WO2019239894A1 - Brake control device, brake control method and pump device to be used for brake control device - Google Patents

Brake control device, brake control method and pump device to be used for brake control device Download PDF

Info

Publication number
WO2019239894A1
WO2019239894A1 PCT/JP2019/021290 JP2019021290W WO2019239894A1 WO 2019239894 A1 WO2019239894 A1 WO 2019239894A1 JP 2019021290 W JP2019021290 W JP 2019021290W WO 2019239894 A1 WO2019239894 A1 WO 2019239894A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
brake control
brake
control device
rotation direction
Prior art date
Application number
PCT/JP2019/021290
Other languages
French (fr)
Japanese (ja)
Inventor
亮平 丸尾
千春 中澤
旭 渡辺
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2019239894A1 publication Critical patent/WO2019239894A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T17/00Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/48Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition connecting the brake actuator to an alternative or additional source of fluid pressure, e.g. traction control systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/58Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration responsive to speed and another condition or to plural speed conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/88Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration with failure responsive means, i.e. means for detecting and indicating faulty operation of the speed responsive control means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/04Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement
    • F04B1/053Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement with actuating or actuated elements at the inner ends of the cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B9/00Piston machines or pumps characterised by the driving or driven means to or from their working members
    • F04B9/02Piston machines or pumps characterised by the driving or driven means to or from their working members the means being mechanical
    • F04B9/04Piston machines or pumps characterised by the driving or driven means to or from their working members the means being mechanical the means being cams, eccentrics or pin-and-slot mechanisms

Definitions

  • the present invention relates to a brake control device, a brake control method, and a pump device used in the brake control device.
  • Patent Document 1 aims to suppress uneven wear between the outer circumferential surface of the eccentric cam and the end surface of the plunger in the plunger pump, and offsets the central axis of the plunger in the direction opposite to the rotational direction of the motor with respect to the rotational axis of the motor.
  • a brake control device is disclosed.
  • Patent Document 1 Although an effect is recognized with respect to the uneven wear of the plunger end surface contacting the outer peripheral surface of the eccentric cam, there is a possibility that the uneven wear of the sliding portion due to the inclination of the plunger is promoted.
  • a brake control device includes a control unit that switches a rotation direction of a motor that drives a plunger pump.
  • FIG. 1 is a schematic diagram of a brake control device 1 according to Embodiment 1.
  • FIG. 3 is a perspective view of a hydraulic unit housing 80 according to Embodiment 1.
  • FIG. 3 is an axial sectional view of a hydraulic unit housing 80 according to Embodiment 1.
  • FIG. 3 is a cross-sectional view in the axial direction of the hydraulic unit housing 80 of Embodiment 1.
  • FIG. 2 is an enlarged cross-sectional view of a plunger pump 86 according to Embodiment 1.
  • FIG. FIG. 3 is a diagram illustrating a control configuration of a motor 211 according to the first embodiment.
  • 3 is a flowchart illustrating a flow of rotation direction switching control of a motor 211 in the first embodiment.
  • FIG. 3 is a flowchart illustrating a flow of rotation direction switching control of a motor 211 in the first embodiment.
  • 6 is a flowchart illustrating a flow of rotation direction switching control of a motor 211 in the second embodiment.
  • 10 is a flowchart showing a flow of rotation direction switching control of a motor 211 in the third embodiment.
  • 10 is a flowchart illustrating a flow of rotation direction switching control of a motor 211 in the fourth embodiment.
  • FIG. 10 is a diagram illustrating a control configuration of a motor 211 according to a sixth embodiment.
  • FIG. 1 is a schematic diagram of a brake control device 1 according to the first embodiment.
  • the brake control device 1 is a general vehicle having only an internal combustion engine (engine) as a prime mover for driving wheels, a hybrid vehicle having an electric motor / generator in addition to the internal combustion engine, and an electric motor. It is mounted on an electric vehicle equipped with only.
  • the brake control device 1 is a disc brake that is installed on each wheel (the left front wheel FL, the right front wheel FR, the left rear wheel RL, the right rear wheel RR) and operates according to the hydraulic pressure of the wheel cylinder (braking force applying portion) 2
  • the brake control device 1 applies a braking torque to each of the wheels FL to RR by adjusting the hydraulic pressure of the wheel cylinder 2.
  • the brake control device 1 has two systems (primary P system and secondary S system) of brake piping.
  • the brake piping format is, for example, the X piping format.
  • P system primary system
  • S system secondary system
  • the suffixes P and S are added to the end of the reference numerals.
  • suffixes a to d are added to the end of the reference numerals.
  • the brake pedal 3 is a brake operation member that receives an input of a driver's brake operation.
  • the push rod 4 strokes according to the operation of the brake pedal 3.
  • the master cylinder 5 operates according to the stroke amount of the push rod 4, and generates brake fluid pressure (master cylinder fluid pressure).
  • the master cylinder 5 is supplied with brake fluid from a reservoir tank 6 that stores brake fluid.
  • the master cylinder 5 is of a tandem type and has a P piston 51P and an S piston 51S that stroke according to the stroke of the push rod 4. Both pistons 51P and 51S are arranged in series along the axial direction of the push rod 4.
  • the P piston 51P is connected to the push rod 4.
  • the S piston 51S is a free piston type.
  • a stroke sensor 60 is attached to the master cylinder 5.
  • the stroke sensor 60 detects the stroke amount of the P piston 51P as the pedal stroke amount of the brake pedal 3.
  • the stroke simulator 7 operates according to the driver's brake operation.
  • the stroke simulator 7 generates a pedal stroke by the flow of brake fluid that has flowed out of the master cylinder 5 in response to the driver's brake operation.
  • the piston 71 of the stroke simulator 7 operates in the axial direction against the urging force of the spring 73 in the cylinder 72 by the brake fluid supplied from the master cylinder 5. Thereby, the stroke simulator 7 generates an operation reaction force corresponding to the driver's brake operation.
  • the hydraulic unit 8 can apply a braking torque to each wheel FL to RR independently of the driver's brake operation.
  • the hydraulic unit 8 receives supply of brake fluid from the master cylinder 5 and the reservoir tank 6.
  • the hydraulic unit 8 is installed between the master cylinder 5 and the wheel cylinder 2.
  • the hydraulic unit 8 includes a motor (pump device) 211 of the pump 21 and a plurality of electromagnetic valves (such as a shutoff valve 12) as actuators for generating a control hydraulic pressure.
  • the pump 21 sucks brake fluid from the reservoir tank 6 and discharges it toward the wheel cylinder 2.
  • the pump 21 is a five plunger pump.
  • a three-phase brushless motor is employed as the motor 211.
  • the shutoff valve 12 or the like opens and closes according to the control signal, and controls the flow of the brake fluid by switching the communication state of the fluid passage 11 and the like.
  • the hydraulic unit 8 pressurizes the wheel cylinder 2 with the brake hydraulic pressure generated by the pump while the communication between the master cylinder 5 and the wheel cylinder 2 is cut off. Further, the hydraulic unit 8 includes hydraulic pressure sensors 35 to 37 that detect hydraulic pressures at various places.
  • the control unit (pump device) 9 controls the operation of the hydraulic unit 8.
  • the control unit 9 receives information (wheel speed and the like) related to the running state sent from the vehicle side.
  • the control unit 9 performs information processing in accordance with a built-in program based on various input information, and calculates the target wheel cylinder hydraulic pressure of the wheel cylinder 2.
  • the control unit 9 outputs a command signal to each actuator of the hydraulic unit 8 so that the wheel cylinder hydraulic pressure of the wheel cylinder 2 becomes the target wheel cylinder hydraulic pressure.
  • various brake controls (such as boost control, antilock control, brake control for vehicle motion control, automatic brake control, and regenerative cooperative brake control) can be realized.
  • the boost control assists the brake operation by generating a brake fluid pressure that is insufficient for the driver's brake pedal force.
  • Anti-lock control suppresses braking slip (lock tendency) of each wheel FL to RR.
  • Vehicle motion control is vehicle behavior stabilization control that prevents skidding and the like.
  • the automatic brake control is a preceding vehicle following control, an automatic emergency brake, or the like.
  • the regenerative cooperative brake control controls the wheel cylinder hydraulic pressure so as to achieve the target deceleration in cooperation with the regenerative brake.
  • a P hydraulic chamber 52P is defined between the pistons 51P and 51S of the master cylinder 5.
  • a compression coil spring 53P is installed in the P hydraulic chamber 52P.
  • An S hydraulic pressure chamber 52S is defined between the S piston 51S and the bottom portion 541 of the cylinder 54.
  • a compression coil spring 53S is installed in the S hydraulic chamber 52S.
  • a fluid passage (connection fluid passage) 11 is opened in each of the fluid pressure chambers 52P and 52S.
  • Each of the hydraulic chambers 52P and 52S is connected to the hydraulic unit 8 through the liquid path 11, and can communicate with the wheel cylinder 2. As the driver depresses the brake pedal 3, the piston 51 strokes, and the master cylinder hydraulic pressure is generated as the volume of the hydraulic pressure chamber 52 decreases.
  • the brake fluid is supplied from the hydraulic chamber 52 to the wheel cylinder 2 via the fluid path 11.
  • the master cylinder 5 pressurizes the P system wheel cylinders 2a and 2d through the P system fluid path (fluid path 11P) by the master cylinder fluid pressure generated in the P fluid pressure chamber 52P.
  • the master cylinder 5 pressurizes the S-system wheel cylinders 2b and 2c through the S-system liquid path (liquid path 11S) by the master cylinder hydraulic pressure generated in the S-hydraulic chamber 52S.
  • the stroke simulator 7 has a cylinder 72, a piston 71, and a spring 73.
  • the cylinder 72 has a cylindrical inner peripheral surface.
  • the cylinder 72 has a piston housing part 721 and a spring housing part 722.
  • the piston housing part 721 has a smaller diameter than the spring housing part 722.
  • the piston 71 is movable in the axial direction within the piston housing portion 721.
  • the piston 71 separates the inside of the cylinder 72 into a positive pressure chamber 711 and a back pressure chamber 712.
  • the liquid path 26 is always open in the positive pressure chamber 711.
  • the liquid passage 27 is always open in the back pressure chamber 712.
  • a piston seal 75 is installed on the outer periphery of the piston 71.
  • the piston seal 75 is in sliding contact with the outer peripheral surface of the piston 71 and seals between the inner peripheral surface of the piston housing portion 721 and the outer peripheral surface of the piston 71.
  • the piston seal 75 is a separation seal member that seals between the positive pressure chamber 711 and the back pressure chamber 712 to separate them liquid-tightly, and complements the function of the piston 71.
  • the spring 73 is a compression coil spring installed in the back pressure chamber 712 and biases the piston 71 from the back pressure chamber 712 side toward the positive pressure chamber 711 side.
  • the spring 73 generates a reaction force according to the compression amount.
  • the spring 73 has a first spring 731 and a second spring 732.
  • the first spring 731 is smaller in diameter and shorter than the second spring 732 and has a smaller wire diameter.
  • the first spring 731 and the second spring 732 are arranged in series via the retainer member 74 between the piston
  • the fluid path 11 connects between the fluid pressure chamber 52 of the master cylinder 5 and the wheel cylinder 2.
  • the liquid path 11P branches into a liquid path 11a and a liquid path 11d.
  • the liquid path 11S branches into the liquid path 11b and the liquid path 11d.
  • the shut-off valve (shut-off valve portion) 12 is a normally open type solenoid valve (opened in a non-energized state) provided in the liquid passage 11.
  • the electromagnetic proportional valve can realize any opening degree according to the current supplied to the solenoid.
  • the liquid path 11 is separated by a shutoff valve 12 into a liquid path 11A on the master cylinder 5 side and a liquid path 11B on the wheel cylinder 2 side.
  • the solenoid-in valve 13 is a normally open electromagnetic valve provided on the wheel cylinder 2 side (liquid path 11B) with respect to each wheel FL to RR (liquid paths 11a to 11d) with respect to the shutoff valve 12 in the liquid path 11. It is a proportional valve.
  • the liquid path 11 is provided with a bypass liquid path 14 that bypasses the solenoid-in valve 13.
  • the bypass fluid passage 14 is provided with a check valve 15 that allows only the flow of brake fluid from the wheel cylinder 2 side to the master cylinder 5 side.
  • the suction pipe 16 connects the reservoir tank 6 and the internal reservoir 17.
  • the liquid path 18 connects the internal reservoir 17 and the suction side of the pump 21.
  • the liquid path 19 connects the discharge side of the pump 21 and between the shut-off valve 12 and the solenoid-in valve 13 in the liquid path 11B.
  • the liquid path 19 branches into a P-system liquid path 19P and an S-system liquid path 19S. Both liquid paths 19P and 19S are connected to the liquid paths 11P and 11S. Both liquid passages 19P and 19S function as communication passages that connect the liquid passages 11P and 11S to each other.
  • the communication valve 20 is a normally closed type (closed in a non-energized state) on / off valve provided in the liquid passage 19.
  • the on / off valve is binaryly switched according to the current supplied to the solenoid.
  • the pump 21 generates a hydraulic pressure in the liquid passage 11 by the brake fluid supplied from the reservoir tank 6 to generate a wheel cylinder hydraulic pressure.
  • the pump 21 is connected to the wheel cylinders 2a to 2d via the liquid passages 19P and 19S and the liquid passages 11P and 11S, and pressurizes the wheel cylinder 2 by discharging brake fluid to the liquid passages 19P and 19S.
  • the liquid path 22 connects the branch point of both the liquid paths 19P and 19S and the liquid path 23.
  • a pressure regulating valve 24 is provided in the liquid path 22.
  • the pressure regulating valve 24 is a normally open type electromagnetic proportional valve.
  • the fluid path 23 connects the wheel cylinder 2 side to the internal reservoir 17 with respect to the solenoid-in valve 13 in the fluid path 11B.
  • the solenoid-out valve 25 is a normally closed on / off valve provided in the liquid path 23.
  • the liquid path 26 branches off from the P-system liquid path 11A and is connected to the positive pressure chamber 711 of the stroke simulator 7.
  • the liquid passage 26 may directly connect the P hydraulic pressure chamber 52P and the positive pressure chamber 711 without going through the liquid passage 11P (11A).
  • the liquid passage 27 connects between the back pressure chamber 712 of the stroke simulator 7 and the liquid passage 11. Specifically, the liquid passage 27 branches from between the shutoff valve 12P and the solenoid-in valve 13 in the liquid passage 11P (11B) and is connected to the back pressure chamber 712.
  • the stroke simulator-in valve 28 is a normally closed on / off valve provided in the liquid passage 27.
  • the liquid path 27 is separated into a liquid path 27A on the back pressure chamber 712 side and a liquid path 27B on the liquid path 11 side by the stroke simulator in valve 28.
  • a bypass liquid path 29 is provided in parallel with the liquid path 27 by bypassing the stroke simulator in valve 28.
  • the bypass liquid path 29 connects the liquid path 27A and the liquid path 27B.
  • a check valve 30 is provided in the bypass liquid passage 29.
  • the check valve 30 allows the flow of brake fluid from the fluid passage 27A toward the fluid passage 11 (27B), and suppresses the flow of brake fluid in the reverse direction.
  • the liquid path 31 connects between the back pressure chamber 712 of the stroke simulator 7 and the liquid path 23.
  • the stroke simulator out valve 32 is a normally closed on / off valve provided in the liquid passage 31.
  • a bypass liquid path 33 is provided in parallel with the liquid path 31 by bypassing the stroke simulator out valve 32.
  • the bypass fluid passage 33 is provided with a check valve 34 that allows the flow of brake fluid from the fluid passage 23 side to the back pressure chamber 712 side and suppresses the brake fluid flow in the reverse direction.
  • a master cylinder fluid pressure sensor that detects fluid pressure at this location (master cylinder fluid pressure and fluid pressure in the positive pressure chamber 711). 35 is provided.
  • a wheel cylinder fluid pressure sensor (P system pressure sensor, S system pressure sensor) 36 for detecting the fluid pressure (wheel cylinder fluid pressure) at this point is provided. Is provided.
  • a discharge pressure sensor 37 is provided between the discharge side of the pump 21 in the liquid passage 19 and the communication valve 20 to detect the liquid pressure (pump discharge pressure) at this location.
  • the brake system (fluid path 11) that connects the hydraulic chamber 52 of the master cylinder 5 and the wheel cylinder 2 in a state where the shut-off valve 12 is opened constitutes a first system.
  • This first system can realize a pedal force brake (non-boosting control) by generating a wheel cylinder hydraulic pressure by a master cylinder hydraulic pressure generated using a pedaling force.
  • the brake system (liquid path 19, liquid path 22, liquid path 23, etc.) including the pump 21 and connecting the reservoir tank 6 and the wheel cylinder 2 with the shut-off valve 12 closed is the second system.
  • This second system constitutes a so-called brake-by-wire device that generates the wheel cylinder hydraulic pressure by the hydraulic pressure generated using the pump 21, and can realize boost control or the like as brake-by-wire control.
  • the stroke simulator 7 generates an operation reaction force accompanying the driver's brake operation.
  • FIG. 2 is a perspective view of the hydraulic unit housing 80 of the first embodiment
  • FIG. 3 is an axial sectional view of the hydraulic unit housing 80.
  • a motor case 81, a stroke simulator case 82, and a control unit case 83 are fixed to the hydraulic unit housing 80.
  • the hydraulic unit housing (hereinafter referred to as “housing”) 80 is made of, for example, an aluminum alloy and is a substantially rectangular housing having a front surface 801, a back surface 802, an upper surface 803, a bottom surface 804, a right side surface 805, and a left side surface 806.
  • the housing 80 has each liquid passage (liquid passage 11 etc.) formed therein.
  • the housing 80 accommodates the pump 21, solenoid valves (such as the shut-off valve 12), and fluid pressure sensors (such as the master cylinder fluid pressure sensor 35).
  • solenoid valves such as the shut-off valve 12
  • fluid pressure sensors such as the master cylinder fluid pressure sensor 35
  • On the upper surface 803 of the housing 80 four wheel cylinder ports 8031 are formed, and a nipple 8032 is attached.
  • the wheel cylinder port 8031 is connected to the wheel cylinder 2 via a wheel cylinder pipe (not shown).
  • a suction pipe 16 is connected to the nipple 8032.
  • a valve housing hole 8021 and four sensor housing holes 8022 for each electromagnetic valve are formed on the back surface 802 of the housing 80.
  • Each valve accommodating hole 8021 accommodates a valve portion of each electromagnetic valve (such as the shutoff valve 12).
  • Each sensor accommodation hole 8022 accommodates each hydraulic pressure sensor (master cylinder hydraulic pressure sensor 35, etc.).
  • the motor case 81 is a metal cylindrical member, and houses the motor 211 therein.
  • the motor case 81 is fixed to the front surface 801 of the housing 80.
  • Two master cylinder ports 8011 are formed on the front surface 801.
  • the stroke simulator case 82 is made of an aluminum alloy, and accommodates the stroke simulator 7 therein.
  • the stroke simulator case 82 is fastened to the right side surface 805 of the housing 80 by a screw (not shown).
  • the control unit case 83 is formed of a resin material, and accommodates the solenoid 84 and the control board 40 of each electromagnetic valve (the cutoff valve 12 and the like).
  • the control board 40 is the control unit 9 and controls the energization state of the motor 211 and each solenoid.
  • the control board 40 is attached in parallel with the back surface 802.
  • the terminal 84a of each solenoid 84 and the terminals 85 of the hydraulic pressure sensors 35 to 37 are connected to the control board 40.
  • FIG. 4 is a cross-sectional view in the direction perpendicular to the axis of the hydraulic unit housing 80
  • FIG. 5 is an enlarged cross-sectional view of the plunger pump (pump device) 86.
  • the pump 21 of the first embodiment has five plunger pumps 86A to 86E.
  • Each plunger pump 86A to 86E is housed in five cylinder housing holes 80a formed in the housing 80.
  • Two cylinder receiving holes 80a are arranged on the right side 805 of the housing 80 (80aD, 80aE), two on the left side 806 (80aB, 80aC), and one on the bottom 804 (80aA). Line up at equal pitches in the surrounding direction.
  • Each cylinder accommodation hole 80a is connected to the cam chamber 80b.
  • the cam chamber 80 b extends in a direction along the rotation axis of the motor 211 and opens on the front surface 801 of the housing 80.
  • the cam chamber 21b accommodates a cam unit 21a that is rotationally driven by the rotational drive shaft 300 of the motor 211.
  • the cam unit 21a includes an eccentric cam 301, a drive member 302 (outer ring), and a plurality of rolling elements 303.
  • the eccentric cam 301 is a cylindrical eccentric cam, and has a rotation axis P that is eccentric with respect to the rotation axis O of the rotation drive shaft 300.
  • the rotation axis P extends substantially parallel to the rotation axis O.
  • the eccentric cam 301 swings while rotating around the rotation axis O integrally with the rotation drive shaft 300.
  • the drive member 302 (outer ring) has a cylindrical shape and is disposed on the outer peripheral side of the eccentric cam 301.
  • the drive member 302 (outer ring) can rotate around the rotation axis P with respect to the eccentric cam 301.
  • the drive member 302 (outer ring) is an eccentric bearing having the same configuration as the outer ring of the rolling bearing.
  • the plurality of rolling elements 303 are disposed between the outer peripheral surface of the eccentric cam 301 and the inner peripheral surface of the drive member 302 (outer ring).
  • the rolling element 303 is a needle roller and extends along the direction of the rotation axis O.
  • the eccentric cam 301 and the rotation drive shaft 300 of the motor 211 may be integrally configured, and a general rolling bearing may be used for the cam unit 21a, for example, a needle bearing having needle rollers on the rolling element 303 or the like. .
  • the plunger pumps 86A to 86E are plunger pumps (piston pumps) as reciprocating pumps, and are operated by the rotation of the rotary drive shaft 300. As the plunger 86a reciprocates, the brake fluid as the hydraulic fluid is sucked and discharged.
  • the cam unit 21a has a function of converting the rotary motion of the rotary drive shaft 300 into the reciprocating motion of the plunger 86a. When the configurations of the plunger pumps 86A to 86E are distinguished from each other, suffixes A to E are added to the reference numerals. Each plunger 86a is arranged around the cam unit 21a, and is accommodated in each cylinder accommodation hole 80a.
  • the central axis 360 of the plunger 86a substantially coincides with the central axis of the cylinder accommodation hole 80a and extends in the radial direction of the rotary drive shaft 300.
  • the central axes 360A to 360E of the plungers 86aA to 86aE are in the same plane. These plungers 86aA to 86aE are driven by the same rotation drive shaft 300 and the same cam unit 21a.
  • the plunger pump 86A includes a cylinder sleeve 304, a filter member 305, a plug 306, a guide ring 307, a first seal ring 351, a second seal ring 352, a plunger 86a, a return spring 308, and a suction valve 38. And a discharge valve 39, which are installed in the cylinder accommodation hole 80a.
  • the cylinder sleeve 304 has a bottomed cylindrical shape, and a through hole 311 passes through the bottom portion 310. The cylinder sleeve 304 is fixed to the cylinder accommodation hole 80a.
  • An end 312 on the opening side of the cylinder sleeve 304 is disposed at the medium diameter portion 822 (suction port 823), and the bottom portion 310 is disposed at the large diameter portion (discharge port) 821.
  • the filter member 305 has a bottomed cylindrical shape, and a hole 321 passes through the bottom 320 and a plurality of openings penetrates the side wall. A filter is installed in the opening.
  • An end 323 on the opening side of the filter member 305 is fixed to an end 312 on the opening side of the cylinder sleeve 304.
  • the bottom part 320 is disposed in the small diameter part 820.
  • the first communication liquid path communicates with the suction port 823 and the gap. That is, the first communication liquid path is between the liquid path 18 and the suction port 823.
  • the plug 306 has a columnar shape, and has a bottomed cylindrical discharge chamber 330 and a discharge passage 331 on one end side in the central axis direction.
  • the discharge passage 331 extends in the radial direction, connects the discharge chamber 330 and the outer peripheral surface of the plug 306, and communicates with the discharge port 821.
  • the plug 306 in the axial direction is fixed to the bottom 310 of the cylinder sleeve 304.
  • the plug 306 is fixed to the large diameter portion 821 and closes the opening of the cylinder accommodation hole 80a on the outer peripheral surface of the housing 80.
  • the second communication liquid path communicates with the discharge port 821 and the discharge passage 331 of the plug 306. That is, the second communication liquid path is between the discharge port 821 and the liquid path 19.
  • the guide ring 307 has a cylindrical shape and is fixed to the cam chamber 80b side (small diameter portion 820) with respect to the filter member 305 in the cylinder accommodation hole 80a.
  • the first seal ring 351 is installed between the guide ring 307 and the filter member 305 in the cylinder accommodation hole 80a (small diameter portion 820).
  • the plunger 86a has a cylindrical shape, and has an end surface (hereinafter referred to as a plunger end surface) 361 on one side in the central axis direction and a flange portion 362 on the outer periphery on the other side in the central axis direction.
  • the plunger end surface 361 has a planar shape extending in a direction substantially orthogonal to the central axis 360 of the plunger 86a, and has a substantially circular shape centering on the central axis 360.
  • the plunger 86a has an axial hole 363 and a radial hole 364 therein.
  • the axial hole 363 extends on the central axis 360 and opens on the end surface of the plunger 86a on the other side in the central axial direction.
  • the radial hole 364 extends in the radial direction of the plunger 86 a, opens on the outer peripheral surface on one side in the central axis direction than the flange portion 362, and connects to the one side in the central axis direction of the axial hole 363.
  • a check valve case 365 is fixed to the other end of the plunger 86a on the other side in the central axis direction.
  • the check valve case 365 has a bottomed cylindrical shape made of a thin plate, has a flange portion 366 on the outer periphery of the end portion on the opening side, and a plurality of holes 368 pass through the side wall portion and the bottom portion 367.
  • the end of the check valve case 365 on the opening side is fitted to the other end of the plunger 86a on the other side in the central axis direction.
  • the second seal ring 352 is installed between the flange portion 366 of the check valve case 365 and the flange portion 362 of the plunger 86a.
  • the other side in the central axis direction of the plunger 86 a is inserted into the inner peripheral side of the cylinder sleeve 304, and the flange portion 362 is guided and supported by the cylinder sleeve 304.
  • One side in the central axis direction of the plunger 86a from the radial hole 364 is on the inner peripheral side (hole 321) of the bottom 320 of the filter member 305, the inner peripheral side of the first seal ring 351, and the inner peripheral side of the guide ring 307. It is inserted in and guided and supported by these.
  • One end (plunger end surface 361) of the plunger 86a on one side in the central axis direction protrudes into the cam chamber 80b.
  • the return spring 308 is a compression coil spring and is installed on the inner peripheral side of the cylinder sleeve 304. One end of the return spring 308 is installed on the bottom 310 of the cylinder sleeve 304, and the other end is installed on the flange 366 of the check valve case 365.
  • the return spring 308 always urges the plunger 86a toward the cam chamber 80b with respect to the cylinder sleeve 304 (cylinder accommodation hole 80a).
  • the suction valve 38 has a ball 380 as a valve body and a return spring 381, which are accommodated on the inner peripheral side of the check valve case 365.
  • a valve seat 369 is provided around the opening of the axial hole 363 on the end surface on the other side in the central axial direction of the plunger 86a.
  • the return spring 381 is a compression coil spring, one end of which is installed on the bottom 367 of the check valve case 365 and the other end of which is installed on the ball 380.
  • the return spring 381 always urges the ball 380 toward the valve seat 369 with respect to the check valve case 365 (plunger 86a).
  • the discharge valve 39 includes a ball 390 as a valve body and a return spring 391, which are accommodated in a discharge chamber 330 of the plug 306.
  • a valve seat 313 is provided around the opening of the through hole 311 in the bottom 310 of the cylinder sleeve 304.
  • the return spring 391 is a compression coil spring, one end of which is installed on the bottom surface of the discharge chamber 330 and the other end is installed on the ball 390. The return spring 391 always urges the ball 390 toward the valve seat 313.
  • the space R1 closer to the cam chamber 80b than the flange portion 362 of the plunger 86a is a suction side space communicating with the first communication liquid path.
  • a plurality of openings of the filter member 305, and the outer peripheral surface of the plunger 86a and the filter member A space that passes through the gap between the inner peripheral surface of 305 and reaches the radial hole 364 and the axial hole 363 of the plunger 86a functions as the suction-side space R1.
  • the suction-side space R1 is prevented from communicating with the cam chamber 80b by the first seal ring 351.
  • a space R3 between the cylinder sleeve 304 and the plug 306 is a discharge side space communicating with the second communication liquid path.
  • the space from the discharge passage 331 of the plug 306 to the discharge port 821 functions as the discharge side space R3.
  • the volume of the space R2 between the flange portion 362 of the plunger 86a and the bottom portion 310 of the cylinder sleeve 304 changes due to the reciprocating movement (stroke) of the plunger 86a with respect to the cylinder sleeve 304.
  • This space R2 communicates with the suction side space R1 by opening the suction valve 38, and communicates with the discharge side space R3 by opening the discharge valve 39.
  • the plunger 86aA of the plunger pump 86A reciprocates to perform the pumping action. That is, when the plunger 86aA strokes closer to the cam chamber 80b (rotation axis O), the volume of the space R2 increases and the pressure in R2 decreases.
  • the discharge valve 39 is closed and the suction valve 38 is opened, the brake fluid as the working fluid flows from the suction side space R1 into the space R2, and the space R2 passes through the suction port 823 from the first communication fluid path. Brake fluid is supplied to When the plunger 86aA strokes away from the cam chamber 80b, the volume of the space R2 decreases and the pressure in R2 increases.
  • the control unit 9 switches the rotation direction of the motor 211 every time the driver performs a brake operation with the aim of suppressing uneven wear of the sliding portion due to the inclination of the plunger 86a.
  • the sliding portion is a contact portion of the drive member 302 (outer ring) of the cam unit 21a, the cylinder sleeve 304, the first seal ring 351 and the second seal ring 352, and the guide ring 307 with respect to the plunger 86a.
  • FIG. 6 is a diagram illustrating a motor control configuration according to the first embodiment.
  • the control unit 9 controls driving of the motor 211 via the driving circuit 10.
  • the drive circuit 10 includes switching elements Q1 to Q6 configured with, for example, a three-phase bridge of an Nch FET.
  • the drain terminals of the switching elements Q1 to Q3 on the upper arm side are connected to the DC power source Vcc.
  • the source terminals of the switching elements Q4 to Q6 on the lower arm side are connected to the ground GND.
  • the source terminal of the switching element Q1 on the upper arm side and the drain terminal of the switching element Q4 on the lower arm side are connected, and the connection point of the switching elements Q1 and Q4 is connected to the U phase of the motor 211 via the output power line Lu. It is connected to the coil terminal.
  • the source terminal of the switching element Q2 on the upper arm side and the drain terminal of the switching element Q5 on the lower arm side are connected, and the connection point between the switching elements Q2 and Q5 is connected to the V phase of the motor 211 via the output power line Lv. It is connected to the coil terminal.
  • the source terminal of the switching element Q3 on the upper arm side and the drain terminal of the switching element Q6 on the lower arm side are connected, and the connection point of the switching elements Q3 and Q6 is connected to the W phase of the motor 211 via the output power line Lw. It is connected to the coil terminal.
  • a diode Dx (parasitic diode or the like) is connected in parallel to each of the switching elements Q1 to Q6 so that the cathode is in the direction of the DC power supply Vcc and the anode is in the direction of the ground GND as shown in the figure.
  • Switching elements Q1 to Q6 may be IGBTs or bipolar transistors.
  • the motor 211 is a delta connection, it may be a star connection.
  • the control unit 9 detects the rotor rotation speed or rotor rotation angle (position) from the output of the Hall IC 211a installed in the motor 211, and sets the switching elements Q1 to Q6 so that the desired rotation speed and rotation direction are obtained. To drive.
  • step S1 various sensor values for calculating the target wheel cylinder hydraulic pressure are read.
  • Sensor values include, for example, motor speed sensor (Hall IC211a), hydraulic pressure sensors 35-37, stroke sensor 60, wheel speed sensor, brake lamp switch, yaw rate sensor, front / rear G sensor, lateral G sensor, rudder angle sensor, etc. Sensor value.
  • step S2 a target wheel cylinder hydraulic pressure is calculated based on each read sensor value.
  • step S3 it is determined whether the target wheel cylinder hydraulic pressure is a positive value (> 0). If yes, go to return, if no, go to step S4.
  • step S4 the motor 211 is stopped.
  • step S5 the rotation direction of the motor 211 immediately before the stop is stored, and the process proceeds to return.
  • step S6 it is determined whether the stored rotation direction of the previous motor 211 is CW (clockwise: clockwise direction). If YES, the process proceeds to step S7. If NO, the process proceeds to step S8.
  • CW is the clockwise direction of the rotary drive shaft 300 when the hydraulic unit 8 is viewed from the front side (the clockwise direction in FIG. 4).
  • step S7 the motor 211 is driven with the rotation direction as CCW (counterclockwise).
  • step S8 the motor 211 is driven with the rotation direction as CW.
  • Embodiment 1 In the plunger pump, when the plunger reaches the top dead center or the bottom dead center, the position where the plunger and the cylinder contact and slide with respect to the force of the eccentric cam acting on the plunger changes, and the plunger pump instantaneously Oscillation occurs.
  • the central axis of the plunger In the plunger pump in the conventional brake control device, the central axis of the plunger is opposite to the rotation direction of the motor with respect to the rotation axis of the motor, aiming to suppress the eccentric wear between the eccentric cam and the plunger due to the swing of the plunger. It is offset in the direction.
  • the plunger repeatedly operates in a state where the plunger is always tilted by sliding with the eccentric cam.
  • the rotation direction of the motor 211 that drives the plunger pump 86 is switched at a predetermined timing. By switching the rotation direction of the motor 211, the position of each sliding portion changes, so that uneven wear of the sliding portion due to the inclination of the plunger 86a can be suppressed.
  • the durability of the plunger pump 86 can be improved.
  • the offset arrangement of the central axis 360 of the plunger 86a with respect to the rotational axis 0 of the motor 211 (rotational drive shaft 300) is not required, and strict dimensional accuracy is not required, so that the manufacturability of the plunger pump 86 can be improved.
  • the fluid passage 11 connected to the wheel cylinder 2 for applying a braking force to each wheel FL to RR connects the master cylinder 5 and the wheel cylinder 2, and the fluid passage 11 is provided with a shut-off valve 12, and a plunger pump 86 Supplies the brake fluid to a portion (liquid passage 11B) located on the wheel cylinder 2 side with respect to the shutoff valve 12 in the liquid passage 11.
  • the shut-off valve 12 is closed to shut off the flow of brake fluid between the master cylinder 5 and the wheel cylinder 2, and the target wheel cylinder hydraulic pressure of each wheel FL to RR is realized by the brake fluid pressurized by the pump 21.
  • the pump 21 is operated each time the driver brakes, so that the pump is operated only in the case of anti-lock control or vehicle motion control.
  • the frequency is high. Therefore, since the pump employed in the brake-by-wire system is required to have high durability, switching of the rotation direction of the motor 211 is effective and has a remarkable effect.
  • the motor 211 that drives the plunger pump 86 is a brushless motor, compared to the case where the plunger pump 86 is a brushed motor, the size and weight are reduced, the motor efficiency is improved, and the speed control range is expanded. There are advantages such as improved maintainability and improved durability.
  • FIG. 9 is a flowchart showing the flow of the rotation direction switching control of the motor 211 in the second embodiment.
  • step S11 it is determined whether there is a self-diagnosis execution request. If yes, go to step S6, if no, go to return.
  • the self-diagnosis is to determine whether the control unit 9 is normal by operating each actuator of the hydraulic unit 8 during running or stopping when the vehicle is powered on, for example. At this time, the motor 211 may be rotated in both directions in order to determine whether the motor 211 normally rotates in both directions.
  • step S12 it is determined whether the self-diagnosis is completed.
  • step S4 it is determined whether the self-diagnosis is completed. If YES, the process proceeds to step S4. If NO, the process returns to step S8. Since the self-diagnosis of the brake control device 1 is executed multiple times during one trip (period from start to stop of the vehicle) regardless of the braking state, one trip is performed by switching the rotation direction of the motor 211 after the self-diagnosis. Uneven wear can be effectively suppressed by switching the position of the sliding portion a plurality of times. In particular, it is effective for improving the durability of the plunger pump 86 when the brake control device 1 is employed in a brake system that does not have a shut-off valve, in other words, a brake system that is not a so-called brake-by-wire.
  • FIG. 10 is a flowchart showing the flow of rotation direction switching control of the motor 211 in the third embodiment.
  • step S21 it is determined whether the operating flag of each function is 1. If yes, go to return, if no, go to step S22.
  • Each function is brake control other than boost control (anti-lock control, brake control for vehicle motion control, automatic brake control, etc.). If one of the functions is inactive, the operating flag is 0. When in operation, the in-operation flag is 1.
  • step S22 it is determined whether a fixed time has elapsed since the function being operated stopped.
  • step S5 If yes, go to step S5, if no, go to return.
  • the pressure increase of the wheel cylinder 2 may be delayed by the inertia of the motor 211.
  • the response delay of the motor 221 that drives the pump 21 to generate pressure affects the pressure increase delay of the wheel cylinder 2.
  • a delay in response of the antilock control can be prevented by switching the rotation direction of the motor 211 after a sufficient time has elapsed after the antilock control is completed.
  • a specific function such as anti-lock control
  • the discharge flow rate and the discharge hydraulic pressure of the pump 21 are higher than in the boost control, so that the pump 21 operates at a high load and the durability deterioration of the plunger pump 86 is easily promoted. Therefore, switching the rotation direction of the motor 211 after the specific function is effective in improving the durability of the plunger pump 86.
  • FIG. 11 is a flowchart illustrating a flow of rotation direction switching control of the motor 211 in the fourth embodiment.
  • step S31 the operating time T of the motor 211 in the finished function is read.
  • the control unit 9 starts counting up by the counter and measures the operation time of the motor 211.
  • step S32 it is determined whether the operation time T is longer than the predetermined time T1 based on whether the count value of the counter is larger than the threshold value. If yes, go to step S5, if no, go to return.
  • the rotation direction switching control of the motor 211 in the fifth embodiment is switched when the accumulated rotation number in the same direction of the motor 211 reaches a predetermined rotation number.
  • the rotation direction of the motor 221 is switched so that the accumulated rotation speeds of the CW and CCW are substantially equal, or the accumulated rotation speeds of the CW and CCW are compared with each other in the smaller rotation direction. It means switching.
  • the rotational direction of the motor 211 is switched so that the integrated rotational speed is always the same between CW and CCW, which is effective in improving the durability of the plunger pump 86. It should be noted that the rotation direction may be switched each time the total accumulated rotational speed of CW and CCW reaches, for example, 10,000 revolutions, 20,000 revolutions,.
  • FIG. 12 is a diagram illustrating a motor control configuration according to the sixth embodiment.
  • a DC brush motor is employed as the motor 211.
  • the drive circuit 10 includes switching elements Q11 to Q14 configured by, for example, an N-channel FET H-bridge.
  • the drain terminals of the switching elements Q11 and Q12 on the upper arm side are connected to the DC power source Vcc.
  • the source elements of the switching elements Q13 and Q14 on the lower arm side are connected to the ground GND.
  • the source terminal of the switching element Q11 on the upper arm side and the drain terminal of the switching element Q13 on the lower arm side are connected, and the connection point of the switching elements Q11 and Q13 is connected to the first terminal of the motor 211 via the output power line L1.
  • the source terminal of the switching element Q12 on the upper arm side and the drain element of the switching element Q14 on the lower arm side are connected, and the connection point between the switching elements Q12 and Q14 is connected to the second terminal of the motor 211 via the output power line L2. Connected to the terminal.
  • a diode Dx is connected in parallel to each of the switching elements Q11 to Q14 so that the cathode is in the direction of the DC power supply Vcc and the anode is in the direction of the ground GND.
  • Switching elements Q11 to Q14 may be IGBTs or bipolar transistors.
  • a liquid passage portion connected to a braking force applying portion that applies a braking force to a wheel, a plunger pump that discharges brake fluid to the liquid passage portion, and the plunger pump are driven.
  • a control unit for switching the rotation direction of the motor in another preferred aspect, in the above aspect, switches the rotation direction of the motor each time the driver performs a brake operation.
  • the control unit performs a self-diagnosis for determining soundness of the brake control device, and switches the rotation direction of the motor after the self-diagnosis.
  • the control unit performs predetermined brake control on the wheels, and switches the rotation direction of the motor after the brake control is performed.
  • the control unit switches the rotation direction of the motor every time the continuous operation time of the motor reaches a predetermined time. In still another preferred aspect, in any one of the above aspects, the control unit switches a rotation direction of the motor when a start switch of the vehicle is turned on or off. In still another preferred aspect, in any one of the above aspects, the control unit switches the rotation direction of the motor every time an integrated value of the number of rotations in the same direction of the motor reaches a predetermined value. In still another preferred aspect, in any one of the above aspects, the liquid path part includes a connection liquid path that connects the master cylinder and the braking force applying part. The liquid path part also includes a shutoff valve part provided in the connection liquid path, The plunger pump supplies brake fluid to a portion of the connection fluid path that is located on the braking force applying portion side with respect to the shutoff valve portion.
  • the motor is a brushless motor. In still another preferred aspect, in any of the above aspects, the motor is a brush motor.
  • the brake control method performs a first rotation of a motor that drives a plunger pump that discharges brake fluid to a fluid path connected to a braking force application unit that applies braking force to a wheel. A first step of discharging the brake fluid into the fluid path by rotating in a direction, and a rotation direction of the motor in a second direction opposite to the first rotation direction, And a second step of discharging the brake fluid into the fluid path.
  • the pump device used in the brake control device includes a plunger pump that discharges brake fluid, a motor that drives the plunger pump, a control unit that switches the rotation direction of the motor, Is provided.
  • this invention is not limited to above-described embodiment, Various modifications are included.
  • the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described.
  • a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulating Braking Force (AREA)

Abstract

According to the present invention, a control unit switches a rotation direction of a motor that drives a plunger pump.

Description

ブレーキ制御装置、ブレーキ制御方法およびブレーキ制御装置に用いられるポンプ装置BRAKE CONTROL DEVICE, BRAKE CONTROL METHOD, AND PUMP DEVICE USED FOR BRAKE CONTROL DEVICE
 本発明は、ブレーキ制御装置、ブレーキ制御方法およびブレーキ制御装置に用いられるポンプ装置に関する。 The present invention relates to a brake control device, a brake control method, and a pump device used in the brake control device.
 特許文献1には、プランジャポンプにおける偏心カム外周面およびプランジャ端面間の偏摩耗の抑制を狙いとし、モータの回転軸線に対して、プランジャの中心軸線をモータの回転方向とは反対方向にオフセットさせたブレーキ制御装置が開示されている。 Patent Document 1 aims to suppress uneven wear between the outer circumferential surface of the eccentric cam and the end surface of the plunger in the plunger pump, and offsets the central axis of the plunger in the direction opposite to the rotational direction of the motor with respect to the rotational axis of the motor. A brake control device is disclosed.
独国特許出願公開第4310062号明細書DE4310062C2German Patent Application Publication No. 4310062 Specification DE4310062C2
 しかしながら、上記特許文献1にあっては、偏心カム外周面と当接するプランジャ端面の偏摩耗については効果が認められるものの、プランジャの傾きによる摺動部の偏摩耗が促進されるおそれがあった。 However, in the above-mentioned Patent Document 1, although an effect is recognized with respect to the uneven wear of the plunger end surface contacting the outer peripheral surface of the eccentric cam, there is a possibility that the uneven wear of the sliding portion due to the inclination of the plunger is promoted.
  本発明の目的の一つは、プランジャの傾きによる摺動部の偏摩耗を抑制できるブレーキ制御装置、ブレーキ制御方法およびブレーキ制御装置に用いられるポンプ装置を提供することにある。
 本発明の一実施形態におけるブレーキ制御装置は、プランジャポンプを駆動させるモータの回転方向を切り替えるコントロールユニットを備える。
One of the objects of the present invention is to provide a brake control device, a brake control method, and a pump device used in the brake control device that can suppress uneven wear of the sliding portion due to the inclination of the plunger.
A brake control device according to an embodiment of the present invention includes a control unit that switches a rotation direction of a motor that drives a plunger pump.
 よって、本発明の一実施形態におけるブレーキ制御装置によれば、プランジャの傾きによる摺動部の偏摩耗を抑制できる。 Therefore, according to the brake control device in one embodiment of the present invention, uneven wear of the sliding portion due to the inclination of the plunger can be suppressed.
実施形態1のブレーキ制御装置1の概略図である。1 is a schematic diagram of a brake control device 1 according to Embodiment 1. FIG. 実施形態1の液圧ユニットハウジング80の斜視図である。3 is a perspective view of a hydraulic unit housing 80 according to Embodiment 1. FIG. 実施形態1の液圧ユニットハウジング80の軸方向断面図である。3 is an axial sectional view of a hydraulic unit housing 80 according to Embodiment 1. FIG. 実施形態1の液圧ユニットハウジング80の軸直方向断面図である。3 is a cross-sectional view in the axial direction of the hydraulic unit housing 80 of Embodiment 1. FIG. 実施形態1のプランジャポンプ86の拡大断面図である。2 is an enlarged cross-sectional view of a plunger pump 86 according to Embodiment 1. FIG. 実施形態1のモータ211の制御構成を示す図である。FIG. 3 is a diagram illustrating a control configuration of a motor 211 according to the first embodiment. 実施形態1におけるモータ211の回転方向切り替え制御の流れを示すフローチャートである。3 is a flowchart illustrating a flow of rotation direction switching control of a motor 211 in the first embodiment. 実施形態1におけるモータ211の回転方向切り替え制御の流れを示すフローチャートである。3 is a flowchart illustrating a flow of rotation direction switching control of a motor 211 in the first embodiment. 実施形態2におけるモータ211の回転方向切り替え制御の流れを示すフローチャートである。6 is a flowchart illustrating a flow of rotation direction switching control of a motor 211 in the second embodiment. 実施形態3におけるモータ211の回転方向切り替え制御の流れを示すフローチャートである。10 is a flowchart showing a flow of rotation direction switching control of a motor 211 in the third embodiment. 実施形態4におけるモータ211の回転方向切り替え制御の流れを示すフローチャートである。10 is a flowchart illustrating a flow of rotation direction switching control of a motor 211 in the fourth embodiment. 実施形態6のモータ211の制御構成を示す図である。FIG. 10 is a diagram illustrating a control configuration of a motor 211 according to a sixth embodiment.
 〔実施形態1〕
  図1は、実施形態1のブレーキ制御装置1の概略図である。
  ブレーキ制御装置1は、車輪を駆動する原動機として内燃機関(エンジン)のみを備えた一般的な車両のほか、内燃機関に加えて電動式のモータ・ジェネレータを備えたハイブリッド車や、電動式のモータのみを備えた電気自動車等に搭載されている。ブレーキ制御装置1は、各車輪(左前輪FL、右前輪FR、左後輪RL、右後輪RR)に設置され、ホイルシリンダ(制動力付与部)2の液圧に応じて作動するディスクブレーキを有する。ブレーキ制御装置1は、ホイルシリンダ2の液圧を調整することにより、各車輪FL~RRに制動トルクを付与する。ブレーキ制御装置1は、2系統(プライマリP系統およびセカンダリS系統)のブレーキ配管を有する。ブレーキ配管形式は、例えばX配管形式である。以下、プライマリ系統(以下P系統)に対応する部材とセカンダリ系統(以下、S系統)に対応する部材を区別する場合には、符号の末尾に添字P,Sを付す。また、各車輪FL~RRに対応する部材を区別する場合には、その符号の末尾に添字a~dを付す。
  ブレーキペダル3は、ドライバのブレーキ操作の入力を受けるブレーキ操作部材である。プッシュロッド4は、ブレーキペダル3の操作に応じてストロークする。マスタシリンダ5は、プッシュロッド4のストローク量により作動し、ブレーキ液圧(マスタシリンダ液圧)を発生する。
Embodiment 1
FIG. 1 is a schematic diagram of a brake control device 1 according to the first embodiment.
The brake control device 1 is a general vehicle having only an internal combustion engine (engine) as a prime mover for driving wheels, a hybrid vehicle having an electric motor / generator in addition to the internal combustion engine, and an electric motor. It is mounted on an electric vehicle equipped with only. The brake control device 1 is a disc brake that is installed on each wheel (the left front wheel FL, the right front wheel FR, the left rear wheel RL, the right rear wheel RR) and operates according to the hydraulic pressure of the wheel cylinder (braking force applying portion) 2 Have The brake control device 1 applies a braking torque to each of the wheels FL to RR by adjusting the hydraulic pressure of the wheel cylinder 2. The brake control device 1 has two systems (primary P system and secondary S system) of brake piping. The brake piping format is, for example, the X piping format. Hereinafter, when distinguishing a member corresponding to the primary system (hereinafter referred to as P system) and a member corresponding to the secondary system (hereinafter referred to as S system), the suffixes P and S are added to the end of the reference numerals. Further, when distinguishing the members corresponding to the wheels FL to RR, suffixes a to d are added to the end of the reference numerals.
The brake pedal 3 is a brake operation member that receives an input of a driver's brake operation. The push rod 4 strokes according to the operation of the brake pedal 3. The master cylinder 5 operates according to the stroke amount of the push rod 4, and generates brake fluid pressure (master cylinder fluid pressure).
 マスタシリンダ5は、ブレーキ液を貯留するリザーバタンク6からブレーキ液が補給される。マスタシリンダ5は、タンデム型であり、プッシュロッド4のストロークに応じてストロークするPピストン51PおよびSピストン51Sを有する。両ピストン51P,51Sは、プッシュロッド4の軸方向に沿って直列に並ぶ。Pピストン51Pはプッシュロッド4に接続されている。Sピストン51Sはフリーピストン型である。マスタシリンダ5には、ストロークセンサ60が取り付けられている。ストロークセンサ60は、ブレーキペダル3のペダルストローク量として、Pピストン51Pのストローク量を検出する。
  ストロークシミュレータ7は、ドライバのブレーキ操作に応じて作動する。ストロークシミュレータ7は、ドライバのブレーキ操作に応じてマスタシリンダ5の内部から流出したブレーキ液が流入することで、ペダルストロークを発生させる。ストロークシミュレータ7のピストン71は、マスタシリンダ5から供給されたブレーキ液により、シリンダ72内をスプリング73の付勢力に抗して軸方向に作動する。これにより、ストロークシミュレータ7は、ドライバのブレーキ操作に応じた操作反力を生成する。
The master cylinder 5 is supplied with brake fluid from a reservoir tank 6 that stores brake fluid. The master cylinder 5 is of a tandem type and has a P piston 51P and an S piston 51S that stroke according to the stroke of the push rod 4. Both pistons 51P and 51S are arranged in series along the axial direction of the push rod 4. The P piston 51P is connected to the push rod 4. The S piston 51S is a free piston type. A stroke sensor 60 is attached to the master cylinder 5. The stroke sensor 60 detects the stroke amount of the P piston 51P as the pedal stroke amount of the brake pedal 3.
The stroke simulator 7 operates according to the driver's brake operation. The stroke simulator 7 generates a pedal stroke by the flow of brake fluid that has flowed out of the master cylinder 5 in response to the driver's brake operation. The piston 71 of the stroke simulator 7 operates in the axial direction against the urging force of the spring 73 in the cylinder 72 by the brake fluid supplied from the master cylinder 5. Thereby, the stroke simulator 7 generates an operation reaction force corresponding to the driver's brake operation.
 液圧ユニット8は、ドライバのブレーキ操作とは独立して各車輪FL~RRに制動トルクを付与可能である。液圧ユニット8は、マスタシリンダ5およびリザーバタンク6からブレーキ液の供給を受ける。液圧ユニット8は、マスタシリンダ5およびホイルシリンダ2間に設置されている。液圧ユニット8は、制御液圧を発生するためのアクチュエータとして、ポンプ21のモータ(ポンプ装置)211および複数の電磁弁(遮断弁12等)を有している。ポンプ21は、リザーバタンク6からブレーキ液を吸入し、ホイルシリンダ2へ向けて吐出する。ポンプ21は、5つのプランジャポンプである。実施形態1では、モータ211として、3相ブラシレスモータを採用している。遮断弁12等は、制御信号に応じて開閉動作し、液路11等の連通状態を切り替えることにより、ブレーキ液の流れを制御する。液圧ユニット8は、マスタシリンダ5およびホイルシリンダ2間の連通を遮断した状態で、ポンプが発生するブレーキ液圧によりホイルシリンダ2を加圧する。また、液圧ユニット8は、各所の液圧を検出する液圧センサ35~37を有する。 The hydraulic unit 8 can apply a braking torque to each wheel FL to RR independently of the driver's brake operation. The hydraulic unit 8 receives supply of brake fluid from the master cylinder 5 and the reservoir tank 6. The hydraulic unit 8 is installed between the master cylinder 5 and the wheel cylinder 2. The hydraulic unit 8 includes a motor (pump device) 211 of the pump 21 and a plurality of electromagnetic valves (such as a shutoff valve 12) as actuators for generating a control hydraulic pressure. The pump 21 sucks brake fluid from the reservoir tank 6 and discharges it toward the wheel cylinder 2. The pump 21 is a five plunger pump. In the first embodiment, a three-phase brushless motor is employed as the motor 211. The shutoff valve 12 or the like opens and closes according to the control signal, and controls the flow of the brake fluid by switching the communication state of the fluid passage 11 and the like. The hydraulic unit 8 pressurizes the wheel cylinder 2 with the brake hydraulic pressure generated by the pump while the communication between the master cylinder 5 and the wheel cylinder 2 is cut off. Further, the hydraulic unit 8 includes hydraulic pressure sensors 35 to 37 that detect hydraulic pressures at various places.
 コントロールユニット(ポンプ装置)9は、液圧ユニット8の作動を制御する。コントロールユニット9には、ストロークセンサ60および液圧センサ35~37から送られる検出値に加え、車両側から送られる走行状態に関する情報(車輪速等)が入力される。コントロールユニット9は、入力された各種情報に基づき、内蔵されるプログラムに従って情報処理を行い、ホイルシリンダ2の目標ホイルシリンダ液圧を演算する。コントロールユニット9は、ホイルシリンダ2のホイルシリンダ液圧が目標ホイルシリンダ液圧となるように液圧ユニット8の各アクチュエータに指令信号を出力する。これにより、各種ブレーキ制御(倍力制御、アンチロック制御、車両運動制御のためのブレーキ制御、自動ブレーキ制御および回生協調ブレーキ制御等)を実現できる。倍力制御は、ドライバのブレーキ踏力では不足するブレーキ液圧を発生してブレーキ操作を補助する。アンチロック制御は、各車輪FL~RRの制動スリップ(ロック傾向)を抑制する。車両運動制御は、横滑り等を防止する車両挙動安定化制御である。自動ブレーキ制御は、先行車追従制御や自動緊急ブレーキ等である。回生協調ブレーキ制御は、回生ブレーキと協調して目標減速度を達成するようにホイルシリンダ液圧を制御する。 The control unit (pump device) 9 controls the operation of the hydraulic unit 8. In addition to the detection values sent from the stroke sensor 60 and the hydraulic pressure sensors 35 to 37, the control unit 9 receives information (wheel speed and the like) related to the running state sent from the vehicle side. The control unit 9 performs information processing in accordance with a built-in program based on various input information, and calculates the target wheel cylinder hydraulic pressure of the wheel cylinder 2. The control unit 9 outputs a command signal to each actuator of the hydraulic unit 8 so that the wheel cylinder hydraulic pressure of the wheel cylinder 2 becomes the target wheel cylinder hydraulic pressure. Accordingly, various brake controls (such as boost control, antilock control, brake control for vehicle motion control, automatic brake control, and regenerative cooperative brake control) can be realized. The boost control assists the brake operation by generating a brake fluid pressure that is insufficient for the driver's brake pedal force. Anti-lock control suppresses braking slip (lock tendency) of each wheel FL to RR. Vehicle motion control is vehicle behavior stabilization control that prevents skidding and the like. The automatic brake control is a preceding vehicle following control, an automatic emergency brake, or the like. The regenerative cooperative brake control controls the wheel cylinder hydraulic pressure so as to achieve the target deceleration in cooperation with the regenerative brake.
 マスタシリンダ5の両ピストン51P,51S間には、P液圧室52Pが画成されている。P液圧室52Pには、圧縮コイルスプリング53Pが設置されている。Sピストン51Sおよびシリンダ54の底部541間には、S液圧室52Sが画成されている。S液圧室52Sには、圧縮コイルスプリング53Sが設置されている。各液圧室52P,52Sには、液路(接続液路)11が開口する。各液圧室52P,52Sは、液路11を介して液圧ユニット8に接続すると共に、ホイルシリンダ2と連通可能である。
  ドライバによるブレーキペダル3の踏み込み操作によってピストン51がストロークし、液圧室52の容積の減少に応じてマスタシリンダ液圧が発生する。両液圧室52P,52Sには略同じマスタシリンダ液圧が発生する。これにより、液圧室52から液路11を介してホイルシリンダ2へ向けてブレーキ液が供給される。マスタシリンダ5は、P液圧室52Pに発生したマスタシリンダ液圧によりP系統の液路(液路11P)を介してP系統のホイルシリンダ2a,2dを加圧する。また、マスタシリンダ5は、S液圧室52Sに発生したマスタシリンダ液圧によりS系統の液路(液路11S)を介してS系統のホイルシリンダ2b,2cを加圧する。
A P hydraulic chamber 52P is defined between the pistons 51P and 51S of the master cylinder 5. A compression coil spring 53P is installed in the P hydraulic chamber 52P. An S hydraulic pressure chamber 52S is defined between the S piston 51S and the bottom portion 541 of the cylinder 54. A compression coil spring 53S is installed in the S hydraulic chamber 52S. A fluid passage (connection fluid passage) 11 is opened in each of the fluid pressure chambers 52P and 52S. Each of the hydraulic chambers 52P and 52S is connected to the hydraulic unit 8 through the liquid path 11, and can communicate with the wheel cylinder 2.
As the driver depresses the brake pedal 3, the piston 51 strokes, and the master cylinder hydraulic pressure is generated as the volume of the hydraulic pressure chamber 52 decreases. Approximately the same master cylinder hydraulic pressure is generated in both hydraulic pressure chambers 52P and 52S. As a result, the brake fluid is supplied from the hydraulic chamber 52 to the wheel cylinder 2 via the fluid path 11. The master cylinder 5 pressurizes the P system wheel cylinders 2a and 2d through the P system fluid path (fluid path 11P) by the master cylinder fluid pressure generated in the P fluid pressure chamber 52P. The master cylinder 5 pressurizes the S- system wheel cylinders 2b and 2c through the S-system liquid path (liquid path 11S) by the master cylinder hydraulic pressure generated in the S-hydraulic chamber 52S.
 ストロークシミュレータ7は、シリンダ72、ピストン71およびスプリング73を有する。シリンダ72は円筒状の内周面を有する。シリンダ72は、ピストン収容部721およびスプリング収容部722を有する。ピストン収容部721はスプリング収容部722よりも小径である。スプリング収容部722の内周面には、後述する液路27が常時開口する。ピストン71は、ピストン収容部721内を軸方向に移動可能である。ピストン71は、シリンダ72内を正圧室711と背圧室712とに分離する。正圧室711には、液路26が常時開口する。背圧室712には、液路27が常時開口する。ピストン71の外周には、ピストンシール75が設置されている。ピストンシール75は、ピストン71の外周面に摺接し、ピストン収容部721の内周面およびピストン71の外周面間をシールする。ピストンシール75は、正圧室711および背圧室712間をシールすることでこれらを液密に分離する分離シール部材であり、ピストン71の機能を補完する。スプリング73は、背圧室712内に設置された圧縮コイルスプリングであり、ピストン71を背圧室712側から正圧室711側へ向かって付勢する。スプリング73は、圧縮量に応じて反力を発生する。スプリング73は、第1スプリング731および第2スプリング732を有する。第1スプリング731は、第2スプリング732よりも小径かつ短尺であり、線径が小さい。第1スプリング731および第2スプリング732は、ピストン71およびスプリング収容部722間に、リテーナ部材74を介して直列に配置されている。 The stroke simulator 7 has a cylinder 72, a piston 71, and a spring 73. The cylinder 72 has a cylindrical inner peripheral surface. The cylinder 72 has a piston housing part 721 and a spring housing part 722. The piston housing part 721 has a smaller diameter than the spring housing part 722. On the inner peripheral surface of the spring accommodating portion 722, a liquid path 27 described later is always open. The piston 71 is movable in the axial direction within the piston housing portion 721. The piston 71 separates the inside of the cylinder 72 into a positive pressure chamber 711 and a back pressure chamber 712. The liquid path 26 is always open in the positive pressure chamber 711. The liquid passage 27 is always open in the back pressure chamber 712. A piston seal 75 is installed on the outer periphery of the piston 71. The piston seal 75 is in sliding contact with the outer peripheral surface of the piston 71 and seals between the inner peripheral surface of the piston housing portion 721 and the outer peripheral surface of the piston 71. The piston seal 75 is a separation seal member that seals between the positive pressure chamber 711 and the back pressure chamber 712 to separate them liquid-tightly, and complements the function of the piston 71. The spring 73 is a compression coil spring installed in the back pressure chamber 712 and biases the piston 71 from the back pressure chamber 712 side toward the positive pressure chamber 711 side. The spring 73 generates a reaction force according to the compression amount. The spring 73 has a first spring 731 and a second spring 732. The first spring 731 is smaller in diameter and shorter than the second spring 732 and has a smaller wire diameter. The first spring 731 and the second spring 732 are arranged in series via the retainer member 74 between the piston 71 and the spring accommodating portion 722.
 液路11は、マスタシリンダ5の液圧室52およびホイルシリンダ2間を接続する。液路11Pは液路11aと液路11dに分岐する。液路11Sは液路11bと液路11dに分岐する。遮断弁(遮断弁部)12は、液路11に設けられた常開型の(非通電状態で開弁する)電磁比例弁である。電磁比例弁は、ソレノイドに供給される電流に応じて任意の開度を実現できる。液路11は、遮断弁12によって、マスタシリンダ5側の液路11Aとホイルシリンダ2側の液路11Bとに分離されている。
  ソレノイドイン弁13は、液路11における遮断弁12よりもホイルシリンダ2側(液路11B)に、各車輪FL~RRに対応して(液路11a~11d)設けられた常開型の電磁比例弁である。液路11には、ソレノイドイン弁13をバイパスするバイパス液路14が設けられている。バイパス液路14には、ホイルシリンダ2側からマスタシリンダ5側へのブレーキ液の流れのみを許容するチェック弁15が設けられている。
The fluid path 11 connects between the fluid pressure chamber 52 of the master cylinder 5 and the wheel cylinder 2. The liquid path 11P branches into a liquid path 11a and a liquid path 11d. The liquid path 11S branches into the liquid path 11b and the liquid path 11d. The shut-off valve (shut-off valve portion) 12 is a normally open type solenoid valve (opened in a non-energized state) provided in the liquid passage 11. The electromagnetic proportional valve can realize any opening degree according to the current supplied to the solenoid. The liquid path 11 is separated by a shutoff valve 12 into a liquid path 11A on the master cylinder 5 side and a liquid path 11B on the wheel cylinder 2 side.
The solenoid-in valve 13 is a normally open electromagnetic valve provided on the wheel cylinder 2 side (liquid path 11B) with respect to each wheel FL to RR (liquid paths 11a to 11d) with respect to the shutoff valve 12 in the liquid path 11. It is a proportional valve. The liquid path 11 is provided with a bypass liquid path 14 that bypasses the solenoid-in valve 13. The bypass fluid passage 14 is provided with a check valve 15 that allows only the flow of brake fluid from the wheel cylinder 2 side to the master cylinder 5 side.
 吸入配管16は、リザーバタンク6と内部リザーバ17とを接続する。液路18は、内部リザーバ17とポンプ21の吸入側とを接続する。液路19は、ポンプ21の吐出側と、液路11Bにおける遮断弁12とソレノイドイン弁13との間とを接続する。液路19は、P系統の液路19PとS系統の液路19Sとに分岐する。両液路19P,19Sは液路11P,11Sに接続する。両液路19P,19Sは、液路11P,11Sを互いに接続する連通路として機能する。連通弁20は、液路19に設けられた常閉型の(非通電状態で閉弁する)オンオフ弁である。オンオフ弁は、ソレノイドに供給される電流に応じて開閉が2値的に切り替えられる。
  ポンプ21は、リザーバタンク6から供給されるブレーキ液により液路11に液圧を発生させてホイルシリンダ液圧を発生させる。ポンプ21は、液路19P,19Sおよび液路11P,11Sを介してホイルシリンダ2a~2dと接続しており、液路19P,19Sにブレーキ液を吐出することでホイルシリンダ2を加圧する。
The suction pipe 16 connects the reservoir tank 6 and the internal reservoir 17. The liquid path 18 connects the internal reservoir 17 and the suction side of the pump 21. The liquid path 19 connects the discharge side of the pump 21 and between the shut-off valve 12 and the solenoid-in valve 13 in the liquid path 11B. The liquid path 19 branches into a P-system liquid path 19P and an S-system liquid path 19S. Both liquid paths 19P and 19S are connected to the liquid paths 11P and 11S. Both liquid passages 19P and 19S function as communication passages that connect the liquid passages 11P and 11S to each other. The communication valve 20 is a normally closed type (closed in a non-energized state) on / off valve provided in the liquid passage 19. The on / off valve is binaryly switched according to the current supplied to the solenoid.
The pump 21 generates a hydraulic pressure in the liquid passage 11 by the brake fluid supplied from the reservoir tank 6 to generate a wheel cylinder hydraulic pressure. The pump 21 is connected to the wheel cylinders 2a to 2d via the liquid passages 19P and 19S and the liquid passages 11P and 11S, and pressurizes the wheel cylinder 2 by discharging brake fluid to the liquid passages 19P and 19S.
 液路22は、両液路19P,19Sの分岐点と液路23とを接続する。液路22には、調圧弁24が設けられている。調圧弁24は、常開型の電磁比例弁である。液路23は、液路11Bにおけるソレノイドイン弁13よりもホイルシリンダ2側と、内部リザーバ17とを接続する。ソレノイドアウト弁25は、液路23に設けられた常閉型のオンオフ弁である。
  液路26は、P系統の液路11Aから分岐してストロークシミュレータ7の正圧室711に接続する。なお、液路26が、液路11P(11A)を介さずにP液圧室52Pと正圧室711とを直接的に接続するようにしてもよい。
The liquid path 22 connects the branch point of both the liquid paths 19P and 19S and the liquid path 23. A pressure regulating valve 24 is provided in the liquid path 22. The pressure regulating valve 24 is a normally open type electromagnetic proportional valve. The fluid path 23 connects the wheel cylinder 2 side to the internal reservoir 17 with respect to the solenoid-in valve 13 in the fluid path 11B. The solenoid-out valve 25 is a normally closed on / off valve provided in the liquid path 23.
The liquid path 26 branches off from the P-system liquid path 11A and is connected to the positive pressure chamber 711 of the stroke simulator 7. The liquid passage 26 may directly connect the P hydraulic pressure chamber 52P and the positive pressure chamber 711 without going through the liquid passage 11P (11A).
 液路27は、ストロークシミュレータ7の背圧室712および液路11間を接続する。具体的には、液路27は、液路11P(11B)における遮断弁12Pとソレノイドイン弁13との間から分岐して背圧室712に接続する。ストロークシミュレータイン弁28は、液路27に設けられた常閉型のオンオフ弁である。液路27は、ストロークシミュレータイン弁28によって、背圧室712側の液路27Aと液路11側の液路27Bとに分離されている。ストロークシミュレータイン弁28をバイパスして液路27と並列にバイパス液路29が設けられている。バイパス液路29は、液路27Aおよび液路27B間を接続する。バイパス液路29にはチェック弁30が設けられている。チェック弁30は、液路27Aから液路11(27B)側へ向うブレーキ液の流れを許容し、逆方向へのブレーキ液の流れを抑制する。
  液路31は、ストロークシミュレータ7の背圧室712および液路23間を接続する。ストロークシミュレータアウト弁32は、液路31に設けられた常閉型のオンオフ弁である。ストロークシミュレータアウト弁32をバイパスして、液路31と並列にバイパス液路33が設けられている。バイパス液路33には、液路23側から背圧室712側へ向うブレーキ液の流れを許容し、逆方向へのブレーキ液の流れを抑制するチェック弁34が設けられている。
The liquid passage 27 connects between the back pressure chamber 712 of the stroke simulator 7 and the liquid passage 11. Specifically, the liquid passage 27 branches from between the shutoff valve 12P and the solenoid-in valve 13 in the liquid passage 11P (11B) and is connected to the back pressure chamber 712. The stroke simulator-in valve 28 is a normally closed on / off valve provided in the liquid passage 27. The liquid path 27 is separated into a liquid path 27A on the back pressure chamber 712 side and a liquid path 27B on the liquid path 11 side by the stroke simulator in valve 28. A bypass liquid path 29 is provided in parallel with the liquid path 27 by bypassing the stroke simulator in valve 28. The bypass liquid path 29 connects the liquid path 27A and the liquid path 27B. A check valve 30 is provided in the bypass liquid passage 29. The check valve 30 allows the flow of brake fluid from the fluid passage 27A toward the fluid passage 11 (27B), and suppresses the flow of brake fluid in the reverse direction.
The liquid path 31 connects between the back pressure chamber 712 of the stroke simulator 7 and the liquid path 23. The stroke simulator out valve 32 is a normally closed on / off valve provided in the liquid passage 31. A bypass liquid path 33 is provided in parallel with the liquid path 31 by bypassing the stroke simulator out valve 32. The bypass fluid passage 33 is provided with a check valve 34 that allows the flow of brake fluid from the fluid passage 23 side to the back pressure chamber 712 side and suppresses the brake fluid flow in the reverse direction.
 液路11Pにおける遮断弁12Pとマスタシリンダ5との間(液路11A)には、この箇所の液圧(マスタシリンダ液圧および正圧室711内の液圧)を検出するマスタシリンダ液圧センサ35が設けられている。液路11における遮断弁12とソレノイドイン弁13との間には、この箇所の液圧(ホイルシリンダ液圧)を検出するホイルシリンダ液圧センサ(P系統圧センサ、S系統圧センサ)36が設けられている。液路19におけるポンプ21の吐出側と連通弁20との間には、この箇所の液圧(ポンプ吐出圧)を検出する吐出圧センサ37が設けられている。
  遮断弁12が開弁した状態で、マスタシリンダ5の液圧室52およびホイルシリンダ2間を接続するブレーキ系統(液路11)は、第1の系統を構成する。この第1の系統は、踏力を用いて発生させたマスタシリンダ液圧によりホイルシリンダ液圧を発生させることで、踏力ブレーキ(非倍力制御)を実現可能である。一方、遮断弁12が閉弁した状態で、ポンプ21を含み、リザーバタンク6およびホイルシリンダ2間を接続するブレーキ系統(液路19、液路22、液路23等)は、第2の系統を構成する。この第2の系統は、ポンプ21を用いて発生させた液圧によりホイルシリンダ液圧を発生させる、いわゆるブレーキバイワイヤ装置を構成し、ブレーキバイワイヤ制御として倍力制御等を実現可能である。ブレーキバイワイヤ制御時、ストロークシミュレータ7は、ドライバのブレーキ操作に伴う操作反力を生成する。
Between the shutoff valve 12P and the master cylinder 5 in the fluid path 11P (fluid path 11A), a master cylinder fluid pressure sensor that detects fluid pressure at this location (master cylinder fluid pressure and fluid pressure in the positive pressure chamber 711). 35 is provided. Between the shut-off valve 12 and the solenoid-in valve 13 in the fluid passage 11, a wheel cylinder fluid pressure sensor (P system pressure sensor, S system pressure sensor) 36 for detecting the fluid pressure (wheel cylinder fluid pressure) at this point is provided. Is provided. A discharge pressure sensor 37 is provided between the discharge side of the pump 21 in the liquid passage 19 and the communication valve 20 to detect the liquid pressure (pump discharge pressure) at this location.
The brake system (fluid path 11) that connects the hydraulic chamber 52 of the master cylinder 5 and the wheel cylinder 2 in a state where the shut-off valve 12 is opened constitutes a first system. This first system can realize a pedal force brake (non-boosting control) by generating a wheel cylinder hydraulic pressure by a master cylinder hydraulic pressure generated using a pedaling force. On the other hand, the brake system (liquid path 19, liquid path 22, liquid path 23, etc.) including the pump 21 and connecting the reservoir tank 6 and the wheel cylinder 2 with the shut-off valve 12 closed is the second system. Configure. This second system constitutes a so-called brake-by-wire device that generates the wheel cylinder hydraulic pressure by the hydraulic pressure generated using the pump 21, and can realize boost control or the like as brake-by-wire control. During the brake-by-wire control, the stroke simulator 7 generates an operation reaction force accompanying the driver's brake operation.
 図2は実施形態1の液圧ユニットハウジング80の斜視図、図3は液圧ユニットハウジング80の軸方向断面図である。
  液圧ユニットハウジング80には、モータケース81、ストロークシミュレータケース82およびコントロールユニットケース83が固定されている。
  液圧ユニットハウジング(以下、ハウジング)80は、例えばアルミ合金製であって、正面801、背面802、上面803、底面804、右側面805および左側面806を有する略直方形状の筐体である。ハウジング80は、その内部に各液路(液路11等)が形成されている。また、ハウジング80は、その内部にポンプ21、各電磁弁(遮断弁12等)および各液圧センサ(マスタシリンダ液圧センサ35等)を収容する。ハウジング80の上面803には、4個のホイルシリンダポート8031が形成されると共に、ニップル8032が取り付けられている。ホイルシリンダポート8031は、図外のホイルシリンダ配管を介してホイルシリンダ2と接続されている。ニップル8032には吸入配管16が接続されている。ハウジング80の背面802には、各電磁弁のバルブ収容孔8021および4個のセンサ収容孔8022が形成されている。各バルブ収容孔8021には、各電磁弁(遮断弁12等)の弁部が収容されている。各センサ収容孔8022には、各液圧センサ(マスタシリンダ液圧センサ35等)が収容されている。
FIG. 2 is a perspective view of the hydraulic unit housing 80 of the first embodiment, and FIG. 3 is an axial sectional view of the hydraulic unit housing 80.
A motor case 81, a stroke simulator case 82, and a control unit case 83 are fixed to the hydraulic unit housing 80.
The hydraulic unit housing (hereinafter referred to as “housing”) 80 is made of, for example, an aluminum alloy and is a substantially rectangular housing having a front surface 801, a back surface 802, an upper surface 803, a bottom surface 804, a right side surface 805, and a left side surface 806. The housing 80 has each liquid passage (liquid passage 11 etc.) formed therein. The housing 80 accommodates the pump 21, solenoid valves (such as the shut-off valve 12), and fluid pressure sensors (such as the master cylinder fluid pressure sensor 35). On the upper surface 803 of the housing 80, four wheel cylinder ports 8031 are formed, and a nipple 8032 is attached. The wheel cylinder port 8031 is connected to the wheel cylinder 2 via a wheel cylinder pipe (not shown). A suction pipe 16 is connected to the nipple 8032. On the back surface 802 of the housing 80, a valve housing hole 8021 and four sensor housing holes 8022 for each electromagnetic valve are formed. Each valve accommodating hole 8021 accommodates a valve portion of each electromagnetic valve (such as the shutoff valve 12). Each sensor accommodation hole 8022 accommodates each hydraulic pressure sensor (master cylinder hydraulic pressure sensor 35, etc.).
 モータケース81は、金属製の円筒部材であって、その内部にモータ211を収容する。モータケース81は、ハウジング80の正面801に固定されている。正面801には、2個のマスタシリンダポート8011が形成されている。
  ストロークシミュレータケース82は、アルミ合金製であって、その内部にストロークシミュレータ7を収容する。ストロークシミュレータケース82は、図外のスクリュによりハウジング80の右側面805に締結されている。
  コントロールユニットケース83は、樹脂材料により成形され、各電磁弁(遮断弁12等)のソレノイド84および制御基板40を収容する。制御基板40は、コントロールユニット9であって、モータ211および各ソレノイドへの通電状態を制御する。制御基板40は、背面802と平行に取り付けられている。制御基板40には、ハウジング80を貫通する電力供給部212の端子212aが接続される他、各ソレノイド84の端子84aおよび各液圧センサ35~37の端子85が接続されている。
The motor case 81 is a metal cylindrical member, and houses the motor 211 therein. The motor case 81 is fixed to the front surface 801 of the housing 80. Two master cylinder ports 8011 are formed on the front surface 801.
The stroke simulator case 82 is made of an aluminum alloy, and accommodates the stroke simulator 7 therein. The stroke simulator case 82 is fastened to the right side surface 805 of the housing 80 by a screw (not shown).
The control unit case 83 is formed of a resin material, and accommodates the solenoid 84 and the control board 40 of each electromagnetic valve (the cutoff valve 12 and the like). The control board 40 is the control unit 9 and controls the energization state of the motor 211 and each solenoid. The control board 40 is attached in parallel with the back surface 802. In addition to the terminal 212a of the power supply unit 212 penetrating the housing 80, the terminal 84a of each solenoid 84 and the terminals 85 of the hydraulic pressure sensors 35 to 37 are connected to the control board 40.
 図4は液圧ユニットハウジング80の軸直方向断面図、図5はプランジャポンプ(ポンプ装置)86の拡大断面図である。
  実施形態1のポンプ21は、5つのプランジャポンプ86A~86Eを有する。各プランジャポンプ86A~86Eは、ハウジング80に形成された5つのシリンダ収容孔80aに収容されている。各シリンダ収容孔80aは、ハウジング80の右側面805に2個(80aD,80aE)、左側面806に2個(80aB,80aC)、底面804に1個(80aA)配置され、モータ211の回転軸線周りの方向に等ピッチで並ぶ。各シリンダ収容孔80aは、カム室80bと接続する。カム室80bは、モータ211の回転軸線に沿う方向に延び、ハウジング80の正面801に開口する。カム室80bには、モータ211の回転駆動軸300により回転駆動されるカムユニット21aが収容されている。カムユニット21aは、偏心カム301と駆動部材302(外輪)と複数の転動体303とを有する。偏心カム301は円柱状の偏心カムであり、回転駆動軸300の回転軸線Oに対して偏心する回転軸線Pを有する。回転軸線Pは回転軸線Oと略平行に延びる。偏心カム301は、回転駆動軸300と一体に回転軸線Oの周りを回転しつつ揺動する。駆動部材302(外輪)は円筒状であり、偏心カム301の外周側に配置されている。駆動部材302(外輪)は回転軸線Pの周りを偏心カム301に対して回転可能である。駆動部材302(外輪)は、転がり軸受の外輪と同様の構成を有する偏心ベアリングである。複数の転動体303は、偏心カム301の外周面と駆動部材302(外輪)の内周面との間に配置されている。転動体303は針状ころであり、回転軸線Oの方向に沿って延びる。なお、偏心カム301とモータ211の回転駆動軸300とを一体的に構成し、カムユニット21aに一般的な転がり軸受、例えば、転動体303に針状ころを有するニードルベアリング等を用いてもよい。
4 is a cross-sectional view in the direction perpendicular to the axis of the hydraulic unit housing 80, and FIG. 5 is an enlarged cross-sectional view of the plunger pump (pump device) 86.
The pump 21 of the first embodiment has five plunger pumps 86A to 86E. Each plunger pump 86A to 86E is housed in five cylinder housing holes 80a formed in the housing 80. Two cylinder receiving holes 80a are arranged on the right side 805 of the housing 80 (80aD, 80aE), two on the left side 806 (80aB, 80aC), and one on the bottom 804 (80aA). Line up at equal pitches in the surrounding direction. Each cylinder accommodation hole 80a is connected to the cam chamber 80b. The cam chamber 80 b extends in a direction along the rotation axis of the motor 211 and opens on the front surface 801 of the housing 80. The cam chamber 21b accommodates a cam unit 21a that is rotationally driven by the rotational drive shaft 300 of the motor 211. The cam unit 21a includes an eccentric cam 301, a drive member 302 (outer ring), and a plurality of rolling elements 303. The eccentric cam 301 is a cylindrical eccentric cam, and has a rotation axis P that is eccentric with respect to the rotation axis O of the rotation drive shaft 300. The rotation axis P extends substantially parallel to the rotation axis O. The eccentric cam 301 swings while rotating around the rotation axis O integrally with the rotation drive shaft 300. The drive member 302 (outer ring) has a cylindrical shape and is disposed on the outer peripheral side of the eccentric cam 301. The drive member 302 (outer ring) can rotate around the rotation axis P with respect to the eccentric cam 301. The drive member 302 (outer ring) is an eccentric bearing having the same configuration as the outer ring of the rolling bearing. The plurality of rolling elements 303 are disposed between the outer peripheral surface of the eccentric cam 301 and the inner peripheral surface of the drive member 302 (outer ring). The rolling element 303 is a needle roller and extends along the direction of the rotation axis O. The eccentric cam 301 and the rotation drive shaft 300 of the motor 211 may be integrally configured, and a general rolling bearing may be used for the cam unit 21a, for example, a needle bearing having needle rollers on the rolling element 303 or the like. .
 各プランジャポンプ86A~86Eは、往復ポンプとしてのプランジャポンプ(ピストンポンプ)であり、回転駆動軸300の回転により作動する。プランジャ86aの往復運動に伴い、作動液としてのブレーキ液の吸入と吐出を行う。カムユニット21aは、回転駆動軸300の回転運動をプランジャ86aの往復運動に変換する機能を有する。各プランジャポンプ86A~86Eの構成を互いに区別する場合、その符号に添字A~Eを付す。各プランジャ86aは、カムユニット21aの周りに配置され、それぞれシリンダ収容孔80aに収容されている。プランジャ86aの中心軸線360は、シリンダ収容孔80aの中心軸線と略一致し、回転駆動軸300の径方向に延びる。プランジャ86aA~86aEの中心軸線360A~360Eは同一平面内にある。これらのプランジャ86aA~86aEは、同一の回転駆動軸300および同一のカムユニット21aにより駆動される。 The plunger pumps 86A to 86E are plunger pumps (piston pumps) as reciprocating pumps, and are operated by the rotation of the rotary drive shaft 300. As the plunger 86a reciprocates, the brake fluid as the hydraulic fluid is sucked and discharged. The cam unit 21a has a function of converting the rotary motion of the rotary drive shaft 300 into the reciprocating motion of the plunger 86a. When the configurations of the plunger pumps 86A to 86E are distinguished from each other, suffixes A to E are added to the reference numerals. Each plunger 86a is arranged around the cam unit 21a, and is accommodated in each cylinder accommodation hole 80a. The central axis 360 of the plunger 86a substantially coincides with the central axis of the cylinder accommodation hole 80a and extends in the radial direction of the rotary drive shaft 300. The central axes 360A to 360E of the plungers 86aA to 86aE are in the same plane. These plungers 86aA to 86aE are driven by the same rotation drive shaft 300 and the same cam unit 21a.
 プランジャポンプ86Aは、シリンダスリーブ304と、フィルタ部材305と、プラグ306と、ガイドリング307と、第1シールリング351と、第2シールリング352と、プランジャ86aと、戻しばね308と、吸入弁38と、吐出弁39とを有し、これらはシリンダ収容孔80aに設置されている。シリンダスリーブ304は有底円筒状であり、底部310に貫通孔311が貫通する。シリンダスリーブ304はシリンダ収容孔80aに固定されている。シリンダスリーブ304の開口側の端部312は中径部822(吸入ポート823)に配置され、底部310は大径部(吐出ポート)821に配置されている。フィルタ部材305は有底円筒状であり、底部320に孔321が貫通すると共に、側壁部に複数の開口部が貫通する。この開口部にはフィルタが設置されている。フィルタ部材305の開口側の端部323は、シリンダスリーブ304の開口側の端部312に固定されている。底部320は小径部820に配置されている。フィルタ部材305の開口部が開口する外周面とシリンダ収容孔80a(吸入ポート823)の内周面との間には隙間がある。第1連通液路は吸入ポート823および上記隙間に連通する。つまり、液路18と吸入ポート823との間が第1連通液路となる。プラグ306は、円柱状であり、その中心軸線方向一端側に、有底円筒状の吐出室330と吐出通路331を有する。この吐出通路331は、径方向に延びて吐出室330とプラグ306の外周面とを接続し、吐出ポート821に連通する。プラグ306の上記軸方向一端側は、シリンダスリーブ304の底部310に固定されている。プラグ306は、大径部821に固定され、ハウジング80の外周面におけるシリンダ収容孔80aの開口を閉塞する。第2連通液路は吐出ポート821およびプラグ306の上記吐出通路331に連通する。つまり、吐出ポート821と液路19との間が第2連通液路となる。ガイドリング307は円筒状であり、シリンダ収容孔80aにおけるフィルタ部材305よりもカム室80bの側(小径部820)に固定されている。第1シールリング351は、シリンダ収容孔80a(小径部820)におけるガイドリング307とフィルタ部材305との間に設置されている。 The plunger pump 86A includes a cylinder sleeve 304, a filter member 305, a plug 306, a guide ring 307, a first seal ring 351, a second seal ring 352, a plunger 86a, a return spring 308, and a suction valve 38. And a discharge valve 39, which are installed in the cylinder accommodation hole 80a. The cylinder sleeve 304 has a bottomed cylindrical shape, and a through hole 311 passes through the bottom portion 310. The cylinder sleeve 304 is fixed to the cylinder accommodation hole 80a. An end 312 on the opening side of the cylinder sleeve 304 is disposed at the medium diameter portion 822 (suction port 823), and the bottom portion 310 is disposed at the large diameter portion (discharge port) 821. The filter member 305 has a bottomed cylindrical shape, and a hole 321 passes through the bottom 320 and a plurality of openings penetrates the side wall. A filter is installed in the opening. An end 323 on the opening side of the filter member 305 is fixed to an end 312 on the opening side of the cylinder sleeve 304. The bottom part 320 is disposed in the small diameter part 820. There is a gap between the outer peripheral surface where the opening of the filter member 305 opens and the inner peripheral surface of the cylinder accommodation hole 80a (suction port 823). The first communication liquid path communicates with the suction port 823 and the gap. That is, the first communication liquid path is between the liquid path 18 and the suction port 823. The plug 306 has a columnar shape, and has a bottomed cylindrical discharge chamber 330 and a discharge passage 331 on one end side in the central axis direction. The discharge passage 331 extends in the radial direction, connects the discharge chamber 330 and the outer peripheral surface of the plug 306, and communicates with the discharge port 821. One end of the plug 306 in the axial direction is fixed to the bottom 310 of the cylinder sleeve 304. The plug 306 is fixed to the large diameter portion 821 and closes the opening of the cylinder accommodation hole 80a on the outer peripheral surface of the housing 80. The second communication liquid path communicates with the discharge port 821 and the discharge passage 331 of the plug 306. That is, the second communication liquid path is between the discharge port 821 and the liquid path 19. The guide ring 307 has a cylindrical shape and is fixed to the cam chamber 80b side (small diameter portion 820) with respect to the filter member 305 in the cylinder accommodation hole 80a. The first seal ring 351 is installed between the guide ring 307 and the filter member 305 in the cylinder accommodation hole 80a (small diameter portion 820).
 プランジャ86aは、円柱状であり、その中心軸線方向一方側に端面(以下、プランジャ端面という。)361を有し、中心軸線方向他方側の外周にフランジ部362を有する。プランジャ端面361は、プランジャ86aの中心軸線360に対し略直交する方向に広がる平面状であり、中心軸線360を中心とする略円形状である。プランジャ86aは、その内部に軸方向孔363と径方向孔364を有する。軸方向孔363は、中心軸線360上を延びてプランジャ86aの上記中心軸線方向他方側の端面に開口する。径方向孔364は、プランジャ86aの径方向に延びて、フランジ部362よりも上記中心軸線方向一方側の外周面に開口すると共に、軸方向孔363の上記中心軸線方向一方側に接続する。プランジャ86aの上記中心軸線方向他方側の端部には、チェック弁ケース365が固定されている。チェック弁ケース365は、薄板からなる有底円筒状であり、開口側の端部の外周にフランジ部366を有し、側壁部および底部367に複数の孔368が貫通する。チェック弁ケース365の開口側の端部はプランジャ86aの上記中心軸線方向他方側の端部に嵌合する。第2シールリング352は、チェック弁ケース365のフランジ部366とプランジャ86aのフランジ部362との間に設置されている。プランジャ86aの上記中心軸線方向他方側はシリンダスリーブ304の内周側に挿入され、フランジ部362がシリンダスリーブ304により案内・支持されている。プランジャ86aにおける径方向孔364よりも上記中心軸線方向一方側は、フィルタ部材305の底部320の内周側(孔321)、第1シールリング351の内周側、およびガイドリング307の内周側に挿入され、これらにより案内・支持されている。プランジャ86aの上記中心軸線方向一方側の端部(プランジャ端面361)はカム室80bの内部に突出する。 The plunger 86a has a cylindrical shape, and has an end surface (hereinafter referred to as a plunger end surface) 361 on one side in the central axis direction and a flange portion 362 on the outer periphery on the other side in the central axis direction. The plunger end surface 361 has a planar shape extending in a direction substantially orthogonal to the central axis 360 of the plunger 86a, and has a substantially circular shape centering on the central axis 360. The plunger 86a has an axial hole 363 and a radial hole 364 therein. The axial hole 363 extends on the central axis 360 and opens on the end surface of the plunger 86a on the other side in the central axial direction. The radial hole 364 extends in the radial direction of the plunger 86 a, opens on the outer peripheral surface on one side in the central axis direction than the flange portion 362, and connects to the one side in the central axis direction of the axial hole 363. A check valve case 365 is fixed to the other end of the plunger 86a on the other side in the central axis direction. The check valve case 365 has a bottomed cylindrical shape made of a thin plate, has a flange portion 366 on the outer periphery of the end portion on the opening side, and a plurality of holes 368 pass through the side wall portion and the bottom portion 367. The end of the check valve case 365 on the opening side is fitted to the other end of the plunger 86a on the other side in the central axis direction. The second seal ring 352 is installed between the flange portion 366 of the check valve case 365 and the flange portion 362 of the plunger 86a. The other side in the central axis direction of the plunger 86 a is inserted into the inner peripheral side of the cylinder sleeve 304, and the flange portion 362 is guided and supported by the cylinder sleeve 304. One side in the central axis direction of the plunger 86a from the radial hole 364 is on the inner peripheral side (hole 321) of the bottom 320 of the filter member 305, the inner peripheral side of the first seal ring 351, and the inner peripheral side of the guide ring 307. It is inserted in and guided and supported by these. One end (plunger end surface 361) of the plunger 86a on one side in the central axis direction protrudes into the cam chamber 80b.
 戻しばね308は、圧縮コイルスプリングであり、シリンダスリーブ304の内周側に設置されている。戻しばね308の一端はシリンダスリーブ304の底部310に設置され、他端はチェック弁ケース365のフランジ部366に設置されている。戻しばね308は、シリンダスリーブ304(シリンダ収容孔80a)に対しプランジャ86aをカム室80bの側へ常に付勢する。吸入弁38は、弁体としてのボール380と、戻しばね381とを有し、これらはチェック弁ケース365の内周側に収容されている。プランジャ86aの上記中心軸線方向他方側の端面における軸方向孔363の開口の周りには弁座369が設けられる。ボール380が弁座369に着座することで軸方向孔363が閉塞される。戻しばね381は、圧縮コイルスプリングであり、その一端はチェック弁ケース365の底部367に設置され、他端はボール380に設置されている。
  戻しばね381は、チェック弁ケース365(プランジャ86a)に対しボール380を弁座369の側へ常に付勢する。吐出弁39は、弁体としてのボール390と、戻しばね391とを有し、これらはプラグ306の吐出室330に収容されている。シリンダスリーブ304の底部310における貫通孔311の開口部の周りには弁座313が設けられる。ボール390が弁座313に着座することで貫通孔311が閉塞される。戻しばね391は、圧縮コイルスプリングであり、その一端は吐出室330の底面に設置され、他端はボール390に設置されている。戻しばね391は、ボール390を弁座313の側へ常に付勢する。
The return spring 308 is a compression coil spring and is installed on the inner peripheral side of the cylinder sleeve 304. One end of the return spring 308 is installed on the bottom 310 of the cylinder sleeve 304, and the other end is installed on the flange 366 of the check valve case 365. The return spring 308 always urges the plunger 86a toward the cam chamber 80b with respect to the cylinder sleeve 304 (cylinder accommodation hole 80a). The suction valve 38 has a ball 380 as a valve body and a return spring 381, which are accommodated on the inner peripheral side of the check valve case 365. A valve seat 369 is provided around the opening of the axial hole 363 on the end surface on the other side in the central axial direction of the plunger 86a. When the ball 380 is seated on the valve seat 369, the axial hole 363 is closed. The return spring 381 is a compression coil spring, one end of which is installed on the bottom 367 of the check valve case 365 and the other end of which is installed on the ball 380.
The return spring 381 always urges the ball 380 toward the valve seat 369 with respect to the check valve case 365 (plunger 86a). The discharge valve 39 includes a ball 390 as a valve body and a return spring 391, which are accommodated in a discharge chamber 330 of the plug 306. A valve seat 313 is provided around the opening of the through hole 311 in the bottom 310 of the cylinder sleeve 304. When the ball 390 is seated on the valve seat 313, the through hole 311 is closed. The return spring 391 is a compression coil spring, one end of which is installed on the bottom surface of the discharge chamber 330 and the other end is installed on the ball 390. The return spring 391 always urges the ball 390 toward the valve seat 313.
 シリンダ収容孔80aの内部において、プランジャ86aのフランジ部362よりもカム室80bの側の空間R1は、第1連通液路に連通する吸入側の空間である。具体的には、フィルタ部材305の外周面とシリンダ収容孔80aの内周面(吸入ポート823)との間の上記隙間から、フィルタ部材305の複数の開口、およびプランジャ86aの外周面とフィルタ部材305の内周面との間の隙間を通り、プランジャ86aの径方向孔364および軸方向孔363へと至る空間は、吸入側空間R1として機能する。この吸入側空間R1は、第1シールリング351によりカム室80bとの連通が抑制される。
  シリンダ収容孔80aの内部において、シリンダスリーブ304とプラグ306との間の空間R3は、第2連通液路に連通する吐出側の空間である。具体的には、プラグ306の吐出通路331から吐出ポート821へと至る空間は吐出側空間R3として機能する。シリンダスリーブ304の内周側において、プランジャ86aのフランジ部362とシリンダスリーブ304の底部310との間の空間R2は、シリンダスリーブ304に対するプランジャ86aの往復移動(ストローク)により容積が変化する。この空間R2は、吸入弁38の開弁により吸入側空間R1と連通し、吐出弁39の開弁により吐出側空間R3と連通する。
Inside the cylinder housing hole 80a, the space R1 closer to the cam chamber 80b than the flange portion 362 of the plunger 86a is a suction side space communicating with the first communication liquid path. Specifically, from the gap between the outer peripheral surface of the filter member 305 and the inner peripheral surface (suction port 823) of the cylinder housing hole 80a, a plurality of openings of the filter member 305, and the outer peripheral surface of the plunger 86a and the filter member A space that passes through the gap between the inner peripheral surface of 305 and reaches the radial hole 364 and the axial hole 363 of the plunger 86a functions as the suction-side space R1. The suction-side space R1 is prevented from communicating with the cam chamber 80b by the first seal ring 351.
Inside the cylinder accommodation hole 80a, a space R3 between the cylinder sleeve 304 and the plug 306 is a discharge side space communicating with the second communication liquid path. Specifically, the space from the discharge passage 331 of the plug 306 to the discharge port 821 functions as the discharge side space R3. On the inner peripheral side of the cylinder sleeve 304, the volume of the space R2 between the flange portion 362 of the plunger 86a and the bottom portion 310 of the cylinder sleeve 304 changes due to the reciprocating movement (stroke) of the plunger 86a with respect to the cylinder sleeve 304. This space R2 communicates with the suction side space R1 by opening the suction valve 38, and communicates with the discharge side space R3 by opening the discharge valve 39.
 プランジャポンプ86Aのプランジャ86aAは往復運動して、ポンプ作用を行う。すなわち、プランジャ86aAがカム室80b(回転軸線O)へ近づく側にストロークすると、空間R2の容積が大きくなり、R2内の圧力が低下する。吐出弁39が閉弁し、吸入弁38が開弁することで、吸入側空間R1から空間R2へ作動液としてのブレーキ液が流入し、第1連通液路から吸入ポート823を介して空間R2へブレーキ液が供給される。プランジャ86aAがカム室80bから離れる側へストロークすると、空間R2の容積が小さくなり、R2内の圧力が上昇する。吸入弁38が閉弁し、吐出弁39が開弁することで、空間R2から貫通孔311を通って吐出側空間R3へブレーキ液が流出し、吐出ポート821を介して第2連通液路へブレーキ液が供給される。他のプランジャポンプ86B~86Eも同様である。各プランジャポンプ86A~86Eが第2連通液路へ吐出するブレーキ液は1つの液路19に集められ、2系統の液圧回路で共通に用いられる。 The plunger 86aA of the plunger pump 86A reciprocates to perform the pumping action. That is, when the plunger 86aA strokes closer to the cam chamber 80b (rotation axis O), the volume of the space R2 increases and the pressure in R2 decreases. When the discharge valve 39 is closed and the suction valve 38 is opened, the brake fluid as the working fluid flows from the suction side space R1 into the space R2, and the space R2 passes through the suction port 823 from the first communication fluid path. Brake fluid is supplied to When the plunger 86aA strokes away from the cam chamber 80b, the volume of the space R2 decreases and the pressure in R2 increases. When the suction valve 38 is closed and the discharge valve 39 is opened, the brake fluid flows out from the space R2 to the discharge side space R3 through the through hole 311 and goes to the second communication liquid path through the discharge port 821. Brake fluid is supplied. The same applies to the other plunger pumps 86B to 86E. The brake fluid discharged from each plunger pump 86A to 86E to the second communication fluid passage is collected in one fluid passage 19, and is used in common in two systems of hydraulic circuits.
 実施形態1のブレーキ制御装置1では、プランジャ86aの傾きによる摺動部の偏摩耗を抑制することを狙いとし、コントロールユニット9は、ドライバがブレーキ操作を行う度にモータ211の回転方向を切り替える。摺動部は、プランジャ86aに対する、カムユニット21aの駆動部材302(外輪)、シリンダスリーブ304、第1シールリング351および第2シールリング352、およびガイドリング307の各当接箇所である。
  図6は、実施形態1のモータ制御構成を示す図である。
  コントロールユニット9は、駆動回路10を介してモータ211を駆動制御する。駆動回路10は、例えばNch型のFETの3相ブリッジで構成されるスイッチング素子Q1~Q6を有する。上アーム側のスイッチング素子Q1~Q3のそれぞれのドレイン端子は、直流電源Vccと接続されている。下アーム側のスイッチング素子Q4~Q6のそれぞれのソース端子は、グランドGNDと接続されている。上アーム側のスイッチング素子Q1のソース端子と、下アーム側のスイッチング素子Q4のドレイン端子とが接続され、スイッチング素子Q1とQ4の接続点が、出力電源線Luを介して、モータ211のU相コイル端子と接続されている。上アーム側のスイッチング素子Q2のソース端子と、下アーム側のスイッチング素子Q5のドレイン端子とが接続され、スイッチング素子Q2とQ5の接続点が、出力電源線Lvを介して、モータ211のV相コイル端子と接続されている。上アーム側のスイッチング素子Q3のソース端子と、下アーム側のスイッチング素子Q6のドレイン端子とが接続され、スイッチング素子Q3とQ6の接続点が、出力電源線Lwを介して、モータ211のW相コイル端子と接続されている。
  スイッチング素子Q1~Q6のそれぞれには、ダイオードDx(寄生ダイオードなど)が、図に示すようにカソードが直流電源Vccの方向に、アノードがグランドGNDの方向となるように並列に接続されている。なお、スイッチング素子Q1~Q6は、IGBTまたはバイポーラトランジスタでもよい。なお、モータ211はデルタ結線としているが、スター結線でもよい。
  コントロールユニット9は、モータ211内に設置されたホールIC211aの出力からロータ回転数、またはロータ回転角度(位置)を検出し、所望の回転数および回転方向となるよう、各スイッチング素子Q1~Q6を駆動する。
In the brake control device 1 according to the first embodiment, the control unit 9 switches the rotation direction of the motor 211 every time the driver performs a brake operation with the aim of suppressing uneven wear of the sliding portion due to the inclination of the plunger 86a. The sliding portion is a contact portion of the drive member 302 (outer ring) of the cam unit 21a, the cylinder sleeve 304, the first seal ring 351 and the second seal ring 352, and the guide ring 307 with respect to the plunger 86a.
FIG. 6 is a diagram illustrating a motor control configuration according to the first embodiment.
The control unit 9 controls driving of the motor 211 via the driving circuit 10. The drive circuit 10 includes switching elements Q1 to Q6 configured with, for example, a three-phase bridge of an Nch FET. The drain terminals of the switching elements Q1 to Q3 on the upper arm side are connected to the DC power source Vcc. The source terminals of the switching elements Q4 to Q6 on the lower arm side are connected to the ground GND. The source terminal of the switching element Q1 on the upper arm side and the drain terminal of the switching element Q4 on the lower arm side are connected, and the connection point of the switching elements Q1 and Q4 is connected to the U phase of the motor 211 via the output power line Lu. It is connected to the coil terminal. The source terminal of the switching element Q2 on the upper arm side and the drain terminal of the switching element Q5 on the lower arm side are connected, and the connection point between the switching elements Q2 and Q5 is connected to the V phase of the motor 211 via the output power line Lv. It is connected to the coil terminal. The source terminal of the switching element Q3 on the upper arm side and the drain terminal of the switching element Q6 on the lower arm side are connected, and the connection point of the switching elements Q3 and Q6 is connected to the W phase of the motor 211 via the output power line Lw. It is connected to the coil terminal.
A diode Dx (parasitic diode or the like) is connected in parallel to each of the switching elements Q1 to Q6 so that the cathode is in the direction of the DC power supply Vcc and the anode is in the direction of the ground GND as shown in the figure. Switching elements Q1 to Q6 may be IGBTs or bipolar transistors. In addition, although the motor 211 is a delta connection, it may be a star connection.
The control unit 9 detects the rotor rotation speed or rotor rotation angle (position) from the output of the Hall IC 211a installed in the motor 211, and sets the switching elements Q1 to Q6 so that the desired rotation speed and rotation direction are obtained. To drive.
 図7および図8は、コントロールユニット9により実行される、モータ211の回転方向切り替え制御の流れを示すフローチャートである。図7はモータ211が駆動状態のとき実行され、図8はモータ211が停止状態のとき実行される。なお、同じ処理を行うステップには、同一のステップ番号を付して説明は省略する。
  ステップS1では、目標ホイルシリンダ液圧を算出するための各種センサ値を読み込む。センサ値は、例えば、モータ回転数センサ(ホールIC211a)、液圧センサ35~37、ストロークセンサ60、車輪速センサ、ブレーキランプスイッチ、ヨーレイトセンサ、前後Gセンサ、横Gセンサ、舵角センサ等のセンサ値である。
  ステップS2では、読み込んだ各センサ値に基づき目標ホイルシリンダ液圧を算出する。
  ステップS3では、目標ホイルシリンダ液圧が正の値(>0)であるかを判定する。YESの場合はリターンへ進み、NOの場合はステップS4へ進む。
  ステップS4では、モータ211を停止する。
  ステップS5では、停止直前のモータ211の回転方向を記憶し、リターンへ進む。
  ステップS6では、記憶した前回のモータ211の回転方向はCW(clockwise:時計回りの方向)であるかを判定する。YESの場合はステップS7へ進み、NOの場合はステップS8へ進む。CWは、液圧ユニット8を正面側から見たとき、回転駆動軸300の右回りの方向とする(図4の右回りの方向)。
  ステップS7では、回転方向をCCW(counterclockwise:反時計回りの方向)としてモータ211を駆動する。
  ステップS8では、回転方向をCWとしてモータ211を駆動する。
7 and 8 are flowcharts showing the flow of the rotation direction switching control of the motor 211, which is executed by the control unit 9. 7 is executed when the motor 211 is in a driving state, and FIG. 8 is executed when the motor 211 is in a stopped state. Note that steps performing the same processing are denoted by the same step numbers and description thereof is omitted.
In step S1, various sensor values for calculating the target wheel cylinder hydraulic pressure are read. Sensor values include, for example, motor speed sensor (Hall IC211a), hydraulic pressure sensors 35-37, stroke sensor 60, wheel speed sensor, brake lamp switch, yaw rate sensor, front / rear G sensor, lateral G sensor, rudder angle sensor, etc. Sensor value.
In step S2, a target wheel cylinder hydraulic pressure is calculated based on each read sensor value.
In step S3, it is determined whether the target wheel cylinder hydraulic pressure is a positive value (> 0). If yes, go to return, if no, go to step S4.
In step S4, the motor 211 is stopped.
In step S5, the rotation direction of the motor 211 immediately before the stop is stored, and the process proceeds to return.
In step S6, it is determined whether the stored rotation direction of the previous motor 211 is CW (clockwise: clockwise direction). If YES, the process proceeds to step S7. If NO, the process proceeds to step S8. CW is the clockwise direction of the rotary drive shaft 300 when the hydraulic unit 8 is viewed from the front side (the clockwise direction in FIG. 4).
In step S7, the motor 211 is driven with the rotation direction as CCW (counterclockwise).
In step S8, the motor 211 is driven with the rotation direction as CW.
 次に、実施形態1の作用効果を説明する。
  プランジャポンプは、プランジャが上死点や下死点に達したタイミングで、偏心カムがプランジャに作用する力に対してプランジャとシリンダとが接触、摺動する位置が変化し、瞬間的にプランジャの揺動が発生する。従来のブレーキ制御装置におけるプランジャポンプでは、プランジャの揺動に伴う偏心カムおよびプランジャ間の偏摩耗の抑制を狙いとし、モータの回転軸線に対して、プランジャの中心軸線をモータの回転方向とは反対方向にオフセットさせている。ところが、この従来技術では、偏心カムとの摺動によりプランジャが常に傾いた状態で繰り返し作動するため、常に同じ箇所が当接することで摺動部の偏摩耗が促進されるおそれがあった。また、シールリングの締め代が周方向で不均一となり、シール性および耐久性の低下を引き起こすおそれがあった。
  これに対し、実施形態1のブレーキ制御装置1では、プランジャポンプ86を駆動させるモータ211の回転方向を所定のタイミングで切り替える。モータ211の回転方向を切り替えることにより、各摺動部の位置が変化するため、プランジャ86aの傾きによる摺動部の偏摩耗を抑制できる。つまり、プランジャ86aに対する、カムユニット21aの駆動部材302(外輪)、シリンダスリーブ304、第1シールリング351および第2シールリング352、および、ガイドリング307の各摺動部の偏摩耗を抑制できる。また、第1シールリング351および第2シールリング352の偏摩耗が抑えられることで、第1シールリング351および第2シールリング352の締め代が周方向で不均一となるのを抑制でき、シール性および耐久性を向上できる。さらに、モータ211の回転方向を適宜切り替えることで、駆動部材302の内部に封入されたグリスおよび駆動部材302の外周面に塗布されたグリスの偏在を抑制できる。この結果、プランジャポンプ86の耐久性を向上できる。
  加えて、モータ211(の回転駆動軸300)の回転軸線0に対するプランジャ86aの中心軸線360のオフセット配置が不要であり、厳密な寸法精度が要求されないため、プランジャポンプ86の製造性を向上できる。
Next, the effect of Embodiment 1 is demonstrated.
In the plunger pump, when the plunger reaches the top dead center or the bottom dead center, the position where the plunger and the cylinder contact and slide with respect to the force of the eccentric cam acting on the plunger changes, and the plunger pump instantaneously Oscillation occurs. In the plunger pump in the conventional brake control device, the central axis of the plunger is opposite to the rotation direction of the motor with respect to the rotation axis of the motor, aiming to suppress the eccentric wear between the eccentric cam and the plunger due to the swing of the plunger. It is offset in the direction. However, in this prior art, the plunger repeatedly operates in a state where the plunger is always tilted by sliding with the eccentric cam. Therefore, there is a possibility that uneven wear of the sliding portion is promoted by always contacting the same portion. Further, the tightening allowance of the seal ring becomes non-uniform in the circumferential direction, which may cause a decrease in sealing performance and durability.
On the other hand, in the brake control device 1 of the first embodiment, the rotation direction of the motor 211 that drives the plunger pump 86 is switched at a predetermined timing. By switching the rotation direction of the motor 211, the position of each sliding portion changes, so that uneven wear of the sliding portion due to the inclination of the plunger 86a can be suppressed. That is, it is possible to suppress uneven wear of the sliding portions of the drive member 302 (outer ring) of the cam unit 21a, the cylinder sleeve 304, the first seal ring 351 and the second seal ring 352, and the guide ring 307 with respect to the plunger 86a. Further, by suppressing the uneven wear of the first seal ring 351 and the second seal ring 352, it is possible to suppress the tightening margin of the first seal ring 351 and the second seal ring 352 from becoming uneven in the circumferential direction, and the seal And durability can be improved. Further, by appropriately switching the rotation direction of the motor 211, it is possible to suppress the uneven distribution of the grease enclosed in the drive member 302 and the grease applied to the outer peripheral surface of the drive member 302. As a result, the durability of the plunger pump 86 can be improved.
In addition, the offset arrangement of the central axis 360 of the plunger 86a with respect to the rotational axis 0 of the motor 211 (rotational drive shaft 300) is not required, and strict dimensional accuracy is not required, so that the manufacturability of the plunger pump 86 can be improved.
 プランジャポンプ86によりブレーキ液を加圧する各種ブレーキ制御のうち、ブレーキ操作に応じた倍力制御が最も作動頻度が高い。このため、ドライバのブレーキ操作の度にモータ211の回転方向を切り替えることにより、摺動部の位置が頻繁に切り替えられることで偏摩耗を効果的に抑制できる。
  各車輪FL~RRに制動力を付与するホイルシリンダ2に接続される液路11は、マスタシリンダ5とホイルシリンダ2とを接続し、液路11には遮断弁12が設けられ、プランジャポンプ86は、液路11のうち遮断弁12に対しホイルシリンダ2の側に位置する部分(液路11B)にブレーキ液を供給する。遮断弁12を閉弁してマスタシリンダ5およびホイルシリンダ2間のブレーキ液の流れを遮断し、ポンプ21により加圧したブレーキ液により各車輪FL~RRの目標ホイルシリンダ液圧を実現する、いわゆるブレーキバイワイヤシステムでは、ドライバのブレーキ操作の度にポンプ21を作動させるため、アンチロック制御や車両運動制御の場合にのみポンプを作動させる、遮断弁を持たないブレーキシステムと比べて、ポンプ21の作動頻度が高い。よって、ブレーキバイワイヤシステムに採用されるポンプには、高い耐久性が要求されるため、モータ211の回転方向の切り替えが有効であり、顕著な効果を奏する。
  実施形態1では、プランジャポンプ86を駆動するモータ211がブラシレスモータであるため、プランジャポンプ86をブラシ付きモータとした場合と比べて、小型化、軽量化、モータ効率の向上、速度制御範囲の拡大、メンテナンス性の向上、耐久性の向上、等のメリットがある。
Of the various brake controls that pressurize the brake fluid by the plunger pump 86, the boost control according to the brake operation is the most frequently operated. For this reason, by switching the rotation direction of the motor 211 each time the driver performs a brake operation, the position of the sliding portion is frequently switched, so that uneven wear can be effectively suppressed.
The fluid passage 11 connected to the wheel cylinder 2 for applying a braking force to each wheel FL to RR connects the master cylinder 5 and the wheel cylinder 2, and the fluid passage 11 is provided with a shut-off valve 12, and a plunger pump 86 Supplies the brake fluid to a portion (liquid passage 11B) located on the wheel cylinder 2 side with respect to the shutoff valve 12 in the liquid passage 11. The shut-off valve 12 is closed to shut off the flow of brake fluid between the master cylinder 5 and the wheel cylinder 2, and the target wheel cylinder hydraulic pressure of each wheel FL to RR is realized by the brake fluid pressurized by the pump 21. In the brake-by-wire system, the pump 21 is operated each time the driver brakes, so that the pump is operated only in the case of anti-lock control or vehicle motion control. The frequency is high. Therefore, since the pump employed in the brake-by-wire system is required to have high durability, switching of the rotation direction of the motor 211 is effective and has a remarkable effect.
In the first embodiment, since the motor 211 that drives the plunger pump 86 is a brushless motor, compared to the case where the plunger pump 86 is a brushed motor, the size and weight are reduced, the motor efficiency is improved, and the speed control range is expanded. There are advantages such as improved maintainability and improved durability.
 〔実施形態2〕
  実施形態2の基本的な構成は実施形態1と同じであるため、実施形態1と相違する部分のみ説明する。
  図9は、実施形態2におけるモータ211の回転方向切り替え制御の流れを示すフローチャートである。
  ステップS11では、自己診断実施要求があるかを判定する。YESの場合はステップS6へ進み、NOの場合はリターンへ進む。ここで、自己診断は、コントロールユニット9が、例えば車両の電源投入時、走行中や停車中に液圧ユニット8の各アクチュエータを作動させて正常であるか否かを判定するものである。このとき、モータ211が正常に両方向に回転するかを判定するために、モータ211を両方向に回転させてもよい。
  ステップS12では、自己診断が終了したかを判定する。YESの場合はステップS4へ進み、NOの場合はステップS7へ戻る。
  ステップS13では、自己診断が終了したかを判定する。YESの場合はステップS4へ進み、NOの場合はステップS8へ戻る。
  ブレーキ制御装置1の自己診断は、制動状態に依らず1トリップ中(車両の起動から停止までの期間)に複数回実行されるため、自己診断後にモータ211の回転方向を切り替えることにより、1トリップ中に摺動部の位置が複数回切り替えられることで偏摩耗を効果的に抑制できる。特に、ブレーキ制御装置1として遮断弁を持たないブレーキシステム、言い換えると、いわゆるブレーキバイワイヤではないブレーキシステムに採用した場合の、プランジャポンプ86の耐久性向上に効果的である。
[Embodiment 2]
Since the basic configuration of the second embodiment is the same as that of the first embodiment, only portions different from the first embodiment will be described.
FIG. 9 is a flowchart showing the flow of the rotation direction switching control of the motor 211 in the second embodiment.
In step S11, it is determined whether there is a self-diagnosis execution request. If yes, go to step S6, if no, go to return. Here, the self-diagnosis is to determine whether the control unit 9 is normal by operating each actuator of the hydraulic unit 8 during running or stopping when the vehicle is powered on, for example. At this time, the motor 211 may be rotated in both directions in order to determine whether the motor 211 normally rotates in both directions.
In step S12, it is determined whether the self-diagnosis is completed. If YES, the process proceeds to step S4. If NO, the process returns to step S7.
In step S13, it is determined whether the self-diagnosis is completed. If YES, the process proceeds to step S4. If NO, the process returns to step S8.
Since the self-diagnosis of the brake control device 1 is executed multiple times during one trip (period from start to stop of the vehicle) regardless of the braking state, one trip is performed by switching the rotation direction of the motor 211 after the self-diagnosis. Uneven wear can be effectively suppressed by switching the position of the sliding portion a plurality of times. In particular, it is effective for improving the durability of the plunger pump 86 when the brake control device 1 is employed in a brake system that does not have a shut-off valve, in other words, a brake system that is not a so-called brake-by-wire.
 〔実施形態3〕
  実施形態3の基本的な構成は実施形態1と同じであるため、実施形態1と相違する部分のみ説明する。
  図10は、実施形態3におけるモータ211の回転方向切り替え制御の流れを示すフローチャートである。
  ステップS21では、各ファンクションの作動中フラグが1であるかを判定する。YESの場合はリターンへ進み、NOの場合はステップS22へ進む。各ファンクションとは、倍力制御以外のブレーキ制御(アンチロック制御、車両運動制御のためのブレーキ制御、自動ブレーキ制御等)であり、各ファンクションの1つが非作動中の場合は作動中フラグが0、作動中の場合は作動中フラグが1となる。
  ステップS22では、作動中のファンクションが停止してから一定時間経過したかを判定する。YESの場合はステップS5へ進み、NOの場合はリターンへ進む。例えば、アンチロック制御の終了直後にモータ211の回転方向を切り替え、その後連続してアンチロック制御が作動した場合、モータ211のイナーシャによりホイルシリンダ2の増圧が遅れるおそれがある。具体的には、アンチロック制御において、保持(ソレノイドイン弁13が閉状態)、減圧(ソレノイドアウト弁25が開状態)の動作に続く、ホイルシリンダ液圧の再増圧のために必要な液圧を作るためにポンプ21を駆動するモータ221の応答遅れがホイルシリンダ2の増圧遅れに影響する。よって、アンチロック制御が終了してから十分な時間が経過してからモータ211の回転方向を切り替えることにより、アンチロック制御の応答遅れを防止できる。
  アンチロック制御等の特定ファンクションでは、倍力制御と比べてポンプ21の吐出流量、および吐出液圧が高くなるため、ポンプ21は高負荷作動となり、プランジャポンプ86の耐久劣化が促進されやすい。よって、特定ファンクション後にモータ211の回転方向を切り替えることにより、プランジャポンプ86の耐久性向上に効果的である。
[Embodiment 3]
Since the basic configuration of the third embodiment is the same as that of the first embodiment, only the differences from the first embodiment will be described.
FIG. 10 is a flowchart showing the flow of rotation direction switching control of the motor 211 in the third embodiment.
In step S21, it is determined whether the operating flag of each function is 1. If yes, go to return, if no, go to step S22. Each function is brake control other than boost control (anti-lock control, brake control for vehicle motion control, automatic brake control, etc.). If one of the functions is inactive, the operating flag is 0. When in operation, the in-operation flag is 1.
In step S22, it is determined whether a fixed time has elapsed since the function being operated stopped. If yes, go to step S5, if no, go to return. For example, when the rotation direction of the motor 211 is switched immediately after the end of the anti-lock control and the anti-lock control is continuously activated thereafter, the pressure increase of the wheel cylinder 2 may be delayed by the inertia of the motor 211. Specifically, in anti-lock control, the liquid necessary for re-increasing the wheel cylinder hydraulic pressure following the operation of holding (solenoid-in valve 13 is closed) and depressurization (solenoid-out valve 25 is open). The response delay of the motor 221 that drives the pump 21 to generate pressure affects the pressure increase delay of the wheel cylinder 2. Therefore, a delay in response of the antilock control can be prevented by switching the rotation direction of the motor 211 after a sufficient time has elapsed after the antilock control is completed.
In a specific function such as anti-lock control, the discharge flow rate and the discharge hydraulic pressure of the pump 21 are higher than in the boost control, so that the pump 21 operates at a high load and the durability deterioration of the plunger pump 86 is easily promoted. Therefore, switching the rotation direction of the motor 211 after the specific function is effective in improving the durability of the plunger pump 86.
 〔実施形態4〕
  実施形態4の基本的な構成は実施形態3と同じであるため、実施形態3と相違する部分のみ説明する。
  図11は、実施形態4におけるモータ211の回転方向切り替え制御の流れを示すフローチャートである。
  ステップS31では、終了したファンクション中におけるモータ211の作動時間Tを読み込む。コントロールユニット9は、ファンクションが開始されるとカウンタによるカウントアップを開始してモータ211の作動時間を計測している。
  ステップS32では、カウンタのカウント値が閾値よりも大きいかに基づき、作動時間Tが所定時間T1よりも長いかを判定する。YESの場合はステップS5へ進み、NOの場合はリターンへ進む。
  長時間に亘るプランジャポンプ86の連続作動後にモータ211の回転方向を切り替えることにより、同一箇所が長時間連続して摺動するのを抑制でき、プランジャポンプ86の耐久性向上に効果的である。
[Embodiment 4]
Since the basic configuration of the fourth embodiment is the same as that of the third embodiment, only the differences from the third embodiment will be described.
FIG. 11 is a flowchart illustrating a flow of rotation direction switching control of the motor 211 in the fourth embodiment.
In step S31, the operating time T of the motor 211 in the finished function is read. When the function is started, the control unit 9 starts counting up by the counter and measures the operation time of the motor 211.
In step S32, it is determined whether the operation time T is longer than the predetermined time T1 based on whether the count value of the counter is larger than the threshold value. If yes, go to step S5, if no, go to return.
By switching the rotation direction of the motor 211 after the plunger pump 86 is continuously operated for a long time, it is possible to suppress the same part from sliding continuously for a long time, which is effective in improving the durability of the plunger pump 86.
 〔実施形態5〕
  実施形態5の基本的な構成は実施形態1と同じであるため、実施形態1と相違する部分のみ説明する。
  実施形態5におけるモータ211の回転方向切り替え制御では、モータ211の同一方向における積算回転数が所定回転数に達したとき、モータ211の回転方向を切り替える。言い換えると、モータ221の回転方向の切り替えは、CWとCCWの夫々の積算回転数が略等しくなるように、或いは、CWとCCWの夫々の積算回転数を比較して、小さい方の回転方向に切り替えることを意味する。これにより、常にCWとCCWとで積算回転数が同じになるようにモータ211の回転方向が切り替えられるため、プランジャポンプ86の耐久性向上に効果的である。
  なお、CWとCCWの総積算回転数が、例えば1万回転、2万回転・・・に到達する毎に回転方向を切り替えても良い。
[Embodiment 5]
Since the basic configuration of the fifth embodiment is the same as that of the first embodiment, only the differences from the first embodiment will be described.
In the rotation direction switching control of the motor 211 in the fifth embodiment, the rotation direction of the motor 211 is switched when the accumulated rotation number in the same direction of the motor 211 reaches a predetermined rotation number. In other words, the rotation direction of the motor 221 is switched so that the accumulated rotation speeds of the CW and CCW are substantially equal, or the accumulated rotation speeds of the CW and CCW are compared with each other in the smaller rotation direction. It means switching. As a result, the rotational direction of the motor 211 is switched so that the integrated rotational speed is always the same between CW and CCW, which is effective in improving the durability of the plunger pump 86.
It should be noted that the rotation direction may be switched each time the total accumulated rotational speed of CW and CCW reaches, for example, 10,000 revolutions, 20,000 revolutions,.
 〔実施形態6〕
  実施形態6の基本的な構成は実施形態1と同じであるため、実施形態1と相違する部分のみ説明する。
  図12は、実施形態6のモータ制御構成を示す図である。
  実施形態6では、モータ211として、DCブラシモータを採用している。駆動回路10は、例えばNch型のFETのHブリッジで構成されるスイッチング素子Q11~Q14を有する。上アーム側のスイッチング素子Q11,Q12のそれぞれのドレイン端子は、直流電源Vccと接続されている。下アーム側のスイッチング素子Q13,Q14のそれぞれのソース素子は、グランドGNDと接続されている。上アーム側のスイッチング素子Q11のソース端子と、下アーム側のスイッチング素子Q13のドレイン端子とが接続され、スイッチング素子Q11とQ13の接続点が、出力電源線L1を介して、モータ211の第1端子と接続されている。上アーム側のスイッチング素子Q12のソース端子と、下アーム側のスイッチング素子Q14のドレイン素子とが接続され、スイッチング素子Q12とQ14の接続点が、出力電源線L2を介して、モータ211の第2端子と接続されている。
  スイッチング素子Q11~Q14のそれぞれには、ダイオードDxが、図に示すようにカソードが直流電源Vccの方向に、アノードがグランドGNDの方向となるように並列に接続されている。なお、スイッチング素子Q11~Q14は、IGBTまたはバイポーラトランジスタでもよい。
  駆動回路10のスイッチング素子Q11とQ14をONし、スイッチング素子Q12とQ13をOFFすることにより、図に示す実線矢印の向きに電流が流れ、モータ211の回転方向はCWとなる。一方、スイッチング素子Q12とQ13をONし、スイッチング素子Q11とQ14をOFFすることにより、図に示す破線矢印の向きに電流が流れ、モータ211の回転方向はCCWとなる。よって、モータ211としてDCブラシモータを採用した場合であっても、回転方向の切り替えが可能である。ここで、モータ211が回転しているとき、駆動回路10の各スイッチング素子のうちの2つは非通電状態(OFF)であるため、スイッチング素子全体の発熱を抑制できる。よって、各スイッチング素子の熱容量を小さくできると共に、放熱構造を簡素化できる。
[Embodiment 6]
Since the basic configuration of the sixth embodiment is the same as that of the first embodiment, only the differences from the first embodiment will be described.
FIG. 12 is a diagram illustrating a motor control configuration according to the sixth embodiment.
In the sixth embodiment, a DC brush motor is employed as the motor 211. The drive circuit 10 includes switching elements Q11 to Q14 configured by, for example, an N-channel FET H-bridge. The drain terminals of the switching elements Q11 and Q12 on the upper arm side are connected to the DC power source Vcc. The source elements of the switching elements Q13 and Q14 on the lower arm side are connected to the ground GND. The source terminal of the switching element Q11 on the upper arm side and the drain terminal of the switching element Q13 on the lower arm side are connected, and the connection point of the switching elements Q11 and Q13 is connected to the first terminal of the motor 211 via the output power line L1. Connected to the terminal. The source terminal of the switching element Q12 on the upper arm side and the drain element of the switching element Q14 on the lower arm side are connected, and the connection point between the switching elements Q12 and Q14 is connected to the second terminal of the motor 211 via the output power line L2. Connected to the terminal.
As shown in the figure, a diode Dx is connected in parallel to each of the switching elements Q11 to Q14 so that the cathode is in the direction of the DC power supply Vcc and the anode is in the direction of the ground GND. Switching elements Q11 to Q14 may be IGBTs or bipolar transistors.
When the switching elements Q11 and Q14 of the drive circuit 10 are turned ON and the switching elements Q12 and Q13 are turned OFF, a current flows in the direction of the solid line arrow shown in the figure, and the rotation direction of the motor 211 is CW. On the other hand, when switching elements Q12 and Q13 are turned ON and switching elements Q11 and Q14 are turned OFF, a current flows in the direction of the broken line arrow shown in the figure, and the rotation direction of motor 211 is CCW. Therefore, even when a DC brush motor is employed as the motor 211, the rotation direction can be switched. Here, when the motor 211 is rotating, since two of the switching elements of the drive circuit 10 are in a non-energized state (OFF), heat generation of the entire switching element can be suppressed. Therefore, the heat capacity of each switching element can be reduced, and the heat dissipation structure can be simplified.
 〔他の実施形態〕
  以上、本発明を実施するための実施形態を説明したが、本発明の具体的な構成は実施形態の構成に限定されるものではなく、発明の要旨を逸脱しない範囲の設計変更等があっても本発明に含まれる。
  本発明は、自動運転機能を搭載した車両のブレーキ制御装置としても好適である。自動運転ではプランジャポンプの作動頻度が高くなるため、本発明の効果が顕著である。
  本発明は、ブレーキバイワイヤシステム以外のブレーキシステムにも適用できる。
[Other Embodiments]
Although the embodiment for carrying out the present invention has been described above, the specific configuration of the present invention is not limited to the configuration of the embodiment, and there are design changes and the like within the scope not departing from the gist of the invention. Are also included in the present invention.
The present invention is also suitable as a vehicle brake control device equipped with an automatic driving function. Since the operation frequency of the plunger pump increases in automatic operation, the effect of the present invention is remarkable.
The present invention can also be applied to brake systems other than the brake-by-wire system.
 以上説明した実施形態から把握し得る技術的思想について、以下に記載する。
  ブレーキ制御装置は、その一つの態様において、車輪に制動力を付与する制動力付与部に接続される液路部と、前記液路部にブレーキ液を吐出するプランジャポンプと、前記プランジャポンプを駆動させるモータと、前記モータの回転方向を切り替えるコントロールユニットと、を備える。
  別の好ましい態様では、上記態様において、前記コントロールユニットは、ドライバがブレーキ操作を行う度に前記モータの回転方向を切り替える。
  他の好ましい態様では、上記態様のいずれかにおいて、前記コントロールユニットは、前記ブレーキ制御装置の健全性を判定する自己診断を実行し、前記自己診断後に前記モータの回転方向を切り替える。
  さらに別の好ましい態様では、上記態様のいずれかにおいて、前記コントロールユニットは、前記車輪に対して所定のブレーキ制御を実行し、前記ブレーキ制御の実行後に前記モータの回転方向を切り替える。
The technical idea that can be grasped from the embodiment described above will be described below.
In one aspect of the brake control device, a liquid passage portion connected to a braking force applying portion that applies a braking force to a wheel, a plunger pump that discharges brake fluid to the liquid passage portion, and the plunger pump are driven. And a control unit for switching the rotation direction of the motor.
In another preferred aspect, in the above aspect, the control unit switches the rotation direction of the motor each time the driver performs a brake operation.
In another preferred aspect, in any one of the above aspects, the control unit performs a self-diagnosis for determining soundness of the brake control device, and switches the rotation direction of the motor after the self-diagnosis.
In still another preferred aspect, in any one of the above aspects, the control unit performs predetermined brake control on the wheels, and switches the rotation direction of the motor after the brake control is performed.
 さらに別の好ましい態様では、上記態様のいずれかにおいて、前記コントロールユニットは、前記モータの連続作動時間が所定時間に達する度に前記モータの回転方向を切り替える。
  さらに別の好ましい態様では、上記態様のいずれかにおいて、前記コントロールユニットは、車両の起動スイッチがオンまたはオフされたとき前記モータの回転方向を切り替える。
  さらに別の好ましい態様では、上記態様のいずれかにおいて、前記コントロールユニットは、前記モータの同一方向における回転数の積算値が所定値に達する度に前記モータの回転方向を切り替える。
  さらに別の好ましい態様では、上記態様のいずれかにおいて、前記液路部は、マスタシリンダと、前記制動力付与部と、を接続する接続液路を備え、
 前記液路部は、また、記接続液路に設けられた遮断弁部を備え、
 前記プランジャポンプは、前記接続液路のうちの、前記遮断弁部に対し前記制動力付与部の側に位置する部分にブレーキ液を供給する。
In still another preferred aspect, in any one of the above aspects, the control unit switches the rotation direction of the motor every time the continuous operation time of the motor reaches a predetermined time.
In still another preferred aspect, in any one of the above aspects, the control unit switches a rotation direction of the motor when a start switch of the vehicle is turned on or off.
In still another preferred aspect, in any one of the above aspects, the control unit switches the rotation direction of the motor every time an integrated value of the number of rotations in the same direction of the motor reaches a predetermined value.
In still another preferred aspect, in any one of the above aspects, the liquid path part includes a connection liquid path that connects the master cylinder and the braking force applying part.
The liquid path part also includes a shutoff valve part provided in the connection liquid path,
The plunger pump supplies brake fluid to a portion of the connection fluid path that is located on the braking force applying portion side with respect to the shutoff valve portion.
 さらに別の好ましい態様では、上記態様のいずれかにおいて、前記モータは、ブラシレスモータである。
  さらに別の好ましい態様では、上記態様のいずれかにおいて、前記モータは、ブラシモータである。
  また、他の観点から、ブレーキ制御方法は、ある態様において、車輪に制動力を付与する制動力付与部に接続される液路にブレーキ液を吐出するプランジャポンプを駆動させるモータを第1の回転方向に回転させることで、前記液路に前記ブレーキ液を吐出する第1ステップと、前記モータの回転方向を前記第1の回転方向と反対方向である第2の方向に回転させることで、前記液路に前記ブレーキ液を吐出する第2ステップと、を備える。
  さらに、他の観点から、ブレーキ制御装置に用いられるポンプ装置は、ある態様において、ブレーキ液を吐出するプランジャポンプと、前記プランジャポンプを駆動させるモータと、前記モータの回転方向を切り替えるコントロールユニットと、を備える。
In still another preferred aspect, in any of the above aspects, the motor is a brushless motor.
In still another preferred aspect, in any of the above aspects, the motor is a brush motor.
From another point of view, in one aspect, the brake control method performs a first rotation of a motor that drives a plunger pump that discharges brake fluid to a fluid path connected to a braking force application unit that applies braking force to a wheel. A first step of discharging the brake fluid into the fluid path by rotating in a direction, and a rotation direction of the motor in a second direction opposite to the first rotation direction, And a second step of discharging the brake fluid into the fluid path.
Furthermore, from another viewpoint, in a certain aspect, the pump device used in the brake control device includes a plunger pump that discharges brake fluid, a motor that drives the plunger pump, a control unit that switches the rotation direction of the motor, Is provided.
 尚、本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 In addition, this invention is not limited to above-described embodiment, Various modifications are included. For example, the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described. Further, a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment. In addition, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
 本願は、2018年6月15日付出願の日本国特許出願第2018-114133号に基づく優先権を主張する。2018年6月15日付出願の日本国特許出願第2018-114133号の明細書、特許請求の範囲、図面、及び要約書を含む全開示内容は、参照により本願に全体として組み込まれる。 This application claims priority based on Japanese Patent Application No. 2018-114133 filed on Jun. 15, 2018. The entire disclosure including the specification, claims, drawings, and abstract of Japanese Patent Application No. 2018-114133 filed on Jun. 15, 2018 is incorporated herein by reference in its entirety.
FL~RR 車輪
1  ブレーキ制御装置
2  ホイルシリンダ(制動力付与部)
5  マスタシリンダ
9  コントロールユニット(ポンプ装置)
11 液路(接続液路)
12 遮断弁(遮断弁部)
86 プランジャポンプ(ポンプ装置)
211  モータ(ポンプ装置)
FL to RR wheels
1 Brake control device
2 Wheel cylinder (braking force applying part)
5 Master cylinder
9 Control unit (pump device)
11 Fluid path (connection fluid path)
12 Shut-off valve (shut-off valve)
86 Plunger pump (pump device)
211 Motor (pump device)

Claims (12)

  1.  ブレーキ制御装置であって、該ブレーキ制御装置は、
     車輪に制動力を付与する制動力付与部に接続される液路部と、
     前記液路部にブレーキ液を吐出するプランジャポンプと、
     前記プランジャポンプを駆動させるモータと、
     前記モータの回転方向を切り替えるコントロールユニットと、
     を備えるブレーキ制御装置。
    A brake control device, the brake control device comprising:
    A liquid passage portion connected to a braking force applying portion for applying a braking force to the wheel;
    A plunger pump that discharges the brake fluid to the liquid passage portion;
    A motor for driving the plunger pump;
    A control unit for switching the rotation direction of the motor;
    A brake control device comprising:
  2.  請求項1に記載のブレーキ制御装置において、
     前記コントロールユニットは、ドライバがブレーキ操作を行う度に前記モータの回転方向を切り替えるブレーキ制御装置。
    The brake control device according to claim 1, wherein
    The control unit is a brake control device that switches a rotation direction of the motor each time a driver performs a brake operation.
  3.  請求項1に記載のブレーキ制御装置において、
     前記コントロールユニットは、前記ブレーキ制御装置の健全性を判定する自己診断を実行し、前記自己診断後に前記モータの回転方向を切り替えるブレーキ制御装置。
    The brake control device according to claim 1, wherein
    The said control unit is a brake control apparatus which performs the self-diagnosis which determines the soundness of the said brake control apparatus, and switches the rotation direction of the said motor after the said self-diagnosis.
  4.  請求項1に記載のブレーキ制御装置において、
     前記コントロールユニットは、前記車輪に対して所定のブレーキ制御を実行し、前記ブレーキ制御の実行後に前記モータの回転方向を切り替えるブレーキ制御装置。
    The brake control device according to claim 1, wherein
    The said control unit is a brake control apparatus which performs predetermined brake control with respect to the said wheel, and switches the rotation direction of the said motor after execution of the said brake control.
  5.  請求項1に記載のブレーキ制御装置において、
     前記コントロールユニットは、前記モータの連続作動時間が所定時間に達する度に前記モータの回転方向を切り替えるブレーキ制御装置。
    The brake control device according to claim 1, wherein
    The control unit is a brake control device that switches the rotation direction of the motor every time the continuous operation time of the motor reaches a predetermined time.
  6.  請求項1に記載のブレーキ制御装置において、
     前記コントロールユニットは、車両の起動スイッチがオンまたはオフされたとき前記モータの回転方向を切り替えるブレーキ制御装置。
    The brake control device according to claim 1, wherein
    The control unit is a brake control device that switches a rotation direction of the motor when a start switch of a vehicle is turned on or off.
  7.  請求項1に記載のブレーキ制御装置において、
     前記コントロールユニットは、前記モータの同一方向における回転数の積算値が所定値に達する度に前記モータの回転方向を切り替えるブレーキ制御装置。
    The brake control device according to claim 1, wherein
    The said control unit is a brake control apparatus which switches the rotation direction of the said motor, whenever the integrated value of the rotation speed in the same direction of the said motor reaches a predetermined value.
  8.  請求項1に記載のブレーキ制御装置において、
     前記液路部は、マスタシリンダと、前記制動力付与部と、を接続する接続液路を備え、
     前記液路部は、また、前記接続液路に設けられた遮断弁部を備え、
     前記プランジャポンプは、前記接続液路のうちの、前記遮断弁部に対し前記制動力付与部の側に位置する部分にブレーキ液を供給するブレーキ制御装置。
    The brake control device according to claim 1, wherein
    The liquid path part includes a connecting liquid path that connects the master cylinder and the braking force application part,
    The liquid path part also includes a shut-off valve part provided in the connection liquid path,
    The said plunger pump is a brake control apparatus which supplies a brake fluid to the part located in the said braking force provision part side with respect to the said cutoff valve part among the said connection liquid paths.
  9.  請求項1に記載のブレーキ制御装置において、
     前記モータは、ブラシレスモータであるブレーキ制御装置。
    The brake control device according to claim 1, wherein
    The brake control device, wherein the motor is a brushless motor.
  10.  請求項1に記載のブレーキ制御装置において、
     前記モータは、ブラシモータであるブレーキ制御装置。
    The brake control device according to claim 1, wherein
    The brake control device, wherein the motor is a brush motor.
  11.  ブレーキ制御方法であって、該ブレーキ制御方法は、
     車輪に制動力を付与する制動力付与部に接続される液路にブレーキ液を吐出するプランジャポンプを駆動させるモータを第1の回転方向に回転させることで、前記液路に前記ブレーキ液を吐出する第1ステップと、
     前記モータの回転方向を前記第1の回転方向と反対方向である第2の方向に回転させることで、前記液路に前記ブレーキ液を吐出する第2ステップと、
     を備えるブレーキ制御方法。
    A brake control method, the brake control method comprising:
    The brake fluid is discharged into the fluid passage by rotating in a first rotation direction a motor that drives a plunger pump that discharges the brake fluid to a fluid passage connected to a braking force applying portion that applies a braking force to the wheel. A first step to:
    A second step of discharging the brake fluid into the fluid path by rotating the rotation direction of the motor in a second direction opposite to the first rotation direction;
    A brake control method comprising:
  12.  ブレーキ制御装置に用いられるポンプ装置であって、
     ブレーキ液を吐出するプランジャポンプと、
     前記プランジャポンプを駆動させるモータと、
     前記モータの回転方向を切り替えるコントロールユニットと、
     を備えるポンプ装置。
    A pump device used in a brake control device,
    A plunger pump that discharges brake fluid;
    A motor for driving the plunger pump;
    A control unit for switching the rotation direction of the motor;
    A pump device comprising:
PCT/JP2019/021290 2018-06-15 2019-05-29 Brake control device, brake control method and pump device to be used for brake control device WO2019239894A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018114133A JP7121553B2 (en) 2018-06-15 2018-06-15 BRAKE CONTROL DEVICE, BRAKE CONTROL METHOD, AND PUMP DEVICE USED FOR BRAKE CONTROL DEVICE
JP2018-114133 2018-06-15

Publications (1)

Publication Number Publication Date
WO2019239894A1 true WO2019239894A1 (en) 2019-12-19

Family

ID=68843318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/021290 WO2019239894A1 (en) 2018-06-15 2019-05-29 Brake control device, brake control method and pump device to be used for brake control device

Country Status (2)

Country Link
JP (1) JP7121553B2 (en)
WO (1) WO2019239894A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62210267A (en) * 1986-03-12 1987-09-16 Ebara Corp Drive unit of radial piston type pump
JP2008001291A (en) * 2006-06-23 2008-01-10 Nissan Motor Co Ltd Brake device for vehicle
JP2016223298A (en) * 2015-05-27 2016-12-28 日立オートモティブシステムズ株式会社 Piston pump or pump for braking device
JP2017170932A (en) * 2016-03-18 2017-09-28 日立オートモティブシステムズ株式会社 Brake device, brake control method and motor lock abnormality determination method
JP2018062874A (en) * 2016-10-12 2018-04-19 日立オートモティブシステムズ株式会社 Pump device and brake device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62210267A (en) * 1986-03-12 1987-09-16 Ebara Corp Drive unit of radial piston type pump
JP2008001291A (en) * 2006-06-23 2008-01-10 Nissan Motor Co Ltd Brake device for vehicle
JP2016223298A (en) * 2015-05-27 2016-12-28 日立オートモティブシステムズ株式会社 Piston pump or pump for braking device
JP2017170932A (en) * 2016-03-18 2017-09-28 日立オートモティブシステムズ株式会社 Brake device, brake control method and motor lock abnormality determination method
JP2018062874A (en) * 2016-10-12 2018-04-19 日立オートモティブシステムズ株式会社 Pump device and brake device

Also Published As

Publication number Publication date
JP7121553B2 (en) 2022-08-18
JP2019217792A (en) 2019-12-26

Similar Documents

Publication Publication Date Title
WO2017056690A1 (en) Hydraulic control device and brake system
KR20180032605A (en) Brake system and brake system
KR101287372B1 (en) Brake for vehicle
GB2344622A (en) Electromagnetically actuated reciprocating piston pump
JP6593688B2 (en) Brake device and brake system
EP2546117B1 (en) Motor pump
WO2019239894A1 (en) Brake control device, brake control method and pump device to be used for brake control device
WO2018070187A1 (en) Pump device and brake apparatus
JP2012245855A (en) Brake fluid pressure control device and brake device using the same
KR100981110B1 (en) Electronic Control Brake System
US20150217742A1 (en) Brake apparatus
JP7100599B2 (en) Brake control device
JP5961904B2 (en) Brake hydraulic pressure control device for vehicle and manufacturing method thereof
JP7112283B2 (en) brake controller
KR20220159552A (en) Pump Housing Layout for Brake System
JP2019135128A (en) Brake control device
JP7439718B2 (en) brake operation unit
KR100655462B1 (en) A bearing stopper of electronic control brake system
JP7177716B2 (en) brake controller
JP2019018816A (en) Brake device and master cylinder
JP7429548B2 (en) hydraulic control unit
KR100550949B1 (en) pump for brake apparatus
KR100907867B1 (en) Motor sealing device of brake system
JP6873013B2 (en) Pump device and brake device
KR100515982B1 (en) Modulator block for brake system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19819969

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19819969

Country of ref document: EP

Kind code of ref document: A1