation. May be.
  • R in the above formula (2) is the same as that described as R in the above formula (1).
  • R in the above formula (2) represents a linear or branched alkyl group having 1 to 6 carbon atoms. Among them, it is preferable to represent a methyl group, an ethyl group, or a t-butyl group.
  • the method for producing dicyclohexanedicarboxylic acid according to the present invention (hereinafter also abbreviated as “the method for producing dicarboxylic acid according to the present invention”) is obtained by reacting a compound represented by the following formula (1) in the presence of a nickel catalyst and a reducing agent.
  • the said diesterification process in the manufacturing method of the dicarboxylic acid of this invention is the same as that demonstrated in the manufacturing method of the diester of this invention mentioned above, R in following formula (1) and (2), and X in the following formula (1) is the same as that described in the above-described method for producing a diester of the present invention.
  • the dicyclohexanedicarboxylic acid diester represented by the above formula (2) is hydrolyzed to form a salt, and then an acid is added to the above formula (3).
  • a step of obtaining dicyclohexanedicarboxylic acid represented by The hydrolysis in the dicarboxylation step is preferably performed using a base in a solvent.
  • tertiary alcohols such as 1-ethynyl-1-cyclopropanol, 1-adamantanol, tert-butanol and t-amyl alcohol
  • ethers such as tetrahydrofuran (THF) and 1,4-dioxane
  • hexane, heptane benzene Hydrocarbons such as toluene, xylene and cumene
  • chlorinated solvents such as methylene chloride, chloroform and trichloroethylene
  • ketones such as acetone and 2-butanone
  • N, N-dimethylformamide and 1,3-dimethyl-2- Imidazolidinone Jime Aprotic polar solvents such as chill sulfoxide and hexamethylphosphoric triamide
  • nitriles such as acetonitrile and propionitrile
  • esters such as ethyl acetate and n-butyl acetate; and the like.
  • the base preferably used in the hydrolysis include, for example, inorganic Bronsted bases such as sodium hydroxide, potassium hydroxide, lithium hydroxide, sodium bicarbonate, potassium bicarbonate; pyridine, triethylamine, And organic Bronsted bases such as dimethylaminopyridine, diisopropylethylamine, N-methylmorpholine.
  • inorganic Bronsted bases such as sodium hydroxide, potassium hydroxide, lithium hydroxide, sodium bicarbonate, potassium bicarbonate
  • pyridine triethylamine
  • organic Bronsted bases such as dimethylaminopyridine, diisopropylethylamine, N-methylmorpholine.
  • an inorganic Bronsted base is preferable, and from the viewpoint of availability and solubility, it is more preferably any of sodium hydroxide, potassium hydroxide, and lithium hydroxide.
  • reaction conditions for converting the dicyclohexanedicarboxylic acid diester represented by the above formula (2) into a salt are not particularly limited, and conventionally known hydrolysis reaction conditions can be appropriately employed.
  • the reaction temperature is preferably ⁇ 30 to 100 ° C., more preferably ⁇ 20 to 50 ° C., and further preferably ⁇ 10 to 40 ° C.
  • the reaction time is preferably 10 minutes to 24 hours, more preferably 20 minutes to 10 hours, and even more preferably 30 minutes to 8 hours.
  • Examples of the acid imparted to the salt of dicyclohexanedicarboxylic acid diester include inorganic acids such as hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid, nitric acid, phosphoric acid or salts thereof; formic acid, acetic acid, propionic acid, Organic acids such as oxalic acid, trifluoroacetic acid, methanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, naphthalenesulfonic acid or salts thereof; lithium tetrafluoroborate, boron trifluoride, boron trichloride, triodor Lewis acids such as boron fluoride, aluminum trichloride, zinc chloride, zinc bromide, zinc iodide, tin tetrachloride, tin tetrabromide, tin dichloride, titanium tetrachlor
  • reaction conditions for providing an acid to the salt of dicyclohexane dicarboxylic acid diester to produce dicyclohexane dicarboxylic acid represented by the above formula (3) are not particularly limited, and a conventionally known deprotection reaction using an acid is not limited. Reaction conditions can be employed as appropriate.
  • the reaction temperature is preferably ⁇ 30 to 100 ° C., more preferably ⁇ 20 to 50 ° C., and further preferably ⁇ 10 to 40 ° C.
  • the reaction time is preferably 10 minutes to 24 hours, more preferably 20 minutes to 10 hours, and even more preferably 30 minutes to 8 hours.
  • the 1 H-NMR (Nuclear Magnetic Resonance) spectrum was measured using Bruker AV400N (Bruker) using tetramethylsilane as an internal standard, and all ⁇ values were shown in ppm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

The present invention addresses the problem of providing: a method for producing a dicyclohexanedicarboxylic acid diester, which is capable of suppressing the generation of stereoisomers as by-products, and which is capable of separating isomers by a simple operation; and a method for producing a dicyclohexanedicarboxylic acid. A method for producing a dicyclohexanedicarboxylic acid according to the present invention is a method for producing a dicyclohexanedicarboxylic acid diester, which comprises a step for obtaining a dicyclohexanedicarboxylic acid diester represented by formula (2) by causing a reaction of a compound represented by formula (1) in the presence of a nickel catalyst and a reducing agent.

Description

ジシクロヘキサンジカルボン酸ジエステルの製造方法およびジシクロヘキサンジカルボン酸の製造方法Method for producing dicyclohexane dicarboxylic acid diester and method for producing dicyclohexane dicarboxylic acid
 本発明は、ジシクロヘキサンジカルボン酸ジエステルの製造方法、および、ジシクロヘキサンジカルボン酸の製造方法に関する。 The present invention relates to a method for producing dicyclohexane dicarboxylic acid diester and a method for producing dicyclohexane dicarboxylic acid.
 光学補償シートや位相差フィルムなどの光学フィルムは、画像着色解消や視野角拡大のために、様々な画像表示装置で用いられている。
 光学フィルムとしては延伸複屈折フィルムが使用されていたが、近年、延伸複屈折フィルムに代えて、液晶性化合物からなる光学異方性層を有する光学フィルムを使用することが提案されている。
Optical films such as optical compensation sheets and retardation films are used in various image display devices in order to eliminate image coloring and expand the viewing angle.
A stretched birefringent film has been used as the optical film, but in recent years, it has been proposed to use an optical film having an optically anisotropic layer made of a liquid crystalline compound instead of the stretched birefringent film.
 このような光学異方性層の形成に用いられる液晶性化合物は、例えば、液晶性化合物の分子中央に位置する骨格(以下、「コア部分」ともいう。)を形成するためのヒドロキシ化合物と、液晶性化合物の側鎖部分を形成するためのカルボン酸化合物と、のエステル化反応を利用して合成することが知られている(例えば、特許文献1~4など参照)。 The liquid crystalline compound used for forming such an optically anisotropic layer includes, for example, a hydroxy compound for forming a skeleton (hereinafter also referred to as “core portion”) located at the molecular center of the liquid crystalline compound, It is known to synthesize by utilizing an esterification reaction with a carboxylic acid compound for forming a side chain portion of a liquid crystal compound (see, for example, Patent Documents 1 to 4).
特開2010-031223号公報JP 2010-031223 A 特開2012-097078号公報JP 2012-097078 A 国際公開第2014/010325号International Publication No. 2014/010325 特開2016-081035号公報JP 2016-081035 A
 本発明者らは、液晶性化合物の側鎖部分を形成するためのカルボン酸化合物として、下記式(3)で表されるジシクロヘキサンジカルボン酸(以下、「DCHDA」とも略す。)が有用であることを知見した。
Figure JPOXMLDOC01-appb-C000003
The present inventors use dicyclohexanedicarboxylic acid represented by the following formula (3) (hereinafter also abbreviated as “DCHDA”) as a carboxylic acid compound for forming the side chain portion of the liquid crystalline compound. I found out.
Figure JPOXMLDOC01-appb-C000003
 そして、本発明者らは、DCHDAの合成方法について検討したところ、例えば、特表2013-544281号公報(以下、「現行法1」と略す。)、および、Helvetica Chem. Act. 1938, 141(以下、「現行法2」と略す。)などに記載された方法が適用できると考えた。
 しかしながら、本発明者らは、現行法1および現行法2に記載された方法では、DCHDAの前駆体であるジシクロヘキサンジカルボン酸ジエステルを得る段階において、多くの立体異性体が副生してしまい、DCHDAの生成前または生成後に、煩雑な操作で異性体を分離する必要が生じることを明らかとした。
The inventors of the present invention have studied a method for synthesizing DCHDA. For example, JP2013-544281 (hereinafter abbreviated as “Current Method 1”) and Helvetica Chem. Act. The method described in “Current method 2”) is considered applicable.
However, in the methods described in the present method 1 and the present method 2, the present inventors have obtained many stereoisomers as a by-product in the step of obtaining dicyclohexanedicarboxylic acid diester which is a precursor of DCHDA. It was clarified that it is necessary to separate the isomers by a complicated operation before or after the production.
 そこで、本発明は、立体異性体の副生を抑制し、簡便な操作で異性体を分離することができる、ジシクロヘキサンジカルボン酸ジエステルの製造方法、および、ジシクロヘキサンジカルボン酸の製造方法を提供することを課題とする。 Therefore, the present invention provides a method for producing dicyclohexane dicarboxylic acid diester and a method for producing dicyclohexane dicarboxylic acid, which can suppress by-production of stereoisomers and can separate isomers by a simple operation. This is the issue.
 本発明者らは、上記課題を達成すべく鋭意検討した結果、脱離基とエステル基(-COOR)とを有する所定のシクロヘキサン化合物を、ニッケル触媒および還元剤の存在下で反応(カップリング反応)させ、ジシクロヘキサンジカルボン酸ジエステルを得ることにより、立体異性体の副生が抑制され、また、簡便な操作で異性体を分離することができることを見出し、本発明を完成させた。
 すなわち、以下の構成により上記課題を達成することができることを見出した。
As a result of intensive studies to achieve the above-mentioned problems, the present inventors have reacted a predetermined cyclohexane compound having a leaving group and an ester group (—COOR) in the presence of a nickel catalyst and a reducing agent (coupling reaction). It was found that by obtaining dicyclohexanedicarboxylic acid diester, the by-production of stereoisomers was suppressed, and the isomers could be separated by a simple operation, and the present invention was completed.
That is, it has been found that the above-described problem can be achieved by the following configuration.
 [1] 下記式(1)で表される化合物を、ニッケル触媒および還元剤の存在下で反応させ、下記式(2)で表されるジシクロヘキサンジカルボン酸ジエステルを得る工程を有する、ジシクロヘキサンジカルボン酸ジエステルの製造方法。
Figure JPOXMLDOC01-appb-C000004
 ここで、式(1)および(2)中、Rは、置換基を有してもよい炭素数1~6の直鎖状もしくは分岐状のアルキル基、置換基を有してもよい炭素数3~8の環状のアルキル基、置換基を有してもよい炭素数1~6の直鎖状もしくは分岐状のアルケニル基、置換基を有してもよい炭素数3~8の環状のアルケニル基、置換基を有してもよい炭素数1~6のアルキニル基、置換基を有してもよいアリール基、または、置換基を有してもよい複素環式基を表し、式(1)中、Xは、脱離基を表す。
[1] A compound represented by the following formula (1) is reacted in the presence of a nickel catalyst and a reducing agent to obtain a dicyclohexane dicarboxylic acid diester represented by the following formula (2). Method for producing acid diester.
Figure JPOXMLDOC01-appb-C000004
Here, in the formulas (1) and (2), R is a linear or branched alkyl group having 1 to 6 carbon atoms which may have a substituent, or a carbon number which may have a substituent. A cyclic alkyl group having 3 to 8 carbon atoms, a linear or branched alkenyl group having 1 to 6 carbon atoms which may have a substituent, and a cyclic alkenyl group having 3 to 8 carbon atoms which may have a substituent Represents a group, an alkynyl group having 1 to 6 carbon atoms which may have a substituent, an aryl group which may have a substituent, or a heterocyclic group which may have a substituent; ), X represents a leaving group.
 [2] 式(1)および(2)中のRが、炭素数1~6の直鎖状もしくは分岐状のアルキル基を表す、[1]に記載のジシクロヘキサンジカルボン酸ジエステルの製造方法。
 [3] 式(1)および(2)中のRが、メチル基、エチル基、t-ブチル基、または、トリチル基を表す、[1]に記載のジシクロヘキサンジカルボン酸ジエステルの製造方法。
 [4] 還元剤が、コバルト化合物、マグネシウム、亜鉛、および、マンガンからなる群から選択される少なくとも1種である、[1]~[3]のいずれかに記載のジシクロヘキサンジカルボン酸ジエステルの製造方法。
 [5] 式(1)中のXが、ハロゲン原子、アルキルチオ基、アルキルスルホニルオキシ基、および、アリールスルホニルオキシ基からなる群から選択される少なくとも1種を表す、[1]~[4]のいずれかに記載のジシクロヘキサンジカルボン酸ジエステルの製造方法。
 [6] 式(1)中のXが、臭素原子、メタンスルホニルオキシ基、および、トルエンスルホニルオキシ基からなる群から選択される少なくとも1種を表す、[1]~[5]のいずれかに記載のジシクロヘキサンジカルボン酸ジエステルの製造方法。
 [7] 式(1)中のXが、ハロゲン原子を表し、かつ、還元剤が、亜鉛である、[1]~[6]のいずれかに記載のジシクロヘキサンジカルボン酸ジエステルの製造方法。
 [8] 式(1)中のXが、メタンスルホニルオキシ基、または、トルエンスルホニルオキシ基を表し、かつ、還元剤が、コバルト化合物とマンガンとの組み合わせである、[1]~[6]のいずれかに記載のジシクロヘキサンジカルボン酸ジエステルの製造方法。
 [9] ニッケル触媒が、ニッケル化合物およびリガンド化合物から調製された触媒であり、
 リガンド化合物が、2,2’-ビピリジンである、[1]~[8]のいずれかに記載のジシクロヘキサンジカルボン酸ジエステルの製造方法。
[2] The process for producing dicyclohexanedicarboxylic acid diester according to [1], wherein R in the formulas (1) and (2) represents a linear or branched alkyl group having 1 to 6 carbon atoms.
[3] The process for producing dicyclohexanedicarboxylic acid diester according to [1], wherein R in the formulas (1) and (2) represents a methyl group, an ethyl group, a t-butyl group, or a trityl group.
[4] Production of dicyclohexanedicarboxylic acid diester according to any one of [1] to [3], wherein the reducing agent is at least one selected from the group consisting of a cobalt compound, magnesium, zinc, and manganese. Method.
[5] X in the formula (1) represents at least one selected from the group consisting of a halogen atom, an alkylthio group, an alkylsulfonyloxy group, and an arylsulfonyloxy group. The manufacturing method of the dicyclohexane dicarboxylic acid diester in any one.
[6] In any one of [1] to [5], X in the formula (1) represents at least one selected from the group consisting of a bromine atom, a methanesulfonyloxy group, and a toluenesulfonyloxy group. The manufacturing method of dicyclohexane dicarboxylic acid diester of description.
[7] The process for producing dicyclohexanedicarboxylic acid diester according to any one of [1] to [6], wherein X in formula (1) represents a halogen atom, and the reducing agent is zinc.
[8] In the formula (1), X represents a methanesulfonyloxy group or a toluenesulfonyloxy group, and the reducing agent is a combination of a cobalt compound and manganese. The manufacturing method of the dicyclohexane dicarboxylic acid diester in any one.
[9] The nickel catalyst is a catalyst prepared from a nickel compound and a ligand compound,
The method for producing dicyclohexanedicarboxylic acid diester according to any one of [1] to [8], wherein the ligand compound is 2,2′-bipyridine.
 [10] 下記式(1)で表される化合物を、ニッケル触媒および還元剤の存在下で反応させ、下記式(2)で表されるジシクロヘキサンジカルボン酸ジエステルを得る工程と、
 ジシクロヘキサンジカルボン酸ジエステルを加水分解して塩とした後、酸を付与して下記式(3)で表されるジシクロヘキサンジカルボン酸を得る工程と、
 を有する、ジシクロヘキサンジカルボン酸の製造方法。
Figure JPOXMLDOC01-appb-C000005
 ここで、式(1)および(2)中、Rは、置換基を有してもよい炭素数1~6の直鎖状もしくは分岐状のアルキル基、置換基を有してもよい炭素数3~8の環状のアルキル基、置換基を有してもよい炭素数1~6の直鎖状もしくは分岐状のアルケニル基、置換基を有してもよい炭素数3~8の環状のアルケニル基、置換基を有してもよい炭素数1~6のアルキニル基、置換基を有してもよいアリール基、または、置換基を有してもよい複素環式基を表し、式(1)中、Xは、脱離基を表す。
[10] A step of reacting a compound represented by the following formula (1) in the presence of a nickel catalyst and a reducing agent to obtain a dicyclohexanedicarboxylic acid diester represented by the following formula (2);
Hydrolyzing dicyclohexanedicarboxylic acid diester to form a salt, and then adding an acid to obtain dicyclohexanedicarboxylic acid represented by the following formula (3);
The manufacturing method of dicyclohexane dicarboxylic acid which has these.
Figure JPOXMLDOC01-appb-C000005
Here, in the formulas (1) and (2), R is a linear or branched alkyl group having 1 to 6 carbon atoms which may have a substituent, or a carbon number which may have a substituent. A cyclic alkyl group having 3 to 8 carbon atoms, a linear or branched alkenyl group having 1 to 6 carbon atoms which may have a substituent, and a cyclic alkenyl group having 3 to 8 carbon atoms which may have a substituent Represents a group, an alkynyl group having 1 to 6 carbon atoms which may have a substituent, an aryl group which may have a substituent, or a heterocyclic group which may have a substituent; ), X represents a leaving group.
 本発明によれば、立体異性体の副生を抑制し、簡便な操作で異性体を分離することができる、ジシクロヘキサンジカルボン酸ジエステルの製造方法、および、ジシクロヘキサンジカルボン酸の製造方法を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of dicyclohexane dicarboxylic acid diester and the manufacturing method of dicyclohexane dicarboxylic acid which can suppress the by-product of a stereoisomer and can isolate | separate an isomer by simple operation are provided. be able to.
 以下、本発明について詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
 なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
Hereinafter, the present invention will be described in detail.
The description of the constituent elements described below may be made based on typical embodiments of the present invention, but the present invention is not limited to such embodiments.
In this specification, a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
[ジシクロヘキサンジカルボン酸ジエステルの製造方法]
 本発明のジシクロヘキサンジカルボン酸ジエステルの製造方法(以下、「本発明のジエステルの製造方法」とも略す。)は、下記式(1)で表される化合物を、ニッケル触媒および還元剤の存在下で反応させ、下記式(2)で表されるジシクロヘキサンジカルボン酸ジエステルを得る工程(以下、「ジエステル化工程」とも略す。)を有する。
Figure JPOXMLDOC01-appb-C000006
 ここで、式(1)および(2)中、Rは、置換基を有してもよい炭素数1~6の直鎖状もしくは分岐状のアルキル基、置換基を有してもよい炭素数3~8の環状のアルキル基、置換基を有してもよい炭素数1~6の直鎖状もしくは分岐状のアルケニル基、置換基を有してもよい炭素数3~8の環状のアルケニル基、置換基を有してもよい炭素数1~6のアルキニル基、置換基を有してもよいアリール基、または、置換基を有してもよい複素環式基を表し、式(1)中、Xは、脱離基を表す。
[Method for producing dicyclohexanedicarboxylic acid diester]
The method for producing dicyclohexanedicarboxylic acid diester of the present invention (hereinafter also abbreviated as “the method for producing diester of the present invention”) comprises a compound represented by the following formula (1) in the presence of a nickel catalyst and a reducing agent. It has the process (henceforth a "diesterification process") obtained by making it react and obtaining the dicyclohexane dicarboxylic acid diester represented by following formula (2).
Figure JPOXMLDOC01-appb-C000006
Here, in the formulas (1) and (2), R is a linear or branched alkyl group having 1 to 6 carbon atoms which may have a substituent, or a carbon number which may have a substituent. A cyclic alkyl group having 3 to 8 carbon atoms, a linear or branched alkenyl group having 1 to 6 carbon atoms which may have a substituent, and a cyclic alkenyl group having 3 to 8 carbon atoms which may have a substituent Represents a group, an alkynyl group having 1 to 6 carbon atoms which may have a substituent, an aryl group which may have a substituent, or a heterocyclic group which may have a substituent; ), X represents a leaving group.
 本発明のジエステルの製造方法は、上述した通り、上記式(1)で表される化合物を、ニッケル触媒および還元剤の存在下で反応させ、上記式(2)で表されるジシクロヘキサンジカルボン酸ジエステルを得ることにより、立体異性体の副生が抑制され、また、簡便な操作で異性体を分離することができる。
 これは、詳細には明らかではないが、本発明者らは以下のように推測している。
 すなわち、上記式(1)中の脱離基が還元剤によって脱離した後、脱離部位に生じた炭素ラジカルとニッケル触媒のニッケル原子とが結合する際に、エネルギー的に有利な方向(エクアトリアル方向)に向いたトランス体が優先して得られたため、その後のカップリング反応においてもトランス体が優先して得られ、その結果、再結晶等の簡便な操作で異性体を分離することができたと考えられる。
 以下に、本発明のジエステルの製造方法が有するジエステル化工程について、詳述する。
As described above, in the method for producing a diester of the present invention, the compound represented by the above formula (1) is reacted in the presence of a nickel catalyst and a reducing agent, and the dicyclohexanedicarboxylic acid represented by the above formula (2). By obtaining the diester, the by-production of stereoisomers is suppressed, and the isomers can be separated by a simple operation.
Although this is not clear in detail, the present inventors presume as follows.
That is, after the leaving group in the above formula (1) is eliminated by the reducing agent, the carbon radical generated at the elimination site and the nickel atom of the nickel catalyst are bound to each other in an energetically advantageous direction (equatorial). Direction), the trans isomer was preferentially obtained, so that the trans isomer was also preferentially obtained in the subsequent coupling reaction. As a result, the isomers could be separated by a simple operation such as recrystallization. It is thought.
Below, the diesterification process which the manufacturing method of the diester of this invention has is explained in full detail.
 〔ジエステル化工程〕
 本発明のジエステルの製造方法が有するジエステル化工程は、上記式(1)で表される化合物を、ニッケル触媒および還元剤の存在下で反応させ、上記式(2)で表されるジシクロヘキサンジカルボン酸ジエステルを得る工程である。
[Diesterification process]
In the diesterification step of the diester production method of the present invention, the compound represented by the above formula (1) is reacted in the presence of a nickel catalyst and a reducing agent, and the dicyclohexanedicarboxylic acid represented by the above formula (2). In this step, an acid diester is obtained.
 <式(1)で表される化合物>
 上記ジエステル化工程で用いる出発物質は、下記式(1)で表される化合物である。
Figure JPOXMLDOC01-appb-C000007
<Compound represented by Formula (1)>
The starting material used in the diesterification step is a compound represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000007
 上記式(1)中、Rは、置換基を有してもよい炭素数1~6の直鎖状もしくは分岐状のアルキル基、置換基を有してもよい炭素数3~8の環状のアルキル基、置換基を有してもよい炭素数1~6の直鎖状もしくは分岐状のアルケニル基、置換基を有してもよい炭素数3~8の環状のアルケニル基、置換基を有してもよい炭素数1~6のアルキニル基、置換基を有してもよいアリール基、または、置換基を有してもよい複素環式基を表す。
 また、上記式(1)中、Xは、脱離基を表す。
In the above formula (1), R is a linear or branched alkyl group having 1 to 6 carbon atoms which may have a substituent, or a cyclic group having 3 to 8 carbon atoms which may have a substituent. It has an alkyl group, a linear or branched alkenyl group having 1 to 6 carbon atoms which may have a substituent, a cyclic alkenyl group having 3 to 8 carbon atoms which may have a substituent, or a substituent. And an alkynyl group having 1 to 6 carbon atoms, an aryl group which may have a substituent, or a heterocyclic group which may have a substituent.
In the above formula (1), X represents a leaving group.
 上記式(1)中のRが示す炭素数1~6の直鎖状もしくは分岐状のアルキル基としては、具体的には、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、t-ブチル基などが挙げられる。
 また、Rが示す炭素数3~8の環状のアルキル基としては、具体的には、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基などが挙げられる。
Specific examples of the linear or branched alkyl group having 1 to 6 carbon atoms represented by R in the above formula (1) include, for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, and n-butyl. Group, isobutyl group, sec-butyl group, t-butyl group and the like.
Specific examples of the cyclic alkyl group having 3 to 8 carbon atoms represented by R include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, and a cyclohexyl group.
 また、Rが示す炭素数1~6の直鎖状もしくは分岐状のアルケニル基としては、具体的には、例えば、ビニル基、1-プロペニル基、アリル基、イソプロペニル基、1-ブテニル基、2-ブテニル基などが挙げられる。
 また、Rが示す炭素数3~8の環状のアルケニル基としては、具体的には、例えば、2-シクロペンテン-1-イル基、2-シクロヘキセン-1-イル基などが挙げられる。
Specific examples of the linear or branched alkenyl group having 1 to 6 carbon atoms represented by R include, for example, vinyl group, 1-propenyl group, allyl group, isopropenyl group, 1-butenyl group, And 2-butenyl group.
Specific examples of the cyclic alkenyl group having 3 to 8 carbon atoms represented by R include a 2-cyclopenten-1-yl group and a 2-cyclohexen-1-yl group.
 また、炭素数1~6のアルキニル基としては、具体的には、例えば、エチニル基、プロパルギル基などが挙げられる。
 また、アリール基としては、具体的には、例えば、フェニル基、p-トリル基、ナフチル基、m-クロロフェニル基、o-ヘキサデカノイルアミノフェニル基などが挙げられる。
 また、複素環式基としては、具体的には、例えば、フリル基、ピロリル基、チエニル基、ピリジニル基、チアゾリル基等の単環系芳香族複素環基;ベンゾチアゾリル基、ベンゾフリル基、ベンゾチエニル基等の多環系芳香族複素環基(縮合多環系芳香族複素環基を含む);モルホリニル基等の非芳香族複素環基;などが挙げられる。
Specific examples of the alkynyl group having 1 to 6 carbon atoms include ethynyl group and propargyl group.
Specific examples of the aryl group include a phenyl group, a p-tolyl group, a naphthyl group, an m-chlorophenyl group, and an o-hexadecanoylaminophenyl group.
Specific examples of the heterocyclic group include monocyclic aromatic heterocyclic groups such as a furyl group, a pyrrolyl group, a thienyl group, a pyridinyl group, and a thiazolyl group; a benzothiazolyl group, a benzofuryl group, and a benzothienyl group. And polycyclic aromatic heterocyclic groups (including fused polycyclic aromatic heterocyclic groups); non-aromatic heterocyclic groups such as morpholinyl groups; and the like.
 一方、上記式(1)中のRが有していてもよい置換基としては、例えば、アルキル基、アルコキシ基、ハロゲン原子などが挙げられる。
 アルキル基としては、例えば、炭素数1~18の直鎖状、分岐鎖状または環状のアルキル基が好ましく、炭素数1~8のアルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、t-ブチル基、シクロヘキシル基等)がより好ましく、炭素数1~4のアルキル基であることが更に好ましく、メチル基またはエチル基であるのが特に好ましい。
 アルコキシ基としては、例えば、炭素数1~18のアルコキシ基が好ましく、炭素数1~8のアルコキシ基(例えば、メトキシ基、エトキシ基、n-ブトキシ基、メトキシエトキシ基等)がより好ましく、炭素数1~4のアルコキシ基であることが更に好ましく、メトキシ基またはエトキシ基であるのが特に好ましい。
 ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられ、中でも、フッ素原子、塩素原子であるのが好ましい。
On the other hand, examples of the substituent that R in formula (1) may have include an alkyl group, an alkoxy group, and a halogen atom.
As the alkyl group, for example, a linear, branched or cyclic alkyl group having 1 to 18 carbon atoms is preferable, and an alkyl group having 1 to 8 carbon atoms (for example, a methyl group, an ethyl group, a propyl group, an isopropyl group). N-butyl group, isobutyl group, sec-butyl group, t-butyl group, cyclohexyl group, etc.), more preferably an alkyl group having 1 to 4 carbon atoms, and a methyl group or an ethyl group. Is particularly preferred.
As the alkoxy group, for example, an alkoxy group having 1 to 18 carbon atoms is preferable, an alkoxy group having 1 to 8 carbon atoms (for example, a methoxy group, an ethoxy group, an n-butoxy group, a methoxyethoxy group, etc.) is more preferable. An alkoxy group having a number of 1 to 4 is more preferable, and a methoxy group or an ethoxy group is particularly preferable.
Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. Among them, a fluorine atom and a chlorine atom are preferable.
 本発明においては、入手容易性の観点から、上記式(1)中のRが、炭素数1~6の直鎖状もしくは分岐状のアルキル基を表すことが好ましく、中でも、メチル基、エチル基、t-ブチル基、または、トリチル基を表すことがより好ましい。 In the present invention, from the viewpoint of availability, R in the above formula (1) preferably represents a linear or branched alkyl group having 1 to 6 carbon atoms, and among them, a methyl group, an ethyl group , T-butyl group or trityl group is more preferable.
 上記式(1)中のXが示す脱離基は、シクロヘキサン環を構成している炭素原子に直接結合された基X1であって、C-X1結合の電子対を取り込んで容易に脱離することができる基を表す。
 脱離基としては、例えば、ハロゲン原子、アルキルチオ基、アルキルスルホニルオキシ基、アリールスルホニルオキシ基などが挙げられる。
 ハロゲン原子としては、具体的には、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子などが挙げられ、中でも、臭素原子、ヨウ素原子であることが好ましく、入手容易性と、反応(カップリング反応)性の観点から、臭素原子であることがより好ましい。
 アルキルチオ基としては、具体的には、例えば、メチルチオ基、エチルチオ基などが挙げられる。
 アルキルスルホニルオキシ基としては、具体的には、例えば、メタンスルホニルオキシ基、エタンスルホニルオキシ基、n-プロパンスルホニルオキシ基、n-ブタンスルホニルオキシ基などが挙げられ、中でも、メタンスルホニルオキシ基であることが好ましい。
 アリールスルホニルオキシ基としては、具体的には、例えば、トルエンスルホニルオキシ基、4-ニトロフェニルスルホニルオキシ基、4-メトキシフェニルスルホニルオキシ基、2-ニトロフェニルスルホニルオキシ基、3-クロロフェニルスルホニルオキシ基などが挙げられ、中でも、トルエンスルホニルオキシ基であることが好ましく、p-トルエンスルホニルオキシ基であることがより好ましい。
 このような脱離基のうち、臭素原子、メタンスルホニルオキシ基、および、トルエンスルホニルオキシ基からなる群から選択される少なくとも1種であることが好ましい。
The leaving group represented by X in the above formula (1) is a group X1 directly bonded to the carbon atom constituting the cyclohexane ring, and is easily eliminated by taking in an electron pair of C—X1 bond. Represents a group capable of
Examples of the leaving group include a halogen atom, an alkylthio group, an alkylsulfonyloxy group, and an arylsulfonyloxy group.
Specific examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. Among these, a bromine atom and an iodine atom are preferable, and availability and reaction (coupling) are preferred. From the viewpoint of (reactivity), it is more preferably a bromine atom.
Specific examples of the alkylthio group include a methylthio group and an ethylthio group.
Specific examples of the alkylsulfonyloxy group include a methanesulfonyloxy group, an ethanesulfonyloxy group, an n-propanesulfonyloxy group, and an n-butanesulfonyloxy group, and among them, a methanesulfonyloxy group. It is preferable.
Specific examples of the arylsulfonyloxy group include a toluenesulfonyloxy group, a 4-nitrophenylsulfonyloxy group, a 4-methoxyphenylsulfonyloxy group, a 2-nitrophenylsulfonyloxy group, a 3-chlorophenylsulfonyloxy group, and the like. Among them, a toluenesulfonyloxy group is preferable, and a p-toluenesulfonyloxy group is more preferable.
Among such leaving groups, at least one selected from the group consisting of a bromine atom, a methanesulfonyloxy group, and a toluenesulfonyloxy group is preferable.
 <ニッケル触媒>
 上記ジエステル化工程で用いるニッケル触媒は特に限定されず、例えば、ニッケル原子の原子価が0~2価のものが挙げられる。
 上記ニッケル触媒としては、具体的には、例えば、
 塩化ニッケル(II)等の金属触媒;
 [1,3-ビス(ジフェニルホスフィノ)プロパン]ニッケル(II)ジクロリド、ビス(トリフェニルホスフィン)ニッケル(II)ジクロリド、[1,2-ビス(ジフェニルホスフィノ)エタン]ニッケル(II)ジクロリド、[1,1’-ビス(ジフェニルホスフィノ)フェロセン]ニッケル(II)ジクロリド、ビス(1,5-シクロオクタジエン)ニッケル(0)、[1,3-ビス(2,6-ジイソプロピルフェニル)イミダゾール-2-イリデン]トリフェニルホスフィンニッケル(II)ジクロリド、ブロモ[(2,6-ピリジンジイル)ビス(3-メチル-1-イミダゾリル-2-イリデン)]ニッケルブロミド、ビス(トリシクロヘキシルホスフィン)ニッケル(II)ジクロリド、ビス(1,5-シクロオクタジエン)ニッケル(0)、クロロビス[ジシクロヘキシル(フェニル)ホスフィノ](o-トリル)ニッケル(II)、ビス(ジシクロヘキシルフェニルホスフィノ)ニッケル(II)ジクロリド、ビス(2,4-ペンタンジオナト)ニッケル(II)水和物等の金属錯体触媒;
 などが挙げられる。
<Nickel catalyst>
The nickel catalyst used in the diesterification step is not particularly limited, and examples thereof include those having a nickel atom valence of 0 to 2.
Specifically, as the nickel catalyst, for example,
Metal catalysts such as nickel (II) chloride;
[1,3-bis (diphenylphosphino) propane] nickel (II) dichloride, bis (triphenylphosphine) nickel (II) dichloride, [1,2-bis (diphenylphosphino) ethane] nickel (II) dichloride, [1,1′-bis (diphenylphosphino) ferrocene] nickel (II) dichloride, bis (1,5-cyclooctadiene) nickel (0), [1,3-bis (2,6-diisopropylphenyl) imidazole -2-ylidene] triphenylphosphine nickel (II) dichloride, bromo [(2,6-pyridinediyl) bis (3-methyl-1-imidazolyl-2-ylidene)] nickel bromide, bis (tricyclohexylphosphine) nickel ( II) Dichloride, bis (1,5-cyclooctadiene) di Neckel (0), chlorobis [dicyclohexyl (phenyl) phosphino] (o-tolyl) nickel (II), bis (dicyclohexylphenylphosphino) nickel (II) dichloride, bis (2,4-pentanedionato) nickel (II) Metal complex catalysts such as hydrates;
Etc.
 上記ニッケル触媒は、ニッケル化合物およびリガンド化合物(配位子)から調製された触媒(例えば、上述した金属錯体触媒など)であることが好ましい。
 ここで、上記ニッケル化合物としては、例えば、ハロゲン化ニッケル(例えば、フッ化ニッケル、塩化ニッケル、臭化ニッケル、ヨウ化ニッケル等)、ニッケルカルボン酸塩(例えば、ギ酸ニッケル、酢酸ニッケル、2-エチルヘキサン酸ニッケル、シクロブタン酸ニッケル、シュウ酸ニッケル、ステアリン酸ニッケル、ナフテン酸ニッケル、クエン酸ニッケル等)、次亜リン酸ニッケル、硫酸ニッケル、炭酸ニッケル、硝酸ニッケル、ニッケルアセチルアセトナート、(ジメトキシエタン)塩化ニッケル等が挙げられ、中でも、ハロゲン化ニッケルが好ましい。
 また、上記リガンド化合物としては、例えば、含窒素二座配位子が挙げられ、含窒素二座配位子としては、具体的には、例えば、2,2’-ビピリジン、1,10-フェナントロリン、メチレンビスオキサゾリン、N,N,N’,N’-テトラメチルエチレンジアミン等が挙げられ、中でも、入手容易性の観点から、2,2’-ビピリジンが好ましい。
The nickel catalyst is preferably a catalyst prepared from a nickel compound and a ligand compound (ligand) (for example, the above-described metal complex catalyst).
Here, examples of the nickel compound include nickel halide (eg, nickel fluoride, nickel chloride, nickel bromide, nickel iodide), nickel carboxylate (eg, nickel formate, nickel acetate, 2-ethyl). Nickel hexanoate, nickel cyclobutanoate, nickel oxalate, nickel stearate, nickel naphthenate, nickel citrate, etc.), nickel hypophosphite, nickel sulfate, nickel carbonate, nickel nitrate, nickel acetylacetonate, (dimethoxyethane) Examples thereof include nickel chloride, and among these, nickel halide is preferable.
Examples of the ligand compound include a nitrogen-containing bidentate ligand. Specific examples of the nitrogen-containing bidentate ligand include 2,2′-bipyridine and 1,10-phenanthroline. , Methylenebisoxazoline, N, N, N ′, N′-tetramethylethylenediamine and the like. Among them, 2,2′-bipyridine is preferable from the viewpoint of availability.
 上記ジエステル化工程で用いるニッケル触媒の使用量は、上記式(1)で表される化合物1モルに対して、0.05~0.5モルであることが好ましく、0.1~0.5モルであることがより好ましく、0.1~0.2モルであることが更に好ましい。 The amount of nickel catalyst used in the diesterification step is preferably 0.05 to 0.5 mol, preferably 0.1 to 0.5 mol, relative to 1 mol of the compound represented by the formula (1). The molar ratio is more preferably 0.1 to 0.2 mol.
 <還元剤>
 上記ジエステル化工程で用いる還元剤は特に限定されず、その具体例としては、コバルト化合物、マグネシウム、亜鉛、マンガンなどが挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。
 コバルト化合物としては、例えば、有機酸のコバルト塩、コバルト金属錯体などが挙げられ、有機酸のコバルト塩が好ましい。有機酸のコバルト塩としては、具体的には、例えば、ナフテン酸コバルト、ステアリン酸コバルト、ネオデカン酸コバルト、ロジン酸コバルト、バーサチック酸コバルト、トール油酸コバルト、オレイン酸コバルト、リノール酸コバルト、リノレン酸コバルト、パルミチン酸コバルト等を挙げることができる。
<Reducing agent>
The reducing agent used in the diesterification step is not particularly limited, and specific examples thereof include cobalt compounds, magnesium, zinc, manganese, etc., and these may be used alone or in combination of two or more. May be.
Examples of the cobalt compound include a cobalt salt of an organic acid, a cobalt metal complex, and the like, and a cobalt salt of an organic acid is preferable. Specific examples of the cobalt salt of organic acid include, for example, cobalt naphthenate, cobalt stearate, cobalt neodecanoate, cobalt rosinate, cobalt versatate, cobalt tall oil, cobalt oleate, cobalt linoleate, and linolenic acid. Examples thereof include cobalt and cobalt palmitate.
 これらの還元剤のうち、反応収率の観点から、上記式(1)中のXがハロゲン原子で表される化合物である場合には、亜鉛を用いることが好ましい。
 また、同様の観点から、上記式(1)中のXがメタンスルホニルオキシ基、または、トルエンスルホニルオキシ基で表される化合物である場合には、コバルト化合物とマンガンとの組み合わせを用いることが好ましい。
Among these reducing agents, from the viewpoint of reaction yield, it is preferable to use zinc when X in the above formula (1) is a compound represented by a halogen atom.
From the same viewpoint, when X in the formula (1) is a compound represented by a methanesulfonyloxy group or a toluenesulfonyloxy group, it is preferable to use a combination of a cobalt compound and manganese. .
 上記ジエステル化工程で用いる還元剤の使用量は、上記式(1)で表される化合物1モルに対して、1~5モルであることが好ましく、1~2.5モルであることがより好ましく、1.3~1.7モルが更に好ましい。 The amount of the reducing agent used in the diesterification step is preferably 1 to 5 mol and more preferably 1 to 2.5 mol with respect to 1 mol of the compound represented by the formula (1). The amount is preferably 1.3 to 1.7 mol.
 <溶媒>
 上記ジエステル化工程においては、溶媒を用いることが好ましい。
 上記溶媒としては、例えば、ピリジン、メチルピリジン等のピリジン類;アセトニトリル、プロピオニトリル等のニトリル類;ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等のアミド類;などが挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。
 これらのうち、ピリジン類の溶媒とニトリル類の溶媒とを併用することが好ましい。
<Solvent>
In the diesterification step, it is preferable to use a solvent.
Examples of the solvent include pyridines such as pyridine and methylpyridine; nitriles such as acetonitrile and propionitrile; amides such as dimethylformamide, dimethylacetamide and N-methylpyrrolidone; and the like. You may use independently and may use 2 or more types together.
Of these, it is preferable to use a pyridine solvent and a nitrile solvent in combination.
 溶媒を使用する場合の使用量は、上記式(1)で表される化合物に対して、1~10倍量(ml/g)であることが好ましく、1~5倍量(ml/g)であることがより好ましく、1~3倍量(ml/g)であることが更に好ましい。 The amount of the solvent used is preferably 1 to 10 times (ml / g), preferably 1 to 5 times (ml / g) of the compound represented by the formula (1). The amount is more preferably 1 to 3 times (ml / g).
 <反応条件>
 上記ジエステル化工程における反応条件は特に限定されないが、上述したニッケル触媒および還元剤を用いているため、上述した現行法1などと比較すると、より緩やかな条件を採用することができる。
 例えば、反応温度は、0~60℃であることが好ましく、5~50℃であることがより好ましい。
 また、反応時間は、30分~10時間であることが好ましく、4~8時間であることがより好ましい。
<Reaction conditions>
Although the reaction conditions in the said diesterification process are not specifically limited, Since the nickel catalyst and reducing agent mentioned above are used, compared with the above-mentioned current method 1 etc., milder conditions can be employ | adopted.
For example, the reaction temperature is preferably 0 to 60 ° C., more preferably 5 to 50 ° C.
The reaction time is preferably 30 minutes to 10 hours, more preferably 4 to 8 hours.
 本発明においては、上述したジエステル化工程により、立体異性体の副生を抑制された下記式(2)で表されるジシクロヘキサンジカルボン酸ジエステルを得ることができる。
 これにより、下記式(2)で表されるジシクロヘキサンジカルボン酸ジエステルは、抽出、晶出、蒸留およびカラムクロマトグラフィーなどの簡便な操作により、異性体を分離することができる。
 なお、下記式(2)で表されるジシクロヘキサンジカルボン酸ジエステルを、後述する本発明のジシクロヘキサンジカルボン酸の製造方法に供する場合、分離操作を行わず、ジシクロヘキサンジカルボン酸を得る工程に使用してもよい。
Figure JPOXMLDOC01-appb-C000008
In this invention, the dicyclohexane dicarboxylic acid diester represented by following formula (2) by which the by-product of the stereoisomer was suppressed by the diesterification process mentioned above can be obtained.
Thereby, dicyclohexane dicarboxylic acid diester represented by the following formula (2) can separate isomers by simple operations such as extraction, crystallization, distillation and column chromatography.
In addition, when using the dicyclohexane dicarboxylic acid diester represented by following formula (2) for the manufacturing method of the dicyclohexane dicarboxylic acid of this invention mentioned later, it uses for the process of obtaining dicyclohexane dicarboxylic acid, without performing separation operation. May be.
Figure JPOXMLDOC01-appb-C000008
 上記式(2)中のRは、上記式(1)中のRとして説明したものと同様である。
 本発明においては、上記式(1)で表される化合物の入手容易性の観点から、上記式(2)中のRが、炭素数1~6の直鎖状もしくは分岐状のアルキル基を表すことが好ましく、中でも、メチル基、エチル基、または、t-ブチル基を表すことがより好ましい。
R in the above formula (2) is the same as that described as R in the above formula (1).
In the present invention, from the viewpoint of availability of the compound represented by the above formula (1), R in the above formula (2) represents a linear or branched alkyl group having 1 to 6 carbon atoms. Among them, it is preferable to represent a methyl group, an ethyl group, or a t-butyl group.
[ジシクロヘキサンジカルボン酸の製造方法]
 本発明のジシクロヘキサンジカルボン酸の製造方法(以下、「本発明のジカルボン酸の製造方法」とも略す。)は、下記式(1)で表される化合物を、ニッケル触媒および還元剤の存在下で反応させ、下記式(2)で表されるジシクロヘキサンジカルボン酸ジエステルを得る工程(ジエステル化工程)と、上記ジシクロヘキサンジカルボン酸ジエステルを加水分解して塩とした後、酸を付与して下記式(3)で表されるジシクロヘキサンジカルボン酸を得る工程(以下、「ジカルボキシル化工程」とも略す)と、を有する。
 ここで、本発明のジカルボン酸の製造方法における上記ジエステル化工程は、上述した本発明のジエステルの製造方法において説明したものと同様であり、下記式(1)および(2)中のR、ならびに、下記式(1)中のXについても、上述した本発明のジエステルの製造方法において説明したものと同様である。
Figure JPOXMLDOC01-appb-C000009
[Method for producing dicyclohexanedicarboxylic acid]
The method for producing dicyclohexanedicarboxylic acid according to the present invention (hereinafter also abbreviated as “the method for producing dicarboxylic acid according to the present invention”) is obtained by reacting a compound represented by the following formula (1) in the presence of a nickel catalyst and a reducing agent. A step of reacting to obtain a dicyclohexanedicarboxylic acid diester represented by the following formula (2) (diesterification step), and hydrolyzing the dicyclohexanedicarboxylic acid diester to form a salt; And a step of obtaining dicyclohexanedicarboxylic acid represented by (3) (hereinafter also abbreviated as “dicarboxylation step”).
Here, the said diesterification process in the manufacturing method of the dicarboxylic acid of this invention is the same as that demonstrated in the manufacturing method of the diester of this invention mentioned above, R in following formula (1) and (2), and X in the following formula (1) is the same as that described in the above-described method for producing a diester of the present invention.
Figure JPOXMLDOC01-appb-C000009
 〔ジカルボキシル化工程〕
 本発明のジカルボン酸の製造方法が有するジカルボキシル化工程は、上記式(2)で表されるジシクロヘキサンジカルボン酸ジエステルを加水分解して塩とした後、酸を付与して上記式(3)で表されるジシクロヘキサンジカルボン酸を得る工程である。
 また、上記ジカルボキシル化工程における加水分解は、溶媒中で塩基を用いて行うことが好ましい。
[Dicarboxylation step]
In the dicarboxylation step of the method for producing dicarboxylic acid of the present invention, the dicyclohexanedicarboxylic acid diester represented by the above formula (2) is hydrolyzed to form a salt, and then an acid is added to the above formula (3). Is a step of obtaining dicyclohexanedicarboxylic acid represented by
The hydrolysis in the dicarboxylation step is preferably performed using a base in a solvent.
 <溶媒>
 加水分解の際に好適に用いられる溶媒としては、具体的には、例えば、メタノール、エタノールなどの1級アルコール;2-プロパノール(イソプロパノール)、sec-ブタノール、シクロペンタノール、シクロヘキサノールなどの2級アルコール;1-エチニル-1-シクロプロパノール、1-アダマンタノール、tert-ブタノール、t-アミルアルコールなどの3級アルコール;テトラヒドロフラン(THF)、1,4-ジオキサンなどのエーテル類;ヘキサン、ヘプタン、ベンゼン、トルエン、キシレン、クメンなどの炭化水素類;塩化メチレン、クロロホルム、トリクロロエチレンなどの塩素系溶剤類;アセトン、2-ブタノンなどのケトン類;N,N-ジメチルホルムアミド、1,3-ジメチル-2-イミダゾリジノン、ジメチル=スルホキシド、ヘキサメチルホスホリック=トリアミドなどの非プロトン性極性溶媒類;アセトニトリル、プロピオニトリルなどのニトリル類;酢酸エチル、酢酸n-ブチルなどのエステル類;等が挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。
 これらのうち、アルコールを含む溶媒を用いることが好ましい。
<Solvent>
Specific examples of the solvent suitably used in the hydrolysis include primary alcohols such as methanol and ethanol; secondary solvents such as 2-propanol (isopropanol), sec-butanol, cyclopentanol and cyclohexanol. Alcohols; tertiary alcohols such as 1-ethynyl-1-cyclopropanol, 1-adamantanol, tert-butanol and t-amyl alcohol; ethers such as tetrahydrofuran (THF) and 1,4-dioxane; hexane, heptane, benzene Hydrocarbons such as toluene, xylene and cumene; chlorinated solvents such as methylene chloride, chloroform and trichloroethylene; ketones such as acetone and 2-butanone; N, N-dimethylformamide and 1,3-dimethyl-2- Imidazolidinone, Jime Aprotic polar solvents such as chill sulfoxide and hexamethylphosphoric triamide; nitriles such as acetonitrile and propionitrile; esters such as ethyl acetate and n-butyl acetate; and the like. You may use independently and may use 2 or more types together.
Among these, it is preferable to use a solvent containing alcohol.
 <塩基>
 加水分解の際に好適に用いられる塩基としては、具体的には、例えば、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、炭酸水素ナトリウム、炭酸水素カリウムなどの無機ブレンステッド塩基;ピリジン、トリエチルアミン、ジメチルアミノピリジン、ジイソプロピルエチルアミン、N-メチルモルフォリンなどの有機ブレンステッド塩基;が挙げられる。
 これらのうち、無機ブレンステッド塩基であることが好ましく、入手性および溶解性の観点から、水酸化ナトリウム、水酸化カリウムおよび水酸化リチウムのいずれかであることがより好ましい。
<Base>
Specific examples of the base preferably used in the hydrolysis include, for example, inorganic Bronsted bases such as sodium hydroxide, potassium hydroxide, lithium hydroxide, sodium bicarbonate, potassium bicarbonate; pyridine, triethylamine, And organic Bronsted bases such as dimethylaminopyridine, diisopropylethylamine, N-methylmorpholine.
Among these, an inorganic Bronsted base is preferable, and from the viewpoint of availability and solubility, it is more preferably any of sodium hydroxide, potassium hydroxide, and lithium hydroxide.
 <反応条件>
 上記式(2)で表されるジシクロヘキサンジカルボン酸ジエステルを塩にする際の反応条件は特に限定されず、従来公知の加水分解の反応条件を適宜採用することができる。
 例えば、反応温度は、-30~100℃で行われることが好ましく、-20~50℃で行われることがより好ましく、-10~40℃で行われることが更に好ましい。
 また、反応時間は、10分~24時間行われることが好ましく、20分~10時間行われることがより好ましく、30分~8時間行われることが更に好ましい。
<Reaction conditions>
The reaction conditions for converting the dicyclohexanedicarboxylic acid diester represented by the above formula (2) into a salt are not particularly limited, and conventionally known hydrolysis reaction conditions can be appropriately employed.
For example, the reaction temperature is preferably −30 to 100 ° C., more preferably −20 to 50 ° C., and further preferably −10 to 40 ° C.
The reaction time is preferably 10 minutes to 24 hours, more preferably 20 minutes to 10 hours, and even more preferably 30 minutes to 8 hours.
 <酸>
 ジシクロヘキサンジカルボン酸ジエステルの塩に付与する酸としては、例えば、塩酸、臭化水素酸、ヨウ化水素酸、硫酸、硝酸、リン酸などの無機酸類またはこれらの塩類;ギ酸、酢酸、プロピオン酸、シュウ酸、トリフルオロ酢酸、メタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸、ナフタレンスルホン酸などの有機酸類またはこれらの塩類;テトラフルオロホウ酸リチウム、三フッ化ホウ素、三塩化ホウ素、三臭化ホウ素、三塩化アルミニウム、塩化亜鉛、臭化亜鉛、ヨウ化亜鉛、四塩化錫、四臭化錫、二塩化錫、四塩化チタン、四臭化チタン、トリメチルヨードシランなどのルイス酸類;アルミナ、シリカゲル、チタニアなどの酸化物;モンモリロナイトなどの鉱物;等が挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。
<Acid>
Examples of the acid imparted to the salt of dicyclohexanedicarboxylic acid diester include inorganic acids such as hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid, nitric acid, phosphoric acid or salts thereof; formic acid, acetic acid, propionic acid, Organic acids such as oxalic acid, trifluoroacetic acid, methanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, naphthalenesulfonic acid or salts thereof; lithium tetrafluoroborate, boron trifluoride, boron trichloride, triodor Lewis acids such as boron fluoride, aluminum trichloride, zinc chloride, zinc bromide, zinc iodide, tin tetrachloride, tin tetrabromide, tin dichloride, titanium tetrachloride, titanium tetrabromide, trimethyliodosilane; alumina, Oxides such as silica gel and titania; minerals such as montmorillonite; and the like may be used alone. It may be used in combination of two or more.
 <反応条件>
 ジシクロヘキサンジカルボン酸ジエステルの塩に酸を付与し、上記式(3)で表されるジシクロヘキサンジカルボン酸を生成する際の反応条件は特に限定されず、酸を用いた従来公知の脱保護反応の反応条件を適宜採用することができる。
 例えば、反応温度は、-30~100℃で行われることが好ましく、-20~50℃で行われることがより好ましく、-10~40℃で行われることが更に好ましい。
 また、反応時間は、10分~24時間行われることが好ましく、20分~10時間行われることがより好ましく、30分~8時間行われることが更に好ましい。
<Reaction conditions>
The reaction conditions for providing an acid to the salt of dicyclohexane dicarboxylic acid diester to produce dicyclohexane dicarboxylic acid represented by the above formula (3) are not particularly limited, and a conventionally known deprotection reaction using an acid is not limited. Reaction conditions can be employed as appropriate.
For example, the reaction temperature is preferably −30 to 100 ° C., more preferably −20 to 50 ° C., and further preferably −10 to 40 ° C.
The reaction time is preferably 10 minutes to 24 hours, more preferably 20 minutes to 10 hours, and even more preferably 30 minutes to 8 hours.
 以下に実施例に基づいて本発明をさらに詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す実施例により限定的に解釈されるべきものではない。
 また、以下の実施例において、「シリカゲルカラムクロマトグラフィー」は、中圧分取カラムSmart FLASH EPCLC-W-Prep 2XY(山善株式会社)を使用して行った。溶離液における混合比は、容量比を表す。例えば、「酢酸エチル/ヘキサン=1:1→酢酸エチル/ヘキサン4:1」は、50質量%酢酸エチル/50質量%ヘキサンの溶離液を最終的に80質量%酢酸エチル/20質量%ヘキサンの溶離液へ変化させたことを意味する。
 また、H-NMR(Nuclear Magnetic Resonance)スペクトルは、内部基準としてテトラメチルシランを用い、Bruker AV400N(Bruker社)を用いて測定し、全δ値をppmで示した。
Hereinafter, the present invention will be described in more detail based on examples. The materials, amounts used, ratios, processing details, processing procedures, and the like shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention should not be construed as being limited by the following examples.
In the following examples, “silica gel column chromatography” was performed using an intermediate pressure preparative column Smart FLASH EPCLC-W-Prep 2XY (Yamazen Co., Ltd.). The mixing ratio in the eluent represents the volume ratio. For example, “ethyl acetate / hexane = 1: 1 → ethyl acetate / hexane 4: 1” means that an eluent of 50 mass% ethyl acetate / 50 mass% hexane is finally added to 80 mass% ethyl acetate / 20 mass% hexane. It means that the eluent was changed.
The 1 H-NMR (Nuclear Magnetic Resonance) spectrum was measured using Bruker AV400N (Bruker) using tetramethylsilane as an internal standard, and all δ values were shown in ppm.
[実施例1]
Figure JPOXMLDOC01-appb-C000010
[Example 1]
Figure JPOXMLDOC01-appb-C000010
 亜鉛0.83g、塩化ニッケル165mg、および、2,2’-ビピリジン200mgを、ピリジン1.4mL中で、55℃で15分間撹拌し、その後、30℃以下に冷却し、黒色の懸濁液を得た。
 次いで、得られた懸濁液に対して、米国特許第6143774号明細書の実験項(Example 16)に記載された方法で得られた4-ブロモ-シクロヘキサン-1-カルボン酸エチル2.0gとアセトニトリル5.6mLとから調製した溶液を添加した。
 次いで、内温25~35℃の間で6時間撹拌した後、生じた懸濁液をセライトでろ過した。得られた溶液に、1M塩酸水と酢酸エチルを加え、下層(水層)を除去した後、上層(有機層)を飽和食塩水により洗浄し、さらに硫酸マグネシウムよって乾燥させた。硫酸マグネシウムをろ過で除いた後、有機層をエバポレーターによって減圧濃縮し、粗生成物を得た。この粗生成物をシリカゲルカラムクロマトグラフィー(溶離液:酢酸エチル/ヘキサン=1:10→酢酸エチル/ヘキサン1:3)で精製し、上記スキーム中の[1,1’-ジ(シクロヘキサン)]-4,4’-ジカルボン酸エチル1.08gを、無色のアモルファスとして得た(収率82%)。H-NMRによる解析の結果、trans/cis比は5:1であった。なお、シリカゲルカラムクロマトグラフィーによる分離を繰り返すことにより、シス体を分離し、トランス体のみを回収することができた。
 生成物のH-NMRを以下に示す。
 H-NMR(CDCl)δ値:4.19-4.05(4H,m),2.23-2.13(2H,m),2.01-1.96(4H,m),1.81-1.77(4H,m),1.46-0.91(16H,m)
0.83 g of zinc, 165 mg of nickel chloride and 200 mg of 2,2′-bipyridine were stirred in 1.4 mL of pyridine for 15 minutes at 55 ° C., then cooled to below 30 ° C., and the black suspension was Obtained.
Next, with respect to the obtained suspension, 2.0 g of ethyl 4-bromo-cyclohexane-1-carboxylate obtained by the method described in the experimental section (Example 16) of US Pat. No. 6,143,774 was used. A solution prepared from 5.6 mL of acetonitrile was added.
Subsequently, after stirring for 6 hours at an internal temperature of 25 to 35 ° C., the resulting suspension was filtered through Celite. To the resulting solution were added 1M aqueous hydrochloric acid and ethyl acetate to remove the lower layer (aqueous layer), and then the upper layer (organic layer) was washed with saturated brine and further dried over magnesium sulfate. After removing magnesium sulfate by filtration, the organic layer was concentrated under reduced pressure by an evaporator to obtain a crude product. The crude product was purified by silica gel column chromatography (eluent: ethyl acetate / hexane = 1: 10 → ethyl acetate / hexane 1: 3) to obtain [1,1′-di (cyclohexane)]-in the above scheme. 1.08 g of ethyl 4,4′-dicarboxylate was obtained as a colorless amorphous (yield 82%). As a result of analysis by 1 H-NMR, the trans / cis ratio was 5: 1. In addition, by repeating the separation by silica gel column chromatography, it was possible to separate the cis isomer and recover only the trans isomer.
The 1 H-NMR of the product is shown below.
1 H-NMR (CDCl 3 ) δ value: 4.19-4.05 (4H, m), 2.23-2.13 (2H, m), 2.01-1.96 (4H, m), 1.81-1.77 (4H, m), 1.46-0.91 (16H, m)
[実施例2]
Figure JPOXMLDOC01-appb-C000011
[Example 2]
Figure JPOXMLDOC01-appb-C000011
 実施例1で合成した[1,1’-ジ(シクロヘキサン)]-4,4’-ジカルボン酸エチル0.73gを、エタノール1.5mLに溶解させた後、3規定水酸化カリウム水溶液1.5mLを添加し、80℃に加熱した。
 TLC(Thin-Layer Chromatography)にて反応完結を確認後、30℃以下に冷却し、希塩酸5mLを加えた。生じた固体をろ別した後、蒸留水で洗浄し、約13時間送風乾燥し、[1,1’-ジ(シクロヘキサン)]-4,4’-ジカルボン酸0.44gを、白色固体として得た(収率74%)。なお、H-NMRによる解析の結果、trans/cis比は100:0であった。
After dissolving 0.73 g of ethyl [1,1′-di (cyclohexane)]-4,4′-dicarboxylate synthesized in Example 1 in 1.5 mL of ethanol, 1.5 mL of 3N aqueous potassium hydroxide solution was added. Was added and heated to 80 ° C.
After confirming the completion of the reaction by TLC (Thin-Layer Chromatography), the reaction mixture was cooled to 30 ° C. or lower, and 5 mL of diluted hydrochloric acid was added. The resulting solid was filtered off, washed with distilled water, and air-dried for about 13 hours to obtain 0.41, g of [1,1′-di (cyclohexane)]-4,4′-dicarboxylic acid as a white solid. (74% yield). As a result of analysis by 1 H-NMR, the trans / cis ratio was 100: 0.
[実施例3]
Figure JPOXMLDOC01-appb-C000012
[Example 3]
Figure JPOXMLDOC01-appb-C000012
 4-ブロモ-シクロヘキサン-1-カルボン酸エチルの代わりに、4-ブロモ-シクロヘキサン-1-カルボン酸メチル1.0gを用いた以外は、実施例1と同様の方法により、上記スキーム中の[1,1’-ジ(シクロヘキサン)]-4,4’-ジカルボン酸メチル0.45gを、無色アモルファスとして得た(収率69%)。H-NMRによる解析の結果、trans/cis比は7:1であった。なお、シリカゲルカラムクロマトグラフィーによる分離を繰り返すことにより、シス体を分離し、トランス体のみを回収することができた。
 生成物のH-NMRを以下に示す。
 H-NMR(CDCl)δ値:3.66(6H,s),2.26-2.16(2H,m),2.01-1.96(4H,m),1.81-1.77(4H,m),1.46-0.91(10H,m)
In the same manner as in Example 1, except that 1.0 g of methyl 4-bromo-cyclohexane-1-carboxylate was used instead of ethyl 4-bromo-cyclohexane-1-carboxylate, [1 , 1′-di (cyclohexane)]-4,4′-dicarboxylate (0.45 g) was obtained as colorless amorphous (yield 69%). As a result of analysis by 1 H-NMR, the trans / cis ratio was 7: 1. In addition, by repeating the separation by silica gel column chromatography, it was possible to separate the cis form and recover only the trans form.
The 1 H-NMR of the product is shown below.
1 H-NMR (CDCl 3 ) δ value: 3.66 (6H, s), 2.26-2.16 (2H, m), 2.01-1.96 (4H, m), 1.81- 1.77 (4H, m), 1.46-0.91 (10H, m)
[実施例4]
Figure JPOXMLDOC01-appb-C000013
[Example 4]
Figure JPOXMLDOC01-appb-C000013
 4-ブロモ-シクロヘキサン-1-カルボン酸エチルの代わりに、4-ブロモ-シクロヘキサン-1-カルボン酸-t-ブチル1.2gを用いた以外は、実施例1と同様の方法により、上記スキーム中の[1,1’-ジ(シクロヘキサン)]-4,4’-ジカルボン酸-t-ブチル0.65gを、無色油状物として得た(収率76%)。H-NMRによる解析の結果、trans/cis比は10:1であった。なお、シリカゲルカラムクロマトグラフィーによる分離を繰り返すことにより、シス体を分離し、トランス体のみを回収することができた。
 生成物のH-NMRを以下に示す。
 H-NMR(CDCl)δ値:2.12-2.04(2H,m),2.01-1.92(4H,m),1.82-1.70(4H,m),1.46-1.21(24H,m),1.12-0.88(4H,m)
In the above scheme, the same procedure as in Example 1 was used, except that 1.2 g of 4-bromo-cyclohexane-1-carboxylate-t-butyl was used instead of ethyl 4-bromo-cyclohexane-1-carboxylate. Of [1,1′-di (cyclohexane)]-4,4′-dicarboxylic acid-tert-butyl was obtained as a colorless oil (yield 76%). As a result of analysis by 1 H-NMR, the trans / cis ratio was 10: 1. In addition, by repeating the separation by silica gel column chromatography, it was possible to separate the cis form and recover only the trans form.
The 1 H-NMR of the product is shown below.
1 H-NMR (CDCl 3 ) δ value: 2.12 to 2.04 (2H, m), 2.01-1.92 (4H, m), 1.82-1.70 (4H, m), 1.46-1.21 (24H, m), 1.12-0.88 (4H, m)
[実施例5]
Figure JPOXMLDOC01-appb-C000014
[Example 5]
Figure JPOXMLDOC01-appb-C000014
 コバルト化合物としてのビタミンB12(シアノコバラミン)576mgと、マンガン701mgと、塩化ニッケル165mgと、2,2’-ビピリジン200mgとを、ピリジン1.4mL中で、55℃で15分間撹拌し、その後、30℃以下に冷却し、黒色の懸濁液を得た。
 次いで、得られた懸濁液に対して、4-メタンスルホニルオキシ-シクロヘキサン-1-カルボン酸エチル2.77gとアセトニトリル5.6mLとから調製した溶液を添加した。
 次いで、内温25~35℃の間で6時間撹拌した後、生じた懸濁液をセライトでろ過した。得られた溶液に、1M塩酸水と酢酸エチルを加え、下層(水層)を除去した後、上層(有機層)を飽和食塩水により洗浄し、さらに硫酸マグネシウムよって乾燥させた。硫酸マグネシウムをろ過で除いた後、有機層をエバポレーターによって減圧濃縮し、粗生成物を得た。この粗生成物をシリカゲルカラムクロマトグラフィー(溶離液:酢酸エチル/ヘキサン=1:10→酢酸エチル/ヘキサン1:3)で精製し、上記スキーム中の[1,1’-ジ(シクロヘキサン)]-4,4’-ジカルボン酸エチル0.22gを、無色のアモルファスとして得た(収率16%)。H-NMRによる解析の結果、trans/cis比は5:1であった。
576 mg of vitamin B12 (cyanocobalamin) as a cobalt compound, 701 mg of manganese, 165 mg of nickel chloride, and 200 mg of 2,2′-bipyridine were stirred in 1.4 mL of pyridine at 55 ° C. for 15 minutes, and then 30 ° C. Following cooling, a black suspension was obtained.
A solution prepared from 2.77 g of ethyl 4-methanesulfonyloxy-cyclohexane-1-carboxylate and 5.6 mL of acetonitrile was then added to the resulting suspension.
Subsequently, after stirring for 6 hours at an internal temperature of 25 to 35 ° C., the resulting suspension was filtered through Celite. To the resulting solution were added 1M aqueous hydrochloric acid and ethyl acetate to remove the lower layer (aqueous layer), and then the upper layer (organic layer) was washed with saturated brine and further dried over magnesium sulfate. After removing magnesium sulfate by filtration, the organic layer was concentrated under reduced pressure by an evaporator to obtain a crude product. The crude product was purified by silica gel column chromatography (eluent: ethyl acetate / hexane = 1: 10 → ethyl acetate / hexane 1: 3) to obtain [1,1′-di (cyclohexane)]-in the above scheme. 0.22 g of ethyl 4,4′-dicarboxylate was obtained as a colorless amorphous (yield 16%). As a result of analysis by 1 H-NMR, the trans / cis ratio was 5: 1.
[参考例1]
Figure JPOXMLDOC01-appb-C000015
[Reference Example 1]
Figure JPOXMLDOC01-appb-C000015
 上記スキームに示すように、4,4-ビフェニルジカルボン酸ジメチル(S-1-a)125g(0.462mol)を、酢酸1000mLに加え、パラジウム炭素触媒(wet品)12.5gを加えた後に、130℃、2MPaにてオートクレーブ中で接触水素化反応させた。
 反応終了後、室温(23℃)まで冷却した後に、ろ過にて触媒を除いた。
 次いで、酢酸を減圧留去した後、酢酸エチル、および、炭酸水素ナトリウム水溶液を添加した。その後、撹拌し、分液して水層を除去し、更に、有機層を10%食塩水で洗浄した。この溶液に硫酸ナトリウムを加えて乾燥し、溶媒を濃縮することで、4,4’-ジシクロヘキサンジカルボン酸ジメチル(S-1-b)(130g)を得た。
As shown in the above scheme, 125 g (0.462 mol) of dimethyl 4,4-biphenyldicarboxylate (S-1-a) was added to 1000 mL of acetic acid, and 12.5 g of palladium carbon catalyst (wet product) was added. The catalytic hydrogenation reaction was carried out in an autoclave at 130 ° C. and 2 MPa.
After completion of the reaction, the reaction mixture was cooled to room temperature (23 ° C.), and then the catalyst was removed by filtration.
Then, after acetic acid was distilled off under reduced pressure, ethyl acetate and an aqueous sodium hydrogen carbonate solution were added. Thereafter, the mixture was stirred and separated to remove the aqueous layer, and the organic layer was washed with 10% brine. Sodium sulfate was added to this solution for drying, and the solvent was concentrated to obtain dimethyl 4,4′-dicyclohexanedicarboxylate (S-1-b) (130 g).
 次いで、異性体を分離するために、以下の操作を行った。
 まず、4,4’-ジシクロヘキサンジカルボン酸ジメチル(130g)、水酸化カリウムペレット(Aldrich製、純度90%)86.3g、クメン1300mL、および、ポリエチレングリコール2000(東京化成工業社製)10mLを混合し、ディーンスターク管をつけて120℃にて加熱撹拌した。メタノールを留去した後に、外設を180℃として、溶媒を留去しながら20時間加熱還流を続けた。NMRにて反応進行を確認し、反応終了後、冷却し、反応液にエタノール1300mLを添加し、析出しているカリウム塩をろ取した。
 次いで、このカリウム塩を水1300mlに溶解し、氷冷下で濃塩酸を系のpHが3になるまで添加し、析出したカルボン酸をろ取し、粗体を回収した。
 回収した粗体をアセトン500mLに懸濁し、50℃で30分撹拌した後に、室温に冷却し、ろ取し、ジシクロヘキサンジカルボン酸(S-1-c)の結晶を93.9g(収率80%)得た。
Subsequently, in order to separate isomers, the following operation was performed.
First, dimethyl 4,4′-dicyclohexanedicarboxylate (130 g), potassium hydroxide pellets (manufactured by Aldrich, purity 90%) 86.3 g, cumene 1300 mL, and polyethylene glycol 2000 (manufactured by Tokyo Chemical Industry Co., Ltd.) 10 mL were mixed. Then, a Dean-Stark tube was attached and heated and stirred at 120 ° C. After the methanol was distilled off, the external temperature was set to 180 ° C., and the reflux was continued for 20 hours while the solvent was distilled off. The progress of the reaction was confirmed by NMR. After completion of the reaction, the reaction mixture was cooled, 1300 mL of ethanol was added to the reaction solution, and the precipitated potassium salt was collected by filtration.
Next, this potassium salt was dissolved in 1300 ml of water, concentrated hydrochloric acid was added under ice cooling until the pH of the system became 3, and the precipitated carboxylic acid was collected by filtration to recover a crude product.
The recovered crude product was suspended in 500 mL of acetone, stirred at 50 ° C. for 30 minutes, cooled to room temperature, and collected by filtration to obtain 93.9 g of a crystal of dicyclohexanedicarboxylic acid (S-1-c) (yield: 80 %)Obtained.

Claims (10)

  1.  下記式(1)で表される化合物を、ニッケル触媒および還元剤の存在下で反応させ、下記式(2)で表されるジシクロヘキサンジカルボン酸ジエステルを得る工程を有する、ジシクロヘキサンジカルボン酸ジエステルの製造方法。
    Figure JPOXMLDOC01-appb-C000001
     ここで、前記式(1)および(2)中、Rは、置換基を有してもよい炭素数1~6の直鎖状もしくは分岐状のアルキル基、置換基を有してもよい炭素数3~8の環状のアルキル基、置換基を有してもよい炭素数1~6の直鎖状もしくは分岐状のアルケニル基、置換基を有してもよい炭素数3~8の環状のアルケニル基、置換基を有してもよい炭素数1~6のアルキニル基、置換基を有してもよいアリール基、または、置換基を有してもよい複素環式基を表し、前記式(1)中、Xは、脱離基を表す。
    A compound represented by the following formula (1) is reacted in the presence of a nickel catalyst and a reducing agent to obtain a dicyclohexane dicarboxylic acid diester represented by the following formula (2). Production method.
    Figure JPOXMLDOC01-appb-C000001
    Here, in the formulas (1) and (2), R is a linear or branched alkyl group having 1 to 6 carbon atoms which may have a substituent, or a carbon which may have a substituent. A cyclic alkyl group having 3 to 8 carbon atoms, a linear or branched alkenyl group having 1 to 6 carbon atoms which may have a substituent, and a cyclic group having 3 to 8 carbon atoms which may have a substituent An alkenyl group, an optionally substituted alkynyl group having 1 to 6 carbon atoms, an optionally substituted aryl group, or an optionally substituted heterocyclic group; In (1), X represents a leaving group.
  2.  前記式(1)および(2)中のRが、炭素数1~6の直鎖状もしくは分岐状のアルキル基を表す、請求項1に記載のジシクロヘキサンジカルボン酸ジエステルの製造方法。 The method for producing dicyclohexanedicarboxylic acid diester according to claim 1, wherein R in the formulas (1) and (2) represents a linear or branched alkyl group having 1 to 6 carbon atoms.
  3.  前記式(1)および(2)中のRが、メチル基、エチル基、t-ブチル基、または、トリチル基を表す、請求項1に記載のジシクロヘキサンジカルボン酸ジエステルの製造方法。 The method for producing dicyclohexanedicarboxylic acid diester according to claim 1, wherein R in the formulas (1) and (2) represents a methyl group, an ethyl group, a t-butyl group, or a trityl group.
  4.  前記還元剤が、コバルト化合物、マグネシウム、亜鉛、および、マンガンからなる群から選択される少なくとも1種である、請求項1~3のいずれか1項に記載のジシクロヘキサンジカルボン酸ジエステルの製造方法。 The method for producing dicyclohexanedicarboxylic acid diester according to any one of claims 1 to 3, wherein the reducing agent is at least one selected from the group consisting of a cobalt compound, magnesium, zinc, and manganese.
  5.  前記式(1)中のXが、ハロゲン原子、アルキルチオ基、アルキルスルホニルオキシ基、および、アリールスルホニルオキシ基からなる群から選択される少なくとも1種を表す、請求項1~4のいずれか1項に記載のジシクロヘキサンジカルボン酸ジエステルの製造方法。 The X in the formula (1) represents at least one selected from the group consisting of a halogen atom, an alkylthio group, an alkylsulfonyloxy group, and an arylsulfonyloxy group. The manufacturing method of dicyclohexane dicarboxylic acid diester as described in any one of.
  6.  前記式(1)中のXが、臭素原子、メタンスルホニルオキシ基、および、トルエンスルホニルオキシ基からなる群から選択される少なくとも1種を表す、請求項1~5のいずれか1項に記載のジシクロヘキサンジカルボン酸ジエステルの製造方法。 X in the formula (1) represents at least one selected from the group consisting of a bromine atom, a methanesulfonyloxy group, and a toluenesulfonyloxy group, according to any one of claims 1 to 5. A method for producing dicyclohexanedicarboxylic acid diester.
  7.  前記式(1)中のXが、ハロゲン原子を表し、かつ、前記還元剤が、亜鉛である、請求項1~6のいずれか1項に記載のジシクロヘキサンジカルボン酸ジエステルの製造方法。 The method for producing dicyclohexanedicarboxylic acid diester according to any one of claims 1 to 6, wherein X in the formula (1) represents a halogen atom, and the reducing agent is zinc.
  8.  前記式(1)中のXが、メタンスルホニルオキシ基、または、トルエンスルホニルオキシ基を表し、かつ、前記還元剤が、コバルト化合物とマンガンとの組み合わせである、請求項1~6のいずれか1項に記載のジシクロヘキサンジカルボン酸ジエステルの製造方法。 X in the formula (1) represents a methanesulfonyloxy group or a toluenesulfonyloxy group, and the reducing agent is a combination of a cobalt compound and manganese. The manufacturing method of the dicyclohexane dicarboxylic acid diester of claim | item.
  9.  前記ニッケル触媒が、ニッケル化合物およびリガンド化合物から調製された触媒であり、
     前記リガンド化合物が、2,2’-ビピリジンである、請求項1~8のいずれか1項に記載のジシクロヘキサンジカルボン酸ジエステルの製造方法。
    The nickel catalyst is a catalyst prepared from a nickel compound and a ligand compound;
    The method for producing dicyclohexanedicarboxylic acid diester according to any one of claims 1 to 8, wherein the ligand compound is 2,2'-bipyridine.
  10.  下記式(1)で表される化合物を、ニッケル触媒および還元剤の存在下で反応させ、下記式(2)で表されるジシクロヘキサンジカルボン酸ジエステルを得る工程と、
     前記ジシクロヘキサンジカルボン酸ジエステルを加水分解して塩とした後、酸を付与して下記式(3)で表されるジシクロヘキサンジカルボン酸を得る工程と、
     を有する、ジシクロヘキサンジカルボン酸の製造方法。
    Figure JPOXMLDOC01-appb-C000002
     ここで、前記式(1)および(2)中、Rは、置換基を有してもよい炭素数1~6の直鎖状もしくは分岐状のアルキル基、置換基を有してもよい炭素数3~8の環状のアルキル基、置換基を有してもよい炭素数1~6の直鎖状もしくは分岐状のアルケニル基、置換基を有してもよい炭素数3~8の環状のアルケニル基、置換基を有してもよい炭素数1~6のアルキニル基、置換基を有してもよいアリール基、または、置換基を有してもよい複素環式基を表し、前記式(1)中、Xは、脱離基を表す。
    A step of reacting a compound represented by the following formula (1) in the presence of a nickel catalyst and a reducing agent to obtain a dicyclohexanedicarboxylic acid diester represented by the following formula (2);
    Hydrolyzing the dicyclohexanedicarboxylic acid diester to form a salt, and then adding an acid to obtain dicyclohexanedicarboxylic acid represented by the following formula (3);
    The manufacturing method of dicyclohexane dicarboxylic acid which has these.
    Figure JPOXMLDOC01-appb-C000002
    Here, in the formulas (1) and (2), R is a linear or branched alkyl group having 1 to 6 carbon atoms which may have a substituent, or a carbon which may have a substituent. A cyclic alkyl group having 3 to 8 carbon atoms, a linear or branched alkenyl group having 1 to 6 carbon atoms which may have a substituent, and a cyclic group having 3 to 8 carbon atoms which may have a substituent An alkenyl group, an optionally substituted alkynyl group having 1 to 6 carbon atoms, an optionally substituted aryl group, or an optionally substituted heterocyclic group; In (1), X represents a leaving group.
PCT/JP2019/022717 2018-06-11 2019-06-07 Method for producing dicyclohexanedicarboxylic acid diester and method for producing dicyclohexanedicarboxylic acid WO2019240033A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980039443.2A CN112272661B (en) 2018-06-11 2019-06-07 Process for producing dicyclohexyl dicarboxylic acid diester and process for producing dicyclohexyl dicarboxylic acid
JP2020525523A JP7027541B2 (en) 2018-06-11 2019-06-07 Method for producing dicyclohexanedicarboxylic acid diester and method for producing dicyclohexanedicarboxylic acid

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-111049 2018-06-11
JP2018111049 2018-06-11
JP2018193474 2018-10-12
JP2018-193474 2018-10-12

Publications (1)

Publication Number Publication Date
WO2019240033A1 true WO2019240033A1 (en) 2019-12-19

Family

ID=68842872

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/022717 WO2019240033A1 (en) 2018-06-11 2019-06-07 Method for producing dicyclohexanedicarboxylic acid diester and method for producing dicyclohexanedicarboxylic acid

Country Status (3)

Country Link
JP (1) JP7027541B2 (en)
CN (1) CN112272661B (en)
WO (1) WO2019240033A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112679342A (en) * 2020-12-31 2021-04-20 上海康鹏科技股份有限公司 Preparation method of trans, trans-4, 4' -dicyclohexyl dicarboxylic acid

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04300918A (en) * 1991-03-29 1992-10-23 Chisso Corp Bicyclic polyester carbonate resin
JP2016216433A (en) * 2015-05-15 2016-12-22 Dic株式会社 Carboxylic acid compound, manufacturing method therefor, liquid crystal composition using the compound
JP2017062336A (en) * 2015-09-24 2017-03-30 キヤノン株式会社 Toner and manufacturing method of toner
WO2019017445A1 (en) * 2017-07-19 2019-01-24 富士フイルム株式会社 Polymerizable liquid crystal compound, polymerizable liquid crystal composition, optically anisotropic membrane, optical film, polarizing plate, and image display device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69934960T2 (en) * 1998-10-30 2007-12-06 Hitachi Chemical Dupont Microsystems Ltd. Tetracarboxylic dianhydride, derivative and preparation thereof, polyimide precursor, polyimide, resin composition, photosensitive resin composition, embossing pattern forming method and electronic component
JP5157154B2 (en) * 2006-12-20 2013-03-06 Dic株式会社 4 '-(alkoxycarbonyl) bicyclohexyl-4-ylcarboxylic acid and process for producing the same
CN101462939A (en) * 2007-12-20 2009-06-24 富士胶片株式会社 Preparation of trans substitute cyclohexane-carboxylic acid and trans/trans bicyclohexanedicarboxylic acid
JP5055185B2 (en) * 2008-03-31 2012-10-24 富士フイルム株式会社 Method for producing dicyclohexane derivative
CN104341256A (en) * 2014-10-20 2015-02-11 哈尔滨工业大学(威海) Low-cost and environment-friendly synthesis method of biphenyl derivatives
CN105440285B (en) * 2016-01-07 2018-10-16 中国科学院长春应用化学研究所 A kind of polyimides and its preparation method and application

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04300918A (en) * 1991-03-29 1992-10-23 Chisso Corp Bicyclic polyester carbonate resin
JP2016216433A (en) * 2015-05-15 2016-12-22 Dic株式会社 Carboxylic acid compound, manufacturing method therefor, liquid crystal composition using the compound
JP2017062336A (en) * 2015-09-24 2017-03-30 キヤノン株式会社 Toner and manufacturing method of toner
WO2019017445A1 (en) * 2017-07-19 2019-01-24 富士フイルム株式会社 Polymerizable liquid crystal compound, polymerizable liquid crystal composition, optically anisotropic membrane, optical film, polarizing plate, and image display device

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CAI, YINGXIAO ET AL.: "Cobalt-Catalyzed Csp3-Csp3 Homocoupling", ADVANCED SYNTHESIS & CATALYSIS, vol. 358, no. 15, 1 January 2016 (2016-01-01), pages 2427 - 2430, XP055664789, ISSN: 1615-4150, DOI: 10.1002/adsc.201600213 *
GOLDUP, STEPHEN M. ET AL.: "Ligand-assisted nickel-catalyzed sp3-sp3 homocoupling of unactivated alkyl bromides and its application to the active template synthesis of rotaxanes", CHEMICAL SCIENCE, vol. 1, no. 3, 2010, pages 383 - 386, XP055664755, ISSN: 2041-6520, DOI: 10.1039/c0sc00279h *
LIU, YONGJUN ET AL.: "Reductive Homocoupling of Organohalides Using Nickel(II) Chloride and Samarium Metal", CHEMISTRY - AN ASIAN JOURNAL, vol. 12, no. 6, 16 March 2017 (2017-03-16), pages 673 - 678, XP055664745, ISSN: 1861-4728, DOI: 10.1002/asia.201601712 *
PENG, YU ET AL.: "Ni-Catalyzed Reductive Homocoupling of Unactivated Alkyl Bromides at Room Temperature and Its Synthetic Application", THE JOURNAL OF ORGANIC CHEMISTRY, vol. 78, no. 21, 2 October 2013 (2013-10-02), pages 10960 - 10967, XP055664740, ISSN: 0022-3263, DOI: 10.1021/jo401936v *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112679342A (en) * 2020-12-31 2021-04-20 上海康鹏科技股份有限公司 Preparation method of trans, trans-4, 4' -dicyclohexyl dicarboxylic acid

Also Published As

Publication number Publication date
JP7027541B2 (en) 2022-03-01
CN112272661B (en) 2023-08-08
JPWO2019240033A1 (en) 2021-06-24
CN112272661A (en) 2021-01-26

Similar Documents

Publication Publication Date Title
WO2016159193A1 (en) Mixture of polymerizable compound and method for producing same
WO2020067391A1 (en) Production method for dicarboxylic acid monoester
JP6871418B2 (en) Method for producing dicarboxylic acid monoester, method for producing dicarboxylic acid monoester salt and polymerizable liquid crystal compound
JP2002193887A (en) Method for producing iodonium salt compound
JP7027541B2 (en) Method for producing dicyclohexanedicarboxylic acid diester and method for producing dicyclohexanedicarboxylic acid
JP5623835B2 (en) Dicarbonyl compound, intermediate thereof and method for producing the same
JP2006188449A (en) Method for producing cyclic disulfonic acid ester
JP6459703B2 (en) Method for producing cyclohexanedicarboxylic acid monoester compound
US10023535B2 (en) Method for the preparation of 1-(2-halogen-ethyl)-4 piperidine-carboxylic acid ethyl esters
JP2010030965A (en) Method for producing fluoroalkene compound
JP2002155085A (en) Method for producing dianhydrohexitol-bis-(4- acryloyloxy)acylate
TWI423952B (en) Method for preparing sulfonium salt and sulfonium salt prepared by the same
JP4667593B2 (en) Process for producing 2-alkyl-2-adamantyl (meth) acrylates
CN107021883B (en) Synthetic method and application of polysubstituted biphenyl halide liquid crystal intermediate
JP6274023B2 (en) Method for producing dicarboxylic acid monoester
CN114249679B (en) Method for preparing alpha, alpha-gem difluoro carbonyl compound
CN108473431B (en) Method for producing benzyl 2-aminonicotinate derivative
JP4923800B2 (en) Method for producing furfurals
JP6782632B2 (en) Method for producing acetoacetic ester alkali salt and method for producing aliphatic diketone
JP2007254293A (en) METHOD FOR PRODUCING alpha-METHYLENE-beta-ALKYL-gamma-BUTYROLACTONE
JP3543585B2 (en) Method for producing 2,2 &#39;, 5,5&#39;, 6,6&#39;-hexafluorobiphenyl-3,3 &#39;, 4,4&#39;-tetracarboxylic acid precursor
JP2005097158A (en) Method for producing fluorine-containing organic compound
JP2015193553A (en) Method of producing cycloalkanedicarboxylic acid
WO2018025590A1 (en) Method for producing nitrogen-containing heterocyclic compound, and nitrogen-containing heterocyclic compound
JP2000336066A (en) Preparation of 2-(4-methylphenyl)benzoic acid derivative

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19820123

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020525523

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19820123

Country of ref document: EP

Kind code of ref document: A1