WO2019239997A1 - Power semiconductor device and method for producing power semiconductor device - Google Patents

Power semiconductor device and method for producing power semiconductor device Download PDF

Info

Publication number
WO2019239997A1
WO2019239997A1 PCT/JP2019/022463 JP2019022463W WO2019239997A1 WO 2019239997 A1 WO2019239997 A1 WO 2019239997A1 JP 2019022463 W JP2019022463 W JP 2019022463W WO 2019239997 A1 WO2019239997 A1 WO 2019239997A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor device
power semiconductor
heat sink
heat
convex portion
Prior art date
Application number
PCT/JP2019/022463
Other languages
French (fr)
Japanese (ja)
Inventor
隼人 寺田
進吾 須藤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2020525493A priority Critical patent/JP7019809B2/en
Publication of WO2019239997A1 publication Critical patent/WO2019239997A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/40Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • power semiconductor devices are used for relatively large power control, current rectification, and the like in vehicles such as railway vehicles, hybrid cars, and electric vehicles, home appliances, and industrial machines.
  • the current flowing to the semiconductor element is also large and generates heat due to Joule heat due to the resistance of the semiconductor element.
  • An increase in temperature of the semiconductor element itself due to heat leads to a decrease in characteristics and reliability of the semiconductor element. Therefore, the power semiconductor device needs to efficiently dissipate the heat of the semiconductor element.
  • One configuration of the heat dissipation path in actual use of such a semiconductor device is a configuration in which heat generated by the semiconductor element is transmitted to the heat dissipation fins through a heat sink and a heat dissipation material having an insulating layer.
  • heat radiation grease having low thermal conductivity has been used as the heat radiation material, but recently, conductive materials with improved thermal conductivity have been used.
  • the heat dissipating fins to which the exterior terminals and the ground are connected may be electrically connected, resulting in a ground fault.
  • the power semiconductor device disclosed in the present application is A semiconductor element; A wiring member fixed to the semiconductor element; A heat sink having a convex portion formed so as to protrude from the back surface while the surface is bonded to the wiring member via an insulating material, A sealing body for sealing the semiconductor element, the wiring member, and the heat sink; While sandwiching a fluid radiator with the heat sink, a heat dissipation propulsion body attached to the sealing body, It is characterized by comprising.
  • the heat sink is prevented from flowing out to the outer peripheral portion of the power semiconductor device by bringing the convex portion of the heat sink into contact with the heat radiating fins.
  • a power semiconductor device capable of preventing the heat sink from flowing between the heat radiating fins and suppressing the decrease in heat conduction to the heat radiating fins.
  • FIG. 1 is an external view of a configuration of a power semiconductor device according to a first embodiment viewed from the back side.
  • FIG. 2 is a diagram showing an example of a cross section (BB) of the power semiconductor device of FIG. 1.
  • FIG. 2 is a diagram showing an example of a cross section (CC) of the power semiconductor device of FIG. 1. It is the figure which connected the power semiconductor device of FIG. 3 to the radiation fin.
  • FIG. 3 is a main part sectional view showing an example of a joint portion between a heat sink and a heat radiating fin of the power semiconductor device according to the first embodiment;
  • FIG. 10 is a main part sectional view showing another example of the joint portion between the heat sink and the radiation fin of the power semiconductor device according to the first embodiment
  • FIG. 6 is a diagram for explaining the relationship between the heat sink and the production die of the power semiconductor device according to the first embodiment.
  • FIG. 10 is a main part sectional view showing another example of the joint portion between the heat sink and the radiation fin of the power semiconductor device according to the first embodiment;
  • FIG. 10 is a cross-sectional view of a main part showing another example of a joint portion between a heat sink and a heat radiating fin of the power semiconductor device according to the second embodiment.
  • FIG. 10 is a cross-sectional view of a main part showing another example of a joint portion between a heat sink and a heat radiating fin of the power semiconductor device according to the second embodiment.
  • FIG. 12 is a main part sectional view showing another example of a joint part between a heat sink and a heat radiating fin of a power semiconductor device according to a third embodiment;
  • FIG. 2 is a diagram showing an example of a cross section (DD) of the power semiconductor device of FIG. 1 according to the first embodiment.
  • FIG. 16 is a diagram showing another example of a cross section (DD) of the power semiconductor device according to the fourth embodiment.
  • 1 is an external view seen from the back side for explaining an example of a configuration of a power semiconductor device according to a first embodiment;
  • FIG. 3 is a diagram showing a positional relationship between a sealing body and a heat sink of the coulometric semiconductor device according to the first embodiment.
  • FIG. 2 is a diagram showing an example of a cross section parallel to a cross section (BB) of the power semiconductor device of FIG. 1.
  • FIG. 2 is a cross-sectional view taken along the cross-sectional line BB of the power semiconductor device shown in FIG. 1, and FIG. 16 is parallel to the cross-sectional line BB of the power semiconductor device shown in FIG.
  • Cross-sectional views along different cross-sections are respectively shown.
  • a power lead terminal 13Pt and a control lead terminal 13Ct are provided so as to protrude outward from both side surfaces in the longitudinal direction, that is, outside the sealing body.
  • the power lead terminal 13Pt and the control lead terminal 13Ct are respectively connected to the internal lead 13Pi and the internal lead 13Ci disposed inside the sealing body, and the combination of the power lead terminal 13Pt and the internal lead 13Pi is the power lead.
  • a combination of the control lead terminal 13Ct and the internal lead 13Ci is called a control lead 13C.
  • a structure including the power lead 13P and the control lead 13C is called a lead frame as a whole.
  • an IGBT Insulated Gate Bipolar Transistor
  • the semiconductor element 5 on the power lead 13P more specifically, on the die pad 13Pf formed flat, which is a part of the internal lead 13Pi disposed inside the sealing body.
  • These back electrodes are joined by solder 15.
  • the other part of the internal lead 13Pi is electrically connected to the gate electrode of the semiconductor element 5 by the power wire 11P.
  • the control element 6 is electrically connected to the control lead 13C which is configured by the wire 12 and includes an internal lead 13Ci disposed inside the sealed body and a control lead terminal 13Ct disposed outside the sealed body. It is connected to the. Further, the control element 6 and the semiconductor element 5 transmit / receive signals to / from each other via the control wire 11C.
  • the surface of the die pad 13Pf opposite to the surface where the semiconductor element 5 is connected to the die pad 13Pf is formed of, for example, an insulating filler and a resin, and has high heat dissipation and thermal insulation.
  • the heat sink 100 is bonded via the insulating resin sheet 14.
  • interposed the insulating member between layers, may be sufficient.
  • these insulating members are collectively referred to as insulating materials.
  • FIG. 3 is a cross-sectional view taken along the cross-sectional line CC of the power semiconductor device shown in FIG.
  • FIG. 4 is a diagram in which the power semiconductor device of FIG. 3 is connected to a radiation fin that radiates the heat generated by the power semiconductor device.
  • the thickness of the power semiconductor device is 3 to 35 mm.
  • the power semiconductor device has screw holes 18 for attaching the power semiconductor device to the radiating fins on both the left and right sides. Yes.
  • the power semiconductor device is fixed to the radiating fin 20 through the screw 19 through the screw 19.
  • the object which can thermally radiate such as a block or a board, may be sufficient.
  • these are collectively referred to as a heat dissipation propulsion body.
  • the heat sink 100 On the surface of the heat sink 100 facing the heat radiating fins 20, there is a step for obtaining an anchor locking effect by the sealing body 10, and a fluid heat radiating body 110 in the center of the heat sink surface (hereinafter, the heat radiating body is fluid.
  • the heat radiating body is fluid.
  • Indented portions 102 that are recessed from the surrounding heat sink surface are arranged adjacent to each other.
  • the heat radiator 110 is made of an insulating or conductive material. Thus, the insulation distance between the heat sink 100 and the power lead terminal 13Pt and between the heat sink 100 and the control lead terminal 13Ct is secured. At this time, when the heat radiating body 110 leaks outside the outer peripheral portion, the insulation distance may not be secured.
  • the convex portion 101 and the concave portion 102 may be disposed.
  • the heat sink surface is used in combination with the convex portion 101 because it is not a mechanism for completely blocking the flow of the radiator 110. It is easy to suppress spreading to the outer peripheral part if it is provided on the entire circumference. That is, a structure in which the convex portion 101 and the hollow portion 102 are formed as a pair so as to surround the periphery of the radiator 110 is more suitable as a mechanism for completely blocking the flow of the radiator 110.
  • the heat lead 100 when it is desired to prevent the inflow into the screw hole 18, it may be arranged only around the screw hole 18 of the heat sink 100 (see the convex portion 101a and the hollow portion 102a in FIG. 14). Further, for example, as shown in FIG. 18, when only the power lead 13P and the control lead 13C are desired to prevent contact with the heat radiating body 110, the heat lead 100 may be disposed only around the power lead 13P and around the control lead 13C. Good. Thereby, the position which provides the convex part 101 and the hollow part 102 can be decreased, and material cost can be made cheap.
  • the material of the heat sink 100 is made of, for example, an alloy obtained by adding Mg or Mn to Al.
  • the material of the heat sink 100 may be another metal, and is not limited to a metal, and can be applied to any inorganic or organic material having high thermal conductivity.
  • the planar shape of the heat sink 100 is not limited to the quadrangular shape as shown in FIG. 1, but may be a trapezoidal shape or a polygonal shape. Unless the heat radiating surface facing the heat radiating fins is sealed and exposed, for example, with resin. Good.
  • the side wall of the heat sink 100 is covered up to the step 104. Furthermore, as shown in FIG. 15, it may cover even a part of the convex portion 101. At this time, the convex portion 101 plays a role of preventing not only the heat radiating body 110 but also the sealing body 10 from entering the heat sink 100 facing the heat radiating fins 20.
  • the protrusion 101 on the heat dissipation surface has a width of 0.1 to 2.5 mm and a height of 0.01 to 2.0 mm.
  • the depression 102 has a width of 0.01 to 2.5 mm and a depth of 0.1 to 2.0 mm.
  • heat sink 100 for example, molding by forging with a mold, formation of a desired shape by cutting, and the like may be used, but other processing methods may be used.
  • the heat radiation area of the heat radiation fin 20 can be secured from the heat sink 100 by widening the application area of the heat radiation body 110, it is desirable that the convex portion 101 is separated from the die pad 13Pf. For example, referring to FIG. 2, it is desirable to dispose the heat sink 100 on the outside of the die pad 13Pf.
  • the heat dissipation path from the heat sink 100 to the heat dissipation fin 20 can be shortened by reducing the thickness of the heat dissipating body 110, it is desirable that the convex portion 101 has a low height and a short width, and the hollow portion 102 has a depth. Is shallower. If the width is larger than the depth of the recess 102, the heat radiating body 110 tends to flow, so it is desirable that the heat sink 110 is also away from the die pad 13Pf.
  • the power semiconductor device 1 includes the screw holes 18 through which the screws 19 for fixing the power semiconductor device 1 to the radiating fins 20 are passed.
  • the convex portion 101 of the heat sink 100 of the power semiconductor device 1 coated with the heat radiating body 110 is brought into contact with the heat radiating fins 20 and fastened with screws 19 through screw holes 18 as shown in FIG.
  • the heat sink 100 and the heat radiating fins 20 do not necessarily have to be fastened with the screws 19, and the power semiconductor device 1 may be fixed between the electronic board to which the lead frame is soldered and the heat radiating fins.
  • the heat radiating fin 20 may be a part of a vehicle such as a railway vehicle, a hybrid car, or an electric vehicle, a home appliance, an industrial machine, or the like.
  • the power semiconductor device 1 can provide the following effects when connected to the heat radiating fins by providing the concave and convex portions on the outer peripheral portion of the heat sink 100.
  • the concave portion and the convex portion of the heat sink 100 are provided as a pair (in sets), and the convex portion of the heat sink 100 is provided.
  • the convex portion 101 interposed between the heat radiating body 110 and the screw 19 becomes a barrier that prevents the heat radiating body 110 from flowing out.
  • the convex part 101 can make the state which prevents the outflow of the thermal radiation body 110, and the thermal radiation body 110 which lost the place can flow into the hollow 102, and it can stop that the thermal radiation body 110 flows out outside.
  • the convex portion 101 of the heat sink 100 is inclined or has a height variation
  • the convex portion 101 is deformed by the tightening pressure of the screw 19 by using a material with low mechanical strength such as pure Al or copper for the heat sink 100, for example.
  • a material with low mechanical strength such as pure Al or copper for the heat sink 100, for example.
  • the convex portion 101T and the radiating fin 20 can be brought into contact with no gap.
  • the convex portion 101 is crushed and deformed by the tightening pressure of the screw 19 to form a convex portion 101Td in which a portion in contact with the heat radiating fin forms a flat surface as shown in FIG.
  • the dimensional tolerance of the material can be filled, and the convex portion 101Td and the radiating fin 20 can be brought into contact with no gap.
  • the convex portion 101Td has a crushed tip. Thereby, it becomes a dam which prevents that the thermal radiation body 110 flows out outside.
  • the pressure for tightening the screw 19 it is possible to arbitrarily control the amount of crushing the convex portion 101Td. Thereby, the height relationship between the heat sink 100 and the radiation fin 20 can be easily controlled.
  • the power semiconductor device 1 can be installed vertically.
  • the bulging portion 151 is formed by the recessed portion 152 of the mold 150, so that the radiating fin 20 comes into contact. There is no need to form a recess directly in the sealing body 10.
  • this convex part is formed over the outer peripheral part whole periphery of the lower surface of a sealing body preferably.
  • the thickness of the convex portion 101 of the power semiconductor device 1 of the first embodiment can be arbitrarily controlled, the thickness can be easily controlled when the heat sink 110 is applied to the heat sink 100 with a roller or a spatula. it can.
  • productivity can be improved. Further, since the position where the heat radiating body 110 is applied can be easily determined, productivity can be improved.
  • the power semiconductor device 1 is characterized in that the heat sink 100 that is not in contact with the sealing body 10 includes the convex portion 101 and the concave portion 102.
  • the power semiconductor device 1 in the second embodiment is different from the first embodiment only in the shape of the convex portion of the heat sink 100. Therefore, only this difference will be described below.
  • the convex part 101Ta of the heat sink 100 in FIG. 9 has a sharp tip. Since the strength of the tip portion is low, the convex portion is deformed by the tightening pressure of the screw 19 lower than the shape shown in FIGS. 6 and 17, and as shown in FIG. 10, the convex portion 101Tb having a flat top surface is formed. . By doing in this way, the dimensional tolerance of each material arrange
  • FIG. 11 is a cross-sectional view of a main part showing a joint portion between the heat sink and the heat radiating fin in which the convex portion 101Tc according to the third embodiment is installed.
  • the convex portion 101Tc of the heat sink 100 in FIG. 11 has a shape in which the convex portions 101 are doubled.
  • the convex portion 101Tc is not limited to double, and may be further multiplexed. Since the convex portion is in line contact with the heat radiating fin 20, the contact force may become non-uniform due to variations in height or variations in tightening of the screws 19. Therefore, the radiator 110 may flow out from the interface between the heat sink 100 and the radiator fin 20 from a location where the contact force is low.
  • the barrier By forming a double continuous shape like the convex portion 101Tc, the barrier can be easily increased, the outflow of the radiator 110 can be prevented more reliably, and the reliability of the power semiconductor device 1 can be improved. it can.
  • the convex portion 101Tc is deformed by the tightening pressure of the screw 19 to form a convex portion 101T 1 (not shown) that is wider than the portion shown in FIG. it is, it is possible to increase the contact area between the convex portion 101T 1 and the heat radiation fin 20. Thereby, in addition to becoming a dam that prevents the radiator 110 from flowing out, heat can be more efficiently transferred from the heat sink 100 to the radiating fin 20.
  • the semiconductor element 5 that conducts heat through the die pad 13Pf, the heat conductive insulating resin sheet 14, and the solder 15 emits. Heat can be dissipated over a wider range, and the reliability of the power semiconductor device 1 can be improved.
  • FIG. 12 is a cross-sectional view showing the recess 102 according to the first embodiment, and is used for comparison with the recess 102T according to the fourth embodiment shown in FIG.
  • FIG. 13 is a cross-sectional view showing a recess 102T according to the fourth embodiment.
  • the power semiconductor device 1 according to the fourth embodiment is different from the first embodiment only in the shape of the recess of the heat sink 100. Therefore, only this difference will be described below.
  • the recess 102 according to the first embodiment has a constant depth regardless of the position.
  • the depth of the recess 102T according to the fourth embodiment varies depending on the position.
  • the shape is such that the center is shallow and deeper as it goes outward.
  • the shallow portion of the recess 102T is quickly filled with the heat radiating body 110, and a space remains in the deep portion.
  • the radiator 110 moves from a shallow part to a deep part where a space remains.
  • the outflow destination of the radiator can be controlled, the outflow of the radiator 110 to the vicinity of the power lead 13P and the control lead 13C can be surely prevented, and the reliability of the power semiconductor device 1 can be improved. it can.
  • the semiconductor element 5 functions as a switching element (transistor) or a rectifying element and may be a general element based on silicon (Si).
  • silicon carbide ( SiC) silicon carbide
  • GaN gallium nitride-based material
  • GaN gallium nitride
  • a so-called wide band gap semiconductor material having a wider band gap than silicon such as diamond
  • the power semiconductor device 1 exhibits a particularly remarkable effect when a semiconductor element formed using a wide band gap semiconductor material and capable of operating at a high current and operating at high temperature is used.
  • a semiconductor element formed using a wide band gap semiconductor material and capable of operating at a high current and operating at high temperature is used.
  • it can be suitably used for a power semiconductor element using silicon carbide.
  • the type of device is not particularly limited, but may be a MOSFET (Metal Oxide Semiconductor Field-Effect-Transistor) in addition to the IGBT, or any other vertical semiconductor element.

Abstract

Provided is a power semiconductor device comprising: a lead frame in which a flat portion to which a semiconductor element (5) is joined and a terminal portion extending from the flat portion and connected to an external circuit are formed; a heat conductive insulating resin sheet (14) formed of an insulating filler and a resin; a heat sink (100) which is bonded at one surface to the heat conductive insulating resin sheet (14), also bonded at a predetermined portion to the flat portion through the heat conductive insulating resin sheet (14), and has the other surface serving as a heat dissipation surface that is in contact with a heat dissipation propulsion body through a heat dissipation body (110); and a sealing body (10) that seals members including power semiconductor elements (1, 2) so that the heat dissipation surface and the terminal portion are exposed, wherein the heat sink (100) includes convex portions (101, 101a, 101T, 101Ta, 101Tb, 101Tc, 101Td, 101T1) surrounding the predetermined portion on the outer edge portion.

Description

電力用半導体装置および電力用半導体装置の製造方法Power semiconductor device and method for manufacturing power semiconductor device
 本願は、電力用半導体装置および電力用半導体装置の製造方法に関するものである。 The present application relates to a power semiconductor device and a method for manufacturing the power semiconductor device.
 半導体装置の中でも電力用半導体装置は、鉄道車両、ハイブリッドカー、電気自動車等の車両、家電機器、産業用機械等において、比較的大きな電力の制御、電流の整流などのために利用されている。半導体素子へ流れる電流も大きく、半導体素子の抵抗によるジュール熱によって発熱する。熱による半導体素子自体の温度上昇は、半導体素子の特性、信頼性の低下につながる。従って、電力用半導体装置は半導体素子の熱を効率よく放熱することが必要である。 Among semiconductor devices, power semiconductor devices are used for relatively large power control, current rectification, and the like in vehicles such as railway vehicles, hybrid cars, and electric vehicles, home appliances, and industrial machines. The current flowing to the semiconductor element is also large and generates heat due to Joule heat due to the resistance of the semiconductor element. An increase in temperature of the semiconductor element itself due to heat leads to a decrease in characteristics and reliability of the semiconductor element. Therefore, the power semiconductor device needs to efficiently dissipate the heat of the semiconductor element.
 このような半導体装置の実使用時の放熱経路の構成の一つとして、半導体素子が発した熱を、絶縁層があるヒートシンクと放熱材料を介して放熱フィンへ伝える構成がある。放熱材料として、これまでは熱伝導率の低い放熱グリスが使用されてきたが、最近では熱伝導率を向上させた導電性の材料が使用されてきている。しかし、導電性の材料が半導体装置の側面に流出すると外装端子とアースが接続されている放熱フィン間を電気的に接続してしまうことがあり、結果として地絡が生じる要因となる。また、放熱材料が流出しヒートシンクと放熱フィン間に空間ができ放熱フィンへの熱伝達を阻害したような場合は、パワーサイクル信頼性が低下する要因になる。そこで、半導体装置の放熱面に放熱材料を溜める溝を設ける構造が提案されている(例えば、特許文献1、2参照)。 One configuration of the heat dissipation path in actual use of such a semiconductor device is a configuration in which heat generated by the semiconductor element is transmitted to the heat dissipation fins through a heat sink and a heat dissipation material having an insulating layer. Conventionally, heat radiation grease having low thermal conductivity has been used as the heat radiation material, but recently, conductive materials with improved thermal conductivity have been used. However, if the conductive material flows out to the side surface of the semiconductor device, the heat dissipating fins to which the exterior terminals and the ground are connected may be electrically connected, resulting in a ground fault. Further, when the heat radiation material flows out and a space is formed between the heat sink and the heat radiation fin and heat transfer to the heat radiation fin is hindered, the power cycle reliability is lowered. Therefore, a structure has been proposed in which a groove for storing a heat dissipation material is provided on the heat dissipation surface of a semiconductor device (see, for example, Patent Documents 1 and 2).
特許第5843539号公報Japanese Patent No. 5844339 特開2004-221111号公報Japanese Patent Laid-Open No. 2004-221111
 しかしながら、特許文献1に示されるような樹脂部に凹みを設ける場合には、樹脂成型金型の構造が複雑になり生産性が低下する。また、樹脂部に凹みを設けるためのスペースが必要になり半導体装置が大きくなる。また特許文献2に示されるようなヒートシンクを横断するように溝を設ける場合には、実使用時に周囲から溝が見える箇所から放熱体が流出する。 However, when a dent is provided in the resin portion as shown in Patent Document 1, the structure of the resin molding die becomes complicated and the productivity is lowered. Further, a space for providing a recess in the resin portion is required, and the semiconductor device becomes large. Moreover, when providing a groove | channel so that a heat sink as shown in patent document 2 may be crossed, a heat sink will flow out from the location which can see a groove | channel from the circumference | surroundings at the time of actual use.
 本願は、上記のような課題を解決するための技術を開示するものであり、所定の位置に放熱体を留め、周囲へ放熱体が流出することを防ぎ、放熱フィンへの熱伝導の低下を抑制できる電力用半導体装置およびその製造方法を得ることを目的とする。 The present application discloses a technique for solving the above-described problems. The radiator is fixed at a predetermined position to prevent the radiator from flowing out to the surroundings, and the heat conduction to the radiation fin is reduced. It is an object of the present invention to obtain a power semiconductor device that can be suppressed and a manufacturing method thereof.
 本願に開示される電力用半導体装置は、
半導体素子と、
当該半導体素子に固着される配線部材と、
絶縁材を介して、表面が前記配線部材に接着されるとともに、裏面から突出して形成された凸部を有するヒートシンクと、
前記半導体素子、前記配線部材および前記ヒートシンクを封止する封止体と、
流動性のある放熱体を前記ヒートシンクで挟み込むとともに、前記封止体に取り付けられた放熱推進体と、
を備えたことを特徴とするものである。
The power semiconductor device disclosed in the present application is
A semiconductor element;
A wiring member fixed to the semiconductor element;
A heat sink having a convex portion formed so as to protrude from the back surface while the surface is bonded to the wiring member via an insulating material,
A sealing body for sealing the semiconductor element, the wiring member, and the heat sink;
While sandwiching a fluid radiator with the heat sink, a heat dissipation propulsion body attached to the sealing body,
It is characterized by comprising.
 本願に開示される電力用半導体装置およびその製造方法によれば、ヒートシンクの凸部と放熱フィンとを接触させて放熱体が電力用半導体装置の外周部へ流出するのを抑制することにより、ヒートシンクと放熱フィン間から放熱体が流失することを防ぐとともに、放熱フィンへの熱伝導の低下を抑制できる電力用半導体装置を得ることができる。 According to the power semiconductor device and the manufacturing method thereof disclosed in the present application, the heat sink is prevented from flowing out to the outer peripheral portion of the power semiconductor device by bringing the convex portion of the heat sink into contact with the heat radiating fins. In addition, it is possible to obtain a power semiconductor device capable of preventing the heat sink from flowing between the heat radiating fins and suppressing the decrease in heat conduction to the heat radiating fins.
実施の形態1による電力用半導体装置の構成を説明するための裏面からみた外観図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an external view of a configuration of a power semiconductor device according to a first embodiment viewed from the back side. 図1の電力用半導体装置の断面(B-B)の一例を示す図である。FIG. 2 is a diagram showing an example of a cross section (BB) of the power semiconductor device of FIG. 1. 図1の電力用半導体装置の断面(C-C)の一例を示す図である。FIG. 2 is a diagram showing an example of a cross section (CC) of the power semiconductor device of FIG. 1. 図3の電力用半導体装置を放熱フィンに接続した図である。It is the figure which connected the power semiconductor device of FIG. 3 to the radiation fin. 実施の形態1による電力用半導体装置のヒートシンクと放熱フィンとの接合部の一例を示す要部断面図である。FIG. 3 is a main part sectional view showing an example of a joint portion between a heat sink and a heat radiating fin of the power semiconductor device according to the first embodiment; 実施の形態1による電力用半導体装置のヒートシンクと放熱フィンとの接合部の他の例を示す要部断面図である。FIG. 10 is a main part sectional view showing another example of the joint portion between the heat sink and the radiation fin of the power semiconductor device according to the first embodiment; 実施の形態1による電力用半導体装置のヒートシンクと製作用金型との関係を説明するための図である。FIG. 6 is a diagram for explaining the relationship between the heat sink and the production die of the power semiconductor device according to the first embodiment. 実施の形態1による電力用半導体装置のヒートシンクと放熱フィンとの接合部の他の例を示す要部断面図である。FIG. 10 is a main part sectional view showing another example of the joint portion between the heat sink and the radiation fin of the power semiconductor device according to the first embodiment; 実施の形態2による電力用半導体装置のヒートシンクと放熱フィンとの接合部の他の例を示す要部断面図である。FIG. 10 is a cross-sectional view of a main part showing another example of a joint portion between a heat sink and a heat radiating fin of the power semiconductor device according to the second embodiment. 実施の形態2による電力用半導体装置のヒートシンクと放熱フィンとの接合部の他の例を示す要部断面図である。FIG. 10 is a cross-sectional view of a main part showing another example of a joint portion between a heat sink and a heat radiating fin of the power semiconductor device according to the second embodiment. 実施の形態3による電力用半導体装置のヒートシンクと放熱フィンとの接合部の他の例を示す要部断面図である。FIG. 12 is a main part sectional view showing another example of a joint part between a heat sink and a heat radiating fin of a power semiconductor device according to a third embodiment; 実施の形態1による図1の電力用半導体装置の断面(D-D)の一例を示す図である。FIG. 2 is a diagram showing an example of a cross section (DD) of the power semiconductor device of FIG. 1 according to the first embodiment. 実施の形態4による電力用半導体装置の断面(D-D)の他の例を示す図である。FIG. 16 is a diagram showing another example of a cross section (DD) of the power semiconductor device according to the fourth embodiment. 実施の形態1による電力用半導体装置の構成の一例を説明するための裏面からみた外観図である。1 is an external view seen from the back side for explaining an example of a configuration of a power semiconductor device according to a first embodiment; 実施の形態1による電量用半導体装置の封止体とヒートシンクの位置関係を示す図である。FIG. 3 is a diagram showing a positional relationship between a sealing body and a heat sink of the coulometric semiconductor device according to the first embodiment. 図1の電力用半導体装置の断面(B-B)に平行な断面の一例を示す図である。FIG. 2 is a diagram showing an example of a cross section parallel to a cross section (BB) of the power semiconductor device of FIG. 1. 実施の形態1による電力用半導体装置のヒートシンクと放熱フィンとの接合部の他の例を示す要部断面図である。FIG. 10 is a main part sectional view showing another example of the joint portion between the heat sink and the radiation fin of the power semiconductor device according to the first embodiment; 実施の形態1による電力用半導体装置の構成の一例を説明するための裏面からみた外観図である。1 is an external view seen from the back side for explaining an example of a configuration of a power semiconductor device according to a first embodiment;
実施の形態1.
 図1に、本実施の形態1にかかる電力用半導体装置の一例を示す。本実施の形態の電力用半導体装置1は、裏面からヒートシンク100を放熱面として露出するとともに、トランスファモールドにより形成された封止体10により略平板状にパッケージされる。
Embodiment 1 FIG.
FIG. 1 shows an example of a power semiconductor device according to the first embodiment. The power semiconductor device 1 of the present embodiment is exposed from the back surface as the heat sink 100 as a heat dissipation surface, and is packaged in a substantially flat plate shape by a sealing body 10 formed by transfer molding.
 図2に、図1に示した電力用半導体装置の断面線B-Bに沿う断面図、図16に、図1に示した電力用半導体装置の断面線B-Bに平行な(図示しない)別の断面に沿う断面図を、それぞれ示す。この図に示す電力用半導体装置においては、長手方向の両側面から外部に飛び出すように、つまり封止体の外部に、パワーリード端子13Ptと制御リード端子13Ctが設けられている。これらのパワーリード端子13Ptと制御リード端子13Ctは、それぞれ、封止体の内部に配置されている内部リード13Piおよび内部リード13Ciと連なり、パワーリード端子13Ptと内部リード13Piを合わせたものがパワーリード13Pと呼ばれ、制御リード端子13Ctと内部リード13Ciを合わせたものが、制御リード13Cと呼ばれる。なお、パワーリード13P、制御リード13Cを含むものを全体としてリードフレームと呼ぶ。 2 is a cross-sectional view taken along the cross-sectional line BB of the power semiconductor device shown in FIG. 1, and FIG. 16 is parallel to the cross-sectional line BB of the power semiconductor device shown in FIG. Cross-sectional views along different cross-sections are respectively shown. In the power semiconductor device shown in this figure, a power lead terminal 13Pt and a control lead terminal 13Ct are provided so as to protrude outward from both side surfaces in the longitudinal direction, that is, outside the sealing body. The power lead terminal 13Pt and the control lead terminal 13Ct are respectively connected to the internal lead 13Pi and the internal lead 13Ci disposed inside the sealing body, and the combination of the power lead terminal 13Pt and the internal lead 13Pi is the power lead. A combination of the control lead terminal 13Ct and the internal lead 13Ci is called a control lead 13C. A structure including the power lead 13P and the control lead 13C is called a lead frame as a whole.
 パワーリード13Pに、より具体的には、封止体の内部に配置された内部リード13Piの一部分である、平坦に形成されたダイパッド13Pfに、半導体素子5として、例えばIGBT(Insulated Gate Bipolar Transistor)の裏面電極がはんだ15により接合されている。
 そして、内部リード13Piの他の部分は、パワーワイヤ11Pによって半導体素子5のゲート電極と電気的に接続されている。なお、制御用素子6は、ワイヤ12によって、封止体の内部に配置された内部リード13Ciと封止体の外部に配置された制御リード端子13Ctとで構成されている制御リード13Cと電気的に接続されている。また、制御用素子6と半導体素子5は、制御ワイヤ11Cを介して互いに信号の送受信を行う。
More specifically, for example, an IGBT (Insulated Gate Bipolar Transistor) is used as the semiconductor element 5 on the power lead 13P, more specifically, on the die pad 13Pf formed flat, which is a part of the internal lead 13Pi disposed inside the sealing body. These back electrodes are joined by solder 15.
The other part of the internal lead 13Pi is electrically connected to the gate electrode of the semiconductor element 5 by the power wire 11P. Note that the control element 6 is electrically connected to the control lead 13C which is configured by the wire 12 and includes an internal lead 13Ci disposed inside the sealed body and a control lead terminal 13Ct disposed outside the sealed body. It is connected to the. Further, the control element 6 and the semiconductor element 5 transmit / receive signals to / from each other via the control wire 11C.
 内部リード13Piのうち、ダイパッド13Pfに半導体素子5が接続された面の反対側の、ダイパッド13Pfの面には、例えば絶縁性フィラーと樹脂によって形成された、放熱性と絶縁性の高い熱伝導性絶縁樹脂シート14を介して、ヒートシンク100が接着されている。また、この熱伝導性絶縁樹脂シート14に限定されず、セラミック基板、あるいは層間に絶縁性のある部材を挟んだ金属基板等の絶縁がとれる部材でもよい。これらの絶縁性ある部材を総称して、以下では絶縁材と呼ぶ。 Of the internal leads 13Pi, the surface of the die pad 13Pf opposite to the surface where the semiconductor element 5 is connected to the die pad 13Pf is formed of, for example, an insulating filler and a resin, and has high heat dissipation and thermal insulation. The heat sink 100 is bonded via the insulating resin sheet 14. Moreover, it is not limited to this heat conductive insulating resin sheet 14, The member which can take insulation, such as a ceramic substrate or the metal substrate which pinched | interposed the insulating member between layers, may be sufficient. Hereinafter, these insulating members are collectively referred to as insulating materials.
 図3は、図1に示した電力用半導体装置の断面線C-Cに沿う断面図である。図4は図3の電力用半導体装置を、この電力用半導体装置が発生する熱を放熱する放熱フィンに接続した図である。電力用半導体装置の厚みは3~35mmであり、図3に示したように、電力用半導体装置には、電力用半導体装置を放熱フィンに取付けるためのねじ穴18が左右の両側に設けられている。図4に示したように、電力用半導体装置は、このねじ穴18にねじ19を通して放熱フィン20に固定する。また、放熱フィン20に限定されず、例えばブロック、あるいは板等の放熱ができる物体でもよい。以下、これらを総称して放熱推進体と呼ぶ。 FIG. 3 is a cross-sectional view taken along the cross-sectional line CC of the power semiconductor device shown in FIG. FIG. 4 is a diagram in which the power semiconductor device of FIG. 3 is connected to a radiation fin that radiates the heat generated by the power semiconductor device. The thickness of the power semiconductor device is 3 to 35 mm. As shown in FIG. 3, the power semiconductor device has screw holes 18 for attaching the power semiconductor device to the radiating fins on both the left and right sides. Yes. As shown in FIG. 4, the power semiconductor device is fixed to the radiating fin 20 through the screw 19 through the screw 19. Moreover, it is not limited to the radiation fin 20, For example, the object which can thermally radiate, such as a block or a board, may be sufficient. Hereinafter, these are collectively referred to as a heat dissipation propulsion body.
 次に、図2~図4を用いて、ヒートシンク100について説明する。放熱フィン20と向き合うヒートシンク100の面には封止体10によるアンカーロック効果を得るための段差があり、ヒートシンク表面の中心部にある流動性の放熱体110(以下において、放熱体は流動性があることを前提に説明する)が外周部へ広がることを抑制するために周囲のヒートシンク面より突出した凸部101と、凸部101に塞がれて行き場がなくなった放熱体110を溜めるために周囲のヒートシンク面より窪んでいる窪み部102が隣り合って配置されている。上記放熱体110は、絶縁性もしくは導電性材料で構成されている。これにより、ヒートシンク100とパワーリード端子13Pt、ヒートシンク100と制御リード端子13Ctとの絶縁距離を確保する構造となっている。このとき、放熱体110が外周部より外側に漏れ出した場合、前記絶縁距離が確保できなくなる場合がある。 Next, the heat sink 100 will be described with reference to FIGS. On the surface of the heat sink 100 facing the heat radiating fins 20, there is a step for obtaining an anchor locking effect by the sealing body 10, and a fluid heat radiating body 110 in the center of the heat sink surface (hereinafter, the heat radiating body is fluid. In order to prevent the spreading of the projection 101 protruding from the surrounding heat sink surface and the radiator 110 that is blocked by the projection 101 and has nowhere to go, Indented portions 102 that are recessed from the surrounding heat sink surface are arranged adjacent to each other. The heat radiator 110 is made of an insulating or conductive material. Thus, the insulation distance between the heat sink 100 and the power lead terminal 13Pt and between the heat sink 100 and the control lead terminal 13Ct is secured. At this time, when the heat radiating body 110 leaks outside the outer peripheral portion, the insulation distance may not be secured.
 凸部101、窪み部102はどちらかのみ配置されていても良いが、窪み部だけの場合、放熱体110の流動を完全に塞き止める機構ではないため、凸部101と併用してヒートシンク表面の全周に設けた方が、外周部へ広がることを抑制しやすい。すなわち、凸部101と窪み部102とを対として形成し、放熱体110の周囲を取り囲むように構成したものが、放熱体110の流動を完全に塞き止める機構としては、よりふさわしい。
 なお、上記において、凸部101は、ヒートシンク100の裏面の外周部の外側部分に形成し、窪み部102は、このヒートシンク100の裏面の外周部に形成した凸部の内側部分に形成するようにする。また、凸部101、窪み部102は、必ずしもヒートシンク裏面の全周に配置する必要が無く、放熱体110が外部に流出しなければ、前記放熱体が移動可能な前記凸部の周辺であって、前記外周部の内側部分の全周ではなく、前記内側部分の一部の位置のみに配置してもよい。例えば、図14に示すように、ねじ穴18への流入を防ぎたい場合は、ヒートシンク100のねじ穴18の周囲にのみ配置すればよい(図14中の凸部101a、窪み部102a参照)。
 また、例えば、図18に示すように、パワーリード13Pと制御リード13Cのみ、放熱体110との接触を防ぎたい場合は、ヒートシンク100のパワーリード13P周囲、および制御リード13C周囲のみに配置すればよい。これにより、凸部101、窪み部102を設ける位置を少なくすることができ、材料費を安価にできる。
Only one of the convex portion 101 and the concave portion 102 may be disposed. However, in the case of only the concave portion, the heat sink surface is used in combination with the convex portion 101 because it is not a mechanism for completely blocking the flow of the radiator 110. It is easy to suppress spreading to the outer peripheral part if it is provided on the entire circumference. That is, a structure in which the convex portion 101 and the hollow portion 102 are formed as a pair so as to surround the periphery of the radiator 110 is more suitable as a mechanism for completely blocking the flow of the radiator 110.
In the above, the convex portion 101 is formed on the outer portion of the outer peripheral portion of the back surface of the heat sink 100, and the recess portion 102 is formed on the inner portion of the convex portion formed on the outer peripheral portion of the rear surface of the heat sink 100. To do. Further, the protrusion 101 and the recess 102 do not necessarily have to be arranged on the entire circumference of the back surface of the heat sink, and if the heat radiator 110 does not flow out to the outside, the heat sink can be moved around the protrusion. , It may be arranged not only on the entire circumference of the inner part of the outer peripheral part, but only on a part of the inner part. For example, as shown in FIG. 14, when it is desired to prevent the inflow into the screw hole 18, it may be arranged only around the screw hole 18 of the heat sink 100 (see the convex portion 101a and the hollow portion 102a in FIG. 14).
Further, for example, as shown in FIG. 18, when only the power lead 13P and the control lead 13C are desired to prevent contact with the heat radiating body 110, the heat lead 100 may be disposed only around the power lead 13P and around the control lead 13C. Good. Thereby, the position which provides the convex part 101 and the hollow part 102 can be decreased, and material cost can be made cheap.
 ヒートシンク100の材質は、例えばAlにMg、あるいはMnを添加した合金で構成されている。ここで、ヒートシンク100の材質としては、他の金属でも良く、また金属に限らず熱伝導率が高い無機物または有機物であれば適用可能である。このヒートシンク100の最外周には段差があり、例えば樹脂製の封止体10によりパッケージされる。
 また、ヒートシンク100の平面形状は、図1に示したような四角形状に限らず、台形状、あるいは多角形状でもよく、放熱フィンと向き合う放熱面以外が例えば樹脂により封止され露出していなければよい。
 すなわち、ヒートシンク100の側壁を覆い、段差104まで覆っている。さらに、図15に示すように、凸部101の一部まで覆う場合もある。この時、凸部101は、放熱体110のみならず、封止体10が放熱フィン20と向き合うヒートシンク100内に侵入することを防止する役目を担う。
The material of the heat sink 100 is made of, for example, an alloy obtained by adding Mg or Mn to Al. Here, the material of the heat sink 100 may be another metal, and is not limited to a metal, and can be applied to any inorganic or organic material having high thermal conductivity. There is a step on the outermost periphery of the heat sink 100, and the heat sink 100 is packaged by, for example, a resin sealing body 10.
Further, the planar shape of the heat sink 100 is not limited to the quadrangular shape as shown in FIG. 1, but may be a trapezoidal shape or a polygonal shape. Unless the heat radiating surface facing the heat radiating fins is sealed and exposed, for example, with resin. Good.
That is, the side wall of the heat sink 100 is covered up to the step 104. Furthermore, as shown in FIG. 15, it may cover even a part of the convex portion 101. At this time, the convex portion 101 plays a role of preventing not only the heat radiating body 110 but also the sealing body 10 from entering the heat sink 100 facing the heat radiating fins 20.
 流動性のある放熱体110を塞き止め、窪み部102へ誘導するため、放熱面の凸部101は窪み部の外側に設けられていて、窪み部102は封止体10と接触しない。放熱面の凸部101は、幅0.1~2.5mm×高さ0.01~2.0mmである。窪み部102は幅0.01~2.5mmで深さ0.1~2.0mmである。 Since the heat-radiating body 110 having fluidity is blocked and guided to the recess 102, the convex portion 101 of the heat dissipation surface is provided outside the recess, and the recess 102 does not contact the sealing body 10. The protrusion 101 on the heat dissipation surface has a width of 0.1 to 2.5 mm and a height of 0.01 to 2.0 mm. The depression 102 has a width of 0.01 to 2.5 mm and a depth of 0.1 to 2.0 mm.
 このヒートシンク100の加工方法としては、代表的なものとして、金型での鍛造加工による造型、切削加工による所望の形状の形成などが挙げられるが、その他の加工方法を使用したものでもよい。 As a typical processing method of the heat sink 100, for example, molding by forging with a mold, formation of a desired shape by cutting, and the like may be used, but other processing methods may be used.
 また、放熱体110の塗布面積を広くすることで、ヒートシンク100から放熱フィン20の放熱面積を広く確保できるため、凸部101はダイパッド13Pfから離れているほうが望ましい。例えば、図2でいうと、ダイパッド13Pfよりも外側でヒートシンク100の側壁の内側の配置が望ましい。 Further, since the heat radiation area of the heat radiation fin 20 can be secured from the heat sink 100 by widening the application area of the heat radiation body 110, it is desirable that the convex portion 101 is separated from the die pad 13Pf. For example, referring to FIG. 2, it is desirable to dispose the heat sink 100 on the outside of the die pad 13Pf.
 また、放熱体110の厚みを薄くすることでヒートシンク100から放熱フィン20の放熱経路を短くすることができるため、凸部101は高さが低く幅が短い方が望ましく、窪み部102は深さが浅い方が望ましい。窪み部102の深さよりも幅が大きいと放熱体110が流動しやすいため、ダイパッド13Pfからも離れているほうが望ましい。 Further, since the heat dissipation path from the heat sink 100 to the heat dissipation fin 20 can be shortened by reducing the thickness of the heat dissipating body 110, it is desirable that the convex portion 101 has a low height and a short width, and the hollow portion 102 has a depth. Is shallower. If the width is larger than the depth of the recess 102, the heat radiating body 110 tends to flow, so it is desirable that the heat sink 110 is also away from the die pad 13Pf.
 つぎに、ヒートシンク100を設けた電力用半導体装置1の使用方法について図3~図6、および図17を用いて説明する。上述のように、電力用半導体装置1は、電力用半導体装置1を放熱フィン20に固定するためのねじ19を通すねじ穴18を備えている。 Next, a method of using the power semiconductor device 1 provided with the heat sink 100 will be described with reference to FIGS. 3 to 6 and FIG. As described above, the power semiconductor device 1 includes the screw holes 18 through which the screws 19 for fixing the power semiconductor device 1 to the radiating fins 20 are passed.
 放熱体110を塗布された電力用半導体装置1のヒートシンク100の凸部101を放熱フィン20と接触させ、図4のように、ねじ穴18を通したねじ19で締結する。
 なお、ヒートシンク100と放熱フィン20は必ずしもねじ19で締結する必要は無く、リードフレームがはんだ付けされた電子基板と放熱フィンの間に電力用半導体装置1が固定されていればよい。また放熱フィン20に限らず、鉄道車両、ハイブリッドカー、電気自動車等の車両、家電機器、産業用機械等を構成する一部でもよい。
The convex portion 101 of the heat sink 100 of the power semiconductor device 1 coated with the heat radiating body 110 is brought into contact with the heat radiating fins 20 and fastened with screws 19 through screw holes 18 as shown in FIG.
Note that the heat sink 100 and the heat radiating fins 20 do not necessarily have to be fastened with the screws 19, and the power semiconductor device 1 may be fixed between the electronic board to which the lead frame is soldered and the heat radiating fins. Moreover, it is not limited to the heat radiating fin 20 but may be a part of a vehicle such as a railway vehicle, a hybrid car, or an electric vehicle, a home appliance, an industrial machine, or the like.
 以上説明したように、実施の形態1の電力用半導体装置1は、ヒートシンク100の外周部分に凹凸部分を設けることで、放熱フィンと接続された状態において次の効果が得られる。
 この場合、電力用半導体装置1の要部を拡大して表した図5の電力用半導体装置2に示すように、ヒートシンク100の凹部と凸部を対として(セットで)設け、ヒートシンク100の凸部101を放熱フィン20の表面に接触させることで、放熱体110とねじ19の間に介在する凸部101が、放熱体110の外部への流出を防ぐ障壁となる。
 このように構成することにより、余分に塗布した放熱体110、あるいは電力用半導体装置1の発熱により膨張した放熱体110が、ヒートシンク100と放熱フィン20の界面から外部へ流出しようとした際に、凸部101が放熱体110の流出を防ぐ状態を作ることができ、行き場を失った放熱体110は窪み102へ流れ、放熱体110が外部へ流出することを留めることができる。
As described above, the power semiconductor device 1 according to the first embodiment can provide the following effects when connected to the heat radiating fins by providing the concave and convex portions on the outer peripheral portion of the heat sink 100.
In this case, as shown in the power semiconductor device 2 in FIG. 5 in which the main part of the power semiconductor device 1 is enlarged, the concave portion and the convex portion of the heat sink 100 are provided as a pair (in sets), and the convex portion of the heat sink 100 is provided. By bringing the portion 101 into contact with the surface of the heat radiating fin 20, the convex portion 101 interposed between the heat radiating body 110 and the screw 19 becomes a barrier that prevents the heat radiating body 110 from flowing out.
With this configuration, when the heat-dissipating body 110 that has been applied in excess or the heat-dissipating body 110 that has expanded due to the heat generated by the power semiconductor device 1 is about to flow out from the interface between the heat sink 100 and the heat-dissipating fins 20 The convex part 101 can make the state which prevents the outflow of the thermal radiation body 110, and the thermal radiation body 110 which lost the place can flow into the hollow 102, and it can stop that the thermal radiation body 110 flows out outside.
 また、ヒートシンク100の凸部101に傾き、あるいは高さバラつきが有る場合、例えばヒートシンク100に純Al、あるいは銅など機械強度が低い材料を用いることで、ねじ19の締め付け圧力により凸部101を変形させ、図6に示すように、放熱フィンと接する部分が平らな面を形成している凸部101Tを形成することで、この凸部101Tと放熱フィン20とを隙間無く接触させることができる。
 さらに、例えば、ねじ19の締め付け圧力により凸部101を潰して変形させ、図17に示すように、放熱フィンと接する部分が平らな面を形成している凸部101Tdを形成することで、各材料の寸法公差を埋めることができ、この凸部101Tdと放熱フィン20とを隙間無く接触させることができる。言い換えると、凸部101Tdは、潰れた先端を有している。これにより放熱体110が外部に流出するのを防止するダムとなる。
 また、ねじ19を締め付ける圧力を制御することにより、凸部101Tdを潰す量を任意に制御することが可能になる。これにより、ヒートシンク100と放熱フィン20の高さ関係を容易に制御することができる。
Further, when the convex portion 101 of the heat sink 100 is inclined or has a height variation, the convex portion 101 is deformed by the tightening pressure of the screw 19 by using a material with low mechanical strength such as pure Al or copper for the heat sink 100, for example. Then, as shown in FIG. 6, by forming the convex portion 101T in which the portion in contact with the radiating fin forms a flat surface, the convex portion 101T and the radiating fin 20 can be brought into contact with no gap.
Further, for example, the convex portion 101 is crushed and deformed by the tightening pressure of the screw 19 to form a convex portion 101Td in which a portion in contact with the heat radiating fin forms a flat surface as shown in FIG. The dimensional tolerance of the material can be filled, and the convex portion 101Td and the radiating fin 20 can be brought into contact with no gap. In other words, the convex portion 101Td has a crushed tip. Thereby, it becomes a dam which prevents that the thermal radiation body 110 flows out outside.
Further, by controlling the pressure for tightening the screw 19, it is possible to arbitrarily control the amount of crushing the convex portion 101Td. Thereby, the height relationship between the heat sink 100 and the radiation fin 20 can be easily controlled.
 このように構成することにより、ヒートシンク100と放熱フィン20間の放熱体110の流出による空間の発生を防ぐことができ、放熱経路を確保することができ、電機接続部、あるいは回路部材等への熱応力を低減して劣化を抑制することにより、電力用半導体装置1の信頼性を向上させることができる。また、電力用半導体装置1を垂直に設置することができる。 With this configuration, it is possible to prevent generation of a space due to the outflow of the heat radiating body 110 between the heat sink 100 and the heat radiating fin 20, to secure a heat radiating path, and to connect to the electrical connection portion or the circuit member. By reducing thermal stress and suppressing deterioration, the reliability of the power semiconductor device 1 can be improved. Further, the power semiconductor device 1 can be installed vertically.
 実施の形態1の電力用半導体装置1をトランスファモールドによって封止する際には、図7に示すように、金型150の凹み部152により膨らみ部151が形成されるため、放熱フィン20と接する封止体10に直接窪み部を形成する必要がなくなる。なお、この凸部は、好ましくは、封止体の下面の外周部全周にわたって形成されていることが望ましい。 When the power semiconductor device 1 according to the first embodiment is sealed by transfer molding, as shown in FIG. 7, the bulging portion 151 is formed by the recessed portion 152 of the mold 150, so that the radiating fin 20 comes into contact. There is no need to form a recess directly in the sealing body 10. In addition, it is preferable that this convex part is formed over the outer peripheral part whole periphery of the lower surface of a sealing body preferably.
 これにより、金型形状が簡素になり、金型メンテナンスにかける時間を少なくでき生産性を向上させることができる。さらに、封止体10に窪み部102を設置する場所が必要ないため、使用する封止樹脂の量が減少し、電力用半導体装置1を小型化することができる。 This simplifies the mold shape, reduces the time required for mold maintenance, and improves productivity. Furthermore, since there is no need for a place to install the recess 102 in the sealing body 10, the amount of sealing resin to be used is reduced, and the power semiconductor device 1 can be downsized.
 また、実施の形態1の電力用半導体装置1の凸部101の高さを任意に制御できるため、ヒートシンク100にローラ、あるいはヘラで放熱体110を塗布する際に厚みを容易に制御することができる。 Moreover, since the height of the convex portion 101 of the power semiconductor device 1 of the first embodiment can be arbitrarily controlled, the thickness can be easily controlled when the heat sink 110 is applied to the heat sink 100 with a roller or a spatula. it can.
 そのため、放熱体110をヒートシンク100に塗布する際に厚みを制御する治具を必要としないため、生産性を向上させることができる。また、放熱体110を塗布する位置が容易に判別できるため、生産性を向上させることができる。 Therefore, since a jig for controlling the thickness is not required when applying the radiator 110 to the heat sink 100, the productivity can be improved. Further, since the position where the heat radiating body 110 is applied can be easily determined, productivity can be improved.
 実施の形態1の電力用半導体装置1の凸部101に向かい合う放熱フィン20に凹部122を設けることで、電力用半導体装置1と放熱フィン20とを正確な位置に合わせることができる。 By providing the recess 122 in the heat radiation fin 20 facing the convex portion 101 of the power semiconductor device 1 of the first embodiment, the power semiconductor device 1 and the heat radiation fin 20 can be aligned with each other at an accurate position.
 このとき、図8に示すように、凸部101の高さより低い窪みにすることで、凸部101が放熱フィン20の凹部122と接触し、放熱体110の流出を抑制することができる。これにより、電力用半導体装置1のねじ19の位置と放熱フィン20の雌ねじ部Eの位置が合い、ねじ19を容易に締結できるため、生産性を向上させることができる。 At this time, as shown in FIG. 8, by making the depression lower than the height of the convex portion 101, the convex portion 101 comes into contact with the concave portion 122 of the radiating fin 20 and the outflow of the radiator 110 can be suppressed. Thereby, since the position of the screw 19 of the power semiconductor device 1 and the position of the female screw portion E of the radiating fin 20 are matched and the screw 19 can be easily fastened, the productivity can be improved.
 以上のように実施の形態1の電力用半導体装置1は、封止体10と接しないヒートシンク100に、凸部101と窪み部102を備えることを特徴とする。 As described above, the power semiconductor device 1 according to the first embodiment is characterized in that the heat sink 100 that is not in contact with the sealing body 10 includes the convex portion 101 and the concave portion 102.
実施の形態2.
 図9~図10を参照して、実施の形態2における電力用半導体装置1について説明する。
 図9は、実施の形態2による凸部101Taを設置したヒートシンクと放熱フィンとの接合部を示す要部断面図である。
 図10は、実施の形態2による凸部101Tbを設置したヒートシンクと放熱フィンとの接合部の他の例を示す断面図である。
Embodiment 2. FIG.
A power semiconductor device 1 according to the second embodiment will be described with reference to FIGS.
FIG. 9 is a cross-sectional view of an essential part showing a joint part between a heat sink and a radiating fin in which the convex part 101Ta according to the second embodiment is installed.
FIG. 10 is a cross-sectional view showing another example of the joint portion between the heat sink and the heat radiating fin in which the convex portion 101Tb according to the second embodiment is installed.
 実施の形態2における電力用半導体装置1は、実施の形態1と比較してヒートシンク100の凸部の形状のみが異なる。このため以下ではこの相違点のみについて説明する。 The power semiconductor device 1 in the second embodiment is different from the first embodiment only in the shape of the convex portion of the heat sink 100. Therefore, only this difference will be described below.
 図9のヒートシンク100の凸部101Taは、先端が鋭い形状である。先端部の強度が低いため、図6および図17で示す形状より低いねじ19の締め付け圧力により凸部を変形させ、図10に示すように、頂部が平らな面を有する凸部101Tbを形成する。このようにすることにより、ヒートシンク近傍に配置された各材料の寸法公差を埋めることができ、凸部101Tbと放熱フィン20を隙間無く接触させることができる。 The convex part 101Ta of the heat sink 100 in FIG. 9 has a sharp tip. Since the strength of the tip portion is low, the convex portion is deformed by the tightening pressure of the screw 19 lower than the shape shown in FIGS. 6 and 17, and as shown in FIG. 10, the convex portion 101Tb having a flat top surface is formed. . By doing in this way, the dimensional tolerance of each material arrange | positioned in the heat sink vicinity can be filled, and the convex part 101Tb and the radiation fin 20 can be contacted without gap.
 また、A5052等の機械強度が高い材料を用いても、ねじ19の締め付け圧力により凸部101Taを変形させ図10のように、凸部101Tbと放熱フィン20を隙間無く接触させることができる。また、ねじ19の締め付け圧力に限らず、プレス等で加圧し凸部を変形させてもよい。 Further, even if a material having high mechanical strength such as A5052 is used, the convex portion 101Ta can be deformed by the tightening pressure of the screw 19 so that the convex portion 101Tb and the radiation fin 20 can be brought into contact with no gap as shown in FIG. Further, not only the tightening pressure of the screw 19 but pressurization with a press or the like may be used to deform the convex portion.
 これにより、ヒートシンク100と放熱フィン20間の放熱体110の流出による空間の発生を防ぐことができ、放熱経路を確保することができ、電機接続部、あるいは回路部材等への熱応力を低減して劣化を抑制でき、電力用半導体装置1の信頼性を向上させることができる。 As a result, it is possible to prevent the generation of a space due to the outflow of the heat radiating body 110 between the heat sink 100 and the heat radiating fin 20, to secure a heat radiating path, and to reduce the thermal stress on the electrical connection portion or the circuit member. Degradation can be suppressed, and the reliability of the power semiconductor device 1 can be improved.
実施の形態3.
 図11を参照して、実施の形態3における電力用半導体装置1について説明する。
図11は、実施の形態3による凸部101Tcを設置したヒートシンクと放熱フィンとの接合部を示す要部断面図である。
Embodiment 3 FIG.
Referring to FIG. 11, power semiconductor device 1 in the third embodiment will be described.
FIG. 11 is a cross-sectional view of a main part showing a joint portion between the heat sink and the heat radiating fin in which the convex portion 101Tc according to the third embodiment is installed.
 実施の形態3における電力用半導体装置1は、実施の形態1と比較してヒートシンク100の凸部の形状のみが異なる。このため以下ではこの相違点のみについて説明する。 The power semiconductor device 1 according to the third embodiment is different from the first embodiment only in the shape of the convex portion of the heat sink 100. Therefore, only this difference will be described below.
 図11のヒートシンク100の凸部101Tcは、凸部101が2重に連なった形状である。凸部101Tcは2重に限らず、さらに多重でも構わない。凸部は放熱フィン20と線接触になるため、高さのバラつき、あるいはねじ19の締め付けバラつきにより接触力が不均一になることがある。そのため接触力が低い箇所から放熱体110がヒートシンク100と放熱フィン20の界面から外へ流出する可能性がある。凸部101Tcのような2重に連なった形状にすることで、容易に障壁を増やせ、放熱体110の流出をより確実に防ぐことができ、電力用半導体装置1の信頼性を向上させることができる。
 この場合において、ねじ19の締め付け圧力により凸部101Tcを変形させ、図17で示すより幅広く、放熱フィンと接する部分が平らな面を形成している凸部101T(図示せず)を形成することで、この凸部101Tと放熱フィン20との接触面積を増大させることができる。これにより、放熱体110が外部に流出するのを防止するダムとなることに加え、ヒートシンク100から放熱フィン20へ、より効率よく熱伝達できる。
The convex portion 101Tc of the heat sink 100 in FIG. 11 has a shape in which the convex portions 101 are doubled. The convex portion 101Tc is not limited to double, and may be further multiplexed. Since the convex portion is in line contact with the heat radiating fin 20, the contact force may become non-uniform due to variations in height or variations in tightening of the screws 19. Therefore, the radiator 110 may flow out from the interface between the heat sink 100 and the radiator fin 20 from a location where the contact force is low. By forming a double continuous shape like the convex portion 101Tc, the barrier can be easily increased, the outflow of the radiator 110 can be prevented more reliably, and the reliability of the power semiconductor device 1 can be improved. it can.
In this case, the convex portion 101Tc is deformed by the tightening pressure of the screw 19 to form a convex portion 101T 1 (not shown) that is wider than the portion shown in FIG. it is, it is possible to increase the contact area between the convex portion 101T 1 and the heat radiation fin 20. Thereby, in addition to becoming a dam that prevents the radiator 110 from flowing out, heat can be more efficiently transferred from the heat sink 100 to the radiating fin 20.
 また、凸部101Tcにより、ヒートシンク100の封止体10と接触していない面積が広くなることから、ダイパッド13Pfと熱伝導性絶縁樹脂シート14とはんだ15を介して伝熱する半導体素子5の発する熱をより広い範囲に放熱することができ、電力用半導体装置1の信頼性を向上させることができる。 Further, since the area of the heat sink 100 that is not in contact with the sealing body 10 is widened by the convex portion 101Tc, the semiconductor element 5 that conducts heat through the die pad 13Pf, the heat conductive insulating resin sheet 14, and the solder 15 emits. Heat can be dissipated over a wider range, and the reliability of the power semiconductor device 1 can be improved.
実施の形態4.
 図12~図13を参照して、実施の形態4における電力用半導体装置1について説明する。
 図12は、実施の形態1による窪み部102を示す断面図であり、図13に示す実施の形態4による窪み部102Tとの比較のために使用するものである。なお、図13は、実施の形態4による窪み部102Tを示す断面図である。
Embodiment 4 FIG.
A power semiconductor device 1 according to the fourth embodiment will be described with reference to FIGS.
FIG. 12 is a cross-sectional view showing the recess 102 according to the first embodiment, and is used for comparison with the recess 102T according to the fourth embodiment shown in FIG. FIG. 13 is a cross-sectional view showing a recess 102T according to the fourth embodiment.
 実施の形態4における電力用半導体装置1は、実施の形態1と比較してヒートシンク100の窪み部の形状のみが異なる。
 このため以下ではこの相違点のみについて説明する。
The power semiconductor device 1 according to the fourth embodiment is different from the first embodiment only in the shape of the recess of the heat sink 100.
Therefore, only this difference will be described below.
 図12に示すとおり、実施の形態1による窪み部102は、位置に関係なく深さが一定である。一方、図13に示すとおり、実施の形態4による窪み部102Tは、位置によって深さが変化する。例えば、中心部が浅く、外に行くほど深くなる形状である。 As shown in FIG. 12, the recess 102 according to the first embodiment has a constant depth regardless of the position. On the other hand, as shown in FIG. 13, the depth of the recess 102T according to the fourth embodiment varies depending on the position. For example, the shape is such that the center is shallow and deeper as it goes outward.
 これにより、ヒートシンク100と放熱フィン20の界面から外へ放熱体110が均一に流出したとき、窪み部102Tの浅い箇所が早く放熱体110で満たされ、深い箇所に空間が残る。さらに流出が続いたとき、浅い箇所から空間が残る深い箇所へ放熱体110が移動する。 Thereby, when the heat radiating body 110 uniformly flows out from the interface between the heat sink 100 and the heat radiating fin 20, the shallow portion of the recess 102T is quickly filled with the heat radiating body 110, and a space remains in the deep portion. When the outflow continues further, the radiator 110 moves from a shallow part to a deep part where a space remains.
 このため放熱体の流出先を制御することができ、パワーリード13P、制御リード13C付近への放熱体110の流出を確実に防ぐことができ、電力用半導体装置1の信頼性を向上させることができる。 For this reason, the outflow destination of the radiator can be controlled, the outflow of the radiator 110 to the vicinity of the power lead 13P and the control lead 13C can be surely prevented, and the reliability of the power semiconductor device 1 can be improved. it can.
 なお、上記各実施の形態においては、半導体素子5はスイッチング素子(トランジスタ)、あるいは整流素子として機能し、シリコン(Si)を基材とした一般的な素子でも良いが,本願においては炭化珪素(SiC)、あるいは窒化ガリウム(GaN)に代表される窒化ガリウム系材料、またはダイヤモンドといったシリコンと比べてバンドギャップが広い、いわゆるワイドバンドギャップ半導体材料を用いることができる。 In each of the above embodiments, the semiconductor element 5 functions as a switching element (transistor) or a rectifying element and may be a general element based on silicon (Si). However, in the present application, silicon carbide ( SiC), a gallium nitride-based material typified by gallium nitride (GaN), or a so-called wide band gap semiconductor material having a wider band gap than silicon such as diamond can be used.
 ワイドバンドギャップ半導体材料を用いて形成され、電流許容量および高温動作が可能な半導体素子を用いた場合に、電力用半導体装置1は、特に顕著な効果が現れる。特に炭化珪素を用いた電力用半導体素子に好適に用いることができる。デバイスの種類としては、特に限定する必要はないが、IGBTの他にMOSFET(Metal Oxide Semiconductor Field‐Effect‐Transistor)でもよく、その他縦型半導体素子であればよい。 The power semiconductor device 1 exhibits a particularly remarkable effect when a semiconductor element formed using a wide band gap semiconductor material and capable of operating at a high current and operating at high temperature is used. In particular, it can be suitably used for a power semiconductor element using silicon carbide. The type of device is not particularly limited, but may be a MOSFET (Metal Oxide Semiconductor Field-Effect-Transistor) in addition to the IGBT, or any other vertical semiconductor element.
 本願は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
従って、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
Although this application describes various exemplary embodiments and examples, various features, aspects, and functions described in one or more embodiments may be applied to particular embodiments. The present invention is not limited to this, and can be applied to the embodiments alone or in various combinations.
Accordingly, countless variations that are not illustrated are envisaged within the scope of the technology disclosed herein. For example, the case where at least one component is deformed, the case where the component is added or omitted, the case where the at least one component is extracted and combined with the component of another embodiment are included.
 1 電力用半導体装置、2 電力用半導体装置(要部)、5 半導体素子、6 制御用素子、10 封止体、11C 制御ワイヤ、11P パワーワイヤ、12 ワイヤ、13C 制御リード、13Ci、13Pi 内部リード、13Ct 制御リード端子、13P パワーリード、13Pf ダイパッド、13Pt パワーリード端子、14 熱伝導性絶縁樹脂シート、15 はんだ、18 ねじ穴、19 ねじ、20 放熱フィン、100 ヒートシンク、101、101a、101T、101Ta、101Tb、101Tc、101Td、101T 凸部、102、102a、102T 窪み部、110 放熱体、122 凹部、150 金型、151 膨らみ部、152 凹み部  DESCRIPTION OF SYMBOLS 1 Power semiconductor device, 2 Power semiconductor device (main part), 5 Semiconductor element, 6 Control element, 10 Sealing body, 11C Control wire, 11P Power wire, 12 Wire, 13C Control lead, 13Ci, 13Pi Internal lead , 13Ct Control lead terminal, 13P power lead, 13Pf die pad, 13Pt power lead terminal, 14 Thermal conductive insulating resin sheet, 15 Solder, 18 Screw hole, 19 Screw, 20 Radiation fin, 100 Heat sink, 101, 101a, 101T, 101Ta , 101Tb, 101Tc, 101Td, 101T 1 convex part, 102, 102a, 102T concave part, 110 radiator, 122 concave part, 150 mold, 151 bulge part, 152 concave part

Claims (13)

  1. 半導体素子と、
    前記半導体素子に固着される配線部材と、
    絶縁材を介して、表面が前記配線部材に接着されるとともに、裏面から突出して形成された凸部を有するヒートシンクと、
    前記半導体素子、前記配線部材および前記ヒートシンクを封止する封止体と、
    流動性のある放熱体を介して前記ヒートシンクと接続された放熱推進体と、
    を備えたことを特徴とする電力用半導体装置。
    A semiconductor element;
    A wiring member fixed to the semiconductor element;
    A heat sink having a convex portion formed so as to protrude from the back surface while the surface is bonded to the wiring member via an insulating material,
    A sealing body for sealing the semiconductor element, the wiring member, and the heat sink;
    A heat dissipation propulsion body connected to the heat sink via a flowable heat dissipation body;
    A power semiconductor device comprising:
  2. 前記ヒートシンクは、前記凸部で前記放熱推進体と接触していることを特徴とする請求項1に記載の電力用半導体装置。 The power semiconductor device according to claim 1, wherein the heat sink is in contact with the heat dissipation propulsion body at the convex portion.
  3. 前記ヒートシンクは、前記凸部の内側に窪み部が形成されていることを特徴とする請求項1または請求項2に記載の電力用半導体装置。 3. The power semiconductor device according to claim 1, wherein the heat sink has a recess formed inside the convex portion. 4.
  4. 前記ヒートシンクは、前記凸部と前記窪み部とが対となって、前記放熱体を取り囲むように形成されていることを特徴する請求項3に記載の電力用半導体装置。 4. The power semiconductor device according to claim 3, wherein the heat sink is formed so as to surround the heat radiating body with the convex portion and the hollow portion being paired. 5.
  5. 前記凸部は、前記放熱推進体と接する部分が平らな面に形成されていることを特徴とする請求項2から4のいずれか1項に記載の電力用半導体装置。 5. The power semiconductor device according to claim 2, wherein the convex portion is formed on a flat surface at a portion in contact with the heat dissipation propulsion body.
  6. 前記窪み部は、前記ヒートシンクの裏面からの深さが不均一であることを特徴とする請求項3または請求項4に記載の電力用半導体装置。 5. The power semiconductor device according to claim 3, wherein the recess has a non-uniform depth from a back surface of the heat sink.
  7. 前記封止体は、下面の外周部の全周にわたって当該下面から突出して形成された膨らみ部を有していることを特徴とする請求項1に記載の電力用半導体装置。 2. The power semiconductor device according to claim 1, wherein the sealing body has a bulging portion formed so as to protrude from the lower surface over the entire circumference of the outer peripheral portion of the lower surface.
  8. 前記半導体素子は、ワイドバンドギャップ半導体材料により構成されていることを特徴とする請求項1から7のいずれか1項に記載の電力用半導体装置。 The power semiconductor device according to claim 1, wherein the semiconductor element is made of a wide band gap semiconductor material.
  9. 前記ワイドバンドギャップ半導体材料は、炭化珪素、窒化ガリウム系材料、またはダイヤモンドのうちのいずれかであることを特徴とする請求項8に記載の電力用半導体装置。 9. The power semiconductor device according to claim 8, wherein the wide band gap semiconductor material is one of silicon carbide, gallium nitride-based material, and diamond.
  10. 前記放熱体は、導電性を有すことを特徴とする請求項1から9のいずれか1項に記載の電力用半導体装置。 The power semiconductor device according to claim 1, wherein the heat radiating body has conductivity.
  11. 前記凸部は、潰れた先端を備えた請求項1から10のいずれか1項に記載の電力用半導体装置。 The power semiconductor device according to claim 1, wherein the convex portion includes a crushed tip.
  12. 前記凸部は、前記半導体素子よりも外側かつ前記ヒートシンクの側壁より内側に配置された請求項1から6、および8から11のいずれか1項に記載の電力用半導体装置。 12. The power semiconductor device according to claim 1, wherein the convex portion is disposed outside the semiconductor element and inside the side wall of the heat sink.
  13. 半導体素子と、
    前記半導体素子に固着される配線部材と、
    絶縁材を介して、表面が前記配線部材に接着されるとともに、裏面から突出して形成された凸部を有するヒートシンクと、
    前記半導体素子、前記配線部材および前記ヒートシンクを封止する封止体と、
    流動性のある放熱体を介して前記ヒートシンクと接続された放熱推進体と、
    を備えた電力用半導体装置の製造方法であって、
    前記封止体と前記電力用半導体装置が発生する熱を放熱する放熱フィンとをねじで締結する際に、前記凸部が潰されることを特徴とする電力用半導体装置の製造方法。
    A semiconductor element;
    A wiring member fixed to the semiconductor element;
    A heat sink having a convex portion formed so as to protrude from the back surface while the surface is bonded to the wiring member via an insulating material,
    A sealing body for sealing the semiconductor element, the wiring member, and the heat sink;
    A heat dissipation propulsion body connected to the heat sink via a flowable heat dissipation body;
    A method for manufacturing a power semiconductor device comprising:
    The method of manufacturing a power semiconductor device, wherein the projecting portion is crushed when the sealing body and a heat radiation fin for radiating heat generated by the power semiconductor device are fastened with screws.
PCT/JP2019/022463 2018-06-13 2019-06-06 Power semiconductor device and method for producing power semiconductor device WO2019239997A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020525493A JP7019809B2 (en) 2018-06-13 2019-06-06 Power semiconductor devices

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-112513 2018-06-13
JP2018112513 2018-06-13

Publications (1)

Publication Number Publication Date
WO2019239997A1 true WO2019239997A1 (en) 2019-12-19

Family

ID=68843327

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/022463 WO2019239997A1 (en) 2018-06-13 2019-06-06 Power semiconductor device and method for producing power semiconductor device

Country Status (2)

Country Link
JP (1) JP7019809B2 (en)
WO (1) WO2019239997A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023058437A1 (en) * 2021-10-08 2023-04-13 三菱電機株式会社 Semiconductor device, power conversion device, and manufacturing method for semiconductor device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003168772A (en) * 2001-11-30 2003-06-13 Denso Corp Package structure of power module
JP2013251473A (en) * 2012-06-04 2013-12-12 Mitsubishi Electric Corp Power semiconductor device
WO2015097874A1 (en) * 2013-12-27 2015-07-02 三菱電機株式会社 Semiconductor device
JP2016054249A (en) * 2014-09-04 2016-04-14 三菱電機株式会社 Semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003168772A (en) * 2001-11-30 2003-06-13 Denso Corp Package structure of power module
JP2013251473A (en) * 2012-06-04 2013-12-12 Mitsubishi Electric Corp Power semiconductor device
WO2015097874A1 (en) * 2013-12-27 2015-07-02 三菱電機株式会社 Semiconductor device
JP2016054249A (en) * 2014-09-04 2016-04-14 三菱電機株式会社 Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023058437A1 (en) * 2021-10-08 2023-04-13 三菱電機株式会社 Semiconductor device, power conversion device, and manufacturing method for semiconductor device

Also Published As

Publication number Publication date
JPWO2019239997A1 (en) 2020-12-17
JP7019809B2 (en) 2022-02-15

Similar Documents

Publication Publication Date Title
WO2017175612A1 (en) Power module, power semiconductor device, and power module manufacturing method
US8569890B2 (en) Power semiconductor device module
JP5279632B2 (en) Semiconductor module
JP2009295794A (en) Resin-sealed semiconductor device and manufacturing method thereof
JP2014216459A (en) Semiconductor device
US9362192B2 (en) Semiconductor device comprising heat dissipating connector
KR20030032816A (en) Semiconductor device
JP2009111154A (en) Power semiconductor module
JP6790372B2 (en) Semiconductor device
WO2012137439A1 (en) Encapsulated semiconductor device and method for producing same
WO2021060547A1 (en) Electronic device
JP2014179394A (en) Semiconductor device
JP7379886B2 (en) semiconductor equipment
CN108140621B (en) Semiconductor device and method for manufacturing the same
WO2020105407A1 (en) Power semiconductor device
WO2019239997A1 (en) Power semiconductor device and method for producing power semiconductor device
JP6590952B2 (en) Semiconductor device
JP5842109B2 (en) Resin-sealed semiconductor device and manufacturing method thereof
JP2017174951A (en) Semiconductor device
JP5975866B2 (en) Power semiconductor device
JP2015185835A (en) Semiconductor device and manufacturing method of the same
JP2010062490A (en) Semiconductor device
WO2022255053A1 (en) Semiconductor device
JP2008166642A (en) Semiconductor device with radiating member
JP7136367B2 (en) semiconductor package

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19819504

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020525493

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19819504

Country of ref document: EP

Kind code of ref document: A1