WO2019239835A1 - Method for manufacturing microdisplay substrate - Google Patents

Method for manufacturing microdisplay substrate Download PDF

Info

Publication number
WO2019239835A1
WO2019239835A1 PCT/JP2019/020422 JP2019020422W WO2019239835A1 WO 2019239835 A1 WO2019239835 A1 WO 2019239835A1 JP 2019020422 W JP2019020422 W JP 2019020422W WO 2019239835 A1 WO2019239835 A1 WO 2019239835A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
circuit
bonding
layer
adhesive
Prior art date
Application number
PCT/JP2019/020422
Other languages
French (fr)
Japanese (ja)
Inventor
飛坂 優二
小西 繁
川合 信
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Publication of WO2019239835A1 publication Critical patent/WO2019239835A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body

Definitions

  • the present invention relates to a method for manufacturing a microdisplay substrate.
  • Liquid crystal panels are generally used as display devices used in televisions, personal computer displays, mobile terminals, and the like.
  • a display device of a method for projecting an image such as a projector in addition to a method of directly viewing such a display panel.
  • a small display device there are a head-up display (HUD) and a head-mounted display (HMD).
  • HUD head-up display
  • HMD head-mounted display
  • a miniaturized version of the head-mounted display as a spectacle type is called smart glass.
  • Small display devices including projectors, use small display devices called microdisplays, which are magnified so that they can be seen by the viewer and projected onto the screen, or images from the reflective member to the viewer's field of view. It is.
  • the head-mounted display has been attracting attention as one of wearable terminals because it allows hands-free viewing of information from information terminals.
  • the head-mounted display is mounted like glasses and displayed near the eyes, and thus the device itself is required to be downsized.
  • a small display device called a micro display is used for the head-mounted display.
  • a transmissive liquid crystal panel that controls transmitted light using liquid crystal, and a reflective liquid crystal that reflects light at the electrode and controls the polarization direction of reflected light using liquid crystal.
  • There is a micromirror driving panel that controls the direction of reflected light of the panel and the micromirror.
  • Each of the above panels refers to a single component of the panel.
  • a display device requires a light source, an optical component for guiding light to the panel, an optical component for guiding the emitted light to the output side, and the like.
  • the transmissive liquid crystal panel emits incoming light in its direction, the front and rear optical systems can be made simple, and the size of the display device can be made compact.
  • Reflective LCD panels output reflected light, but incident light and reflected light are the same surface with respect to the panel surface, so it is necessary to separate the light with an optical component called a polarizing beam splitter (PBS).
  • PBS polarizing beam splitter
  • the device size increases. Since the micromirror driving panel also uses reflected light, an optical component (for example, an internal total reflection prism (TIRPrism)) is required, and the size of the display device is increased.
  • TIRPrism internal total reflection prism
  • the pixel circuit of the transmissive liquid crystal panel is made of Si.
  • Si Liquid Crystal On On Silicon
  • amorphous Si or polycrystalline Si used in a normal liquid crystal panel.
  • LCOS Liquid Crystal On On Silicon
  • a pixel circuit is manufactured from single-crystal Si, a Si substrate or an SOI (Silicon-on-Insulator) substrate is usually used.
  • SOQ Silicon on Quartz
  • a small transistor can be manufactured and light can be transmitted where there is no pixel circuit. .
  • Patent Document 3 describes a method of manufacturing a pixel circuit substrate by forming a pixel circuit on an SOI substrate, bonding the circuit portion to a transparent substrate with an adhesive, and then removing the SOI substrate. In this way, a normal semiconductor process apparatus can be used, a small and high-performance circuit can be formed, and it can be used for a transmissive liquid crystal panel.
  • the SOQ substrate has two problems in using a normal semiconductor process apparatus. One is that it is light transmissive, so a sensor that uses light to check for the presence of a substrate does not detect it. The other is that the electrostatic chuck used in the semiconductor process apparatus cannot be attracted. Because of these problems, it is necessary to modify the semiconductor process equipment, and it is not possible to put it in all the semiconductor process equipment.
  • the semiconductor process apparatus specially adjusted so that a circuit can be formed on an SOQ substrate is limited to a substrate having a small diameter such as an outer diameter of 150 mm, for example, a substrate having a large diameter such as an outer diameter of 200 mm. There is a problem that can not cope.
  • the present invention uses a small-diameter substrate having a single-crystal Si layer such as a Si substrate or a SOQ substrate in order to reduce the size of a transistor that is a switching element of a pixel circuit.
  • An object of the present invention is to provide a method for producing a microdisplay substrate, which can produce a microdisplay substrate having a large-diameter transparent substrate and can prevent a decrease in light transmittance even when an adhesive is used. .
  • a method for manufacturing a microdisplay substrate comprises: preparing a first substrate having a single-crystal Si layer; and providing a first surface of the first substrate. Forming a pixel circuit for a pixel electrode and a driving circuit therearound, and a transparent third substrate having a larger outer diameter than the first substrate and serving as a support substrate for the microdisplay substrate A step of preparing, a step of preparing a second substrate having the same outer diameter as the third substrate, and a jig for eliminating an outer diameter difference between the first substrate and the second substrate, The first substrate is placed so that the first surface on which the pixel circuit and the driving circuit are formed is exposed, and the first surface of the first substrate and the second substrate are bonded with an adhesive.
  • the first substrate may be an SOQ substrate having a Si layer on a quartz substrate.
  • a glass substrate may be used, and a quartz glass substrate is particularly preferable.
  • the second substrate may be made of the same material as the third substrate.
  • the jig may have the same outer diameter as the second substrate.
  • the jig may include a recess that can accommodate the first substrate.
  • the inner diameter of the recess may correspond to the outer diameter of the first substrate.
  • the depth of the recess may be 40 to 70% of the thickness of the first substrate.
  • the manufacturing method of the present invention may further include a step of activating the surface of the third substrate by ozone treatment, etching treatment, plasma treatment, or a combination thereof before the step of bonding the third substrate. good.
  • the manufacturing method of the present invention further includes a step of forming a transparent pixel electrode on the pixel circuit after forming the pixel circuit and the driving circuit on the first surface of the first substrate. May be included.
  • the heat treatment may be performed at a temperature of 200 to 250 ° C.
  • the present invention even when the first substrate having a small diameter having a single crystal Si layer is used, after the pixel circuit for the pixel electrode and the peripheral drive circuit are formed on the first surface, Then, place it on a jig for eliminating the difference in outer diameter, attach it to the second substrate of the large-diameter temporary joint with an adhesive, and after removing the jig, the second surface of the first substrate (That is, the back surface is ground and polished to make a mirror surface, and a third substrate that is the final substrate having the same outer diameter as the second substrate is directly bonded to the mirror-finished back surface and heat-treated.
  • the first substrate Since the second substrate can be easily mechanically separated by strengthening the bonding force between the first substrate and the third substrate, the first substrate has a small diameter at the time of circuit formation. It is possible to manufacture a microdisplay substrate in which a circuit is formed on a transparent third substrate having a large diameter. The ability. In addition, since the first substrate and the third substrate are bonded together by direct bonding, there is no adhesive between the substrates, and the light transmittance can be prevented from decreasing.
  • an SOQ substrate is prepared as the first substrate 11 ((a) in FIG. 1).
  • the first substrate 11 has a small diameter, and its outer diameter is preferably, for example, 149.5 to 150.5 mm.
  • the thickness of the quartz layer is not particularly limited, but is preferably 600 to 650 ⁇ m, for example.
  • the thickness of the single crystal Si layer as the surface layer is determined by circuit design and process conditions and is not particularly limited, but is preferably 50 to 300 nm, for example.
  • a circuit layer 14 including a pixel circuit and its peripheral driving circuit is formed on the first substrate 11 ((b) in FIG. 1).
  • a semiconductor process apparatus is used for circuit formation, a known semiconductor process apparatus in which a stock sensor or an adsorption stage for a transparent substrate is adjusted or modified can be used.
  • an ITO (Indium Tin Oxide) layer (not shown) to be a transparent pixel electrode may be formed and the pattern may be formed.
  • a protective film (not shown) made of, for example, phenol novolak or polyhydroxystyrene, which is used as a resist material in the photolithography process, may be formed. It is possible to prevent damage to the circuit layer 14 and the ITO layer in the step. You may form a protective film at the time of the adhesive agent application before bonding mentioned later.
  • a third substrate 13 to which the circuit layer 14 is finally transferred is prepared ((c) in FIG. 1).
  • the third substrate 13 needs to transmit light as a microdisplay substrate, it is necessary to be a colorless and transparent substrate.
  • the same quartz glass as that of the glass substrate, particularly the SOQ substrate may be used, or non-alkali glass or optical glass used for a normal liquid crystal panel may be used.
  • the bonding surface is finished to be a mirror surface.
  • the surface state is preferably a surface roughness Ra of 1 nm or less, which is common for direct bonding.
  • a second substrate 12 for provisional bonding with the circuit layer 14 is prepared ((d) in FIG. 1).
  • the second substrate 12 and the third substrate 13 are preferably made of the same material. The reason is to prevent thermal stress from being generated by the heat treatment after directly bonding the third substrate 13.
  • the thermal stress is large, the first substrate 11 having a thin substrate thickness cannot withstand the thermal stress and is damaged.
  • the bonding strength is not realistic because it is difficult to strengthen when the temperature is low.
  • the size of the third substrate 13 is preferably the size of the finally obtained microdisplay substrate, and the second substrate 12 for temporary bonding is preferably the same size.
  • the third substrate 13 and the second substrate 12 have a large diameter, and both outer diameters are preferably, for example, 199.5 to 200.5 mm.
  • the sizes of the first substrate 11 and the second substrate 12 are different, the first substrate 11 is positioned and bonded to the second substrate 12 using a jig 20 to be described later. Since the third substrate 13 and the third substrate 13 have the same outer diameter, the third substrate 13 can be bonded to the second substrate 12 with good reproducibility.
  • the thickness of the third substrate 13 is not particularly limited, but is preferably 300 to 600 ⁇ m, for example.
  • the thickness of the second substrate 12 is not particularly limited, but is preferably 600 to 800 ⁇ m, for example.
  • the first substrate 11 and the second substrate 12 are temporarily joined with the adhesive 16 ((e) and (f) of FIG. 1). Since the second substrate 12 is temporarily joined for the grinding process of the first substrate 11 before being bonded to the third substrate 13, the adhesive 16 withstands the grinding process, and the third substrate 13. Those which can be removed after being bonded to each other are preferred.
  • the adhesive 16 is preferably one that can withstand the temperature of heat treatment for increasing the bonding force and can be easily peeled off and separated, in addition to being resistant to chemicals during grinding and polishing.
  • Examples of such an adhesive 16 include UV curable acrylic adhesives such as trade names WSS manufactured by 3M, and thermosetting modified silicone adhesives such as trade names TA1070T, TA2570V3, and TA4070 manufactured by Shin-Etsu Chemical Co., Ltd. Is mentioned.
  • the latter modified silicone adhesive is more preferred because of its resistance to chemicals.
  • the adhesive 16 may be applied to the second substrate 12 side and bonded to the first substrate 1. It may adversely affect grinding tools such as grinding wheels. In that case, bonding to the second substrate is performed with the adhesive 16 on the circuit 14 as shown in FIG.
  • a jig 20 for placing the first substrate 1 is used ((e) of FIG. 1).
  • the jig 20 has a substantially disk shape having the same outer diameter as that of the second substrate 12.
  • the jig 20 has an orientation flat 21 at a part of its outer edge so that it can be positioned with the second substrate 12. If the second substrate and the third substrate are notch types, the orientation flat 21 is formed into a V-shaped or U-shaped notch accordingly.
  • a recess 22 that can accommodate the first substrate 11 is provided on the surface of the jig 20. That is, the inner diameter of the recess 22 corresponds to the outer diameter of the first substrate 11.
  • the recess 22 has an orientation flat 23 at a part of its outer periphery so that it can be positioned with the first substrate 11.
  • holes 24 for taking out the first substrate 11 from the recess 22 are formed at both ends of the orientation flat 23 of the recess 22.
  • the depth of the recess 22 of the jig 20 is preferably 40 to 70%, more preferably 45 to 65% of the thickness of the first substrate 11. If the recess 22 is too deep, the adhesive that protrudes from the surface 25 of the jig 20 when the adhesive is applied to the first substrate 11 will cause the second substrate 12 to adhere to the second substrate 12 and pressurize it. It may adhere to the substrate 12 and the jig 20 may be fixed to the second substrate 12 and cannot be removed. On the other hand, if the dent 22 is too shallow, the shape of the chamfered portion of the edge of the first substrate 11 may be a tapered shape, which may increase the positional deviation.
  • the jig 20 can be easily and repeatedly used, for example, by using a material (for example, a metal such as aluminum) from which the adhesive can be easily removed or a surface state (for example, a mirror surface).
  • the back surface of the first substrate 11 is ground and polished ((g) in FIG. 1).
  • the purpose of the grinding and polishing of the back surface is to reduce the thickness of the first substrate 11 and to finish it in a mirror state for bonding.
  • the first substrate 11a after polishing does not need to be thinned until the original substrate disappears, and may have a thickness of 0.7 to 1.2 mm together with the third substrate 13 to be bonded.
  • After thinning by grinding for example, after rough polishing on a lapping plate, primary polishing using cerium oxide and final polishing using colloidal silica are preferably performed on the slurry to finish a mirror surface. By finishing the mirror surface, direct bonding is possible, and the first substrate 11a and the third substrate 13 can be integrated without the presence of an inclusion such as an adhesive, thereby reducing the transmittance of the liquid crystal panel. Can be prevented.
  • the back surface of the first substrate 11a after such polishing and the surface of the third substrate 13 are bonded together ((h) in FIG. 1).
  • the activation include ozone treatment, etching treatment, and plasma treatment, and it is preferable to carry out treatment in any one or combination thereof.
  • the thus-bonded third substrate 13 is heat-treated.
  • the bonding force between the first substrate 11a and the third substrate 13 can be increased, and the second substrate 12 can be mechanically separated.
  • the higher the temperature of the heat treatment the better.
  • the upper limit of the upper limit is preferably 250 ° C. or less because it causes deterioration of the adhesive 16.
  • the lower limit of the heat treatment is preferably 200 ° C. or higher, for example.
  • the heat treatment time needs to be longer as the temperature is lower.
  • the temperature and time of the heat treatment may be any conditions as long as the first substrate 11a and the third substrate 13 are not separated when the second substrate 12 is separated.
  • the temperature may be 200 to 210 ° C.
  • 48 to 72 hours are preferable, and if the temperature is 240 to 250 ° C., 12 to 24 hours are preferable.
  • both the second substrate 12 and the third substrate 13 are adsorbed and fixed by adsorption devices (not shown), respectively.
  • Adhesion that is a bonding surface of the first substrate 11a and the second substrate 12 while applying a force to separate the second substrate 12 and the third substrate 13 from each other by a moving mechanism (not shown) that moves the substrates apart.
  • the blade 17 is inserted into the part of the agent 16 to form an opening, and a force for further pulling off is continuously applied to separate the second substrate 12 at the part of the adhesive 16.
  • the residue of the adhesive 16 is removed with an organic solvent ((j) in FIG. 1).
  • the organic solvent is not particularly limited as long as it can remove the adhesive 16 without adversely affecting the circuit layer 14, and for example, p-menthane, limonene, or acetone can be used. In this manner, a microdisplay substrate in which the circuit layer 14 for the liquid crystal panel of the microdisplay formed on the surface layer of the first substrate 11 having a small diameter is transferred to the third substrate 13 having a large diameter can be manufactured.
  • FIG. 3 shows an example of a liquid crystal panel using the microdisplay substrate manufactured as described above.
  • the transmissive liquid crystal panel 30 includes, as shown in FIG. 3, a pixel substrate 32 and a counter substrate 38 that are disposed to face each other, and a liquid crystal layer 35 that is sandwiched between the pair of substrates. .
  • the pixel substrate 32 and the counter substrate 38 are further sandwiched between two polarizing plates 31.
  • a circuit layer 33 having a plurality of pixel circuits 33 a including transistors and the peripheral drive circuit 33 b is formed on the surface of the pixel substrate 32 on the liquid crystal layer 35 side. Further, the circuit layer 33 on the liquid crystal layer 35 side is formed. A plurality of pixel electrodes 43 are formed. A counter electrode 37 is formed on the surface of the counter substrate 38 on the liquid crystal layer 35 side. A sealing material 36 is disposed between the pixel substrate 32 and the counter substrate 38 so as to surround the liquid crystal layer 35.
  • the counter substrate 38 is also a transparent substrate such as a quartz substrate or a glass substrate. As shown in FIG.
  • the transmissive liquid crystal panel 30 receives incident light 1 from the counter substrate 38 side and receives a polarizing plate 31a, a counter substrate 38, a counter electrode 37, a liquid crystal layer 35, a pixel electrode 34, a pixel circuit 33a, and a pixel.
  • the outgoing light 2 is emitted from the pixel substrate 32 side through the substrate 32 and the polarizing plate 31b.
  • the pixel substrate 32 on which the circuit layer 33 in the transmissive liquid crystal panel 30 is formed corresponds to a microdisplay substrate obtained by the method of the present invention.
  • the circuit layer 33 for example, as shown in FIG. 4, a circuit in which a pixel circuit unit 41 in which a plurality of pixel circuits 33a are formed and a drive circuit unit 42 in which a peripheral drive circuit 33b is formed are arranged.
  • a pattern 40 is formed.
  • the drive circuit unit 42 includes a column selection circuit unit 42a and a row selection circuit unit 42b.
  • the circuit pattern 40 shown in FIG. 4 corresponds to one liquid crystal panel.
  • the circuit pattern 40 is a single first substrate 11 having an orientation flat 51 at a part of the outer edge.
  • a plurality can be arranged on the entire surface.
  • a plurality of liquid crystal panels can be manufactured from one substrate. More specifically, the microdisplay substrate obtained by this method is bonded to the counter substrate on which the counter electrode is formed, cut into a panel size, and then liquid crystal is sealed therein to form a liquid crystal panel. I can do it.
  • Example 1 A substantially disk-shaped SOQ substrate having an outer diameter of 150 mm and a thickness of 625 ⁇ m was prepared as a first substrate, and a circuit layer was formed by a semiconductor process apparatus on the surface Si layer of 150 nm. Since the surface Si layer of the SOQ substrate is a single crystal, the circuit layer was formed using the same parameters as those of a normal SOI Si layer and using a mask prepared based on the design data.
  • the used semiconductor process apparatus corresponds to a transparent substrate, so that the in-stock sensor is made compatible with the transparent body by replacement or adjustment, and the adsorption stage is also made compatible with quartz glass. After the ITO film was formed on the surface of the SOQ substrate on which the circuit layer was formed in this way, a groove was formed so as to separate the pixels, and a pixel electrode was produced.
  • a substantially disc-shaped synthetic quartz glass substrate having an outer diameter of 200 mm and a thickness of 725 ⁇ m was prepared as the second substrate and the third substrate, respectively. Then, the first substrate is positioned by positioning it with an orientation flat with the surface on which the circuit layer is formed facing the recess portion having an inner diameter of about 150 mm provided on the surface of a substantially disk-shaped jig having an outer diameter of 200 mm. I stored it.
  • the jig was made of aluminum in consideration of cleaning with an organic solvent for removing the adhesive.
  • substrate considers the workability
  • TA1070T functions as a circuit protection
  • TA2570V3 functions as a release layer during substrate separation
  • TA4070 functions as an adhesive layer with the second substrate.
  • the second substrate was bonded by pressing with a force of 0.1 MPa, then set horizontally in an oven with the jig attached, and subjected to a heat treatment at 190 ° C. for 2 hours to cure the adhesive.
  • the first substrate was displaced.
  • the adhesive protruding from the first substrate adhered to the second substrate was fixed when the jig was removed and could not be peeled off. . Therefore, since the depths of the jigs of Test Examples 3 and 4 in which the displacement was small and the jigs were easy to be removed were 300 mm and 400 mm, the jigs had a thickness of 625 ⁇ m with respect to the first substrate thickness of 625 ⁇ m. It can be seen that the depth of the recess is preferably 40 to 70%.
  • the back surface of the first substrate temporarily bonded to the second substrate is ground with a grinding wheel to reduce the thickness of the first substrate
  • polishing and finish polishing with colloidal silica were sequentially performed to finish the back surface of the first substrate to a mirror surface.
  • the first substrate was processed to have a thickness of 200 ⁇ m. After polishing, scrub cleaning, cleaning with 2% hydrogen fluoride aqueous solution, and pure water rinsing were performed in this order so that no residue such as slurry remained on the back surface of the first substrate.
  • the surface of the third substrate was activated by plasma treatment, and bonded to the mirrored back surface of the first substrate.
  • the second substrate and the third substrate were positioned and bonded together in the shape of the outer periphery. Bonding was performed by direct bonding. That is, after the first substrate is placed so that the back surface of the first substrate faces upward, the surfaces of the third substrate are overlapped with each other downward, and a portion of the portion overlapping the first substrate is pushed to put the substrates together. Bonding was performed by bringing them into contact. Since it is a transparent substrate, the state of bonding was visually confirmed.
  • the third substrate is placed on the suction stage so that the back surface of the third substrate is facing down and the back surface of the second substrate is facing up, and the third substrate is attracted and pulled up to the back surface of the second substrate.
  • a suction tool having a mechanism was attached, and a force was applied in a direction in which the second substrate and the third substrate were separated from each other. While applying the force, the blade was inserted into the adhesive layer which is the interface between the first substrate and the second substrate. The opening was created in a part of the adhesive by inserting the blade, and the force to peel off the substrates was applied, so that the opening gradually spread and separation progressed. Finally, it was peeled off from the portion bonded to the first substrate with the adhesive, and the separation of the second substrate was completed. At this time, the first substrate was not separated from the third substrate.
  • the adhesive residue on the first substrate was removed by immersing it in an organic solvent p-menthane for 5 minutes.
  • the first substrate bonded to the third substrate could not visually confirm the interface of the direct bonding, and was transparent in a portion without a circuit. It was possible to obtain a microdisplay substrate in which the circuit was transferred to a large substrate without deteriorating the transmittance by direct bonding.
  • Example 2 The point that the material of the second substrate and the third substrate is changed from quartz glass to non-alkali glass (trade name EagleXG manufactured by Corning), the activation of the surface of the third substrate is changed from the plasma treatment, or A microdisplay substrate was obtained in the same procedure as in Example 1 except that the heat treatment conditions were changed from 250 ° C. for 12 hours. Various changed conditions and the results are shown in Table 2.
  • Example 2 As shown in Table 2, in Test Examples 6 to 9, as in Example 1, the second substrate could be normally separated, and the target microdisplay substrate could be obtained safely. However, in Test Examples 10 and 11, when the second substrate was separated, the third substrate was separated from the first substrate, and the target microdisplay substrate could not be obtained. In Test Example 10, the surface of the third substrate was activated by plasma treatment, but because the time was short with respect to the temperature of the heat treatment, the bonding strength could not be strengthened, and the first substrate and the third substrate were stuck. It is thought that they were separated at the mating interface. In Test Example 11, since the activation treatment was not performed before the third substrate was bonded, the bonding strength could not be strengthened even if the heat treatment was performed thereafter, and the bonding interface between the first substrate and the third substrate was not achieved. Probably separated.

Abstract

In order to reduce the size of a transistor, a method for manufacturing a microdisplay substrate is provided with which it is possible to manufacture a microdisplay substrate having a large-diameter transparent substrate even when using a small-diameter substrate having a single-crystal Si layer, and with which it is possible to prevent the transmittance of light from dropping even when using an adhesive. In this method, a circuit layer (14) is formed on the surface of a small-diameter first substrate (11) having a single-crystal Si layer, the substrate is then placed in a jig (20), and the circuit-layer-side surface of the first substrate is affixed to a large-diameter second substrate (12) with an adhesive (16). The jig is removed, the back surface of the first substrate is ground, polished, and mirror-finished, and a large-diameter transparent third substrate (13) is directly affixed to the mirror-finished back surface and heat-treated to reinforce the bonding strength of the first substrate and the third substrate. The first substrate and the second substrate are then mechanically separated, the adhesive remaining on the surface of the first substrate is removed, and the circuit layer is exposed, whereby a large-diameter microdisplay substrate is obtained.

Description

マイクロディスプレイ用基板の製造方法Manufacturing method of substrate for micro display
 本発明は、マイクロディスプレイ用基板の製造方法に関する。 The present invention relates to a method for manufacturing a microdisplay substrate.
 テレビやパソコンの表示機、携帯端末などに使われる表示デバイスとして、液晶パネルが一般的に使用される。このような表示パネルを直接見る方式のもの以外に、プロジェクター等の画像を投影する方式の表示装置もある。また、小型の表示デバイスとして、ヘッドアップディスプレイ(HUD)やヘッドマウントディスプレイ(HMD)がある。ヘッドマウントディスプレイを眼鏡タイプとして小型化したものをスマートグラスと呼ばれている。 Liquid crystal panels are generally used as display devices used in televisions, personal computer displays, mobile terminals, and the like. There is a display device of a method for projecting an image such as a projector in addition to a method of directly viewing such a display panel. Further, as a small display device, there are a head-up display (HUD) and a head-mounted display (HMD). A miniaturized version of the head-mounted display as a spectacle type is called smart glass.
 プロジェクターも含め、小型の表示装置にはマイクロディスプレイと呼ばれる小さな表示装置が使われ、それを観察者に見えるように拡大してスクリーンに投影したり、又は反射部材から観察者の視野へ映像を導いたりしている。その中でもヘッドマウントディスプレイは情報端末の情報をハンズフリーで見ることが出来、ウェアラブル端末の一つとして注目されている。ヘッドマウントディスプレイは特許文献1や特許文献2に記載されているように、眼鏡の様に装着して目の近くに表示させるため、装置自体の小型化が求められている。 Small display devices, including projectors, use small display devices called microdisplays, which are magnified so that they can be seen by the viewer and projected onto the screen, or images from the reflective member to the viewer's field of view. It is. Among them, the head-mounted display has been attracting attention as one of wearable terminals because it allows hands-free viewing of information from information terminals. As described in Patent Document 1 and Patent Document 2, the head-mounted display is mounted like glasses and displayed near the eyes, and thus the device itself is required to be downsized.
 ヘッドマウントディスプレイにはマイクロディスプレイと言われる小型の表示装置が使われており、透過光を液晶により制御する透過型液晶パネル、電極部で反射させ反射光の偏光方向を液晶で制御する反射型液晶パネル、マイクロミラーの反射光の方向を制御するマイクロミラー駆動パネルがある。 A small display device called a micro display is used for the head-mounted display. A transmissive liquid crystal panel that controls transmitted light using liquid crystal, and a reflective liquid crystal that reflects light at the electrode and controls the polarization direction of reflected light using liquid crystal. There is a micromirror driving panel that controls the direction of reflected light of the panel and the micromirror.
 上記の各パネルはパネル単体の部品を指し、実際、表示デバイスとしては、光源や、パネルへ光を導くための光学部品、出てきた光を出力側へ導くための光学部品などが必要になる。透過型液晶パネルは、入ってきた光をその方向のままで出射するため、前後の光学系は単純に出来、表示デバイスのサイズをコンパクトに出来る。反射型液晶パネルは、反射光を出力とするが、パネル面に対して入射光と反射光が同じ面となるため偏光ビームスプリッター(PBS)と呼ばれる光学部品で光を分離する必要があり、表示デバイスのサイズが大きくなる。マイクロミラー駆動パネルも、反射光を利用するため光学部品(例えば、内部全反射プリズム(TIRPrism))が必要になり、表示デバイスのサイズが大きくなる。 Each of the above panels refers to a single component of the panel. In fact, a display device requires a light source, an optical component for guiding light to the panel, an optical component for guiding the emitted light to the output side, and the like. . Since the transmissive liquid crystal panel emits incoming light in its direction, the front and rear optical systems can be made simple, and the size of the display device can be made compact. Reflective LCD panels output reflected light, but incident light and reflected light are the same surface with respect to the panel surface, so it is necessary to separate the light with an optical component called a polarizing beam splitter (PBS). The device size increases. Since the micromirror driving panel also uses reflected light, an optical component (for example, an internal total reflection prism (TIRPrism)) is required, and the size of the display device is increased.
 透過型液晶パネルの画素回路はSiから作製されるが、通常の液晶パネルで使用されているアモルファスSiや多結晶Siでは画素回路のスイッチング素子であるトランジスタのサイズを小さくし難く、単結晶のSiを利用することが望ましい。単結晶のSiを使った液晶パネルはLCOS(Liquid Crystal On Silicon)と呼ばれ、通常の液晶ディスプレイ(LCD)と区別されて表記される。単結晶のSiから画素回路を作製する場合、通常、Si基板やSOI(Silicon on Insulator)基板を用いるが、Siは光を透過しないためそのままでは表示装置として使用出来ない。単結晶のSi膜を石英ガラス基板上に形成したSOQ(Silicon on Quartz)基板を使用すると、小型のトランジスタを作製でき、かつ画素回路の無い部分では光が透過できるのでマイクロディスプレイには最適である。 The pixel circuit of the transmissive liquid crystal panel is made of Si. However, it is difficult to reduce the size of the transistor, which is a switching element of the pixel circuit, with amorphous Si or polycrystalline Si used in a normal liquid crystal panel. It is desirable to use A liquid crystal panel using single crystal Si is called LCOS (Liquid Crystal On On Silicon), and is distinguished from a normal liquid crystal display (LCD). When a pixel circuit is manufactured from single-crystal Si, a Si substrate or an SOI (Silicon-on-Insulator) substrate is usually used. However, since Si does not transmit light, it cannot be used as a display device as it is. Using a SOQ (Silicon on Quartz) substrate in which a single crystal Si film is formed on a quartz glass substrate, a small transistor can be manufactured and light can be transmitted where there is no pixel circuit. .
 特許文献3には、SOI基板上に画素回路を形成し、回路部分を接着剤にて透明基板へ貼り合せ、その後SOI基板を除去して、画素回路基板を作製する方法が記載されている。こうすることで、通常の半導体プロセス装置が使え、小型で高性能の回路が形成出来、それを透過型液晶パネルへ利用出来る。 Patent Document 3 describes a method of manufacturing a pixel circuit substrate by forming a pixel circuit on an SOI substrate, bonding the circuit portion to a transparent substrate with an adhesive, and then removing the SOI substrate. In this way, a normal semiconductor process apparatus can be used, a small and high-performance circuit can be formed, and it can be used for a transmissive liquid crystal panel.
特許第5678460号公報Japanese Patent No. 5678460 特開2010-032997号公報JP 2010-032997 A 米国特許第5256562号明細書US Pat. No. 5,256,562
 上述したように、マイクロディスプレイ用基板を製造するためにSOQ基板を用いることが考えられるが、SOQ基板には、通常の半導体プロセス装置を使う上で2つの問題がある。一つは、光透過性であるため、基板の有無を調べる光を使ったセンサーが検知しないことである。もう一つは、半導体プロセス装置で使われている静電チャックで吸着が出来ないことである。これらの問題のために半導体プロセス装置の改造が必要で、全ての半導体プロセス装置にそのまま投入することは出来ない。現在、SOQ基板に回路を形成できるように特別に調整された半導体プロセス装置は、例えば外径150mmといった基板のサイズが小口径のものに限られており、例えば外径200mmといった大口径の基板については対応できないという問題がある。 As described above, it is conceivable to use an SOQ substrate for manufacturing a microdisplay substrate. However, the SOQ substrate has two problems in using a normal semiconductor process apparatus. One is that it is light transmissive, so a sensor that uses light to check for the presence of a substrate does not detect it. The other is that the electrostatic chuck used in the semiconductor process apparatus cannot be attracted. Because of these problems, it is necessary to modify the semiconductor process equipment, and it is not possible to put it in all the semiconductor process equipment. At present, the semiconductor process apparatus specially adjusted so that a circuit can be formed on an SOQ substrate is limited to a substrate having a small diameter such as an outer diameter of 150 mm, for example, a substrate having a large diameter such as an outer diameter of 200 mm. There is a problem that can not cope.
 また、特許文献3に記載された方法では、上述したように、SOI基板上に形成した画素回路を透明基板へ貼り合せた後にSOI基板を除去するため、光の透過は可能ではあるが、接着剤が介在するため光の透過率が落ちてしまうという問題がある。また、製造上も回路の凹凸部分へ気泡が入ったり、加工時に接着剤の部分から剥がれたりという問題が発生し得る。 In the method described in Patent Document 3, as described above, since the SOI substrate is removed after the pixel circuit formed on the SOI substrate is bonded to the transparent substrate, light transmission is possible. There is a problem in that the light transmittance is reduced due to the presence of the agent. Further, in production, there may be a problem that air bubbles enter into the uneven portion of the circuit or peels off from the adhesive portion during processing.
 そこで本発明は、上記の問題点に鑑み、画素回路のスイッチング素子であるトランジスタの小型化を図るため、Si基板やSOQ基板などの単結晶のSi層を有する小口径の基板を用いても、大口径の透明基板を有するマイクロディスプレイ用基板を製造できるとともに、接着剤を用いても光の透過率が落ちることを防ぐことができる、マイクロディスプレイ用基板の製造方法を提供することを目的とする。 Therefore, in view of the above problems, the present invention uses a small-diameter substrate having a single-crystal Si layer such as a Si substrate or a SOQ substrate in order to reduce the size of a transistor that is a switching element of a pixel circuit. An object of the present invention is to provide a method for producing a microdisplay substrate, which can produce a microdisplay substrate having a large-diameter transparent substrate and can prevent a decrease in light transmittance even when an adhesive is used. .
 上記の目的を達成するために、本発明に係るマイクロディスプレイ用基板の製造方法は、単結晶のSi層を有する第1の基板を準備するステップと、前記第1の基板の第1の表面に、画素電極用の画素回路とその周辺の駆動回路を形成するステップと、前記第1の基板よりも大きな外径を有し、前記マイクロディスプレイ用基板の支持基板となる透明な第3の基板を準備するステップと、前記第3の基板と同じ外径を有する第2の基板を準備するステップと、前記第1の基板と前記第2の基板の外径差を解消するための治具に、前記第1の基板を前記画素回路および前記駆動回路が形成された第1の表面が露出するように載せて、接着剤にて前記第1の基板の前記第1の表面と前記第2の基板とを貼り合せるステップと、前記治具を前記第1の基板から取り外した後、前記第1の基板の前記第1の表面とは反対側の第2の表面を研削して薄化し、更に研磨して鏡面化をするステップと、前記第1の基板の前記鏡面化した第2の表面に、前記第3の基板を直接接合にて貼り合せるステップと、前記貼り合せた第1の基板、第2の基板および第3の基板を熱処理して、前記第1の基板と前記第3の基板の結合力を強化するステップと、前記第2の基板と前記第3の基板とを互いに引き剥がす方向へ力を加えながら、前記第1の基板と前記第2の基板との間を機械的に分離するステップと、前記第1の基板の前記第1の表面に残った前記接着剤を除去し、前記画素回路および前記駆動回路を露出させるステップとを含む。 In order to achieve the above object, a method for manufacturing a microdisplay substrate according to the present invention comprises: preparing a first substrate having a single-crystal Si layer; and providing a first surface of the first substrate. Forming a pixel circuit for a pixel electrode and a driving circuit therearound, and a transparent third substrate having a larger outer diameter than the first substrate and serving as a support substrate for the microdisplay substrate A step of preparing, a step of preparing a second substrate having the same outer diameter as the third substrate, and a jig for eliminating an outer diameter difference between the first substrate and the second substrate, The first substrate is placed so that the first surface on which the pixel circuit and the driving circuit are formed is exposed, and the first surface of the first substrate and the second substrate are bonded with an adhesive. And bonding the jig to the first Removing the second surface of the first substrate opposite to the first surface and then thinning and further polishing to make a mirror surface; and Bonding the third substrate to the mirror-finished second surface by direct bonding, heat-treating the bonded first substrate, second substrate, and third substrate, Strengthening the bonding force between the first substrate and the third substrate, and applying the force in a direction to separate the second substrate and the third substrate from each other, Mechanically separating the two substrates, and removing the adhesive remaining on the first surface of the first substrate to expose the pixel circuit and the driving circuit. .
 前記第1の基板は、石英基板上にSi層を有するSOQ基板を用いても良い。前記第3の基板は、ガラス基板を用いても良く、特に石英ガラス基板が好ましい。前記第2の基板は、前記第3の基板と同じ材質のものを用いても良い。 The first substrate may be an SOQ substrate having a Si layer on a quartz substrate. As the third substrate, a glass substrate may be used, and a quartz glass substrate is particularly preferable. The second substrate may be made of the same material as the third substrate.
 前記治具は、前記第2の基板と同じ外径を有していて良い。前記治具は、前記第1の基板を収容可能な凹み部を備えていても良い。すなわち、前記凹み部の内径は、前記第1の基板の外径に相当していてもよい。前記凹み部の深さは、前記第1の基板の厚みに対して、その40~70%であっても良い。 The jig may have the same outer diameter as the second substrate. The jig may include a recess that can accommodate the first substrate. In other words, the inner diameter of the recess may correspond to the outer diameter of the first substrate. The depth of the recess may be 40 to 70% of the thickness of the first substrate.
 本発明の製造方法は、前記第3の基板を貼り合せるステップの前に、オゾン処理、エッチング処理、プラズマ処理、又はこれらの組合せによって前記第3の基板の表面を活性化するステップを更に含んでも良い。また、本発明の製造方法は、前記第1の基板の第1の表面に、前記画素回路及び前記駆動回路を形成した後、更に前記画素回路上に、透明な画素電極を形成するステップを更に含んでも良い。前記熱処理は、200~250℃の温度で実施しても良い。 The manufacturing method of the present invention may further include a step of activating the surface of the third substrate by ozone treatment, etching treatment, plasma treatment, or a combination thereof before the step of bonding the third substrate. good. The manufacturing method of the present invention further includes a step of forming a transparent pixel electrode on the pixel circuit after forming the pixel circuit and the driving circuit on the first surface of the first substrate. May be included. The heat treatment may be performed at a temperature of 200 to 250 ° C.
 このように本発明によれば、単結晶のSi層を有する小口径の第1の基板を用いても、その第1の表面に画素電極用の画素回路とその周辺の駆動回路を形成した後、外径差を解消するための治具に載せて、接着剤にて大口径の仮接合の第2の基板と貼り合せ、更に治具を取り外した後、第1の基板の第2の表面(すなわち裏面)を研削、研磨して鏡面化し、この鏡面化した裏面に、第2の基板と同じ外径を有する最終的な基板となる第3の基板を直接接合にて貼り合せ、熱処理して、第1の基板と第3の基板の結合力を強化することで、第2の基板を容易に機械的に分離することができるので、回路形成時に第1の基板が小口径であっても、大口径である透明な第3の基板に回路が形成されたマイクロディスプレイ用基板を製造することが可能となる。また、第1の基板と第3の基板とは、直接接合にて貼り合せたことから、基板間に接着剤が存在せず、光の透過率が落ちることを防ぐことができる。 As described above, according to the present invention, even when the first substrate having a small diameter having a single crystal Si layer is used, after the pixel circuit for the pixel electrode and the peripheral drive circuit are formed on the first surface, Then, place it on a jig for eliminating the difference in outer diameter, attach it to the second substrate of the large-diameter temporary joint with an adhesive, and after removing the jig, the second surface of the first substrate (That is, the back surface is ground and polished to make a mirror surface, and a third substrate that is the final substrate having the same outer diameter as the second substrate is directly bonded to the mirror-finished back surface and heat-treated. Since the second substrate can be easily mechanically separated by strengthening the bonding force between the first substrate and the third substrate, the first substrate has a small diameter at the time of circuit formation. It is possible to manufacture a microdisplay substrate in which a circuit is formed on a transparent third substrate having a large diameter. The ability. In addition, since the first substrate and the third substrate are bonded together by direct bonding, there is no adhesive between the substrates, and the light transmittance can be prevented from decreasing.
本発明に係るマイクロディスプレイ用基板の製造方法の一実施の形態を示す模式的なフロー図である。It is a typical flowchart which shows one Embodiment of the manufacturing method of the board | substrate for microdisplays which concerns on this invention. 図1に示す治具および第1の基板を示す平面図および側断面図であるIt is the top view and side sectional view which show the jig | tool and 1st board | substrate which are shown in FIG. マイクロディスプレイ用基板を用いた透過型液晶パネルを示す断面図である。It is sectional drawing which shows the transmissive liquid crystal panel using the board | substrate for microdisplays. マイクロディスプレイ用基板の回路層の一例を模式的に示す平面図である。It is a top view which shows typically an example of the circuit layer of the board | substrate for microdisplays. 第1の基板上に複数の回路パターンを配置する一例を示す平面図である。It is a top view which shows an example which arrange | positions a some circuit pattern on the 1st board | substrate.
 以下、添付図面を参照して、本発明に係るマイクロディスプレイ用基板の製造方法の一実施の形態について説明する。 Hereinafter, an embodiment of a method for manufacturing a microdisplay substrate according to the present invention will be described with reference to the accompanying drawings.
 図1に示すように、本実施の形態の製造方法では、先ず、第1の基板11としてSOQ基板を準備する(図1中の(a))。第1の基板11は小口径であり、その外径としては、例えば、149.5~150.5mmが好ましい。石英層の厚みは、特に限定されないが、例えば、600~650μmが好ましい。表層の単結晶のSi層の厚みは、回路設計とプロセス条件によって決まり、特に限定されないが、例えば、50~300nmが好ましい。 As shown in FIG. 1, in the manufacturing method of the present embodiment, first, an SOQ substrate is prepared as the first substrate 11 ((a) in FIG. 1). The first substrate 11 has a small diameter, and its outer diameter is preferably, for example, 149.5 to 150.5 mm. The thickness of the quartz layer is not particularly limited, but is preferably 600 to 650 μm, for example. The thickness of the single crystal Si layer as the surface layer is determined by circuit design and process conditions and is not particularly limited, but is preferably 50 to 300 nm, for example.
 そして、この第1の基板11に、画素回路およびその周辺の駆動回路を含む回路層14を形成する(図1中の(b))。回路形成には半導体プロセス装置を使用するが、透明基板に対しての在荷センサーや吸着ステージの調整または改造が行われた公知の半導体プロセス装置を用いることができる。 Then, a circuit layer 14 including a pixel circuit and its peripheral driving circuit is formed on the first substrate 11 ((b) in FIG. 1). Although a semiconductor process apparatus is used for circuit formation, a known semiconductor process apparatus in which a stock sensor or an adsorption stage for a transparent substrate is adjusted or modified can be used.
 なお、回路層14を形成した後、透明な画素電極となるITO(Indium Tin Oxide)層(図示省略)を形成し、そのパターン形成を行っても良い。また、回路層14またはITO層を形成した後、更に、フォトリソグラフィ工程のレジスト材として用いられる、例えばフェノールノボラックやポリヒドロキシスチレンからなる保護膜(図示省略)を形成してよく、これにより、後の工程での回路層14やITO層のダメージを防ぐことが出来る。保護膜は、後述する貼り合せ前の接着剤塗布時に形成しても良い。 Note that after the circuit layer 14 is formed, an ITO (Indium Tin Oxide) layer (not shown) to be a transparent pixel electrode may be formed and the pattern may be formed. Further, after forming the circuit layer 14 or the ITO layer, a protective film (not shown) made of, for example, phenol novolak or polyhydroxystyrene, which is used as a resist material in the photolithography process, may be formed. It is possible to prevent damage to the circuit layer 14 and the ITO layer in the step. You may form a protective film at the time of the adhesive agent application before bonding mentioned later.
 一方で、最終的に回路層14が転写される第3の基板13を準備する(図1中の(c))。 Meanwhile, a third substrate 13 to which the circuit layer 14 is finally transferred is prepared ((c) in FIG. 1).
 第3の基板13は、マイクロディスプレイ用基板として光を透過する必要があることから、無色透明な基板である必要がある。例えば、ガラス基板、特にSOQ基板と同じ石英ガラスを使用しても良いし、通常の液晶パネルに使われる無アルカリガラスや光学ガラスであっても良い。第3の基板13は、第1の基板11の鏡面加工された表面と直接接合をするため、貼り合せ面が鏡面に仕上げられている。表面の状態としては、直接接合として一般的な1nm以下の表面粗さRaであることが好ましい。 Since the third substrate 13 needs to transmit light as a microdisplay substrate, it is necessary to be a colorless and transparent substrate. For example, the same quartz glass as that of the glass substrate, particularly the SOQ substrate may be used, or non-alkali glass or optical glass used for a normal liquid crystal panel may be used. Since the third substrate 13 is directly bonded to the mirror-finished surface of the first substrate 11, the bonding surface is finished to be a mirror surface. The surface state is preferably a surface roughness Ra of 1 nm or less, which is common for direct bonding.
 また、回路層14と仮接合を行う第2の基板12を準備する(図1中の(d))。第2の基板12と第3の基板13は、同じ材質のものとすることが好ましい。その理由は、第3の基板13を直接接合した後の熱処理で熱応力が発生するのを防止するためである。同じ材質にしない場合は、熱応力が発生するのを防止するために、線膨張率が1×10-6[/K]以下の材質を用いることが好ましい。熱応力が大きい場合、基板の厚みが薄くなった第1の基板11が熱応力に耐え切れず破損する。熱応力を小さくするために熱処理の温度を低くする手法もあるが、結合力は温度が低いと強化されにくいため現実的ではない。 In addition, a second substrate 12 for provisional bonding with the circuit layer 14 is prepared ((d) in FIG. 1). The second substrate 12 and the third substrate 13 are preferably made of the same material. The reason is to prevent thermal stress from being generated by the heat treatment after directly bonding the third substrate 13. When the same material is not used, it is preferable to use a material having a linear expansion coefficient of 1 × 10 −6 [/ K] or less in order to prevent thermal stress from being generated. When the thermal stress is large, the first substrate 11 having a thin substrate thickness cannot withstand the thermal stress and is damaged. Although there is a method of lowering the heat treatment temperature in order to reduce the thermal stress, the bonding strength is not realistic because it is difficult to strengthen when the temperature is low.
 第3の基板13のサイズは、最終的に得るマイクロディスプレイ用基板のサイズとし、仮接合のための第2の基板12も同じサイズとすることが好ましい。具体的には、第3の基板13及び第2の基板12は大口径であり、外径はどちらも、例えば199.5~200.5mmが好ましい。第1の基板11と第2の基板12のサイズは異なるが、後述する治具20を使用して第1の基板11を位置決めして第2の基板12へ貼り合せるため、第2の基板12と第3の基板13を同じ外径とすることで、第3の基板13を再現性良く第2の基板12へ貼り合せることが出来る。また、第3の基板13の厚みは、特に限定されないが、例えば300~600μmが好ましい。第2の基板12の厚みは、特に限定されないが、例えば600~800μmが好ましい。 The size of the third substrate 13 is preferably the size of the finally obtained microdisplay substrate, and the second substrate 12 for temporary bonding is preferably the same size. Specifically, the third substrate 13 and the second substrate 12 have a large diameter, and both outer diameters are preferably, for example, 199.5 to 200.5 mm. Although the sizes of the first substrate 11 and the second substrate 12 are different, the first substrate 11 is positioned and bonded to the second substrate 12 using a jig 20 to be described later. Since the third substrate 13 and the third substrate 13 have the same outer diameter, the third substrate 13 can be bonded to the second substrate 12 with good reproducibility. The thickness of the third substrate 13 is not particularly limited, but is preferably 300 to 600 μm, for example. The thickness of the second substrate 12 is not particularly limited, but is preferably 600 to 800 μm, for example.
 次に、第1の基板11と第2の基板12を接着剤16にて仮接合する(図1の(e)、(f))。第2の基板12は、第3の基板13へ貼り合せる前の第1の基板11の研削工程のための仮接合となるため、接着剤16は、その研削加工に耐え、第3の基板13に貼り合せた後に除去可能なものが好ましい。接着剤16としては、このように研削研磨時の薬液に耐性を有する点の他、結合力を上げるための熱処理の温度に耐えることが出来、剥離、分離が容易なものが好ましい。このような接着剤16の例としては、3M社製の商品名WSSなどの紫外線硬化型アクリル系接着剤や、信越化学社製の商品名TA1070T、TA2570V3、TA4070など熱硬化型変性シリコーン系接着剤が挙げられる。薬液への耐性から後者の変性シリコーン系接着剤がより好ましい。 Next, the first substrate 11 and the second substrate 12 are temporarily joined with the adhesive 16 ((e) and (f) of FIG. 1). Since the second substrate 12 is temporarily joined for the grinding process of the first substrate 11 before being bonded to the third substrate 13, the adhesive 16 withstands the grinding process, and the third substrate 13. Those which can be removed after being bonded to each other are preferred. The adhesive 16 is preferably one that can withstand the temperature of heat treatment for increasing the bonding force and can be easily peeled off and separated, in addition to being resistant to chemicals during grinding and polishing. Examples of such an adhesive 16 include UV curable acrylic adhesives such as trade names WSS manufactured by 3M, and thermosetting modified silicone adhesives such as trade names TA1070T, TA2570V3, and TA4070 manufactured by Shin-Etsu Chemical Co., Ltd. Is mentioned. The latter modified silicone adhesive is more preferred because of its resistance to chemicals.
 接着剤16は、第2の基板12の表面保護を目的に、第2の基板12側に接着剤16を塗布して第1の基板1を貼り合せてもよいが、研削時に接着剤16が研削ホイール等の研削ツールに悪影響を与える場合がある。その場合は図1(e)の様に回路14上の接着材16にて第2の基板との貼り合せを行う。第1の基板11側に接着剤16を塗布する場合、第1の基板1を載せる治具20を使用する(図1の(e))。 For the purpose of protecting the surface of the second substrate 12, the adhesive 16 may be applied to the second substrate 12 side and bonded to the first substrate 1. It may adversely affect grinding tools such as grinding wheels. In that case, bonding to the second substrate is performed with the adhesive 16 on the circuit 14 as shown in FIG. When the adhesive 16 is applied to the first substrate 11 side, a jig 20 for placing the first substrate 1 is used ((e) of FIG. 1).
 治具20は、図2に示すように、第2の基板12と同じ外径を有する略円板状の形状を有する。治具20は、その外縁の一部に、第2の基板12と位置決めできるようにオリエンテーションフラット21を有する。オリエンテーションフラット21は、第2の基板、第3の基板がノッチタイプであれば、それに合わせてV形状またはU形状のノッチにする。また、治具20の表面には、第1の基板11が収容可能な凹み部22が設けられている。すなわち、この凹み部22の内径は、第1の基板11の外径に相当する。この凹み部22は、その外周の一部に、第1の基板11と位置決めできるようにオリエンテーションフラット23を有する。また、この凹み部22のオリエンテーションフラット23の両端の位置に、第1の基板11を凹み部22から取り出すための穴24が形成されている。 2, the jig 20 has a substantially disk shape having the same outer diameter as that of the second substrate 12. The jig 20 has an orientation flat 21 at a part of its outer edge so that it can be positioned with the second substrate 12. If the second substrate and the third substrate are notch types, the orientation flat 21 is formed into a V-shaped or U-shaped notch accordingly. In addition, a recess 22 that can accommodate the first substrate 11 is provided on the surface of the jig 20. That is, the inner diameter of the recess 22 corresponds to the outer diameter of the first substrate 11. The recess 22 has an orientation flat 23 at a part of its outer periphery so that it can be positioned with the first substrate 11. In addition, holes 24 for taking out the first substrate 11 from the recess 22 are formed at both ends of the orientation flat 23 of the recess 22.
 治具20の凹み部22の深さは、第1の基板11の厚みに対して、その40~70%が好ましく、45~65%がより好ましい。凹み部22が深すぎると、第1の基板11に接着剤を塗布する際に治具20の表面25にはみ出した接着剤が、第2の基板12を貼り合わせて加圧した時に第2の基板12に付着し、治具20が第2の基板12と固着して取り外せなくなる場合があり得る。一方、凹み部22が浅すぎると、第1の基板11のエッジの面取り部の形状がテーパー形状であることにより、位置ずれが大きくなる場合があり得る。治具20は、例えば、接着剤の除去が容易な材質(例えば、アルミニウム等の金属)にしたり、表面状態(例えば、鏡面)にしたりすることで、容易に繰り返して使用することが出来る。 The depth of the recess 22 of the jig 20 is preferably 40 to 70%, more preferably 45 to 65% of the thickness of the first substrate 11. If the recess 22 is too deep, the adhesive that protrudes from the surface 25 of the jig 20 when the adhesive is applied to the first substrate 11 will cause the second substrate 12 to adhere to the second substrate 12 and pressurize it. It may adhere to the substrate 12 and the jig 20 may be fixed to the second substrate 12 and cannot be removed. On the other hand, if the dent 22 is too shallow, the shape of the chamfered portion of the edge of the first substrate 11 may be a tapered shape, which may increase the positional deviation. The jig 20 can be easily and repeatedly used, for example, by using a material (for example, a metal such as aluminum) from which the adhesive can be easily removed or a surface state (for example, a mirror surface).
 そして、治具20から取り外した後、第1の基板11の裏面を研削および研磨する(図1の(g))。裏面の研削と研磨は、第1の基板11の厚みを薄くすることと、貼り合せのために鏡面状態に仕上げることを目的とする。研磨後の第1の基板11aは、元の基板が無くなるまで薄くする必要はなく、貼り合せる第3の基板13と合わせて0.7~1.2mmになる厚みで良い。研削で薄くした後、例えば、ラップ定盤上で粗研磨を行った後、スラリーに酸化セリウムを使用して1次研磨、コロイダルシリカを使用して最終研磨を行い、鏡面に仕上げることが好ましい。鏡面に仕上げることで、直接接合が可能となり、第1の基板11aと第3の基板13の間に接着剤などの介在物が存在することなく一体化できるので、液晶パネルの透過率の低下を防ぐことが出来る。 Then, after removing from the jig 20, the back surface of the first substrate 11 is ground and polished ((g) in FIG. 1). The purpose of the grinding and polishing of the back surface is to reduce the thickness of the first substrate 11 and to finish it in a mirror state for bonding. The first substrate 11a after polishing does not need to be thinned until the original substrate disappears, and may have a thickness of 0.7 to 1.2 mm together with the third substrate 13 to be bonded. After thinning by grinding, for example, after rough polishing on a lapping plate, primary polishing using cerium oxide and final polishing using colloidal silica are preferably performed on the slurry to finish a mirror surface. By finishing the mirror surface, direct bonding is possible, and the first substrate 11a and the third substrate 13 can be integrated without the presence of an inclusion such as an adhesive, thereby reducing the transmittance of the liquid crystal panel. Can be prevented.
 このような研磨後の第1の基板11aの裏面と第3の基板13の表面を貼り合せる(図1の(h))。この時、結合強度を上げるため、第3の基板13の表面を活性化させることが好ましい。活性化としては、オゾン処理、エッチング処理、プラズマ処理が挙げられ、これらの中のどれか1つ又は組み合わせて処理を行うことが好ましい。この処理により、第3の基板13の表面の有機物やガス吸着物質が除去され、貼り合せ直後の基板間の物質の介在を減らし、強固な結合力を得ることが出来る。 The back surface of the first substrate 11a after such polishing and the surface of the third substrate 13 are bonded together ((h) in FIG. 1). At this time, it is preferable to activate the surface of the third substrate 13 in order to increase the bonding strength. Examples of the activation include ozone treatment, etching treatment, and plasma treatment, and it is preferable to carry out treatment in any one or combination thereof. By this treatment, organic substances and gas adsorbing substances on the surface of the third substrate 13 are removed, and the interposition of substances between the substrates immediately after bonding can be reduced and a strong bonding force can be obtained.
 更に、このように第3の基板13を貼り合せたものを熱処理する。この熱処理により第1の基板11aと第3の基板13の間の結合力を高めることができ、第2の基板12を機械的に分離することが可能となる。熱処理の温度は高いほど良いが、接着剤16の変質を招くため、その上限は250℃以下が好ましい。熱処理の下限は、例えば、200℃以上が好ましい。熱処理の時間は、温度が低いほど長くする必要がある。熱処理の温度と時間は、第2の基板12を分離する時に、第1の基板11aと第3の基板13とが分離しないような条件であればよく、例えば、温度が200~210℃であれば、48~72時間が好ましく、温度が240~250℃であれば、12~24時間が好ましい。 Further, the thus-bonded third substrate 13 is heat-treated. By this heat treatment, the bonding force between the first substrate 11a and the third substrate 13 can be increased, and the second substrate 12 can be mechanically separated. The higher the temperature of the heat treatment, the better. However, the upper limit of the upper limit is preferably 250 ° C. or less because it causes deterioration of the adhesive 16. The lower limit of the heat treatment is preferably 200 ° C. or higher, for example. The heat treatment time needs to be longer as the temperature is lower. The temperature and time of the heat treatment may be any conditions as long as the first substrate 11a and the third substrate 13 are not separated when the second substrate 12 is separated. For example, the temperature may be 200 to 210 ° C. For example, 48 to 72 hours are preferable, and if the temperature is 240 to 250 ° C., 12 to 24 hours are preferable.
 そして、仮接合の第2の基板12を分離する(図1の(i))。第2の基板12を第1の基板11aから分離するために、第2の基板12と第3の基板13の双方をそれぞれ吸着器具(図示省略)で吸着、固定し、この2つの吸着器具が離れるように移動させる移動機構(図示省略)によって、第2の基板12と第3の基板13を互いに引き離す力を掛けながら、第1の基板11aと第2の基板12の貼り合せ面である接着剤16の部分へブレード17を挿入して、開口を形成し、更に引き離す力を加え続け、接着剤16の部分で第2の基板12を分離する。 Then, the temporarily bonded second substrate 12 is separated ((i) in FIG. 1). In order to separate the second substrate 12 from the first substrate 11a, both the second substrate 12 and the third substrate 13 are adsorbed and fixed by adsorption devices (not shown), respectively. Adhesion that is a bonding surface of the first substrate 11a and the second substrate 12 while applying a force to separate the second substrate 12 and the third substrate 13 from each other by a moving mechanism (not shown) that moves the substrates apart. The blade 17 is inserted into the part of the agent 16 to form an opening, and a force for further pulling off is continuously applied to separate the second substrate 12 at the part of the adhesive 16.
 分離後に接着剤16の残渣を有機溶媒で除去する(図1の(j))。有機溶媒としては、回路層14に悪影響を及ぼすことなく接着剤16を除去できるものであれば、特に限定されるものではなく、例えば、p-メンタンやリモネン、アセトンを用いることができる。このようにして、小口径の第1の基板11の表層に形成したマイクロディスプレイの液晶パネル用の回路層14を、大口径の第3の基板13へ転写したマイクロディスプレイ用基板を作製できる。 After separation, the residue of the adhesive 16 is removed with an organic solvent ((j) in FIG. 1). The organic solvent is not particularly limited as long as it can remove the adhesive 16 without adversely affecting the circuit layer 14, and for example, p-menthane, limonene, or acetone can be used. In this manner, a microdisplay substrate in which the circuit layer 14 for the liquid crystal panel of the microdisplay formed on the surface layer of the first substrate 11 having a small diameter is transferred to the third substrate 13 having a large diameter can be manufactured.
 上述により作製したマイクロディスプレイ用基板を用いた液晶パネルの一例を、図3に示す。透過型液晶パネル30は、主な構成として、図3に示すように、対向に配置された画素基板32および対向基板38と、これら一対の基板によって挟まれた液晶層35とを備えるものである。画素基板32および対向基板38は、更に2枚の偏光板31に挟まれている。 FIG. 3 shows an example of a liquid crystal panel using the microdisplay substrate manufactured as described above. As shown in FIG. 3, the transmissive liquid crystal panel 30 includes, as shown in FIG. 3, a pixel substrate 32 and a counter substrate 38 that are disposed to face each other, and a liquid crystal layer 35 that is sandwiched between the pair of substrates. . The pixel substrate 32 and the counter substrate 38 are further sandwiched between two polarizing plates 31.
 画素基板32の液晶層35側の表面には、トランジスタ等を含む複数の画素回路33aおよびその周辺の駆動回路33bを有する回路層33が形成されており、更にこの回路層33の液晶層35側には、複数の画素電極43が形成されている。対向基板38の液晶層35側の表面には、対向電極37が形成されている。画素基板32と対向基板38の間には液晶層35を囲むようにシール材36が配置されている。対向基板38も、例えば石英基板やガラス基板などの透明な基板が用いられる。透過型液晶パネル30は、図3に示すように、対向基板38側から入射光1を受け、偏光板31a、対向基板38、対向電極37、液晶層35、画素電極34、画素回路33a、画素基板32、偏光板31bを透過して、画素基板32側から出射光2を発する。 On the surface of the pixel substrate 32 on the liquid crystal layer 35 side, a circuit layer 33 having a plurality of pixel circuits 33 a including transistors and the peripheral drive circuit 33 b is formed. Further, the circuit layer 33 on the liquid crystal layer 35 side is formed. A plurality of pixel electrodes 43 are formed. A counter electrode 37 is formed on the surface of the counter substrate 38 on the liquid crystal layer 35 side. A sealing material 36 is disposed between the pixel substrate 32 and the counter substrate 38 so as to surround the liquid crystal layer 35. The counter substrate 38 is also a transparent substrate such as a quartz substrate or a glass substrate. As shown in FIG. 3, the transmissive liquid crystal panel 30 receives incident light 1 from the counter substrate 38 side and receives a polarizing plate 31a, a counter substrate 38, a counter electrode 37, a liquid crystal layer 35, a pixel electrode 34, a pixel circuit 33a, and a pixel. The outgoing light 2 is emitted from the pixel substrate 32 side through the substrate 32 and the polarizing plate 31b.
 この透過型液晶パネル30の中の回路層33が形成された画素基板32が、本発明の方法により得られるマイクロディスプレイ用基板に相当する。回路層33としては、例えば、図4に示すように、複数の画素回路33aが形成される画素回路部41と、その周辺の駆動回路33bが形成される駆動回路部42とが配置される回路パターン40が形成される。駆動回路部42としては、列選択回路部42aと行選択回路部42bがある。 The pixel substrate 32 on which the circuit layer 33 in the transmissive liquid crystal panel 30 is formed corresponds to a microdisplay substrate obtained by the method of the present invention. As the circuit layer 33, for example, as shown in FIG. 4, a circuit in which a pixel circuit unit 41 in which a plurality of pixel circuits 33a are formed and a drive circuit unit 42 in which a peripheral drive circuit 33b is formed are arranged. A pattern 40 is formed. The drive circuit unit 42 includes a column selection circuit unit 42a and a row selection circuit unit 42b.
 この図4に示した回路パターン40が1つの液晶パネルに相当するが、この回路パターン40は、図5に示すように、外縁の一部にオリエンテーションフラット51を有する1枚の第1の基板11の全面へ複数配置することができる。これによって、1枚の基板から複数の液晶パネルを製造することができる。より具体的には、本方法により得たマイクロディスプレイ用基板を、対向電極が形成された対向基板と貼り合せ、パネルサイズにカットした後、そこへ液晶を封入することで、液晶パネルとすることが出来る。 The circuit pattern 40 shown in FIG. 4 corresponds to one liquid crystal panel. As shown in FIG. 5, the circuit pattern 40 is a single first substrate 11 having an orientation flat 51 at a part of the outer edge. A plurality can be arranged on the entire surface. Thus, a plurality of liquid crystal panels can be manufactured from one substrate. More specifically, the microdisplay substrate obtained by this method is bonded to the counter substrate on which the counter electrode is formed, cut into a panel size, and then liquid crystal is sealed therein to form a liquid crystal panel. I can do it.
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.
 [実施例1]
 第1の基板として外径150mm、厚み625μmの略円板状SOQ基板を用意し、表層のSi層150nmに対して半導体プロセス装置により回路層を形成した。SOQ基板の表層のSi層は単結晶であるため、回路層は、通常のSOIのSi層と同じパラメータを使いトランジスタを設計し、この設計データを基に作製したマスクを使用して形成した。使用した半導体プロセス装置は、透明基板に対応するため、在荷センサーを交換や調整により透明体に対応させたものであり、吸着ステージも石英ガラスへ対応させたものである。このように回路層を形成したSOQ基板の表面に、ITOを成膜した後、画素間を分離するように溝を形成し、画素電極を作製した。
[Example 1]
A substantially disk-shaped SOQ substrate having an outer diameter of 150 mm and a thickness of 625 μm was prepared as a first substrate, and a circuit layer was formed by a semiconductor process apparatus on the surface Si layer of 150 nm. Since the surface Si layer of the SOQ substrate is a single crystal, the circuit layer was formed using the same parameters as those of a normal SOI Si layer and using a mask prepared based on the design data. The used semiconductor process apparatus corresponds to a transparent substrate, so that the in-stock sensor is made compatible with the transparent body by replacement or adjustment, and the adsorption stage is also made compatible with quartz glass. After the ITO film was formed on the surface of the SOQ substrate on which the circuit layer was formed in this way, a groove was formed so as to separate the pixels, and a pixel electrode was produced.
 第2の基板と第3の基板として、それぞれ外径200mm、厚み725μmの略円板状の合成石英ガラスの基板を用意した。そして、外径200mmの略円板状の治具の表面に設けられた約150mmの内径の凹み部に、回路層が形成された表面を上にし、オリエンテーションフラットで位置決めして第1の基板を収めた。治具は、接着剤の除去のための有機溶剤での洗浄を考慮してアルミニウムにて作製した。 A substantially disc-shaped synthetic quartz glass substrate having an outer diameter of 200 mm and a thickness of 725 μm was prepared as the second substrate and the third substrate, respectively. Then, the first substrate is positioned by positioning it with an orientation flat with the surface on which the circuit layer is formed facing the recess portion having an inner diameter of about 150 mm provided on the surface of a substantially disk-shaped jig having an outer diameter of 200 mm. I stored it. The jig was made of aluminum in consideration of cleaning with an organic solvent for removing the adhesive.
 治具は、異なる凹み部の深さを有するものを5つ作製し、凹み部に収めた第1の基板に接着剤を塗布し、第2の基板を貼り合わせ、その際の第1の基板の位置ずれ、および治具を取り外す際の容易さを試験した。その結果を表1に示す。 Five jigs having different depths of recesses are prepared, an adhesive is applied to the first substrate housed in the recesses, the second substrate is bonded, and the first substrate at that time Were tested for ease of displacement and jig removal. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
 
 
Figure JPOXMLDOC01-appb-T000001
 
 
 なお、第1の基板と第2の基板を貼り合せる仮接合時の接着剤は、後で分離するときの作業性と、第3の基板を接合した後の熱処理時の耐熱性を考慮して選択した。ここでは、熱硬化型変性シリコーン系接着剤である信越化学社製のTA1070T、TA2570V3、及びTA4070を使用した。すなわち、スピンコートにて第1の基板上にTA1070Tを10μm、その上にTA2570V3を10μm、更にその上にTA4070を90μm積層し、合計110μmとした。TA1070Tは回路の保護、TA2570V3は基板分離時の剥離層、TA4070は第2基板との接着層として機能するものである。第2の基板の貼り合せは、0.1MPaの力で押しつけた後、治具を取付けたまま水平でオーブンへセットし、190℃で2時間にわたる加熱処理を行い、接着剤を硬化させた。 In addition, the adhesive at the time of temporary joining which bonds a 1st board | substrate and a 2nd board | substrate considers the workability | operativity at the time of isolate | separating later, and the heat resistance at the time of the heat processing after joining a 3rd board | substrate. Selected. Here, TA1070T, TA2570V3, and TA4070 manufactured by Shin-Etsu Chemical Co., Ltd., which are thermosetting modified silicone adhesives, were used. That is, 10 μm of TA1070T, 10 μm of TA2570V3, and 90 μm of TA4070 were further laminated on the first substrate by spin coating, for a total of 110 μm. TA1070T functions as a circuit protection, TA2570V3 functions as a release layer during substrate separation, and TA4070 functions as an adhesive layer with the second substrate. The second substrate was bonded by pressing with a force of 0.1 MPa, then set horizontally in an oven with the jig attached, and subjected to a heat treatment at 190 ° C. for 2 hours to cure the adhesive.
 表1に示すように、凹み部が比較的に浅い試験例1、2の治具では、第1の基板の位置ずれが発生した。また、凹み部が比較的に深い試験例5の治具では、第1の基板からはみ出した接着剤が第2の基板に付着してしまい、治具を取り外す際に固着して剥がせなかった。よって、位置ずれが少なく、且つ治具の取り外しが容易であった試験例3、4の治具の深さは300mm、400mmであることから、第1の基板の厚み625μmに対して、治具の凹み部の深さは、その40~70%が好ましいことが分かる。 As shown in Table 1, in the jigs of Test Examples 1 and 2, where the dent portion was relatively shallow, the first substrate was displaced. Further, in the jig of Test Example 5 in which the dent portion was relatively deep, the adhesive protruding from the first substrate adhered to the second substrate, and was fixed when the jig was removed and could not be peeled off. . Therefore, since the depths of the jigs of Test Examples 3 and 4 in which the displacement was small and the jigs were easy to be removed were 300 mm and 400 mm, the jigs had a thickness of 625 μm with respect to the first substrate thickness of 625 μm. It can be seen that the depth of the recess is preferably 40 to 70%.
 次に、第2の基板を仮接合した第1の基板の裏面を、研削ホイールにて研削して第1の基板の厚みを薄くした後、ラップ定盤での粗研磨、酸化セリウムでの1次研磨、コロイダルシリカでの仕上げ研磨を順に行い、第1の基板の裏面を鏡面に仕上げた。この時、第1の基板の厚みは200μmとなるように加工を行った。研磨後はスクラブ洗浄、2%フッ化水素水溶液による洗浄、純水リンスの順で洗浄し、第1の基板の裏面にスラリーなどの残渣が残らないようにした。 Next, after the back surface of the first substrate temporarily bonded to the second substrate is ground with a grinding wheel to reduce the thickness of the first substrate, rough polishing with a lapping surface plate, 1 with cerium oxide Next polishing and finish polishing with colloidal silica were sequentially performed to finish the back surface of the first substrate to a mirror surface. At this time, the first substrate was processed to have a thickness of 200 μm. After polishing, scrub cleaning, cleaning with 2% hydrogen fluoride aqueous solution, and pure water rinsing were performed in this order so that no residue such as slurry remained on the back surface of the first substrate.
 そして、第3の基板の表面をプラズマ処理で活性化し、第1の基板の鏡面化した裏面と貼り合せた。この時、第2の基板と第3の基板の外周の形状で位置決めして貼り合せを行った。貼り合せは直接接合で行った。すなわち、第1の基板の裏面が上に向くように置いた後、第3の基板の表面を下側に向けて重ね合せ、第1の基板と重なっている部分の一部を押して基板同士を当接させることにより貼り合せを行った。透明基板のため、貼り合せ状況を目視で確認した。 Then, the surface of the third substrate was activated by plasma treatment, and bonded to the mirrored back surface of the first substrate. At this time, the second substrate and the third substrate were positioned and bonded together in the shape of the outer periphery. Bonding was performed by direct bonding. That is, after the first substrate is placed so that the back surface of the first substrate faces upward, the surfaces of the third substrate are overlapped with each other downward, and a portion of the portion overlapping the first substrate is pushed to put the substrates together. Bonding was performed by bringing them into contact. Since it is a transparent substrate, the state of bonding was visually confirmed.
 貼り合せ後、結合力を上げるために、250℃、12時間の条件で熱処理を行った。熱処理後、第3の基板の裏面が下に、第2の基板の裏面が上になるように吸着ステージへ載せ、第3の基板を吸着した状態で第2の基板の裏面に、上方へ引き上げる機構を持った吸着具を取付け、第2の基板と第3の基板を互いに離れる方向へ力を加えた。その力を加えながら、第1の基板と第2の基板との界面である接着層へブレードを挿入した。ブレード挿入により接着剤の一部に開口が生じ、基板同士を引き剥がす力が加わっていることから、その開口が徐々に広がり分離が進んだ。最終的に第1の基板と接着剤により接着されていた部分から剥がれ、第2の基板の分離が完了した。この時、第3の基板から第1の基板が分離することはなかった。 After bonding, heat treatment was performed under conditions of 250 ° C. and 12 hours in order to increase the bonding strength. After the heat treatment, the third substrate is placed on the suction stage so that the back surface of the third substrate is facing down and the back surface of the second substrate is facing up, and the third substrate is attracted and pulled up to the back surface of the second substrate. A suction tool having a mechanism was attached, and a force was applied in a direction in which the second substrate and the third substrate were separated from each other. While applying the force, the blade was inserted into the adhesive layer which is the interface between the first substrate and the second substrate. The opening was created in a part of the adhesive by inserting the blade, and the force to peel off the substrates was applied, so that the opening gradually spread and separation progressed. Finally, it was peeled off from the portion bonded to the first substrate with the adhesive, and the separation of the second substrate was completed. At this time, the first substrate was not separated from the third substrate.
 第2の基板の分離後、第1の基板上の接着剤の残渣は、有機溶剤のp-メンタンに5分間浸漬することで除去した。第3の基板に接合された第1の基板は、直接接合の界面を目視で確認することは出来ず、回路の無い部分では透明であった。直接接合により透過率を悪化させずに大型基板へ回路が転写されたマイクロディスプレイ用基板を得ることが出来た。 After separation of the second substrate, the adhesive residue on the first substrate was removed by immersing it in an organic solvent p-menthane for 5 minutes. The first substrate bonded to the third substrate could not visually confirm the interface of the direct bonding, and was transparent in a portion without a circuit. It was possible to obtain a microdisplay substrate in which the circuit was transferred to a large substrate without deteriorating the transmittance by direct bonding.
 [実施例2]
 第2の基板および第3の基板の材質を石英ガラスから無アルカリガラス(コーニング社製の商品名EagleXG)に変えた点、第3の基板の表面の活性化をプラズマ処理から変更した点、又は熱処理の条件を250℃、12時間から変えた点を除き、実施例1と同様の手順にてマイクロディスプレイ用基板を得た。各種変更した条件およびその結果を表2に示す。
[Example 2]
The point that the material of the second substrate and the third substrate is changed from quartz glass to non-alkali glass (trade name EagleXG manufactured by Corning), the activation of the surface of the third substrate is changed from the plasma treatment, or A microdisplay substrate was obtained in the same procedure as in Example 1 except that the heat treatment conditions were changed from 250 ° C. for 12 hours. Various changed conditions and the results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
 
 
Figure JPOXMLDOC01-appb-T000002
 
 
 表2に示すように、試験例6~9では、実施例1と同様に、第2の基板の分離が正常に行え、無事に、目的のマイクロディスプレイ用基板を得ることが出来た。しかし、試験例10、11では、第2の基板を分離する際に、第3の基板の方が第1の基板から分離してしまい、目的のマイクロディスプレイ用基板を得ることが出来なかった。試験例10では、第3の基板の表面をプラズマ処理により活性化したものの、熱処理の温度に対して時間が短かったために、結合力が強化できず、第1の基板と第3の基板の貼り合せ界面で分離したと考えられる。試験例11では、第3の基板を貼り合せる前に活性化処理しなかったため、その後に熱処理を行っても、結合力が強化できず、第1の基板と第3の基板の貼り合せ界面で分離したと考えられる。 As shown in Table 2, in Test Examples 6 to 9, as in Example 1, the second substrate could be normally separated, and the target microdisplay substrate could be obtained safely. However, in Test Examples 10 and 11, when the second substrate was separated, the third substrate was separated from the first substrate, and the target microdisplay substrate could not be obtained. In Test Example 10, the surface of the third substrate was activated by plasma treatment, but because the time was short with respect to the temperature of the heat treatment, the bonding strength could not be strengthened, and the first substrate and the third substrate were stuck. It is thought that they were separated at the mating interface. In Test Example 11, since the activation treatment was not performed before the third substrate was bonded, the bonding strength could not be strengthened even if the heat treatment was performed thereafter, and the bonding interface between the first substrate and the third substrate was not achieved. Probably separated.
 1  入射光
 2  出射光
 11 第1の基板
 12 第2の基板
 13 第3の基板
 14 回路層
 16 接着剤
 17 ブレード
 20 治具
 21、23、51 オリエンテーションフラット
 22 凹み部
 30 透過型液晶パネル
 31 偏光板
 32 画素基板
 33 回路層
 34 画素電極
 35 液晶層
 36 シール材
 37 対向電極
 38 対向基板
 40 回路パターン
 41 画素回路部
 42 駆動回路部
 
DESCRIPTION OF SYMBOLS 1 Incident light 2 Outgoing light 11 1st board | substrate 12 2nd board | substrate 13 3rd board | substrate 14 Circuit layer 16 Adhesive 17 Blade 20 Jig 21, 23, 51 Orientation flat 22 Recessed part 30 Transmission type liquid crystal panel 31 Polarizing plate 32 pixel substrate 33 circuit layer 34 pixel electrode 35 liquid crystal layer 36 sealing material 37 counter electrode 38 counter substrate 40 circuit pattern 41 pixel circuit unit 42 drive circuit unit

Claims (6)

  1. マイクロディスプレイ用基板の製造方法であって、
     単結晶のSi層を有する第1の基板を準備するステップと、
     前記第1の基板の第1の表面に、画素電極用の画素回路とその周辺の駆動回路を形成するステップと、
     前記第1の基板よりも大きな外径を有し、前記マイクロディスプレイ用基板の支持基板となる透明な第3の基板を準備するステップと、
     前記第3の基板と同じ外径を有する第2の基板を準備するステップと、
     前記第1の基板と前記第2の基板の外径差を解消するための治具に、前記第1の基板を前記画素回路および前記駆動回路が形成された第1の表面が露出するように載せて、接着剤にて前記第1の基板の前記第1の表面と前記第2の基板とを貼り合せるステップと、
     前記治具を前記第1の基板から取り外した後、前記第1の基板の前記第1の表面とは反対側の第2の表面を研削して薄化し、更に研磨して鏡面化をするステップと、
     前記第1の基板の前記鏡面化した第2の表面に、前記第3の基板を直接接合にて貼り合せるステップと、
     前記貼り合せた第1の基板、第2の基板および第3の基板を熱処理して、前記第1の基板と前記第3の基板の結合力を強化するステップと、
     前記第2の基板と前記第3の基板とを互いに引き剥がす方向へ力を加えながら、前記第1の基板と前記第2の基板との間を機械的に分離するステップと、
     前記第1の基板の前記第1の表面に残った前記接着剤を除去し、前記画素回路および前記駆動回路を露出させるステップと
     を含む製造方法。
    A manufacturing method of a substrate for microdisplay,
    Providing a first substrate having a single-crystal Si layer;
    Forming a pixel circuit for a pixel electrode and a peripheral drive circuit on the first surface of the first substrate;
    Providing a transparent third substrate having a larger outer diameter than the first substrate and serving as a support substrate for the microdisplay substrate;
    Providing a second substrate having the same outer diameter as the third substrate;
    The first substrate is exposed to a first surface on which the pixel circuit and the drive circuit are formed in a jig for eliminating a difference in outer diameter between the first substrate and the second substrate. Placing and bonding the first surface of the first substrate and the second substrate with an adhesive; and
    After removing the jig from the first substrate, grinding and thinning the second surface of the first substrate opposite to the first surface, and further polishing to make a mirror surface When,
    Bonding the third substrate to the mirror-finished second surface of the first substrate by direct bonding;
    Heat-treating the bonded first substrate, second substrate, and third substrate to enhance the bonding force between the first substrate and the third substrate;
    Mechanically separating the first substrate and the second substrate while applying a force in a direction to peel the second substrate and the third substrate from each other;
    Removing the adhesive remaining on the first surface of the first substrate to expose the pixel circuit and the driving circuit.
  2.  前記第1の基板が、石英基板上にSi層を有するSOQ基板である請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein the first substrate is an SOQ substrate having a Si layer on a quartz substrate.
  3.  前記第3の基板が、ガラス基板である請求項1又は2に記載の製造方法。 The manufacturing method according to claim 1 or 2, wherein the third substrate is a glass substrate.
  4.  前記治具が、前記第1の基板を収容可能な凹み部を備え、前記凹み部の深さが、前記第1の基板の厚みに対して、その40~70%である請求項1~3のいずれか1項の製造方法。 The jig includes a recess capable of accommodating the first substrate, and the depth of the recess is 40 to 70% of the thickness of the first substrate. The manufacturing method of any one of these.
  5.  前記第3の基板を貼り合せるステップの前に、オゾン処理、エッチング処理、プラズマ処理、又はこれらの組合せによって前記第3の基板の表面を活性化するステップを更に含む請求項1~4のいずれか1項に記載の製造方法。 5. The method according to claim 1, further comprising a step of activating the surface of the third substrate by ozone treatment, etching treatment, plasma treatment, or a combination thereof before the step of bonding the third substrate. 2. The production method according to item 1.
  6.  前記熱処理が、200~250℃の温度で実施される請求項1~5のいずれか1項に記載の製造方法。
     
    The production method according to any one of claims 1 to 5, wherein the heat treatment is performed at a temperature of 200 to 250 属 C.
PCT/JP2019/020422 2018-06-15 2019-05-23 Method for manufacturing microdisplay substrate WO2019239835A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-114730 2018-06-15
JP2018114730A JP6914227B2 (en) 2018-06-15 2018-06-15 Manufacturing method of substrate for micro display

Publications (1)

Publication Number Publication Date
WO2019239835A1 true WO2019239835A1 (en) 2019-12-19

Family

ID=68842862

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/020422 WO2019239835A1 (en) 2018-06-15 2019-05-23 Method for manufacturing microdisplay substrate

Country Status (3)

Country Link
JP (1) JP6914227B2 (en)
TW (1) TW202032830A (en)
WO (1) WO2019239835A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002031818A (en) * 2000-07-17 2002-01-31 Semiconductor Energy Lab Co Ltd Method for manufacturing semiconductor device
JP2004140267A (en) * 2002-10-18 2004-05-13 Semiconductor Energy Lab Co Ltd Semiconductor device and fabrication method thereof
JP2004311955A (en) * 2003-03-25 2004-11-04 Sony Corp Method for manufacturing very thin electro-optical display device
JP2017529683A (en) * 2014-07-14 2017-10-05 バタフライ ネットワーク,インコーポレイテッド Micromachined ultrasonic transducer and related apparatus and method
JP2018026549A (en) * 2016-07-29 2018-02-15 株式会社半導体エネルギー研究所 Peeling method, display device, display module, and electronic equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002031818A (en) * 2000-07-17 2002-01-31 Semiconductor Energy Lab Co Ltd Method for manufacturing semiconductor device
JP2004140267A (en) * 2002-10-18 2004-05-13 Semiconductor Energy Lab Co Ltd Semiconductor device and fabrication method thereof
JP2004311955A (en) * 2003-03-25 2004-11-04 Sony Corp Method for manufacturing very thin electro-optical display device
JP2017529683A (en) * 2014-07-14 2017-10-05 バタフライ ネットワーク,インコーポレイテッド Micromachined ultrasonic transducer and related apparatus and method
JP2018026549A (en) * 2016-07-29 2018-02-15 株式会社半導体エネルギー研究所 Peeling method, display device, display module, and electronic equipment

Also Published As

Publication number Publication date
TW202032830A (en) 2020-09-01
JP2019220511A (en) 2019-12-26
JP6914227B2 (en) 2021-08-04

Similar Documents

Publication Publication Date Title
JP4378314B2 (en) Display device and manufacturing method of display device
JP2010145731A (en) Display device
US20120275024A1 (en) Polarizer assembly with adhesive layers
JP2006235010A (en) Electro-optical display device and method for manufacturing the same
US20130258263A1 (en) Electro-optical device and electronic apparatus
KR100810599B1 (en) Protective film for the transparent panel of a display panel
JP2006106079A (en) Electro-optical apparatus, electronic equipment using the same and method for manufacturing the electro-optical apparatus
JP5285336B2 (en) Manufacturing method of display element
WO2019239835A1 (en) Method for manufacturing microdisplay substrate
TWI544252B (en) Display panel and method of manufacturing the same
WO2006063044A2 (en) Method and device for wafer scale packaging of optical devices using a scribe and break process
JP2007219403A (en) Reflection type color liquid crystal display device and its manufacturing method
WO2020145186A1 (en) Production method for micro-display substrate
US20190187510A1 (en) Adhesive layer-equipped transparent plate and display device
JP7202992B2 (en) Manufacturing method of microdisplay substrate
US20060063355A1 (en) Method and device for forming spacer structures for packaging optical reflection devices
JP3475105B2 (en) Manufacturing method of liquid crystal display device
KR100982776B1 (en) Display apparatus and method of manufacturing there of
JP2005208165A (en) Liquid crystal display element and liquid crystal projector using the display element
JP7192346B2 (en) Transparent surface material with adhesive layer and display device
US7160791B2 (en) Batch process and device for forming spacer structures for packaging optical reflection devices
JP5127357B2 (en) Method for manufacturing transmissive liquid crystal display element, transmissive liquid crystal display element and liquid crystal projector
JP2007232870A (en) Projector
WO2020008882A1 (en) Device-layer-transferred substrate production method and device layer-transferred substrate
JP2022190311A (en) Electro-optical device, method for manufacturing electro-optical device, and electronic apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19818520

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19818520

Country of ref document: EP

Kind code of ref document: A1