WO2019240008A1 - 情報処理装置、導出方法、及び導出プログラム - Google Patents
情報処理装置、導出方法、及び導出プログラム Download PDFInfo
- Publication number
- WO2019240008A1 WO2019240008A1 PCT/JP2019/022561 JP2019022561W WO2019240008A1 WO 2019240008 A1 WO2019240008 A1 WO 2019240008A1 JP 2019022561 W JP2019022561 W JP 2019022561W WO 2019240008 A1 WO2019240008 A1 WO 2019240008A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- information
- cell
- pluripotent stem
- differentiation
- learning
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0603—Embryonic cells ; Embryoid bodies
- C12N5/0606—Pluripotent embryonic cells, e.g. embryonic stem cells [ES]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M41/00—Means for regulation, monitoring, measurement or control, e.g. flow regulation
- C12M41/46—Means for regulation, monitoring, measurement or control, e.g. flow regulation of cellular or enzymatic activity or functionality, e.g. cell viability
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M41/00—Means for regulation, monitoring, measurement or control, e.g. flow regulation
- C12M41/48—Automatic or computerized control
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0607—Non-embryonic pluripotent stem cells, e.g. MASC
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0696—Artificially induced pluripotent stem cells, e.g. iPS
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
- G06F18/2413—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on distances to training or reference patterns
- G06F18/24133—Distances to prototypes
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B5/00—ICT specially adapted for modelling or simulations in systems biology, e.g. gene-regulatory networks, protein interaction networks or metabolic networks
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2506/00—Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
Definitions
- the disclosed technology relates to an information processing apparatus, a derivation method for deriving information on differentiated cells, and a derivation program.
- Japanese Patent Application Laid-Open No. 2011-229410 discloses that an image reading unit that reads a plurality of images in which a plurality of cells cultured in a culture vessel are captured in time series differs from each cell included in the image.
- a cell evaluation apparatus comprising: a feature amount calculation unit that obtains a plurality of different feature amounts each indicating a plurality of morphological features from an image; and a calculation model construction unit that constructs a calculation model for evaluating characteristics in a cell. has been described.
- International Publication No. 2010/131642 discloses a technique for discriminating an undifferentiated state of a cell, a state of differentiation of a cell, and resistance to differentiation of a cell by using a supervised machine learning method or a semi-supervised machine learning method. Is described.
- Japanese Patent Application Laid-Open No. 2017-9314 discloses creation of teaching data for machine learning of learning data used for classifying objects from the form of the object obtained by imaging a carrier carrying cells.
- the support method is described.
- a teaching process including teaching objects for creating teaching data is displayed on the display unit to enable classification of the objects, and a classification result of the objects displayed on the display unit is received.
- a data creation step of creating the teaching data by associating the classification result with the teaching image.
- Pluripotent stem cells such as iPS cells (induced pluripotent stem cells) and ES cells (embryonic stem cells) are cells that have the potential to differentiate into various tissues of the living body, and are endoderm, mesoderm, ectoderm. It is possible to differentiate into all of these. Thus, the ability of cells to differentiate into different cell types is called differentiation ability. However, pluripotent stem cells have different differentiation ability for each clone, and in some cases, there are cases where they cannot differentiate into specific cells. Such heterogeneity of differentiation ability becomes apparent only after a differentiation induction process for pluripotent stem cells.
- differentiated cells such as endoderm, mesoderm, and ectoderm.
- differentiated cells such as endoderm, mesoderm, and ectoderm.
- the heterogeneity of differentiation potential in pluripotent stem cells is one of the factors that significantly lowers the productivity. Therefore, if the differentiation potential of pluripotent stem cells can be estimated at a stage before the differentiated cells are obtained, it is considered that the productivity and quality of the regenerative medical product derived from pluripotent stem cells can be improved.
- the disclosed technology has been made in view of the above points, and an information processing apparatus that estimates the differentiation potential of a pluripotent stem cell before the pluripotent stem cell is differentiated into a specific differentiated cell by differentiation induction.
- a derivation method and a derivation program are provided.
- An information processing apparatus obtains cell information indicating a state of a cell from creation of a pluripotent stem cell to differentiation of the pluripotent stem cell into a specific differentiated cell by differentiation induction, and the differentiated cell
- An acquisition unit that acquires process history information indicating a history in the processing step, and differentiation information indicating the differentiation potential of the pluripotent stem cell based on the cell information and the process history information acquired by the acquisition unit.
- the information processing apparatus it is possible to estimate the differentiation potential of the pluripotent stem cell before the pluripotent stem cell is differentiated into a specific differentiated cell by differentiation induction.
- the derivation unit may derive the differentiation potential information by inputting the cell information and the process history information acquired by the acquisition unit into an estimation model.
- the estimation model the cell information for learning, the process history information for learning, and the cells in the state indicated by the cell information for learning pass through the process history indicated by the process history information for learning.
- a model learned by machine learning may be used by using a plurality of combinations of learning type information indicating the type of differentiated cells obtained by the above as learning data.
- the deriving unit may derive, as the differentiation potential information, a score indicating the probability of differentiation into the germ layer for each of the endoderm, mesoderm, and ectoderm.
- the cell information includes appearance information relating to the appearance of the pluripotent stem cell, gene information relating to the gene of the pluripotent stem cell, secretion information relating to a secretion secreted from the pluripotent stem cell, and information on the pluripotent stem cell. It may include at least one of donor information related to a donor of somatic cells used for establishment.
- the cell information may further include information on undifferentiated departure cells from which the pluripotent stem cells have deviated from an undifferentiated state before differentiation induction.
- the process history information includes worker information indicating an operator who has performed work in the processing step, equipment information indicating equipment used in the processing step, identification information of a medium and a reagent used in the processing step, and the processing step. May include at least one of environment information indicating the environment.
- the derivation method includes cell information indicating the state of a cell from the generation of a pluripotent stem cell to the differentiation of the pluripotent stem cell into a specific differentiated cell by differentiation induction, and a process for obtaining the differentiated cell And a process of deriving differentiation potential information indicating differentiation potential of the pluripotent stem cell based on the acquired cell information and the step history information. Including performing.
- the derivation program is for obtaining cell information indicating a state of a cell from creation of a pluripotent stem cell to differentiation of the pluripotent stem cell into a specific differentiated cell by differentiation induction, and the differentiated cell.
- Process history information indicating the history in the processing process
- a computer is caused to execute a process including deriving differentiation potential information indicating the differentiation potential of the pluripotent stem cell.
- the disclosed technology it is possible to estimate the differentiation potential of a pluripotent stem cell before the pluripotent stem cell is differentiated into a specific differentiated cell by differentiation induction.
- FIG. 11 is a functional block diagram illustrating an example of a functional configuration in a learning phase of an information processing apparatus according to an embodiment of the disclosed technology. It is a figure which shows an example of the structure of the estimation model which concerns on embodiment of the technique of an indication.
- FIG. 11 is a functional block diagram illustrating an example of a functional configuration in an operation phase of an information processing apparatus according to an embodiment of the disclosed technology.
- FIG. 3 is a diagram illustrating an example of a hardware configuration of an information processing apparatus according to an embodiment of the disclosed technology.
- 14 is a flowchart illustrating an example of a flow of learning processing according to an embodiment of the disclosed technology. It is a flowchart which shows an example of the flow of the differentiation potential estimation process which concerns on embodiment of the technique of an indication.
- FIG. 1 is a process flow diagram showing an example of a rough flow of processing performed to obtain differentiated cells (germ layers) such as endoderm, mesoderm, and ectoderm from pluripotent stem cells.
- differentiated cells such as endoderm, mesoderm, and ectoderm from pluripotent stem cells.
- a process for establishing pluripotent stem cells from somatic cells collected from a living body is performed.
- iPS cells are used as pluripotent stem cells
- reprogramming factors Oct3 / 4, Sox2, c-Myc, Processing to introduce Klf4
- expansion culture for growing pluripotent stem cells is performed.
- expansion culture is performed by an adhesion culture method in which pluripotent stem cells are cultured on a flask coated with a matrix.
- a medium replacement process is performed in which a used medium is replaced with a fresh medium at an appropriate time during the culture period.
- a treatment passesaging treatment
- Enlargement culture is not limited to adhesion culture, and a floating culture method using a spinner flask or the like can also be employed.
- differentiation induction for differentiating pluripotent stem cells into differentiated cells is performed.
- a treatment for adding a differentiation inducer to pluripotent stem cells is performed.
- various signal inhibitors such as various growth factors and cytokines such as FGF-2, Activin, and BMP-4, BMP signal inhibitor, and Wnt signal inhibitor are used.
- pluripotent stem cells usually differentiate into any of endoderm, mesoderm, or ectoderm.
- the differentiation potential of pluripotent stem cells is not uniform, and there are those that do not differentiate into any of the endoderm, mesoderm, and ectoderm.
- An information processing apparatus performs estimation regarding the differentiation potential of a pluripotent stem cell before the pluripotent stem cell is differentiated into a specific differentiated cell (germ germ) by differentiation induction. Is.
- the information processing apparatus performs the above estimation using the estimation model.
- the estimation model is constructed by performing machine learning using learning data in the learning phase.
- FIG. 2 is a functional block diagram illustrating an example of a functional configuration in the learning phase of the information processing apparatus 1 according to an embodiment of the disclosed technology.
- the information processing apparatus 1 includes a learning unit 20 and a storage unit 10.
- the storage unit 10 stores learning data 11 and an estimation model 12.
- Table 1 below shows an example of the contents of the learning data 11.
- the learning data 11 includes a plurality of combinations of learning cell information and learning process history information, and differentiated cell information for learning.
- the learning data 11 indicates what kind of differentiated cells can be obtained through what process history the pluripotent stem cells in the state and the biological cells used for the establishment thereof are obtained by machine learning. This is data used for learning the estimation model 12.
- Each of the learning data 11 is configured on the basis of performance data obtained through experiments.
- the cell information is obtained from the creation (establishment) of a pluripotent stem cell (hereinafter referred to as a target stem cell) to be estimated for differentiation potential by the information processing device 1, and the pluripotent stem cell is differentiated by differentiation induction (germ germ). It is the information which shows the state of the biological cell used for establishment of the said target stem cell and the said target stem cell until it differentiates into.
- Cell information includes appearance information, gene information, secretion information, and donor information.
- Appearance information is information regarding the appearance of the target stem cells.
- the appearance information includes, for example, the equivalent circle diameter, roundness, and nucleolus density of the target stem cell.
- Such information can be acquired from an image obtained by imaging the target stem cell in at least one of the first process P1, the second process P2, and the third process P3, for example.
- Genetic information is information on the gene of the target stem cell.
- the gene information includes an index value indicating the degree of maintenance of undifferentiation of the target stem cell.
- an index value indicating the degree of maintenance of undifferentiation of target stem cells for example, the positive rate of cell surface markers (SSEA-3, Tra-1-60, etc.) and the expression of undifferentiated marker genes (OCT3 / 4, NANOG, etc.) Amount.
- the genetic information is acquired by performing genetic analysis on the target stem cells extracted in at least one of the first step P1, the second step P2, and the third step P3, for example.
- Secretion information is information relating to secretions secreted from the target stem cells.
- the secret information includes, for example, the concentration of a secret such as lactate secreted from the target stem cell in the second step P2.
- Donor information is information about the donor of the somatic cell used to establish the target stem cell.
- the donor information includes, for example, the race, sex, and age of the donor of the somatic cell.
- Process history information is information indicating a process history in a processing process (first process P1, second process P2, and third process P3) for obtaining differentiated cells (germ germ).
- the process history information includes worker information, facility information, medium and reagent identification information, and environmental information.
- the worker information is information indicating the worker who performed the work in each of the first process P1, the second process P2, and the third process P3.
- the equipment information is information indicating equipment used in each of the first process P1, the second process P2, and the third process P3, equipment operation conditions, and the like.
- the identification information of the culture medium and the reagent is identification information such as the lot number of the culture medium and the reagent used in each of the first process P1, the second process P2, and the third process P3.
- Environmental information is information indicating the state of the environment surrounding the target stem cell in each of the first step P1, the second step P2, and the third step P3.
- the environmental information includes, for example, ambient temperature (air temperature), humidity, medium temperature, oxygen concentration in the medium, and indoor cleanliness.
- Differentiated cell information is information on differentiated cells obtained by induction of differentiation.
- the differentiated cell information includes type information.
- the type information is the type of differentiated cell obtained by the pluripotent stem cell in the state indicated by the cell information passing through the process history indicated by the process history information (that is, any of endoderm, mesoderm, ectoderm) Information).
- the type information includes three scores respectively corresponding to the endoderm, mesoderm, and ectoderm. When the type of differentiated cells obtained is, for example, endoderm, the score corresponding to the endoderm is set to 100, for example, and the scores corresponding to the mesoderm and ectoderm are set to 0, for example.
- the differentiated cell information may include information on target cells further differentiated from germ layers such as cardiomyocytes and nerve cells.
- FIG. 3 is a diagram illustrating an example of the structure of the estimation model 12.
- the estimation model 12 is a neural network including an input layer, a plurality of intermediate layers, and an output layer.
- the estimation model 12 is a model for performing a virtual experiment, and one or more pieces of cell information and one or more pieces of process history information are input to the input layer of the estimation model 12.
- an index value indicating the differentiation potential of the target stem cell corresponding to the combination of cell information and process history information input to the input layer is output.
- the index value indicating the differentiation potential of the target stem cell corresponds to the type information included in the learning data 11 and includes three scores.
- One of the three scores indicates the probability that the target stem cell will differentiate into endoderm, and the other one of the three scores indicates the probability that the target stem cell will differentiate into mesoderm.
- the last one of the two scores indicates the probability that the subject stem cell will differentiate into ectoderm.
- the learning unit 20 uses the learning data 11 to learn the estimation model 12 according to the error back propagation method as an example of machine learning. Specifically, the learning unit 20 inputs the cell information for learning and the process history information for learning included in the learning data 11 to the estimation model 12, and the differentiation ability of the target stem cell output from the estimation model 12 Index values (that is, three scores each indicating the probability of differentiation into endoderm, mesoderm, and ectoderm) are obtained. Then, the learning unit 20 determines the difference between the acquired index value and the score indicated by the learning type information (differentiated cell information) corresponding to the combination of the cell information and the process history information included in the learning data 11. The estimation model 12 is trained so that is minimized.
- the learning unit 20 inputs the cell information for learning and the process history information for learning included in the learning data 11 to the estimation model 12, and the differentiation ability of the target stem cell output from the estimation model 12 Index values (that is, three scores each indicating the probability of differentiation into endoderm, mesoderm, and ectoder
- the learning unit 20 performs the process of learning the estimation model 12 using all combinations of the cell information and the process history information included in the learning data 11 and the type information (differentiated cell information).
- the learning unit 20 may learn the estimation model 12 using a part of the combination of the cell information and process history information included in the learning data 11 and the type information (differentiated cell information).
- FIG. 4 is a functional block diagram illustrating an example of a functional configuration in the operation phase in which the information processing apparatus 1 according to the embodiment of the disclosed technique operates the learned estimation model 12 to estimate the differentiation potential of the target stem cell. It is.
- the information processing apparatus 1 includes an acquisition unit 31, a derivation unit 32, an output unit 33, and a storage unit 10.
- the storage unit 10 stores a learned estimated model 12 constructed by performing machine learning in the learning phase.
- the acquisition unit 31 acquires cell information and process history information input via the input unit 44 (see FIG. 5).
- the deriving unit 32 inputs the cell information and process history information acquired by the acquiring unit 31 to the learned estimation model 12, and outputs an index value indicating the differentiation potential of the target stem cell output from the estimation model 12 Derived as information. Specifically, the deriving unit 32 derives three scores indicating the probabilities that the target stem cell differentiates into endoderm, mesoderm, and ectoderm as differentiation potential information.
- the output unit 33 outputs the differentiation ability information derived by the derivation unit 32 to the display unit 43 (see FIG. 5).
- the output unit 33 may output (store) the differentiation ability information derived by the derivation unit 32 to the storage unit 10.
- FIG. 5 is a diagram illustrating an example of a hardware configuration of the information processing apparatus 1.
- the information processing apparatus 1 includes a central processing unit (CPU) 41, a memory 42 as a temporary storage area, and a nonvolatile storage unit 10.
- the information processing apparatus 1 includes a display unit 43 that is a display device such as a liquid crystal display, and an input unit 44 that is an input device such as a keyboard and a mouse.
- the CPU 41, the memory 42, the storage unit 10, the display unit 43, and the input unit 44 are connected via a bus 45.
- the storage unit 10 is realized by a non-transitory storage medium such as an HDD (Hard Disk Drive), an SSD (Solid State Drive), and a flash memory.
- the storage unit 10 stores a learning program 51, learning data 11, an estimation model 12, and a differentiation potential estimation program 52.
- the CPU 41 executes the learning program 51 and the differentiation ability estimation program 52 after developing them in the memory 42.
- the CPU 41 executes the learning program 51
- the CPU 41 functions as the learning unit 20.
- the CPU 41 executes the differentiation potential estimation program 52
- the CPU 41 functions as the acquisition unit 31, the derivation unit 32, and the output unit 33.
- FIG. 6 is a flowchart showing an example of the flow of learning processing performed by the CPU 41 executing the learning program 51.
- the CPU 41 executes the learning program when an instruction to execute learning processing is input by the user via the input unit 44.
- step S11 the learning unit 20 reads the learning data 11 stored in the storage unit 10.
- the learning data 11 includes a plurality of combinations of learning cell information and learning process history information, and learning type information (differentiated cell information).
- step S12 the learning unit 20 generates the estimation model 12.
- parameters necessary for generating the estimation model such as the number of nodes in the input layer of the estimation model 12, the number of intermediate layers and the number of nodes, and the initial value of the weight, are set by the user.
- the learning unit 20 causes the estimation model 12 to learn using the learning data 11 according to the error back propagation method. Specifically, the learning unit 20 inputs the cell information and the process history information included in the learning data 11 to the estimation model 12 and outputs an index value indicating the differentiation potential of the target stem cell output from the estimation model 12 (that is, Three scores each indicating the probability of differentiation into endoderm, mesoderm, and ectoderm. Then, the learning unit 20 has a difference between the acquired index value and the three scores indicated by the type information (differentiated cell information) corresponding to the combination of the cell information and the process history information included in the learning data 11. The estimation model 12 is learned so as to be minimized.
- an index value indicating the differentiation potential of the target stem cell output from the estimation model 12 that is, Three scores each indicating the probability of differentiation into endoderm, mesoderm, and ectoderm.
- the learning unit 20 has a difference between the acquired index value and the three scores indicated by the type information (differentiated cell information)
- step S14 the learning unit 20 stores the learned estimated model 12 constructed by the process in step S13 in the storage unit 10.
- the learning process ends.
- FIG. 7 is a flowchart showing an example of the flow of differentiation potential estimation processing performed by the CPU 41 executing the differentiation potential estimation program 52.
- the CPU 41 executes the differentiation capacity estimation program when a user inputs an execution instruction for the differentiation capacity estimation process via the input unit 44.
- step S21 the CPU 41 functions as the acquisition unit 31 and acquires cell information and process history information input via the input unit 44.
- Cell information and process history information are acquired in at least one of the first process P1, the second process P2, and the third process P3 shown in FIG.
- step S22 the CPU 41 functions as the derivation unit 32, and reads the learned estimation model 12 from the storage unit 10.
- step S23 the CPU 41 functions as the derivation unit 32.
- the cell information and the process history information acquired in step S21 are input to the learned estimation model 12, and the differentiation potential of the target stem cell output from the estimation model 12 is determined.
- the index value shown is derived as differentiation potential information.
- the CPU 41 functioning as the derivation unit 32 derives, as differentiation potential information, three scores that indicate the probabilities that the target stem cell differentiates into endoderm, mesoderm, and ectoderm.
- step S24 the CPU 41 functions as the output unit 33, and outputs the differentiation potential information derived by the processing in step S23 to the display unit 43.
- the differentiation potential estimation process ends.
- an index value indicating the differentiation ability of the target stem cell is derived as differentiation ability information.
- three scores each representing the probability that the target stem cell differentiates into endoderm, mesoderm, and ectoderm are derived. Therefore, before the pluripotent stem cell reaches differentiation, it is possible to grasp which of the endoderm, mesoderm, and ectoderm has a relatively high probability of differentiation. That is, according to the information processing apparatus 1 according to the embodiment of the disclosed technique, the pluripotent stem cell can be estimated regarding the differentiation potential before the pluripotent stem cell is differentiated into a specific differentiated cell by differentiation induction. Is possible.
- the above is derived as differentiation potential information. All three scores are low scores. In such a case, the loss can be minimized by interrupting the process.
- productivity and quality of regenerative medical products derived from pluripotent stem cells can be determined by utilizing the differentiation potential information derived by the information processing apparatus 1 according to the embodiment of the disclosed technology and by setting subsequent policies. Can be improved.
- the cell information includes appearance information, gene information, secretion information, and donor information.
- the cell information includes appearance information, gene information, secretion information, and donor information. It may be configured to include at least one, and may include information other than these.
- the process history information includes worker information, facility information, medium and reagent identification information, and environmental information.
- the process history information includes worker information, facility information, and medium. And at least one of reagent identification information and environmental information, or information other than these may be included.
- various processors other than the CPU may execute various processes executed by the CPU executing software (programs) in the above embodiment.
- a processor in this case, in order to execute specific processing such as PLD (Programmable Logic Device) and ASIC (Application Specific Integrated Circuit) whose circuit configuration can be changed after manufacturing FPGA (Field-Programmable Gate Array) or the like
- a dedicated electric circuit which is a processor having a circuit configuration designed exclusively, is exemplified.
- the above-described various processes may be executed by one of these various processors, or a combination of two or more processors of the same type or different types (for example, a combination of a plurality of FPGAs and CPUs and FPGAs). Etc.).
- the hardware structure of these various processors is more specifically an electric circuit in which circuit elements such as semiconductor elements are combined.
- the learning program 51 and the differentiation potential estimation program 52 are stored (installed) in the storage unit 10 in advance.
- the learning program 51 and the differentiation potential estimation program 52 are recorded on a recording medium such as a CD-ROM (Compact Disk Read Only Memory), a DVD ROM (Digital Versatile Disk Read Only Memory), and a USB (Universal Serial Bus) memory. It may be provided in the form.
- the learning program 51 and the differentiation potential estimation program 52 may be downloaded from an external device via a network.
- the cell information according to the present embodiment includes undifferentiated departure cell information.
- An undifferentiated cell is a pluripotent stem cell that has unintentionally deviated from the undifferentiated state prior to differentiation induction in the third step P3. Undifferentiated cells are considered to be specifically generated by the expression of a specific gene.
- the undifferentiated departure cell information is information relating to the undifferentiated departure cell. For example, the genetic information of undifferentiated departure cells is considered to have a correlation with the differentiation ability of pluripotent stem cells established from a route common to the undifferentiated departure cells. Therefore, in this embodiment, the cell information includes undifferentiated departure cell information.
- the learning unit 20 inputs the learning cell information including the undifferentiated deviation cell information and the process history information included in the learning data 11 to the estimation model 12 and is output from the estimation model 12.
- Index values indicating the differentiation potential of the target stem cells that is, three scores each indicating the probability of differentiation into endoderm, mesoderm, and ectoderm
- the learning unit 20 determines the difference between the acquired index value and the score indicated by the learning type information (differentiated cell information) corresponding to the combination of the cell information and the process history information included in the learning data 11.
- the estimation model 12 is trained so that is minimized.
- the derivation unit 32 inputs the cell information including the undifferentiated deviation cell information and the process history information to the learned estimation model 12 and outputs the differentiation ability of the target stem cell output from the estimation model 12.
- the index value shown is derived as differentiation potential information.
- the deriving unit 32 derives three scores indicating the probabilities that the target stem cell differentiates into endoderm, mesoderm, and ectoderm as differentiation potential information.
- undifferentiated deviation cell information that is considered to have a correlation with the differentiation ability of pluripotent stem cells is the differentiation ability of pluripotent stem cells. Therefore, it is possible to further improve the estimation accuracy of differentiation ability.
- the hardware structure of a processing unit that executes various processes such as the learning unit 20, the acquisition unit 31, the derivation unit 32, and the output unit 33 includes the following various types: Can be used.
- the CPU which is a general-purpose processor that executes software (programs) and functions as various processing units
- the above-described various processors include circuits after manufacturing FPGA (Field Programmable Gate Array).
- FPGA Field Programmable Gate Array
- Dedicated electricity that is a processor with a circuit configuration designed specifically to execute specific processing such as programmable logic devices (Programmable Logic Devices: PLDs) and ASICs (Application Specific Integrated Circuits) that can change the configuration Circuits are included.
- One processing unit may be configured by one of these various processors, or a combination of two or more processors of the same type or different types (for example, a combination of a plurality of FPGAs, a combination of a CPU and an FPGA). (Combination). Further, the plurality of processing units may be configured by one processor. As an example of configuring a plurality of processing units with one processor, first, as represented by a computer such as a client and a server, one processor is configured with a combination of one or more CPUs and software. There is a form in which the processor functions as a plurality of processing units.
- SoC System On Chip
- a form of using a processor that realizes the functions of the entire system including a plurality of processing units with a single IC (Integrated Circuit) chip. is there.
- the various processing units are configured using one or more of the various processors as a hardware structure.
- circuitry in which circuit elements such as semiconductor elements are combined can be used.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biomedical Technology (AREA)
- Organic Chemistry (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Biotechnology (AREA)
- Genetics & Genomics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Developmental Biology & Embryology (AREA)
- Analytical Chemistry (AREA)
- Cell Biology (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Reproductive Health (AREA)
- Data Mining & Analysis (AREA)
- Gynecology & Obstetrics (AREA)
- Sustainable Development (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- Computer Hardware Design (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- General Physics & Mathematics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Physiology (AREA)
- Medical Informatics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Transplantation (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
多能性幹細胞の作成から前記多能性幹細胞が分化誘導によって特定の分化細胞に分化するまでの細胞の状態を示す細胞情報、及び前記分化細胞を得るための処理工程における履歴を示す工程履歴情報を取得する取得部と、前記取得部によって取得された前記細胞情報及び前記工程履歴情報に基づいて、前記多能性幹細胞の分化能を示す分化能情報を導出する導出部と、を含む情報処理装置を提供する。
Description
本願は2018年6月13日出願の日本出願第2018-112878号の優先権を主張すると共に、その全文を参照により本明細書に援用する。
開示の技術は、情報処理装置、分化細胞に関する情報を導出する導出方法、及び導出プログラムに関する。
開示の技術は、情報処理装置、分化細胞に関する情報を導出する導出方法、及び導出プログラムに関する。
評価対象の細胞の特性を推測する技術として、以下の技術が知られている。例えば、特開2011-229410号公報には、培養容器内で培養される複数の細胞が時系列に撮像されている複数の画像を読み込む画像読込部と、画像に含まれる各々の細胞について、異なる複数の形態的な特徴を示す複数の異なる特徴量を画像からそれぞれ求める特徴量演算部と、細胞における特性を評価するための計算モデルを構築する計算モデル構築部と、を備えた細胞評価装置が記載されている。
国際公開第2010/131641号には、教師あり機械学習手法または半教師あり機械学習手法を用いて、細胞の未分化の状態及び、細胞の分化の状態、細胞の分化に対する抵抗性を判別する技術が記載されている。
特開2017-9314号公報には、細胞を担持する担持体を撮像して得られる対象物の形態から対象物を分類するのに使用される、学習データを機械学習させるための教示データの作成支援方法が記載されている。この方法では、教示データを作成するための対象物を含む教示画像を表示部に表示して対象物の分類を可能とする表示工程と、表示部に表示された対象物の分類結果を受け取り、分類結果と教示画像とを関連付けて教示データを作成するデータ作成工程とを備える。
iPS細胞(induced pluripotent stem cell)及びES細胞(embryonic stem cells)等の多能性幹細胞は、生体の様々な組織に分化する能力を潜在的に持つ細胞であり、内胚葉、中胚葉、外胚葉の全てに分化可能である。このように、細胞が異なる細胞種へ分化する能力を分化能という。しかしながら、多能性幹細胞は、クローン毎に分化能が異なっており、場合によっては、特定の細胞に分化できない場合も存在する。このような分化能の不均一性は、多能性幹細胞に対する分化誘導工程を経て初めて明らかとなる。
一方、多能性幹細胞の樹立から内胚葉、中胚葉、外胚葉等の分化後の細胞(以下、分化細胞という)を得るまでには、比較的長い期間(例えば3ヶ月)を要する。多能性幹細胞由来の再生医療製品の生産において、多能性幹細胞における分化能の不均一性は、生産性を著しく低下させる要因の1つとなっている。従って、多能性幹細胞の分化能について、分化細胞が得られる前の段階で推定することができれば、多能性幹細胞由来の再生医療製品の生産性及び品質を改善することができると考えられる。
開示の技術は、上記の点に鑑みてなされたものであり、多能性幹細胞が分化誘導によって特定の分化細胞に分化する前に、当該多能性幹細胞の分化能に関する推定を行う情報処理装置、導出方法及び導出プログラムを提供する。
開示の技術に係る情報処理装置は、多能性幹細胞の作成から前記多能性幹細胞が分化誘導によって特定の分化細胞に分化するまでの細胞の状態を示す細胞情報、及び前記分化細胞を得るための処理工程における履歴を示す工程履歴情報を取得する取得部と、前記取得部によって取得された前記細胞情報及び前記工程履歴情報に基づいて、前記多能性幹細胞の分化能を示す分化能情報を導出する導出部と、を含む。
開示の技術に係る情報処理装置によれば、多能性幹細胞が分化誘導によって特定の分化細胞に分化する前に、当該多能性幹細胞の分化能に関する推定を行うことが可能となる。
前記導出部は、前記取得部によって取得された前記細胞情報及び前記工程履歴情報を、推定モデルに入力することによって前記分化能情報を導出してもよい。前記推定モデルは、学習用の前記細胞情報及び学習用の前記工程履歴情報と、学習用の前記細胞情報によって示される状態の細胞が、学習用の前記工程履歴情報によって示される工程履歴を経ることにより得られた分化細胞の種別を示す学習用の種別情報と、の複数の組み合わせを学習用データとして用いて、機械学習によって学習されたモデルとされていてもよい。
これにより、多能性幹細胞が分化誘導によって特定の分化細胞に分化する前に、当該多能性幹細胞の分化能に関する推定を行うことが可能となる。
前記導出部は、内胚葉、中胚葉、外胚葉の各々について、当該胚葉に分化する確率を示すスコアを、前記分化能情報として導出してもよい。
これにより、多能性幹細胞の分化能を定量的に把握することが可能となる。
前記細胞情報は、前記多能性幹細胞の外観に関する外観情報、前記多能性幹細胞の遺伝子に関する遺伝子情報、前記多能性幹細胞から分泌される分泌物に関する分泌物情報、及び前記多能性幹細胞の樹立に用いられた体細胞の提供者に関するドナー情報の少なくとも1つを含んでいてもよい。
これにより、多能性幹細胞の分化能の推定の精度を高めることができる。
前記細胞情報は、前記多能性幹細胞が分化誘導前に未分化状態を逸脱した未分化逸脱細胞に関する情報を更に含んでいてもよい。
これにより、多能性幹細胞の分化能の推定の精度を更に高めることができる。
前記工程履歴情報は、前記処理工程において作業を行った作業者を示す作業者情報、前記処理工程において使用した設備を示す設備情報、前記処理工程において使用した培地及び試薬の識別情報、前記処理工程における環境を示す環境情報の少なくとも1つを含んでいてもよい。
これにより、多能性幹細胞の分化能の推定の精度を高めることができる。
開示の技術に係る導出方法は、多能性幹細胞の作成から多能性幹細胞が分化誘導によって特定の分化細胞に分化するまでの細胞の状態を示す細胞情報と、前記分化細胞を得るための処理工程における履歴を示す工程履歴情報と、を取得し、前記取得された前記細胞情報及び前記工程履歴情報に基づいて、前記多能性幹細胞の分化能を示す分化能情報を導出する処理をコンピュータが実行することを含む。
開示の技術に係る導出プログラムは、多能性幹細胞の作成から前記多能性幹細胞が分化誘導によって特定の分化細胞に分化するまでの細胞の状態を示す細胞情報と、前記分化細胞を得るための処理工程における履歴を示す工程履歴情報と、を取得し、
前記取得された前記細胞情報及び前記工程履歴情報に基づいて、前記多能性幹細胞の分化能を示す分化能情報を導出することを含む処理を、コンピュータに実行させる。
前記取得された前記細胞情報及び前記工程履歴情報に基づいて、前記多能性幹細胞の分化能を示す分化能情報を導出することを含む処理を、コンピュータに実行させる。
開示の技術によれば、多能性幹細胞が分化誘導によって特定の分化細胞に分化する前に、当該多能性幹細胞の分化能に関する推定を行うことが可能となる。
以下、本開示の実施形態について図面を参照しつつ説明する。尚、各図面において、実質的に同一又は等価な構成要素又は部分には同一の参照符号を付している。
図1は、多能性幹細胞から内胚葉、中胚葉、外胚葉等の分化細胞(胚葉)を得るまでに行われる処理の大まかな流れの一例を示す工程フロー図である。
第1の工程P1において、生体から採取した体細胞から多能性幹細胞を樹立する処理が行われる。多能性幹細胞として例えばiPS細胞を用いる場合、第1の工程P1では、生体から採取した体細胞に、例えば、エピソーマルプラスミドを使用して初期化因子(Oct3/4、Sox2、c-Myc、Klf4)を導入する処理が行われる。
第2の工程P2において、多能性幹細胞を増殖させる拡大培養が行われる。第2の工程P2では、例えば、多能性幹細胞を、マトリクスをコーティングしたフラスコ上で培養する接着培養方式による拡大培養が行われる。拡大培養においては、培養期間中の適切な時期に、使用済みの培地を新鮮な培地に交換する培地交換処理が行われる。また、細胞の成長に伴い、細胞を剥離・回収し、あらたなフラスコに播きなおす処理(継代処理)が行われる。拡大培養は接着培養に限らず、スピナーフラスコ等を用いた浮遊培養方式も採用できる。
第3の工程P3において、多能性幹細胞を分化細胞(胚葉)に分化させる分化誘導が行われる。第3の工程P3では、例えば、多能性幹細胞に分化誘導剤を添加する処理が行われる。分化誘導剤としては、FGF-2、Activin、BMP-4などの各種成長因子・サイトカインや、BMPシグナル阻害剤、Wntシグナル阻害剤など各種シグナル阻害剤が用いられる。上記の各工程を経ることにより、多能性幹細胞は、通常、内胚葉、中胚葉、外胚葉のいずれかに分化する。しかしながら、多能性幹細胞の分化能は均一ではなく、内胚葉、中胚葉及び外胚葉のいずれにも分化しないものが存在する。
以下に説明する開示の技術の実施形態に係る情報処理装置は、多能性幹細胞が分化誘導によって特定の分化細胞(胚葉)に分化する前に、当該多能性幹細胞の分化能に関する推定を行うものである。情報処理装置は、推定モデルを用いて上記の推定を行う。推定モデルは、学習フェーズにおいて、学習用データを用いた機械学習を行うことで構築される。
図2は、開示の技術の実施形態に係る情報処理装置1の、学習フェーズにおける機能的な構成の一例を示す機能ブロック図である。
情報処理装置1は、学習部20及び記憶部10を備えている。記憶部10には、学習用データ11及び推定モデル12が格納されている。下記の表1には学習用データ11の内容の一例が示されている。学習用データ11は、学習用の細胞情報及び学習用の工程履歴情報と、学習用の分化細胞情報と、の複数の組み合わせによって構成されている。学習用データ11は、どのような状態の多能性幹細胞及びその樹立に用いられた生体細胞が、どのような工程履歴を経ることによって、どのような分化細胞が得られるのかを、機械学習によって推定モデル12を学習させるために用いられるデータである。学習用データ11は、それぞれ、実験による実績データに基づいて構成される。
細胞情報は、情報処理装置1による分化能の推定対象となる多能性幹細胞(以下、対象幹細胞という)の作成(樹立)から、当該多能性幹細胞が分化誘導によって特定の分化細胞(胚葉)に分化するまでの、当該対象幹細胞及び当該対象幹細胞の樹立に用いられた生体細胞の状態を示す情報である。細胞情報には、外観情報、遺伝子情報、分泌物情報、及びドナー情報が含まれる。
外観情報は、対象幹細胞の外観に関する情報である。外観情報には、例えば、当該対象幹細胞の円相当直径、真円度、及び核小体密度が含まれる。これらの情報は、例えば、第1の工程P1、第2の工程P2及び第3の工程P3の少なくとも1つの工程において、対象幹細胞を撮像により取得した画像から取得することができる。
遺伝子情報は、対象幹細胞の遺伝子に関する情報である。遺伝子情報には、当該対象幹細胞の未分化性維持の度合いを示す指標値が含まれる。対象幹細胞の未分化性維持の度合いを示す指標値として、例えば、細胞表面マーカー(SSEA-3、Tra-1-60など)の陽性率や未分化マーカー遺伝子(OCT3/4、NANOGなど)の発現量が挙げられる。遺伝子情報は、例えば、第1の工程P1、第2の工程P2及び第3の工程P3の少なくとも1つの工程において抽出された対象幹細胞について遺伝子解析を行うことにより取得される。
分泌物情報は、対象幹細胞から分泌される分泌物に関する情報である。分泌物情報には、例えば、第2の工程P2において、対象幹細胞から分泌されたラクテート等の分泌物の濃度等が含まれる。
ドナー情報は、対象幹細胞の樹立に用いられた体細胞の提供者に関する情報である。ドナー情報には、例えば、当該体細胞の提供者の、人種、性別、及び年齢が含まれる。
工程履歴情報は、分化細胞(胚葉)を得るための処理工程(第1の工程P1、第2の工程P2及び第3の工程P3)における工程履歴を示す情報である。工程履歴情報には、作業者情報、設備情報、培地及び試薬の識別情報、及び環境情報が含まれる。
作業者情報は、第1の工程P1、第2の工程P2及び第3の工程P3の各々において、作業を行った作業者を示す情報である。
設備情報は、第1の工程P1、第2の工程P2及び第3の工程P3の各々において使用した設備及び設備運転条件等を示す情報である。
培地及び試薬の識別情報は、第1の工程P1、第2の工程P2及び第3の工程P3の各々において使用した培地及び試薬のロットナンバー等の識別情報である。
環境情報は、第1の工程P1、第2の工程P2及び第3の工程P3の各々における、対象幹細胞を取り巻く環境の状態を示す情報である。環境情報には、例えば、周囲温度(気温)、湿度、培地温度、培地中の酸素濃度、及び室内の清浄度が含まれる。
分化細胞情報は、分化誘導によって得られた分化細胞に関する情報である。分化細胞情報には、種別情報が含まれる。種別情報は、細胞情報によって示される状態の多能性幹細胞が、工程履歴情報によって示される工程履歴を経ることにより得られた分化細胞の種別(すなわち、内胚葉、中胚葉、外胚葉のいずれであるか)を示す情報である。種別情報は、内胚葉、中胚葉及び外胚葉にそれぞれ対応する3つのスコアを含んでいる。得られた分化細胞の種別が、例えば、内胚葉である場合、内胚葉に対応するスコアが例えば100とされ、中胚葉及び外胚葉に対応するスコアが、それぞれ、例えば0とされる。また、分化細胞情報には、心筋細胞及び神経細胞などの胚葉から更に分化した目的細胞に関する情報を含まれていてもよい。
図3は、推定モデル12の構造の一例を示す図である。推定モデル12は、入力層、複数の中間層、及び出力層を含むニューラルネットワークとされている。推定モデル12は、仮想的な実験を行うモデルであり、推定モデル12の入力層には、1つ以上の細胞情報及び1つ以上の工程履歴情報が入力される。推定モデル12の出力層からは、入力層に入力された細胞情報及び工程履歴情報の組み合わせに対応する、対象幹細胞の分化能を示す指標値が出力される。対象幹細胞の分化能を示す指標値は、学習用データ11に含まれる種別情報に対応しており、3つのスコアを含んで構成されている。上記3つのスコアのうちの1つは、対象幹細胞が内胚葉に分化する確率を示し、上記3つのスコアのうちの他の1つは、対象幹細胞が中胚葉に分化する確率を示し、上記3つのスコアのうちの最後の1つは、対象幹細胞が外胚葉に分化する確率を示す。
学習部20は、学習用データ11を用いて、機械学習の一例としての誤差逆伝播法に従って、推定モデル12を学習させる。具体的には、学習部20は、学習用データ11に含まれる、学習用の細胞情報及び学習用の工程履歴情報を推定モデル12に入力し、推定モデル12から出力される対象幹細胞の分化能を示す指標値(すなわち、内胚葉、中胚葉、外胚葉に分化する確率をそれぞれ示す3つのスコア)を取得する。そして、学習部20は、取得した指標値と、学習用データ11に含まれる、当該細胞情報及び工程履歴情報の組み合わせに対応する学習用の種別情報(分化細胞情報)によって示されるスコアとの差が最小となるように、推定モデル12を学習させる。
学習部20は、推定モデル12を学習させる処理を、学習用データ11に含まれる細胞情報及び工程履歴情報と、種別情報(分化細胞情報)と、の全ての組み合わせを用いて行う。なお、学習部20は、学習用データ11に含まれる細胞情報及び工程履歴情報と、種別情報(分化細胞情報)と、の組み合わせの一部を用いて推定モデル12を学習させてもよい。
図4は、開示の技術の実施形態に係る情報処理装置1の、学習済みの推定モデル12を運用して対象幹細胞の分化能を推定する運用フェーズにおける機能的な構成の一例を示す機能ブロック図である。情報処理装置1は、取得部31、導出部32、出力部33及び記憶部10を備えている。記憶部10には、学習フェーズにおいて、機械学習を行うことによって構築された学習済みの推定モデル12が格納されている。
取得部31は、入力部44(図5参照)を介して入力された細胞情報及び工程履歴情報を取得する。
導出部32は、取得部31によって取得された細胞情報及び工程履歴情報を、学習済みの推定モデル12に入力し、推定モデル12から出力された、対象幹細胞の分化能を示す指標値を分化能情報として導出する。具体的には、導出部32は、対象幹細胞が、内胚葉、中胚葉、外胚葉に分化する確率をそれぞれ示す3つのスコアを、分化能情報として導出する。
出力部33は、導出部32により導出された分化能情報を、表示部43(図5参照)に出力する。なお、出力部33は、導出部32により導出された分化能情報を、記憶部10に出力(記憶)してもよい。
図5は、情報処理装置1のハードウェア構成の一例を示す図である。情報処理装置1は、CPU(Central Processing Unit)41、一時記憶領域としてのメモリ42、及び不揮発性の記憶部10を備えている。また、情報処理装置1は、液晶ディスプレイ等の表示デバイスである表示部43、及びキーボード及びマウス等の入力デバイスである入力部44を備えている。CPU41、メモリ42、記憶部10、表示部43、及び入力部44は、バス45を介して接続されている。
記憶部10は、例えば、HDD(Hard Disk Drive)、SSD(Solid State Drive)、及びフラッシュメモリ等の不揮発性(持続性:non-transitory)の記憶媒体によって実現される。記憶部10には、学習プログラム51、学習用データ11、推定モデル12、分化能推定プログラム52が格納されている。CPU41は、学習プログラム51及び分化能推定プログラム52を、メモリ42に展開した後に実行する。CPU41が学習プログラム51を実行することにより、CPU41は、学習部20として機能する。また、CPU41が分化能推定プログラム52を実行することにより、CPU41は、取得部31、導出部32及び出力部33として機能する。
図6は、CPU41が、学習プログラム51を実行することにより実施される学習処理の流れの一例を示すフローチャートである。CPU41は、例えば、学習フェーズにおいて、ユーザによって入力部44を介して学習処理の実行指示が入力された場合に学習プログラムを実行する。
ステップS11において、学習部20は、記憶部10に格納されている学習用データ11を読み出す。学習用データ11は、学習用の細胞情報及び学習用の工程履歴情報と、学習用の種別情報(分化細胞情報)と、の複数の組み合わせによって構成されている。
ステップS12において、学習部20は、推定モデル12を生成する。なお、推定モデル12の入力層のノード数、中間層の層数とノード数、及び重みの初期値等の、推定モデルを生成するために必要とされるパラメータは、ユーザにより設定される。
ステップS13において、学習部20は、学習用データ11を用いて、誤差逆伝播法に従って、推定モデル12に学習させる。具体的には、学習部20は、学習用データ11に含まれる細胞情報及び工程履歴情報を推定モデル12に入力し、推定モデル12から出力される対象幹細胞の分化能を示す指標値(すなわち、内胚葉、中胚葉、外胚葉に分化する確率をそれぞれ示す3つのスコア)を取得する。そして、学習部20は、取得した指標値と、学習用データ11に含まれる、当該細胞情報及び工程履歴情報の組み合わせに対応する種別情報(分化細胞情報)によって示される3つのスコアとの差が最小となるように、推定モデル12を学習させる。
ステップS14において、学習部20は、ステップS13の処理によって構築された、学習済みの推定モデル12を記憶部10に格納する。ステップS14の処理が完了すると、学習処理が終了する。
図7は、CPU41が、分化能推定プログラム52を実行することにより実施される分化能推定処理の流れの一例を示すフローチャートである。CPU41は、例えば、運用フェーズにおいて、ユーザによって入力部44を介して分化能推定処理の実行指示が入力された場合に分化能推定プログラムを実行する。
ステップS21において、CPU41は取得部31として機能し、入力部44を介して入力された細胞情報及び工程履歴情報を取得する。細胞情報及び工程履歴情報は、図1に示される第1の工程P1、第2の工程P2及び第3の工程P3のうちの少なくとも1つの工程において取得される。
ステップS22において、CPU41は導出部32として機能し、記憶部10から学習済みの推定モデル12を読み出す。
ステップS23において、CPU41は導出部32として機能し、ステップS21において取得した細胞情報及び工程履歴情報を、学習済みの推定モデル12に入力し、推定モデル12から出力された、対象幹細胞の分化能を示す指標値を、分化能情報として導出する。具体的には、導出部32として機能するCPU41は、対象幹細胞が、内胚葉、中胚葉、外胚葉に分化する確率をそれぞれ示す3つのスコアを、分化能情報として導出する。
ステップS24において、CPU41は出力部33として機能し、ステップS23の処理により導出された分化能情報を表示部43に出力する。ステップS24の処理が終了すると、分化能推定処理が終了する。
以上のように、開示の技術の実施形態に係る情報処理装置1によれば、多能性幹細胞が分化に至る前の、第1の工程P1、第2の工程P2及び第3の工程P3の少なくとも1つの工程において取得した細胞情報及び工程履歴情報を入力することで、対象幹細胞の分化能を示す指標値が、分化能情報として導出される。具体的には、対象幹細胞が、内胚葉、中胚葉、外胚葉に分化する確率をそれぞれ示す3つのスコアが導出される。従って、多能性幹細胞が分化に至る前に、対象幹細胞が、内胚葉、中胚葉、外胚葉のうちのどの胚葉に分化する確率が相対的に高いのかを把握することが可能である。すなわち、開示の技術の実施形態に係る情報処理装置1によれば、多能性幹細胞が分化誘導によって特定の分化細胞に分化する前に、当該多能性幹細胞の分化能に関する推定を行うことが可能である。
従って、推定された分化能に応じて、各工程において行われる処理のプロトコルを選択するといった対応も可能である。例えば、情報処理装置1によって対象幹細胞が内胚葉に分化する確率が相対的に高いと推定された場合、第2の工程P2及び第3の工程P3において、内胚葉への分化を誘導するべく処理プロトコルを選択することで、分化細胞である内胚葉の収率及び品質を高めることが可能である。
また、開示の技術の実施形態に係る情報処理装置1によれば、対象幹細胞が内胚葉、中胚葉及び外胚葉のいずれにも分化しない確率が高い場合には、分化能情報として導出される上記3つのスコアが、いずれも低スコアとなる。このような場合には、処理を中断することで、損失を最小限に抑えることができる。このように、開示の技術の実施形態に係る情報処理装置1によって導出された分化能情報を活用して、その後の方針を定めることで、多能性幹細胞由来の再生医療製品の生産性及び品質を改善することが可能となる。
なお、本実施形態では、細胞情報が、外観情報、遺伝子情報、分泌物情報及びドナー情報を含む場合を例示したが、細胞情報は、外観情報、遺伝子情報、分泌物情報及びドナー情報のうちの少なくとも1つを含んで構成されていてもよく、また、これら以外の情報を含んでいてもよい。
また、本実施形態では、工程履歴情報が、作業者情報、設備情報、培地及び試薬の識別情報、及び環境情報を含む場合を例示したが、工程履歴情報は、作業者情報、設備情報、培地及び試薬の識別情報、及び環境情報のうちの少なくとも1つを含んで構成されていてもよく、また、これら以外の情報を含んでいてもよい。
また、上記実施形態でCPUがソフトウェア(プログラム)を実行することにより実行した各種処理を、CPU以外の各種のプロセッサが実行してもよい。この場合のプロセッサとしては、FPGA(Field-Programmable Gate Array)等の製造後に回路構成を変更可能なPLD(Programmable Logic Device)、及びASIC(Application Specific Integrated Circuit)等の特定の処理を実行させるために専用に設計された回路構成を有するプロセッサである専用電気回路等が例示される。また、上記各種処理を、これらの各種のプロセッサのうちの1つで実行してもよいし、同種又は異種の2つ以上のプロセッサの組み合わせ(例えば、複数のFPGA、及びCPUとFPGAとの組み合わせ等)で実行してもよい。また、これらの各種のプロセッサのハードウェア的な構造は、より具体的には、半導体素子等の回路素子を組み合わせた電気回路である。
また、上記実施形態では、学習プログラム51及び分化能推定プログラム52が記憶部10に予め記憶(インストール)されている態様を説明したが、これに限定されない。学習プログラム51及び分化能推定プログラム52は、CD-ROM(Compact Disk Read Only Memory)、DVD-ROM(Digital Versatile Disk Read Only Memory)、及びUSB(Universal Serial Bus)メモリ等の記録媒体に記録された形態で提供されてもよい。また、学習プログラム51及び分化能推定プログラム52は、ネットワークを介して外部装置からダウンロードされる形態としてもよい。
[第2の実施形態]
下記の表2は、開示の技術の第2の実施形態に係る細胞情報の一例を示したものである。本実施形態に係る細胞情報は、未分化逸脱細胞情報を含んでいる。未分化逸脱細胞とは、第3の工程P3において分化誘導を行う前に、意図せず未分化状態を逸脱した多能性幹細胞である。未分化逸脱細胞は、特定の遺伝子が発現することによって特異的に生じるものと考えられている。未分化逸脱細胞情報は、この未分化逸脱細胞に関する情報である。例えば、未分化逸脱細胞の遺伝子情報は、当該未分化逸脱細胞と共通のルートから樹立された多能性幹細胞の分化能と相関性を有していると考えられる。従って、本実施形態では、細胞情報は、未分化逸脱細胞情報を含んで構成されている。
下記の表2は、開示の技術の第2の実施形態に係る細胞情報の一例を示したものである。本実施形態に係る細胞情報は、未分化逸脱細胞情報を含んでいる。未分化逸脱細胞とは、第3の工程P3において分化誘導を行う前に、意図せず未分化状態を逸脱した多能性幹細胞である。未分化逸脱細胞は、特定の遺伝子が発現することによって特異的に生じるものと考えられている。未分化逸脱細胞情報は、この未分化逸脱細胞に関する情報である。例えば、未分化逸脱細胞の遺伝子情報は、当該未分化逸脱細胞と共通のルートから樹立された多能性幹細胞の分化能と相関性を有していると考えられる。従って、本実施形態では、細胞情報は、未分化逸脱細胞情報を含んで構成されている。
すなわち、学習フェーズにおいて、学習部20は、学習用データ11に含まれる、未分化逸脱細胞情報を含む学習用の細胞情報及び工程履歴情報を推定モデル12に入力し、推定モデル12から出力される対象幹細胞の分化能を示す指標値(すなわち、内胚葉、中胚葉、外胚葉に分化する確率をそれぞれ示す3つのスコア)を取得する。そして、学習部20は、取得した指標値と、学習用データ11に含まれる、当該細胞情報及び工程履歴情報の組み合わせに対応する学習用の種別情報(分化細胞情報)によって示されるスコアとの差が最小となるように、推定モデル12を学習させる。
また、運用フェーズにおいて、導出部32は、未分化逸脱細胞情報を含む細胞情報及び工程履歴情報を、学習済みの推定モデル12に入力し、推定モデル12から出力された、対象幹細胞の分化能を示す指標値を分化能情報として導出する。具体的には、導出部32は、対象幹細胞が、内胚葉、中胚葉、外胚葉に分化する確率をそれぞれ示す3つのスコアを、分化能情報として導出する。
以上のように、本実施形態に係る情報処理装置1によれば、多能性幹細胞の分化能と相関性を有していると考えられる未分化逸脱細胞情報が、多能性幹細胞の分化能の推定に用いられるので、分化能の推定精度をより高めることが可能となる。
上記の各実施形態において、例えば、学習部20、取得部31、導出部32、出力部33といった各種の処理を実行する処理部(processing unit)のハードウェア的な構造としては、次に示す各種のプロセッサ(processor)を用いることができる。上記各種のプロセッサには、上述したように、ソフトウェア(プログラム)を実行して各種の処理部として機能する汎用的なプロセッサであるCPUに加えて、FPGA(Field Programmable Gate Array)などの製造後に回路構成を変更可能なプロセッサであるプログラマブルロジックデバイス(Programmable Logic Device :PLD)、ASIC(Application Specific Integrated Circuit)などの特定の処理を実行させるために専用に設計された回路構成を有するプロセッサである専用電気回路などが含まれる。
1つの処理部は、これらの各種のプロセッサのうちの1つで構成されてもよいし、同種または異種の2つ以上のプロセッサの組み合わせ(例えば、複数のFPGAの組み合わせや、CPUとFPGAとの組み合わせ)で構成されてもよい。また、複数の処理部を1つのプロセッサで構成してもよい。
複数の処理部を1つのプロセッサで構成する例としては、第1に、クライアント及びサーバなどのコンピュータに代表されるように、1つ以上のCPUとソフトウェアの組み合わせで1つのプロセッサを構成し、このプロセッサが複数の処理部として機能する形態がある。第2に、システムオンチップ(System On Chip:SoC)などに代表されるように、複数の処理部を含むシステム全体の機能を1つのIC(Integrated Circuit)チップで実現するプロセッサを使用する形態がある。このように、各種の処理部は、ハードウェア的な構造として、上記各種のプロセッサの1つ以上を用いて構成される。
複数の処理部を1つのプロセッサで構成する例としては、第1に、クライアント及びサーバなどのコンピュータに代表されるように、1つ以上のCPUとソフトウェアの組み合わせで1つのプロセッサを構成し、このプロセッサが複数の処理部として機能する形態がある。第2に、システムオンチップ(System On Chip:SoC)などに代表されるように、複数の処理部を含むシステム全体の機能を1つのIC(Integrated Circuit)チップで実現するプロセッサを使用する形態がある。このように、各種の処理部は、ハードウェア的な構造として、上記各種のプロセッサの1つ以上を用いて構成される。
さらに、これらの各種のプロセッサのハードウェア的な構造としては、より具体的には、半導体素子などの回路素子を組み合わせた電気回路(circuitry)を用いることができる。
Claims (8)
- 多能性幹細胞の作成から前記多能性幹細胞が分化誘導によって特定の分化細胞に分化するまでの細胞の状態を示す細胞情報、及び前記分化細胞を得るための処理工程における履歴を示す工程履歴情報を取得する取得部と、
前記取得部によって取得された前記細胞情報及び前記工程履歴情報に基づいて、前記多能性幹細胞の分化能を示す分化能情報を導出する導出部と、
を含む情報処理装置。 - 前記導出部は、前記取得部によって取得された前記細胞情報及び前記工程履歴情報を、推定モデルに入力することによって前記分化能情報を導出し、
前記推定モデルは、学習用の前記細胞情報及び学習用の前記工程履歴情報と、学習用の前記細胞情報によって示される状態の細胞が、学習用の前記工程履歴情報によって示される工程履歴を経ることにより得られた分化細胞の種別を示す学習用の種別情報と、の複数の組み合わせを学習用データとして用いて、機械学習によって学習されたモデルである
請求項1に記載の情報処理装置。 - 前記導出部は、内胚葉、中胚葉、外胚葉の各々について、当該胚葉に分化する確率を示すスコアを、前記分化能情報として導出する
請求項1または請求項2に記載の情報処理装置。 - 前記細胞情報は、前記多能性幹細胞の外観に関する外観情報、前記多能性幹細胞の遺伝子に関する遺伝子情報、前記多能性幹細胞から分泌される分泌物に関する分泌物情報、及び前記多能性幹細胞の樹立に用いられた体細胞の提供者に関するドナー情報の少なくとも1つを含む
請求項1から請求項3のいずれか1項に記載の情報処理装置。 - 前記細胞情報は、前記多能性幹細胞が分化誘導前に未分化状態を逸脱した未分化逸脱細胞に関する情報を更に含む
請求項4に記載の情報処理装置。 - 前記工程履歴情報は、前記処理工程において作業を行った作業者を示す作業者情報、前記処理工程において使用した設備を示す設備情報、前記処理工程において使用した培地及び試薬の識別情報、前記処理工程における環境を示す環境情報の少なくとも1つを含む
請求項1から請求項5のいずれか1項に記載の情報処理装置。 - 多能性幹細胞の作成から前記多能性幹細胞が分化誘導によって特定の分化細胞に分化するまでの細胞の状態を示す細胞情報と、前記分化細胞を得るための処理工程における履歴を示す工程履歴情報と、を取得し、
前記取得された前記細胞情報及び前記工程履歴情報に基づいて、前記多能性幹細胞の分化能を示す分化能情報を導出すること
を含む処理をコンピュータが実行する導出方法。 - 多能性幹細胞の作成から前記多能性幹細胞が分化誘導によって特定の分化細胞に分化するまでの細胞の状態を示す細胞情報と、前記分化細胞を得るための処理工程における履歴を示す工程履歴情報と、を取得し、
前記取得された前記細胞情報及び前記工程履歴情報に基づいて、前記多能性幹細胞の分化能を示す分化能情報を導出すること
を含む処理を、コンピュータに実行させる導出プログラム。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19818797.3A EP3808834A4 (en) | 2018-06-13 | 2019-06-06 | INFORMATION PROCESSING DEVICE, DERIVATION METHOD AND DERIVATION PROGRAM |
CN201980039070.9A CN112292445A (zh) | 2018-06-13 | 2019-06-06 | 信息处理装置、导出方法及导出程序 |
JP2020525502A JPWO2019240008A1 (ja) | 2018-06-13 | 2019-06-06 | 情報処理装置、導出方法、及び導出プログラム |
US17/114,501 US20210087517A1 (en) | 2018-06-13 | 2020-12-08 | Information processing apparatus, derivation method, and derivation program |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018112878 | 2018-06-13 | ||
JP2018-112878 | 2018-06-13 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/114,501 Continuation US20210087517A1 (en) | 2018-06-13 | 2020-12-08 | Information processing apparatus, derivation method, and derivation program |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019240008A1 true WO2019240008A1 (ja) | 2019-12-19 |
Family
ID=68843337
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/022561 WO2019240008A1 (ja) | 2018-06-13 | 2019-06-06 | 情報処理装置、導出方法、及び導出プログラム |
Country Status (5)
Country | Link |
---|---|
US (1) | US20210087517A1 (ja) |
EP (1) | EP3808834A4 (ja) |
JP (1) | JPWO2019240008A1 (ja) |
CN (1) | CN112292445A (ja) |
WO (1) | WO2019240008A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022270179A1 (ja) | 2021-06-24 | 2022-12-29 | 富士フイルム株式会社 | 情報処理装置、情報処理方法、及びプログラム |
EP4148139A4 (en) * | 2020-06-19 | 2023-11-08 | FUJIFILM Corporation | METHOD FOR IDENTIFYING BIOMARKERS AND METHOD FOR PRODUCING CELLS |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116486918A (zh) * | 2022-01-14 | 2023-07-25 | 天士力干细胞产业平台有限公司 | 一种干细胞质量评价方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060039593A1 (en) * | 2004-05-13 | 2006-02-23 | Paul Sammak | Methods and systems for imaging cells |
WO2010131641A1 (ja) | 2009-05-11 | 2010-11-18 | 独立行政法人国立成育医療研究センター | 細胞の状態を判別する方法 |
JP2011229410A (ja) | 2010-04-23 | 2011-11-17 | Nagoya Univ | 細胞評価装置、インキュベータ、プログラム、および、培養方法 |
JP2017009314A (ja) | 2015-06-17 | 2017-01-12 | 株式会社Screenホールディングス | 教示データの作成支援方法、作成支援装置、プログラムおよびプログラム記録媒体 |
JP2017063652A (ja) * | 2015-09-29 | 2017-04-06 | 富士フイルム株式会社 | 細胞評価装置および方法並びにプログラム |
JP2018019685A (ja) * | 2016-08-04 | 2018-02-08 | ファナック株式会社 | 幹細胞製造システム、幹細胞情報管理システム、細胞輸送設備、及び幹細胞冷凍保存設備 |
WO2018101004A1 (ja) * | 2016-12-01 | 2018-06-07 | 富士フイルム株式会社 | 細胞画像評価装置および細胞画像評価制御プログラム |
JP2018112878A (ja) | 2017-01-11 | 2018-07-19 | キヤノン株式会社 | 情報処理装置、及びその制御方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012099163A1 (ja) * | 2011-01-19 | 2012-07-26 | 株式会社ニコン | 細胞情報データの作成方法 |
BR122020005735B1 (pt) * | 2011-12-01 | 2021-12-28 | New York Stem Cell Foundation, Inc | Sistema para a geração de células adultas diferenciadas a partir de células-tronco pluripotentes induzidas (ipscs) |
WO2014210533A1 (en) * | 2013-06-27 | 2014-12-31 | The New York Stem Cell Foundation | Improved systems and methods for producing stem cells and differentiated cells |
-
2019
- 2019-06-06 WO PCT/JP2019/022561 patent/WO2019240008A1/ja unknown
- 2019-06-06 JP JP2020525502A patent/JPWO2019240008A1/ja not_active Abandoned
- 2019-06-06 EP EP19818797.3A patent/EP3808834A4/en not_active Withdrawn
- 2019-06-06 CN CN201980039070.9A patent/CN112292445A/zh active Pending
-
2020
- 2020-12-08 US US17/114,501 patent/US20210087517A1/en not_active Abandoned
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060039593A1 (en) * | 2004-05-13 | 2006-02-23 | Paul Sammak | Methods and systems for imaging cells |
WO2010131641A1 (ja) | 2009-05-11 | 2010-11-18 | 独立行政法人国立成育医療研究センター | 細胞の状態を判別する方法 |
JP2011229410A (ja) | 2010-04-23 | 2011-11-17 | Nagoya Univ | 細胞評価装置、インキュベータ、プログラム、および、培養方法 |
JP2017009314A (ja) | 2015-06-17 | 2017-01-12 | 株式会社Screenホールディングス | 教示データの作成支援方法、作成支援装置、プログラムおよびプログラム記録媒体 |
JP2017063652A (ja) * | 2015-09-29 | 2017-04-06 | 富士フイルム株式会社 | 細胞評価装置および方法並びにプログラム |
JP2018019685A (ja) * | 2016-08-04 | 2018-02-08 | ファナック株式会社 | 幹細胞製造システム、幹細胞情報管理システム、細胞輸送設備、及び幹細胞冷凍保存設備 |
WO2018101004A1 (ja) * | 2016-12-01 | 2018-06-07 | 富士フイルム株式会社 | 細胞画像評価装置および細胞画像評価制御プログラム |
JP2018112878A (ja) | 2017-01-11 | 2018-07-19 | キヤノン株式会社 | 情報処理装置、及びその制御方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3808834A4 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4148139A4 (en) * | 2020-06-19 | 2023-11-08 | FUJIFILM Corporation | METHOD FOR IDENTIFYING BIOMARKERS AND METHOD FOR PRODUCING CELLS |
WO2022270179A1 (ja) | 2021-06-24 | 2022-12-29 | 富士フイルム株式会社 | 情報処理装置、情報処理方法、及びプログラム |
Also Published As
Publication number | Publication date |
---|---|
US20210087517A1 (en) | 2021-03-25 |
EP3808834A4 (en) | 2021-08-11 |
CN112292445A (zh) | 2021-01-29 |
JPWO2019240008A1 (ja) | 2021-06-24 |
EP3808834A1 (en) | 2021-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20210087517A1 (en) | Information processing apparatus, derivation method, and derivation program | |
Moon et al. | Visualizing structure and transitions in high-dimensional biological data | |
Berntsen et al. | Robust and generalizable embryo selection based on artificial intelligence and time-lapse image sequences | |
Zaninovic et al. | Artificial intelligence in human in vitro fertilization and embryology | |
Tomic et al. | SIMON, an automated machine learning system, reveals immune signatures of influenza vaccine responses | |
Lang et al. | Epigenetic landscapes explain partially reprogrammed cells and identify key reprogramming genes | |
Müller et al. | Assessment of human pluripotent stem cells with PluriTest | |
Glatstein et al. | New frontiers in embryo selection | |
Moon et al. | Visualizing transitions and structure for high dimensional data exploration | |
Mölder et al. | Semiautomated analysis of embryoscope images: Using localized variance of image intensity to detect embryo developmental stages | |
Blin et al. | Nessys: A new set of tools for the automated detection of nuclei within intact tissues and dense 3D cultures | |
Shende et al. | A review on the role of artificial intelligence in stem cell therapy: an initiative for modern medicines | |
Fang et al. | Quantitative fate mapping: A general framework for analyzing progenitor state dynamics via retrospective lineage barcoding | |
CN105989438A (zh) | 一种任务关系管理方法、装置、系统及电子设备 | |
Kiselev et al. | scmap-A tool for unsupervised projection of single cell RNA-seq data | |
WO2020012853A1 (ja) | 細胞培養作業支援装置、プログラム、及び作動方法 | |
Ogita et al. | Image-based parameter inference for epithelial mechanics | |
Mukherjee et al. | Identifying progressive gene network perturbation from single-cell RNA-seq data | |
US20240112479A1 (en) | Information processing apparatus, information processing method, and program | |
Vo et al. | The use of artificial intelligence in induced pluripotent stem cell-based technology over 10-year period: A systematic scoping review | |
Yao et al. | Patient-Centric In Vitro Fertilization Prognostic Counseling Using Machine Learning for the Pragmatist | |
Cherni et al. | AI tools in medical image analysis: efficacy of ANN for oestrogen receptor status assessment in immunohistochemical staining of breast cancer | |
JPWO2020148956A1 (ja) | 細胞生成支援装置、方法、及びプログラム | |
Peng et al. | Lineage specification of early embryos and embryonic stem cells at the dawn of enabling technologies | |
Janmohamed et al. | Artificial Intelligence and Oocyte/Embryo Assessment in Cryopreservation Cycles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19818797 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020525502 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019818797 Country of ref document: EP Effective date: 20210113 |