WO2019239761A1 - Cryogenic high-tensile thick steel sheet and method for producing same - Google Patents

Cryogenic high-tensile thick steel sheet and method for producing same Download PDF

Info

Publication number
WO2019239761A1
WO2019239761A1 PCT/JP2019/018968 JP2019018968W WO2019239761A1 WO 2019239761 A1 WO2019239761 A1 WO 2019239761A1 JP 2019018968 W JP2019018968 W JP 2019018968W WO 2019239761 A1 WO2019239761 A1 WO 2019239761A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
temperature
steel sheet
hot
cooling
Prior art date
Application number
PCT/JP2019/018968
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤 祐也
善明 村上
聡 伊木
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to KR1020207032994A priority Critical patent/KR102388436B1/en
Priority to CN201980038473.1A priority patent/CN112236539B/en
Priority to JP2019545841A priority patent/JP6816832B2/en
Publication of WO2019239761A1 publication Critical patent/WO2019239761A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to a high-tensile steel sheet for cryogenic use, and in particular, it is excellent in cryogenic toughness and cold workability, and can be suitably used for applications such as LNG storage tanks. It relates to a thick steel plate. Moreover, this invention relates to the manufacturing method of the said high-tensile steel plate for cryogenics.
  • the low temperature steel sheet used for the tank body is required to have excellent toughness at a temperature at which LNG becomes liquid (about ⁇ 162 ° C.). Further, in the manufacture of tanks, since severe processing is performed as in the case of forming into a cylindrical tube, cold bending workability is also required for the steel sheet used. Therefore, as a low-temperature steel plate used for the tank body of the LNG storage tank, conventionally, a 9% Ni steel plate having excellent low-temperature toughness has been widely used.
  • Ni is an expensive alloy element, from the viewpoint of cost reduction, there is a demand for the development of a low-temperature steel sheet having a Ni content of less than 9% and a toughness equal to or higher than that of a 9% Ni steel sheet. Yes.
  • Patent Documents 1 to 5 propose steel sheets having a Ni content of 7% and low temperature toughness equivalent to 9% Ni steel.
  • Patent Document 1 proposes a technique that combines low-temperature high-pressure rolling, two-phase region heat treatment, and quenching and tempering treatment.
  • the residual austenite structure is controlled and stabilized by introducing strain into untransformed austenite and lowering the Mf point.
  • Patent Documents 2 and 3 disclose techniques for securing the amount of retained austenite and reducing the particle size by controlling the heating temperature and heating time of the slab and suppressing excessive slab heating.
  • Patent Document 4 discloses a technique for reducing non-uniformity of alloy elements and dispersing residual austenite in a large amount and uniformly and finely by subjecting the slab to thermal processing multiple times and further performing two-phase region heat treatment. Has been.
  • Patent Document 5 discloses a technique for obtaining a tempered martensite structure in which retained austenite is finely dispersed by controlling the cumulative reduction ratio of the non-recrystallized region and the recrystallized region and defining the quenching and tempering conditions. .
  • tempering heat treatment is performed after quenching in order to generate and stabilize retained austenite.
  • the amount of retained austenite after subzero treatment at ⁇ 196 ° C. is only 11% by volume, and a large amount of stable retained austenite is obtained. It is not possible. Therefore, it cannot be said that the cold workability is sufficient.
  • the present invention has an object of providing a low-temperature steel sheet having a Ni content of less than 9% and having a toughness equal to or higher than that of a 9% Ni steel sheet and excellent cold workability.
  • the inventors of the present invention conducted intensive research to achieve the above-mentioned problems, and obtained the following knowledge.
  • the residual austenite after subzero treatment at -196 ° C. may be controlled to be more than 11% and 20% or less.
  • the hot-rolled steel sheet in which martensite or martensite and bainite structures are generated is heated to a two-phase temperature range, and the average cooling rate is 3 ° C./s or more. It may be cooled to 250 to 500 ° C. and then tempered.
  • austenite stabilizing elements such as C, Ni, and Mn are concentrated to austenite during two-phase heating, and further C is concentrated to austenite by tempering. Alloy elements can be distributed.
  • the process of the present invention in which the tempering treatment is performed after the cooling is stopped at a temperature of 250 to 500 ° C., the C is austenite at a lower temperature than the conventional process of tempering after cooling (quenching) to 200 ° C. or less. Can be distributed. Therefore, the above process is more effective for stabilizing austenite than the conventional quenching and tempering step, and a large amount of stable retained austenite can be obtained.
  • the present invention has been completed based on the above findings, and the gist thereof is as follows.
  • the balance has a component composition consisting of Fe and inevitable impurities,
  • the microstructure at the 1/4 thickness position is (1) tempered martensite or a matrix composed of tempered martensite and bainite; (2) consisting of residual austenite dispersed in the matrix,
  • the volume fraction of retained austenite at a thickness of 1/4 position is more than 11% and not more than 20%, and A high tensile thickness for cryogenic temperatures in which the volume ratio of retained austenite at a 1/4 position of the plate thickness is more than 11% and not more than 20% after sub-zero treatment in liquid nitrogen at ⁇ 196 ° C. for 15 minutes. steel sheet.
  • the component composition is further in mass%, Al: 0.01 to 0.10%, Mo: 0.05 to 0.50%, Cr: 1.00% or less, Cu: 0.40% or less, Nb: 0.05% or less,
  • the component composition is further in mass%, Ca: 0.007% or less,
  • the steel material having the component composition according to any one of the above 1-3 is heated to a heating temperature of 900 ° C. or higher and 1200 ° C. or lower, Hot-rolling the heated steel material into a hot-rolled steel sheet,
  • the hot-rolled steel sheet has an average cooling rate of 1 ° C./s or more in a temperature range of 550 ° C. or lower and 300 ° C. or higher at a thickness of 1/4 position, and a cooling stop temperature of 300 ° C. at a temperature of 1/4 position.
  • the hot-rolled steel sheet after the first accelerated cooling is subjected to two-phase region heating that is heated to a heating temperature of Ac1 point or more and less than Ac3 point at a temperature at a thickness of 1/4 position,
  • the average cooling rate at the temperature at the 1/4 position of the sheet thickness is 3 ° C./s or more
  • the cooling stop temperature is 500 ° C. or less at the temperature at the 1/4 position of the sheet thickness 250 ° C.
  • the second accelerated cooling is applied, The hot rolled steel sheet after the second accelerated cooling is air-cooled to 200 ° C.
  • the air-cooled hot-rolled steel sheet is subjected to a tempering treatment in which the tempering temperature is 500 ° C. or higher and 650 ° C. or lower at a position at a thickness of 1/2, and for the cryogenic temperature having the microstructure described in 1 above
  • a method for producing a high-tensile steel plate for cryogenic use which is a high-tensile steel plate.
  • the Ni content is reduced to 5.5 to 8.5%, it has low temperature toughness equivalent to or better than 9% Ni steel, and also has excellent cold workability.
  • a high-tensile steel plate for cryogenic temperatures can be obtained.
  • This high-tensile steel plate for cryogenic use can be used very suitably for applications such as LNG storage tanks. Therefore, this invention contributes to the safety
  • C 0.02 to 0.12% C is an element having an effect of improving the strength of the steel plate. C is also an important element in obtaining a desired retained austenite volume fraction. In order to obtain these effects, the C content is 0.02% or more, preferably 0.04% or more. On the other hand, when the C content exceeds 0.12%, the low temperature toughness of the steel sheet is lowered. Therefore, the C content is 0.12% or less, preferably 0.08% or less.
  • Si 0.01 to 0.30% Si is an element that contributes to improving the strength of the steel sheet, and is also an element having an action as a deoxidizer. In order to express these effects, the Si content is 0.01% or more. On the other hand, when the Si content is excessively high, the toughness decreases. Therefore, the Si content is 0.30% or less, preferably 0.10% or less.
  • Mn 0.50 to 2.00%
  • Mn is an element that enhances the hardenability of steel and contributes to high strength of the steel sheet.
  • the Mn content is 0.50% or more, preferably 0.60% or more.
  • the Mn content is 2.00% or less, preferably 0.95% or less.
  • Ni 5.5 to 8.5%
  • Ni is an extremely effective element for improving the low temperature toughness of the steel sheet.
  • the steel sheet cost increases as its content increases. Therefore, the Ni content is set to 8.5% or less.
  • the Ni content is set to 5.5% or more.
  • P 0.005% or less
  • P is an unavoidable impurity and is a harmful element that adversely affects the low temperature toughness of the steel sheet.
  • the P content is 0.005% or less.
  • the lower limit is not particularly limited and may be 0%, but in that case, inclusion as an unavoidable impurity is permitted.
  • the P content is preferably 0.001% or more.
  • S 0.003% or less
  • S is an unavoidable impurity and is a harmful element that adversely affects the low temperature toughness of the steel sheet.
  • the S content is set to 0.003% or less.
  • the lower the S content the better. Therefore, the lower limit is not particularly limited and may be 0%, but in that case, inclusion as an unavoidable impurity is permitted.
  • the S content is preferably 0.0001% or more.
  • N 0.0015 to 0.0065%
  • N is an element that forms precipitates in steel, and contributes to the refinement of the base material by forming AlN.
  • N content shall be 0.0015% or more.
  • the N content exceeds 0.0065%, the toughness of the base material and the weld heat affected zone is lowered when the steel plate is welded to form a welded structure. Therefore, the N content is 0.0065% or less.
  • the component composition in an embodiment of the present invention may be composed of the above elements, with the balance being Fe and inevitable impurities.
  • one or more selected from the group consisting of Al, Mo, Cr, Cu, Nb, V, and Ti is arbitrarily described below. It can be further contained in an amount.
  • Al 0.01 to 0.10%
  • Al is an element contained in the deoxidizer.
  • the Al content is less than 0.01%, the effect as a deoxidizer is poor. Therefore, when Al is contained, the Al content is 0.01% or more, preferably 0.02% or more.
  • the Al content is 0.10% or less, preferably 0.05% or less.
  • Mo 0.05 to 0.50% Mo is an element that can improve the strength of the steel sheet without impairing the low temperature toughness.
  • Mo content shall be 0.05% or more, Preferably it exceeds 0.10%.
  • the Mo content is 0.50% or less, preferably 0.30% or less.
  • Cr 1.00% or less Cr is an element having the same effect as Mo, but when the Cr content exceeds 1.00%, the low-temperature toughness of the steel sheet decreases. Therefore, when adding Cr, the Cr content is 1.00% or less, preferably less than 0.20%.
  • the lower limit of the Cr content is not particularly limited, but from the viewpoint of enhancing the above effect, the Cr content is preferably 0.01% or more.
  • Cu 0.40% or less
  • Cu is an element having an effect of increasing the steel sheet strength by improving the hardenability.
  • the Cu content exceeds 0.40%, the low-temperature toughness of the steel sheet decreases, and the properties of the steel (slab) surface after casting deteriorate. Therefore, when adding Cu, the Cu content is set to 0.40% or less, preferably 0.30% or less.
  • the lower limit of the Cu content is not particularly limited, but from the viewpoint of enhancing the above effects, the Cu content is preferably set to 0.10% or more.
  • Nb 0.05% or less
  • Nb is an effective element that increases the strength of the steel sheet by precipitation strengthening.
  • the Nb content is set to 0.05% or less, preferably 0.03% or less.
  • the lower limit of the Nb content is not particularly limited, but from the viewpoint of enhancing the above effect, the Nb content is preferably set to 0.010% or more.
  • V 0.05% or less
  • Nb is an effective element that increases the steel sheet strength by precipitation strengthening.
  • the V content is 0.05% or less, preferably 0.04% or less.
  • the lower limit of the V content is not particularly limited, but from the viewpoint of enhancing the above effect, the V content is preferably set to 0.010% or more.
  • Ti 0.03% or less
  • Ti is an element having an effect of increasing the toughness of a welded part without deteriorating the mechanical properties of the base metal when a steel plate is welded to form a welded structure. Therefore, Ti can be arbitrarily contained in the range of 0.03% or less.
  • the lower limit of the Ti content is not particularly limited, but from the viewpoint of enhancing the above effect, the Ti content is preferably 0.001% or more.
  • the said component composition can further contain further 1 or 2 or more selected from the group which consists of Ca, REM, and Mg in the quantity described below. .
  • Ca 0.007% or less Ca is an element having an effect of improving the low-temperature toughness of the steel sheet by controlling the form of inclusions in the steel. However, if Ca is excessive, the cleanliness of the steel is impaired. Therefore, when Ca is added, the Ca content is set to 0.007% or less, preferably 0.004% or less. On the other hand, the lower limit of the Ca content is not particularly limited, but is preferably 0.0005% or more from the viewpoint of enhancing the above effect.
  • REM 0.010% or less
  • REM rare earth metal
  • the REM content is set to 0.010% or less, preferably 0.008% or less.
  • the lower limit of the REM content is not particularly limited, but from the viewpoint of enhancing the above effect, the REM content is preferably 0.0005% or more.
  • Mg 0.070% or less
  • Mg is an element having an effect of improving the low temperature toughness of the steel sheet by controlling the form of inclusions in the steel.
  • the Mg content is set to 0.070% or less, preferably 0.004% or less.
  • the lower limit of the Mg content is not particularly limited, but from the viewpoint of enhancing the above effect, the Mg content is preferably 0.0005% or more.
  • the microstructure at the 1/4 thickness position is dispersed in (1) matrix and (2) the matrix. And retained austenite.
  • the matrix is composed of (A) tempered martensite or (B) tempered martensite and tempered bainite. If the matrix does not satisfy the above conditions, one or both of a tensile strength of 700 MPa or more and a desired low temperature toughness cannot be obtained.
  • the volume ratio of retained austenite at the 1/4 thickness position of the cryogenic high-tensile steel plate is more than 11% and not more than 20%. If the volume ratio is 11% or less, desired cold workability cannot be obtained. On the other hand, if the volume ratio exceeds 20%, the desired strength cannot be ensured under the condition that the Ni content is 5.5 to 8.5%.
  • the volume ratio of retained austenite at a 1/4 thickness position after subjecting the cryogenic high-tensile steel sheet to sub-zero treatment is more than 11% and 20%. It is as follows.
  • the sub-zero treatment is performed by holding the steel plate in liquid nitrogen at ⁇ 196 ° C. for 15 minutes. If the volume ratio is 11% or less, desired cold workability cannot be obtained.
  • the volume ratio of retained austenite after the sub-zero treatment is preferably 12.5% or more. On the other hand, if the volume ratio exceeds 20%, the desired strength cannot be ensured under the condition that the Ni content is 5.5 to 8.5%.
  • the amount of decrease in retained austenite when the sub-zero treatment is performed under the above conditions is less than 0.5% in volume ratio.
  • the amount of decrease refers to the difference between the volume fraction of retained austenite before subzero treatment and the volume fraction of retained austenite after subzero treatment.
  • the thickness of the high-tensile steel plate for cryogenic use of the present invention is not particularly limited, and can be any thickness, but is preferably 6 mm or more and 50 mm or less.
  • the lower limit of the tensile strength (TS) of the high-tensile steel plate for cryogenic temperatures of the present invention is not particularly limited and can be any value, but the tensile strength is preferably 700 MPa or more, and 720 MPa or more. It is more preferable to set it to 740 MPa or more.
  • the upper limit of the tensile strength is not particularly limited and may be any value, but the tensile strength is preferably 930 MPa or less, and more preferably 900 MPa or less.
  • the said tensile strength can be measured by the method described in the Example.
  • the toughness of the high-temperature steel sheet for cryogenic use of the present invention is not particularly limited and can be any value, but the Charpy absorbed energy (vE-196 ° C. ) at ⁇ 196 ° C. is preferably 150 J or more, More preferably, it is 180 J or more, more preferably 200 J or more, and most preferably 240 J or more. Further, the upper limit of the Charpy absorbed energy is not particularly limited, but may be 350 J or less or 280 J or less. The Charpy absorbed energy can be measured by the method described in the examples.
  • the cold workability of the high-temperature steel sheet for cryogenic use of the present invention is not particularly limited, but the brittle fracture surface ratio in a strain-aged Charpy test at 3% strain and a test temperature of -196 ° C is 2% or less. Preferably, it is more preferably 0%.
  • the brittle fracture surface ratio can be regarded as an index of cold workability.
  • the said brittle fracture surface rate can be evaluated by the method described in the Example.
  • the temperature refers to the temperature at the center of the plate thickness (plate thickness 1/2 position).
  • the temperature at the center of the plate thickness can be obtained by heat transfer calculation from the surface temperature of the steel plate measured with a radiation thermometer.
  • a high-tensile steel plate for cryogenic temperature having the above-described microstructure can be manufactured by sequentially performing the following steps (1) to (7).
  • (1) Heating of steel material (2) Hot rolling (3) First accelerated cooling (4) Two-phase region heating (5) Second accelerated cooling (6) Air cooling (7) Tempering treatment
  • the steel material which has the component composition mentioned above is heated to the heating temperature of 900 degreeC or more and 1200 degrees C or less.
  • the manufacturing method of the said steel raw material is not specifically limited, For example, it can manufacture by melting and casting the molten steel which has the above-mentioned composition by a conventional method.
  • the melting can be performed by an arbitrary method such as a converter, electric furnace, induction furnace or the like.
  • the casting is preferably performed by a continuous casting method from the viewpoint of productivity, but can also be performed by an ingot-making / decomposing rolling method.
  • the steel material for example, a steel slab can be used.
  • the heating may be performed after once cooling a steel material obtained by a method such as casting, or the obtained steel material can be directly subjected to the heating without cooling.
  • Heating temperature 900-1200 ° C If the heating temperature is less than 900 ° C., the deformation resistance of the steel material is high, so the load on the rolling mill in hot rolling increases, making it difficult to perform hot rolling. Therefore, the heating temperature is set to 900 ° C. or higher. On the other hand, when the heating temperature is higher than 1200 ° C., the oxidation of the steel becomes remarkable and the loss due to the oxidation increases, resulting in a decrease in yield. Therefore, the heating temperature is set to 1200 ° C. or lower.
  • the heated steel raw material is hot-rolled to make a hot-rolled steel sheet.
  • the final thickness of the hot-rolled steel sheet is not particularly limited, but is preferably 6 mm or more and 50 mm or less as described above.
  • the 1st accelerated cooling whose average cooling rate is 1 degree-C / s or more and whose cooling stop temperature is 300 degrees C or less is given to the said hot-rolled steel plate.
  • the hot-rolled steel sheet is quenched by the first accelerated cooling, and becomes a martensite and bainite structure.
  • Average cooling rate 1 ° C./s or more
  • the average cooling rate in the temperature range of 550 ° C. or less and 300 ° C. or more is less than 1 ° C./s, the temperature at the 1/4 thickness position is desired This transformation structure cannot be obtained, and the strength cannot be obtained. Therefore, the average cooling rate is set to 1 ° C./s or more.
  • the upper limit of the average cooling rate is not particularly limited, but if the average cooling rate is higher than 200 ° C./s, it becomes difficult to control the temperature at each position in the steel sheet, and there is a variation in material in the sheet width direction and the rolling direction. It becomes easy to come out. As a result, variations in material properties such as tensile properties occur. Therefore, the average cooling rate is preferably 200 ° C./s or less.
  • Cooling stop temperature 300 ° C. or less
  • the cooling stop temperature is set to 300 ° C. or less at a temperature at a thickness of 1/4. If the cooling stop temperature is higher than 300 ° C., the transformation at the time of quenching becomes insufficient, so that a desired strength cannot be obtained.
  • the first accelerated cooling can be performed by any method without any particular limitation.
  • one or both of air cooling and water cooling can be used.
  • water cooling any cooling method using water (for example, spray cooling, mist cooling, laminar cooling, etc.) can be used.
  • the cooled hot-rolled steel sheet is heated to a heating temperature not lower than Ac1 point and lower than Ac3 point at a temperature at the thickness 1/4 position (two-phase region heating).
  • the two-phase region heating most of the structure of the hot-rolled steel sheet is converted into a mixed structure of bainite and austenite in which C, Ni, and Mn are concentrated by reverse transformation from martensite.
  • Heating temperature not less than Ac1 point and less than Ac3 point
  • the heating temperature is less than Ac1 point
  • the above-mentioned reverse transformation austenite is hardly obtained, and a desired microstructure cannot be obtained by the subsequent second accelerated cooling.
  • the desired strength cannot be obtained in the finally obtained thick steel plate.
  • the heating temperature is Ac3 point or higher
  • bainite and martensite are all reversely transformed into austenite, and C, Ni, and Mn are averaged over the entire structure, so that a desired microstructure cannot be obtained. .
  • the desired cold workability cannot be obtained.
  • Ac1 point and Ac3 point can be calculated
  • Ac1 (°C) 750.8-26.6C + 17.6Si-11.6Mn-22.9Cu-23Ni + 24.1Cr + 22.5Mo- 39.7V-5.7Ti + 232.4Nb-169.4Al...
  • Ac3 (° C) 937.2-436.5C + 56Si-19.7Mn-16.3Cu-26.6Ni-4.9Cr + 38.1Mo + 124.8V + 136.3Ti-19.1Nb + 198.4Al
  • the element symbols in the above formulas (1) and (2) represent the content (% by mass) of each element, and 0 when the element is not contained.
  • Any heating method can be used for the two-phase region heating as long as the heating temperature can be controlled as described above.
  • An example of the heating method is furnace heating.
  • the furnace heating is not particularly limited, and a general heat treatment furnace can be used.
  • the next second accelerated cooling may be started immediately after reaching the heating temperature, but the second second acceleration is performed after holding the heating temperature for an arbitrary time. Cooling may be started.
  • the holding time is not particularly limited, but is preferably 5 minutes or more.
  • Second accelerated cooling in which the average cooling rate is 3 ° C./s or more and the cooling stop temperature is 500 ° C. or less and 250 ° C. or more is applied to the hot-rolled steel sheet after the two-phase region heating. Apply.
  • the hot rolled steel sheet is quenched by the second accelerated cooling to obtain a quenched structure in which retained austenite is dispersed in a matrix composed of martensite or martensite and bainite.
  • Average cooling rate 3 ° C./s or more
  • the average cooling rate is set to 3 ° C./s or more.
  • the upper limit of the average cooling rate is not particularly limited, but if the average cooling rate is higher than 200 ° C./s, it becomes difficult to control the temperature at each position in the steel sheet, and there is a variation in material in the sheet width direction and the rolling direction. It becomes easy to come out. As a result, variations in material properties such as tensile properties occur. Therefore, the average cooling rate is preferably 200 ° C./s or less.
  • the said average cooling rate shall point out the average cooling rate between the acceleration cooling start in the 2nd acceleration cooling process to an acceleration cooling stop here.
  • Cooling stop temperature 250-500 ° C
  • the cooling stop temperature in the second accelerated cooling is set to 250 ° C. or more and 500 ° C. or less at the temperature at the plate thickness 1 ⁇ 4 position.
  • C can be concentrated to untransformed austenite and austenite can be stabilized. If the accelerated cooling stop temperature is less than 250 ° C., untransformed austenite is transformed into martensite, and a desired retained austenite amount cannot be obtained. On the other hand, if the accelerated cooling stop temperature is higher than 500 ° C., the distribution of C to the austenite phase becomes insufficient, the amount of residual austenite finally obtained decreases, and the desired toughness cannot be obtained.
  • the second accelerated cooling can be performed by any method without any particular limitation.
  • one or both of air cooling and water cooling can be used.
  • water cooling any cooling method using water (for example, spray cooling, mist cooling, laminar cooling, etc.) can be used.
  • the hot-rolled steel sheet after the second accelerated cooling is air-cooled to 200 ° C. or less (air cooling after accelerated cooling).
  • the cooling rate in the air cooling is not particularly limited, but the average cooling rate is preferably less than 1 ° C./s.
  • Tempering process Next, a tempering process is performed. By the tempering treatment, the retained austenite can be stabilized and the bainite and martensite structure can be tempered to improve toughness.
  • Tempering temperature 500-650 ° C
  • the tempering temperature in the tempering treatment is set to 500 ° C. or more and 650 ° C. or less at a temperature at a position of 1/2 the plate thickness.
  • the tempering temperature is set to 500 ° C. or higher.
  • the tempering temperature exceeds 650 ° C., the stability of retained austenite is lowered, and the desired low-temperature toughness cannot be obtained. Therefore, the said tempering temperature shall be 650 degrees C or less.
  • the method for producing a cryogenic high-tensile steel plate further optionally includes the following steps (A) and (B) after the hot rolling and prior to the first accelerated cooling: It can be performed.
  • Reheating temperature Ac3 point ⁇ 1000 °C
  • the reheating temperature in the reheating is set to Ac3 point or higher and 1000 ° C or lower.
  • the structure of the hot-rolled steel sheet can be made into a uniform and refined austenite structure. If the reheating temperature is less than Ac3 point, the ferrite structure remains in the finally obtained thick steel sheet, and the desired strength cannot be obtained.
  • the reheating temperature is higher than 1000 ° C., the operation load becomes large, and austenite coarsens, so that desired toughness cannot be obtained.
  • Any heating method can be used for the reheating as long as the reheating temperature can be controlled as described above.
  • An example of the heating method is furnace heating.
  • the furnace heating is not particularly limited, and a general heat treatment furnace can be used.
  • a high-tensile steel plate for cryogenic temperatures was manufactured according to the procedure described below, and the characteristics of the obtained high-tensile steel plate for cryogenic temperatures were evaluated.
  • molten steel having the composition shown in Table 1 was melted in a converter, and a steel slab (thickness: 250 mm) as a steel material was manufactured by a continuous casting method.
  • the Ac1 point (° C.) obtained from the above-described equation (1) and the Ac3 point (° C.) obtained from the equation (2) are also shown in Table 1.
  • the obtained steel slab was heated to the heating temperature shown in Table 2 and hot-rolled to obtain a hot-rolled steel plate having the thickness shown in Table 2.
  • first hot cooling was performed on the hot-rolled steel sheet.
  • the average cooling rate and cooling stop temperature in the first accelerated cooling were as shown in Table 2.
  • air cooling and reheating were performed under the conditions shown in Table 2 prior to the first accelerated cooling.
  • the two-phase region heating at the heating temperature shown in Table 2 was performed on the hot rolled steel sheet after the first accelerated cooling. After the two-phase region heating, the hot rolled steel sheet was subjected to second accelerated cooling. The average cooling rate and cooling stop temperature in the second accelerated cooling were as shown in Table 2. After the second accelerated cooling, air cooling to 200 ° C. or lower was performed, and then tempering was performed. The tempering temperature in the tempering was as shown in Table 2.
  • the heat processing furnace was used for the heating in each said process.
  • the steel plate obtained as described above is comparative example No. Except 6, all had lath-like micro, and the microstructure was tempered martensite or a mixed structure of tempered martensite and tempered bainite structure. Moreover, the obtained steel plate was comparative example No. in which the volume fraction of retained austenite was 0%. Except for 5, the microstructure had a structure in which retained austenite was dispersed in the matrix.
  • Ten X-ray diffraction test pieces were collected in parallel with the plate surface from the 1/4 thickness position of the thick steel plate, and five of the test pieces were subjected to sub-zero treatment. Sub-zero treatment was performed by holding the test piece in liquid nitrogen at -196 ° C for 15 minutes. Each of the five test pieces without subzero treatment and the subzero treatment was subjected to X-ray diffraction by grinding and chemical polishing the test piece so that the plate thickness 1 ⁇ 4 position was the measurement surface.
  • a V-notch test piece was taken from the position of the thickness 1 ⁇ 4 of the thick steel plate according to JIS Z 2202. Using the V-notch test piece, a Charpy impact test was performed in accordance with JIS Z 2242, and Charpy absorbed energy (vE-196 ° C ) at -196 ° C was obtained.
  • the Charpy absorbed energy can be regarded as an index of toughness at a very low temperature of a thick steel plate.
  • a tensile test piece was taken from the thick steel plate so that the rolling direction of the thick steel plate was the tensile direction.
  • an aging treatment was performed at 250 ° C. for 1 hour.
  • a V-notch test piece was sampled from the tensile test piece after the aging treatment in accordance with JIS Z 2202.
  • a Charpy impact test was performed in accordance with JIS Z 2242, and the brittle fracture surface ratio at -196 ° C. was determined.
  • the brittle fracture surface ratio can be regarded as an index of cold workability of the thick steel plate.
  • Table 3 also shows the amount of decrease in retained austenite due to the sub-zero treatment.
  • the amount of decrease in retained austenite is a value obtained by subtracting the residual austenite volume ratio after subzero treatment from the residual austenite volume ratio before subzero treatment.

Abstract

The present invention addresses the problem of providing a cryogenic steel sheet having a Ni content of less than 9% and also having both of toughness at the same level or a higher level as or than that of a 9%-Ni steel sheet and excellent cold workability. A cryogenic high-tensile thick steel sheet having a specified ingredient component, wherein the micro-structure at a position of one-fourth the thickness of the steel sheet comprises (1) a matrix composed of tempered martensite or a matric composed of tempered martensite and bainite and (2) retained austenite dispersed in the matrix, the content ratio of the retained austenite at a position of one-fourth the thickness of the steel sheet is more than 11% by volume and equal to or less than 20% by volume, and the content ratio of the retained austenite at a position of one-fourth the thickness of the steel sheet becomes more than 11% by volume and equal to or less than 20% by volume after the steel sheet is subjected to such a subzero treatment that the steel sheet is retained for 15 minutes in liquid nitrogen at -196°C.

Description

極低温用高張力厚鋼板およびその製造方法Cryogenic high-strength thick steel plate and method for producing the same
 本発明は、極低温用高張力厚鋼板に関し、特に、極低温靭性および冷間加工性に優れ、液化天然ガス(LNG)貯蔵用タンクなどの用途に好適に用いることができる極低温用高張力厚鋼板に関する。また、本発明は前記極低温用高張力厚鋼板の製造方法に関する。 The present invention relates to a high-tensile steel sheet for cryogenic use, and in particular, it is excellent in cryogenic toughness and cold workability, and can be suitably used for applications such as LNG storage tanks. It relates to a thick steel plate. Moreover, this invention relates to the manufacturing method of the said high-tensile steel plate for cryogenics.
 LNG貯蔵用タンクには常に高度な安全性が求められる。そのため、タンク本体に使用される低温用鋼板には、LNGが液体になる温度(約-162℃)において、優れた靭性を備えていることが要求される。また、タンクの製造においては、円筒管への成形のように厳しい加工が行われるため、使用される鋼板には冷間曲げ加工性も要求される。そのため、LNG貯蔵用タンクのタンク本体に使用される低温用鋼板としては、従来、低温靭性に優れる9%Ni鋼板が広く使用されてきた。 LNG tanks are always required to have a high level of safety. Therefore, the low temperature steel sheet used for the tank body is required to have excellent toughness at a temperature at which LNG becomes liquid (about −162 ° C.). Further, in the manufacture of tanks, since severe processing is performed as in the case of forming into a cylindrical tube, cold bending workability is also required for the steel sheet used. Therefore, as a low-temperature steel plate used for the tank body of the LNG storage tank, conventionally, a 9% Ni steel plate having excellent low-temperature toughness has been widely used.
 しかし、Niは高価な合金元素であるため、コスト削減の観点から、Ni含有量が9%未満であり、かつ9%Ni鋼板と同等以上の靱性を備えた低温用鋼板の開発が要望されている。 However, since Ni is an expensive alloy element, from the viewpoint of cost reduction, there is a demand for the development of a low-temperature steel sheet having a Ni content of less than 9% and a toughness equal to or higher than that of a 9% Ni steel sheet. Yes.
 通常、低温用鋼板のNi含有量を低減すると、低温域でオーステナイトが不安定となるため低温靭性が低下し、LNG貯蔵用タンクに要求される高度な安全性を確保することが困難となる。この問題に対し、Ni含有量を低減した低温用鋼板において、低温靭性等の鋼板特性を改善する様々な技術が提案されている。 Usually, when the Ni content of a low-temperature steel sheet is reduced, austenite becomes unstable in a low-temperature region, so that low-temperature toughness is lowered, and it is difficult to ensure a high level of safety required for an LNG storage tank. In response to this problem, various techniques have been proposed for improving steel sheet properties such as low temperature toughness in low temperature steel sheets with a reduced Ni content.
 例えば、特許文献1~5では、Ni含有量が7%で9%Ni鋼と同等の低温靱性を有する鋼板が提案されている。 For example, Patent Documents 1 to 5 propose steel sheets having a Ni content of 7% and low temperature toughness equivalent to 9% Ni steel.
 特許文献1には、低温強圧下圧延と2相域熱処理および焼入れ焼戻し処理を組み合わせる技術が提案されている。前記技術では、未変態オーステナイトへ歪を導入してMf点を下げることにより、残留オーステナイト組織の制御と安定化を行っている。 Patent Document 1 proposes a technique that combines low-temperature high-pressure rolling, two-phase region heat treatment, and quenching and tempering treatment. In the above technique, the residual austenite structure is controlled and stabilized by introducing strain into untransformed austenite and lowering the Mf point.
 特許文献2および3には、スラブの加熱温度と加熱時間を制御し、過度のスラブ加熱を抑制することにより、残留オーステナイト量の確保と粒径の微細化をはかる技術が開示されている。 Patent Documents 2 and 3 disclose techniques for securing the amount of retained austenite and reducing the particle size by controlling the heating temperature and heating time of the slab and suppressing excessive slab heating.
 特許文献4には、スラブに複数回の熱加工処理を施し、さらに2相域熱処理を行うことにより、合金元素の不均一性を低減し、残留オーステナイトを多量かつ均一微細に分散させる技術が開示されている。 Patent Document 4 discloses a technique for reducing non-uniformity of alloy elements and dispersing residual austenite in a large amount and uniformly and finely by subjecting the slab to thermal processing multiple times and further performing two-phase region heat treatment. Has been.
 特許文献5には、未再結晶域と再結晶域の累積圧下率を制御し、焼入れ焼戻し条件を規定することにより、残留オーステナイトが微細に分散した焼戻しマルテンサイト組織を得る技術が開示されている。 Patent Document 5 discloses a technique for obtaining a tempered martensite structure in which retained austenite is finely dispersed by controlling the cumulative reduction ratio of the non-recrystallized region and the recrystallized region and defining the quenching and tempering conditions. .
国際公開第2007/034576号International Publication No. 2007/034576 特開2011-219849号公報JP 2011-219849 A 特開2011-241419号公報JP 2011-241419 A 国際公開第2012/005330号International Publication No. 2012/005330 特開2015-86403号公報JP2015-86403A
 極低温靱性および冷間加工性を向上させるためには、残留オーステナイトを多量に生成することが有効である。従来のプロセスでは、オーステナイトを生成させるために2相域加熱後焼入れ処理を行っていたが、焼入れ時にオーステナイトの大部分がマルテンサイトに変態してしまうため、安定な残留オーステナイトを十分に得ることはできなかった。 In order to improve cryogenic toughness and cold workability, it is effective to produce a large amount of retained austenite. In the conventional process, a quenching treatment is performed after two-phase heating to generate austenite. However, since most of the austenite is transformed into martensite at the time of quenching, it is possible to sufficiently obtain stable retained austenite. could not.
 そこで特許文献1~5で提案された技術では、残留オーステナイトの生成と安定化のために、焼入れ後に焼戻し熱処理を施している。しかし、特許文献1~5で提案されている技術で得られる鋼板では、-196℃でのサブゼロ処理後の残留オーステナイト量は高くても11体積%でしかなく、安定な残留オーステナイトを多量に得ることはできない。そのため、冷間加工性が十分であるとは言えない。 Therefore, in the techniques proposed in Patent Documents 1 to 5, tempering heat treatment is performed after quenching in order to generate and stabilize retained austenite. However, in the steel sheet obtained by the techniques proposed in Patent Documents 1 to 5, the amount of retained austenite after subzero treatment at −196 ° C. is only 11% by volume, and a large amount of stable retained austenite is obtained. It is not possible. Therefore, it cannot be said that the cold workability is sufficient.
 本発明は、かかる事情に鑑み、Ni含有量が9%未満であり、かつ9%Ni鋼板と同等以上の靱性と、優れた冷間加工性とを兼ね備えた低温用鋼板を提供することを目的とする。 In view of such circumstances, the present invention has an object of providing a low-temperature steel sheet having a Ni content of less than 9% and having a toughness equal to or higher than that of a 9% Ni steel sheet and excellent cold workability. And
 本発明者らは、上記課題を達成するために鋭意研究を行い、以下の知見を得た。 The inventors of the present invention conducted intensive research to achieve the above-mentioned problems, and obtained the following knowledge.
(1)Niを9%未満に低減したうえで、9%Ni鋼と同等の極低温靱性と、優れた冷間加工性とを得るには、-196℃でのサブゼロ処理後における残留オーステナイトの体積率を11%超、20%以下に制御すればよい。 (1) In order to obtain cryogenic toughness equivalent to 9% Ni steel and excellent cold workability after reducing Ni to less than 9%, the residual austenite after subzero treatment at -196 ° C. The volume ratio may be controlled to be more than 11% and 20% or less.
(2)上記した安定な残留オーステナイト組織を得るために、マルテンサイト、またはマルテンサイトおよびベイナイト組織を生成させた熱延鋼板を、2相温度域に加熱し、平均冷却速度3℃/s以上で250~500℃まで冷却し、次いで、焼戻し処理を行えばよい。 (2) In order to obtain the above-mentioned stable retained austenite structure, the hot-rolled steel sheet in which martensite or martensite and bainite structures are generated is heated to a two-phase temperature range, and the average cooling rate is 3 ° C./s or more. It may be cooled to 250 to 500 ° C. and then tempered.
(3)上記処理によれば、2相域加熱中にC、Ni、およびMnなどのオーステナイト安定化元素をオーステナイトへ濃化させ、さらに焼戻し処理によりオーステナイトへCを濃化させる、という2段階で合金元素を分配させることができる。特に、前記250~500℃の温度で冷却を途中停止した後に焼戻し処理する本発明のプロセスは、200℃以下まで冷却(焼入れ)した後に焼戻しする従来のプロセスに比べて、より低温でCをオーステナイトへ分配させることができる。そのため、上記プロセスは従来の焼入れ焼戻し工程に比べてオーステナイトの安定化に有効であり、安定な残留オーステナイトを多量に得ることができる。 (3) According to the above treatment, austenite stabilizing elements such as C, Ni, and Mn are concentrated to austenite during two-phase heating, and further C is concentrated to austenite by tempering. Alloy elements can be distributed. In particular, the process of the present invention in which the tempering treatment is performed after the cooling is stopped at a temperature of 250 to 500 ° C., the C is austenite at a lower temperature than the conventional process of tempering after cooling (quenching) to 200 ° C. or less. Can be distributed. Therefore, the above process is more effective for stabilizing austenite than the conventional quenching and tempering step, and a large amount of stable retained austenite can be obtained.
 本発明は、上記知見に基づき完成されたものであり、その要旨は以下のとおりである。 The present invention has been completed based on the above findings, and the gist thereof is as follows.
1.質量%で、
  C :0.02~0.12%、
  Si:0.01~0.30%、
  Mn:0.50~2.00%、
  Ni:5.5~8.5%、
  P :0.005%以下、
  S :0.003%以下、および
  N :0.0015~0.0065%を含有し、
  残部がFeおよび不可避的不純物からなる成分組成を有し、
 板厚1/4位置におけるミクロ組織が、
  (1)焼戻しマルテンサイトまたは焼戻しマルテンサイトとベイナイトからなるマトリックスと、
  (2)前記マトリックス中に分散した残留オーステナイトと、からなり、
 板厚1/4位置における残留オーステナイトの体積率が11%超、20%以下であり、かつ、
 -196℃の液体窒素中に15分保持するサブゼロ処理を施した後の、板厚1/4位置における残留オーステナイトの体積率が、11%超、20%以下である、極低温用高張力厚鋼板。
1. % By mass
C: 0.02 to 0.12%,
Si: 0.01 to 0.30%,
Mn: 0.50 to 2.00%,
Ni: 5.5 to 8.5%,
P: 0.005% or less,
S: 0.003% or less, and N: 0.0015-0.0065%,
The balance has a component composition consisting of Fe and inevitable impurities,
The microstructure at the 1/4 thickness position is
(1) tempered martensite or a matrix composed of tempered martensite and bainite;
(2) consisting of residual austenite dispersed in the matrix,
The volume fraction of retained austenite at a thickness of 1/4 position is more than 11% and not more than 20%, and
A high tensile thickness for cryogenic temperatures in which the volume ratio of retained austenite at a 1/4 position of the plate thickness is more than 11% and not more than 20% after sub-zero treatment in liquid nitrogen at −196 ° C. for 15 minutes. steel sheet.
2.前記成分組成が、さらに、質量%で、
  Al:0.01~0.10%、
  Mo:0.05~0.50%、
  Cr:1.00%以下、
  Cu:0.40%以下、
  Nb:0.05%以下、
  V :0.05%以下、および
  Ti:0.03%以下
からなる群より選択される1または2以上を含有する、上記1に記載の極低温用高張力厚鋼板。
2. The component composition is further in mass%,
Al: 0.01 to 0.10%,
Mo: 0.05 to 0.50%,
Cr: 1.00% or less,
Cu: 0.40% or less,
Nb: 0.05% or less,
The high-tensile steel plate for cryogenic temperature according to 1 above, containing 1 or 2 or more selected from the group consisting of V: 0.05% or less and Ti: 0.03% or less.
3.前記成分組成が、さらに、質量%で、
  Ca:0.007%以下、
  REM:0.010%以下、および
  Mg:0.070%以下
からなる群より選択される1または2以上を含有する、上記1または2に記載の極低温用高張力厚鋼板。
3. The component composition is further in mass%,
Ca: 0.007% or less,
The high-tensile steel plate for cryogenic use according to 1 or 2 above, which contains 1 or 2 or more selected from the group consisting of REM: 0.010% or less and Mg: 0.070% or less.
4.上記1~3のいずれか一項に記載の成分組成を有する鋼素材を、900℃以上1200℃以下の加熱温度に加熱し、
 加熱された前記鋼素材を熱間圧延して熱延鋼板とし、
 前記熱延鋼板に、板厚1/4位置おける温度で550℃以下300℃以上の温度域における平均冷却速度が1℃/s以上、冷却停止温度が板厚1/4位置における温度で300℃以下である第1の加速冷却を施し、
 前記第1の加速冷却後の熱延鋼板に、板厚1/4位置における温度でAc1点以上、Ac3点未満の加熱温度に加熱する2相域加熱を施し、
 前記2相域加熱後の熱延鋼板に、板厚1/4位置における温度での平均冷却速度が3℃/s以上、冷却停止温度が板厚1/4位置における温度で500℃以下250℃以上である第2の加速冷却を施し、
 前記第2の加速冷却後の熱延鋼板を、200℃以下まで空冷し、
 前記空冷後の熱延鋼板に対して、焼戻し温度が板厚1/2位置における温度で500℃以上650℃以下である焼戻処理を施して、上記1に記載のミクロ組織を有する極低温用高張力厚鋼板とする、極低温用高張力厚鋼板の製造方法。
4). The steel material having the component composition according to any one of the above 1-3 is heated to a heating temperature of 900 ° C. or higher and 1200 ° C. or lower,
Hot-rolling the heated steel material into a hot-rolled steel sheet,
The hot-rolled steel sheet has an average cooling rate of 1 ° C./s or more in a temperature range of 550 ° C. or lower and 300 ° C. or higher at a thickness of 1/4 position, and a cooling stop temperature of 300 ° C. at a temperature of 1/4 position. The following first accelerated cooling is applied,
The hot-rolled steel sheet after the first accelerated cooling is subjected to two-phase region heating that is heated to a heating temperature of Ac1 point or more and less than Ac3 point at a temperature at a thickness of 1/4 position,
In the hot-rolled steel sheet after the two-phase region heating, the average cooling rate at the temperature at the 1/4 position of the sheet thickness is 3 ° C./s or more, and the cooling stop temperature is 500 ° C. or less at the temperature at the 1/4 position of the sheet thickness 250 ° C. The second accelerated cooling is applied,
The hot rolled steel sheet after the second accelerated cooling is air-cooled to 200 ° C. or less,
The air-cooled hot-rolled steel sheet is subjected to a tempering treatment in which the tempering temperature is 500 ° C. or higher and 650 ° C. or lower at a position at a thickness of 1/2, and for the cryogenic temperature having the microstructure described in 1 above A method for producing a high-tensile steel plate for cryogenic use, which is a high-tensile steel plate.
5.さらに、前記熱間圧延後、前記第1の加速冷却に先だって、 
  前記熱延鋼板を300℃以下の空冷停止温度まで空冷し、
  空冷された前記熱延鋼板を、Ac3点以上1000℃以下の再加熱温度まで再加熱する、上記4に記載の極低温用高張力厚鋼板の製造方法。
5. Furthermore, after the hot rolling, prior to the first accelerated cooling,
Air-cooling the hot-rolled steel sheet to an air-cooling stop temperature of 300 ° C. or lower,
5. The method for producing a high-tensile steel plate for cryogenic use according to 4 above, wherein the air-cooled hot-rolled steel sheet is reheated to a reheating temperature of Ac3 or higher and 1000 ° C or lower.
 本発明によれば、Ni含有量が5.5~8.5%に低減されているにもかかわらず、9%Ni鋼と同等以上の低温靭性を有し、さらに冷間加工性にも優れた極低温用高張力厚鋼板を得ることができる。この極低温用高張力厚鋼板は、LNG貯蔵用タンク等の用途に、極めて好適に用いることができる。そのため、本発明は、LNG貯蔵用タンクなどの鋼構造物の安全性向上に寄与し、産業上格段の効果を奏する。 According to the present invention, although the Ni content is reduced to 5.5 to 8.5%, it has low temperature toughness equivalent to or better than 9% Ni steel, and also has excellent cold workability. In addition, a high-tensile steel plate for cryogenic temperatures can be obtained. This high-tensile steel plate for cryogenic use can be used very suitably for applications such as LNG storage tanks. Therefore, this invention contributes to the safety | security improvement of steel structures, such as a tank for LNG storage, and has an industrial remarkable effect.
 以下、本発明の実施形態について具体的に説明する。なお、以下の説明は、本発明の好適な実施形態を示すものであって、本発明はこれに限定されない。 Hereinafter, embodiments of the present invention will be specifically described. The following description shows a preferred embodiment of the present invention, and the present invention is not limited to this.
[成分組成]
 本発明の極低温用高張力厚鋼板(以下、単に「鋼板」または「厚鋼板」という場合がある)、および極低温用高張力厚鋼板の製造に用いる鋼素材は、上述した成分組成を有する。以下、前記成分組成に含まれる各成分について説明する。なお、特に断らない限り、本明細書において成分の含有量の単位としての「%」は「質量%」を意味する。
[Ingredient composition]
The steel material used in the production of the cryogenic high-tensile thick steel plate (hereinafter sometimes simply referred to as “steel plate” or “thick steel plate”) and the cryogenic high-tensile thick steel plate has the above-described component composition. . Hereinafter, each component contained in the component composition will be described. Unless otherwise specified, “%” as a unit of content of components in the present specification means “% by mass”.
C:0.02~0.12%
 Cは、鋼板の強度を向上させる効果を有する元素である。また、Cは、所望の残留オーステナイト体積率を得る上でも重要な元素である。これらの効果を得るために、C含有量を0.02%以上、好ましくは0.04%以上とする。一方、C含有量が0.12%を超えると、鋼板の低温靭性が低下する。そのため、C含有量は0.12%以下、好ましくは0.08%以下とする。
C: 0.02 to 0.12%
C is an element having an effect of improving the strength of the steel plate. C is also an important element in obtaining a desired retained austenite volume fraction. In order to obtain these effects, the C content is 0.02% or more, preferably 0.04% or more. On the other hand, when the C content exceeds 0.12%, the low temperature toughness of the steel sheet is lowered. Therefore, the C content is 0.12% or less, preferably 0.08% or less.
Si:0.01~0.30%
 Siは、鋼板の強度向上に寄与する元素であり、脱酸剤としての作用を有する元素でもある。これらの効果を発現させるために、Si含有量は0.01%以上とする。一方、Si含有量が過剰に高くなると、靭性が低下する。そのため、Si含有量は0.30%以下、好ましくは0.10%以下とする。
Si: 0.01 to 0.30%
Si is an element that contributes to improving the strength of the steel sheet, and is also an element having an action as a deoxidizer. In order to express these effects, the Si content is 0.01% or more. On the other hand, when the Si content is excessively high, the toughness decreases. Therefore, the Si content is 0.30% or less, preferably 0.10% or less.
Mn:0.50~2.00%
 Mnは、鋼の焼入れ性を高め、鋼板の高強度化に寄与する元素である。Mn含有量が0.50%未満であると、鋼の焼入れ性が低下し、鋼板の強度のみならず低温靭性も低下する。そのため、Mn含有量は0.50%以上、好ましくは0.60%以上とする。一方、Mn含有量が2.00%を超えると、鋼板の強度向上効果が飽和するうえに、かえって低温靭性が低下する。そのため、Mn含有量は2.00%以下、好ましくは0.95%以下とする。
Mn: 0.50 to 2.00%
Mn is an element that enhances the hardenability of steel and contributes to high strength of the steel sheet. When the Mn content is less than 0.50%, the hardenability of the steel is lowered, and not only the strength of the steel sheet but also the low temperature toughness is lowered. Therefore, the Mn content is 0.50% or more, preferably 0.60% or more. On the other hand, if the Mn content exceeds 2.00%, the effect of improving the strength of the steel sheet is saturated and, on the other hand, the low temperature toughness is lowered. Therefore, the Mn content is 2.00% or less, preferably 0.95% or less.
Ni:5.5~8.5%
 Niは、鋼板の低温靭性向上に極めて有効な元素である。しかし、Niは高価な元素であるため、その含有量が高くなるにつれて鋼板コストが高騰する。そのため、Ni含有量は8.5%以下とする。一方、Ni含有量が5.5%未満になると、低温で安定した残留オーステナイトが得られなくなり、その結果、鋼板の低温靭性が低下する。そのため、Ni含有量は5.5%以上とする。
Ni: 5.5 to 8.5%
Ni is an extremely effective element for improving the low temperature toughness of the steel sheet. However, since Ni is an expensive element, the steel sheet cost increases as its content increases. Therefore, the Ni content is set to 8.5% or less. On the other hand, if the Ni content is less than 5.5%, stable austenite that is stable at low temperatures cannot be obtained, and as a result, the low temperature toughness of the steel sheet decreases. Therefore, the Ni content is set to 5.5% or more.
P:0.005%以下
 Pは、不可避的不純物であり、鋼板の低温靭性に悪影響を及ぼす有害な元素である。例えば、鋼板を溶接して溶接構造物とした際に健全な母材および溶接継手を得るためには、Pの含有量を可能な限り低減することが好ましい。そのため、P含有量は0.005%以下とする。一方、P含有量は低ければ低いほど良いため、下限は特に限定されず、0%であってよいが、その場合にも不可避的不純物として含有することは許容される。しかし、過度の低減はコスト増の原因となるため、P含有量は0.001%以上とすることが好ましい。
P: 0.005% or less P is an unavoidable impurity and is a harmful element that adversely affects the low temperature toughness of the steel sheet. For example, it is preferable to reduce the P content as much as possible in order to obtain a sound base metal and a welded joint when a steel plate is welded to obtain a welded structure. Therefore, the P content is 0.005% or less. On the other hand, since the lower the P content, the better. Therefore, the lower limit is not particularly limited and may be 0%, but in that case, inclusion as an unavoidable impurity is permitted. However, since excessive reduction causes an increase in cost, the P content is preferably 0.001% or more.
S:0.003%以下 
 Sは、P同様、不可避的不純物であり、鋼板の低温靭性に悪影響を及ぼす有害な元素である。例えば、鋼板を溶接して溶接構造物とした際に健全な母材および溶接継手を得るためには、Sの含有量を可能な限り低減することが好ましい。そのため、S含有量は0.003%以下とする。一方、S含有量は低ければ低いほど良いため、下限は特に限定されず、0%であってよいが、その場合にも不可避的不純物として含有することは許容される。しかし、過度の低減はコスト増の原因となるため、S含有量は0.0001%以上とすることが好ましい。
S: 0.003% or less
S, like P, is an unavoidable impurity and is a harmful element that adversely affects the low temperature toughness of the steel sheet. For example, it is preferable to reduce the S content as much as possible in order to obtain a sound base metal and a welded joint when a steel plate is welded to obtain a welded structure. Therefore, the S content is set to 0.003% or less. On the other hand, the lower the S content, the better. Therefore, the lower limit is not particularly limited and may be 0%, but in that case, inclusion as an unavoidable impurity is permitted. However, excessive reduction causes an increase in cost, so the S content is preferably 0.0001% or more.
N:0.0015~0.0065%
 Nは、鋼中で析出物を形成する元素であり、AlNを形成することによって母材の細粒化に寄与する。前記効果を得るために、N含有量を0.0015%以上とする。一方、N含有量が0.0065%を超えると、鋼板を溶接して溶接構造物とした際、母材および溶接熱影響部の靭性が低下する。そのため、N含有量は0.0065%以下とする。
N: 0.0015 to 0.0065%
N is an element that forms precipitates in steel, and contributes to the refinement of the base material by forming AlN. In order to acquire the said effect, N content shall be 0.0015% or more. On the other hand, when the N content exceeds 0.0065%, the toughness of the base material and the weld heat affected zone is lowered when the steel plate is welded to form a welded structure. Therefore, the N content is 0.0065% or less.
 本発明の一実施形態における成分組成は、上記元素と、残部がFe及び不可避的不純物からなるものとすることができる。 The component composition in an embodiment of the present invention may be composed of the above elements, with the balance being Fe and inevitable impurities.
 また、本発明の他の実施形態においては、上記成分組成が、任意に、Al、Mo、Cr、Cu、Nb、V、およびTiからなる群より選択される1または2以上を、以下に記す量でさらに含有することができる。 In another embodiment of the present invention, one or more selected from the group consisting of Al, Mo, Cr, Cu, Nb, V, and Ti is arbitrarily described below. It can be further contained in an amount.
Al:0.01~0.10%
 Alは、脱酸剤に含まれる元素である。Al含有量が0.01%未満では脱酸剤としての効果が乏しい。そのため、Alを含有させる場合は、Al含有量を0.01%以上、好ましくは0.02%以上とする。一方、Al含有量が0.10%を超えると鋼の清浄性が損なわれる。そのため、Al含有量は0.10%以下、好ましくは0.05%以下とする。
Al: 0.01 to 0.10%
Al is an element contained in the deoxidizer. When the Al content is less than 0.01%, the effect as a deoxidizer is poor. Therefore, when Al is contained, the Al content is 0.01% or more, preferably 0.02% or more. On the other hand, if the Al content exceeds 0.10%, the cleanliness of the steel is impaired. Therefore, the Al content is 0.10% or less, preferably 0.05% or less.
Mo:0.05~0.50%
 Moは、低温靭性を損なうことなく鋼板の強度を向上させることができる元素である。Moを添加する場合、前記効果を得るためにMo含有量を0.05%以上、好ましくは0.10%超とする。一方、Mo含有量が0.50%を超えると低温靭性が低下する。そのため、Mo含有量は0.50%以下、好ましくは0.30%以下とする。
Mo: 0.05 to 0.50%
Mo is an element that can improve the strength of the steel sheet without impairing the low temperature toughness. When adding Mo, in order to acquire the said effect, Mo content shall be 0.05% or more, Preferably it exceeds 0.10%. On the other hand, if the Mo content exceeds 0.50%, the low temperature toughness decreases. Therefore, the Mo content is 0.50% or less, preferably 0.30% or less.
Cr:1.00%以下
 Crは、Moと同様の効果を有する元素であるが、Cr含有量が1.00%を超えると鋼板の低温靭性が低下する。そのため、Crを添加する場合、Cr含有量を1.00%以下、好ましくは0.20%未満とする。一方、Cr含有量の下限は特に限定されないが、上記の効果を高めるという観点からは、Cr含有量を0.01%以上とすることが好ましい。
Cr: 1.00% or less Cr is an element having the same effect as Mo, but when the Cr content exceeds 1.00%, the low-temperature toughness of the steel sheet decreases. Therefore, when adding Cr, the Cr content is 1.00% or less, preferably less than 0.20%. On the other hand, the lower limit of the Cr content is not particularly limited, but from the viewpoint of enhancing the above effect, the Cr content is preferably 0.01% or more.
Cu:0.40%以下
 Cuは、焼入れ性向上により鋼板強度を高める効果を有する元素である。しかし、Cu含有量が0.40%を超えると、鋼板の低温靭性が低下することに加え、鋳造後の鋼(スラブ)表面の性状が悪化する。したがって、Cuを添加する場合、Cu含有量を0.40%以下、好ましくは0.30%以下とする。一方、Cu含有量の下限は特に限定されないが、上記の効果を高めるという観点からは、Cu含有量を0.10%以上とすることが好ましい。
Cu: 0.40% or less Cu is an element having an effect of increasing the steel sheet strength by improving the hardenability. However, if the Cu content exceeds 0.40%, the low-temperature toughness of the steel sheet decreases, and the properties of the steel (slab) surface after casting deteriorate. Therefore, when adding Cu, the Cu content is set to 0.40% or less, preferably 0.30% or less. On the other hand, the lower limit of the Cu content is not particularly limited, but from the viewpoint of enhancing the above effects, the Cu content is preferably set to 0.10% or more.
Nb:0.05%以下
 Nbは、析出強化により鋼板強度を高める有効な元素である。しかし、Nb含有量が過剰に高くなると、鋼板の低温靭性が低下する。そのため、Nbを添加する場合、Nb含有量を0.05%以下、好ましくは0.03%以下とする。一方、Nb含有量の下限は特に限定されないが、上記の効果を高めるという観点からは、Nb含有量を0.010%以上とすることが好ましい。
Nb: 0.05% or less Nb is an effective element that increases the strength of the steel sheet by precipitation strengthening. However, when the Nb content is excessively high, the low temperature toughness of the steel sheet is lowered. Therefore, when Nb is added, the Nb content is set to 0.05% or less, preferably 0.03% or less. On the other hand, the lower limit of the Nb content is not particularly limited, but from the viewpoint of enhancing the above effect, the Nb content is preferably set to 0.010% or more.
V:0.05%以下
 Vは、Nb同様、析出強化により鋼板強度を高める有効な元素である。しかし、V含有量が過剰に高くなると、鋼板の低温靭性が低下する。そのため、Vを添加する場合、V含有量を0.05%以下、好ましくは0.04%以下とする。一方、V含有量の下限は特に限定されないが、上記の効果を高めるという観点からは、V含有量を0.010%以上とすることが好ましい。
V: 0.05% or less V, like Nb, is an effective element that increases the steel sheet strength by precipitation strengthening. However, when the V content is excessively high, the low temperature toughness of the steel sheet is lowered. Therefore, when V is added, the V content is 0.05% or less, preferably 0.04% or less. On the other hand, the lower limit of the V content is not particularly limited, but from the viewpoint of enhancing the above effect, the V content is preferably set to 0.010% or more.
Ti:0.03%以下
 Tiは、鋼板を溶接して溶接構造物とする際、母材の機械的特性を低下させることなく溶接部の靭性を高める効果を有する元素である。したがって、任意に、Tiを0.03%以下の範囲で含有させることができる。一方、Ti含有量の下限は特に限定されないが、上記の効果を高めるという観点からは、Ti含有量を0.001%以上とすることが好ましい。
Ti: 0.03% or less Ti is an element having an effect of increasing the toughness of a welded part without deteriorating the mechanical properties of the base metal when a steel plate is welded to form a welded structure. Therefore, Ti can be arbitrarily contained in the range of 0.03% or less. On the other hand, the lower limit of the Ti content is not particularly limited, but from the viewpoint of enhancing the above effect, the Ti content is preferably 0.001% or more.
 また、本発明の他の実施形態においては、上記成分組成が、任意に、Ca、REM、およびMgからなる群より選択される1または2以上を、以下に記す量でさらに含有することができる。 Moreover, in other embodiment of this invention, the said component composition can further contain further 1 or 2 or more selected from the group which consists of Ca, REM, and Mg in the quantity described below. .
Ca:0.007%以下
 Caは、鋼中の介在物の形態を制御することで鋼板の低温靭性を向上させる効果を有する元素である。しかし、Caが過剰になると鋼の清浄性を損なう。そのため、Caを添加する場合、Ca含有量を0.007%以下、好ましくは0.004%以下とする。一方、Ca含有量の下限は特に限定されないが、上記の効果を高めるという観点からは、0.0005%以上とすることが好ましい。
Ca: 0.007% or less Ca is an element having an effect of improving the low-temperature toughness of the steel sheet by controlling the form of inclusions in the steel. However, if Ca is excessive, the cleanliness of the steel is impaired. Therefore, when Ca is added, the Ca content is set to 0.007% or less, preferably 0.004% or less. On the other hand, the lower limit of the Ca content is not particularly limited, but is preferably 0.0005% or more from the viewpoint of enhancing the above effect.
REM:0.010%以下
 REM(希土類金属)は、Ca同様、鋼中の介在物の形態を制御することで鋼板の低温靭性を向上させる効果を有する元素である。しかし、REMが過剰になると鋼の清浄性を損なう。そのため、REMを添加する場合、REM含有量を0.010%以下、好ましくは0.008%以下とする。一方、REM含有量の下限は特に限定されないが、上記の効果を高めるという観点からは、REM含有量を0.0005%以上とすることが好ましい。
REM: 0.010% or less REM (rare earth metal) is an element having an effect of improving the low temperature toughness of a steel sheet by controlling the form of inclusions in the steel, like Ca. However, when REM becomes excessive, the cleanliness of the steel is impaired. Therefore, when REM is added, the REM content is set to 0.010% or less, preferably 0.008% or less. On the other hand, the lower limit of the REM content is not particularly limited, but from the viewpoint of enhancing the above effect, the REM content is preferably 0.0005% or more.
Mg:0.070%以下
 Mgは、CaやREM同様、鋼中の介在物の形態を制御することで、鋼板の低温靭性を向上させる作用を有する元素である。しかし、Mgが過剰になると、鋼の清浄性を損なう。そのため、Mgを添加する場合、Mg含有量を0.070%以下、好ましくは0.004%以下とする。一方、Mg含有量の下限は特に限定されないが、上記の効果を高めるという観点からは、Mg含有量を0.0005%以上とすることが好ましい。
Mg: 0.070% or less Mg, like Ca and REM, is an element having an effect of improving the low temperature toughness of the steel sheet by controlling the form of inclusions in the steel. However, if Mg is excessive, the cleanliness of the steel is impaired. Therefore, when adding Mg, the Mg content is set to 0.070% or less, preferably 0.004% or less. On the other hand, the lower limit of the Mg content is not particularly limited, but from the viewpoint of enhancing the above effect, the Mg content is preferably 0.0005% or more.
[ミクロ組織]
 本発明の極低温用高張力厚鋼板は、冷間加工性と極低温靱性を確保するために、板厚1/4位置におけるミクロ組織が、(1)マトリックスと(2)前記マトリックス中に分散した残留オーステナイトとからなる。
[Microstructure]
In the high-tensile steel plate for cryogenic use according to the present invention, in order to ensure cold workability and cryogenic toughness, the microstructure at the 1/4 thickness position is dispersed in (1) matrix and (2) the matrix. And retained austenite.
 前記マトリックスは、(A)焼戻しマルテンサイト、または(B)焼戻しマルテンサイトと焼戻されたベイナイトからなる。マトリックスが前記条件を満たさない場合、700MPa以上の引張強さと所望の低温靭性の一方または両方を得ることができない。 The matrix is composed of (A) tempered martensite or (B) tempered martensite and tempered bainite. If the matrix does not satisfy the above conditions, one or both of a tensile strength of 700 MPa or more and a desired low temperature toughness cannot be obtained.
(サブゼロ処理前の残留オーステナイト量)
 本発明の極低温用高張力厚鋼板は、該極低温用高張力厚鋼板の板厚1/4位置における残留オーステナイトの体積率が、11%超、20%以下である。前記体積率が11%以下では、所望の冷間加工性を得ることできない。一方、前記体積率が20%を超えると、Ni含有量が5.5~8.5%の条件下では所望の強度が確保できない。
(Amount of retained austenite before subzero treatment)
In the high-tensile steel plate for cryogenic temperatures of the present invention, the volume ratio of retained austenite at the 1/4 thickness position of the cryogenic high-tensile steel plate is more than 11% and not more than 20%. If the volume ratio is 11% or less, desired cold workability cannot be obtained. On the other hand, if the volume ratio exceeds 20%, the desired strength cannot be ensured under the condition that the Ni content is 5.5 to 8.5%.
(サブゼロ処理後の残留オーステナイト量)
 さらに、本発明の極低温用高張力厚鋼板は、該極低温用高張力厚鋼板にサブゼロ処理を施した後の板厚1/4位置における残留オーステナイトの体積率が、11%超、20%以下である。ここで、前記サブゼロ処理は、鋼板を-196℃の液体窒素中に15分保持することによって行うこととする。前記体積率が11%以下では、所望の冷間加工性を得ることできない。前記サブゼロ処理後の残留オーステナイトの体積率は、12.5%以上であることが好ましい。一方、前記体積率が20%を超えると、Ni含有量が5.5~8.5%の条件下では所望の強度が確保できない。
(Residual austenite amount after sub-zero treatment)
Furthermore, in the high-tensile steel sheet for cryogenic use according to the present invention, the volume ratio of retained austenite at a 1/4 thickness position after subjecting the cryogenic high-tensile steel sheet to sub-zero treatment is more than 11% and 20%. It is as follows. Here, the sub-zero treatment is performed by holding the steel plate in liquid nitrogen at −196 ° C. for 15 minutes. If the volume ratio is 11% or less, desired cold workability cannot be obtained. The volume ratio of retained austenite after the sub-zero treatment is preferably 12.5% or more. On the other hand, if the volume ratio exceeds 20%, the desired strength cannot be ensured under the condition that the Ni content is 5.5 to 8.5%.
 また、前記条件でサブゼロ処理を行った際の残留オーステナイトの減少量は、体積率で、0.5%未満であることが好ましい。ここで、前記減少量は、サブゼロ処理前の残留オーステナイトの体積率とサブゼロ処理後の残留オーステナイトの体積率の差を指すものとする。 In addition, it is preferable that the amount of decrease in retained austenite when the sub-zero treatment is performed under the above conditions is less than 0.5% in volume ratio. Here, the amount of decrease refers to the difference between the volume fraction of retained austenite before subzero treatment and the volume fraction of retained austenite after subzero treatment.
[板厚]
 本発明の極低温用高張力厚鋼板の板厚は特に限定されず、任意の厚さとすることができるが、6mm以上、50mm以下とすることが好ましい。
[Thickness]
The thickness of the high-tensile steel plate for cryogenic use of the present invention is not particularly limited, and can be any thickness, but is preferably 6 mm or more and 50 mm or less.
[機械的特性]
(引張強さ)
 本発明の極低温用高張力厚鋼板の引張強さ(TS)の下限は、特に限定されず任意の値とすることができるが、引張強さは700MPa以上とすることが好ましく、720MPa以上とすることがより好ましく、740MPa以上とすることがさらに好ましい。一方、引張強さの上限についても特に限定されず任意の値とすることができるが、引張強さは930MPa以下とすることが好ましく、900MPa以下とすることがより好ましい。なお、前記引張強さは、実施例に記載した方法で測定することができる。
[Mechanical properties]
(Tensile strength)
The lower limit of the tensile strength (TS) of the high-tensile steel plate for cryogenic temperatures of the present invention is not particularly limited and can be any value, but the tensile strength is preferably 700 MPa or more, and 720 MPa or more. It is more preferable to set it to 740 MPa or more. On the other hand, the upper limit of the tensile strength is not particularly limited and may be any value, but the tensile strength is preferably 930 MPa or less, and more preferably 900 MPa or less. In addition, the said tensile strength can be measured by the method described in the Example.
(靱性)
 本発明の極低温用高張力厚鋼板の靱性は、特に限定されず任意の値とすることができるが、-196℃におけるシャルピー吸収エネルギー(vE-196℃)を150J以上とすることが好ましく、180J以上とすることがより好ましく、200J以上とすることがさらに好ましく、240J以上とすることが最も好ましい。また、前記シャルピー吸収エネルギーの上限についても特に限定されないが、350J以下であってよく、280J以下であってもよい。なお、前記シャルピー吸収エネルギーは、実施例に記載した方法で測定することができる。
(Toughness)
The toughness of the high-temperature steel sheet for cryogenic use of the present invention is not particularly limited and can be any value, but the Charpy absorbed energy (vE-196 ° C. ) at −196 ° C. is preferably 150 J or more, More preferably, it is 180 J or more, more preferably 200 J or more, and most preferably 240 J or more. Further, the upper limit of the Charpy absorbed energy is not particularly limited, but may be 350 J or less or 280 J or less. The Charpy absorbed energy can be measured by the method described in the examples.
(冷間加工性)
 本発明の極低温用高張力厚鋼板の冷間加工性は特に限定されないが、与歪:3%、試験温度:-196℃での歪時効シャルピー試験における脆性破面率が2%以下であることが好ましく、0%であることがさらに好ましい。前記脆性破面率は、冷間加工性の指標とみなすことができる。なお、前記脆性破面率は、実施例に記載した方法で評価することができる。
(Cold workability)
The cold workability of the high-temperature steel sheet for cryogenic use of the present invention is not particularly limited, but the brittle fracture surface ratio in a strain-aged Charpy test at 3% strain and a test temperature of -196 ° C is 2% or less. Preferably, it is more preferably 0%. The brittle fracture surface ratio can be regarded as an index of cold workability. In addition, the said brittle fracture surface rate can be evaluated by the method described in the Example.
[製造方法]
 次に、本発明の一実施形態における極低温用高張力厚鋼板の製造方法について説明する。なお、以下の説明においては、特に断らない限り、温度は板厚中央(板厚1/2位置)の温度を指すものとする。板厚中央の温度は、放射温度計で測定した鋼板表面温度から、伝熱計算により求めることができる。
[Production method]
Next, the manufacturing method of the high-tensile steel plate for cryogenic temperature in one Embodiment of this invention is demonstrated. In the following description, unless otherwise specified, the temperature refers to the temperature at the center of the plate thickness (plate thickness 1/2 position). The temperature at the center of the plate thickness can be obtained by heat transfer calculation from the surface temperature of the steel plate measured with a radiation thermometer.
 本発明の一実施形態においては、下記(1)~(7)の工程を順次行うことにより、上述したミクロ組織を有する極低温用高張力厚鋼板を製造することができる。
(1)鋼素材の加熱
(2)熱間圧延
(3)第1の加速冷却
(4)2相域加熱
(5)第2の加速冷却
(6)空冷
(7)焼戻し処理
In one embodiment of the present invention, a high-tensile steel plate for cryogenic temperature having the above-described microstructure can be manufactured by sequentially performing the following steps (1) to (7).
(1) Heating of steel material (2) Hot rolling (3) First accelerated cooling (4) Two-phase region heating (5) Second accelerated cooling (6) Air cooling (7) Tempering treatment
(1)鋼素材の加熱
 まず、上述した成分組成を有する鋼素材を、900℃以上1200℃以下の加熱温度に加熱する。前記鋼素材の製造方法は、とくに限定されないが、例えば、上記した組成を有する溶鋼を常法により溶製し、鋳造することにより製造することができる。前記溶製は、転炉、電気炉、誘導炉等、任意の方法により行うことができる。また、前記鋳造は、生産性の観点から連続鋳造法で行うことが好ましいが、造塊-分解圧延法により行うこともできる。前記鋼素材としては、例えば、鋼スラブを用いることができる。
(1) Heating of steel material First, the steel material which has the component composition mentioned above is heated to the heating temperature of 900 degreeC or more and 1200 degrees C or less. Although the manufacturing method of the said steel raw material is not specifically limited, For example, it can manufacture by melting and casting the molten steel which has the above-mentioned composition by a conventional method. The melting can be performed by an arbitrary method such as a converter, electric furnace, induction furnace or the like. The casting is preferably performed by a continuous casting method from the viewpoint of productivity, but can also be performed by an ingot-making / decomposing rolling method. As the steel material, for example, a steel slab can be used.
 前記加熱は、鋳造などの方法によって得た鋼素材を一旦冷却した後に行ってもよく、また、得られた鋼素材を冷却することなく直接、前記加熱に供することもできる。 The heating may be performed after once cooling a steel material obtained by a method such as casting, or the obtained steel material can be directly subjected to the heating without cooling.
加熱温度:900~1200℃
 前記加熱温度が900℃未満であると、鋼素材の変形抵抗が高いため、熱間圧延における圧延機への負荷が増大し、熱間圧延を行うことが困難となる。そのため、前記加熱温度は900℃以上とする。一方、前記加熱温度が1200℃より高いと、鋼の酸化が顕著となり、酸化によるロスが増大する結果、歩留まりが低下する。そのため、前記加熱温度は1200℃以下とする。
Heating temperature: 900-1200 ° C
If the heating temperature is less than 900 ° C., the deformation resistance of the steel material is high, so the load on the rolling mill in hot rolling increases, making it difficult to perform hot rolling. Therefore, the heating temperature is set to 900 ° C. or higher. On the other hand, when the heating temperature is higher than 1200 ° C., the oxidation of the steel becomes remarkable and the loss due to the oxidation increases, resulting in a decrease in yield. Therefore, the heating temperature is set to 1200 ° C. or lower.
(2)熱間圧延
 上記加熱の後、加熱された鋼素材を熱間圧延して熱延鋼板とする。前記熱延鋼板の最終板厚は特に限定されないが、上述したように、6mm以上50mm以下とすることが好ましい。
(2) Hot rolling After the said heating, the heated steel raw material is hot-rolled to make a hot-rolled steel sheet. The final thickness of the hot-rolled steel sheet is not particularly limited, but is preferably 6 mm or more and 50 mm or less as described above.
(3)第1の加速冷却
 上記熱間圧延後、前記熱延鋼板に、平均冷却速度が1℃/s以上、冷却停止温度が300℃以下である第1の加速冷却を施す。前記第1の加速冷却によって前記熱延鋼板が焼入れされ、マルテンサイトとベイナイト組織となる。
(3) 1st accelerated cooling After the said hot rolling, the 1st accelerated cooling whose average cooling rate is 1 degree-C / s or more and whose cooling stop temperature is 300 degrees C or less is given to the said hot-rolled steel plate. The hot-rolled steel sheet is quenched by the first accelerated cooling, and becomes a martensite and bainite structure.
平均冷却速度:1℃/s以上
 前記第1の加速冷却において、板厚1/4位置おける温度で550℃以下300℃以上の温度域における平均冷却速度が1℃/s未満であると、所望の変態組織が得られず、強度を得ることができない。そのため、前記平均冷却速度は1℃/s以上とする。一方、前記平均冷却速度の上限は特に限定されないが、前記平均冷却速度が200℃/sより高いと、鋼板内の各位置における温度制御が困難となり、板幅方向および圧延方向に材質のばらつきが出やすくなる。そしてその結果、引張特性などの材料特性のばらつきが生じる。そのため、前記平均冷却速度は200℃/s以下とすることが好ましい。
Average cooling rate: 1 ° C./s or more In the first accelerated cooling, if the average cooling rate in the temperature range of 550 ° C. or less and 300 ° C. or more is less than 1 ° C./s, the temperature at the 1/4 thickness position is desired This transformation structure cannot be obtained, and the strength cannot be obtained. Therefore, the average cooling rate is set to 1 ° C./s or more. On the other hand, the upper limit of the average cooling rate is not particularly limited, but if the average cooling rate is higher than 200 ° C./s, it becomes difficult to control the temperature at each position in the steel sheet, and there is a variation in material in the sheet width direction and the rolling direction. It becomes easy to come out. As a result, variations in material properties such as tensile properties occur. Therefore, the average cooling rate is preferably 200 ° C./s or less.
冷却停止温度:300℃以下
 冷却停止温度は、板厚1/4位置における温度で300℃以下とする。前記冷却停止温度が300℃より高いと、焼き入れ時の変態が不十分となるため、所望の強度が得られない。
Cooling stop temperature: 300 ° C. or less The cooling stop temperature is set to 300 ° C. or less at a temperature at a thickness of 1/4. If the cooling stop temperature is higher than 300 ° C., the transformation at the time of quenching becomes insufficient, so that a desired strength cannot be obtained.
 前記第1の加速冷却は、特に限定されることなく任意の方法で行うことができる。例えば、空冷および水冷の一方または両方を用いることができる。前記水冷としては、水を用いた任意の冷却方法(例えば、スプレー冷却、ミスト冷却、ラミナー冷却など)を用いることができる。 The first accelerated cooling can be performed by any method without any particular limitation. For example, one or both of air cooling and water cooling can be used. As the water cooling, any cooling method using water (for example, spray cooling, mist cooling, laminar cooling, etc.) can be used.
(4)2相域加熱
 次いで、冷却された前記熱延鋼板を、板厚1/4位置における温度でAc1点以上、Ac3点未満の加熱温度に加熱する(2相域加熱)。前記2相域加熱を行うことにより、熱延鋼板の組織の大部分をベイナイト、およびマルテンサイトから逆変態しC、Ni、Mnが濃化したオーステナイトの混合組織とする。
(4) Two-phase region heating Next, the cooled hot-rolled steel sheet is heated to a heating temperature not lower than Ac1 point and lower than Ac3 point at a temperature at the thickness 1/4 position (two-phase region heating). By performing the two-phase region heating, most of the structure of the hot-rolled steel sheet is converted into a mixed structure of bainite and austenite in which C, Ni, and Mn are concentrated by reverse transformation from martensite.
加熱温度:Ac1点以上、Ac3点未満
 前記加熱温度がAc1点未満では、上記の逆変態オーステナイトがほとんど得られず、引き続く第2の加速冷却で所望のミクロ組織を得ることができない。そしてその結果、最終的に得られる厚鋼板において所望の強度が得られない。一方、前記加熱温度がAc3点以上では、ベイナイトおよびマルテンサイトがすべて逆変態してオーステナイトとなり、C、Ni、Mnが組織全体に平均化されてしまうため、やはり所望のミクロ組織を得ることができない。そしてその結果、所望の冷間加工性が得られない。
Heating temperature: not less than Ac1 point and less than Ac3 point When the heating temperature is less than Ac1 point, the above-mentioned reverse transformation austenite is hardly obtained, and a desired microstructure cannot be obtained by the subsequent second accelerated cooling. As a result, the desired strength cannot be obtained in the finally obtained thick steel plate. On the other hand, when the heating temperature is Ac3 point or higher, bainite and martensite are all reversely transformed into austenite, and C, Ni, and Mn are averaged over the entire structure, so that a desired microstructure cannot be obtained. . As a result, the desired cold workability cannot be obtained.
 なお、Ac1点およびAc3点は下記(1)式および(2)式により求めることができる。
 Ac1(℃) = 750.8 - 26.6C + 17.6Si - 11.6Mn - 22.9Cu - 23Ni + 24.1Cr + 22.5Mo- 39.7V - 5.7Ti + 232.4Nb - 169.4Al …(1)
 Ac3(℃) = 937.2 - 436.5C + 56Si - 19.7Mn - 16.3Cu - 26.6Ni - 4.9Cr + 38.1Mo + 124.8V + 136.3Ti - 19.1Nb + 198.4Al …(2)
ただし、上記(1)、(2)式中の元素記号は各元素の含有量(質量%)を表し、当該元素が含有されていない場合は0とする。
In addition, Ac1 point and Ac3 point can be calculated | required by the following (1) Formula and (2) Formula.
Ac1 (℃) = 750.8-26.6C + 17.6Si-11.6Mn-22.9Cu-23Ni + 24.1Cr + 22.5Mo- 39.7V-5.7Ti + 232.4Nb-169.4Al… (1)
Ac3 (° C) = 937.2-436.5C + 56Si-19.7Mn-16.3Cu-26.6Ni-4.9Cr + 38.1Mo + 124.8V + 136.3Ti-19.1Nb + 198.4Al (2)
However, the element symbols in the above formulas (1) and (2) represent the content (% by mass) of each element, and 0 when the element is not contained.
 前記2相域加熱には、加熱温度を上記の通り制御できる方法であれば、任意の加熱方法を用いることができる。加熱方法の一例としては、炉加熱が挙げられる。前記炉加熱には、特に限定されることなく、一般的な熱処理炉を用いることができる。 Any heating method can be used for the two-phase region heating as long as the heating temperature can be controlled as described above. An example of the heating method is furnace heating. The furnace heating is not particularly limited, and a general heat treatment furnace can be used.
 なお、前記2相域加熱においては、前記加熱温度に到達した後、直ちに次の第2の加速冷却を開始してもよいが、前記加熱温度に任意の時間保持した後に次の第2の加速冷却を開始してもよい。前記加熱温度での保持を行う場合、保持時間は特に限定されないが、5分以上とすることが好ましい。 In the two-phase region heating, the next second accelerated cooling may be started immediately after reaching the heating temperature, but the second second acceleration is performed after holding the heating temperature for an arbitrary time. Cooling may be started. When holding at the heating temperature, the holding time is not particularly limited, but is preferably 5 minutes or more.
(5)第2の加速冷却
 次いで、前記2相域加熱後の熱延鋼板に、平均冷却速度が3℃/s以上、冷却停止温度が500℃以下250℃以上である第2の加速冷却を施す。前記第2の加速冷却によって前記熱延鋼板が焼入れされ、マルテンサイトまたはマルテンサイトおよびベイナイトからなるマトリックス中に残留オーステナイトが分散した焼入組織が得られる。
(5) Second accelerated cooling Next, the second accelerated cooling in which the average cooling rate is 3 ° C./s or more and the cooling stop temperature is 500 ° C. or less and 250 ° C. or more is applied to the hot-rolled steel sheet after the two-phase region heating. Apply. The hot rolled steel sheet is quenched by the second accelerated cooling to obtain a quenched structure in which retained austenite is dispersed in a matrix composed of martensite or martensite and bainite.
平均冷却速度:3℃/s以上
 前記第2の加速冷却における、板厚1/4位置における温度での平均冷却速度が3℃/s未満であると、所望の焼入組織が得られず、最終的に得られる厚鋼板の強度が低下する。そのため、前記平均冷却速度は3℃/s以上とする。一方、前記平均冷却速度の上限は特に限定されないが、前記平均冷却速度が200℃/sより高いと、鋼板内の各位置における温度制御が困難となり、板幅方向および圧延方向に材質のばらつきが出やすくなる。そしてその結果、引張特性などの材料特性のばらつきが生じる。そのため、前記平均冷却速度は200℃/s以下とすることが好ましい。なお、ここで前記平均冷却速度は、第2の加速冷却工程における加速冷却開始から加速冷却停止までの間における平均冷却速度を指すものとする。
Average cooling rate: 3 ° C./s or more In the second accelerated cooling, if the average cooling rate at the temperature at the plate thickness 1/4 position is less than 3 ° C./s, a desired quenched structure cannot be obtained, The strength of the thick steel plate finally obtained decreases. Therefore, the average cooling rate is set to 3 ° C./s or more. On the other hand, the upper limit of the average cooling rate is not particularly limited, but if the average cooling rate is higher than 200 ° C./s, it becomes difficult to control the temperature at each position in the steel sheet, and there is a variation in material in the sheet width direction and the rolling direction. It becomes easy to come out. As a result, variations in material properties such as tensile properties occur. Therefore, the average cooling rate is preferably 200 ° C./s or less. In addition, the said average cooling rate shall point out the average cooling rate between the acceleration cooling start in the 2nd acceleration cooling process to an acceleration cooling stop here.
冷却停止温度:250~500℃
 第2の加速冷却における冷却停止温度は、板厚1/4位置における温度で250℃以上500℃以下とする。250℃以上500℃以下の温度で加速冷却を停止し、次いで空冷することで、未変態のオーステナイトへCを濃化させオーステナイトを安定化することができる。加速冷却停止温度が250℃未満では、未変態のオーステナイトがマルテンサイトへ変態してしまい、所望の残留オーステナイト量が得られない。一方、加速冷却停止温度が500℃より高いと、オーステナイト相へのCの分配が不十分となり、最終的に得られる残留オーステナイト量が減少し、所望の靱性を得ることができない。
Cooling stop temperature: 250-500 ° C
The cooling stop temperature in the second accelerated cooling is set to 250 ° C. or more and 500 ° C. or less at the temperature at the plate thickness ¼ position. By accelerating cooling at a temperature of 250 ° C. or more and 500 ° C. or less and then air cooling, C can be concentrated to untransformed austenite and austenite can be stabilized. If the accelerated cooling stop temperature is less than 250 ° C., untransformed austenite is transformed into martensite, and a desired retained austenite amount cannot be obtained. On the other hand, if the accelerated cooling stop temperature is higher than 500 ° C., the distribution of C to the austenite phase becomes insufficient, the amount of residual austenite finally obtained decreases, and the desired toughness cannot be obtained.
 前記第2の加速冷却は、特に限定されることなく任意の方法で行うことができる。例えば、空冷および水冷の一方または両方を用いることができる。前記水冷としては、水を用いた任意の冷却方法(例えば、スプレー冷却、ミスト冷却、ラミナー冷却など)を用いることができる。 The second accelerated cooling can be performed by any method without any particular limitation. For example, one or both of air cooling and water cooling can be used. As the water cooling, any cooling method using water (for example, spray cooling, mist cooling, laminar cooling, etc.) can be used.
(6)空冷
 次いで、上記第2の加速冷却後の熱延鋼板を、200℃以下まで空冷する(加速冷却後空冷)。前記空冷における冷却速度は特に限定されないが、平均冷却速度を1℃/s未満とすることが好ましい。
(6) Air cooling Next, the hot-rolled steel sheet after the second accelerated cooling is air-cooled to 200 ° C. or less (air cooling after accelerated cooling). The cooling rate in the air cooling is not particularly limited, but the average cooling rate is preferably less than 1 ° C./s.
(7)焼戻し処理
 次いで、焼戻処理を行う。前記焼戻処理により、残留オーステナイトを安定化するとともにベイナイト、マルテンサイト組織が焼戻されて靱性を向上させることができる。
(7) Tempering process Next, a tempering process is performed. By the tempering treatment, the retained austenite can be stabilized and the bainite and martensite structure can be tempered to improve toughness.
焼戻温度:500~650℃
 前記焼戻処理における焼戻温度は、板厚1/2位置における温度で500℃以上650℃以下とする。前記焼戻温度が500℃未満では、残留オーステナイトが十分に安定化せず、また、ベイナイト、マルテンサイト組織の焼戻しによる靭性向上も不十分である。そのため、前記焼戻温度を500℃以上とする。一方、焼戻温度が650℃を超えると、かえって残留オーステナイトの安定性が低下し、所望の低温靭性が得られない。そのため、前記焼戻し温度は650℃以下とする。
Tempering temperature: 500-650 ° C
The tempering temperature in the tempering treatment is set to 500 ° C. or more and 650 ° C. or less at a temperature at a position of 1/2 the plate thickness. When the tempering temperature is less than 500 ° C., the retained austenite is not sufficiently stabilized, and the toughness improvement by tempering of the bainite and martensite structure is insufficient. Therefore, the tempering temperature is set to 500 ° C. or higher. On the other hand, if the tempering temperature exceeds 650 ° C., the stability of retained austenite is lowered, and the desired low-temperature toughness cannot be obtained. Therefore, the said tempering temperature shall be 650 degrees C or less.
 本発明の他の実施形態における極低温用高張力厚鋼板の製造方法は、さらに任意に、前記熱間圧延後、前記第1の加速冷却に先だって、次の(A)および(B)の工程を行うことができる。
(A)空冷
(B)再加熱
In another embodiment of the present invention, the method for producing a cryogenic high-tensile steel plate further optionally includes the following steps (A) and (B) after the hot rolling and prior to the first accelerated cooling: It can be performed.
(A) Air cooling (B) Reheating
(A)空冷
 上記熱間圧延後の熱延鋼板を、300℃以下の空冷停止温度まで空冷する(熱延後空冷)。本実施形態では、次の再加熱処理における相変態により細粒化したオーステナイト組織を得る。そのために、この空冷工程においては、300℃以下の空冷停止温度まで冷却することにより、一旦、鋼板のミクロ組織をマルテンサイト+ベイナイト組織とする。
(A) Air cooling The hot-rolled steel sheet after the hot rolling is air-cooled to an air-cooling stop temperature of 300 ° C. or less (air-cooling after hot rolling). In this embodiment, an austenite structure refined by the phase transformation in the next reheating treatment is obtained. Therefore, in this air cooling step, the microstructure of the steel sheet is once changed to a martensite + bainite structure by cooling to an air cooling stop temperature of 300 ° C. or lower.
(B)再加熱
 次に、空冷された前記熱延鋼板を、次の第1の加速冷却に先立って、Ac3点~1000℃の再加熱温度まで再加熱する。前記再加熱により、熱延鋼板のフェライト組織がオーステナイトへ逆変態し、逆変態したオーステナイトは次の第1の加速冷却によってマルテンサイトとベイナイトに変態する。
(B) Reheating Next, the air-cooled hot-rolled steel sheet is reheated to a reheating temperature of Ac3 to 1000 ° C. prior to the next first accelerated cooling. By the reheating, the ferrite structure of the hot-rolled steel sheet is reversely transformed into austenite, and the reversely transformed austenite is transformed into martensite and bainite by the following first accelerated cooling.
再加熱温度:Ac3点~1000℃
 前記再加熱における再加熱温度はAc3点以上、1000℃以下とする。前記再加熱温度まで再加熱することにより、熱延鋼板の組織を均一で細粒化したオーステナイト組織とすることができる。前記再加熱温度がAc3点未満では、最終的に得られる厚鋼板にフェライト組織が残存し、所望の強度が得られない。また、前記再加熱温度が1000℃より高いと、操業負荷が大きくなることに加え、オーステナイトが粗大化するため、所望の靭性が得られない。
Reheating temperature: Ac3 point ~ 1000 ℃
The reheating temperature in the reheating is set to Ac3 point or higher and 1000 ° C or lower. By reheating up to the reheating temperature, the structure of the hot-rolled steel sheet can be made into a uniform and refined austenite structure. If the reheating temperature is less than Ac3 point, the ferrite structure remains in the finally obtained thick steel sheet, and the desired strength cannot be obtained. On the other hand, when the reheating temperature is higher than 1000 ° C., the operation load becomes large, and austenite coarsens, so that desired toughness cannot be obtained.
 前記再加熱には、再加熱温度を上記の通り制御することできるものであれば、任意の加熱方法を用いることができる。加熱方法の一例としては、炉加熱が挙げられる。前記炉加熱には、特に限定されることなく、一般的な熱処理炉を用いることができる。 Any heating method can be used for the reheating as long as the reheating temperature can be controlled as described above. An example of the heating method is furnace heating. The furnace heating is not particularly limited, and a general heat treatment furnace can be used.
 以下に述べる手順で極低温用高張力厚鋼板を製造し、得られた極低温用高張力厚鋼板の特性を評価した。 A high-tensile steel plate for cryogenic temperatures was manufactured according to the procedure described below, and the characteristics of the obtained high-tensile steel plate for cryogenic temperatures were evaluated.
 まず、表1に示す成分組成を有する溶鋼を転炉で溶製し、連続鋳造法によって鋼素材としての鋼スラブ(厚さ:250mm)を製造した。なお、上述した(1)式よって求めたAc1点(℃)および(2)式によって求めたAc3点(℃)を表1に併記する。 First, molten steel having the composition shown in Table 1 was melted in a converter, and a steel slab (thickness: 250 mm) as a steel material was manufactured by a continuous casting method. The Ac1 point (° C.) obtained from the above-described equation (1) and the Ac3 point (° C.) obtained from the equation (2) are also shown in Table 1.
 次に、得られた鋼スラブを表2に示した加熱温度まで加熱し、熱間圧延して表2に示した板厚の熱延鋼板とした。次いで、前記熱延鋼板に第1の加速冷却を施した。前記第1の加速冷却における平均冷却速度および冷却停止温度は、表2に示したとおりとした。なお、一部の実施例では、前記熱間圧延後、第1の加速冷却に先立って、表2に示した条件で空冷と再加熱を実施した。 Next, the obtained steel slab was heated to the heating temperature shown in Table 2 and hot-rolled to obtain a hot-rolled steel plate having the thickness shown in Table 2. Next, first hot cooling was performed on the hot-rolled steel sheet. The average cooling rate and cooling stop temperature in the first accelerated cooling were as shown in Table 2. In some examples, after the hot rolling, air cooling and reheating were performed under the conditions shown in Table 2 prior to the first accelerated cooling.
 前記第1の加速冷却後の熱延鋼板に、表2に示した加熱温度での2相域加熱を施した。前記2相域加熱の後、前記熱延鋼板に第2の加速冷却を施した。前記第2の加速冷却における平均冷却速度および冷却停止温度は、表2に示したとおりとした。前記第2の加速冷却の後、200℃以下までの空冷を行い、次いで、焼戻しを行った。前記焼戻しにおける焼戻し温度は表2に示したとおりとした。 The two-phase region heating at the heating temperature shown in Table 2 was performed on the hot rolled steel sheet after the first accelerated cooling. After the two-phase region heating, the hot rolled steel sheet was subjected to second accelerated cooling. The average cooling rate and cooling stop temperature in the second accelerated cooling were as shown in Table 2. After the second accelerated cooling, air cooling to 200 ° C. or lower was performed, and then tempering was performed. The tempering temperature in the tempering was as shown in Table 2.
 なお、上記各工程における加熱には、熱処理炉を用いた。 In addition, the heat processing furnace was used for the heating in each said process.
 次に、得られた厚鋼板のそれぞれについて、ミクロ組織、サブゼロ処理後の残留オーステナイト量、機械的特性、および冷間加工性を評価した。前記評価は、以下に述べる方法で行った。 Next, for each of the obtained thick steel plates, the microstructure, the amount of retained austenite after sub-zero treatment, mechanical properties, and cold workability were evaluated. The evaluation was performed by the method described below.
(ミクロ組織)
 各厚鋼板から、板厚1/4位置が観察位置となるように、ミクロ組織観察用の試験片を採取した。前記試験片を、圧延方向と垂直な断面が観察面となるよう樹脂に埋め、鏡面研磨した。次いで、ナイタール腐食を実施した後、倍率400倍の走査型電子顕微鏡で観察して組織の画像を撮影した。得られた画像を解析して、ミクロ組織を同定した。
(Micro structure)
From each thick steel plate, a test piece for observing the microstructure was taken so that the ¼ position of the plate thickness becomes the observation position. The test piece was embedded in resin so that a cross section perpendicular to the rolling direction was an observation surface, and mirror-polished. Next, after performing the nital corrosion, an image of the tissue was taken by observation with a scanning electron microscope having a magnification of 400 times. The obtained image was analyzed to identify the microstructure.
 なお、上記のようにして得られた鋼板は、比較例No.6を除き、いずれもラス状のミクロを有しており、前記ミクロ組織は、焼戻しマルテンサイト、または焼戻しマルテンサイトおよび焼戻されたベイナイト組織の混合組織であった。また、得られた鋼板は、残留オーステナイトの体積率が0%であった比較例No.5を除き、マトリックス中に残留オーステナイトが分散した構造のミクロ組織を有していた。 In addition, the steel plate obtained as described above is comparative example No. Except 6, all had lath-like micro, and the microstructure was tempered martensite or a mixed structure of tempered martensite and tempered bainite structure. Moreover, the obtained steel plate was comparative example No. in which the volume fraction of retained austenite was 0%. Except for 5, the microstructure had a structure in which retained austenite was dispersed in the matrix.
・残留オーステナイト体積率
 前記厚鋼板の板厚1/4位置から板面に平行にX線回折用試験片を10枚採取し、うち5枚に前記試験片にサブゼロ処理を施した。サブゼロ処理は、前記試験片を-196℃の液体窒素中に15分保持することによって実施した。サブゼロ処理なしおよび前記サブゼロ処理した試験片各5枚を、板厚1/4位置が測定面となるよう、前記試験片に研削および化学研磨を施し、X線回折に供した。対称反射X線回折パターンに現れるα-Feの(200)、(211)面、γ-Feの(200)、(220)、(311)面の回折強度を求め、γ-Feの体積率を算出し、それぞれ5枚の試験片における平均値を求め、残留オーステナイトの体積率とした。
-Residual austenite volume fraction Ten X-ray diffraction test pieces were collected in parallel with the plate surface from the 1/4 thickness position of the thick steel plate, and five of the test pieces were subjected to sub-zero treatment. Sub-zero treatment was performed by holding the test piece in liquid nitrogen at -196 ° C for 15 minutes. Each of the five test pieces without subzero treatment and the subzero treatment was subjected to X-ray diffraction by grinding and chemical polishing the test piece so that the plate thickness ¼ position was the measurement surface. Diffraction intensities of (200), (211) planes of α-Fe and (200), (220), (311) planes of γ-Fe appearing in the symmetrical reflection X-ray diffraction pattern are obtained, and the volume fraction of γ-Fe is calculated. The average value in each of the five test pieces was calculated and used as the volume fraction of retained austenite.
(機械的特性)
 前記厚鋼板の板厚1/2位置から、JIS4号引張試験片を採取した。前記引張試験片を用い、JIS Z 2241の規定に準拠して引張試験を実施して、厚鋼板の引張強さ(TS)を評価した。
(Mechanical properties)
A JIS No. 4 tensile test piece was taken from the position of 1/2 the thickness of the thick steel plate. Using the tensile test piece, a tensile test was performed in accordance with the provisions of JIS Z 2241 to evaluate the tensile strength (TS) of the thick steel plate.
 また、前記厚鋼板の板厚1/4位置から、JIS Z 2202の規定に準拠してVノッチ試験片を採取した。前記Vノッチ試験片を用い、JIS Z 2242の規定に準拠してシャルピー衝撃試験を実施し、-196℃におけるシャルピー吸収エネルギー(vE-196℃)を求めた。前記シャルピー吸収エネルギーは、厚鋼板の極低温における靭性の指標と見なすことができる。 In addition, a V-notch test piece was taken from the position of the thickness ¼ of the thick steel plate according to JIS Z 2202. Using the V-notch test piece, a Charpy impact test was performed in accordance with JIS Z 2242, and Charpy absorbed energy (vE-196 ° C ) at -196 ° C was obtained. The Charpy absorbed energy can be regarded as an index of toughness at a very low temperature of a thick steel plate.
(冷間加工性)
 前記厚鋼板から、該厚鋼板の圧延方向が引張方向となるように引張試験片を採取した。次いで、前記引張試験片に3%の歪を付与した後、250℃で1時間時効処理を行った。時効処理後の引張試験片からJIS Z 2202の規定に準拠してVノッチ試験片を採取した。前記Vノッチ試験片を用い、JIS Z 2242の規定に準拠してシャルピー衝撃試験を実施し、-196℃における脆性破面率を求めた。前記脆性破面率は厚鋼板の冷間加工性の指標と見なすことができる。
(Cold workability)
A tensile test piece was taken from the thick steel plate so that the rolling direction of the thick steel plate was the tensile direction. Next, after applying a strain of 3% to the tensile test piece, an aging treatment was performed at 250 ° C. for 1 hour. A V-notch test piece was sampled from the tensile test piece after the aging treatment in accordance with JIS Z 2202. Using the V-notch test piece, a Charpy impact test was performed in accordance with JIS Z 2242, and the brittle fracture surface ratio at -196 ° C. was determined. The brittle fracture surface ratio can be regarded as an index of cold workability of the thick steel plate.
 評価結果を表3に示す。なお、表3には、サブゼロ処理による残留オーステナイトの減少量を併記した。ここで、残留オーステナイトの減少量とは、サブゼロ処理前の残留オーステナイト体積率からサブゼロ処理後の残留オーステナイト体積率を差し引いた値である。 Evaluation results are shown in Table 3. Table 3 also shows the amount of decrease in retained austenite due to the sub-zero treatment. Here, the amount of decrease in retained austenite is a value obtained by subtracting the residual austenite volume ratio after subzero treatment from the residual austenite volume ratio before subzero treatment.
 この結果から分かるように、本発明の条件を満たす厚鋼板は、いずれも、引張強さ:700MPa以上、vE-196℃:150J以上であるとともに、脆性破面率が2%以下であり、優れた機械的特性と冷間加工性とを兼ね備えていた。前記シャルピー吸収エネルギーvE-196℃が150J以上であれば、9%Ni鋼板と同等以上の靭性を有しているということができる。一方、本発明の条件を満たさない厚鋼板は、強度、靭性、冷間加工性のうち、少なくとも1つの特性が劣っていた。 As can be seen from the results, all the thick steel plates that satisfy the conditions of the present invention have excellent tensile strength: 700 MPa or more, vE-196 ° C . : 150 J or more, and a brittle fracture surface ratio of 2% or less. Combined mechanical properties and cold workability. If the Charpy absorbed energy vE-196 ° C. is 150 J or more, it can be said that the toughness is equal to or higher than that of a 9% Ni steel plate. On the other hand, a thick steel plate that does not satisfy the conditions of the present invention has inferior at least one characteristic among strength, toughness, and cold workability.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003

Claims (5)

  1.  質量%で、
      C :0.02~0.12%、
      Si:0.01~0.30%、
      Mn:0.50~2.00%、
      Ni:5.5~8.5%、
      P :0.005%以下、
      S :0.003%以下、および
      N :0.0015~0.0065%を含有し、
      残部がFeおよび不可避的不純物からなる成分組成を有し、
     板厚1/4位置におけるミクロ組織が、
      (1)焼戻しマルテンサイトまたは焼戻しマルテンサイトと焼戻されたベイナイトからなるマトリックスと、
      (2)前記マトリックス中に分散した残留オーステナイトと、からなり、
     板厚1/4位置における残留オーステナイトの体積率が11%超、20%以下であり、かつ、
     -196℃の液体窒素中に15分保持するサブゼロ処理を施した後の、板厚1/4位置における残留オーステナイトの体積率が、11%超、20%以下である、極低温用高張力厚鋼板。
    % By mass
    C: 0.02 to 0.12%,
    Si: 0.01 to 0.30%,
    Mn: 0.50 to 2.00%,
    Ni: 5.5 to 8.5%,
    P: 0.005% or less,
    S: 0.003% or less, and N: 0.0015-0.0065%,
    The balance has a component composition consisting of Fe and inevitable impurities,
    The microstructure at the 1/4 thickness position is
    (1) Tempered martensite or a matrix composed of tempered martensite and tempered bainite;
    (2) consisting of residual austenite dispersed in the matrix,
    The volume fraction of retained austenite at a thickness of 1/4 position is more than 11% and not more than 20%, and
    A high tensile thickness for cryogenic temperatures in which the volume ratio of retained austenite at a 1/4 position of the plate thickness is more than 11% and not more than 20% after sub-zero treatment in liquid nitrogen at −196 ° C. for 15 minutes. steel sheet.
  2.  前記成分組成が、さらに、質量%で、
      Al:0.01~0.10%、
      Mo:0.05~0.50%、
      Cr:1.00%以下、
      Cu:0.40%以下、
      Nb:0.05%以下、
      V :0.05%以下、および
      Ti:0.03%以下
    からなる群より選択される1または2以上を含有する、請求項1に記載の極低温用高張力厚鋼板。
    The component composition is further in mass%,
    Al: 0.01 to 0.10%,
    Mo: 0.05 to 0.50%,
    Cr: 1.00% or less,
    Cu: 0.40% or less,
    Nb: 0.05% or less,
    The high-tensile steel plate for cryogenic temperature according to claim 1, containing one or more selected from the group consisting of V: 0.05% or less and Ti: 0.03% or less.
  3.  前記成分組成が、さらに、質量%で、
      Ca:0.007%以下、
      REM:0.010%以下、および
      Mg:0.070%以下
    からなる群より選択される1または2以上を含有する、請求項1または2に記載の極低温用高張力厚鋼板。
    The component composition is further in mass%,
    Ca: 0.007% or less,
    The high-tensile steel plate for cryogenic temperatures according to claim 1 or 2, containing one or more selected from the group consisting of REM: 0.010% or less and Mg: 0.070% or less.
  4.  請求項1~3のいずれか一項に記載の成分組成を有する鋼素材を、900℃以上1200℃以下の加熱温度に加熱し、
     加熱された前記鋼素材を熱間圧延して熱延鋼板とし、
     前記熱延鋼板に、板厚1/4位置おける温度で550℃以下300℃以上の温度域における平均冷却速度が1℃/s以上、冷却停止温度が板厚1/4位置における温度で300℃以下である第1の加速冷却を施し、
     前記第1の加速冷却後の熱延鋼板に、板厚1/4位置における温度でAc1点以上、Ac3点未満の加熱温度に加熱する2相域加熱を施し、
     前記2相域加熱後の熱延鋼板に、板厚1/4位置における温度での平均冷却速度が3℃/s以上、冷却停止温度が板厚1/4位置における温度で500℃以下250℃以上である第2の加速冷却を施し、
     前記第2の加速冷却後の熱延鋼板を、200℃以下まで空冷し、
     前記空冷後の熱延鋼板に対して、焼戻し温度が板厚1/2位置における温度で500℃以上650℃以下である焼戻処理を施して、請求項1に記載のミクロ組織を有する極低温用高張力厚鋼板とする、極低温用高張力厚鋼板の製造方法。
    A steel material having the component composition according to any one of claims 1 to 3 is heated to a heating temperature of 900 ° C or higher and 1200 ° C or lower,
    Hot-rolling the heated steel material into a hot-rolled steel sheet,
    The hot-rolled steel sheet has an average cooling rate of 1 ° C./s or more in a temperature range of 550 ° C. or lower and 300 ° C. or higher at a thickness of 1/4 position, and a cooling stop temperature of 300 ° C. at a temperature of 1/4 position. The following first accelerated cooling is applied,
    The hot-rolled steel sheet after the first accelerated cooling is subjected to two-phase region heating that is heated to a heating temperature of Ac1 point or more and less than Ac3 point at a temperature at a thickness of 1/4 position,
    In the hot-rolled steel sheet after the two-phase region heating, the average cooling rate at the temperature at the 1/4 position of the sheet thickness is 3 ° C./s or more, and the cooling stop temperature is 500 ° C. or less at the temperature at the 1/4 position of the sheet thickness 250 ° C. The second accelerated cooling is applied,
    The hot rolled steel sheet after the second accelerated cooling is air-cooled to 200 ° C. or less,
    The ultra-low temperature having the microstructure according to claim 1, wherein the hot-rolled steel sheet after air cooling is subjected to a tempering treatment in which the tempering temperature is 500 ° C. or higher and 650 ° C. or lower at a temperature at the position of the thickness 1/2. A method for producing a high-tensile thick steel plate for cryogenic use, which is a high-tensile thick steel plate for industrial use.
  5.  さらに、前記熱間圧延後、前記第1の加速冷却に先だって、
      前記熱延鋼板を300℃以下の空冷停止温度まで空冷し、
      空冷された前記熱延鋼板を、Ac3点以上1000℃以下の再加熱温度まで再加熱する、請求項4に記載の極低温用高張力厚鋼板の製造方法。
     
     
    Furthermore, after the hot rolling, prior to the first accelerated cooling,
    Air-cooling the hot-rolled steel sheet to an air-cooling stop temperature of 300 ° C. or lower,
    The manufacturing method of the high-tensile steel plate for cryogenic temperature of Claim 4 which reheats the said hot-rolled steel plate cooled by air to the reheating temperature of Ac3 point or more and 1000 degrees C or less.

PCT/JP2019/018968 2018-06-12 2019-05-13 Cryogenic high-tensile thick steel sheet and method for producing same WO2019239761A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020207032994A KR102388436B1 (en) 2018-06-12 2019-05-13 High tensile strength steel plate for cryogenic use and manufacturing method therefor
CN201980038473.1A CN112236539B (en) 2018-06-12 2019-05-13 High-tensile thick steel plate for extremely low temperature and method for producing same
JP2019545841A JP6816832B2 (en) 2018-06-12 2019-05-13 High-strength thick steel sheet for cryogenic temperature and its manufacturing method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-112271 2018-06-12
JP2018112271 2018-06-12
JP2019-027309 2019-02-19
JP2019027309 2019-02-19

Publications (1)

Publication Number Publication Date
WO2019239761A1 true WO2019239761A1 (en) 2019-12-19

Family

ID=68843245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/018968 WO2019239761A1 (en) 2018-06-12 2019-05-13 Cryogenic high-tensile thick steel sheet and method for producing same

Country Status (4)

Country Link
JP (1) JP6816832B2 (en)
KR (1) KR102388436B1 (en)
CN (1) CN112236539B (en)
WO (1) WO2019239761A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021165431A (en) * 2020-04-08 2021-10-14 Jfeスチール株式会社 Steel sheet and method for producing the same
WO2022124633A1 (en) * 2020-12-10 2022-06-16 주식회사 포스코 Steel plate for pressure vessel with excellent cryogenic toughness, and method of manufacturing same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102522570B1 (en) 2021-12-13 2023-04-26 현대제철 주식회사 Steel plate having excellent ultra low temperature toughness in welding heat affected zone
KR20240004010A (en) 2022-07-04 2024-01-11 현대제철 주식회사 Al added steel plate having excellent ultra low temperature toughness in welding heat affected zone

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013213273A (en) * 2012-03-09 2013-10-17 Kobe Steel Ltd Thick steel plate superior in ultra-low temperature toughness
JP2013234381A (en) * 2012-04-13 2013-11-21 Kobe Steel Ltd Thick steel plate with excellent cryogenic toughness
JP2015086403A (en) * 2013-10-28 2015-05-07 Jfeスチール株式会社 Steel sheet for low temperature and manufacturing method therefor
JP2016183387A (en) * 2015-03-26 2016-10-20 新日鐵住金株式会社 Thick steel plate for low temperature and production method therefor
JP2017160510A (en) * 2016-03-11 2017-09-14 新日鐵住金株式会社 Nickel steel sheet for low temperature and manufacturing method therefor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007034576A1 (en) 2005-09-21 2007-03-29 Sumitomo Metal Industries, Ltd. Steel product usable at low temperature and method for production thereof
JP5494167B2 (en) 2010-04-14 2014-05-14 新日鐵住金株式会社 Cryogenic steel plate and manufacturing method thereof
JP5513254B2 (en) 2010-05-17 2014-06-04 新日鐵住金株式会社 Low temperature steel plate and method for producing the same
CN102985576B (en) 2010-07-09 2014-05-28 新日铁住金株式会社 Ni-containing steel sheet and process for producing same
CN109983144B (en) * 2016-12-01 2020-05-26 日本制铁株式会社 Nickel-containing steel for low temperature use and tank for low temperature use

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013213273A (en) * 2012-03-09 2013-10-17 Kobe Steel Ltd Thick steel plate superior in ultra-low temperature toughness
JP2013234381A (en) * 2012-04-13 2013-11-21 Kobe Steel Ltd Thick steel plate with excellent cryogenic toughness
JP2015086403A (en) * 2013-10-28 2015-05-07 Jfeスチール株式会社 Steel sheet for low temperature and manufacturing method therefor
JP2016183387A (en) * 2015-03-26 2016-10-20 新日鐵住金株式会社 Thick steel plate for low temperature and production method therefor
JP2017160510A (en) * 2016-03-11 2017-09-14 新日鐵住金株式会社 Nickel steel sheet for low temperature and manufacturing method therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021165431A (en) * 2020-04-08 2021-10-14 Jfeスチール株式会社 Steel sheet and method for producing the same
JP7251512B2 (en) 2020-04-08 2023-04-04 Jfeスチール株式会社 Steel plate and its manufacturing method
WO2022124633A1 (en) * 2020-12-10 2022-06-16 주식회사 포스코 Steel plate for pressure vessel with excellent cryogenic toughness, and method of manufacturing same

Also Published As

Publication number Publication date
JPWO2019239761A1 (en) 2020-06-25
CN112236539A (en) 2021-01-15
CN112236539B (en) 2022-03-01
JP6816832B2 (en) 2021-01-20
KR102388436B1 (en) 2022-04-19
KR20200140907A (en) 2020-12-16

Similar Documents

Publication Publication Date Title
KR102119333B1 (en) High-strength steel sheet and its manufacturing method
US8926766B2 (en) Low yield ratio, high strength and high uniform elongation steel plate and method for manufacturing the same
JP5034308B2 (en) High strength thick steel plate with excellent delayed fracture resistance and method for producing the same
CA2775043C (en) Low yield ratio, high strength and high toughness steel plate and method for manufacturing the same
JP6816832B2 (en) High-strength thick steel sheet for cryogenic temperature and its manufacturing method
KR20210149145A (en) Cold-rolled martensitic steel sheet and manufacturing method thereof
KR20200002957A (en) Steel parts and how to manufacture them
JP6809524B2 (en) Ultra-low yield ratio high-strength thick steel sheet and its manufacturing method
JP6492862B2 (en) Low temperature thick steel plate and method for producing the same
WO2016129548A1 (en) Ultra-high-strength steel plate having excellent yield ratio and workability
JP6988836B2 (en) Ultra-low yield ratio high-strength thick steel sheet and its manufacturing method
KR20220005572A (en) Cold-rolled martensitic steel sheet and manufacturing method thereof
JP4547944B2 (en) Manufacturing method of high strength and high toughness thick steel plate
JP2019002078A (en) Ultra high strength steel sheet excellent in yield ratio and workability
JP7251512B2 (en) Steel plate and its manufacturing method
JP2023045253A (en) Steel plate and method for producing the same
JP3077567B2 (en) Method of manufacturing steel for low-temperature rebar
JP3077568B2 (en) Method of manufacturing steel for low-temperature rebar
JP7364137B1 (en) Steel plate and its manufacturing method
JP2582147B2 (en) Method for producing low temperature nickel steel sheet with excellent weld toughness
JP7396507B2 (en) Steel plate and its manufacturing method
JP7444343B1 (en) Thick steel plate and its manufacturing method
JP7367896B1 (en) Steel plate and its manufacturing method
JP2023031269A (en) Ultra-low yield ratio high tensile strength thick steel sheet, and method for producing the same
WO2023204109A1 (en) Steel sheet and method for producing same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019545841

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19820449

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207032994

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19820449

Country of ref document: EP

Kind code of ref document: A1