WO2019238071A1 - 色域转换方法、色域转换器、显示装置、图像信号转换方法、计算机设备和非暂时性存储介质 - Google Patents
色域转换方法、色域转换器、显示装置、图像信号转换方法、计算机设备和非暂时性存储介质 Download PDFInfo
- Publication number
- WO2019238071A1 WO2019238071A1 PCT/CN2019/090956 CN2019090956W WO2019238071A1 WO 2019238071 A1 WO2019238071 A1 WO 2019238071A1 CN 2019090956 W CN2019090956 W CN 2019090956W WO 2019238071 A1 WO2019238071 A1 WO 2019238071A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pixel
- value
- saturation
- grayscale
- sub
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N9/00—Details of colour television systems
- H04N9/64—Circuits for processing colour signals
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/2003—Display of colours
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G5/00—Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
- G09G5/02—Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators characterised by the way in which colour is displayed
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2300/00—Aspects of the constitution of display devices
- G09G2300/04—Structural and physical details of display devices
- G09G2300/0439—Pixel structures
- G09G2300/0452—Details of colour pixel setup, e.g. pixel composed of a red, a blue and two green components
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2320/00—Control of display operating conditions
- G09G2320/06—Adjustment of display parameters
- G09G2320/0666—Adjustment of display parameters for control of colour parameters, e.g. colour temperature
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2340/00—Aspects of display data processing
- G09G2340/06—Colour space transformation
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2360/00—Aspects of the architecture of display systems
- G09G2360/14—Detecting light within display terminals, e.g. using a single or a plurality of photosensors
- G09G2360/145—Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light originating from the display screen
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2360/00—Aspects of the architecture of display systems
- G09G2360/16—Calculation or use of calculated indices related to luminance levels in display data
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/30—Devices specially adapted for multicolour light emission
- H10K59/35—Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
- H10K59/351—Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels comprising more than three subpixels, e.g. red-green-blue-white [RGBW]
Definitions
- Embodiments of the present disclosure relate to a color gamut conversion method, a color gamut converter, a display device, an image signal conversion method, a computer device, and a non-transitory storage medium.
- At least one embodiment of the present disclosure provides a color gamut conversion method, which includes: acquiring an RGB signal; and acquiring a converted value based on a grayscale value of each monochrome sub-pixel in each pixel of an original image corresponding to the RGB signal.
- a preset grayscale value of a white subpixel of each pixel of the image wherein the converted image is obtained by converting the original image from an RGB domain to an RGBW domain; at least based on the first gray of the white subpixel Obtain the target grayscale value of the white sub-pixel, and make the target grayscale value of the white sub-pixel less than or equal to the first gray-scale maximum value of the white sub-pixel and The minimum value of the preset grayscale values, wherein, for the first saturation color block existing in the original image, the position of the white sub-pixel corresponding to each pixel of the first saturation color block is The first gray level maximum value is equal to a gray level threshold value, and the gray level threshold value is smaller than a maximum gray level value allowed to be displayed by the display device.
- a first grayscale maximum value of a white sub-pixel corresponding to each pixel located in the original image and outside the first saturation color block is equal to the The maximum grayscale value allowed to be displayed by the display device; and the maximum grayscale value allowed to be displayed by the display device is equal to 255, and the grayscale threshold is selected from 90-110.
- the color gamut conversion method further includes dividing the original image into at least one detection area, and according to the brightness and saturation of multiple pixels in the detection area And hue to determine whether the detection area is the first saturation color patch.
- Detecting whether the area is the first saturation color block includes: setting a preset saturation threshold, a preset hue range, a preset brightness threshold, and a first preset scaling parameter; obtaining in the detection area, the saturation is greater than the The preset saturation threshold, the hue being within the preset hue range, and the proportion of pixels with brightness greater than the brightness preset brightness threshold among all pixels in the original image; when the proportion is greater than the When the first preset scale parameter is determined, the detection area is determined to be the first saturation color block.
- the color gamut conversion method further includes setting a second preset scale parameter; obtaining the original image in which the saturation is greater than the preset saturation threshold.
- the method in the acquiring the original image, a ratio K of all pixels in the original image in which the saturation is greater than the preset saturation threshold is K in the original image before, the method further includes: obtaining the saturation of each pixel of the original image, and normalizing the saturation of each pixel.
- the color gamut conversion method further includes: based on a gray level value R i of a red sub pixel of each pixel in the RGB domain, and a gray level of a green sub pixel.
- the value G i and the gray level value B i of the blue sub-pixel to obtain the gray level value R 1i of the red sub-pixel, the gray level value G 1i of the green sub-pixel, and the gray value of the blue sub-pixel in the RGBW domain.
- the grayscale value of each monochrome sub-pixel in each pixel of the original image corresponding to the RGB signal is used to obtain the
- the preset gray level value of the white sub-pixel includes: obtaining the preset gray level value W 1i of the white sub-pixel based on the following formula:
- the color gamut conversion method further includes: converting a saturation value of each pixel of the original image to an alpha power of the saturation value; wherein , 0 ⁇ ⁇ 1; according to the converted saturation value of the pixel, a target grayscale value of each monochrome sub-pixel of each pixel in the converted image is obtained.
- the method further includes: changing the target grayscale value of the white subpixel in the same pixel.
- the corresponding data is stitched with the data corresponding to the target grayscale value of each monochrome sub-pixel to generate an RGBW signal.
- the method further includes: color coordinates of an image to be displayed corresponding to the RGBW signal according to the color coordinates of a reference white pixel. Adjust so that the color coordinates of the medium white pixels overlap the color coordinates of the reference white pixels.
- At least one embodiment of the present disclosure provides a computer device including a memory and a processor; the memory stores computer program instructions suitable for execution by the processor, and the computer program instructions are executed by the processor And causing the processor to execute the color gamut conversion method provided by any embodiment of the present disclosure.
- At least one embodiment of the present disclosure provides a non-transitory storage medium, where the non-transitory storage medium stores computer program instructions, and the computer program instructions, when executed by a processor, cause a computer to execute any one of the embodiments of the present disclosure.
- Color gamut conversion method when executed by a processor, cause a computer to execute any one of the embodiments of the present disclosure.
- At least one embodiment of the present disclosure provides a color gamut converter including a signal receiver, a grayscale value generator, a target grayscale determiner, and a grayscale upper limit determiner.
- the signal receiver is configured to obtain an RGB signal;
- the grayscale value generator is electrically connected to the signal receiver, and the grayscale value generator is configured to individually generate a pixel according to each pixel of the original image corresponding to the RGB signal.
- the target grayscale determiner is electrically connected to the grayscale upper limit determiner and the grayscale value generator, and the target grayscale determiner is configured to be based at least on a first grayscale maximum value of the white sub-pixel Obtain the target grayscale value of the white subpixel with the preset grayscale value, and make the target grayscale value of the white subpixel less than or equal to the first maximum grayscale value and the preset grayscale value
- the minimum value in the grayscale upper limit determiner is configured such that, for a first saturation color block existing in the original image, a white sub-corresponding to each pixel of the first saturation color block Pixel's first grayscale Large gray value is equal to the threshold value, the gray level threshold is less than the maximum gray level value of the display device allows the display.
- the grayscale upper limit determiner is further configured such that each pixel located in the original image and outside the first saturation color block corresponds to The first maximum grayscale value of the white sub-pixel is equal to the maximum grayscale value allowed to be displayed by the display device; and the maximum grayscale value allowed to be displayed by the display device is equal to 255, and the grayscale threshold is selected from 90-110.
- the color gamut converter further includes a color block detector, wherein the color block detector is electrically connected to the grayscale value generator, and A color block detector is used to divide the original image into at least one detection area, and determine whether the detection area is the first saturation color according to the brightness, saturation, and hue of multiple pixels in the detection area. Piece.
- the color gamut converter further includes a saturation statistic; the saturation statistic is electrically connected to the signal receiver; and the saturation statistic is used for Obtain the proportion K of all pixels in the original image where pixels with saturation greater than a preset saturation threshold are in the original image, and when the proportion K is greater than a second preset ratio parameter, change K ⁇ 255 is the second grayscale maximum value of the white sub-pixel in each pixel of each of the RGBW domains; the grayscale upper limit determiner is further connected to the saturation statistic, and the grayscale upper limit determiner is used The minimum value of the first gray level maximum value and the second gray level maximum value is used as the gray level upper limit of the white sub-pixel; the target gray level determiner is further connected to the gray level upper limit determiner The target grayscale determiner is configured to use the grayscale upper limit of the white subpixel and the minimum value of the preset grayscale value as the target grayscale value of the white subpixel.
- the color gamut converter further includes: a signal generator, a saturation adjuster, and a first color space converter.
- the saturation adjuster is electrically connected to the signal receiver, and the saturation adjuster is configured to adjust a saturation value of each pixel of the original image to an alpha power of the saturation value; wherein, 0 ⁇ ⁇ 1; the first color space converter is electrically connected to the saturation adjuster, and the first color space converter is configured to convert the saturation according to each of the pixels output by the saturation adjuster.
- the signal generator is electrically connected to the target grayscale determiner, and the signal generator is configured to The data corresponding to the target grayscale value of the white sub-pixel in the pixel is stitched with the data corresponding to the target grayscale value of each of the monochrome sub-pixels to generate an RGBW signal.
- the color gamut converter further includes a color coordinate adjuster; the color coordinate adjuster is electrically connected to the signal generator, and the color coordinate adjuster is used for Adjusting the color coordinates of the image to be displayed corresponding to the RGBW signal according to the color coordinates of the reference white pixel, so that the color coordinates of the white pixel in the image to be displayed overlap the color coordinates of the reference white pixel.
- At least one embodiment of the present disclosure provides a display device including a color gamut converter provided by any embodiment of the present disclosure.
- At least one embodiment of the present disclosure provides an image signal conversion method, including: acquiring a signal of an original image; and acquiring a converted image based on a grayscale value of each monochrome sub-pixel in each pixel of the original image.
- the minimum value of the value and the preset gray level value obtains the target gray level value of the white sub-pixel, and makes the target gray level value of the white sub-pixel less than or equal to the first gray level maximum value and the
- the preset minimum value of the grayscale value wherein, for the first saturation color block existing in the original image, the first grayscale value of the white sub-pixel corresponding to each pixel of the first saturation color block is the largest
- the value is equal to a grayscale threshold, which is smaller than the maximum grayscale value allowed to be displayed by the display device.
- a color gamut conversion method includes: obtaining an RGB signal; and according to a grayscale value of each monochrome sub-pixel in each pixel of an original image corresponding to the RGB signal, Calculating a preset grayscale value of a white subpixel of each of the pixels in the RGBW domain when the grayscale value of each monochrome subpixel in each pixel in the RGB domain is converted to the RGBW domain; Divide at least one detection area, and determine whether the detection area is a high-saturation color patch according to the brightness and saturation of pixels in the detection area; if the detection area is the high-saturation color patch, set In the high-saturation color block, a first grayscale maximum value of a white sub-pixel in each pixel of the RGBW domain is less than 255; at least the first grayscale maximum value and the preset grayscale value are at least The minimum value is used as a target grayscale value of the white sub-pixel.
- the dividing at least one detection area in the original image, and determining whether the detection area is a high-saturation color patch according to the brightness and saturation of pixels in the detection area includes: setting a preset A saturation range, a preset brightness threshold, and a first preset ratio parameter; and obtaining the detection area in which the saturation is within the preset saturation range and the brightness is greater than or equal to the brightness preset brightness threshold The proportion of pixels in all pixels in the original image; when the proportion is greater than or equal to the first preset proportion parameter, the detection area is the high-saturation color block.
- the method further includes: setting a preset saturation threshold and a second preset ratio parameter; Acquiring the proportion K of all pixels in the original image in which the pixels whose saturation is greater than the preset saturation threshold are in the original image; when the proportion K is greater than the second preset proportion parameter Taking K ⁇ 255 as the second grayscale maximum value of the white sub-pixel in each pixel of the RGBW domain; and at least the minimum of the first grayscale maximum value and the preset grayscale value Value as the target grayscale value of the white sub-pixel includes: using the minimum of the first grayscale maximum value, the preset grayscale value, and the second grayscale maximum value as the white The target grayscale value of the subpixel.
- the method before acquiring the proportion K of all pixels in the original image in which the pixels with saturation greater than the preset saturation threshold are in all pixels in the original image, the method further includes: before the In the original image, the saturation of each of the pixels is obtained, and the saturation is normalized.
- the method further includes: according to the distribution of each sub-pixel in the RGBW image to be displayed, in the RGBW domain, The target grayscale value of the white sub-pixel is stitched with the grayscale value of each monochrome sub-pixel, and an RGBW signal is generated.
- the method before generating the RGBW signal, the method further includes: converting the saturation of any pixel to an alpha power of the saturation; where 0 ⁇ ⁇ 1; Saturation, to obtain the grayscale value of each monochrome sub-pixel of each pixel in the RGBW domain.
- the method further includes: adjusting the color coordinates of the image to be displayed according to the color coordinates of a reference white pixel, so that the color coordinates of the white pixel in the image to be displayed Overlap with the color coordinates of the reference white pixel.
- the calculation converts the grayscale value of each monochrome subpixel in each pixel in the RGB domain to In the RGBW domain, the preset grayscale value of the white subpixel of each of the pixels in the RGBW domain includes: the grayscale value R i of the red subpixel of each pixel in the RGB domain, and the grayscale value of the green subpixel.
- R i R 1i
- G i G 1i
- B i B 1i
- the gray level value G 1i and the gray level value B 1i of the blue sub-pixel, and the preset gray level value W 1i of the white sub-pixel satisfy the following formula:
- the method further includes: The method includes: if the detection area is not the high-saturation color block, setting a first grayscale maximum value of a white sub-pixel in each pixel of the RGBW domain in the detection area to be equal to 255.
- Another aspect of the embodiments of the present disclosure provides a computer-readable medium that, when executed by a processor, implements any one of the methods described above.
- a color gamut converter including: a signal receiver for acquiring an RGB signal; a grayscale value generator, the grayscale value generator and the The signal receiver is electrically connected, and the grayscale value generator is configured to calculate, according to the grayscale value of each monochrome sub-pixel in each pixel of the original image corresponding to the RGB signal, each monochrome in each pixel in the RGB domain.
- the grayscale value of a sub-pixel When the grayscale value of a sub-pixel is converted to the RGBW domain, a preset grayscale value of a white subpixel of each of the pixels in the RGBW domain; a color block detector, the color block detector, and the grayscale value
- the generator is electrically connected, and the color block detector is configured to divide at least one detection area in the original image, and determine whether the detection area is a high-saturation color block according to the brightness and saturation of pixels in the detection area.
- a gray scale upper limit determiner the gray scale upper limit determiner is electrically connected to the color block detector, and when the color block detector determines that the detection area is the high-saturation color block, the gray level An upper limit determiner for setting the In the saturation color block, the maximum value of the first gray level of the white sub-pixel in each pixel of the RGBW domain is less than 255; or, the color block detector determines that the detection area is not the high-saturation color In the block, the gray-scale upper limit determiner is used to set a first gray-scale maximum value of a white sub-pixel in each pixel of the RGBW domain in the detection area to be equal to 255;
- the target grayscale determiner is electrically connected to the grayscale upper limit determiner and the grayscale value generator, and the target grayscale determiner is configured to at least the first grayscale maximum value and the preset grayscale value The minimum value is used as a target grayscale value of the white sub-pixel.
- the color gamut converter further includes a saturation statistic; the saturation statistic is electrically connected to the signal receiver; and the saturation statistic is used to obtain in the original image that the saturation is greater than a predetermined value.
- the proportion K of all pixels in the original image where the saturation threshold is set, and when the proportion K is greater than a second preset proportion parameter, K ⁇ 255 is used as each of the RGBW domains
- the grayscale upper limit determiner is further connected to the saturation statistic, and the grayscale upper limit determiner is configured to use the first grayscale
- the minimum value of the maximum value and the second maximum value of the gray level is used as the gray level upper limit of the white sub-pixel;
- the target gray level determiner is further connected to the gray level upper limit determiner, and the target gray level determiner is used for
- the target grayscale value of the white subpixel is determined by using the grayscale upper limit of the white subpixel and the minimum value of the preset grayscale value
- the color gamut converter further includes: a signal generator electrically connected to the target gray level determiner, and the signal generator is configured to determine a value of each sub-pixel in the RGBW image to be displayed. Distribution, in the RGBW domain, stitch the target grayscale value of the white subpixel in the same pixel with the grayscale value of each monochrome subpixel to generate an RGBW signal.
- the color gamut converter further includes a saturation adjuster and a first color space converter; the saturation adjuster is electrically connected to the signal receiver, and the saturation adjuster is configured to convert any one pixel The saturation is adjusted to the power of ⁇ of the saturation; where 0 ⁇ ⁇ 1; the first color space converter is electrically connected to the saturation adjuster, and the first color space converter is configured to The saturation after the conversion of each of the pixels output by the saturation adjuster obtains a grayscale value of each monochrome sub-pixel of each pixel in the RGBW domain.
- the color gamut converter further includes a color coordinate adjuster; the color coordinate adjuster is electrically connected to the signal generator, and the color coordinate adjuster is configured to adjust the color coordinate according to a color coordinate of a reference white pixel.
- the color coordinates of the image to be displayed are adjusted so that the color coordinates of the white pixels in the image to be displayed overlap the color coordinates of the reference white pixel.
- a display device including any one of the color gamut converters as described above.
- the grayscale value of each monochrome sub-pixel in each pixel in the RGB domain can be converted into the RGBW domain, and during the above conversion process, the obtained The preset grayscale value of the white sub-pixel of each pixel in the RGBW domain.
- the above method further includes determining whether a high-saturation color block with high saturation exists in the original image corresponding to the RGB domain. If the above-mentioned high-saturation color block exists, the first grayscale maximum value of the white sub-pixel in the pixels in the high-saturation color block is appropriately reduced to limit the upper limit of the gray-scale value of the white sub-pixel.
- the first grayscale maximum value of the white subpixel and the minimum value of the preset grayscale value of the white subpixel obtained in the above steps are used as the target grayscale value of the white subpixel.
- the RGB signal is converted into an RGBW signal
- the individual colors in the RGBW domain that are located in the same pixel as the white (W) sub-pixel are reduced.
- the saturation of the sub-pixels still maintains the original saturation in the RGW domain, thereby improving the display effect of the image to be displayed after the color gamut conversion.
- FIG. 1 is a schematic flowchart of a color gamut conversion method according to an embodiment of the present disclosure
- FIG. 2 is a schematic diagram of pixels in an RGB domain according to an embodiment of the present disclosure
- FIG. 3 is a schematic diagram of a pixel arrangement structure of an RGBW domain according to an embodiment of the present disclosure
- FIG. 4 is a schematic diagram of dividing a detection area in the original image in step S103 in FIG. 1; FIG.
- FIG. 5 is a schematic flowchart of another color gamut conversion method according to an embodiment of the present disclosure.
- FIG. 6 is a flowchart of a specific method of step S103 in FIG. 1 or FIG. 5;
- FIG. 7 is a schematic flowchart of another color gamut conversion method according to an embodiment of the present disclosure.
- step S107 in FIG. 7 is a flowchart of a specific method of step S107 in FIG. 7;
- FIG. 9 is a schematic flowchart of another color gamut conversion method according to an embodiment of the present disclosure.
- FIG. 10 is a color gamut diagram provided by an embodiment of the present disclosure.
- FIG. 11 is a schematic structural diagram of a color gamut converter according to an embodiment of the present disclosure.
- FIG. 12 is a schematic structural diagram of another color gamut converter according to an embodiment of the present disclosure.
- FIG. 13 is a schematic structural diagram of another color gamut converter according to an embodiment of the present disclosure.
- FIG. 14 is a schematic structural diagram of another color gamut converter according to an embodiment of the present disclosure.
- the inventor of the present disclosure noticed in research that in a four-primary-color (RGBW) display device, due to the addition of white (W) subpixels, the saturation of the output colors of the R, G, and B subpixels may decrease, As a result, the color saturation of the image displayed by the four-primary-color display device may be reduced.
- the inventors of the present disclosure also noticed in research that adding white (W) sub-pixels may also cause color cast problems.
- At least one embodiment of the present disclosure provides a color gamut conversion method, which includes: acquiring an RGB signal; and acquiring a converted image based on a grayscale value of each monochrome sub-pixel in each pixel of an original image corresponding to the RGB signal.
- the value obtains the target grayscale value of the white subpixel, and makes the target grayscale value of the white subpixel smaller than or equal to the minimum of the first grayscale maximum value and the preset grayscale value of the white subpixel.
- the first gray level maximum value of the white sub-pixel corresponding to each pixel located in the first saturation color block is equal to the gray level threshold value, and the gray level threshold value is smaller than that allowed by the display device to display.
- the maximum grayscale value is equal to the gray level threshold value.
- the first saturation color patch refers to an image area in the original image that meets a predetermined condition, and the first saturation color patch is also referred to as a high saturation color patch.
- whether the detection area is a high-saturation color patch can be determined based on the brightness and saturation of the pixels in the detection area (image area). In other examples, whether the detection area is a high-saturation color block may also be determined according to the brightness, saturation, and hue of the pixels in the detection area (image area).
- the color gamut conversion method refers to a color conversion method, that is, a conversion method of a color coding mode.
- some embodiments of the present disclosure may convert an image signal using the RGB color coding mode into an image signal using the RGBW color coding mode.
- the RGB color coding mode refers to a color coding mode obtained by superimposing three colors of red (R), green (G), and blue (B) to obtain various colors
- the RGBW color coding mode refers to a method of superimposing red ( R), green (G), blue (B), and white (W) to obtain color coding modes of various colors.
- a pixel in the RGBW domain refers to a pixel of an image using the RGBW color coding mode
- a pixel of the RGB domain refers to a pixel in an image using the RGB color coding mode
- the target grayscale value of the white subpixel is obtained based on at least the first grayscale maximum value and the preset grayscale value of the white subpixel, and the target grayscale value of the white subpixel is less than or equal to the first grayscale value of the white subpixel.
- a minimum value of both the grayscale maximum value and the preset grayscale value includes: using the minimum value of the preset grayscale value and the upper limit of the grayscale value of the white subpixel as the target grayscale of the white subpixel. value.
- the upper limit of the grayscale value of the sub-pixel may be equal to the first grayscale maximum value, or equal to the minimum value of both the first grayscale maximum value and the second grayscale maximum value.
- the target grayscale value of the white subpixel is obtained based on at least the first grayscale maximum value and the preset grayscale value of the white subpixel, and the target grayscale value of the white subpixel is less than or equal to the first grayscale value of the white subpixel.
- a minimum value of a grayscale maximum value and a preset grayscale value includes: using the minimum value of the first grayscale maximum value, the preset grayscale value, and the second grayscale maximum value as a white sub-pixel The target grayscale value.
- the target grayscale value of the white subpixel is obtained based on at least the first grayscale maximum value and the preset grayscale value of the white subpixel, and the target grayscale value of the white subpixel is less than or equal to that of the white subpixel.
- the minimum value of both the first grayscale maximum value and the preset grayscale value includes: using the minimum value of both the first grayscale maximum value and the preset grayscale value as the target grayscale value of the white sub-pixel.
- the maximum grayscale value allowed to be displayed by the display device is equal to 255, and the grayscale threshold is selected from 90-110.
- An embodiment of the present disclosure provides a color gamut conversion method. As shown in FIG. 1, the method includes the following steps S101-S105.
- the RGB signal may be an image signal for a three-primary-color display device, and the image signal adopts an RGB color coding mode.
- step S102 may include: calculating the grayscale value of each monochrome subpixel in each pixel in the RGB domain according to the grayscale value of each monochrome subpixel in each pixel of the original image corresponding to the RGB signal.
- the preset grayscale value W 1i of the white sub-pixel of each pixel in the RGBW domain is obtained based on the grayscale value of each pixel of the original image using the RGB color coding mode.
- the converted image is obtained by converting the original image from the RGB domain to the RGBW domain (that is, the encoding mode of the image signal is encoded by RGB color. Mode to RGBW color coding mode).
- the embodiment of the present disclosure does not limit each sub-pixel used to constitute a pixel in the original image corresponding to the RGB signal.
- the pixel 10 includes a red (R) sub-pixel, a green (G) sub-pixel, and a blue (B) sub-pixel.
- the pixel 10 may further include a magenta sub-pixel, a cyan sub-pixel, and a yellow sub-pixel.
- the above-mentioned pixel 10 includes a red (R) sub-pixel, a green (G) sub-pixel, and a blue (B) sub-pixel as examples.
- the height (h) width (b) ratio of each sub-pixel may be 3: 1.
- step S103 may include: dividing the original image 11 into at least one detection area 110, and determining the brightness (V) and saturation (S) of the pixels 10 in the detection area 110. It is detected whether the area 110 is a high-saturation color patch (first saturation color patch) 120.
- the resolution of the original image 11 is N ⁇ M, N ⁇ 2, M ⁇ 2, and N and M are positive integers.
- the resolution of the detection area 110 divided in the original image 11 may be j ⁇ k, 1 ⁇ j ⁇ N, 1 ⁇ k ⁇ M, and j, k are positive integers.
- N and M may be equal or unequal
- k and j may be equal or unequal, which is not limited in the embodiments of the present disclosure.
- the original image 11 may be divided into a plurality of detection areas 110, so that the number-changing effect of the image signal may be improved.
- the above method in order to obtain the brightness or brightness (V), saturation (S), and hue (H) of the pixel 10, before performing the above step S103, the above method further includes step S106 as shown in FIG. 5: RGB Domain to HSV domain.
- step S106 may include using the following formula (1) to obtain the hue (H), saturation (S), and brightness (V) of each pixel 10, respectively.
- the gray-scale value of each monochrome sub-pixel in the RGB domain in each pixel 10 of the original image 11 corresponding to the RGB signal obtained according to the above step S101 for example, the gray-scale value R i of the red (R) sub-pixel, green (G) a grayscale value G i of the sub-pixel and a grayscale value B i of the blue (B) sub-pixel.
- max represents the largest grayscale value among the red (R) subpixel, green (G) subpixel, and blue (B) subpixel in one pixel 10
- min represents Is the smallest grayscale value of the red (R) sub-pixel, green (G) sub-pixel, and blue (B) sub-pixel in one pixel 10.
- the above-mentioned high-saturation color block 120 refers to a detection area 110 where the number of pixels 10 of a certain color in the detection area 110 is large and the saturation and brightness are large is referred to as the high-saturation color block 120.
- the above-mentioned saturation color block 120 may be referred to as a yellow block.
- the process of determining whether the detection area 110 is a high-saturation color patch 120, as shown in FIG. 6, may include the following steps S201-S203.
- S201 Set a preset saturation range (S_th1, S_th2), a preset brightness threshold V_th, and a first preset scaling parameter a1.
- the colors of the high-saturation color blocks 120 to be detected are different, and the settings of the preset saturation range, the preset brightness threshold V_th, and the first preset scaling parameter a1 are also different.
- the high-saturation color block 120 to be detected is the above-mentioned yellow block
- Ratio for example, the ratio of the number of pixels 10 in the detection area 110 where the saturation S is within a preset saturation range and the brightness H is greater than or equal to the preset brightness threshold V_th and the number of all pixels 10 in the original image 11).
- the saturation S of a pixel 10 in the detection area 110 satisfies 0.15 ⁇ S ⁇ 0.8 and the brightness H ⁇ 0.7, the pixel 10 is yellow.
- step S203 When the ratio obtained in step S202 is greater than or equal to the first preset ratio parameter a1, the detection area 110 is a high-saturation color block 120, that is, a yellow block.
- the high-saturation color block 120 is a yellow block
- the detection of the high-saturation color block 120 is an example.
- the high-saturation color block 120 is a color block of other colors, such as red, blue, green, cyan, magenta, and other related values in S201, such as a preset saturation range (S_th1, S_th2)
- S_th1, S_th2 a preset saturation range
- the preset brightness threshold V_th is adjusted so that the pixels 10 satisfying the conditions of the preset saturation range (S_th1, S_th2) and the preset brightness threshold V_th are the colors to be detected, and the proportion of the pixels 10 having the color meets the above-mentioned first Preset the condition of the proportional parameter a1.
- the color gamut conversion method which is not repeated here.
- the detection area 110 it can also be determined whether the detection area 110 is a high-saturation color block (the first saturation color). Block) 120.
- the process of determining whether the detection area 110 is the high-saturation color patch 120 may further include the following steps S211 to S213.
- the pixel 10 whose saturation S is greater than a preset saturation threshold S_th, whose hue is within a preset hue range (H_th1, H_th2), and whose brightness H is greater than or equal to a preset brightness threshold V_th is in the original image.
- the detection area 110 is a high-saturation color block 120, that is, a yellow block.
- step S103 can be used to detect whether the original image includes yellow high-saturation color blocks, red high-saturation color blocks, blue high-saturation color blocks, and green high-saturation. At least one of a chromaticity block, a cyan high-saturation color block, and a magenta high-saturation color block.
- the embodiments of the present disclosure are not limited to the use of obtaining information corresponding to the brightness, saturation, and hue of the pixel 10 by converting the original image from the RGB color space to the HSV color space.
- the original image can also be converted from the RGB color space to other color spaces (for example, HSL color space), as long as the information corresponding to the brightness, saturation, and hue of the pixel 10 can be obtained.
- the HSL color space includes hue (H), saturation (S), and brightness (L) components.
- both the HSL color space and the HSV color space are referred to as the HSB color space.
- the HSB color space includes hue (H), saturation (S), and lightness (B) components.
- step S104 includes: when a high-saturation color block exists in the original image, the first gray level maximum value of the white sub-pixel corresponding to each pixel located in the high-saturation color block is equal to the gray level threshold, and the gray level threshold is less than The maximum grayscale value allowed by the display device; and the first grayscale maximum value of the white subpixel corresponding to each pixel located in the original image and outside the high-saturation color block is equal to the maximum grayscale value allowed by the display device.
- the maximum grayscale value allowed to be displayed by the display device is equal to 255, and the grayscale threshold is selected from 90-110 (eg, 100).
- the maximum grayscale value allowed to be displayed by the display device is not limited to equal to 255, and may also be 1023, etc.
- the grayscale threshold may be modified correspondingly.
- the grayscale threshold is between 1 / 3-1 / 2 of the maximum grayscale value that the display device allows to display.
- step S104 includes: after step S103 is performed, if the detection area 110 is a high-saturation color block 120, setting white in each pixel 10 of the RGBW domain in the high-saturation color block 120 ( W)
- the first gray level maximum value W_lim1 of the sub-pixel is less than 255.
- the specific value of the first grayscale maximum value W_lim1 of the white (W) sub-pixel can be set according to the color appearance theory, that is, in Under a bright background, such as a white background, the above yellow blocks can be used without obvious color shift.
- the first grayscale maximum value W_lim1 of the white (W) sub-pixel is 100.
- the specific value of the first gray level maximum value W_lim1 of the white (W) sub-pixel may be set according to the aperture ratio and transmittance of the white (W) sub-pixel.
- step S103 if the detection area 110 is a high-saturation color block 120, the upper limit of the grayscale value of the white (W) sub-pixel in the high-saturation color block 120 needs to be performed at least through step S104. It is limited so as to avoid that the brightness of the white (W) sub-pixels is too high, which reduces the saturation of the high-saturation color block 120 or causes a color shift in the high-saturation color block 120, and reduces the display effect of the image to be displayed corresponding to the RGBW domain.
- the first gray level maximum value W_lim1 of the white (W) sub-pixel in each pixel 10 may be used as the upper limit W_L of the gray level value of the white (W) sub-pixel.
- Step S105 includes at least the first grayscale maximum value W_lim1 of the white (W) sub-pixel and the minimum value of the preset grayscale value W 1i of the white (W) sub-pixel obtained in the above step S102 as the white (W).
- the grayscale value of each monochrome sub-pixel in each pixel in the RGB domain can be converted into the RGBW domain, and during the above conversion process, the obtained The grayscale threshold W 1i of the white (W) sub-pixel of each pixel in the RGBW domain.
- the above method further includes determining whether a high-saturation color block 120 with high saturation exists in the original image 11 corresponding to the RGB domain. If the above-mentioned high-saturation color block 120 exists, the first grayscale maximum value W_lim1 of the white (W) sub-pixel in the pixel 10 in the high-saturation color block 120 is appropriately reduced to the white (W) sub-pixel.
- the upper limit of the grayscale value of a pixel is limited. Based on this, the minimum value of the first gray level maximum value W_lim1 of the white (W) sub-pixel and the preset gray level value W 1i of the white (W) sub-pixel obtained in the above step S102 is used as the white (W) The target gray level value Wt of the sub-pixel.
- the above method can reduce the problem of color cast of the converted image caused during the color coding mode conversion of the image signal, and correspondingly can alleviate the problem of saturation reduction of the converted image.
- the RGBW domain can be located in the same pixel 10 as the white (W) sub-pixel.
- the saturation of each monochrome sub-pixel still maintains the original saturation in the RGW domain, thereby improving the display effect of the image to be displayed after the color gamut conversion.
- the preset grayscale value W 1i of the white (W) sub-pixel obtained through the above step S102 may satisfy the following formula:
- the grayscale value of the red (R) subpixel of each pixel 10 in the RGBW domain is R1i ; the grayscale value of the green (G) subpixel is G1i ; blue (B) The gray level value B 1i of the sub-pixel; the preset gray level value of the white (W) sub-pixel is W 1i .
- MIN (R 1i , G 1i , B 1i ) indicates that the grayscale value corresponding to the sub-pixel with the smallest grayscale value of each pixel 10 in the RGBW domain is selected.
- MAX (R 1i , G 1i , B 1i ) indicates that the grayscale value corresponding to the sub-pixel with the largest grayscale value of each pixel 10 in the RGBW domain is selected.
- each pixel of the RGBW domain with red (R) sub-pixel grayscale value of 10 R 1i, green (G) sub-pixel grayscale value G 1i and blue (B) sub-pixel grayscale value satisfies B 1i
- red (R) sub-pixel grayscale value of 10 R 1i satisfies B 1i
- green (G) sub-pixel grayscale value G 1i and blue (B) sub-pixel grayscale value satisfies B 1i
- the preset grayscale value of the white (W) sub-pixel calculated by using formula (2) is W 1i .
- a fraction (for example, expression) MIN (R 1i , G 1i ) needs to be set in the formula (2), B 1i ) / MAX (R 1i , G 1i , B 1i ).
- the RGBW domain calculated when the grayscale value of each sub-pixel of each pixel 10 in the RGB domain is converted to the RGBW domain can be avoided.
- the preset grayscale value W 1i of the white (W) sub-pixels is distorted.
- the grayscale value R i of the red (R) sub-pixel and the green (G) sub-pixel of one pixel 10 of the corresponding RGB domain are obtained.
- the grayscale value of the white (W) sub-pixel in the pixel 10 needs to be set small, for example, equal to or close to 0, so that the saturation of the pixel 10 can be maintained.
- the color of the pixel 10 is not diluted by the white (W) sub-pixel.
- the saturation of the color of the pixel 10 is not significantly reduced by the additional white (W) sub-pixel.
- the calculated prediction of the white (W) sub-pixels Set the gray level value to W 1i to 81.
- the gray level value of the white (W) sub-pixel is larger, and the color of the pixel 10 with the white (W) sub-pixel will be diluted, affecting the saturation of the pixel 10 .
- the preset grayscale of the white (W) sub-pixel is calculated
- W 1i is 0.3, which is approximately equal to 0.
- the grayscale value of the white (W) sub-pixel is small, so that the saturation of the pixel 10 having the white (W) sub-pixel can be maintained.
- the present embodiment is not limited to the disclosed embodiment each domain using RGBW pixel 10 red (R) sub-pixel grayscale value R 1i, green (G) sub-pixel grayscale value G 1i and blue ( B) Gray level value of the sub-pixel.
- R 1i red (R) sub-pixel grayscale value
- G 1i green (G) sub-pixel grayscale value
- B blue
- W 1i white (W) sub-pixel preset gray value
- the level G 1i and the gray level B 1i of the blue (B) sub-pixel can be used as the target gray level value of the red (R) sub-pixel and the target gray level of the green (G) sub-pixel for each pixel 10 in the RGBW domain.
- Value and the target grayscale value of the blue (B) sub-pixel and used to form the RGBW signal are examples of the red (R) sub-pixel, the green (G) sub-pixel of each pixel 10 in the RGBW domain.
- the embodiments of the present disclosure are not limited to using the first grayscale maximum value as the upper limit of the grayscale value of the sub-pixel.
- the minimum value of the first grayscale maximum value and the second grayscale maximum value may also be used.
- Value as the upper limit of the grayscale value of the sub-pixel The following is an example description with reference to steps S107 and S301-S303.
- the above method further includes the following step S107.
- step S107 is not limited to being performed after the first gray level maximum value W_lim1 and the preset gray level value W 1i of the white (W) sub-pixel are obtained, and step S107 may also be performed after the white (W) is obtained.
- the first gray level maximum value W_lim1 of the sub-pixel and the preset gray level value W 1i are performed before or at the same time.
- step S107 may include the following steps S301-S303.
- the preset saturation threshold S_th in step S301 and the preset saturation threshold S_th in step S211 may be equal to each other, or one of the two may be omitted.
- the method further includes: in the original image 11, obtaining the saturation S of each pixel 10 and normalizing the saturation S.
- the saturation of each pixel 10 can be determined one by one.
- the saturation S of the pixels 10 is greater than or equal to 0.8, it is counted once by, for example, a counter. After all the pixels 10 are traversed one by one, the above-mentioned ratio K is obtained according to the value counted by the counter.
- the saturation of all the pixels 10 may be binned first, for example, divided into five bins, 0 to 0.2, 0.2 to 0.4, 0.4 to 0.6, 0.6 to 0.8, and 0.8 to 1.0.
- the preset saturation threshold S_th 0.8, the number of pixels 10 whose saturation S is in the range of 0.8 to 1.0 can be directly counted, so as to obtain the above-mentioned ratio K.
- the above step S105 may include: setting the first grayscale maximum value W_lim1, the preset The minimum value of the gray level value W 1i and the second gray level maximum value W_lim2, that is, min (W_lim1, W_lim2, W 1i ) is used as the target gray level value Wt of the white (W) sub-pixel.
- the target gray level value Wt of the white (W) sub-pixel statistics are added to pixels 10 having a higher saturation in the entire original image 11, and the statistical result is The target gray level value Wt has an effect. Therefore, the influence of the white (W) sub-pixels on the saturation of the entire image (or the converted image) to be displayed corresponding to the RGBW domain can be reduced.
- the above method further includes the following step S108.
- the saturation S before conversion is normalized, the value of the saturation S 'after conversion is slightly larger than the value of the saturation S before conversion.
- the foregoing ⁇ may be 0.2, 0.5, 0.7, and the like, which are not limited in the embodiments of the present disclosure.
- the above method further includes the following step S109.
- the HSV domain is converted to the RGB domain.
- the above step S109 specifically includes: after performing the above step S108, according to the converted saturation S 'of the pixel 10, and using the inverse formula of formula (1), each monochrome subpixel (each of the pixels 10 in the RGBW domain) is obtained ( R, G, B).
- each grayscale value obtained through the above-mentioned inversion formula can be used as a target grayscale value of each monochrome sub-pixel (R, G, B) of each pixel 10 in the RGBW domain, and can be used to generate an RGBW signal.
- the above method further includes performing step S110, Generate RGBW signals.
- the above step S110 may include: according to the distribution of each sub-pixel in the RGBW image to be displayed, for example, the pixel arrangement structure corresponding to the RGBW domain as shown in FIG.
- the data corresponding to the target gray level value Wt of the (W) sub-pixel is stitched with the data corresponding to the gray level value of each monochrome sub-pixel (R, G, B) to generate an RGBW signal.
- the above method may further include step S111, color coordinate adjustment.
- the above step S111 includes: adjusting the color coordinates of the image to be displayed (for example, the image after the color coding mode conversion) corresponding to the RGBW domain after the color gamut conversion according to the color coordinates of the reference white pixels, so that the white in the image to be displayed is white.
- the color coordinates D of the pixels overlap the color coordinates of the reference white pixels.
- the above-mentioned color coordinates are shown in the CIE1931 chromaticity diagram in FIG. 10, and the triangles formed by the coordinate points where the three primary colors R, G, and B are connected constitute the color gamut sRGB.
- the color coordinate D of the white point in the color coordinate can determine the position of the color gamut sRGB in the range of the CIE1931 chromaticity diagram, so as to determine the effect of the displayed image that the user finally sees, such as color temperature.
- the color coordinates of the reference white pixel can be set according to user needs.
- the color coordinates of the reference white pixel can be the color coordinate point D65 of the white light of the equal energy spectrum, or D50, D55, and so on.
- the example does not limit this, as long as the color coordinates D of the white pixels in the image to be displayed overlap with the color coordinates of the reference white pixel, the display effect of the image to be displayed, for example, the color temperature can meet the needs of the user.
- the RGBW signal after color coordinate adjustment can be input to a display panel having a pixel arrangement structure as shown in FIG. 3, so that a display image corresponding to the RGBW domain can be displayed.
- any color can be obtained by proportionally assigning the three primary colors such as R, G, and B. Therefore, any color has a certain position in the CIE1931 chromaticity diagram shown in FIG. 10 .
- the X-axis represents a scale factor of a red (R) primary color in a color to be displayed
- the Y-axis represents a scale factor of a green (G) primary color.
- There is also a Z-axis perpendicular to the plane on which the X-axis and Y-axis are located, and this axis represents the scale factor of the blue (B) primary color. Since the proportionality factor X + Y + Z 1 of each primary color, the proportionality factor Z of the blue (B) primary color can also be calculated by this formula.
- An embodiment of the present disclosure further provides a computer device including a memory and a processor.
- the memory stores computer program instructions suitable for execution by the processor.
- the processor executes the foregoing Any color gamut conversion method.
- the above computer equipment has the same technical effects as the color gamut conversion method provided by the foregoing embodiment, and details are not described herein again.
- the computer device may be an image signal conversion device, an image signal encoding mode conversion device, or a color gamut conversion device.
- An embodiment of the present disclosure provides a non-transitory storage medium.
- the non-transitory storage medium stores computer program instructions.
- the computer program instructions When executed by a processor, the computer executes any one of the color gamut conversion methods described above.
- the above computer-readable medium has the same technical effects as the color gamut conversion method provided by the foregoing embodiment, and details are not described herein again.
- An embodiment of the present disclosure provides a color gamut converter, as shown in FIG. 11, including: a signal receiver 20, a grayscale value generator 21, a color block detector 22, a grayscale upper limit determiner 23, and a target grayscale determination. ⁇ 24 ⁇ 24.
- the color gamut converter may not be provided with the color block detector 22.
- high saturation color block information of the original image may be received from outside the color gamut converter.
- the color gamut converter may be referred to as an image signal converter or an image signal encoding mode converter.
- the signal receiver 20 is configured to acquire an RGB signal.
- the gray-scale value generator 21 is electrically connected to the signal receiver 20, and the gray-scale value generator 20 is configured to determine the value of each monochrome sub-pixel in each pixel 10 of the original image 11 corresponding to the RGB signal obtained by the signal receiver 20.
- the grayscale value When the grayscale value of each monochrome sub-pixel in each pixel 10 in the RGB domain is converted to the RGBW domain, the preset grayscale value W 1i of the white sub-pixel in each pixel 10 in the RGBW domain is calculated. That is, the grayscale value generator 20 is configured to obtain preset grayscale values of white sub-pixels of each pixel of the converted image based on the grayscale value of each pixel of the original image using the RGB color coding mode.
- the converted image is obtained by converting the original image from the RGB domain to the RGBW domain (that is, the encoding mode of the image signal is converted from the RGB color encoding mode to the RGBW color encoding mode).
- the color patch detector 22 is electrically connected to the grayscale value generator 21.
- the color block detector 22 is used to divide the original image 11 into at least one detection area 110, and at least according to the brightness and saturation of the pixels 10 in the detection area 110 (for example, the brightness, saturation, and hue of the pixels 10 in the detection area 110) ) To determine whether the detection area 110 is a high-saturation color patch 120.
- the determination process of the high-saturation color block 120 refer to the color gamut conversion method, and details are not described herein again.
- the color gamut converter further includes a second color space converter 26.
- the second color space converter 26 is configured to obtain the grayscale value of each monochrome sub-pixel in the RGB domain of each pixel 10 of the original image 11 corresponding to the RGB signal obtained by the signal receiver 20, using the above formula (1) to obtain The hue (H), saturation (S), and brightness (V) of each pixel 10.
- the color block detector 22 is connected to the second color space converter 26, so that it can receive the hue (H), saturation (S), and brightness of each pixel 10 output by the second color space converter 26.
- (V) Data Data.
- the gray level upper limit determiner 23 is electrically connected to the color block detector 22.
- the gray level upper limit determiner 22 is used to set the high-saturation color block 120.
- the first gray level maximum value W_lim1 of the white (W) sub-pixel in each pixel 10 of the RGBW domain is less than 255 or the maximum gray level value allowed to be displayed by the display device.
- the first gray level maximum value W_lim1 of the white (W) sub-pixel in each pixel 10 may be determined by the gray level upper limit determiner 23 described above.
- the grayscale upper limit determiner 23 is used to set the white (W) in each pixel 10 of the RGBW domain in the detection area 110.
- the first gray level maximum value W_lim1 of the sub-pixel is equal to 255 or the maximum gray level value allowed to be displayed by the display device.
- the upper gray level determiner 23 can limit the upper limit W_L of the gray level value of the white (W) sub-pixel in the high-saturation color block 120, thereby preventing the white (W) sub-pixel from being too bright and reducing
- the saturation of the high-saturation color block 120 reduces the display effect of the image to be displayed corresponding to the RGBW domain.
- Target gradation determiner 24 determines the upper limit of the grayscale 23 and the grayscale values of the electric generator 21 is connected, the target gradation is determined for at least the first 24 W_lim1 maximum gray scale value with a preset gradation of W 1i
- the above-mentioned color gamut converter has the same technical effect as the color gamut conversion method provided in the foregoing embodiment, and details are not described herein again.
- the above-mentioned color gamut converter as shown in FIG. 12 or FIG. 13, further includes a saturation statistics device 25.
- the saturation statistics device 25 is electrically connected to the signal receiver 20.
- the saturation statistic 25 is used to obtain the proportion K of all pixels in the original image with subpixels whose saturation is greater than the preset saturation threshold S_th in the original image, and when the aforementioned proportion K is greater than the second preset ratio parameter When a2, K ⁇ 255 is taken as the second grayscale maximum value W_lim2 of the white (W) sub-pixel in each pixel 10 of each RGBW domain.
- the saturation statistics device 25 is connected to the second color space converter 26, and is configured to receive the second color.
- the electrical connection between the saturation statistics device 25 and the signal receiver 20 means that the second color space converter 26 is further provided between the signal receiver 20 and the saturation statistics device 25, so that the signal receiver 20 passes The second color space converter 26 is electrically connected to the saturation statistics device 25.
- the saturation statistics device 25 may be directly electrically connected to the target gray scale determiner 24.
- the saturation statisticator 25 may be electrically connected to the target grayscale determiner 24 through the grayscale upper limit determiner 23.
- the grayscale upper limit determiner 23 can first obtain the minimum value of the first grayscale maximum value W_lim1 output by the color gamut detector 22 and the second grayscale maximum value W_lim2 output by the saturation statistic 25, that is, min (W_lim1, W_lim2) is used as the grayscale upper limit W_L of the white (W) sub-pixel determined by the grayscale upper limit determiner 23.
- the target gray level determiner 24 the minimum value of the gray level upper limit W_L of the white (W) sub-pixel and the preset gray level value W 1i output by the gray level value generator 21 is used as the white (W).
- the target gray level value Wt of the sub-pixel is used as the white (W).
- the color gamut converter may further include a saturation adjuster 27 and a first Color space converter 28.
- the saturation adjuster 27 is electrically connected to the signal receiver 20.
- the saturation adjuster 27 may be electrically connected to the signal receiver 20 through the second color space converter 26.
- the saturation adjuster 27 is configured to adjust the saturation of any pixel 10 output by the second color space converter 26 to an ⁇ -th power of the saturation.
- the value of ⁇ can be set to slightly increase the saturation of each pixel 10 in the original image 11 as needed.
- the above-mentioned first color space converter 28 is electrically connected to the saturation adjuster 27.
- the first color space converter 28 is configured to obtain the RGBW domain according to the converted saturation of each pixel output by the saturation adjuster 27.
- the color gamut converter described above may further include a signal generator 29.
- the signal generator 29 is electrically connected to the target gray level determiner 24.
- the signal generator 29 is configured to convert white (W) in the same pixel 10 in the RGBW domain according to the distribution of each sub-pixel in the RGBW image to be displayed.
- the target gray level value Wt of the sub-pixel is spliced with the gray level value of each monochrome sub-pixel, and an RGBW signal is generated.
- the grayscale value of each monochrome sub-pixel of the pixel 10 used to generate the RGBW signal may be obtained according to the RGB signal output by the signal receiver 20.
- the signal generator 29 may be electrically connected to the first color space converter 28 so that the first color space converter can be received.
- the grayscale values of each monochrome subpixel of the pixel 10 used to generate the RGBW signal may be output based on the first color space converter 28. Signal obtained.
- the color gamut converter may further include a color coordinate adjuster 30.
- the color coordinate adjuster 30 is electrically connected to the signal generator 29.
- the color coordinate adjuster 30 is configured to adjust the color coordinates of the image to be displayed according to the color coordinates of the reference white pixel, so that the color coordinate D of the white pixel in the image to be displayed overlaps with the color coordinate of the reference white pixel, thereby making the image to be displayed
- the display effect meets the needs of users.
- An embodiment of the present disclosure provides a display device including any one of the color gamut converters described above.
- the display device has the same technical effects as the color gamut converter provided by the foregoing embodiments, and details are not described herein again.
- the display device may be a liquid crystal display device or an organic light emitting diode display device.
- Any of the foregoing display devices may be any product or component having a display function, such as a display, a television, a digital photo frame, a mobile phone, or a tablet computer.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Color Image Communication Systems (AREA)
- Facsimile Image Signal Circuits (AREA)
- Image Processing (AREA)
Abstract
本公开的实施例提供一种色域转换方法、色域转换器、显示装置、图像信号转换方法、计算机设备和非暂时性存储介质,以用于缓解在增加白色子像素后,整个显示图像的色彩饱和度下降的问题。该色域转换方法包括:获取RGB信号;基于RGB信号对应的原始图像的每个像素中各个单色子像素的灰阶值,获取转换后的图像的各个像素的白色子像素的预设灰阶值。转换后的图像通过将原始图像从RGB域转换到RGBW域得到;至少基于白色子像素的第一灰阶最大值与预设灰阶值获取白色子像素的目标灰阶值,并使得白色子像素的目标灰阶值小于等于白色子像素的第一灰阶最大值和预设灰阶值两者中的最小值,其中,对于原始图像中存在的第一饱和度色块,位于第一饱和度色块的每个像素对应的白色子像素的第一灰阶最大值等于灰阶阈值,灰阶阈值小于显示装置允许显示的最大灰阶值。
Description
对相关申请的交叉参考
本申请要求于2018年6月15日递交的中国专利申请第201810619240.8号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
本公开的实施例涉及一种色域转换方法、色域转换器、显示装置、图像信号转换方法、计算机设备和非暂时性存储介质。
随着显示技术的不断发展,显示装置已被广泛应用至电子产品,例如手机、电视、电脑等产品中。目前,随着三基色(RGB)显示装置分辨率的不断提升,像素的开口率越来越小,显示亮度下降。例如,在像素中增加白色(W)子像素,可以改善三基色(RGB)显示装置的显示质量。
发明内容
本公开的至少一个实施例提供了一种色域转换方法,其包括:获取RGB信号;基于所述RGB信号对应的原始图像的每个像素中各个单色子像素的灰阶值,获取转换后的图像的各个像素的白色子像素的预设灰阶值,其中,所述转换后的图像通过将所述原始图像从RGB域转换到RGBW域得到;至少基于所述白色子像素的第一灰阶最大值与所述预设灰阶值获取所述白色子像素的目标灰阶值,并使得所述白色子像素的目标灰阶值小于等于所述白色子像素的第一灰阶最大值和所述预设灰阶值两者中的最小值,其中,对于所述原始图像中存在的第一饱和度色块,位于所述第一饱和度色块的每个像素对应的白色子像素的第一灰阶最大值等于灰阶阈值,所述灰阶阈值小于显示装置允许显示的最大灰阶值。
例如,在所述色域转换方法的至少一个示例中,位于所述原始图像中、所述第一饱和度色块外的每个像素对应的白色子像素的第一灰阶最大值等于所述显示装置允许显示的最大灰阶值;以及所述显示装置允许显示的最大灰阶值等于255,所述灰阶阈值选自90-110。
例如,在所述色域转换方法的至少一个示例中,所述色域转换方法还包括将所述原始图像划分为至少一个检测区域,并根据所述检测区域中多个像素的亮度、饱和度和色相,判断所述检测区域是否为所述第一饱和度色块。
例如,在所述色域转换方法的至少一个示例中,所述将所述原始图像划分为至少一个检测区域,并根据所述检测区域中多个像素的亮度、饱和度和色相,判断所述检测区域是否为所述第一饱和度色块包括:设定预设饱和度阈值、预设色相范围、预设亮度阈值以及第一预设比例参数;获取所述检测区域中,饱和度大于所述预设饱和度阈值,色相位于所述预设色相范围内,且亮度大于所述亮度预设亮度阈值的像素在所述原始图像中所有像素中的占比;当所述占比大于所述第一预设比例参数时,判定所述检测区域为所述第一饱和度色块。
例如,在所述色域转换方法的至少一个示例中,所述色域转换方法还包括设定第二预设比例参数;获取所述原始图像中,饱和度大于所述预设饱和度阈值的像素在所述原始图像中所有像素的占比K;当所述占比K大于所述第二预设比例参数时,将K×255作为所述白色子像素的第二灰阶最大值,其中,所述至少基于所述白色子像素的第一灰阶最大值与所述预设灰阶值获取所述白色子像素的目标灰阶值,并使得所述白色子像素的目标灰阶值小于等于所述白色子像素的第一灰阶最大值和所述预设灰阶值两者中的最小值,包括:将所述第一灰阶最大值、所述预设灰阶值以及所述第二灰阶最大值中的最小值,作为所述白色子像素的目标灰阶值。
例如,在所述色域转换方法的至少一个示例中,所述获取所述原始图像中,饱和度大于所述预设饱和度阈值的所述像素在所述原始图像中所有像素的占比K之前,所述方法还包括:获取所述原始图像的各个像素的饱和度,并将所述各个像素的饱和度归一化。
例如,在所述色域转换方法的至少一个示例中,所述色域转换方法还包括:基于所述RGB域中每个像素的红色子像素的灰阶值R
i、绿色子像素的 灰阶值G
i以及蓝色子像素的灰阶值B
i获取所述RGBW域中每个像素的红色子像素的灰阶值R
1i、绿色子像素的灰阶值G
1i以及蓝色子像素的灰阶值B
1i,其中,R
i、R
1i、G
i、G
1i、B
i和B
1i满足以下公式:R
i=R
1i;Gi=G
1i;Bi=B
1i。
例如,在所述色域转换方法的至少一个示例中,所述基于所述RGB信号对应的原始图像的每个像素中各个单色子像素的灰阶值,获取转换后的图像的各个像素的白色子像素的预设灰阶值包括:基于以下的公式获取所述白色子像素的预设灰阶值W
1i:
例如,在所述色域转换方法的至少一个示例中,所述色域转换方法还包括:将所述原始图像的每个像素的饱和度值转换为所述饱和度值的α次幂;其中,0<α<1;根据所述像素的转换后的饱和度值,获得所述转换后的图像中每个像素的各个单色子像素的目标灰阶值。
例如,在所述色域转换方法的至少一个示例中,获取到所述白色子像素的目标灰阶值之后,所述方法还包括:将同一像素中的所述白色子像素的目标灰阶值对应的数据与所述各个单色子像素的目标灰阶值对应的数据进行拼接,以生成RGBW信号。
例如,在所述色域转换方法的至少一个示例中,在生成所述RGBW信号之后,所述方法还包括:根据基准白色像素的色坐标,对所述RGBW信号对应的待显示图像的色坐标进行调节,使得所述中白色像素的色坐标与所述基准白色像素的色坐标重叠。
本公开的至少一个实施例提供了一种计算机设备,其包括存储器、处理器;所述存储器上存储有适于所述处理器执行的计算机程序指令,所述计算机程序指令被所述处理器运行时使得所述处理器执行本公开任一实施例提供的色域转换方法。
本公开的至少一个实施例提供了一种非暂时性存储介质,所述非暂时性存储介质存储有计算机程序指令,所述计算机程序指令被处理器运行时使得计算机执行本公开任一实施例提供的色域转换方法。
本公开的至少一个实施例提供了一种色域转换器,其包括:信号接收器、灰阶值生成器、目标灰阶确定器和灰阶上限确定器。所述信号接收器用于获 取RGB信号;所述灰阶值生成器与所述信号接收器电连接,所述灰阶值生成器用于根据所述RGB信号对应的原始图像的每个像素中各个单色子像素的灰阶值,获取转换后的图像的各个像素的白色子像素的预设灰阶值,其中,所述转换后的图像通过将所述原始图像从RGB域转换到RGBW域得到;所述目标灰阶确定器与所述灰阶上限确定器和所述灰阶值生成器电连接,所述目标灰阶确定器被配置为至少基于所述白色子像素的第一灰阶最大值与所述预设灰阶值获取所述白色子像素的目标灰阶值,以及使得所述白色子像素的目标灰阶值小于等于第一灰阶最大值和所述预设灰阶值两者中的最小值;所述灰阶上限确定器被配置为使得,对于所述原始图像中存在的第一饱和度色块时,位于所述第一饱和度色块的每个像素对应的白色子像素的第一灰阶最大值等于灰阶阈值,所述灰阶阈值小于显示装置允许显示的最大灰阶值。
例如,在所述色域转换器的至少一个示例中,所述灰阶上限确定器还被配置为使得,位于所述原始图像中、所述第一饱和度色块外的每个像素对应的白色子像素的第一灰阶最大值等于所述显示装置允许显示的最大灰阶值;以及所述显示装置允许显示的最大灰阶值等于255,所述灰阶阈值选自90-110。
例如,在所述色域转换器的至少一个示例中,所述色域转换器还包括:色块检测器,其中,所述色块检测器与所述灰阶值生成器电连接,所述色块检测器用于将所述原始图像中划分为至少一个检测区域,并根据所述检测区域中多个像素的亮度、饱和度和色相,判断所述检测区域是否为所述第一饱和度色块。
例如,在所述色域转换器的至少一个示例中,所述色域转换器还包括饱和度统计器;所述饱和度统计器与所述信号接收器电连接;所述饱和度统计器用于获取所述原始图像中,饱和度大于预设饱和度阈值的像素在所述原始图像中所有像素的占比K,且当所述占比K大于第二预设比例参数时,并将K×255作为每个所述RGBW域的每个像素中的白色子像素的第二灰阶最大值;所述灰阶上限确定器还与所述饱和度统计器相连接,所述灰阶上限确定器用于将所述第一灰阶最大值和所述第二灰阶最大值中的最小值作为所述白色子像素的灰阶上限;所述目标灰阶确定器还连接所述灰阶上限确定器,所述目标灰阶确定器用于将所述白色子像素的灰阶上限与所述预设灰阶值中的 最小值,作为所述白色子像素的目标灰阶值。
例如,在所述色域转换器的至少一个示例中,所述色域转换器还包括:信号生成器、饱和度调整器和第一色彩空间转换器。所述饱和度调整器与所述信号接收器电连接,所述饱和度调整器用于将所述原始图像的每个像素的饱和度值调整为所述饱和度值的α次幂;其中,0<α<1;所述第一色彩空间转换器与所述饱和度调整器电连接,所述第一色彩空间转换器用于根据所述饱和度调整器输出的每个所述像素转换后的饱和度值,获得所述转换后的图像中每个像素的各个单色子像素的目标灰阶值;所述信号生成器与所述目标灰阶确定器电连接,所述信号生成器用于将同一像素中的所述白色子像素的目标灰阶值对应的数据与所述各个单色子像素的目标灰阶值对应的数据进行拼接,以生成RGBW信号。
例如,在所述色域转换器的至少一个示例中,所述色域转换器还包括色坐标调节器;所述色坐标调节器与所述信号生成器电连接,所述色坐标调节器用于根据基准白色像素的色坐标,对所述RGBW信号对应的待显示图像的色坐标进行调节,使得所述待显示图像中白色像素的色坐标与所述基准白色像素的色坐标重叠。
本公开的至少一个实施例提供了一种显示装置,其包括本公开任一实施例提供的色域转换器。
本公开的至少一个实施例提供了一种图像信号转换方法,其包括:获取原始图像的信号;基于所述原始图像的每个像素中各个单色子像素的灰阶值,获取转换后的图像的各个像素的白色子像素的预设灰阶值,其中,所述转换后的图像通过将所述原始图像从RGB域转换到RGBW域得到;至少基于所述白色子像素的第一灰阶最大值与所述预设灰阶值两者中的最小值获取所述白色子像素的目标灰阶值,并使得所述白色子像素的目标灰阶值小于等于第一灰阶最大值和所述预设灰阶值的最小值,其中,对于所述原始图像中存在的第一饱和度色块,位于所述第一饱和度色块的每个像素对应的白色子像素的第一灰阶最大值等于灰阶阈值,所述灰阶阈值小于显示装置允许显示的最大灰阶值。
本公开的实施例的一方面,提供一种色域转换方法,所述方法包括:获取RGB信号;根据所述RGB信号对应的原始图像的每个像素中各个单色子 像素的灰阶值,计算将RGB域中每个像素中各个单色子像素的灰阶值转换至RGBW域时,所述RGBW域中每个所述像素的白色子像素的预设灰阶值;在所述原始图像中划分至少一个检测区域,并根据所述检测区域中像素的亮度和饱和度,判断所述检测区域是否为高饱和度色块;若所述检测区域为所述高饱和度色块,设定所述高饱和度色块中,所述RGBW域的每个像素中的白色子像素的第一灰阶最大值小于255;至少将所述第一灰阶最大值与所述预设灰阶值中的最小值,作为所述白色子像素的目标灰阶值。
可选的,所述在所述原始图像中划分至少一个检测区域,并根据所述检测区域中像素的亮度和饱和度,判断所述检测区域是否为高饱和度色块包括:设定预设饱和度范围、预设亮度阈值以及第一预设比例参数;获取所述检测区域中,饱和度位于所述预设饱和度范围内,且亮度大于或等于所述亮度预设亮度阈值的所述像素在所述原始图像中所有像素中的占比;当所述占比大于或等于所述第一预设比例参数时,所述检测区域为所述高饱和度色块。
可选的,获取所述白色子像素的所述第一灰阶最大值和所述预设灰阶值之后,所述方法还包括:设定预设饱和度阈值和第二预设比例参数;获取所述原始图像中,饱和度大于所述预设饱和度阈值的所述像素在所述原始图像中所有像素的占比K;当所述占比K大于所述第二预设比例参数时,将K×255作为所述RGBW域的每个像素中的白色子像素的第二灰阶最大值;所述至少将所述第一灰阶最大值与所述预设灰阶值中的最小值,作为所述白色子像素的目标灰阶值包括:将所述第一灰阶最大值、所述预设灰阶值以及所述第二灰阶最大值中的最小值,作为所述白色子像素的目标灰阶值。
可选的,所述获取所述原始图像中,饱和度大于所述预设饱和度阈值的所述像素在所述原始图像中所有像素的占比K之前,所述方法还包括:在所述原始图像中,获取各个所述像素的饱和度,并将所述饱和度归一化。
可选的,获取到所述白色子像素的目标灰阶值之后,所述方法还包括:根据待显示的RGBW图像中各个子像素的分布,在所述RGBW域中,将同一像素中的所述白色子像素的目标灰阶值与各个单色子像素的灰阶值进行拼接,并生成RGBW信号。
可选的,生成所述RGBW信号之前,所述方法还包括:将任意一个像素的饱和度转换为所述饱和度的α次幂;其中,0<α<1;根据所述像素转 换后的饱和度,获得所述RGBW域中每个像素的各个单色子像素的灰阶值。
可选的,在生成所述RGBW信号之后,所述方法还包括:根据基准白色像素的色坐标,对所述待显示图像的色坐标进行调节,使得所述待显示图像中白色像素的色坐标与所述基准白色像素的色坐标重叠。
可选的,所述根据所述RGB信号对应的原始图像的每个像素中各个单色子像素的灰阶值,计算将RGB域中每个像素中各个单色子像素的灰阶值转换至RGBW域时,所述RGBW域中每个所述像素的白色子像素的预设灰阶值包括:所述RGB域中每个像素的红色子像素的灰阶值R
i、绿色子像素的灰阶值G
i以及蓝色子像素的灰阶值B
i,与所述RGBW域中每个像素的红色子像素的灰阶值R
1i、绿色子像素的灰阶值G
1i以及蓝色子像素的灰阶值B
1i满足以下公式:R
i=R
1i;G
i=G
1i;B
i=B
1i;所述RGBW域中每个像素的红色子像素的灰阶值R
1i、绿色子像素的灰阶值G
1i以及蓝色子像素的灰阶值B
1i,与白色子像素的预设灰阶值W
1i满足以下公式:
可选的,所述在所述原始图像中划分至少一个检测区域,并根据所述检测区域中像素的亮度和饱和度,判断所述检测区域是否为高饱和度色块之后,所述方法还包括:若所述检测区域不是所述高饱和度色块,设定所述检测区域中,所述RGBW域的每个像素中的白色子像素的第一灰阶最大值等于255。
本公开的实施例的另一方面,提供一种计算机设备,包括存储器、处理器;所述存储器上存储有可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如上所述的任意一种方法。
本公开的实施例的另一方面,提供一种计算机可读介质,所述计算机程序被处理器执行时实现如上所述的任意一种方法。
本公开的实施例的另一方面,提供一种色域转换器,包括:信号接收器,所述信号接收器用于获取RGB信号;灰阶值生成器,所述灰阶值生成器与所述信号接收器电连接,所述灰阶值生成器用于根据所述RGB信号对应的原始图像的每个像素中各个单色子像素的灰阶值,计算将RGB域中每个像素中各个单色子像素的灰阶值转换至RGBW域时,所述RGBW域中每个所述像素的白色子像素的预设灰阶值;色块检测器,所述色块检测器与所述灰 阶值生成器电连接,所述色块检测器用于在所述原始图像中划分至少一个检测区域,并根据所述检测区域中像素的亮度和饱和度,判断所述检测区域是否为高饱和度色块;灰阶上限确定器、所述灰阶上限确定器与所述色块检测器电连接,在所述色块检测器判断所述检测区域为所述高饱和度色块时,所述灰阶上限确定器用于设定所述高饱和度色块中,所述RGBW域的每个像素中的白色子像素的第一灰阶最大值小于255;或者,在所述色块检测器判断所述检测区域不是所述高饱和度色块时,所述灰阶上限确定器用于设定所述检测区域中,所述RGBW域的每个像素中的白色子像素的第一灰阶最大值等于255;目标灰阶确定器,所述目标灰阶确定器与所述灰阶上限确定器和所述灰阶值生成器电连接,所述目标灰阶确定器用于至少将所述第一灰阶最大值与所述预设灰阶值中的最小值,作为所述白色子像素的目标灰阶值。
可选的,所述色域转换器还包括饱和度统计器;所述饱和度统计器与所述信号接收器电连接;所述饱和度统计器用于获取所述原始图像中,饱和度大于预设饱和度阈值的所述子像素在所述原始图像中所有像素的占比K,且当所述占比K大于第二预设比例参数时,并将K×255作为每个所述RGBW域的每个像素中的白色子像素的第二灰阶最大值;所述灰阶上限确定器还与所述饱和度统计器相连接,所述灰阶上限确定器用于将所述第一灰阶最大值和所述第二灰阶最大值中的最小值作为所述白色子像素的灰阶上限;所述目标灰阶确定器还连接所述灰阶上限确定器,所述目标灰阶确定器用于将所述白色子像素的灰阶上限与所述预设灰阶值中的最小值,作为所述白色子像素的目标灰阶值。
可选的,所述色域转换器还包括:信号生成器,所述信号生成器与所述目标灰阶确定器电连接,所述信号生成器用于根据待显示的RGBW图像中各个子像素的分布,在所述RGBW域中,将同一像素中的所述白色子像素的目标灰阶值与各个单色子像素的灰阶值进行拼接,并生成RGBW信号。
可选的,所述色域转换器还包括饱和度调整器和第一色彩空间转换器;所述饱和度调整器与所述信号接收器电连接,所述饱和度调整器用于将任意一个像素的饱和度调整为所述饱和度的α次幂;其中,0<α<1;所述第一色彩空间转换器与所述饱和度调整器电连接,所述第一色彩空间转换器用于根据所述饱和度调整器输出的每个所述像素转换后的饱和度,获得所述 RGBW域中每个像素的各个单色子像素的灰阶值。
可选的,所述色域转换器还包括色坐标调节器;所述色坐标调节器与所述信号生成器电连接,所述色坐标调节器用于根据基准白色像素的色坐标,对所述待显示图像的色坐标进行调节,使得所述待显示图像中白色像素的色坐标与所述基准白色像素的色坐标重叠。
本公开的实施例的另一方面,提供一种显示装置包括如上所述的任意一种色域转换器。
由上述可知,本公开的实施例提供的色域转换方法中,可以将RGB域中每个像素中各个单色子像素的灰阶值转换至RGBW域,并在上述转换的过程中,获取到该RGBW域中每个像素的白色子像素的预设灰阶值。在此基础上,上述方法还包括,对RGB域对应的原始图像中是否存在饱和度较高的高饱和度色块进行判断。如果存在上述高饱和度色块,则适当的减小该高饱和度色块中像素中的白色子像素的第一灰阶最大值,以对该白色子像素的灰阶值的上限进行限定。在此基础上,将白色子像素的第一灰阶最大值与上述步骤获得的白色子像素预设灰阶值中的最小值,作为该白色子像素的目标灰阶值。这样一来,即使将RGB信号转换为RGBW信号,通过降低该高饱和度色块中白色子像素的灰阶值,使得RGBW域中与上述白色(W)子像素位于同一像素中的各个单色子像素的饱和度仍然保持RGW域中原有的饱和度,从而提升色域转换后,待显示图像的显示效果。
为了更清楚地说明本公开的实施例的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,并非对本公开的限制。
图1为本公开的实施例提供的一种色域转换方法的流程示意图;
图2为本公开的实施例提供的一种RGB域的像素示意图;
图3为本公开的实施例提供的一种RGBW域的像素排布结构示意图;
图4为图1中步骤S103中在原始图像中划分出检测区域的示意图;
图5为本公开的实施例提供的另一种色域转换方法的流程示意图;
图6为图1或图5中步骤S103的具体方法流程图;
图7为本公开的实施例提供的另一种色域转换方法的流程示意图;
图8为图7中步骤S107的具体方法流程图;
图9为本公开的实施例提供的另一种色域转换方法的流程示意图;
图10为本公开的实施例提供的一种色域图;
图11为本公开的实施例提供的一种色域转换器的结构示意图;
图12为本公开的实施例提供的另一种色域转换器的结构示意图;
图13为本公开的实施例提供的另一种色域转换器的结构示意图;
图14为本公开的实施例提供的另一种色域转换器的结构示意图。
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”、“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
本公开的发明人在研究中注意到,在四基色(RGBW)显示装置中,由于增加了白色(W)子像素,可能会导致R、G以及B子像素的输出颜色的饱和度减小,从而可能使得四基色显示装置显示的图像的色彩饱和度下降。此外,本公开的发明人在研究中还注意到,增加白色(W)子像素还可能会导致色偏问题。
本公开的至少一个实施例提供了一种色域转换方法,其包括:获取RGB信号;基于RGB信号对应的原始图像的每个像素中各个单色子像素的灰阶值,获取转换后的图像的各个像素的白色子像素的预设灰阶值,其中,转换后的图像通过将原始图像从RGB域转换到RGBW域得到;至少基于白色子像素的第一灰阶最大值与预设灰阶值获取白色子像素的目标灰阶值,并使得白色子像素的目标灰阶值小于等于白色子像素的第一灰阶最大值和预设灰阶值两者中的最小值。对于原始图像中存在的第一饱和度色块,位于第一饱和度色块的每个像素对应的白色子像素的第一灰阶最大值等于灰阶阈值,灰阶阈值小于显示装置允许显示的最大灰阶值。
需要说明的是,在本公开的一些实施例中,第一饱和度色块是指原始图像中满足预定条件的图像区域,第一饱和度色块也被称为高饱和度色块。在一些示例中,可以根据检测区域(图像区域)中像素的亮度和饱和度,判断该检测区域是否为高饱和度色块。在另一些示例中,还可以根据该检测区域(图像区域)中像素的亮度、饱和度和色相,判断该检测区域是否为高饱和度色块。
需要说明的是,在本公开的一些实施例中,色域转换方法是指颜色转换方法,也即,颜色编码模式的转换方法。例如,本公开的一些实施例可以将采用了RGB颜色编码模式的图像信号转换为采用了RGBW颜色编码模式的图像信号。
在一些示例中,RGB颜色编码模式是指通过叠加红(R)、绿(G)、蓝(B)三种颜色来得到各种颜色的颜色编码模式,RGBW颜色编码模式是指通过叠加红(R)、绿(G)、蓝(B)、白(W)四种颜色来得到各种颜色的颜色编码模式。
需要说明的是,为清楚起见,以下描述仅采用色域转换方法,但本领域技术人员可以理解,以下所述的色域转换方法也可以被称为图像信号转换方法或图像子像素渲染方法。
需要说明的是,RGBW域的像素是指采用了RGBW颜色编码模式的图像的像素,RGB域的像素是指采用了RGB颜色编码模式的图像的像素。
在一些示例中,至少基于白色子像素的第一灰阶最大值与预设灰阶值获取白色子像素的目标灰阶值,并使得白色子像素的目标灰阶值小于等于白色子像素的第一灰阶最大值和预设灰阶值两者中的最小值包括:将预设灰阶值 以及白色子像素的灰阶值的上限两者中的最小值,作为白色子像素的目标灰阶值。例如,子像素的灰阶值的上限可以等于第一灰阶最大值,或者等于第一灰阶最大值和第二灰阶最大值两者中的最小值。
在一些示例中,至少基于白色子像素的第一灰阶最大值与预设灰阶值获取白色子像素的目标灰阶值,并使得白色子像素的目标灰阶值小于等于白色子像素的第一灰阶最大值和预设灰阶值两者中的最小值包括:将第一灰阶最大值、预设灰阶值以及第二灰阶最大值三者中的最小值,作为白色子像素的目标灰阶值。在另一些示例中,至少基于白色子像素的第一灰阶最大值与预设灰阶值获取白色子像素的目标灰阶值,并使得白色子像素的目标灰阶值小于等于白色子像素的第一灰阶最大值和预设灰阶值两者中的最小值包括:将第一灰阶最大值和预设灰阶值两者中的最小值,作为白色子像素的目标灰阶值。
例如,显示装置允许显示的最大灰阶值等于255,灰阶阈值选自90-110。
下面将结合附图对本公开不同的实施例和示例提供的色域转换方法进行非限制性的说明,如下面所描述的,在不相互抵触的情况下这些具体实施例和示例中不同特征可以相互组合,从而得到新的实施例和示例,这些实施例和示例也都属于本公开保护的范围。
本公开的实施例提供一种色域转换方法,如图1所示,该方法包括以下的步骤S101-S105。
S101、获取RGB信号。
S102、获取白色(W)子像素的预设灰阶值W
1i。
例如,RGB信号可以是一种用于三基色显示装置的图像信号,且该图像信号采用了RGB颜色编码模式。
示例性的,步骤S102可以包括:根据上述RGB信号对应的原始图像的每个像素中各个单色子像素的灰阶值,计算将RGB域中每个像素中各个单色子像素的灰阶值转换至RGBW域时,该RGBW域中每个像素的白色子像素的预设灰阶值W
1i,也即,基于采用了RGB颜色编码模式的原始图像的每个像素的灰阶值,获取转换后的图像的各个像素的白色子像素的预设灰阶值,此处,转换后的图像通过将原始图像从RGB域转换到RGBW域得到(也即,将图像信号的编码模式由RGB颜色编码模式转换为RGBW颜色编码模式)。
需要说明的是,本公开的实施例对上述RGB信号对应的原始图像中用于构成一个像素的各个子像素不做限定。可选的,在一些实施例中,如图2所示,像素10包括红色(R)子像素、绿色(G)子像素以及蓝色(B)子像素。或者,上述像素10还可以包括品红色子像素、青色子像素以及黄色子像素。为了方便说明,以下实施例均是以上述像素10包括红色(R)子像素、绿色(G)子像素以及蓝色(B)子像素为例。例如,每个子像素的高(h)宽(b)比可以为3:1。
基于此,当将RGB域中每个像素10中各个单色子像素的灰阶值转换至RGBW域后,为了使得上述子像素的高宽比仍然保持3:1,且面积不变,如图3所示,在形成RGBW域对应的像素排布结构时,可以将原本RGB域对应的像素排布结构中的一部分子像素,被RGBW域中的白色(W)子像素所代替。在此情况下,相对于RGB域对应的像素排布结构而言,RGBW域对应的像素排布结构中,R、G、B子像素的个数减少了1/4。
S103、检测高饱和度色块(第一饱和度色块)。
示例性的,如图4所示,步骤S103可以包括:将原始图像11划分为至少一个检测区域110,并根据该检测区域110中像素10的亮度(V)和饱和度(S),判断该检测区域110是否为高饱和度色块(第一饱和度色块)120。
可选的,原始图像11的分辨率为N×M,N≥2,M≥2,N和M为正整数。在此情况下,在该原始图像11中划分得到的检测区域110的分辨率可以为j×k,1≤j≤N,1≤k≤M,j、k为正整数。其中,N和M可以相等也可以不相等,k和j可以相等,也可以不相等,本公开的实施例对此不做限定。
例如,可以将原始图像11划分为多个检测区域110,由此可以提升图像信号的换号效果。
在一些实施例中,为了获得像素10的亮度或明度(V)、饱和度(S)和色相(H),在执行上述步骤S103之前,上述方法还包括如图5所示的步骤S106:RGB域转换至HSV域。
示例性的,步骤S106可以包括利用以下公式(1)可以分别获得各个像素10的色相(H)、饱和度(S)以及亮度(V)。
V=max (1)
也即,根据上述步骤S101获得的RGB信号对应的原始图像11的每个像素10中各个单色子像素在RGB域的灰阶值,例如红色(R)子像素的灰阶值R
i、绿色(G)子像素的灰阶值G
i以及蓝色(B)子像素的灰阶值B
i。
需要说明的是,上述公式(1)中,max表示的是一个像素10中红色(R)子像素、绿色(G)子像素以及蓝色(B)子像素中最大的灰阶值;min表示的是一个像素10中红色(R)子像素、绿色(G)子像素以及蓝色(B)子像素中最小的灰阶值。
例如,上述高饱和度色块120是指,当上述检测区域110中某一颜色像素10的数量较多,且饱和度和亮度较大的检测区域110称为高饱和度色块120。当高饱和度色块120中满足上述条件的像素10显示黄色时,上述饱和度色块120可以为称为黄块。示例性的,判断上述检测区域110是否为高饱和度色块120的过程,如图6所示,可以包括以下的步骤S201-S203。
S201、设定预设饱和度范围(S_th1,S_th2)、预设亮度阈值V_th以及第一预设比例参数a1。
需要说明的是,需要检测的高饱和度色块120的颜色不同,上述预设饱和度范围、预设亮度阈值V_th以及第一预设比例参数a1的设置也不尽相同。例如,当需要检测出的高饱和度色块120为上述黄块时,可选的,设定预设饱和度范围中的下限S_th1=0.15,预设饱和度范围中的上限S_th2=0.8;预设 亮度阈值V_th=0.7;第一预设比例参数a1=0.6。
S202、获取检测区域110中,饱和度S位于预设饱和度范围(S_th1,S_th2)内,且亮度H大于或等于预设亮度阈值V_th的像素10在上述原始图像11中所有像素10中的占比(例如,检测区域110中,饱和度S位于预设饱和度范围内,且亮度H大于或等于预设亮度阈值V_th的像素10的数目以及原始图像11中所有像素10的数目的比值)。
其中,当检测区域110中一像素10的饱和度S满足0.15≤S≤0.8,且亮度H≥0.7时,该像素10为黄色。
S203、当步骤S202中获得的占比大于或等于第一预设比例参数a1时,上述检测区域110为高饱和度色块120,即黄块。
上述是高饱和度色块120为黄块为例,对高饱和度色块120进行检测为例进行的说明。当高饱和度色块120为其他颜色,例如红色、蓝色、绿色、青色、品红色等颜色的色块时,需要对S201中的相关数值,例如预设饱和度范围(S_th1,S_th2)、预设亮度阈值V_th进行调整,使得满足预设饱和度范围(S_th1,S_th2)、预设亮度阈值V_th条件的像素10为需要检测的颜色,且具有该颜色的像素10的占比满足上述第一预设比例参数a1的条件。其余检测步骤可参见色域转换方法,此处不再赘述。
在一些示例中,还可以根据该检测区域110中像素10的亮度(V)、饱和度(S)和色相(H),判断该检测区域110是否为高饱和度色块(第一饱和度色块)120。
例如,判断上述检测区域110是否为高饱和度色块120的过程,还可以包括以下的步骤S211-S213。
S211、设定预设饱和度阈值S_th预设色相范围(H_th1,H_th2)、预设亮度阈值V_th以及第一预设比例参数a1。
S212、获取检测区域110中,饱和度S大于预设饱和度阈值S_th,色相位于预设色相范围(H_th1,H_th2)内,且亮度H大于或等于预设亮度阈值V_th的像素10在上述原始图像11中所有像素10中的占比。
S213、当步骤S212中获得的占比大于或等于第一预设比例参数a1时,上述检测区域110为高饱和度色块120,即黄块。
例如,通过设置预设色相范围(H_th1,H_th2),可以选择待检测的色 块的颜色。例如,通过调节预设色相范围(H_th1,H_th2),可以使得步骤S103用于检测原始图像是否包括黄色高饱和度色块、红色高饱和度色块、蓝色高饱和度色块、绿色高饱和度色块、青色高饱和度色块、品红色高饱和度色块中的至少一个。
需要说明的是,本公开的实施例不限于使用通过将原始图像从RGB颜色空间转换至HSV颜色空间获取对应于像素10的亮度、饱和度和色相的信息,在一些示例中,本公开的实施例还可以将原始图像从RGB颜色空间转换至其它颜色空间(例如,HSL颜色空间),只要能够获取对应于像素10的亮度、饱和度和色相的信息即可。例如,HSL颜色空间包括色相(H)、饱和度(S)和亮度(L)分量。例如,HSL颜色空间和HSV颜色空间均被称为HSB颜色空间,HSB颜色空间包括色相(H)、饱和度(S)和明度(B)分量。
S104、获取白色(W)子像素的灰阶值的上限。
例如,步骤S104包括:在原始图像中存在高饱和度色块时,使得位于高饱和度色块的每个像素对应的白色子像素的第一灰阶最大值等于灰阶阈值,灰阶阈值小于显示装置允许显示的最大灰阶值;以及使得位于原始图像中、高饱和度色块外的每个像素对应的白色子像素的第一灰阶最大值等于显示装置允许显示的最大灰阶值。例如,显示装置允许显示的最大灰阶值等于255,灰阶阈值选自90-110(例如,100)。需要说明的是,显示装置允许显示的最大灰阶值不限于等于255,还可以为1023等,此时,灰阶阈值可以对应修改。例如,灰阶阈值位于显示装置允许显示的最大灰阶值的1/3-1/2之间。
在一个示例中,该步骤S104包括:当执行步骤S103后,若上述检测区域110为高饱和度色块120,设定高饱和度色块120中,RGBW域的每个像素10中的白色(W)子像素的第一灰阶最大值W_lim1小于255。以上述高饱和度色块120为黄块为例,在一些实施例中,上述白色(W)子像素的第一灰阶最大值W_lim1的具体数值,可以根据色貌理论进行设定,即在高亮背景下,例如白色背景下,上述黄块无明显色偏即可。可选的,上述白色(W)子像素的第一灰阶最大值W_lim1=100。
在一些实施例中,当执行步骤S103后,若上述检测区域110为高饱和度色块120,则高饱和度色块120中每个像素10中的白色(W)子像素的第 一灰阶最大值W_lim1=100。
在另一些实施例中,上述白色(W)子像素的第一灰阶最大值W_lim1的具体数值,可以根据该白色(W)子像素的开口率和透过率进行设定。其中,当执行上述步骤S103后,若上述检测区域110为高饱和度色块120,则高饱和度色块120中每个像素10中的白色(W)子像素的第一灰阶最大值W_lim1与该白色(W)子像素的开口率或透过率呈反比。
由上述可知,当执行步骤S103后,若上述检测区域110为高饱和度色块120,需要至少通过步骤S104对该高饱和度色块120中白色(W)子像素的灰阶值的上限进行限定,从而避免白色(W)子像素亮度太大而降低高饱和度色块120的饱和度或导致高饱和度色块120存在色偏,降低RGBW域所对应的待显示图像的显示效果。
当执行步骤S103后,若检测区域110不是上述高饱和度色块120,设定该检测区域110中,RGBW域的每个像素10中的白色(W)子像素的第一灰阶最大值W_lim1=255(例如,显示装置允许显示的最大灰阶值)。
在本公开的实施例的一些实施例中,可以将每个像素10中的白色(W)子像素的第一灰阶最大值W_lim1作为该白色(W)子像素的灰阶值的上限W_L。
S105、获取白色(W)子像素的目标灰阶值。
步骤S105包括:至少将白色(W)子像素的第一灰阶最大值W_lim1与上述步骤S102获得的白色(W)子像素预设灰阶值W
1i中的最小值,作为该白色(W)子像素的目标灰阶值Wt,即Wt=min(W_lim1,W
1i)。
例如,在本公开的实施例提供的色域转换方法中,可以将RGB域中每个像素中各个单色子像素的灰阶值转换至RGBW域,并在上述转换的过程中,获取到该RGBW域中每个像素的白色(W)子像素的灰阶阈值W
1i。在此基础上,上述方法还包括,对RGB域对应的原始图像11中是否存在饱和度较高的高饱和度色块120进行判断。如果存在上述高饱和度色块120,则适当的减小该高饱和度色块120中像素10中的白色(W)子像素的第一灰阶最大值W_lim1,以对该白色(W)子像素的灰阶值的上限进行限定。在此基础上,将白色(W)子像素的第一灰阶最大值W_lim1与上述步骤S102获得的白色(W)子像素预设灰阶值W
1i中的最小值,作为该白色(W)子像素 的目标灰阶值Wt。例如,上述方法可以降低图像信号的颜色编码模式转换过程中导致的转换后的图像的色偏问题,并对应的可以缓解转换后的图像的饱和度下降问题。例如,即使将RGB信号转换为RGBW信号,通过降低该高饱和度色块120中白色(W)子像素的灰阶值,可以使得RGBW域中与上述白色(W)子像素位于同一像素10中的各个单色子像素的饱和度仍然保持RGW域中原有的饱和度,从而提升色域转换后,待显示图像的显示效果。
由上述可知,RGBW域中,一个像素10中的单色子像素的饱和度较高时,需要适当减小该像素10中的白色(W)子像素的灰阶值。
例如,通过上述步骤S102获得的白色(W)子像素的预设灰阶值W
1i可以满足以下公式:
此处,公式(2)中,RGBW域中每个像素10的红色(R)子像素的灰阶值为R
1i;绿色(G)子像素的灰阶值为G
1i;蓝色(B)子像素的灰阶值B
1i;白色(W)子像素的预设灰阶值为W
1i。
MIN(R
1i,G
1i,B
1i)表示选取RGBW域中每个像素10的灰阶值最小的子像素所对应的灰阶值。而MAX(R
1i,G
1i,B
1i)表示选取RGBW域中每个像素10的灰阶值最大的子像素所对应的灰阶值。
此外,RGB域中每个像素10的红色(R)子像素的灰阶值R
i、绿色(G)子像素的灰阶值G
i以及蓝色(B)子像素的灰阶值B
i,与上述RGBW域中每个像素10的红色(R)子像素的灰阶值R
1i、绿色(G)子像素的灰阶值G
1i以及蓝色(B)子像素的灰阶值B
1i满足以下公式:
R
i=R
1i;G
i=G
1i;B
i=B
1i (3)
由上述公式(3)可知,在RGB域转换至RGBW域的过程中,像素10中各个单色子像素(R、G、B)的灰阶值没有发生变化。
此外,采用公式(2)计算的白色(W)子像素的预设灰阶值为W
1i时,该公式(2)中需要设置分式(例如,表达式)MIN(R
1i,G
1i,B
1i)/MAX(R
1i,G
1i,B
1i),这样一来,可以避免将RGB域中,每个像素10的各个子像素的灰阶值转换至RGBW域时,计算出的RGBW域中的白色(W)子像素的预设灰阶值W
1i出现失真。
示例性的,例如,通过上述步骤S101获得的获取RGB信号对应的原始图像中,对应的RGB域的一像素10中红色(R)子像素的灰阶值R
i、绿色(G)子像素的灰阶值G
i以及蓝色(B)子像素的灰阶值B
i分别为:R
i=240,G
i=2,B
i=1,此时,根据公式(1)可知,具有上述三个单色子像素的像素10的饱和度S接近1,饱和度S较高。
在此情况下,上述像素10中的白色(W)子像素的灰阶值需要设置的很小,例如等于或接近0,这样一来,才能够保证上述像素10的饱和度保持不变,该像素10的颜色不会被白色(W)子像素冲淡,例如,像素10的颜色的饱和度不会因为额外增加的白色(W)子像素而显著降低。
例如,如果上述公式(2)中没有分式MIN(R
1i,G
1i,B
1i)/MAX(R
1i,G
1i,B
1i),此时,计算出的白色(W)子像素的预设灰阶值为W
1i为81,此时,白色(W)子像素的灰阶值较大,会将具有该白色(W)子像素的像素10的颜色冲淡,影响该像素10的饱和度。而当上述(2)中设置有分式MIN(R
1i,G
1i,B
1i)/MAX(R
1i,G
1i,B
1i)后,计算出的白色(W)子像素的预设灰阶值为W
1i为0.3,约等于0。此时,白色(W)子像素的灰阶值很小,从而能够保证具有该白色(W)子像素的像素10的饱和度不变。
此外,当步骤S101获得的获取RGB信号对应的原始图像中各个单色子像素的灰阶值均相等时,例如R=G=B=81。此时,上述单色子像素的比例R:G:B=1:1:1,该像素10发白光。在此情况下,需要增加该像素10中白色(W)子像素的亮度,从而提升显示图像的整体亮度。在此情况下,即使公式中设置有上述分式MIN(R
1i,G
1i,B
1i)/MAX(R
1i,G
1i,B
1i),通过上述公式(2)获得的白色(W)子像素的预设灰阶值W
1i仍然可以为81。
因此,利用上述公式(2)能够根据用户的需要,获得更加合理的白色(W)子像素的预设灰阶值W
1i。
需要说明的是,本公开的实施例不限于使用RGBW域中每个像素10的红色(R)子像素的灰阶值R
1i、绿色(G)子像素的灰阶值G
1i以及蓝色(B)子像素的灰阶值B
1i计算的白色(W)子像素的预设灰阶值为W
1i时,还可以使用RGB域中每个像素10的红色(R)子像素的灰阶值R
i、绿色(G)子像素的灰阶值G
i以及蓝色(B)子像素的灰阶值B
i计算白色(W)子像素的预设灰阶值为W
1i。
例如,在一些示例中(例如,不包括针对原始图像的饱和度调节步骤时),RGBW域中每个像素10的红色(R)子像素的灰阶值R
1i、绿色(G)子像素的灰阶值G
1i以及蓝色(B)子像素的灰阶值B
1i,上述RGBW域中每个像素10的红色(R)子像素的灰阶值R
1i、绿色(G)子像素的灰阶值G
1i以及蓝色(B)子像素的灰阶值B
1i可以作为RGBW域中每个像素10的红色(R)子像素的目标灰阶值、绿色(G)子像素的目标灰阶值以及蓝色(B)子像素的目标灰阶值,并用于形成RGBW信号中。
本公开的实施例不限于将第一灰阶最大值作为子像素的灰阶值的上限,在一些示例中,还可以将第一灰阶最大值和第二灰阶最大值两者中的最小值作为子像素的灰阶值的上限。以下结合步骤S107、S301-S303进行示例性说明。
例如,为了进一步提高转换后图像的显示效果,可选的,在获取到上述白色(W)子像素的第一灰阶最大值W_lim1和预设灰阶值W
1i之后,如图7所示,上述方法还包括以下的步骤S107。
S107、饱和度统计,以获取原始图像11中饱和度较高的像素10的数量,从而根据统计结果对白色(W)子像素的灰阶值的上限进一步进行调节。
需要说明的是,步骤S107不限于在获取到上述白色(W)子像素的第一灰阶最大值W_lim1和预设灰阶值W
1i之后执行,步骤S107还可以在获取到上述白色(W)子像素的第一灰阶最大值W_lim1和预设灰阶值W
1i之前或同时执行。
示例性的,上述步骤S107,如图8所示,可以包括以下的步骤S301-S303。
S301、设定预设饱和度阈值S_th和第二预设比例参数a2。
S302、获取原始图像11中,饱和度S大于上述预设饱和度阈值S_th的像素10在原始图像11中所有像素10的占比K(例如,饱和度S大于上述预设饱和度阈值S_th的像素10的数目以及原始图像11中所有像素10的数目的比值)。
需要说明的是,步骤S301中的预设饱和度阈值S_th以及步骤S211中的预设饱和度阈值S_th可以彼此相等,或者两者中的一个可以被省略。
可选的,为了方便饱和度的统计,上述步骤S302之前,所述方法还包括:在原始图像11中,获取各个像素10的饱和度S,并将该饱和度S归一 化。
以上述预设饱和度阈值S_th=0.8为例,对上述步骤S302中经过归一化的饱和度进行统计的过程进行说明。
在一些实施例中,可以逐个对每个像素10的饱和度进行判断,当有像素10的饱和度S≥0.8时,通过例如计数器计数一次。当所有像素10逐个遍历后,根据计数器统计的数值得到上述占比K。
或者,在另一些实施例中,可以先对所有像素10的饱和进行分档,例如分为五个档位,0~0.2,0.2~0.4,0.4~0.6,0.6~0.8,0.8~1.0。接下来,由于上述预设饱和度阈值S_th=0.8,因此可以直接对饱和度S位于0.8~1.0范围内的像素10的数量进行统计,从而得到上述占比K。
S303、当上述占比K大于第二预设比例参数a2时,将K×255作为该RGBW域的每个像素10中的白色(W)子像素的第二灰阶最大值W_lim2。
在一个示例中,上述步骤S104可以包括:先计算出第一灰阶最大值W_lim1和第二灰阶最大值W_lim2的最小值,即W_L=min(W_lim1,W_lim2),以得出白色(W)子像素灰阶值的上限W_L。然后,上述步骤S105包括:将白色(W)子像素灰阶值的上限W_L与预设灰阶值W
1i中的最小值,作为白色(W)子像素的目标灰阶值Wt,即Wt=min(W_L,W
1i)。
在另一个示例中,在获得第一灰阶最大值W_lim1和第二灰阶最大值W_lim2以及预设灰阶值W
1i后,上述步骤S105可以包括:将第一灰阶最大值W_lim1、预设灰阶值W
1i以及第二灰阶最大值W_lim2中的最小值,即min(W_lim1,W_lim2,W
1i)作为白色(W)子像素的目标灰阶值Wt。
例如,在获得白色(W)子像素的目标灰阶值Wt的过程中,增加了对整个原始图像11中具有较高饱和度的像素10统计,且该统计结果会对白色(W)子像素的目标灰阶值Wt产生影响。从而可以减小白色(W)子像素对RGBW域对应的整个待显示图像(或转换后的图像)的饱和度造成的影响。
当获取到的原始图像11中各个像素10的饱和度归一化后,上述方法,如图9所示,还包括以下的步骤S108。
S108、饱和度调整。
可选的,上述步骤S108包括:将任意一个像素10的饱和度转换为饱和 度的α次幂,即转换后的饱和度S’=S
α。其中,0<α<1。
由于转换前的饱和度S经过归一化处理,所以转换后饱和度S’的数值要略大于转换前饱和度S的数值。
例如,当α小于0或者大于1后,根据公式S’=S
α转换后的S’与转换前的饱和度S的数值差异较大,不利于对饱和度进行微调,降低了微调的精度。可选的,上述α可以为0.2、0.5、0.7等,本公开的实施例对此不作限定。
例如,上述方法还包括以下的步骤S109。
S109、HSV域转换至RGB域。
上述步骤S109具体包括:执行上述步骤S108后,可以根据像素10转换后的饱和度S’,并利用公式(1)的逆变公式,获得RGBW域中每个像素10的各个单色子像素(R、G、B)的灰阶值。例如,通过上述逆变公式获得的各个灰阶值可以作为RGBW域中每个像素10的各个单色子像素(R、G、B)的目标灰阶值,并可用于生成RGBW信号。
在获得RGBW域中每个像素10的各个单色子像素(R、G、B)的灰阶值,以及白色(W)子像素的目标灰阶值Wt后,上述方法还包括执行步骤S110、生成RGBW信号。
例如,上述步骤S110可以包括:根据待显示的RGBW图像中各个子像素的分布,例如,如图3所示的RGBW域对应的像素排布结构,在RGBW域中,将同一像素10中的白色(W)子像素的目标灰阶值Wt对应的数据与各个单色子像素(R、G、B)的灰阶值对应的数据进行拼接,以生成RGBW信号。
例如,由于不同的用户能够适应的显示图像的色温不同(例如生活在不同维度地区的用户,所习惯的色温并不一定相同),因此为了满足不同用户的需求,在生成上述RGBW信号之后,图像显示之前,上述方法,如图9所示,还可以包括步骤S111、色坐标调节。
上述步骤S111包括:根据基准白色像素的色坐标,对色域转换后的RGBW域所对应的待显示图像(例如,颜色编码模式转换后的图像)的色坐标进行调节,使得待显示图像中白色像素的色坐标D与上述基准白色像素的色坐标重叠。
例如,上述色坐标如图10中CIE1931色度图所示,R、G、B三个基色 所在的坐标点连接成的三角形构成色域sRGB。该色坐标中的白点的色坐标D可以决定色域sRGB在CIE1931色度图范围内的位置,从而能够决定用户最终看到的显示图像的效果,例如色温。
上述基准白色像素的色坐标可以根据用户需要进行设定,例如,该基准白色像素的色坐标可以为等能量光谱白光的色坐标点D65,或者还可以为D50、D55等等,本公开的实施例对此不做限定,只要使得当待显示图像中白色像素的色坐标D与上述基准白色像素的色坐标重叠后,该待显示图像的显示效果,例如色温可以满足用户的需求即可。
例如,经过色坐标调整后的RGBW信号可以输入至具有如图3所示的像素排布结构的显示面板,从而可以显示RGBW域对应的显示图像。
需要说明的是,任意一种颜色都可以通过对三基色例如,R、G以及B进行比例分配而获得,因此任意一种颜色在如图10所示的CIE1931色度图中都具有确定的位置。其中,该CIE1931色度图中,X轴表示一待显示颜色中红(R)基色的比例系数,Y轴表示绿(G)基色的比例系数。还有与X轴和Y轴所在的平面垂直的Z轴,该轴表示蓝(B)基色的比例系数。由于各个基色的比例系数X+Y+Z=1,因此也可以通过该公式推算出蓝(B)基色的比例系数Z。
本公开的实施例还提供一种计算机设备,包括存储器、处理器;该存储器上、存储有适于处理器执行的计算机程序指令,计算机程序指令被处理器运行时使得处理器执行如上所述的任意一种色域转换方法。上述计算机设备具有与前述实施例提供的色域转换方法相同的技术效果,此处不再赘述。例如,该计算机设备可以为图像信号转换设备、图像信号编码模式转换设备或色域转换设备。
本公开的实施例提供一种非暂时性存储介质,非暂时性存储介质存储有计算机程序指令,计算机程序指令被处理器运行时使得计算机执行如上所述的任意一种色域转换方法。上述计算机可读介质具有与前述实施例提供的色域转换方法相同的技术效果,此处不再赘述。
本公开的实施例提供一种色域转换器,如图11所示,包括:信号接收器20、灰阶值生成器21、色块检测器22、灰阶上限确定器23以及目标灰阶确定器24。
在一些示例中,该色域转换器可以不设置色块检测器22,此种情况下,可以从色域转换器的外部接收原始图像的高饱和度色块信息。例如,该色域转换器也可以被称为图像信号转换器或图像信号编码模式转换器。
示例性的,该信号接收器20用于获取RGB信号。
灰阶值生成器21与信号接收器20电连接,该灰阶值生成器20用于根据信号接收器20获得的RGB信号所对应的原始图像11的每个像素10中各个单色子像素的灰阶值,计算将RGB域中每个像素10中各个单色子像素的灰阶值转换至RGBW域时,RGBW域中每个像素10的白色子像素的预设灰阶值W
1i,也即,该灰阶值生成器20被配置为基于采用了RGB颜色编码模式的原始图像的每个像素的灰阶值,获取转换后的图像的各个像素的白色子像素的预设灰阶值,此处,转换后的图像通过将原始图像从RGB域转换到RGBW域得到(也即,将图像信号的编码模式由RGB颜色编码模式转换为RGBW颜色编码模式)。
例如,上述RGBW域中每个像素10的白色子像素的预设灰阶值W
1i的获取过程可参见色域转换方法,此处不再赘述。
色块检测器22与灰阶值生成器21电连接。色块检测器22用于将原始图像11中划分为至少一个检测区域110,并至少根据检测区域110中像素10的亮度和饱和度(例如,检测区域110中像素10的亮度、饱和度和色相),判断检测区域110是否为高饱和度色块120。例如,高饱和度色块120的判断过程可参见色域转换方法,此处不再赘述。
例如,采用色块检测器22对高饱和度色块120进行检测的过程中,需要至少获知原始图像11中像素10的饱和度。因此上述色域转换器,如图12所示,还包括第二色彩空间转换器26。该第二色彩空间转换器26用于根据信号接收器20获得的RGB信号对应的原始图像11的每个像素10中各个单色子像素在RGB域的灰阶值,利用上述公式(1)获得各个像素10的色相(H)、饱和度(S)以及亮度(V)。
在此情况下,色块检测器22与第二色彩空间转换器26相连接,从而可以接收第二色彩空间转换器26输出的每个像素10的色相(H)、饱和度(S)以及亮度(V)数据。灰阶上限确定器23与色块检测器22电连接,在色块检测器22判断检测区域110为高饱和度色块120时,灰阶上限确定器22用 于设定高饱和度色块120中,RGBW域的每个像素10中的白色(W)子像素的第一灰阶最大值W_lim1小于255或显示装置允许显示的最大灰阶值。在此情况下,在本公开的实施例的一些实施例中,可以将每个像素10中的白色(W)子像素的第一灰阶最大值W_lim1作为上述灰阶上限确定器23确定出的白色(W)子像素的灰阶值的上限W_L。
或者,在色块检测器23判断检测区域110不是高饱和度色块120时,该灰阶上限确定器23用于设定检测区域110中,RGBW域的每个像素10中的白色(W)子像素的第一灰阶最大值W_lim1等于255或显示装置允许显示的最大灰阶值。
这样一来,通过灰阶上限确定器23,可以对高饱和度色块120中白色(W)子像素的灰阶值的上限W_L进行限定,从而避免白色(W)子像素亮度太大而降低高饱和度色块120的饱和度,降低RGBW域所对应的待显示图像的显示效果。
目标灰阶确定器24与灰阶上限确定器23和灰阶值生成器21电连接,目标灰阶确定器24用于至少将第一灰阶最大值W_lim1与预设灰阶值W
1i中的最小值,作为白色(W)子像素的目标灰阶值Wt,即Wt=min(W_lim1,W
1i)。
上述色域转换器具有与前述实施例提供的色域转换方法相同的技术效果,此处不再赘述。
为了进一步提高转换后图像的显示效果,可选的,上述色域转换器,如图12或图13所示,还包括饱和度统计器25。
该饱和度统计器25与信号接收器20电连接。该饱和度统计器25用于获取原始图像中,饱和度大于预设饱和度阈值S_th的子像素在原始图像11中所有像素的占比K,且当上述占比K大于第二预设比例参数a2时,并将K×255作为每个RGBW域的每个像素10中的白色(W)子像素的第二灰阶最大值W_lim2。
例如,为了实现对饱和度的统计,在上述色域转换器包括第二色彩空间转换器26的情况下,饱和度统计器25与第二色彩空间转换器26相连接,用于接收第二色彩空间转换器26输出的每个像素10的色相(H)、饱和度(S)以及亮度(V)数据。此时,上述饱和度统计器25与信号接收器20电连接 是指,信号接收器20与饱和度统计器25之间还设置有上述第二色彩空间转换器26,从而使得信号接收器20通过第二色彩空间转换器26与饱和度统计器25电连接。
此外,如图12所示,饱和度统计器25可以直接与目标灰阶确定器24电连接。该目标灰阶确定器14用于将第一灰阶最大值W_lim1、预设灰阶值W
1i以及第二灰阶最大值W_lim2中的最小值,作为白色(W)子像素的目标灰阶值Wt,即Wt=min(W_lim1,W_lim2,W
1i)。
或者,如图13所示,饱和度统计器25可以通过灰阶上限确定器23与目标灰阶确定器24电连接。在此情况下,通过灰阶上限确定器23可以先获得色域检测器22输出的第一灰阶最大值W_lim1与饱和度统计器25输出的第二灰阶最大值W_lim2中的最小值,即min(W_lim1,W_lim2)作为上述灰阶上限确定器23确定出的白色(W)子像素的灰阶上限W_L。然后再通过目标灰阶确定器24,将上述白色(W)子像素的灰阶上限W_L与灰阶值生成器21输出的预设灰阶值W
1i中的最小值,作为上述白色(W)子像素的目标灰阶值Wt。
例如,当第二色彩空间转换器26输出的原始图像11中各个像素10的饱和度归一化后,上述色域转换器,如图14所示,还可以包括饱和度调整器27和第一色彩空间转换器28。
例如,该饱和度调整器27与信号接收器20电连接。在上述色域转换器包括第二色彩空间转换器26的情况下,上述饱和度调整器27可以通过第二色彩空间转换器26与信号接收器20电连接。饱和度调整器27用于将第二色彩空间转换器26输出的任意一个像素10的饱和度调整为该饱和度的α次幂。此处,0<α<1。
例如,通过饱和度调整器27,能够对α数值的设定,以根据需要对原始图像11中每个像素10的饱和度进行微量提升。
例如,上述第一色彩空间转换器28与饱和度调整器27电连接,该第一色彩空间转换器28用于根据饱和度调整器27输出的每个像素转换后的饱和度,获得RGBW域中每个像素10的各个单色子像素(R、G、B)的灰阶值。
例如,上述色域转换器还可以包括信号生成器29。
该信号生成器29与目标灰阶确定器24电连接,该信号生成器29用于根 据待显示的RGBW图像中各个子像素的分布,在RGBW域中,将同一像素10中的白色(W)子像素的目标灰阶值Wt与各个单色子像素的灰阶值进行拼接,并生成RGBW信号。
例如,上述用于生成RGBW信号的像素10各个单色子像素的灰阶值可以根据信号接收器20输出的RGB信号获得。或者,如图14所示,当色域转换器包括上述第一色彩空间转换器28时,上述信号生成器29可以与第一色彩空间转换器28电连接,从而可以接收第一色彩空间转换器28输出的各个像素10中不同单色子像素的灰阶值,此种情况下,上述用于生成RGBW信号的像素10各个单色子像素的灰阶值可以基于第一色彩空间转换器28输出的信号获得。
例如,色域转换器还可以包括色坐标调节器30。该色坐标调节器30与信号生成器29电连接。该色坐标调节器30用于根据基准白色像素的色坐标,对待显示图像的色坐标进行调节,使得待显示图像中白色像素的色坐标D与基准白色像素的色坐标重叠,从而使得待显示图像的显示效果满足用户的需求。
本公开的实施例提供一种显示装置,包括如上所述的任意一种色域转换器,该显示装置具有与前述实施例提供的色域转换器相同的技术效果,此处不再赘述。
需要说明的是,在本公开的实施例中,显示装置可以为液晶显示装置或有机发光二极管显示装置。上述任意一种显示装置,可以是显示器、电视、数码相框、手机或平板电脑等任何具有显示功能的产品或者部件。
虽然上文中已经用一般性说明及具体实施方式,对本公开作了详尽的描述,但在本公开的实施例基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本公开精神的基础上所做的这些修改或改进,均属于本公开要求保护的范围。
以上所述仅是本发明的示范性实施方式,而非用于限制本发明的保护范围,本发明的保护范围由所附的权利要求确定。
Claims (21)
- 一种色域转换方法,包括:获取RGB信号;基于所述RGB信号对应的原始图像的每个像素中各个单色子像素的灰阶值,获取转换后的图像的各个像素的白色子像素的预设灰阶值,其中,所述转换后的图像通过将所述原始图像从RGB域转换到RGBW域得到;至少基于所述白色子像素的第一灰阶最大值与所述预设灰阶值获取所述白色子像素的目标灰阶值,并使得所述白色子像素的目标灰阶值小于等于所述白色子像素的第一灰阶最大值和所述预设灰阶值两者中的最小值,其中,对于所述原始图像中存在的第一饱和度色块,位于所述第一饱和度色块的每个像素对应的白色子像素的第一灰阶最大值等于灰阶阈值,所述灰阶阈值小于显示装置允许显示的最大灰阶值。
- 根据权利要求1所述的色域转换方法,其中,位于所述原始图像中、所述第一饱和度色块外的每个像素对应的白色子像素的第一灰阶最大值等于所述显示装置允许显示的最大灰阶值;以及所述显示装置允许显示的最大灰阶值等于255,所述灰阶阈值选自90-110。
- 根据权利要求1或2所述的色域转换方法,还包括:将所述原始图像划分为至少一个检测区域,并根据所述检测区域中多个像素的亮度、饱和度和色相,判断所述检测区域是否为所述第一饱和度色块。
- 根据权利要求3所述的色域转换方法,其中,所述将所述原始图像划分为至少一个检测区域,并根据所述检测区域中多个像素的亮度、饱和度和色相,判断所述检测区域是否为所述第一饱和度色块包括:设定预设饱和度阈值、预设色相范围、预设亮度阈值以及第一预设比例参数;获取所述检测区域中,饱和度大于所述预设饱和度阈值,色相位于所述预设色相范围内,且亮度大于所述亮度预设亮度阈值的像素在所述原始图像中所有像素中的占比;当所述占比大于所述第一预设比例参数时,判定所述检测区域为所述第 一饱和度色块。
- 根据权利要求1-4任一项所述的色域转换方法,还包括:设定第二预设比例参数;获取所述原始图像中,饱和度大于所述预设饱和度阈值的像素在所述原始图像中所有像素的占比K;当所述占比K大于所述第二预设比例参数时,将K×255作为所述白色子像素的第二灰阶最大值,其中,所述至少基于所述白色子像素的第一灰阶最大值与所述预设灰阶值获取所述白色子像素的目标灰阶值,并使得所述白色子像素的目标灰阶值小于等于所述白色子像素的第一灰阶最大值和所述预设灰阶值两者中的最小值,包括:将所述第一灰阶最大值、所述预设灰阶值以及所述第二灰阶最大值中的最小值,作为所述白色子像素的目标灰阶值。
- 根据权利要求5所述的色域转换方法,其中,所述获取所述原始图像中,饱和度大于所述预设饱和度阈值的所述像素在所述原始图像中所有像素的占比K之前,所述方法还包括:获取所述原始图像的各个像素的饱和度,并将所述各个像素的饱和度归一化。
- 根据权利要求1-6任一所述的色域转换方法,还包括:基于所述RGB域中每个像素的红色子像素的灰阶值R i、绿色子像素的灰阶值G i以及蓝色子像素的灰阶值B i获取所述RGBW域中每个像素的红色子像素的灰阶值R 1i、绿色子像素的灰阶值G 1i以及蓝色子像素的灰阶值B 1i,其中,R i、R 1i、G i、G 1i、B i和B 1i满足以下公式:R i=R 1i;Gi=G 1i;Bi=B 1i。
- 根据权利要求7或8所述的色域转换方法,还包括:将所述原始图像的每个像素的饱和度值转换为所述饱和度值的α次幂;其中,0<α<1;根据所述像素的转换后的饱和度值,获得所述转换后的图像中每个像素的各个单色子像素的目标灰阶值。
- 根据权利要求7-9任一所述的色域转换方法,其中,获取到所述白色子像素的目标灰阶值之后,所述方法还包括:将同一像素中的所述白色子像素的目标灰阶值对应的数据与所述各个单色子像素的目标灰阶值对应的数据进行拼接,以生成RGBW信号。
- 根据权利要求10所述的色域转换方法,其中,在生成所述RGBW信号之后,所述方法还包括:根据基准白色像素的色坐标,对所述RGBW信号对应的待显示图像的色坐标进行调节,使得所述中白色像素的色坐标与所述基准白色像素的色坐标重叠。
- 一种计算机设备,包括存储器、处理器;所述存储器上存储有适于所述处理器执行的计算机程序指令,所述计算机程序指令被所述处理器运行时使得所述处理器执行如权利要求1-11任一项所述的色域转换方法。
- 一种非暂时性存储介质,所述非暂时性存储介质存储有计算机程序指令,所述计算机程序指令被处理器运行时使得计算机执行如权利要求1-11任一项所述的色域转换方法。
- 一种色域转换器,包括:信号接收器、灰阶值生成器、目标灰阶确定器和灰阶上限确定器,其中,所述信号接收器用于获取RGB信号;所述灰阶值生成器与所述信号接收器电连接,所述灰阶值生成器用于根据所述RGB信号对应的原始图像的每个像素中各个单色子像素的灰阶值,获取转换后的图像的各个像素的白色子像素的预设灰阶值,其中,所述转换后的图像通过将所述原始图像从RGB域转换到RGBW域得到;所述目标灰阶确定器与所述灰阶上限确定器和所述灰阶值生成器电连接,所述目标灰阶确定器被配置为至少基于所述白色子像素的第一灰阶最大值与所述预设灰阶值获取所述白色子像素的目标灰阶值,以及使得所述白色子像素的目标灰阶值小于等于第一灰阶最大值和所述预设灰阶值两者中的最 小值;所述灰阶上限确定器被配置为使得,对于所述原始图像中存在的第一饱和度色块时,位于所述第一饱和度色块的每个像素对应的白色子像素的第一灰阶最大值等于灰阶阈值,所述灰阶阈值小于显示装置允许显示的最大灰阶值。
- 根据权利要求14所述的色域转换器,其中,所述灰阶上限确定器还被配置为使得,位于所述原始图像中、所述第一饱和度色块外的每个像素对应的白色子像素的第一灰阶最大值等于所述显示装置允许显示的最大灰阶值;以及所述显示装置允许显示的最大灰阶值等于255,所述灰阶阈值选自90-110。
- 根据权利要求14或15所述的色域转换器,还包括色块检测器,其中,所述色块检测器与所述灰阶值生成器电连接,所述色块检测器用于将所述原始图像中划分为至少一个检测区域,并根据所述检测区域中多个像素的亮度、饱和度和色相,判断所述检测区域是否为所述第一饱和度色块。
- 根据权利要求14-16任一所述的色域转换器,其中,所述色域转换器还包括饱和度统计器;所述饱和度统计器与所述信号接收器电连接;所述饱和度统计器用于获取所述原始图像中,饱和度大于预设饱和度阈值的像素在所述原始图像中所有像素的占比K,且当所述占比K大于第二预设比例参数时,并将K×255作为每个所述RGBW域的每个像素中的白色子像素的第二灰阶最大值;所述灰阶上限确定器还与所述饱和度统计器相连接,所述灰阶上限确定器用于将所述第一灰阶最大值和所述第二灰阶最大值中的最小值作为所述白色子像素的灰阶上限;所述目标灰阶确定器还连接所述灰阶上限确定器,所述目标灰阶确定器用于将所述白色子像素的灰阶上限与所述预设灰阶值中的最小值,作为所述白色子像素的目标灰阶值。
- 根据权利要求14-17任一所述的色域转换器,还包括:信号生成器、饱和度调整器和第一色彩空间转换器,其中,所述饱和度调整器与所述信号接收器电连接,所述饱和度调整器用于将所述原始图像的每个像素的饱和度值调整为所述饱和度值的α次幂;其中,0<α<1;所述第一色彩空间转换器与所述饱和度调整器电连接,所述第一色彩空间转换器用于根据所述饱和度调整器输出的每个所述像素转换后的饱和度值,获得所述转换后的图像中每个像素的各个单色子像素的目标灰阶值;所述信号生成器与所述目标灰阶确定器电连接,所述信号生成器用于将同一像素中的所述白色子像素的目标灰阶值对应的数据与所述各个单色子像素的目标灰阶值对应的数据进行拼接,以生成RGBW信号。
- 根据权利要求18所述的色域转换器,其中,所述色域转换器还包括色坐标调节器;所述色坐标调节器与所述信号生成器电连接,所述色坐标调节器用于根据基准白色像素的色坐标,对所述RGBW信号对应的待显示图像的色坐标进行调节,使得所述待显示图像中白色像素的色坐标与所述基准白色像素的色坐标重叠。
- 一种显示装置,包括如权利要求14-19任一项所述的色域转换器。
- 一种图像信号转换方法,包括:获取原始图像的信号;基于所述原始图像的每个像素中各个单色子像素的灰阶值,获取转换后的图像的各个像素的白色子像素的预设灰阶值,其中,所述转换后的图像通过将所述原始图像从RGB域转换到RGBW域得到;至少基于所述白色子像素的第一灰阶最大值与所述预设灰阶值两者中的最小值获取所述白色子像素的目标灰阶值,并使得所述白色子像素的目标灰阶值小于等于第一灰阶最大值和所述预设灰阶值的最小值,其中,对于所述原始图像中存在的第一饱和度色块,位于所述第一饱和度色块的每个像素对应的白色子像素的第一灰阶最大值等于灰阶阈值,所述灰阶阈值小于显示装置允许显示的最大灰阶值。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/633,925 US11081081B2 (en) | 2018-06-15 | 2019-06-12 | Color gamut conversion method, color gamut converter, display device, image signal conversion method, computer device and non-transitory storage medium |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810619240.8A CN108810507B (zh) | 2018-06-15 | 2018-06-15 | 一种色域转换方法及色域转换器、显示装置 |
CN201810619240.8 | 2018-06-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019238071A1 true WO2019238071A1 (zh) | 2019-12-19 |
Family
ID=64086869
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/090956 WO2019238071A1 (zh) | 2018-06-15 | 2019-06-12 | 色域转换方法、色域转换器、显示装置、图像信号转换方法、计算机设备和非暂时性存储介质 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11081081B2 (zh) |
CN (1) | CN108810507B (zh) |
WO (1) | WO2019238071A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114449231A (zh) * | 2020-10-31 | 2022-05-06 | 荣耀终端有限公司 | 一种图像转换方法及设备 |
CN115841794A (zh) * | 2023-02-22 | 2023-03-24 | 武汉精立电子技术有限公司 | Oled显示屏检测方法及装置、显示图像处理方法、设备 |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109003577B (zh) * | 2017-06-07 | 2020-05-12 | 京东方科技集团股份有限公司 | 显示面板的驱动方法及组件、显示装置、终端及存储介质 |
CN108810507B (zh) * | 2018-06-15 | 2019-10-29 | 京东方科技集团股份有限公司 | 一种色域转换方法及色域转换器、显示装置 |
GB201904072D0 (en) * | 2019-03-25 | 2019-05-08 | Secr Defence | Dazzle resilient video camera or video camera module |
CN110378973B (zh) * | 2019-07-17 | 2022-08-12 | Oppo广东移动通信有限公司 | 图像信息处理方法、装置以及电子设备 |
US11100892B2 (en) * | 2019-12-05 | 2021-08-24 | Rockwell Collins, Inc. | Display element, system, and method |
CN114067739B (zh) * | 2020-07-31 | 2024-02-06 | 北京小米移动软件有限公司 | 色域映射方法及装置、电子设备及存储介质 |
CN112884661B (zh) * | 2020-12-23 | 2024-10-15 | 京东方科技集团股份有限公司 | 图像处理装置及其方法、显示装置和计算机可读存储介质 |
CN112927153B (zh) * | 2021-03-05 | 2024-04-23 | 京东方科技集团股份有限公司 | 一种图像处理方法和装置 |
CN115083360B (zh) * | 2021-03-10 | 2023-04-07 | 成都九天画芯科技有限公司 | 一种场序时间混色算法 |
CN113781303B (zh) * | 2021-09-01 | 2024-05-10 | 瑞芯微电子股份有限公司 | 图像处理方法、介质、处理器及电子设备 |
CN113689423A (zh) * | 2021-09-09 | 2021-11-23 | 深圳新致软件有限公司 | 基于灰度和色彩鉴别算法的保险审核材料鉴定方法、系统以及设备 |
CN114067115B (zh) * | 2021-11-22 | 2024-09-13 | 福建省海峡智汇科技有限公司 | 一种基于色域提取分割的变电站呼吸器识别方法及装置 |
CN114245030A (zh) * | 2021-12-20 | 2022-03-25 | 北京镁伽科技有限公司 | 上位机显示测试图像的方法、装置及图像信号发生器 |
CN114332543B (zh) * | 2022-01-10 | 2023-02-14 | 成都智元汇信息技术股份有限公司 | 一种多模板的安检图像识别方法、设备及介质 |
CN117392930B (zh) * | 2023-12-08 | 2024-02-27 | 昇显微电子(苏州)股份有限公司 | 一种基于CIEXYZ数据进行高效Demura处理的方法和系统 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101378514A (zh) * | 2007-08-27 | 2009-03-04 | 三星电子株式会社 | 增强rgbw图像信号的饱和度的系统和方法 |
CN104376833A (zh) * | 2014-11-19 | 2015-02-25 | 深圳市华星光电技术有限公司 | 一种rgb数据到rgbw数据的转换系统及转换方法 |
CN105263009A (zh) * | 2015-09-14 | 2016-01-20 | 深圳市华星光电技术有限公司 | 一种图像的自适应转换方法 |
CN108810507A (zh) * | 2018-06-15 | 2018-11-13 | 京东方科技集团股份有限公司 | 一种色域转换方法及色域转换器、显示装置 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8610977B2 (en) * | 2009-04-21 | 2013-12-17 | Hewlett-Packard Development Company, L.P. | Color target authenticated using grayscale information |
WO2012008342A1 (ja) * | 2010-07-13 | 2012-01-19 | シャープ株式会社 | 表示装置、表示装置の制御方法、プログラム及び記録媒体 |
CN102769758A (zh) * | 2012-07-18 | 2012-11-07 | 京东方科技集团股份有限公司 | 一种rgb数据的处理方法及系统 |
KR102025184B1 (ko) * | 2013-07-31 | 2019-09-25 | 엘지디스플레이 주식회사 | 데이터 변환 장치 및 이를 이용한 디스플레이 장치 |
CN103634580B (zh) * | 2013-12-19 | 2016-05-25 | 敦泰科技有限公司 | 一种彩色图像的色域调整方法及装置 |
JP2016005229A (ja) * | 2014-06-19 | 2016-01-12 | セイコーエプソン株式会社 | 画像処理装置、及び、画像処理プログラム |
CN104078026B (zh) * | 2014-07-17 | 2016-06-08 | 深圳市华星光电技术有限公司 | 液晶显示装置及其驱动方法 |
US9280940B2 (en) * | 2014-07-17 | 2016-03-08 | Shenzhen China Star Optoelectronics Technology Co., Ltd. | Liquid crystal display device, four-color converter, and conversion method for converting RGB data to RGBW data |
CN104410849B (zh) * | 2014-10-21 | 2016-06-29 | 深圳市华星光电技术有限公司 | 图像数据处理方法及装置 |
KR102194571B1 (ko) * | 2014-10-23 | 2020-12-24 | 엘지디스플레이 주식회사 | 데이터 변환부와 데이터 변환부의 데이터 변환 방법 |
KR102268961B1 (ko) * | 2014-11-03 | 2021-06-24 | 엘지디스플레이 주식회사 | 데이터 변환부와 데이터 변환부의 데이터 변환 방법 |
KR101990335B1 (ko) * | 2014-11-14 | 2019-10-02 | 엘지디스플레이 주식회사 | 데이터 클리핑 방법과 이를 이용한 표시장치 |
US9378705B2 (en) | 2014-11-19 | 2016-06-28 | Shenzhen China Star Optoelectronics Technology Co., Ltd | Conversion system and method for converting RGB data to RGBW data |
CN104916246B (zh) * | 2015-05-19 | 2017-09-19 | 深圳市华星光电技术有限公司 | 一种灰阶补偿方法 |
CN105261321A (zh) * | 2015-09-18 | 2016-01-20 | 深圳市华星光电技术有限公司 | 一种像素渲染方法、像素渲染装置和显示器 |
-
2018
- 2018-06-15 CN CN201810619240.8A patent/CN108810507B/zh active Active
-
2019
- 2019-06-12 WO PCT/CN2019/090956 patent/WO2019238071A1/zh active Application Filing
- 2019-06-12 US US16/633,925 patent/US11081081B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101378514A (zh) * | 2007-08-27 | 2009-03-04 | 三星电子株式会社 | 增强rgbw图像信号的饱和度的系统和方法 |
CN104376833A (zh) * | 2014-11-19 | 2015-02-25 | 深圳市华星光电技术有限公司 | 一种rgb数据到rgbw数据的转换系统及转换方法 |
CN105263009A (zh) * | 2015-09-14 | 2016-01-20 | 深圳市华星光电技术有限公司 | 一种图像的自适应转换方法 |
CN108810507A (zh) * | 2018-06-15 | 2018-11-13 | 京东方科技集团股份有限公司 | 一种色域转换方法及色域转换器、显示装置 |
Non-Patent Citations (1)
Title |
---|
YAO, HONGTAO ET AL.: "A Modified RGB to RGBW Signal Mapping Algorithm", JOURNAL OF CHANGCHUN UNIVERSITY OF SCIENCE AND TECHNOLOGY (NATURAL SCIENCE EDITION), vol. 41, no. 1, 28 February 2018 (2018-02-28), ISSN: 1672-9870 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114449231A (zh) * | 2020-10-31 | 2022-05-06 | 荣耀终端有限公司 | 一种图像转换方法及设备 |
CN114449231B (zh) * | 2020-10-31 | 2023-11-24 | 荣耀终端有限公司 | 一种图像转换方法及设备 |
CN115841794A (zh) * | 2023-02-22 | 2023-03-24 | 武汉精立电子技术有限公司 | Oled显示屏检测方法及装置、显示图像处理方法、设备 |
Also Published As
Publication number | Publication date |
---|---|
US20200175943A1 (en) | 2020-06-04 |
CN108810507A (zh) | 2018-11-13 |
CN108810507B (zh) | 2019-10-29 |
US11081081B2 (en) | 2021-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019238071A1 (zh) | 色域转换方法、色域转换器、显示装置、图像信号转换方法、计算机设备和非暂时性存储介质 | |
US10347198B2 (en) | Image displaying methods and display devices | |
US10008148B2 (en) | Image processing apparatus, image processing method, display device, computer program and computer-readable medium | |
WO2019119794A1 (zh) | 一种显示装置的驱动方法及驱动装置 | |
JP5897159B2 (ja) | 表示装置及びその制御方法 | |
WO2019119791A1 (zh) | 一种显示装置的驱动方法及驱动装置 | |
US10204568B2 (en) | Driving methods and driving devices of display panels | |
CN106448591B (zh) | 一种rgb转rgbw的色域换算方法及装置 | |
WO2017101534A1 (zh) | 液晶显示屏的色彩信号转换方法及装置 | |
US20180151153A1 (en) | Display Device and Image Processing Method Thereof | |
WO2019071737A1 (zh) | 一种图像处理方法、电子设备以及具有存储功能的装置 | |
TWI547931B (zh) | 控制顯示器的方法 | |
TW201413687A (zh) | 用於控制有機發光二極體顯示器之操作的方法及裝置 | |
US20150124002A1 (en) | Automatic correction function determining apparatus, non-transitory computer readable medium, and automatic correction function determining method | |
JP2014072751A (ja) | 画像処理装置およびコンピュータプログラム | |
CN107068042A (zh) | 图像处理方法 | |
CN109410874B (zh) | 三色数据到四色数据的转换方法及装置 | |
US9311886B2 (en) | Display device including signal processing unit that converts an input signal for an input HSV color space, electronic apparatus including the display device, and drive method for the display device | |
WO2022120799A9 (zh) | 图像处理方法、装置、电子设备及存储介质 | |
CN112884661B (zh) | 图像处理装置及其方法、显示装置和计算机可读存储介质 | |
US20150332643A1 (en) | Display device, method of driving display device, and electronic apparatus | |
US20140314317A1 (en) | Method and apparatus for converting gray level of color image | |
US9569999B2 (en) | Signal generation apparatus, signal generation program, signal generation method, and image display apparatus | |
CN109377962B (zh) | 三色数据到四色数据的转换方法及装置 | |
JP2015227923A (ja) | 画像処理装置及びその制御方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19819910 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 05.02.2021) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19819910 Country of ref document: EP Kind code of ref document: A1 |