WO2019237999A1 - 传输链路管理、建立、迁移方法、装置、基站及存储介质 - Google Patents

传输链路管理、建立、迁移方法、装置、基站及存储介质 Download PDF

Info

Publication number
WO2019237999A1
WO2019237999A1 PCT/CN2019/090466 CN2019090466W WO2019237999A1 WO 2019237999 A1 WO2019237999 A1 WO 2019237999A1 CN 2019090466 W CN2019090466 W CN 2019090466W WO 2019237999 A1 WO2019237999 A1 WO 2019237999A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
secondary base
rna
terminal
new
Prior art date
Application number
PCT/CN2019/090466
Other languages
English (en)
French (fr)
Inventor
杨立
黄河
马子江
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2019237999A1 publication Critical patent/WO2019237999A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0069Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • H04W36/0033Control or signalling for completing the hand-off for data sessions of end-to-end connection with transfer of context information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0064Transmission or use of information for re-establishing the radio link of control information between different access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists

Definitions

  • the present application relates to the field of communications, and in particular, to a method, a device, a base station, and a storage medium for managing, establishing, and migrating transmission links.
  • the UE supports a Single Connectivity (SC) mode and a Dual / Multiple Connectivity (DC / MC) mode.
  • SC Single Connectivity
  • DC / MC Dual / Multiple Connectivity
  • the UE can establish and maintain two independent air interface radio links RadioLink with two NG-RAN (Next Generation Radio Access Network) base stations on the air interface at the same time.
  • One base station is a master base station (Master Node, MN), and the other is a secondary base station (Secondary Node, SN).
  • MN Master Node
  • SN secondary Node
  • the MN and the SN can simultaneously establish and maintain two independent network-side connections on the NG interface and the core network user plane network element node UPF, respectively.
  • the 5G air interface wireless link of the UE can be released through the Suspend process, so that the UE is in the air interface inactive state (RRC_INACTIVE state), As a result, the power consumption of the UE is reduced, the occupation of wireless resources is reduced, and the interference caused by the air interface wireless link is also reduced.
  • the air interface wireless link of the UE needs to be restored, so that the UE resumes dual connectivity Mode, but this must be based on that the UE is still in the same service area of the primary base station and the service area of the secondary base station, otherwise it will not be achieved. It can be understood that during the release of the UE's air interface wireless link, the UE is likely to move, leaving the service area of the original SN and entering the service area of the new SN.
  • the UE can only fall back to a single connection Mode, and then perform signaling interaction with the core network side through the MN, and configure the network side connection of the new secondary base station side for it, so that the UE enters the dual connection mode again.
  • this solution requires more signaling interaction between the MN and the core network, and the process is cumbersome.
  • the UE first falls back to the single connection mode, which is also extremely unfavorable for the user experience on the UE side.
  • the transmission link management and establishment method, device, base station and storage medium provided by the embodiments of the present invention mainly solve the technical problems: in the prior art, after the UE moves out of the original SN service area and enters the new SN service area, it can only first Fall back to the single connection mode, and then make the terminal enter the dual / multi-connection mode again through the configuration of the main base station and the core network.
  • the configuration process is cumbersome and affects the user experience.
  • an embodiment of the present invention provides a method for managing a transmission link, including:
  • the receiving terminal sends a migration request message after removing the S-RNA from the original auxiliary cluster area and entering the new S-RNA.
  • the S-RNA consists of the service areas of N secondary base stations, and when N is greater than 1, each secondary base station in the S-RNA Communicable
  • the secondary base station downlink address is used by the core network to establish a PDU session data transmission channel with the new secondary base station.
  • the target PDU session data is the user originally carried by the original secondary base station. PDU session data;
  • the migration request message includes indication information indicating a base station to which the terminal is currently serving, and before sending the UE context information of the terminal in the original S-RNA from the original secondary base station to the new secondary base station in the new S-RNA, Also includes:
  • the base station to which the serving cell where the terminal is currently located is a new secondary base station other than the original S-RNA.
  • the indication information includes at least one of a base station identifier of a base station to which the serving cell where the terminal is currently located, a cell identifier of the serving cell where the terminal is currently located, and a serving cell physical layer identifier.
  • the method before sending the UE context information of the terminal on the original secondary base station side in the original S-RNA to the new secondary base station in the new S-RNA, the method further includes:
  • obtaining UE context information of the terminal on the primary and secondary base stations from the primary and secondary base stations according to the original S-I-RNTI includes:
  • sending the UE context information of the terminal on the primary and secondary base stations in the original S-RNA to the new secondary base station includes: carrying the UE context information of the terminal on the primary and secondary base stations in the secondary base station SN addition request message to the new secondary base station.
  • Obtaining the downlink address of the secondary base station allocated by the new secondary base station to carry the target PDU session data includes: receiving the downlink address of the secondary base station sent by the new secondary base station through the SN addition response message.
  • the method further includes:
  • the new SI-RNTI represents the location of the new secondary base station to store the UE context information of the terminal on the new secondary base station side.
  • the new S- RNA information is used to indicate new S-RNA.
  • it further includes:
  • a PDU session data transmission channel carrying the target PDU session data is established with the core network according to the UE context information of the terminal.
  • the removal request message includes the original SI-RNTI, and the original SI-RNTI characterizes the position of the primary and secondary base stations storing the UE context information on the primary and secondary base stations.
  • the storage terminal Before the storage terminal includes the UE context information on the primary and secondary base stations, it also includes :
  • the method further includes:
  • each secondary base station in the S-RNA can transmit at least one of UE context information of the terminal on the original secondary base station side and user PDU session data.
  • each secondary base station in the original S-RNA stores the same UE context information as the original secondary base station side.
  • An embodiment of the present invention further provides a method for establishing a transmission link, including:
  • the S-RNA is composed of the service areas of the N secondary base stations, and when N is greater than 1, each secondary base station in the S-RNA can communicate;
  • a PDU session data transmission channel for transmitting the target PDU session data is established with the core network according to the UE context information.
  • receiving the UE context information of the terminal sent by the primary base station on the original S-RNA in the original S-RNA includes: receiving the UE context information of the terminal sent by the primary base station through the SN addition request message on the original S-RNA in the original S-RNA;
  • Sending the downlink address of the secondary base station allocated to bear the target PDU session data to the primary base station includes: sending the downlink address of the secondary base station to the primary base station through the SN addition response message.
  • the SN addition response message also includes a new S-I-RNTI newly configured by the base station, and the new S-I-RNTI characterizes a location where the base station stores the UE context information of the base station side.
  • it further includes:
  • sending the UE context information of the terminal on the base station side to each secondary base station in the new S-RNA where the base station is located for backup storage includes:
  • the UE context information of the terminal on the base station side is sent to the master base station through the Xn interface of the base station, so that the master base station relays the UE context information of the terminal to each secondary base station in the new S-RNA.
  • An embodiment of the present invention further provides a transmission link migration method, including:
  • the S-RNA After determining that it has moved out of the original S-RNA and entered the new S-RNA according to the measurement results, it sends a migration request message to the primary base station.
  • the migration request message is used to request the primary base station to place itself in the UE context of the original S-RNA primary and secondary base stations.
  • the information and PDU session data transmission channels are migrated to the new secondary base station in the new S-RNA.
  • the S-RNA consists of the service areas of N secondary base stations, and when N is greater than 1, each secondary base station in the S-RNA can communicate.
  • performing wireless measurement on the serving cell of the secondary base station includes: performing wireless measurement on the serving cell set of the secondary base station according to measurement parameters previously configured by the original secondary base station;
  • the migration request message includes measurement result information about the serving cell set of the secondary base station. .
  • the migration request message includes the original S-I-RNTI, and the original S-I-RNTI characterizes a storage location of the UE context information of the original S-I-RNTI on the original secondary base station side.
  • the method further includes:
  • the new SI-RNTI characterizes the location of the new secondary base station's storage terminal UE context information.
  • the new S-RNA information is used for Indication of new S-RNA.
  • the method further includes:
  • an active state recovery request message is sent to the master base station, and the active state recovery request message includes the data radio bearer DRB identifier or PDU session identifier or uplink signaling association to be transmitted of the uplink user PDU session data association to be transmitted
  • the signaling radio bears the SRB identity.
  • the method further includes:
  • the primary base station migrates the UE context information and PDU session data transmission channels of the original S-RNA primary and secondary base stations to the primary base station.
  • An embodiment of the present invention further provides a transmission link management apparatus, including:
  • the migration request receiving module is used to receive a migration request message sent by the terminal after the S-RNA is removed from the original auxiliary cluster area and entered into the new S-RNA.
  • the S-RNA is composed of the service areas of N secondary base stations, and when N is greater than 1, S-RNA can communicate with each other;
  • a context sending module configured to send the UE context information of the terminal in the original S-RNA to the new secondary base station in the new S-RNA;
  • the secondary base station address acquisition module is used to obtain the secondary base station downlink address allocated by the new secondary base station to carry the target PDU session data.
  • the secondary base station downlink address is used by the core network to establish a PDU session data transmission channel with the new secondary base station.
  • the target PDU session data is User PDU session data originally carried by the original secondary base station;
  • the secondary base station address sending module is configured to send a secondary downlink address to the core network.
  • An embodiment of the present invention further provides an apparatus for establishing a transmission link, including:
  • the context sending module is used to receive the UE context information of the primary and secondary base stations in the original S-RNA sent by the primary base station.
  • the S-RNA is composed of the service areas of N secondary base stations, and when N is greater than 1, each in the S-RNA
  • the secondary base station can communicate;
  • the secondary base station address transmission module is used to send the secondary base station downlink address allocated to bear the target PDU session data to the primary base station.
  • the target PDU session data is the user PDU session data originally carried by the original secondary base station in the original S-RNA;
  • a chain building module is configured to establish a PDU session data transmission channel for transmitting target PDU session data with the core network according to UE context information after the core network obtains the downlink address of the secondary base station.
  • An embodiment of the present invention further provides a transmission link migration device, including:
  • a wireless measurement module configured to perform wireless measurement on the serving cell of the secondary base station when the wireless link is in an inactive state
  • the migration request sending module is configured to send a migration request message to the master base station after determining that it has moved out of the original S-RNA and entered the new S-RNA according to the measurement result.
  • the migration request message is used to request the master base station to place itself in the original S-RNA.
  • the new secondary base station that migrates the UE context information and PDU session data transmission channels on the original secondary base station to the new S-RNA.
  • the S-RNA is composed of the service areas of N secondary base stations, and when N is greater than 1, each in the S-RNA The secondary base station can communicate.
  • An embodiment of the present invention further provides a base station.
  • the base station includes a first processor, a first memory, and a first communication bus.
  • the first communication bus is configured to implement connection and communication between the first processor and the first memory
  • the first processor is configured to execute a transmission link management program stored in the first memory to implement the steps of the transmission link management method according to any one of the above; or the first processor is configured to execute the transmission link establishment stored in the first memory A procedure to implement the steps of the transmission link establishment method according to any one of the preceding items.
  • An embodiment of the present invention further provides a terminal.
  • the terminal includes a second processor, a second memory, and a second communication bus.
  • the second communication bus is configured to implement connection and communication between the second processor and the second memory
  • the second processor is configured to execute a transmission link migration program stored in the second memory to implement the steps of the transmission link migration method according to any one of the preceding items.
  • An embodiment of the present invention further provides a storage medium. At least one of a transmission link management program, a transmission link establishment program, and a transmission link migration program is stored in the storage medium.
  • the transmission link management program may be one or more
  • the processor executes to implement the steps of the transmission link management method as described above; the transmission link establishment procedure can be executed by one or more processors to implement the steps of the transmission link establishment method as described above; transmission
  • the link migration program may be executed by one or more processors to implement the steps of the transmission link migration method according to any one of the preceding items.
  • Embodiments of the present invention provide a method, a device, a base station, and a storage medium for managing, establishing, and migrating transmission links.
  • the main base station can receive a migration request sent by the terminal.
  • the primary base station may determine the new secondary base station carrying the target PDU session data according to the migration request message, and then send the UE context information of the terminal on the original secondary base station side to the new secondary base station, and use the new secondary base station as the target PDU session data.
  • the allocated secondary base station downlink address is sent to the core network, thereby helping to establish a PDU session data transmission channel between the new secondary base station and the core network, so that subsequent new secondary base stations can use the PDU session data transmission channel to carry the original secondary base station.
  • Target PDU session data Even if the terminal moves out of the original S-RNA and enters the new S-RNA, the core network can still send the target PDU session data that should be carried by the original secondary base station to the new secondary base station that can serve the terminal. After removing the original S-RNA, the terminal can continue to receive the target PDU session data originally sent by the original secondary base station.
  • Embodiments of the present invention also provide a method, device, base station, and storage medium for establishing and migrating transmission links, avoiding that the terminal can only recover to a single connection after removing the S-RNA, and then can return to the dual / multi-connection mode through configuration. This problem reduces the signaling interaction between the base station side and the core network. At the same time, because the terminal will not fall back to the single connection mode because of its own movement, it can effectively improve the user's communication experience compared to the existing solution.
  • FIG. 1 is a system architecture diagram of a communication system when a terminal is in a wireless connection active state according to Embodiment 1 of the present invention
  • FIG. 2 is a system architecture diagram of a communication system when a terminal is in a wireless connection inactive state according to Embodiment 1 of the present invention
  • FIG. 3 is a flowchart of a transmission link management scheme according to Embodiment 1 of the present invention.
  • FIG. 4 is a schematic diagram of a base station service area shown in Embodiment 1 of the present invention.
  • FIG. 5 is a schematic diagram of another base station service area shown in Embodiment 1 of the present invention.
  • FIG. 6 is a flowchart of a transmission link management scheme according to Embodiment 2 of the present invention.
  • FIG. 7 is a flowchart of a transmission link management scheme according to Embodiment 3 of the present invention.
  • FIG. 8 is a flowchart of a transmission link management scheme according to a fourth embodiment of the present invention.
  • FIG. 9 is a flowchart of a transmission link management scheme according to Embodiment 5 of the present invention.
  • FIG. 10 is a flowchart of a transmission link management scheme according to Embodiment 6 of the present invention.
  • FIG. 11 is a schematic structural diagram of a transmission link management apparatus according to Embodiment 7 of the present invention.
  • FIG. 12 is a schematic structural diagram of a transmission link establishing apparatus according to Embodiment 7 of the present invention.
  • FIG. 13 is a schematic structural diagram of a transmission link migration apparatus according to Embodiment 7 of the present invention.
  • FIG. 14 is a schematic structural diagram of a transmission link management apparatus according to Embodiment 8 of the present invention.
  • FIG. 15 is a schematic structural diagram of a transmission link migration apparatus according to Embodiment 8 of the present invention.
  • FIG. 16 is a schematic diagram of a hardware structure of a base station according to Embodiment 9 of the present invention.
  • FIG. 17 is a schematic diagram of a hardware structure of a terminal according to Embodiment 9 of the present invention.
  • the fourth generation (4Generation, 4G) mobile communication system also known as the Long Term Evolution (LTE) mobile communication system, includes a 4G core network (Core Network, CN) and a radio access network (Radio Access Network, RAN) .
  • the 4G core network includes MME (Mobility Management Entity, Mobility Management Entity), SGW (Serving Gateway, Service Gateway), PGW (PDN Gateway, PDN Gateway) and other basic network element nodes, and RAN includes evolved NodeB , ENB).
  • the fifth generation (5Generation, 5G) mobile communication system includes the next generation core network (5GC) and the next generation radio access network (NG-RAN), of which 5GC includes AMF (Access Mobility Function, Access to mobile functions), SMF (Session Management Function) and UPF (User Plane Function, User Basic Function) and other basic network element nodes.
  • NG-RAN includes at least two different types of base stations: ng-eNB based on 4G eNB evolution (still supporting E-UTRA standard air interface) and newly designed gNB (supporting New Radio, NR standard air interface) base station.
  • NG-RAN base station is connected to 5GC via NG interface (including NG-C control plane and NG-U user plane), while NG-RAN base station is connected via Xn interface (including Xn-C control plane and Xn-U user plane) connection).
  • NG interface including NG-C control plane and NG-U user plane
  • Xn interface including Xn-C control plane and Xn-U user plane
  • the base station can release the terminal's 4G air interface wireless link through the Suspend process, and the terminal is in the air interface inactive Suspended state.
  • the terminal still maintains the network-side connection and the serving base station still holds the UE context information (Context) configured by the terminal's communication.
  • the terminal is still in the ECM_CONNECTED state and can continue to execute related processes on the network side.
  • the base station can also release the terminal's 5G air interface wireless link RadioLink through the Suspend process, and the terminal is in the air interface.
  • the RRC_INACTIVE state is inactive.
  • the terminal still maintains the network-side connection and the serving NG-RAN base station stores the UE context information of the terminal communication configuration.
  • the terminal is still in the CM_CONNECTED state and can continue to execute the network-side process. Therefore, the network-side transmission link and the air interface link are relatively decoupled, and the network-side transmission link may exist without depending on the existence of the air interface link.
  • the terminal can move freely within a RAN paging area (RAN Notification Area) of a specific size. Since the terminal only needs to perform the cell reselection process at this time, and does not need to trigger any processes on the air interface and the network side, the terminal without any data transmission at this time behaves like an idle state (Idle state) on the air interface.
  • RAN paging area RAN Notification Area
  • the 4G RAN or 5G NG-RAN base station When downlink control signaling or user data arrives on the network side and is waiting for downlink transmission, the 4G RAN or 5G NG-RAN base station will trigger the paging paging process in the RAN paging area, thereby triggering the terminal to perform random access RACH and RRC. Connection recovery process.
  • the terminal side When the terminal side has uplink control signaling or user data arrives for uplink transmission, the terminal will trigger the random access RACH and RRC connection recovery process in the current resident serving cell, and then enter the single-connection RRC_ACTIVE activation state for data transmission.
  • the terminal In 5G systems, it supports terminal single connection and dual / multiple connection configuration and operation functions.
  • the terminal In the SC single connection mode, the terminal has only one data transmission channel on the air interface and the network side, while in the DC / MC dual / multiple connection mode, the terminal has two or more data transmission channels on the air interface or the network side.
  • a single connection is a dual connection, only the special case of the MN primary base station side is considered (removing all relevant secondary data links on the secondary base station SN secondary base station side), while the multi-link MC is a dual-link DC in the multi-link configuration and operation dimension Further expansion, therefore, here is an example of dual connectivity:
  • the terminal 10 can establish and maintain independent wireless link connections (ie, air interface data transmission channels, Uu-U connections) with the primary base station 11 and the secondary base station 12 simultaneously on the air interface. ); And the primary base station 11 and the secondary base station 12 respectively establish and maintain a right-side independent network-side connection (ie, a network data transmission channel, NG-U connection) with the user plane network element node 13. It is worth noting that only the main base station 11 can establish and maintain a control plane connection (ie, an NG-C connection) with the core network control plane network element node 14.
  • control plane connections between different network element nodes are shown by thin solid lines, that is, links used to transmit control signaling; user plane connections between different network element nodes are shown by thick solid lines. That is, the link used to transmit user PDU session data.
  • NG-U MN
  • the data transmission channel is used to transmit uplink and downlink data packets carried on a specific PDU Session (user PDU session data) / QoS Flows (user service quality data packet flow).
  • the establishment of this data transmission channel requires the user plane network element node 13 to provide the "main base station side uplink data transmission channel address", and the main base station 11 provides the "main base station side downlink data transmission channel address”.
  • the so-called data transmission channel address here includes a transport layer address (Transport Layer Address) and a GTP tunnel address identifier (GTP TEID).
  • NG-U MN
  • the user plane network element node 13 and the main base station 11 need to exchange the uplink and downlink transmission channel addresses.
  • the interaction of the uplink and downlink transmission channel addresses is transmitted through the NG-C control plane. Make the interaction complete.
  • NG-U provides a data transmission channel between the user plane network element node 13 and the secondary base station 12 for transmitting uplink and downlink data packets carried on specific PDU Session / QoS Flows.
  • the establishment of this data transmission channel requires the user plane network element node 13 to provide the "secondary base station side uplink data transmission channel address", while the secondary base station 12 provides the "secondary base station side downlink data transmission channel address”.
  • the data transmission channel address here also includes the transport layer address and the GTP tunnel address identifier.
  • the terminal in the dual / multi-connection configuration can also enter the RRC_INACTIVE state.
  • the dual connection configuration Take the dual connection configuration as an example: see figure 1 and FIG. 2
  • the user data in the PDU Session1 anchored on the primary base station 11 side and the PDU Session2 anchored on the secondary base station 12 side are both Stop transmission.
  • the main base station 11 can release the two 5G air interface wireless links RadioLink of the terminal 10 through the Suspend process, and the terminal 10 is in an air interface inactive RRC_INACTIVE state.
  • the terminal 10 still maintains all connections on the network side, and the primary and secondary base stations each store UE context information of the terminal. From the perspective of the core network 5GC, the terminal 10 is still in the CM_CONNECTED dual connection state, and can continue to execute the network-side process.
  • each connection on the network side has not changed, but on the air interface Uu side, the two radio link connections Radio 10 of the terminal 10 and the current serving primary base station 11 and the secondary base station 12 are released.
  • the terminal 10 only maintains the paging and random access RACH signaling functions with the main base station 11.
  • the current standard protocol can already support: When the network side has downlink control signaling or user data When arriving, waiting for downlink transmission, the main base station 11 will trigger the paging procedure in the RAN paging area; when uplink control signaling or user data arrives on the terminal 10 side, when uplink transmission is pending, the terminal 10 will reside in the current Within the primary service cell (Pcell), the random access RACH and RRC connection recovery process is triggered, and then the original dual connection RRC_ACTIVE activation state is directly entered to resume data transmission on the dual connection.
  • Pcell primary service cell
  • the transmission link management scheme includes a transmission link migration process on the terminal side, a transmission link management process on the primary base station side, and a new secondary base station side. Please refer to the flowchart of the transmission link management method shown in FIG. 3 below.
  • the terminal may be in a dual-connection configuration or a multi-connection configuration.
  • the main base station controls to release the air interface wireless link of the terminal on the air interface, so that the terminal is in a wireless link inactive state.
  • the so-called S-RNA secondary cluster area refers to a joint service area including the service areas of N secondary base stations, that is, the N secondary base stations can all serve as the secondary base stations of the terminals and serve the terminals.
  • N can be greater than or equal to 1.
  • N can interact with each other.
  • the N secondary base stations may directly communicate with other secondary base stations corresponding to the S-RNA, or may communicate with each other through the primary base station.
  • two primary base stations are included in an original S-RNA.
  • the two secondary base stations can directly communicate with each other through their respective Xn interfaces, or the information sent to the opposite end can be first sent to the primary base station through the Xn interface, and then the primary base station forwards the information to the corresponding secondary base station.
  • P-RNA main paging area
  • P-RNA includes the service area of several main base stations. It can be understood that the range of P-RNA is usually larger than that of S-RNA.
  • the terminal does not move out of the P-RNA temporarily, but can remove one S-RNA and enter a new S-RNA.
  • the terminal may also perform wireless measurement on each main base station in the P-RNA, and the measurement parameters on which the wireless measurement is based are pre-assigned and set by the main base station.
  • the terminal when the terminal is in a wireless link inactive state, based on the RRM (Radio Resource Management) measurement parameters previously given by the primary and secondary base stations, it can continue to determine where the primary and secondary base stations are located.
  • Potential target serving cells in the RAT domain perform RRM measurement, so that they can sense in time which of the serving cell sets of the primary and secondary base stations they are currently moving to.
  • the terminal can determine whether it has moved out of the previous S-RNA range and entered a new S-RNA range. If so, the terminal will send a migration request message to the main base station.
  • the migration request message is used to request the primary base station to migrate its UE context information and PDU session data transmission channel on the original S-RNA primary and secondary base stations to the new secondary base station in the new S-RNA.
  • the migration request message includes a primary-secondary index identifier (S-I-RNTI), and the primary-secondary index identifier represents a location where the primary and secondary base stations store UE context information.
  • the migration request message includes, in addition to the primary and secondary index identifiers, the measurement result information of the secondary base station serving cell in the S-RNA by the terminal. It should be understood that, since the terminal is currently in the RRC_INACTIVE state, the wireless link of the terminal on the air interface side has been released, and the terminal can only send a migration request message to the main base station.
  • the S-RNA is divided into the original S-RNA and the new S-RNA.
  • the original and new here are only relative to the order in which the terminal enters the corresponding S-RNA.
  • -RNA exits and then enters another S-RNA.
  • the previous S-RNA entered by the terminal belongs to the original S-RNA, and the next S-RNA entered is the new S-RNA of the terminal.
  • the primary base station sends the UE context information of the terminal on the original secondary base station in the original S-RNA to the new secondary base station in the new S-RNA.
  • the master base station may determine that the terminal has moved from the original S-RNA into the new S-RNA according to the migration request message. Therefore, in this case, the original in the original S-RNA The secondary base station can no longer continue to provide services to the terminal. It can be understood that before the terminal removes the original S-RNA, the original auxiliary base station in the original S-RNA needs to carry some user PDU session data sessions. When the terminal moves out of the original S-RNA, the original S-RNA The user PDU session data session carried by the primary and secondary base stations in the UE needs to be carried by the new secondary base station in the new S-RNA. For ease of introduction, in this embodiment, the users that should be carried by the original secondary base station in the original S-RNA The PDU session is called "target PDU session data".
  • the terminal needs to determine the new secondary base station first.
  • the migration request message includes indication information
  • the indication information is used to indicate a base station to which a serving cell to which the terminal is currently located belongs. Therefore, after receiving the migration request message, the primary base station may determine that the base station to which the serving cell of the terminal belongs is a new secondary base station according to the migration request message information in the migration request message.
  • the indication information may include, but is not limited to, at least one of a base station identifier of a base station to which the terminal is currently located, a cell identifier of the serving cell where the terminal is currently located, and a physical layer identifier of the serving cell.
  • the primary base station can directly determine which one or several new secondary base stations in the new S-RNA can serve the terminal according to the base station identifier.
  • the indication information includes the cell identifier of the serving cell or the physical layer identifier of the serving cell
  • the master base station may determine a new S that can currently provide services to the terminal according to the correspondence between the cell identifier or the physical layer identifier of the serving cell and the base station identifier. -Which one or several secondary base stations are in the RNA.
  • the primary base station After the new secondary base station other than the original S-RNA is determined, in order for the new secondary base station to be able to carry the target PDU session data, the primary base station also needs to let the new secondary base station obtain the UE context information of the terminal on the original secondary base station side and help establish a new one. PDU session data transmission channel between the secondary base station and the core network.
  • the primary base station In order to send the UE context information of the terminal on the primary and secondary base stations to the new secondary base station, the primary base station needs to first obtain the UE context information of the terminal on the primary and secondary base stations. In some examples of this embodiment, the primary base station can directly obtain the UE context information of the terminal on the primary and secondary base stations from the base station, because the primary base station backs up and stores the UE context information of the terminal on the primary and secondary base stations. In some other examples of this embodiment, the primary base station needs to obtain the UE context information of the terminal from the original and secondary base stations:
  • the migration request message sent by the terminal to the primary base station may include the primary and secondary index identifiers, and the primary and secondary index identifiers may represent the locations where the primary and secondary base stations store the UE context information on the primary and secondary base stations. Therefore, the primary base station may carry the primary and secondary index identifiers extracted from the migration request message and send them to the primary and secondary base stations in the context acquisition request. For example, the primary base station may send the primary and secondary index identifiers to the primary and secondary base stations through its own Xn interface. retrieve UE Context Request.
  • the primary and secondary base stations may reply to the primary base station with a context retrieval response (Retrieve UE Context Response):
  • the primary and secondary base stations extract the local storage terminal ’s terminal on the primary and secondary base stations according to the primary and secondary index identifiers in it.
  • UE context information and sends the extracted UE context information to the master base station through the Xn interface.
  • the primary base station when the primary base station sends the UE context information of the terminal on the original secondary base station side to the new secondary base station, it may send it through an SN Addition Request message (SN Addition Request).
  • SN Addition Request an SN Addition Request message
  • the new secondary base station sends the downlink address of the secondary base station allocated to bear the target PDU session data to the primary base station.
  • the new secondary base station can know the target PDU session data that it needs to carry in subsequent processes and the context configuration related to the target PDU session data by using the UE context information of the terminal on the original secondary base station side carried in the SN addition request message.
  • the new secondary base station can determine the target PDU session data to be carried and the PDU session data transmission channel allocated by the core network side to transmit the target PDU session data according to the received UE uplink text information of the terminal on the original secondary base station side.
  • the uplink address is also needs to allocate a downlink address of the PDU session data transmission channel.
  • the downlink address allocated by the session data transmission channel is distinguished from the downlink address allocated by the primary base station to establish a PDU session data transmission channel.
  • the downlink address allocated by the new secondary base station is referred to as the "secondary base station downlink address”.
  • the downlink address assigned by the master base station is called the "master base station's downlink address”.
  • the new secondary base station can learn that the target PDU session data that it needs to carry includes PDU Session3 and PDU Session4.
  • the PDU session data transmission channel may be inconsistent, so when there is more than one target PDU session data, the secondary base station downlink address assigned by the new secondary base station There can be more than one.
  • the so-called downlink address (such as the downlink address of the primary base station or the downlink address of the secondary base station) includes a transport layer address and a tunnel address identifier.
  • the new secondary base station cannot directly send the downlink address of the secondary base station to the core network.
  • the new secondary base station can only send the downlink address of the secondary base station to the primary base station, and then let the primary base station send the downlink address of the secondary base station to the core network.
  • the new secondary base station may send the downlink address of the secondary base station to the primary base station through the SN Addition Request message (SN Addition Request).
  • S310 The primary base station sends the downlink address of the secondary base station to the core network.
  • the primary base station may send the downlink address of the secondary base station to the core network, so that the core network establishes a target PDU session data with the new secondary base station according to the downlink address of the secondary base station. PDU session data transmission channel.
  • the primary base station needs to transmit the downlink address allocated by the new secondary base station to the AMF / SMF network element of the core network, and then the AMF / SMF network element transmits the downlink address to the UPF network element, and the UPF network element A PDU session data transmission channel is established between the downlink address and the new secondary base station.
  • the new secondary base station After the core network obtains the downlink address of the secondary base station, the new secondary base station establishes a PDU session data transmission channel for transmitting the target PDU session data with the core network according to the UE context information.
  • the core network After the core network obtains the downlink address of the secondary base station, the core network obtains the secondary base station downlink address of the PDU session data transmission channel that needs to be established, and the new secondary base station has obtained the PDU session data transmission channel on the core network side according to the UE context information. Upstream address, so both can be used as a PDU session data transmission channel for transmitting target PDU session data.
  • the primary base station can control the restoration of the air interface wireless link between the terminal and the primary and secondary base stations. In this way, similar to before the terminal removed the original S-RNA, the terminal only needs to perform the RACH under the paging paging of the primary base station or actively perform the RACH.
  • the primary base station can control the restoration of the air interface wireless link between the terminal and the primary and secondary base stations.
  • the downlink control signaling or user data on the network side has the basis for transmission to the terminal through the new secondary base station in the new S-RNA, and the uplink control signaling or user data on the terminal side can also be transmitted through the new in the new S-RNA.
  • the secondary base station transmits to the network side.
  • the RACH and The RRC connection restoration process directly restores the terminal to the dual connection mode / multi-connection mode.
  • the new secondary base station may perform UE context information on the UE.
  • the new secondary base station may carry the new secondary index identifier in the SN
  • the add response message is sent to the primary base station together with the secondary base station downlink address allocated by the new secondary base station.
  • the new secondary base station may also carry new S-RNA information configured by the new secondary base station in the SN addition response message, and the new S-RNA information is used to indicate the new S-RNA.
  • the primary base station may generate a migration response message including a new secondary index identifier and new S-RNA information, and send the migration response message to the terminal. Based on this, the terminal can continue to determine whether it has moved out of the range except the current S-RNA according to the wireless measurement results, and after moving out of the current new S-RNA range and entering another new S-RNA, it sends a migration to the main base station Request message, in the migration request message, the terminal may carry a new auxiliary index identifier (understandably, since the original auxiliary index identifier and the new auxiliary index identifier are relative to before and after the terminal moves, the so-called new auxiliary index The index identifier is actually called the primary and secondary index identifiers relative to the movement.)
  • the terminal since the terminal does not move out of the main paging area P-RNA in this embodiment, the transmission of the user PDU session data session that originally had the anchor point on the primary base station side does not need to be modified, that is, the anchor point is in the The user PDU session data session on the primary base station side does not need to be migrated for its PDU session data transmission channel. Therefore, generally speaking, the location where the primary base station stores the UE context information on the primary base station side does not change, and the P-RNA does not change.
  • the primary base station does not need to include the new primary index identifier (PI-RNTI) and new P-RNA information in the migration response message, but in some examples of this embodiment, if the primary base station wants to take advantage of This time the terminal context migration and the migration of the PDU session data transmission channel re-configure the P-RNA or change the storage location of the UE context information of the terminal on the local side, the new primary index identifier and the new P can be carried in the migration response message at the same time. -RNA information.
  • PI-RNTI new primary index identifier
  • new P can be carried in the migration response message at the same time.
  • the UE context information of the terminal in the original secondary base station can be stored on each secondary base station.
  • the core network it is When transmitting a target PDU session data, since the target PDU session data is sent to each secondary base station in the original S-RNA, it can be guaranteed that all secondary base stations in the original S-RNA can obtain target PDU session data for the terminal. .
  • each secondary base station in the original S-RNA always has a way to perform data transmission with the terminal. Therefore, for the terminal, regardless of the wireless measurement result of the terminal, as long as it determines that its current location is still in the original S-RNA, the terminal does not need to perform signaling interaction with the main base station side.
  • the new secondary base station after the new secondary base station obtains the UE context information of the terminal on the original secondary base station side, it can send the UE context information to the S-RNA to which it belongs (that is, the new S-RNA). All secondary base stations in the base station are stored.
  • the new secondary base station may send UE context information to each secondary base station in the new S-RNA through the Xn interface of the base station.
  • the new secondary base station sends the terminal UE context information to each secondary base station in the new S-RNA through the primary base station: the new secondary base station sends the UE context information of the terminal to the primary through the Xn interface of the base station The base station then asks the primary base station to send the UE context information to each secondary base station in the new S-RNA.
  • the transmission link management method, the transmission link establishment method, and the transmission link migration method provided in this embodiment can not only be applied to the scenario of dual connection operation, but also suitable for one terminal and multiple auxiliary devices in the S-RNA at the same time.
  • the scenario of base station connection that is, the scenario of multi-connection operation.
  • the transmission link management method Based on the transmission link management method, the transmission link establishment method, and the transmission link migration method provided in this embodiment, after the terminal configures the terminal to the air interface inactive state through the Suspend process, if the terminal moves, as long as the terminal does not move out The scope of the original S-RNA, because all the secondary base stations in the original S-RN and A are stored in the UE's context information of the terminal.
  • the terminal monitors that it leaves the service area of a specific secondary base station according to the wireless measurement results, it can It is not necessary to perform signaling interaction with the main base station, because in this case, when there is a downlink transmission demand for the terminal or an uplink transmission demand for the terminal, the air interface wireless link recovery can be performed directly through the RACH and RRC connection recovery procedures, and then Transmission of user PDU session data.
  • the terminal when it determines that it has left the original S-RNA and entered the new S-RNA due to its mobile measurement results, it can send a migration request message to the master base station, and let the master base station according to the migration request message Determine a new secondary base station that can serve the terminal in the future, and then migrate the PDU session data transmission channel that was originally established between the core network and the original secondary base station to carry the target PDU session data between the core network and the new secondary base station, In this way, when there is a downlink transmission demand for the terminal or an uplink transmission demand for the terminal, the air interface wireless link recovery can also be continued through the RACH and RRC connection recovery process, and then user data transmission is performed.
  • This embodiment will continue to introduce the transmission link management scheme provided in this application based on the first embodiment. It can be understood that when the terminal moves out of the original S-RNA, there are two types of mobile scenarios:
  • Scenario 1 The terminal removes the original S-RNA and immediately enters the new S-RNA;
  • Scenario 2 The terminal removes the original S-RNA, but does not enter any new S-RNA.
  • the terminal When the terminal moves out of the original S-RNA, it may immediately enter the new S-RNA.
  • the service coverage scenario shown in Figure 5 since there is no overlapping area between any S-RNA and the original S-RNA, when the terminal is removed from the original S-RNA, it will not enter any new S-RNA. .
  • the terminal may also be removed from the original S-RNA but not entered into any new S-RNA.
  • the master base station determines that the terminal has no user PDU session data session transmission on the master base station and the secondary base station. Therefore, the master base station can execute the air interface Suspend process to control the release of the air interface wireless link between the terminal and the master base station and the terminal. Air interface wireless link with the secondary base station.
  • the terminal may have an air interface wireless link between the same or two or more secondary base stations.
  • the master base station After the master base station controls the release of the air interface wireless link of the terminal on the air interface, it can reduce the power consumption caused by maintaining the air interface wireless link to the terminal, and reduce the occupation of wireless resources. At the same time, it can also reduce the interference caused by the air interface wireless link. .
  • the terminal After the master base station controls the terminal to enter the RRC_INACTIVE state, the terminal can continue to perform wireless measurement.
  • the wireless measurement mentioned here may be RRM wireless measurement.
  • the terminal may continue to perform the processing on the potential target serving cells in the RAT domain where the primary and secondary base stations are located based on the RRM measurement parameters previously configured on the primary and secondary base stations.
  • RRM measurement so as to be able to perceive in time which of the primary and secondary base station serving cell sets that you are currently moving to.
  • the terminal can send a removal request message to the master base station.
  • the removal request message is similar to the migration request message. Can be sent via RRC Connection Resume Request (RRC Connection Resume Request) message.
  • RRC Connection Resume Request RRC Connection Resume Request
  • the removal request message can indicate that the current mobility scenario of the terminal belongs to scenario two, and if the terminal sends a migration request message to the main base station, it indicates that the current mobility scenario of the terminal belongs to the foregoing scenario one.
  • the corresponding migration request message RRC Connection Resume Request message includes at least an indication capable of characterizing the mobile scenario 1, and the response corresponding to the removal request message
  • the RRC Connection Resume Request message should also include at least indication information capable of characterizing mobile scenario two.
  • the primary base station stores UE context information of the terminal on the primary and secondary base stations.
  • the primary base station After receiving the removal request message, the primary base station can determine that the terminal has only moved out of the original S-RNA and has not entered the new S-RNA. Therefore, in this case, no new secondary base station can carry the original secondary base station.
  • Target PDU session data in order to ensure subsequent normal bearer of target PDU session data, the primary base station needs to obtain the UE context information of the terminal on the original and secondary base station sides, and uses the PDU session data transmission channel originally used to carry the target PDU session data. Migrate from the original secondary base station to this base station.
  • the primary base station may obtain UE context information of the terminal from the primary and secondary base stations.
  • the primary base station may send a Retrieve UE Context Request to the primary and secondary base stations. Request) message to initiate a context acquisition request.
  • the primary base station can also use the original S-RNA in addition to the original secondary base station. Acquiring UE context information of the terminal on other secondary base stations of the UE.
  • the primary base station may no longer need to obtain it from the secondary base station in the original S-RNA.
  • the master base station sends the downlink address of the master base station allocated by the base station to bear the target PDU session data to the core network.
  • the master base station not only needs to know the uplink address allocated by the core network for transmitting the target data session, but also needs to allocate a downlink address on the master base station side, that is, the downlink address of the master base station, for carrying the target PDU session data.
  • the downlink address of the primary base station includes a transport layer address and a tunnel address identifier. After the downlink address of the master base station is allocated, the master base station sends the downlink address of the master base station to the core network.
  • the primary base station After the primary base station obtains the downlink address of the primary base station, the primary base station establishes a PDU session data transmission channel carrying the target PDU session data with the core network according to the UE context information of the terminal on the primary and secondary base stations.
  • the primary base station After the primary base station obtains the UE context information of the terminal on the primary and secondary base stations, it can send a link modification indication message (PDU, Session, Resource Modify Indication) to the core network side.
  • the link modification indication message can include the primary base station as a bearer.
  • the main base station actually turns the link first
  • the modification instruction is sent to the AMF / SMF network element of the core network, and then the AMF / SMF network element sends the downlink address of the primary base station to the UPF network element.
  • the core network obtains the downlink address of the primary base station allocated by the primary base station, a PDU session data transmission channel for transmitting target PDU session data can be established between the UPF network element and the primary base station.
  • the primary base station may control the original and secondary base stations to release the UE context information of the saved terminal, and at the same time, If each secondary base station in the original S-RNA has saved the UE context information of the terminal, the primary base station may control each secondary base station in the original S-RNA to release the UE context information of the terminal.
  • the primary base station can also control the original secondary base station to release the terminals it originally stored.
  • each secondary base station in the original S-RNA stores UE context information of the terminal on the original secondary base station side, all secondary base stations controlling the original S-RNA perform a release process of the terminal UE context information.
  • the primary base station may also send a removal response message to the terminal after obtaining the UE context information of the terminal in the original secondary base station.
  • the removal response message may include a new primary index identifier, and the new primary index The identifier is configured by the master base station, and can identify the location where the master base station stores terminal UE context information.
  • the main base station needs to change the configuration of the P-RNA, it can also send the new P-RNA information to the terminal and send it to the terminal.
  • the main base station After all, when the main base station sends the removal response message to the terminal, the main base station originally needs to communicate with the terminal. Order interaction, so if the main base station takes this opportunity to modify the P-RNA configuration and send the modified new P-RNA information to the terminal in the removal response message, it can reduce the signaling interaction with the terminal .
  • the removal request message may be sent to the terminal through an RRC Connection Resume Reject message.
  • the migration response message sent by the primary base station to the terminal may also be sent through the RRC ConnectionResumeReject message.
  • the terminal may send a removal request message to the master base station, so that the master base station knows that it has left the original S-RNA. -RNA.
  • the primary base station returns the target PDU session data that should be carried by the original secondary base station to the primary base station side, so that the core network and the terminal can transmit the target PDU session data through the primary base station.
  • a terminal is in a dual connection working mode with a MeNB (eNB-type primary base station) and an SgNB1 (gNB-type secondary base station 1) in the original S-RNA, and the PDU Session1 anchor is established on the MeNB side, and the PDU Session2 anchor is established on SgNB1 side.
  • the MeNB can reconfigure the terminal to the RRC_INACTIVE inactive state through the air interface Suspend process, thereby releasing the MCG Radio Link (the air interface wireless between the MeNB and the terminal).
  • MeNB maintains the NG-C network connection and the NG-U (MN) network connection, and the high-level configuration related to PDU Session1; and all base stations in the original S-RNA, including SgNB1, maintain the NG-U (SN) network connection.
  • PDU Session2 related high-level configuration the terminal stores PDU Session1 and PDU Session2 related high-level configuration.
  • S701 The terminal sends an RRC Connection Resume Request message to the MeNB.
  • the terminal is now in a dual-connected configuration and is also in the RRC_INACTIVE inactive state. Although the terminal will not perform signaling and data transmission with MeNB and SgNB1, the terminal will still perform RRM for each inter-frequency point where the candidate target secondary base station is deployed. Wireless measurement. If the terminal finds that it is still in the original S-RNA, even if the secondary base station serving itself has switched, the terminal and the MeNB may not have to perform any control signaling interaction on the air interface Uu.
  • the terminal can trigger the RRC connection recovery process on the air interface Uu and send a migration request message to the MeNB.
  • the migration request message is an RRC Connection Resume Request message.
  • the RRC Connection Resume Request message may include the PI-RNTI allocated to the terminal before MeNB, the SI-RNTI allocated to the terminal before SgNB1, and may also include the cell identifier of the serving cell under SgNB2 where the terminal is currently located. Restore the cause value Casue value.
  • the cell identifier can also be replaced by other information, such as the base station identifier of the base station to which the terminal currently belongs, that is, the base station identifier of SgNB2. Or the physical layer identifier of the cell where the terminal is currently located.
  • the P-I-RNTI may include a base station identifier of the MeNB and a main index identifier of terminal UE context information stored on the MeNB side.
  • the S-I-RNTI may include the base station identifier of the SgNB1 and the primary and secondary index identifiers of the UE context information of the terminal stored on the SgNB1 side.
  • the MeNB sends a UE Context Request message to the primary and secondary base stations SgNB1 through the Xn interface.
  • the MeNB After receiving the RRC Connection Resume Request message, the MeNB can find the UE context information on the SgNB1 side (that is, the network connection and related high-level configuration on the SgNB1 side) of the terminal stored in the SgNB1 from the SgNB1 based on the S-I-RNTI information through indexing.
  • the MeNB sends a UE Context Request message to SgNB1 through the Xn interface, and the UE Context Request message sent by the SgNB1 may carry the context index identifier of the terminal on the SgNB1 side.
  • the MeNB receives the Context and Response message sent by the primary and secondary base stations SgNB1 through the Xn interface.
  • the UE Context Response message includes UE context information of the terminal stored by SgNB1.
  • the MeNB sends an SN Addition Request message to the new secondary base station SgNB2 through the Xn interface.
  • Case value S-RNA change
  • the MeNB can learn that the terminal has moved from the original S-RNA to a new S-RNA other than the original S-RNA, and based on The cell identity of the serving cell carried in the RRC Connection Resume Request message, and the MeNB can determine that the terminal is currently covered by the SgNB2 service. So MeNB can send SN Addition Request message to SgNB2, so that SgNB2 can carry PDU Session2.
  • the SN Addition Request message includes the UE context information of the terminal obtained by the MeNB from the SgNB1 side. Based on the UE context information, SgNB2 learns that it needs to carry PDU Session2 (originally carried by SgNB1) and the context configuration related to PDU Session2.
  • S705 SgNB2 sends an SN Addition Request ACK message to the MeNB through the Xn interface.
  • the SN Addition Request ACK message includes SgNB2 side downlink address information allocated by SgNB2 to carry PDU Session2.
  • the SN Addition Request ACK message may also include the S-I-RNTI message allocated by SgNB2.
  • SgNB2 For transmitting the uplink address information of PDU Session2, SgNB2 can be determined according to the UE context information of the terminal sent by the MeNB.
  • S706 The MeNB sends an RRC Connection Resume Reject message to the terminal through the air interface Uu.
  • the RRC Connection Resume Reject message may include the new PI-RNTI and the new SI-RNTI allocated by the MeNB to the terminal, the new P-RNA information and the new S-RNA information, and also include the rejection cause value. -RNA ChangeDone. It should be understood that if the configuration of the P-I-RNTI and P-RNA has not changed, the RRC Connection Resume Reject message may not need to include new P-I-RNTI and new P-RNA information.
  • RRC ConnectionResumeReject message here can be used as the migration response message introduced in the foregoing embodiment.
  • the MeNB sends a PDU, Session, Resource, ModifyIndication to the AMF / SMF network element through the NG-C interface.
  • the PDU, Session, Resource, and Modify Indication sent by the MeNB to the AMF / SMF network element includes the downlink address information of the SgNB2 side allocated by SgNB2 to carry the PDU Session2, and the AMF / SMF receives the PDU containing the downlink address information. Later, the downlink address can be sent to the UPF network element.
  • S708 The UPF network element and SgNB2 are established to complete a new NG-U (SN) network connection.
  • the UPF network element After the UPF network element obtains the downlink address information on the SgNB2 side from the AMF / SMF network element, it can establish a new NG-U network connection with SgNB2 according to the downlink address information. For SgNB2, it also needs to further establish an Xn network connection with the MeNB. In addition, because the terminal is currently in the RRC_INACTIVE inactive state, SgNB2 does not need to establish an SCG low-level wireless configuration.
  • the MeNB sends a UE Context Release message to all the S-RNA secondary base stations through the Xn interface.
  • the UE ContextRelease message can initiate a context release process. Based on this message, all secondary base stations in the original S-RNA will release the UE context information of the terminal stored by itself.
  • the terminal may initiate a RACH procedure to the MeNB.
  • a terminal when a terminal has an uplink transmission requirement, it can initiate a RACH process and indicate to the MeNB the DRB id or QoS Flow id information related to the uplink user data to be sent, thereby attempting to recover to the RRC_ACTIVE active state.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • a terminal is in a dual-connected working mode with MgNB (gNB-type primary base station) and SgNB1 in the original S-RNA, and the anchor points of PDUSession1 and PDUSession2 are established on the MgNB side, and the anchors of PDUSession3 and PDUSession4 Points are established on the SgNB1 side.
  • MgNB gNB-type primary base station
  • SgNB1 gNB-type primary base station
  • MgNB can reconfigure the terminal to the RRC_INACTIVE inactive state through the air interface Suspend process, thereby releasing MCG RadioLink, And SCG Radio Link and low-level wireless configuration.
  • MgNB maintains the NG-C network connection and the NG-U (MN) network connection, and the high-level configuration related to PDU Session1, PDU Session2, and all base stations in the original S-RNA, including SgNB1, store NG-U (SN ) Network connection and high-level configuration related to PDU Session3 and PDU Session4; the terminal stores high-level configuration related to PDUSession1-PDU and Session4.
  • MN NG-C network connection and the NG-U (MN) network connection, and the high-level configuration related to PDU Session1, PDU Session2, and all base stations in the original S-RNA, including SgNB1, store NG-U (SN ) Network connection and high-level configuration related to PDU Session3 and PDU Session4; the terminal stores high-level configuration related to PDUSession1-PDU and Session4.
  • FIG. 8 Please refer to a communication system interaction diagram shown in FIG. 8:
  • S801 The terminal sends an RRC Connection Resume Request message to the MgNB.
  • the terminal is now in a dual-connected configuration and is also in the RRC_INACTIVE inactive state. Although the terminal will not perform signaling and data transmission with MgNB and SgNB1, the terminal will still perform RRM on each inter-frequency point where the candidate target secondary base station is deployed. Wireless measurement. If the terminal finds that it is still in the original S-RNA, even if the secondary base station serving itself switches, the terminal and MgNB may not need to perform any control signaling interaction on the air interface Uu. If the terminal finds that it has entered the service area of a new secondary base station SgNB2 other than the original S-RNA, the terminal can trigger the RRC connection recovery process on the air interface Uu and send an RRC Connection Resume Request message to the MgNB.
  • the RRC Connection Resume Request message may include the SI-RNTI assigned to the terminal before SgNB1, and may also include the physical layer identifier NR-PCI of the serving cell where the terminal is currently located, and the recovery cause value, Casino value.
  • the physical layer identifier NR-PCI of the serving cell where the terminal is currently located can also be obtained through other information. Instead, for example, the base station identifier of the base station to which the terminal currently belongs, that is, the base station identifier of SgNB2, or the cell identifier of the cell where the terminal is currently located.
  • the S-I-RNTI may include the base station identifier of SgNB1 and the primary and secondary index identifiers.
  • the primary and secondary index identifiers indicate the locations where the UE context information of the terminal is stored on the SgNB1 side.
  • MgNB sends a UE Context Request message to the primary and secondary base stations SgNB1 through the Xn interface.
  • the MgNB After receiving the RRC Connection Resume Request message, the MgNB can find the UE context information on the SgNB1 side (that is, the network connection and related high-level configuration of the SgNB1 side) of the terminal stored in the SgNB1 from the SgNB1 based on the S-I-RNTI information through indexing.
  • the MgNB sends a UE Context Request message to SgNB1 through the Xn interface, and the UE Context Request message to the SgNB1 may carry the context index identifier (that is, the original and auxiliary index identifiers) of the terminal on the SgNB1 side. .
  • the MgNB receives the Context and Response message sent by the primary and secondary base stations SgNB1 through the Xn interface.
  • the UE Context Response message includes UE context information of the terminal stored on the SgNB1 side stored by the SgNB1.
  • the MgNB sends an SN Addition Request message to the new secondary base station SgNB2 through the Xn interface.
  • MgNB can learn that the terminal moved from the original S-RNA to the new original S-RNA other than the original S-RNA, and based on The physical layer identifier of the serving cell carried in the RRC Connection Resume Request message, and MgNB can determine that the terminal is currently covered by the SgNB2 service. So MgNB can send SN Addition Request message to SgNB2, so that SgNB2 can carry PDU Session3 and PDU Session4.
  • the SN Addition Request message contains the UE context information obtained by MgNB from the SgNB1 side. Based on the UE context information, SgNB2 learns that it needs to carry PDU Session3 and PDU Session4 (originally carried by SgNB1), as well as PDU Session3 and PDU Session4 related Context configuration.
  • S805 SgNB2 sends an SN Addition Request ACK message to MgNB through the Xn interface.
  • the SN Addition Request ACK message includes SgNB2 side downlink address information allocated by SgNB2 to carry PDU Session3 and PDU Session4.
  • the SN Addition Request ACK message may also include the S-I-RNTI message allocated by SgNB2.
  • SgNB2 For transmitting the uplink address information of PDU Session3 and PDU Session4, SgNB2 can be determined according to the UE context information sent by MgNB.
  • S806 The MgNB sends an RRC Connection Resume Reject message to the terminal through the air interface Uu.
  • the MgNB sends a PDU, Session, Resource, ModifyIndication to the AMF / SMF network element through the NG-C interface.
  • the PDU, Session, Resource, and Modify Indication sent by the MgNB to the AMF / SMF network element includes the SgNB2 side downlink address information allocated by SgNB2 to carry the PDU Session3, and used to carry the downlink address information of the PDU Session4.
  • the AMF / SMF After the AMF / SMF receives the PDU, Session, Resource, and Modify Indication containing the downlink address information, it can send the downlink address to the UPF network element.
  • S808 The UPF network element and SgNB2 are established to complete a new NG-U (SN) network connection.
  • the UPF network element After the UPF network element obtains the downlink address information on the SgNB2 side from the AMF / SMF network element, it can establish a new NG-U network connection with SgNB2 according to the downlink address information. For SgNB2, it also needs to further establish a complete Xn network connection with MgNB. In addition, because the terminal is currently in the RRC_INACTIVE inactive state, SgNB2 does not need to establish an SCG low-level wireless configuration.
  • the MgNB sends a UE Context Release message to all the S-RNA secondary base stations through the Xn interface.
  • the UE ContextRelease message can initiate a context release process. Based on this message, all secondary base stations in the original S-RNA will release the UE context information of the terminal stored by itself.
  • the terminal may initiate a RACH procedure to the MgNB.
  • the terminal when it has an uplink transmission requirement, it can initiate a RACH process and indicate to the MgNB the DRB ID or QoS Flow ID information related to the uplink user data to be sent, thereby attempting to recover to the RRC_ACTIVE active state.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • a terminal is in a dual connection working mode with MeNB and a SgNB1 in the original S-RNA, and a PDU Session1 anchor is established on the MeNB side, and a PDU Session2 anchor is established on the SgNB1 side.
  • the MeNB can reconfigure the terminal to the RRC_INACTIVE inactive state through the air interface Suspend process, thereby releasing MCG Radio Link, SCG Radio Link, and low-level Wireless configuration.
  • MeNB maintains the NG-C network connection and the NG-U (MN) network connection, and the high-level configuration related to PDU Session1; and all base stations in the original S-RNA, including SgNB1, maintain NG-U (SN) network connections And PDU Session2 related high-level configuration; the terminal stores PDU Session1 and PDU Session2 related high-level configuration.
  • MN NG-C network connection
  • MN NG-U
  • SN NG-U
  • S901 The terminal sends an RRC Connection Resume Request message to the MeNB.
  • the terminal in the dual connection configuration is also in the RRC_INACTIVE inactive state. Although the terminal will not perform signaling and data transmission with MeNB and SgNB1, the terminal will still perform RRM radio at each inter-frequency point where the candidate target secondary base station is deployed. measuring. If the terminal finds that it is still in the original S-RNA, even if the secondary base station serving itself has switched, the terminal and the MeNB may not have to perform any control signaling interaction on the air interface Uu.
  • the terminal can trigger the RRC connection recovery process at the air interface Uu and send an RRC Connection Resume Request message to the MeNB.
  • the P-I-RNTI may include the base station identifier of the MeNB and the original primary index identifier of the terminal UE context information stored on the MeNB side.
  • the S-I-RNTI may include the base station identifier of SgNB1 and the primary and secondary index identifiers of the terminal UE context information stored on the SgNB1 side.
  • the MeNB sends a UE Context Request message to the primary and secondary base stations SgNB1 through the Xn interface.
  • the MeNB After receiving the RRC Connection Resume Request message, the MeNB can find the UE context information on the SgNB1 side (that is, the network connection and related high-level configuration on the SgNB1 side) of the terminal stored in the SgNB1 from the SgNB1 based on the S-I-RNTI information through indexing.
  • the MeNB sends a UE Context Request message to SgNB1 through the Xn interface, and the UE Context Request message to the SgNB1 may carry a context index identifier of the terminal on the SgNB1 side.
  • the MeNB receives the Context and Response message sent by the primary and secondary base stations SgNB1 through the Xn interface.
  • the UE Context Response message includes UE context information of the terminal stored on the SgNB1 side stored by the SgNB1.
  • S904 The MeNB sends an RRC Connection Resume Reject message to the terminal through the air interface Uu.
  • the MeNB sends a PDU, Session, Resource, ModifyIndication to the AMF / SMF network element through the NG-C interface.
  • the PDU, Session, Resource, and Modify Indication sent by the MeNB to the AMF / SMF network element includes the downlink address information allocated by the MeNB to carry the PDU Session2.
  • the Session Modifies the Indication.
  • the downlink address can be sent to the UPF network element.
  • S906 The UPF network element and the MeNB are established to complete a new NG-U (MN) network connection.
  • MN NG-U
  • the UPF network element After the UPF network element obtains the downlink address information of the MeNB side from the AMF / SMF network element, it can establish a new NG-U (MN) network connection with the MeNB according to the downlink address information.
  • MN NG-U
  • the MeNB sends a UE Context Release message to all the S-RNA secondary base stations through the Xn interface.
  • the UE ContextRelease message can initiate a context release process. Based on this message, all secondary base stations in the original S-RNA will release the UE context information of the terminal stored by itself.
  • the terminal may initiate a RACH procedure to the MeNB.
  • a terminal when a terminal has an uplink transmission requirement, it can initiate a RACH process and indicate to the MeNB the DRB id or QoS Flow id information related to the uplink user data to be sent, thereby attempting to recover to the RRC_ACTIVE active state.
  • Embodiment 6 is a diagrammatic representation of Embodiment 6
  • a terminal is in a dual-connected working mode with MgNB (gNB-type primary base station) and SgNB1 in the original S-RNA, and the anchor points of PDUSession1 and PDUSession2 are established on the MgNB side, and the anchors of PDUSession3 and PDUSession4 Points are established on the SgNB1 side.
  • MgNB gNB-type primary base station
  • SgNB1 gNB-type primary base station
  • MgNB can reconfigure the terminal to the RRC_INACTIVE inactive state through the air interface Suspend process, thereby releasing MCG RadioLink And SCG Radio Link and low-level wireless configuration.
  • MgNB maintains the NG-C network connection and the NG-U (MN) network connection, and the high-level configuration related to PDU Session1, PDU Session2, and all base stations in the original S-RNA, including SgNB1, store NG-U (SN ) Network connection and high-level configuration related to PDU Session3 and PDU Session4; the terminal stores high-level configuration related to PDUSession1-PDU and Session4.
  • MN NG-C network connection and the NG-U (MN) network connection, and the high-level configuration related to PDU Session1, PDU Session2, and all base stations in the original S-RNA, including SgNB1, store NG-U (SN ) Network connection and high-level configuration related to PDU Session3 and PDU Session4; the terminal stores high-level configuration related to PDUSession1-PDU and Session4.
  • FIG. 10 Please refer to a communication system interaction diagram shown in FIG. 10:
  • S1001 The terminal sends an RRC Connection Resume Request message to the MgNB.
  • the terminal in the dual-connection configuration is also in the RRC_INACTIVE inactive state. Although the terminal will not perform signaling and data transmission with MgNB and SgNB1, the terminal will still perform RRM radio at each inter-frequency point where the candidate target secondary base station is deployed. measuring. If the terminal finds that it is still in the original S-RNA, even if the secondary base station serving itself switches, the terminal and MgNB may not need to perform any control signaling interaction on the air interface Uu.
  • the terminal can trigger the RRC connection recovery process on the air interface Uu and send an RRC Connection Resume Request message to the MgNB.
  • the RRC Connection Resume Request message may include the PI-RNTI assigned to the terminal before MgNB, and the SI-RNTI assigned to the terminal before SgNB1.
  • the P-I-RNTI may include the base station identifier of the MgNB and the original primary index identifier of the terminal UE context information stored on the MgNB side.
  • the S-I-RNTI may include the base station identifier of SgNB1 and the primary and secondary index identifiers of the terminal UE context information stored on the SgNB1 side.
  • MgNB sends a UE Context Request message to the primary and secondary base stations SgNB1 through the Xn interface.
  • MgNB After receiving the RRC Connection Resume Request message, MgNB can find the PDU Session3 and PDU Session4 and Session4 stored in SgNB1 from SgNB1 based on the SI-RNTI information through the index method.
  • the UE context information on SgNB1 side (that is, the network connection and related high-level configuration on SgNB1 side) .
  • the MgNB sends a UE Context Request message to SgNB1 through the Xn interface, and the UE Context Request message to the SgNB1 may carry the primary and secondary index identifiers of the UE context information of the storage terminal on the SgNB1 side.
  • the MgNB receives the UE Context and Response message from the primary and secondary base stations SgNB1 through the Xn interface.
  • the UE Context Response message includes UE context information of the terminal stored on the SgNB1 side stored by the SgNB1.
  • the MgNB sends an RRC Connection Resume Reject message to the terminal through the air interface Uu.
  • the MgNB sends a PDU, Session, Resource, ModifyIndication to the AMF / SMF network element through the NG-C interface.
  • the PDU, Session, Resource, and Modify Indication sent by the MgNB to the AMF / SMF network element includes the downlink address information allocated by the MgNB to carry the PDU Session3 and PDU Session4.
  • the AMF / SMF receives the PDU containing the downstream address information. After indication, the downlink address can be sent to the UPF network element.
  • S1006 The UPF network element and MgNB are established to complete a new NG-U (MN) network connection.
  • the UPF network element After the UPF network element obtains the downlink address information on the MgNB side from the AMF / SMF network element, it can establish a new NG-U (MN) network connection with the MgNB according to the downlink address information.
  • MN NG-U
  • the MgNB sends a UE ContextRelease message to all the S-RNA secondary base stations through the Xn interface.
  • the UE ContextRelease message can initiate a context release process. Based on this message, all secondary base stations in the original S-RNA will release the UE context information of the terminal stored by itself.
  • the terminal may initiate a RACH procedure to the MgNB.
  • the terminal when it has an uplink transmission requirement, it can initiate a RACH process and indicate to the MgNB the DRB ID or QoS Flow ID information related to the uplink user data to be sent, thereby attempting to recover to the RRC_ACTIVE active state.
  • Embodiment 7 is a diagrammatic representation of Embodiment 7:
  • This embodiment provides a transmission link management device, a transmission link establishment device, and a transmission link migration device. Please refer to the schematic diagram of the transmission link management device and the transmission link establishment shown in FIG. 11 to FIG. 13 respectively. Schematic diagram of the structure of the device and the schematic diagram of the structure of the transmission link management device:
  • the transmission link management device 110 includes a migration request receiving module 112, a context sending module 114, a secondary base station address obtaining module 116, and a secondary base station address sending module 118.
  • the migration request receiving module 112 is configured to receive a terminal when it is moving out. Migration request message sent after the original S-RNA cluster area enters the new S-RNA, and the context sending module 114 is used to send the UE context information of the terminal in the original S-RNA from the original secondary base station to the new secondary base station, and the secondary base station address
  • the obtaining module 116 is configured to obtain a downlink address of the secondary base station allocated by the new secondary base station to carry the target PDU session data.
  • the secondary base station address sending module 118 is configured to send the downlink address of the secondary base station to the core network.
  • the transmission link establishing device 120 shown in FIG. 12 includes a context sending module 122, a secondary base station address transmission module 124, and a link establishing module 126.
  • the context sending module 122 is configured to receive the terminal sent by the primary base station from the original secondary base station in the original S-RNA.
  • the secondary base station address transmission module 124 is used to send the secondary base station downlink address allocated to bear the target PDU session data to the primary base station;
  • the chain building module 126 is used to obtain the secondary base station downlink address according to the UE after the core network obtains the secondary base station downlink address
  • the context information establishes a PDU session data transmission channel with the core network for transmitting the target PDU session data.
  • the transmission link migration device 130 includes a wireless measurement module 132 and a migration request sending module 134, which are used to perform wireless measurement on the serving cell of the secondary base station when the wireless link is inactive.
  • the migration request sending module 134 is used for After determining that it has currently moved out of the original S-RNA and entered the new S-RNA according to the measurement result, it sends a migration request message to the main base station.
  • the transmission link migration device 130 in this embodiment may be deployed on a terminal, and the functions of the wireless measurement module 132 and the migration request sending module 134 may both be implemented by the processor of the terminal and the communication device.
  • the transmission link management device 110 can be deployed on the primary base station. Among them, the functions of the migration request receiving module 112, the context sending module 114, the secondary base station address obtaining module 116, and the secondary base station address sending module 118 can be controlled by the processor of the primary base station. Communication device implementation.
  • the transmission link establishing device 120 may be deployed on the secondary base station, and the functions of the context sending module 122, the secondary base station address transmission module 124, and the chain building module 126 may all be implemented by the processor of the secondary base station and the communication device.
  • the transmission link migration device 130 may be in a dual-connection configuration or a multi-connection configuration.
  • the transmission link management device 110 controls to release the air interface wireless chain of the transmission link migration device 130 on the air interface. Path, so that the transmission link migration device 130 is in a wireless link inactive state.
  • the transmission link migration device 130 is in a wireless link inactive state, the transmission link migration device 130 including the wireless measurement module 132 will continue to perform wireless measurement on the serving cell of the secondary base station, and perform the measurement result information of the wireless measurement. Escalation.
  • the so-called S-RNA Single Cluster Area
  • N can be greater than or equal to 1.
  • N can be greater than 1, that is, when the original S-RNA includes the service area of two or more secondary base stations, these secondary base stations can interact with each other.
  • the N secondary base stations may directly communicate with other secondary base stations corresponding to the S-RNA, and may also communicate with each other through the transmission link management device 110.
  • an original S-RNA includes two Two secondary base stations.
  • the two secondary base stations can directly communicate with each other through their respective Xn interfaces, or they can send the information sent to the opposite end to the transmission link management device 110 through the Xn interface, and then by the transmission link management device. 110 forwards the information to the corresponding secondary base station.
  • P-RNA main paging area
  • P-RNA includes several service areas of transmission link management device 110. It can be understood that the range of P-RNA is usually larger than that of S-RNA. Therefore, in this embodiment, it can be assumed that the transmission link migration device 130 will not move out the P-RNA temporarily, but can move out an S-RNA and enter a new S-RNA.
  • the wireless measurement module 132 may also perform wireless measurement on each transmission link management device 110 in the P-RNA, and the measurement parameters on which the wireless measurement module 132 wireless measurement is based are pre-assigned and set by the transmission link management device 110 .
  • the wireless measurement module 132 may continue to determine where the primary and secondary base stations are located based on the RRM measurement parameters previously given by the primary and secondary base stations.
  • a potential target serving cell in the RAT domain performs RRM measurement, so that it can sense in time which primary and secondary base station service cell sets the transmission link migration device 130 is currently moving to.
  • the wireless measurement module 132 can determine whether the transmission link migration device 130 moves out of the range of the S-RNA where it was before and enters the range of the new S-RNA. If it is, the migration request sending module 134 will transmit to the transmission
  • the link management device 110 sends a migration request message.
  • the migration request message includes the primary and secondary index identifiers, and the primary and secondary index identifiers represent locations where the primary and secondary base stations store UE context information.
  • the migration request message includes, in addition to the primary and secondary index identifiers, the measurement result information of the secondary base station serving cell in the S-RNA by the terminal.
  • the transmission link migration device 130 is currently in the RRC_INACTIVE state, the current wireless link of the transmission link migration device 130 on the air interface side has been released, and the migration request sending module 134 can only manage the transmission link.
  • the device 110 sends a migration request message.
  • the S-RNA is divided into the original S-RNA and the new S-RNA.
  • the original and new here are only relative to the order in which the transmission link migration device 130 enters the corresponding S-RNA.
  • the transmission link migration device 130 exits from one S-RNA and then enters another S-RNA.
  • the previous S-RNA entered by the transmission link migration device 130 belongs to the original S-RNA, and the later entered one S-RNA.
  • the RNA is the new S-RNA of the transmission link migration device 130.
  • the transmission link management device 110 may determine that the transmission link migration device 130 has moved from the original S-RNA into the new S according to the migration request message. -RNA. Therefore, in this case, the original secondary base station in the original S-RNA cannot continue to provide services for the transmission link relocation device 130. It can be understood that before the transmission link migration device 130 moves out of the original S-RNA, the original secondary base station in the original S-RNA needs to carry some user PDU session data sessions.
  • the transmission link migration device 130 moves out of the original S-RNA
  • the user PDU session data session originally carried by the original S-RNA in the original S-RNA needs to be carried by the transmission link establishment device 120 in the new S-RNA.
  • the original The user PDU session data session that should be carried by the original secondary base station in the original S-RNA is called "target PDU session data”.
  • the transmission link management device 110 needs to determine the transmission link establishment device 120 first, and the transmission link management device 110 determines the transmission link establishment
  • the scheme of the device 120 is briefly introduced:
  • the migration request message includes indication information
  • the indication information is used to indicate a base station to which a serving cell where the transmission link migration apparatus 130 is currently located belongs. Therefore, after the migration request receiving module 112 receives the migration request message, the transmission link management device 110 may determine, according to the migration request message information in the migration request message, that the base station to which the serving cell of the transmission link migration device 130 currently belongs to establish a transmission link. ⁇ 120 ⁇ Device 120.
  • the indication information may include, but is not limited to, at least one of a base station identifier of a base station to which the serving cell where the transmission link migration device 130 is currently located, a cell identifier of the serving cell where the transmission link migration device 130 is currently located, and a serving cell physical layer identifier.
  • the transmission link management apparatus 110 may directly determine which one or which of the transmission link establishment apparatuses 120 in the new S-RNA can provide services for the transmission link migration apparatus 130 according to the base station identifier. several.
  • the indication information includes the cell identifier of the serving cell or the physical layer identifier of the serving cell
  • the transmission link management device 110 may determine that it can currently be a transmission chain according to the correspondence between the cell identifier or the physical layer identifier of the serving cell and the base station identifier. Which one or several secondary base stations in the new S-RNA the road migration device 130 is serving.
  • the transmission link management device 110 After the transmission link establishment device 120 is determined, in order for the transmission link establishment device 120 to carry the target PDU session data, the transmission link management device 110 also needs to allow the transmission link establishment device 120 to obtain the transmission link migration device 130 in the original and auxiliary The UE context information on the base station side and helps to establish a PDU session data transmission channel between the transmission link establishment device 120 and the core network.
  • the context sending module 114 of the transmission link management device 110 needs to obtain the transmission link migration device 130 in the primary and secondary UE context information on the base station side.
  • the context sending module 114 may directly obtain the UE context information of the transmission link migration device 130 on the primary and secondary base stations from the base station, because the transmission link management device 110 migrates the transmission link.
  • the device 130 performs backup storage on the UE context information on the primary and secondary base stations.
  • the context sending module 114 needs to obtain the UE context information of the transmission link migration device 130 from the original and secondary base stations:
  • the migration request message sent by the transmission link migration device 130 to the migration request receiving module 112 may include the primary and secondary index identifiers, which may indicate that the primary and secondary base stations store the UE context information of the transmission link migration device 130 on the primary and secondary base stations. s position. Therefore, the context sending module 114 may carry the primary and secondary index identifiers extracted from the migration request message to the primary and secondary base stations in the context acquisition request. For example, the context sending module 114 may send the primary and secondary index identifiers to the Xn interface of the transmission link management device 110 to The primary and secondary base stations send a context acquisition request carrying the primary and secondary index identifiers.
  • the primary and secondary base stations may respond to the context acquisition response to the context sending module 114:
  • the primary and secondary base stations extract the transmission link migration device 130 stored at the local end according to the primary and secondary index identifiers in the primary and secondary base stations. And send the extracted UE context information to the context sending module 114 through the Xn interface.
  • the context sending module 114 when the context sending module 114 sends UE context information of the transmission link migration device 130 on the primary and secondary base stations to the transmission link establishment device 120, the context sending module 114 may send the information through the SN addition request message.
  • the context sending module 122 of the transmission link establishment device 120 can understand the target PDU session data that it needs to carry in the subsequent process by using the UE context information of the transmission link migration device 130 on the primary and secondary base stations carried in the SN addition request message. And the context configuration related to the target PDU session data.
  • the transmission link establishment device 120 may determine the target PDU session data to be carried and the core network side to transmit the target PDU session data according to the received uplink information of the transmission link migration device 130 on the UE and the primary and secondary base stations. The uplink address of the assigned PDU session data transmission channel.
  • the transmission link establishment device 120 in order to establish a PDU session data transmission channel between the transmission link establishment device 120 and the core network, the transmission link establishment device 120 also needs to allocate a downlink address of the PDU session data transmission channel.
  • the downlink address allocated by the transmission link establishment device 120 to establish a PDU session data transmission channel is distinguished from the downlink address allocated by the transmission link management device 110 to establish a PDU session data transmission channel.
  • the transmission link establishment device 120 is assigned The downlink address of is called “secondary base station downlink address", and correspondingly, the downlink address allocated by the transmission link management device 110 is called "primary base station downlink address".
  • the target PDU session data originally carried by the original secondary base station can be more than one, for example, in the
  • the user PDU session data session that originally anchored at the original secondary base station includes PDU Session3 and PDU Session4, and the transmission link establishment device 120 can learn the target PDU session that it needs to carry according to the UE context information
  • the data includes PDU Session3 and PDU Session4. Regardless of whether it is at the primary and secondary base stations or the transmission link establishment device 120, the PDU session data transmission channels may be inconsistent for the two target PDU session data. Therefore, when there is more than one target PDU session data, the transmission link establishment device 120 There may also be more than one downlink address assigned to the secondary base station.
  • the so-called downlink address (such as the downlink address of the primary base station or the downlink address of the secondary base station) includes a transport layer address and a tunnel address identifier.
  • the secondary base station address transmission module 124 cannot directly send the downlink address of the secondary base station to the core. Therefore, the secondary base station address transmission module 124 can only send the downlink address of the secondary base station to the transmission link management device 110, and then allow the transmission link management device 110 to send the secondary base station's downlink address to the core network.
  • the secondary base station The address transmission module 124 may send the downlink address of the secondary base station to the secondary base station address acquisition module 116 of the transmission link management device 110 through the SN addition response message.
  • the secondary base station address sending module 118 may send the secondary base station downlink address to the core network, so that the core network A PDU session data transmission channel for transmitting the target PDU session data is established between the secondary base station's downlink address and the transmission link establishment device 120.
  • the auxiliary The base station address sending module 118 needs to transmit the downlink address allocated by the transmission link establishing device 120 to the AMF / SMF network element of the core network, and then the AMF / SMF network element transmits the downlink address to the UPF network element, so that the UPF network element A PDU session data transmission channel is established with the transmission link establishment device 120 according to the downlink address.
  • the core network After the core network obtains the downlink address of the secondary base station, the core network obtains the secondary base station downlink address of the PDU session data transmission channel that needs to be established, and the transmission link establishment device 120 has obtained the PDU session data transmission channel in the core according to the UE context information.
  • the transmission link management device 110 can control the restoration of the air link wireless link between the transmission link migration device 130 and the primary and secondary base stations.
  • the device 130 is similar to the one before the original S-RNA is removed.
  • the transmission link migration device 130 only needs to perform the RACH and RRC connection recovery process under the paging page of the transmission link management device 110 or actively perform the RACH and RRC connection recovery process, and sends an active state to the transmission link management device 110 Recovery request message, which includes a data radio bearer identifier or a PDU session identifier associated with the PDU session data of the uplink user. Based on this, the transmission link management device 110 can control the recovery of the transmission link migration device 130 and the primary and secondary base stations. Air interface wireless link on the side.
  • the downlink control signaling or user data on the network side has the basis for transmission to the transmission link migration device 130 through the transmission link establishment device 120 in the new S-RNA, and the uplink control signaling on the transmission link migration device 130 side Or the user data may also be transmitted to the network side through the transmission link establishment device 120 in the new S-RNA.
  • the transmission link migration device 130 In order to ensure that the transmission link migration device 130 moves out of the currently-located S-RNA (that is, the so-called "new S-RNA") and enters another S-RNA, the transmission link migration device 130 has a transmission request or a transmission target. When the transmission requirements of the link migration device 130 are required, the transmission link migration device 130 can still be directly restored to the dual connection mode / multi connection mode through the RACH and RRC connection recovery procedures.
  • the transmission link After receiving the UE context information of the transmission link migration device 130 on the primary and secondary base stations, the establishment device 120 may store the UE context information of the transmission link migration device 130 on the base station side and store the UE context information according to the base station.
  • the transmission link establishment device 120 may carry the new secondary index identifier in the SN addition response message, and establish the same with the transmission link.
  • the downlink address of the secondary base station allocated by the device 120 is sent to the transmission link management device 110 together.
  • the transmission link establishment device 120 may further carry the new S-RNA information configured by the new secondary base station in the SN addition response message, and the new S-RNA information is used for the new S-RNA Give instructions.
  • the transmission link management device 110 may generate a migration response message including a new secondary index identifier and new S-RNA information, and send the migration response message to the transmission link migration device 130. Based on this, the transmission link migration device 130 may continue to determine whether it has moved out of the range other than the current S-RNA according to the wireless measurement result, and after moving out of the current new S-RNA range and entering another new S-RNA, Send a migration request message to the transmission link management device 110.
  • the transmission link migration device 130 may carry a new secondary index identifier (understandably, because the original secondary index identifier and the new secondary index identifier are relative to (Because the transmission link migration device 130 is before and after the movement, the so-called new secondary index identifier is actually referred to as the original secondary index identifier after the movement).
  • the transmission link migration device 130 in this embodiment does not move out of the main paging area P-RNA, the original anchor point does not need to transmit the user PDU session data session on the transmission link management device 110 side.
  • the PDU session data transmission channel does not need to be migrated. Therefore, in general, the location where the transmission link management device 110 stores the UE context information of the transmission link migration device 130 on the transmission link management device 110 side will not change, and the P-RNA will not change.
  • the transmission link management device 110 does not need to include the new primary index identifier and the new P-RNA information in the migration response message, but in some examples of this embodiment, if the transmission link management device 110 wants To reconfigure the P-RNA or change the storage location of the UE context information on the local side of the transmission link migration device 130 on the occasion of the context migration of the transmission link migration device 130 and the migration of the PDU session data transmission channel, you can either
  • the migration response message carries both the newly configured new primary index identifier and the new P-RNA information of the new secondary base station.
  • This embodiment also proposes a transmission link migration device 130 Management scheme of PDU session data transmission channel when moving in the original S-RNA:
  • the UE context information of the transmission link migration device 130 in the original secondary base station can be stored on each secondary base station, and for the core network,
  • the target PDU session data is sent to each secondary base station in the original S-RNA, so all secondary base stations in the original S-RNA can be guaranteed.
  • Target PDU session data for the transmission link migration device 130 can be acquired. In this way, as long as the transmission link migration device 130 is in the original S-RNA, each secondary base station in the original S-RNA always has a way to perform data transmission with the transmission link migration device 130.
  • the transmission link migration device 130 regardless of the wireless measurement result of the transmission link migration device 130, as long as it determines that its current location is still within the original S-RNA, the transmission link migration device 130 may not have to communicate with The transmission link management device 110 performs signaling interaction.
  • the transmission link establishment device 120 may send the UE context information to the S- All secondary base stations in the RNA (that is, the new S-RNA) are stored.
  • the transmission link establishment device 120 may send UE context information to each secondary station in the new S-RNA through the Xn interface of the base station. Base station.
  • the transmission link establishment device 120 sends the transmission link migration device 130 UE context information to each secondary base station in the new S-RNA through the transmission link management device 110:
  • the Xn interface of the base station sends the UE context information of the transmission link migration device 130 to the transmission link management device 110, and then causes the transmission link management device 110 to send the UE context information to each secondary base station in the new S-RNA.
  • the transmission link management method, the transmission link establishment method, and the transmission link migration method provided in this embodiment can not only be applied to the scenario of dual connection operation, but also suitable for a transmission link migration device 130 and S- A scenario where multiple secondary base stations are connected in the RNA, that is, a scenario where multiple connections are operated.
  • the transmission link management device configures the transmission link migration device to an air interface inactive state through the Suspend process, if the transmission link migration device moves As long as the transmission link migration device does not move out of the range of the original S-RNA, since all secondary base stations in the original S-RNA save the UE context information of the transmission link migration device, the transmission link migration device is As a result, it is monitored that after leaving the service area of a primary and secondary base station, it is unnecessary to perform signaling interaction with the transmission link management device, because in this case, when there is a downlink transmission demand or transmission chain for the transmission link migration device When the road migration device has an uplink transmission requirement, it can directly perform air interface wireless link recovery through the RACH and RRC connection recovery procedures, and then perform user PDU session data session transmission.
  • the transmission link migration device when it determines that it has moved away from the original S-RNA and entered the new S-RNA based on its wireless measurement results, it can send a migration request message to the transmission link management device, so that The transmission link management device determines, according to the migration request message, a transmission link establishment device capable of subsequently providing services for the transmission link migration device, and then establishes a transmission link originally established between the core network and the original secondary base station for carrying target PDU session data.
  • the PDU session data transmission channel is migrated between the core network and the transmission link establishment device. In this way, when there is a downlink transmission requirement for the transmission link migration device or an uplink transmission requirement for the transmission link migration device, it can also continue to pass RACH.
  • connection recovery process with RRC performs air interface wireless link recovery, and then transmits user PDU session data sessions. Therefore, the transmission link migration device is prevented from moving back from the dual connection mode / multi-connection mode to the single connection mode due to the movement of the transmission link migration device, and a large number of signaling interactions between the transmission link management device and the core network are required. Entering the dual-connected mode / multi-connected mode again affects the user experience and causes a large signaling overhead on the core network side and the transmission link management device side.
  • Embodiment 8 is a diagrammatic representation of Embodiment 8
  • the transmission link management device 140 includes not only a migration request
  • the receiving module 141, the context sending module 142, the secondary base station address obtaining module 143, and the secondary base station address sending module 144 further include a removal request receiving module 145 and a primary base station address sending module 146.
  • the functions of the migration request receiving module 141, the context sending module 142, the secondary base station address obtaining module 143, and the secondary base station address sending module 144 are the same as those of the migration request receiving module, the context sending module, the secondary base station address obtaining module, and the secondary
  • the role of the base station address sending module is similar, while the removal request receiving module 145 is used to receive the removal request message sent by the terminal when the original S-RNA is removed but does not enter any new S-RNA; the main base station address sending module 146 is used to The request message migrates the PDU session data transmission channel carrying the target PDU session data from the original secondary base station to the primary base station.
  • the transmission link migration device 150 shown in FIG. 15 includes a wireless measurement module 151 and a migration request sending module 152, and also includes a removal request sending module 153.
  • the transmission link migration device 150 in this embodiment may be deployed on a terminal, and the functions of the wireless measurement module 151, the migration request sending module 152, and the removal request sending module 153 may be jointly implemented by the processor of the terminal and the communication device.
  • the transmission link management device 140 may be deployed on the primary base station, where the migration request receiving module 141, the context sending module 142, the secondary base station address obtaining module 143, and the secondary base station address sending module 144, the removal request receiving module 145, and the primary base station address sending
  • the functions of the module 146 can be implemented by the processor of the main base station controlling the communication device.
  • a link management device, and the transmission link migration device 150 and the transmission link management device 140 provided in this embodiment may also be used to perform transmission link management in a mobile scenario 2:
  • the transmission link management device 140 determines that the transmission link migration device 150 has no user PDU session data session transmission in the transmission link management device 140 and the secondary base station, so the transmission link management device 140 can perform the air interface Suspend process. Control to release the air interface wireless link between the transmission link migration device 150 and the transmission link management device 140 and the air interface wireless link between the transmission link migration device 150 and the secondary base station.
  • the transmission link migration device 150 may have an air interface wireless link between the same or two or more secondary base stations.
  • the transmission link management device 140 controls the release of the air interface wireless link of the transmission link migration device 150 on the air interface, the power consumption of the maintenance of the air interface wireless link to the transmission link migration device 150 can be reduced, and the amount of wireless resources can be reduced. Occupation can also reduce interference caused by air interface wireless links.
  • the wireless measurement module 151 of the transmission link migration device 150 can continue to perform wireless measurement.
  • the wireless measurement mentioned here may be RRM wireless measurement.
  • the wireless measurement module 151 may continue to perform measurement on the RATs where the primary and secondary base stations are located based on the RRM measurement parameters previously given by the primary and secondary base stations. Potential target serving cells in the domain perform RRM measurement, so that they can sense in time which primary and secondary base station service cell sets they are currently moving to.
  • the removal request sending module 153 may send a removal request message to the transmission link management device 140, In some examples of this embodiment, the removal request message and the migration request message are similar, and both can be sent through an RRC Connection Resume Request message.
  • the removal request message can indicate that the current mobile scenario of the transmission link migration device 150 belongs to scenario two, and if the transmission link migration device 150 sends a migration request message to the transmission link management device 140, it means that The current mobile scenario of the transmission link migration device 150 belongs to the aforementioned scenario 1.
  • the corresponding Migration Request message RRC Connection Resume Request message includes at least an indication capable of characterizing mobile scenario 1, and the corresponding The RRC Connection Resume Request message for the removal request message should also include at least indication information capable of characterizing the mobile scenario two.
  • the transmission link management device 140 After the removal request receiving module 145 of the transmission link management device 140 receives the removal request message, it can be determined that the transmission link migration device 150 has only moved out of the original S-RNA and has not entered the new S-RNA. Therefore, in this case, In this case, no new secondary base station can carry the target PDU session data that was originally carried by the original secondary base station. In order to ensure the subsequent normal bearer of the target PDU session data, the transmission link management device 140 needs to obtain the transmission link migration device 150 in the original The UE context information on the secondary base station side, and the PDU session data transmission channel originally used to carry the target PDU session data is migrated from the original secondary base station to the base station.
  • the transmission link management device 140 may obtain the UE context information of the transmission link migration device 150 from the original and secondary base stations, and obtain the UE context information of the transmission link migration device 150 from the original and secondary base stations.
  • the management device 140 may initiate a context acquisition request by sending a Retrieve UE Context Request message to the original and secondary base stations.
  • the transmission link management device 140 may also obtain the UE context information of the transmission link migration device 150 from other secondary base stations other than the original secondary base station in the original S-RNA.
  • the transmission link management device 140 may no longer need to remove the secondary base station from the original S-RNA. Get on.
  • the network transmission link originally used to carry the target data session is migrated to the transmission link management device 140, which is actually established between the transmission link management device 140 and the core network to carry the target data
  • the network transport link for the session Therefore, the transmission link management device 140 not only needs to know the uplink address allocated by the core network for transmitting the target data session, but also needs to allocate a downlink address on the transmission link management device 140 side for carrying the target PDU session data, that is, the downlink of the primary base station. address.
  • the downlink address of the primary base station includes a transport layer address and a tunnel address identifier. After the downlink address of the master base station is allocated, the master base station address sending module 146 sends the downlink address of the master base station to the core network.
  • the primary base station address sending module 146 may send a link modification indication message (PDU Session Resource Modification Indication) to the core network side.
  • the link modification instruction message may include the downlink address of the primary base station allocated by the transmission link management device 140 to carry the target PDU session data.
  • the main The base station address sending module 146 actually sends the link modification instruction to the AMF / SMF network element of the core network, and then the AMF / SMF network element sends the downlink address of the primary base station to the UPF network element.
  • the core network After the core network obtains the downlink address of the primary base station allocated by the transmission link management device 140, it can establish a PDU session data transmission channel between the UPF network element and the transmission link management device 140 to transmit the target PDU session data.
  • the transmission link management device 140 may control the original secondary base station to release the saved data.
  • UE context information of the transmission link migration device 150 and at the same time, if each secondary base station in the original S-RNA saves the UE context information of the transmission link migration device 150, the transmission link management device 140 may control the original S-RNA Each secondary base station in the releases the UE context information of the transmission link migration device 150.
  • the transmission link management device 140 may also control the original secondary base station to release its The UE context information of the transmission link migration device 150 originally stored on the original secondary base station side. Or in the case that each secondary base station in the original S-RNA stores UE context information of the transmission link migration device 150 on the original secondary base station side, all secondary base stations that control the original S-RNA perform transmission link migration device 150 UE context information Release process.
  • the transmission link management device 140 may also send a removal response message to the transmission link migration device 150 after acquiring the UE context information of the transmission link migration device 150 in the original and secondary base stations,
  • the response message may include a new primary index identifier, which is configured by the primary base station and is capable of characterizing a location where the transmission link management apparatus 140 stores the UE context information of the transmission link migration apparatus 150.
  • the transmission link management device 140 needs to change the configuration of the P-RNA, it can also send the new P-RNA information in the removal response message and send it to the transmission link migration device 150. After all, it sends to the transmission link migration device 150
  • the transmission link management device 140 When the response message is removed, the transmission link management device 140 originally needs to perform signaling interaction with the transmission link migration device 150. Therefore, if the transmission link management device 140 takes this opportunity to modify the P-RNA configuration, The new P-RNA information is carried in the removal response message and sent to the transmission link migration device 150, which can reduce the signaling interaction with the transmission link migration device 150.
  • the removal request message may be sent to the transmission link migration device 150 through an RRC Connection Resume Reject message.
  • the migration response message sent by the transmission link management device 140 to the transmission link migration device 150 may also be sent through the RRC Connection Resume and Reject message.
  • the transmission link migration device when it determines that it has removed the original S-RNA and has not entered any new S-RNA through wireless measurement results, it may send a removal request message to the transmission link management device, so that the transmission chain The path management device learned that it had left the original S-RNA.
  • the transmission link management device returns the target PDU session data that should be carried by the original and secondary base stations to the primary base station side according to the removal request message, so that the core network and the terminal can transmit the target PDU session data through the primary base station.
  • the storage medium may store one or more computer programs that can be read, compiled, and executed by one or more processors.
  • the storage medium may store and transmit At least one of a link management program, a transmission link establishment program, and a transmission link migration program, wherein the transmission link management program can be used by one or more processors to implement any one of the transmission chains described in the first to sixth embodiments. Steps of the road management method.
  • the transmission link establishment program may be used by one or more processors to perform the steps for implementing any one of the transmission link establishment methods described in the first to sixth embodiments.
  • the transmission link migration program may be used by one or more processors to perform steps for implementing any one of the transmission link migration methods described in the foregoing first to sixth embodiments.
  • This embodiment also provides a base station.
  • the base station 16 includes a first processor 161, a first memory 162, and a first communication bus 163 for connecting the first processor 161 and the first memory 162.
  • the first memory 162 may be the aforementioned one that stores a transmission link management program. Storage media.
  • the first processor 161 can read the transmission link management program stored in the first memory 162, compile it, and execute steps for implementing any one of the transmission link management methods described in the first to sixth embodiments.
  • the first memory 162 may be the foregoing storage medium storing the transmission link establishment program.
  • the first processor 161 can read the transmission link establishment program stored in the first memory 162, compile it, and execute steps for implementing any one of the transmission link establishment methods described in the first to sixth embodiments.
  • This embodiment also provides a terminal. Refer to the schematic diagram of the hardware structure of the terminal shown in FIG. 17:
  • the terminal 17 includes a second processor 171, a second memory 172, and a second communication bus 173 for connecting the second processor 171 and the second memory 172.
  • the second memory 172 may be the aforementioned one that stores a transmission link migration program. Storage media.
  • the second processor 171 can read the transmission link migration program stored in the second memory 172, compile it, and execute the steps for implementing any one of the transmission link migration methods described in the first to sixth embodiments.
  • the terminal 17 includes a second processor 171, a second memory 172, and a second communication bus 173 for connecting the second processor 171 and the second memory 172.
  • the second memory 172 may be the aforementioned one that stores a transmission link migration program. Storage media.
  • the second processor 171 can read the transmission link migration program stored in the second memory 172, compile it, and execute the steps for implementing any one of the transmission link migration methods described in the first to sixth embodiments.
  • This embodiment provides a base station, a terminal, and a storage medium.
  • the primary base station can help establish a PDU session data transmission channel between the new secondary base station and the core network.
  • the core network can still send the target PDU session data that should be carried by the original secondary base station to the new secondary base station that can serve the terminal.
  • the terminal can continue to receive the target PDU session data originally sent by the original secondary base station.
  • the terminal can only recover to a single connection after removing the S-RNA, and then returns to the dual / multi-connection mode through configuration, reducing the signaling interaction between the base station side and the core network. It will fall back to the single connection mode because of its own movement. Therefore, compared with the existing solution, it can effectively improve the user's communication experience.
  • the uplink transmission, communication method, device, base station, terminal, and storage medium provided in the embodiments of the present invention can be applied not only to a 5G communication system, but also to any future communication system. .
  • modules or steps of the embodiments of the present invention described above can be implemented by a general-purpose computing device, which can be centralized on a single computing device or distributed by multiple computing devices.
  • they can be implemented with program code executable by a computing device, so that they can be stored in a computer storage medium (ROM / RAM, magnetic disk, optical disk) and executed by the computing device, and in a certain
  • ROM / RAM read-only memory
  • magnetic disk magnetic disk
  • optical disk optical disk
  • the steps shown or described can be performed in a different order than here, or they can be made into individual integrated circuit modules, or multiple modules or steps can be made into a single integrated circuit module to achieve . Therefore, this application is not limited to any specific combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种传输链路管理、建立、迁移方法、装置、基站及存储介质,该传输链路管理方法包括:接收终端在移出原辅集群区S-RNA并进入新S-RNA后发送的迁移请求消息,所述S-RNA由N个辅基站的服务区域组成,且所述N大于1时,所述S-RNA内多个所述辅基站可通信;将所述终端在所述原S-RNA中原辅基站侧的UE上下文信息发送给所述新S-RNA中的新辅基站;获取所述新辅基站为承载目标PDU会话数据而分配的辅基站下行地址,所述辅基站下行地址用于核心网设备与所述新辅基站建立PDU会话数据传输通道,所述目标PDU会话数据为原本由所述原辅基站承载的用户PDU会话数据;将所述辅基站下行地址发送给所述核心网设备。

Description

传输链路管理、建立、迁移方法、装置、基站及存储介质
本申请要求在2018年06月12日提交中国专利局、申请号为201810603741.7的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种传输链路管理、建立、迁移方法、装置、基站及存储介质。
背景技术
在5G(5Generation,第五代移动通讯)系统中,支持UE的单连接(Single Connectivity,SC)模式和双/多连接(Dual/Multiple Connectivity,DC/MC)模式。在双连接模式下,UE在空口可以同时与两个NG-RAN(Next Generation Radio Access Network,下一代无线接入网络)基站建立和保持两条独立的空口无线链路Radio Link。其中一个基站为主基站(Master Node,MN),另一个为辅基站(Secondary Node,SN)。MN和SN又可以同时分别在NG接口和核心网用户面网元节点UPF建立和保持两条独立的网络侧连接。对于5G NG-RAN基站下的UE,在没有任何用户数据和信令传输的时候,可以通过Suspend流程将UE的5G空口无线链路释放掉,让UE即处于空口非激活态(RRC_INACTIVE状态),从而降低UE的功耗,减少对无线资源的占用,同时也减少空口无线链路带来的干扰。
当网络侧有下行控制信令或用户数据抵达待下行传输,或者当UE侧有上行控制信令或用户数据抵达待上行传输的时候,需要恢复UE的空口无线链路,从而使得UE恢复双连接模式,但这必须基于UE仍然处于同样的主基站服务区域与辅基站服务区域下,否则将不能实现。可以理解的是,在UE的空口无线链路被释放期间UE极有可能会移动,从而离开原SN的服务区域,进入新SN的服务区域,对于这种情况,UE只能回退到单连接模式,然后通过MN与核心网侧进行信令交互,为其配置新辅基站侧的网络侧连接,进而使得UE再进入双连接模式。但这种方案需要MN与核心网进行较多的信令交互,过程繁琐,同时UE先回退到单连接模式,这于UE侧的用户体验而言,也是极为不利的。
发明内容
本发明实施例提供的传输链路管理、建立方法、装置、基站及存储介质,主要解决的技术问题是:现有技术中在UE移出原SN服务区域,进入新SN服 务区域后,只能先回退到单连接模式,然后通过主基站与核心网的配置使得终端再次进入双/多连接模式,配置过程繁琐且影响用户体验的问题。
为解决上述技术问题,本发明实施例提供一种传输链路管理方法,包括:
接收终端在移出原辅集群区S-RNA并进入新S-RNA后发送的迁移请求消息,S-RNA由N个辅基站的服务区域组成,且N大于1时,S-RNA内各辅基站可通信;
将终端在原S-RNA中原辅基站侧的UE上下文信息发送给新S-RNA中的新辅基站;
获取新辅基站为承载目标PDU会话数据而分配的辅基站下行地址,辅基站下行地址用于核心网与新辅基站建立PDU会话数据传输通道,目标PDU会话数据为原本由原辅基站承载的用户PDU会话数据;
将辅基站下行地址发送给核心网。
可选地,迁移请求消息中包括指示终端当前所处服务小区所属基站的指示信息,将终端在原S-RNA中原辅基站侧的UE上下文信息发送给新S-RNA中的新辅基站之前,还包括:
根据指示信息确定终端当前所处服务小区所属的基站为原S-RNA之外的新辅基站。
可选地,指示信息包括终端当前所处服务小区所属基站的基站标识、终端当前所处服务小区的小区标识和服务小区物理层标识三种中的至少一种。
可选地,将终端在原S-RNA中原辅基站侧的UE上下文信息发送给新S-RNA中的新辅基站之前,还包括:
根据迁移请求消息携带的原辅索引标识S-I-RNTI从原辅基站处获取终端在原辅基站侧的UE上下文信息,原S-I-RNTI表征原辅基站存储终端UE上下文信息的位置;
或,
在本基站上预先备份存储终端在原辅基站侧的UE上下文信息。
可选地,根据原S-I-RNTI从原辅基站处获取终端在原辅基站侧的UE上下文信息包括:
通过本基站的Xn接口向原辅基站发送UE上下文获取请求,UE上下文获取请求中包括原S-I-RNTI;
通过本基站的Xn接口接收原辅基站根据UE上下文获取请求发送的终端在 原辅基站侧的UE上下文信息。
可选地,将终端在原S-RNA中原辅基站侧的UE上下文信息发送给新辅基站包括:将终端的在原辅基站侧的UE上下文信息携带在辅基站SN添加请求消息中发送给新辅基站;
获取新辅基站为承载目标PDU会话数据而分配的辅基站下行地址包括:接收新辅基站通过SN添加响应消息发送的辅基站下行地址。
可选地,获取新辅基站为承载目标PDU会话数据而分配的辅基站下行地址之后,还包括:
向终端发送包含新辅基站新配置的新S-I-RNTI和新S-RNA信息的迁移响应消息,新S-I-RNTI表征新辅基站存储终端在新辅基站侧的UE上下文信息的位置,新S-RNA信息用于对新S-RNA进行指示。
可选地,还包括:
接收终端在移出原S-RNA但未进入任何新S-RNA时发送的移出请求消息;
存储终端在原辅基站侧的UE上下文信息;
向核心网发送本基站为承载目标PDU会话数据所分配的主基站下行地址;
在核心网获得主基站下行地址后,根据终端的UE上下文信息与核心网建立承载目标PDU会话数据的PDU会话数据传输通道。
可选地,移出请求消息中包括原S-I-RNTI,原S-I-RNTI表征原辅基站存储终端在原辅基站侧UE上下文信息的位置;存储终端在原辅基站侧的UE上下文信息之前,还包括:
通过本基站的Xn接口向原辅基站发送UE上下文获取请求,UE上下文获取请求中包括原S-I-RNTI;
通过本基站的Xn接口接收原辅基站根据UE上下文获取请求发送的终端在原辅基站侧UE上下文信息。
可选地,存储终端在原辅基站侧的UE上下文信息之后,还包括:
向终端发送包含新主索引标识P-I-RNTI的移出响应消息,新主索引标识表征本基站存储终端UE上下文信息的位置。
可选地,N大于1时,S-RNA内各辅基站之间能传输终端在原辅基站侧的UE上下文信息及用户PDU会话数据中的至少一种。
可选地,N大于等于2时,原S-RNA中的各辅基站上均存储有与原辅基站侧相同的UE上下文信息。
本发明实施例还提供一种传输链路建立方法,包括:
接收主基站发送的终端在原S-RNA中原辅基站侧的UE上下文信息,S-RNA由N个辅基站的服务区域组成,且N大于1时,S-RNA内各辅基站可通信;
向主基站发送为承载目标PDU会话数据而分配的辅基站下行地址,目标PDU会话数据为原本由原S-RNA中原辅基站承载的用户PDU会话数据;
在核心网获取到辅基站下行地址后,根据UE上下文信息与核心网建立用于传输目标PDU会话数据的PDU会话数据传输通道。
可选地,接收主基站发送的终端在原S-RNA中原辅基站侧的UE上下文信息包括:接收主基站通过SN添加请求消息发送的终端在原S-RNA中原辅基站侧的UE上下文信息;
向主基站发送为承载目标PDU会话数据而分配的辅基站下行地址包括:通过SN添加响应消息向主基站发送辅基站下行地址。
可选地,SN添加响应消息中还包括本基站新配置的新S-I-RNTI,新S-I-RNTI表征本基站存储终端在本基站侧UE上下文信息的位置。
可选地,还包括:
将终端在本基站侧的UE上下文信息发送给本基站所在新S-RNA中的各辅基站进行备份保存。
可选地,将终端在本基站侧的UE上下文信息发送给本基站所在新S-RNA中的各辅基站进行备份保存包括:
通过本基站的Xn接口将终端在本基站侧的UE上下文信息发送给新S-RNA中的各辅基站;
或,
通过本基站的Xn接口将终端在本基站侧的UE上下文信息发送给主基站,以供主基站中继将终端的UE上下文信息发送给新S-RNA中的各辅基站。
本发明实施例还提供一种传输链路迁移方法,包括:
处于无线链路非激活态时,对辅基站服务小区进行无线测量;
在根据测量结果确定自己当前已移出原S-RNA并进入新S-RNA后,向主基站发送迁移请求消息,迁移请求消息用于请求主基站将自己在原S-RNA原辅基站侧的UE上下文信息及PDU会话数据传输通道迁移到新S-RNA中的新辅基站,S-RNA由N个辅基站的服务区域组成,且N大于1时,S-RNA内各辅基站可通信。
可选地,对辅基站服务小区进行无线测量包括:根据原辅基站之前配置的测量参数对辅基站服务小区集合进行无线测量;
迁移请求消息中包括对辅基站服务小区集合的测量结果信息。。
可选地,迁移请求消息中包括原S-I-RNTI,原S-I-RNTI表征自己在原辅基站侧的UE上下文信息的存储位置。
可选地,向主基站发送迁移请求消息之后,还包括:
接收主基站发送的包含新辅基站新配置的新S-I-RNTI和新S-RNA信息的迁移响应消息,新S-I-RNTI表征新辅基站存储终端UE上下文信息的位置,新S-RNA信息用于对新S-RNA进行指示。
可选地,向主基站发送迁移请求消息之后,还包括:
在有上行传输需求时,向主基站发送激活态恢复请求消息,激活态恢复请求消息包括待传的上行用户PDU会话数据关联的数据无线承载DRB标识或PDU会话标识或待传的上行信令关联的信令无线承载SRB标识。
可选地,对辅基站服务小区进行无线测量之后,还包括:
在根据测量结果确定自己当前已移出原S-RNA但未进入任何新S-RNA时,向主基站发送移出请求消息,移出请求消息包括包括对辅基站服务小区集合的测量结果信息,用于请求主基站将自己在原S-RNA原辅基站侧的UE上下文信息及PDU会话数据传输通道迁移到主基站上。
本发明实施例还提供一种传输链路管理装置,包括:
迁移请求接收模块,用于接收终端在移出原辅集群区S-RNA并进入新S-RNA后发送的迁移请求消息,S-RNA由N个辅基站的服务区域组成,且N大于1时,S-RNA内各辅基站可通信;
上下文发送模块,用于将终端在原S-RNA中原辅基站侧的UE上下文信息发送给新S-RNA中的新辅基站;
辅基站地址获取模块,用于获取新辅基站为承载目标PDU会话数据而分配的辅基站下行地址,辅基站下行地址用于核心网与新辅基站建立PDU会话数据传输通道,目标PDU会话数据为原本由原辅基站承载的用户PDU会话数据;
辅基站地址发送模块,用于将辅下行地址发送给核心网。
本发明实施例还提供一种传输链路建立装置,包括:
上下文发送模块,用于接收主基站发送的终端在原S-RNA中原辅基站侧的UE上下文信息,S-RNA由N个辅基站的服务区域组成,且N大于1时,S-RNA 内各辅基站可通信;
辅基站地址传输模块,用于向主基站发送为承载目标PDU会话数据而分配的辅基站下行地址,目标PDU会话数据为原本由原S-RNA中原辅基站承载的用户PDU会话数据;
建链模块,用于在核心网获取到辅基站下行地址后根据UE上下文信息与核心网建立用于传输目标PDU会话数据的PDU会话数据传输通道。
本发明实施例还提供一种传输链路迁移装置,包括:
无线测量模块,用于处于无线链路非激活态时,对辅基站服务小区进行无线测量;
迁移请求发送模块,用于在根据测量结果确定自己当前已移出原S-RNA并进入新S-RNA后,向主基站发送迁移请求消息,迁移请求消息用于请求主基站将自己在原S-RNA原辅基站侧的UE上下文信息及PDU会话数据传输通道迁移到新S-RNA中的新辅基站,S-RNA由N个辅基站的服务区域组成,且N大于1时,S-RNA内各辅基站可通信。
本发明实施例还提供一种基站,基站包括第一处理器、第一存储器及第一通信总线;
第一通信总线用于实现第一处理器和第一存储器之间的连接通信;
第一处理器用于执行第一存储器中存储的传输链路管理程序,以实现如上任一项的传输链路管理方法的步骤;或第一处理器用于执行第一存储器中存储的传输链路建立程序,以实现如上任一项的传输链路建立方法的步骤。
本发明实施例还提供一种终端,终端包括第二处理器、第二存储器及第二通信总线;
第二通信总线用于实现第二处理器和第二存储器之间的连接通信;
第二处理器用于执行第二存储器中存储的传输链路迁移程序,以实现如上任一项的传输链路迁移方法的步骤。
本发明实施例还提供一种存储介质,存储介质中至少存储有传输链路管理程序、传输链路建立程序以及传输链路迁移程序中的至少一个,传输链路管理程序可被一个或者多个处理器执行,以实现如上任一项的传输链路管理方法的步骤;传输链路建立程序可被一个或者多个处理器执行,以实现如上任一项的传输链路建立方法的步;传输链路迁移程序可被一个或者多个处理器执行,以实现如上任一项的传输链路迁移方法的步骤。
本申请的有益效果是:
本发明实施例提供一种传输链路管理、建立、迁移方法、装置、基站及存储介质,在终端在移出原S-RNA并进入新S-RNA后,主基站可以接收到终端发送的迁移请求消息,主基站可以根据该迁移请求消息确定承载目标PDU会话数据的新辅基站,然后向新辅基站发送终端在原辅基站侧的UE上下文信息,并将新辅基站为承载目标PDU会话数据而分配的辅基站下行地址发送给核心网,从而帮助建立新辅基站与核心网间的PDU会话数据传输通道,以便后续新辅基站可以通过该PDU会话数据传输通道承载原本应该由原辅基站承载的目标PDU会话数据。通过该方案,即使终端移出原S-RNA并进入新S-RNA,核心网侧仍然可以将原本应由原辅基站承载的目标PDU会话数据发送到能够为终端提供服务的新辅基站上,让终端可以在移出原S-RNA后,可以继续接收到原本通过原辅基站发送的目标PDU会话数据。所以,通过本发明实施例提供的传输链路管理方法,终端即使在移出原S-RNA,离开原辅基站的服务区域,进入新S-RNA,也还是可以通过主基站、新辅基站同核心网侧保持至少两条传输链路。本发明实施例还提供一种传输链路建立、迁移方法、装置、基站及存储介质,避免了终端在移出S-RNA之后只能恢复到单连接,然后通过配置才能回到双/多连接模式的问题,减少了基站侧与核心网间的信令交互,同时,由于终端不会因为自己的移动而回退到单连接模式,因此,相对于现有方案能够有效提升用户的通信体验。
本申请其他特征和相应的有益效果在说明书的后面部分进行阐述说明,且应当理解,至少部分有益效果从本发明说明书中的记载变的显而易见。
附图说明
图1为本发明实施例一提供的终端处于无线连接激活态时通信系统的一种系统架构图;
图2为本发明实施例一提供的终端处于无线连接非激活态时通信系统的一种系统架构图;
图3为本发明实施例一提供的传输链路管理方案的一种流程图;
图4为本发明实施例一中示出的一种基站服务区域示意图;
图5为本发明实施例一中示出的另一种基站服务区域示意图;
图6为本发明实施例二提供的传输链路管理方案的一种流程图;
图7为本发明实施例三提供的传输链路管理方案的一种流程图;
图8为本发明实施例四提供的传输链路管理方案的一种流程图;
图9为本发明实施例五提供的传输链路管理方案的一种流程图;
图10为本发明实施例六提供的传输链路管理方案的一种流程图;
图11为本发明实施例七提供的传输链路管理装置的一种结构示意图;
图12为本发明实施例七提供的传输链路建立装置的一种结构示意图;
图13为本发明实施例七提供的传输链路迁移装置的一种结构示意图;
图14为本发明实施例八提供的传输链路管理装置的一种结构示意图;
图15为本发明实施例八提供的传输链路迁移装置的一种结构示意图;
图16为本发明实施例九提供的基站的一种硬件结构示意图;
图17为本发明实施例九提供的终端的一种硬件结构示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,下面通过具体实施方式结合附图对本发明实施例作进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
实施例一:
第四代(4Generation,4G)移动通讯系统,又称长期演进(Long Term Evolution,LTE)移动通讯系统,其包含4G核心网(Core Network,CN)和无线接入网络(Radio Access Network,RAN)。其中,4G核心网包含MME(Mobility Management Entity,移动性管理实体),SGW(Serving Gateway,服务网关),PGW(PDN Gateway,PDN网关)等基本网元节点,而RAN包括演进基站(evolved Node B,eNB)。第五代(5Generation,5G)移动通讯系统中,包含了下一代核心网(5GC)和下一代无线接入网络(Next Generation Radio Access Network,NG-RAN),其中5GC包含AMF(Access Mobility Function,接入移动功能),SMF(Session Management Function,会话管理功能)和UPF(User Plane Function,用户面功能)等基本网元节点。而NG-RAN至少包含两种不同类型的基站:基于4G eNB演进的ng-eNB(仍然支持E-UTRA制式空口)和全新设计的gNB(支持New Radio,NR制式空口)基站。NG-RAN基站通过NG接口和5GC连接(包含NG-C控制面和NG-U用户面连接),而NG-RAN基站之间通过Xn接口连接(包含Xn-C控制面和Xn-U用户面连接)。
对于4G eNB基站下的终端,在没有任何用户数据和信令传输的时候,基站可以通过Suspend流程将终端的4G空口无线链路释放掉,终端即处于空口非激活态Suspended状态。此时终端仍保持着网络侧连接且服务基站仍保存着终端通 讯配置的UE上下文信息(Context)。从核心网CN的角度看,终端仍然处于ECM_CONNECTED状态,可以继续执行网络侧的相关流程。类似地,对于5G NG-RAN基站下的单连接终端,在没有任何用户数据和信令传输的时候,基站也可以通过Suspend流程将终端的5G空口无线链路Radio Link释放掉,终端即处于空口非激活态RRC_INACTIVE非激活态,此时终端仍保持着网络侧连接且服务NG-RAN基站保存着终端通讯配置的UE上下文信息。从核心网5GC的角度看,终端仍然处于CM_CONNECTED状态,可以继续执行网络侧的流程。因此,网络侧传输链路和空口链路是相对解耦的,网络侧传输链路可不依赖于空口链路的存在而存在。
无论单连接终端处于4G网络下的Suspended状态,还是5G网络下的RRC_INACTIVE非激活态,终端都可在特定大小的RAN寻呼区(RAN Notification Area,RNA)内自由地移动。由于终端此时仅需要执行小区重选流程,并不需触发任何空口和网络侧的流程,因此,此时没有任何数据传输的终端在空口行为类似空闲态(Idle态)。当网络侧有下行控制信令或用户数据抵达,待下行传输的时候,4G RAN或5G NG-RAN基站会在RAN寻呼区内触发寻呼Paging流程,从而触发终端进行随机接入RACH和RRC连接恢复流程。当终端侧有上行控制信令或用户数据抵达待上行传输的时候,终端会在当前驻留服务小区内,触发随机接入RACH和RRC连接恢复流程,之后进入到单连接的RRC_ACTIVE激活状态,进行数据传输。
在5G系统中,支持终端单连接和双/多连接配置和操作功能。在SC单连接模式下,终端在空口和网络侧都只有一条数据传输通道,而在DC/MC双/多连接模式下,终端在空口或网络侧都有两条或者以上的数据传输通道。由于单连接就是双连接只考虑MN主基站侧情况的特例(删除辅基站SN辅基站侧所有相关的辅数据链路),而多连接MC则是双连接DC在多链路配置和操作维度上的进一步扩展,因此,这里以双连接为例进行说明:
在双连接下,通信系统1相关架构如图1所示:终端10可以在空口同时与主基站11以及辅基站12建立和保持独立的无线链路连接(即空口数据传输通道,Uu-U连接);而主基站11和辅基站12又分别与用户面网元节点13建立和保持右边独立的网络侧连接(即网络数据传输通道,NG-U连接)。值得注意的是,只有主基站11能和核心网控制面网元节点14建立和保持控制面的连接(即NG-C连接)。
在图1中,通过细实线表示了不同网元节点之间的控制面连接,即用于传输控制信令的链路;通过粗实线表示了不同网元节点之间的用户面连接,即用于传输用户PDU会话数据的链路。聚焦到用户面网元节点13同主基站11、辅 基站12间,存在如下两条NG-U接口数据传输通道:NG-U(MN)提供了用户面网元节点13和主基站11之间的数据传输通道,用于传输特定PDU Session(用户PDU会话数据)/QoS Flows(用户业务质量数据包流)上承载的上下行数据包。根据当前协议的规定,这条数据传输通道的建立需要用户面网元节点13提供“主基站侧上行数据传输通道地址”,同时由主基站11提供“主基站侧下行数据传输通道地址”。这里所谓的数据传输通道地址包括传输层地址(Transport Layer Address)和GTP隧道地址标识(GTP TEID)。在创建数据传输通道NG-U(MN)时,用户面网元节点13与主基站11间需要交互上、下行传输通道地址,该上、下行传输通道地址的交互通过NG-C控制面的信令交互完成。类似地,NG-U(SN)提供了用户面网元节点13和辅基站12之间的数据传输通道,用于传输特定PDU Session/QoS Flows上承载的上下行数据包。根据当前协议的规定,这条数据传输通道的建立需要用户面网元节点13提供“辅基站侧上行数据传输通道地址”,同时由辅基站12提供“辅基站侧下行数据传输通道地址”。同样地,这里的数据传输通道地址也包括传输层地址和GTP隧道地址标识。值得注意的是,由于辅基站12同核心网控制面网元节点14之间没有NG-C控制面链路,因此辅基站12侧的所有配置信息(包括辅基站12分配的辅基站侧下行数据传输通道地址),都必须通过Xn-C控制面链路,以主基站11作为中继转发到控制面网元节点14。
虽然前面仅介绍了处于单连接配置下的终端可以进入并退出RRC_INACTIVE状态,但实际上,处于双/多连接配置下的终端也是可以进入到RRC_INACTIVE状态的,以双连接配置为例:请参见图1和图2,对于处于主、辅基站下的双连接终端10,假定在某一时刻,锚点在主基站11侧的PDU Session1与锚点在辅基站12侧的PDU Session2中的用户数据均停止传输,此时主基站11可以通过Suspend流程将终端10的两条5G空口无线链路Radio Link都释放掉,终端10即处于空口非激活态RRC_INACTIVE状态。此时终端10仍然保持着网络侧的所有连接且主、辅基站各自保存着终端的UE上下文信息。从核心网5GC角度看,终端10仍然处于CM_CONNECTED双连接状态,可以继续执行网络侧的流程。
图2和图1相比,在网络侧的各个连接没有任何变化,但在空口Uu侧,终端10和当前服务主基站11和辅基站12的两条无线链路连接Radio Link都被释放掉了,终端10仅仅维持和主基站11之间的寻呼和随机接入RACH信令功能。在终端10不改变当前服务主基站和辅基站SN的前提下,终端10和网络侧进入和退出RRC_INACTIVE非激活态的流程,当前标准协议已可以支持:当网络侧有下行控制信令或用户数据抵达,待下行传输的时候,主基站11会在RAN寻呼区内触发寻呼流程;当终端10侧有上行控制信令或用户数据抵达,待上行传 输的时候,终端10会在当前驻留主服务小区(Pcell)内,触发随机接入RACH和RRC连接恢复流程,之后直接进入到原来双连接RRC_ACTIVE激活状态,恢复双连接上的数据传输。
但随着终端10移动,终端10很可能会离开当前服务辅基站12的服务区域,进入到新辅基站的服务区域,而现有技术中并没有给出在这种情况下,如何继续保障终端10可以在需要时,恢复到双连接模式的方案,为了避免终端10回退到单连接模式后通过配置使其回到双连接状态给用户体验带来的影响,同时也是为了减少主基站11与核心网侧的信令交互,本实施例提供一种传输链路管理方案,该传输链路管理方案包括终端侧的传输链路迁移流程、主基站侧的传输链路管理流程以及新辅基站侧的传输链路建立流程,下面请参见图3示出的传输链路管理方法的流程图:
S302:终端处于无线链路非激活态时,对辅基站服务小区进行无线测量。
在本实施例中,终端可以是处于双连接配置也可以是多连接配置。在不存在针对终端的下行传输需求,同时终端也没有上行传输需求时,主基站控制释放掉终端在空口的空口无线链路,从而使得终端处于无线链路非激活态。
不过,尽管终端处于无线链路非激活态,但终端还是会继续对辅基站服务小区进行无线测量,并将无线测量的测量结果信息进行上报。所谓S-RNA(辅集群区),是指包括N个辅基站服务区域的联合服务区域,也就是说,这N个辅基站均可以作为终端的辅基站,为终端服务。其中N为正整数,所以,N可以大于等于1。当N大于1的时候,也即原S-RNA中包括两个即两个以上辅基站的服务区域时,这些辅基站之间可以进行交互。例如这N个辅基站之间可以直接与该S-RNA对应的其他辅基站进行通信,也可以通过主基站进行彼此之间的通信,例如,在一个原S-RNA内包括两个辅基站,这两个辅基站之间可以直接通过各自的Xn接口与对方通信,也可以将发送给对端的信息通过Xn接口先发送给主基站,然后由主基站将该信息转发给对应的辅基站。在本实施例的一些示例中,S-RNA内的各辅基站之间既存在控制面的信令传输通道,又存在用户面的数据传输通道。所以,在这些示例中,辅基站与辅基站之间可以交互终端的UE上下文信息和用户PDU会话数据中的至少一种。
和S-RNA对应的还有P-RNA(主寻呼区),P-RNA包括若干个主基站的服务区域,可以理解的是,P-RNA范围通常大于S-RNA的范围,因此,在本实施例中,可以假定终端暂时并不会移出P-RNA,而可以移出一个S-RNA,并进入一个新S-RNA。在本实施例中,终端还可以对P-RNA中的各主基站进行无线测量,无线测量所依据的测量参数由主基站预先分配设置。所以在本实施例中,终端在处于无线链路非激活态时,可以基于主、辅基站侧之前给出的RRM(Radio  Resource Management,无线资源管理)测量参数,继续对主、辅基站各自所在RAT域内的潜在目标服务小区,进行RRM测量,从而能够及时感知自己当前移动到了哪些主辅基站的服务小区集合之下。
S304:终端在根据测量结果确定自己当前已移出原S-RNA并进入新S-RNA后,向主基站发送迁移请求消息。
根据测量结果,终端可以确定自己是否移出之前所在的S-RNA的范围,并进入到一个新S-RNA的范围,如果是,则终端会向主基站发送迁移请求消息。迁移请求消息用于请求主基站将自己在原S-RNA原辅基站侧的UE上下文信息及PDU会话数据传输通道迁移到新S-RNA中的新辅基站。在本实施例的一种示例当中,迁移请求消息中包括原辅索引标识(S-I-RNTI),原辅索引标识表征原辅基站侧存储UE上下文信息的位置。在本实施例的另一示例中,迁移请求消息中除了包括原辅索引标识,还包括终端对S-RNA内的辅基站服务小区的测量结果信息。应当理解的是,由于终端当前处于RRC_INACTIVE状态,所以,目前终端在空口侧的无线链路已经被释放掉,终端只能向主基站发送迁移请求消息。
所以,在本实施例中,S-RNA分为原S-RNA和新S-RNA,这里的原和新仅仅是相对于终端进入对应S-RNA的顺序而言的,一个终端从某一个S-RNA退出,然后进入到另一S-RNA,则终端进入的前一S-RNA就属于原S-RNA,后进入的一个S-RNA就是该终端的新S-RNA。
S306:主基站将终端在原S-RNA中原辅基站侧的UE上下文信息发送给新S-RNA中的新辅基站。
当主基站接收到终端发送的迁移请求消息时,主基站可以根据迁移请求消息确定终端已经从原S-RNA移动进入了新S-RNA,因此,在这种情况下,原S-RNA中的原辅基站不能再继续为终端提供服务了。可以理解的是,在终端移出原S-RNA之前,原S-RNA中的原辅基站是需要承载一些用户PDU会话数据会话的,当终端移出该原S-RNA之后,原本由原S-RNA中的原辅基站承载的用户PDU会话数据会话,需要由新S-RNA中的新辅基站来承载,为了便于介绍,本实施例中将原本应当由原S-RNA中原辅基站承载的用户PDU会话数据会话称为“目标PDU会话数据”。
应当理解的是,让新辅基站承载目标PDU会话数据之前,终端需要先确定出新辅基站,下面对终端确定新辅基站的方案进行简单介绍:
在本实施例的一种示例当中,迁移请求消息中包括指示信息,指示信息用于指示终端当前所处服务小区所属的基站。所以主基站接收到迁移请求消息后, 可以根据迁移请求消息中的迁移请求消息信息确定终端当前所处服务小区所属的基站为新辅基站。指示信息可以包括但不限于终端当前所处服务小区所属基站的基站标识、终端当前所处服务小区的小区标识和服务小区物理层标识中的至少一种。当指示信息中包括基站标识时,主基站可以直接根据该基站标识确定出新S-RNA中可以为终端提供服务的新辅基站是哪一个或哪几个。当指示信息中包括服务小区的小区标识或服务小区物理层标识时,主基站可以根据小区标识或服务小区的物理层标识与基站标识之间的对应关系确定出当前可以为终端提供服务的新S-RNA中的辅基站是哪一个或哪几个。
确定出原S-RNA之外的新辅基站之后,为了让新辅基站能够承载目标PDU会话数据,主基站还需要让新辅基站得到终端在原辅基站侧的UE上下文信息,并且帮助建立新辅基站与核心网之间的PDU会话数据传输通道。
为了将终端在原辅基站侧的UE上下文信息发送给新辅基站,主基站需要先获取到终端在原辅基站侧的UE上下文信息。在本实施例的一些示例中,主基站可以直接从本基站上获取到终端在原辅基站侧的UE上下文信息,因为主基站会对终端在原辅基站侧的UE上下文信息进行备份存储。在本实施例的另一些示例中,主基站需要从原辅基站侧得到终端的UE上下文信息:
终端发送给主基站的迁移请求消息中可以包括原辅索引标识,该原辅索引标识可以表征原辅基站存储终端在原辅基站侧UE上下文信息的位置。所以,主基站可以将从迁移请求消息中提取出的原辅索引标识携带在上下文获取请求中发送给原辅基站,例如:主基站可以通过自己的Xn接口向原辅基站发送携带原辅索引标识的上下文获取请求(Retrieve UE Context Request)。原辅基站在接收到该上下文获取请求之后,可以向主基站回复上下文获取响应(Retrieve UE Context Response):原辅基站根据其中的原辅索引标识提取出本端存储的终端在原辅基站侧的UE上下文信息,并通过Xn接口将提取出的UE上下文信息发送给主基站。
在本实施例的一种示例中,主基站将终端在原辅基站侧的UE上下文信息发送给新辅基站时,可以通过SN添加请求消息(SN Addition Request)进行发送。
S308:新辅基站将为承载目标PDU会话数据而分配的辅基站下行地址发送给主基站。
新辅基站通过SN添加请求消息中携带的终端在原辅基站侧的UE上下文信息,可以了解自己在后续过程中需要承载的目标PDU会话数据,以及该目标PDU会话数据相关的上下文配置。简单来说,新辅基站可以根据接收到的终端在原辅基站侧的UE上行文信息确定待承载的目标PDU会话数据以及核心网侧为传输该目标PDU会话数据而分配的PDU会话数据传输通道的上行地址。不过, 为了建立起新辅基站与核心网之间的PDU会话数据传输通道,还需要新辅基站分配该PDU会话数据传输通道的下行地址,在本实施例中,为了将新辅基站为建立PDU会话数据传输通道而分配的下行地址,同主基站为建立PDU会话数据传输通道而分配的下行地址区分开,这里将新辅基站分配的下行地址称为“辅基站下行地址”,对应地,将主基站分配的下行地址称为“主基站下行地址”。
可以理解的是,原本由原辅基站承载的目标PDU会话数据,也即在终端移出原S-RNA前锚点在原辅基站的用户PDU会话数据会话可以不只一个,例如在本实施例的一种示例当中,原本锚点在原辅基站的用户PDU会话数据会话包括PDU Session3和PDU Session4,则新辅基站根据UE上下文信息可以了解到自己需要承载的目标PDU会话数据包括PDU Session3和PDU Session4。无论是在原辅基站还是在新辅基站,对于这两个目标PDU会话数据而言,PDU会话数据传输通道可以不一致,所以当目标PDU会话数据不只一个时,新辅基站分配的辅基站下行地址也可以不止一个。
在本实施例的一些示例中,所谓的下行地址(例如主基站下行地址或辅基站下行地址)包括传输层地址与隧道地址标识。
根据图1、图2示出的通信系统架构可知,新辅基站与核心网之间没有控制面的信令传输通道,因此,新辅基站不能直接将该辅基站下行地址发送给核心网,所以,新辅基站只能先将辅基站下行地址发送给主基站,然后让主基站将辅基站下行地址发送给核心网。
在主基站通过SN添加请求消息向新辅基站发送终端在原辅基站侧UE上下文信息的情况下,新辅基站可以通过SN添加响应消息(SN Addition Request ACK)向主基站发送辅基站下行地址。
S310:主基站将辅基站下行地址发送给核心网。
主基站在接收到新辅基站发送的辅基站下行地址之后,可以将辅基站下行地址发送给核心网,让核心网根据该辅基站下行地址同新辅基站之间建立用于传输目标PDU会话数据的PDU会话数据传输通道。
根据图1与图2示出的系统架构可知,需要与新辅基站建立PDU会话数据传输通道的是核心网中UPF网元,但由于主基站与UPF网元之间也不存在控制面传输链路,因此,主基站需要将新辅基站分配的下行地址先传输给核心网的AMF/SMF网元,然后由AMF/SMF网元将下行地址再传输给UPF网元,让UPF网元根据该下行地址同新辅基站之间建立PDU会话数据传输通道。
S312:新辅基站在核心网获取到辅基站下行地址后,根据UE上下文信息与核心网建立用于传输目标PDU会话数据的PDU会话数据传输通道。
在核心网获取到辅基站下行地址后,核心网获得了需要建立的PDU会话数据传输通道的辅基站下行地址,而新辅基站已经根据UE上下文信息获得了PDU会话数据传输通道在核心网侧的上行地址,因此二者可以用于传输目标PDU会话数据的PDU会话数据传输通道。
在新辅基站同核心网建立用于传输目标PDU会话数据的PDU会话数据传输通道后,当网络侧有针对终端的下行控制信令或用户数据时,或者当终端侧有上行控制信令或用户数据需要传输时,主基站可以控制恢复终端与主、辅基站侧的空口无线链路,这样,同终端移出原S-RNA之前类似,终端只要在主基站的Paging寻呼下或者主动执行该RACH(Random Access Channe,随机接入信道)和RRC(Radio Resource Control,无线资源控制)连接恢复流程,向主基站发送激活态恢复请求消息,该激活态恢复请求消息包括上行用户PDU会话数据关联的数据无线承载标识或PDU会话标识,据此,主基站可以控制恢复终端与主、辅基站侧的空口无线链路。网络侧的下行控制信令或用户数据就具有了通过新S-RNA中的新辅基站传输到终端的基础,而终端侧的上行控制信令或用户数据也可以通过新S-RNA中的新辅基站传输给网络侧。
为了保证终端从当前所在S-RNA(即前面所谓“新S-RNA”)移出,再进入另一S-RNA时,在终端有传输需求或有针对终端的传输需求时,仍可以通过RACH和RRC连接恢复流程直接让终端恢复到双连接模式/多连接模式,在本实施例的一种示例当中,新辅基站在接收到终端在原辅基站侧的UE上下文信息后,可以对UE上下文信息进行存储,同时根据本基站存储终端在本基站侧的UE上下文信息的位置配置生成新辅索引标识,并将该新辅索引标识发送给主基站,新辅基站可以将新辅索引标识携带在SN添加响应消息中,同新辅基站分配的辅基站下行地址一同发送给主基站。另外,在本实施例的一些示例中,新辅基站还可以在SN添加响应消息中携带新辅基站配置的新S-RNA信息,该新S-RNA信息用于对新S-RNA进行指示。主基站接收到SN添加响应消息后,可以生成包括新辅索引标识和新S-RNA信息的迁移响应消息,并将该迁移响应消息发送给终端。在此基础上,终端可以继续根据无线测量结果确定自己是否已经移出除了当前S-RNA的范围,并在移出该当前新S-RNA范围,进入另一新S-RNA后,向主基站发送迁移请求消息,在该迁移请求消息中,终端可以携带新辅索引标识(可以理解的是,由于原辅索引标识和新辅索引标识是相对于终端的移动前后而言的,因此这里所谓的新辅索引标识相对于移动后而言,实际上被称为原辅索引标识)。
可以理解的是,由于本实施例中终端并未移出主寻呼区P-RNA,因此,原本锚点在主基站侧用户PDU会话数据会话的传输并不需要进行改动,也即针对锚点在主基站侧的用户PDU会话数据会话,其PDU会话数据传输通道并不需 要进行迁移。因此,通常而言,主基站存储终端在主基站侧UE上下文信息的位置不会发生变化,P-RNA也不会发生变化。所以,通常,主基站在发送的迁移响应消息中并不需要包括新主索引标识(P-I-RNTI)和新P-RNA信息,但在本实施例的一些示例当中,如果主基站想要趁着此次终端上下文迁移和PDU会话数据传输通道的迁移的机会重新配置P-RNA或改变终端在本侧的UE上下文信息的存储位置,则可以在迁移响应消息中同时携带新主索引标识和新P-RNA信息。
在前面的示例当中,已经介绍了终端从原S-RNA移入新S-RNA时,对PDU会话数据传输通道的管理方案,本实施例还提出一种针对终端在原S-RNA内移动时PDU会话数据传输通道的管理方案:
在原S-RNA中存在至少两个辅基站时(即N大于等于2时),可以在各个辅基站上均存储终端在原辅基站的UE上下文信息,而对于核心网而言,其在向终端传输某一目标PDU会话数据时,因为会向原S-RNA中的各辅基站均发送该目标PDU会话数据,因此可以保证原S-RNA内所有辅基站都可以获取到针对终端的目标PDU会话数据。这样,只要终端处于原S-RNA内,原S-RNA内的各辅基站总有途径与终端进行数据传输。所以,对于终端而言,无论终端的无线测量结果如何,只要其确定自身当前所在位置仍处于原S-RNA内,则终端可以不必与主基站侧进行信令交互。
所以,在本实施例的一些示例当中,当新辅基站获取到终端在原辅基站侧的UE上下文信息之后,可以将该UE上下文信息发送给其所属的S-RNA(即新S-RNA)内所有的辅基站进行保存,在其中一种示例当中,新辅基站可以通过本基站的Xn接口将UE上下文信息发送给新S-RNA中的各辅基站。而在另一种示例中,新辅基站是通过主基站向新S-RNA中的各辅基站发送终端UE上下文信息的:新辅基站通过本基站的Xn接口将终端的UE上下文信息发送给主基站,然后让主基站将该UE上下文信息发送给新S-RNA中的各辅基站。
可以理解的是,本实施例提供的传输链路管理方法和传输链路建立方法、传输链路迁移方法不仅可以应用于双连接操作的情景,也适合一个终端同时与S-RNA内多个辅基站连接的情景,即多连接操作的场景。
基于本实施例提供的传输链路管理方法和传输链路建立方法、传输链路迁移方法,在主基站通过Suspend流程将终端配置进入到空口非激活态后,如果终端进行移动,只要终端不移出原S-RNA的范围,则由于原S-RN A中所有辅基站均保存在终端的UE上下文信息,因此,终端在根据无线测量结果监测到自己离开某一原辅基站的服务区域后,可以不必同主基站进行信令交互,因为在这种情况下,当有针对终端的下行传输需求或终端有上行传输需求时,都可以直 接通过RACH和RRC连接恢复流程进行空口无线链路恢复,然后进行用户PDU会话数据的传输。
另外,当终端根据自己的无线测量结果确定自己因为移动,已经离开了原S-RNA,并进入了新S-RNA,则其可以向主基站发送迁移请求消息,让主基站根据该迁移请求消息确定能够在后续为终端提供服务的新辅基站,然后将原本建立在核心网与原辅基站间的用于承载目标PDU会话数据的PDU会话数据传输通道迁移到核心网与新辅基站之间,这样,当有针对终端的下行传输需求或终端有上行传输需求时,也还可以继续通过RACH和RRC连接恢复流程进行空口无线链路恢复,然后进行用户数据的传输。从而避免因为终端的移动而导致终端从双连接模式/多连接模式回退到单连接模式,需要通过主基站与核心网之间进行大量信令交互才能再次进入双连接模式/多连接模式,影响用户体验,以及造成核心网侧与主基站侧信令开销大的问题。
实施例二:
本实施例将在实施例一的基础上继续对本申请提供的传输链路管理方案进行介绍,可以理解的是,在终端移出原S-RNA时后,存在这样两种移动情景:
情景一:终端移出原S-RNA,并立即进入新S-RNA;
情景二:终端移出原S-RNA,但未进入任何新S-RNA。
请参见图4所示的服务覆盖情景下,终端在从原S-RNA移出时,可能会立即进入到新S-RNA中。在图5所示的服务覆盖情景下,由于没有任何一个S-RNA与原S-RNA存在重叠区域,因此,当终端移出原S-RNA后,并不会进入到任何新的S-RNA中。当然,可以理解的是,在图5当中,终端也有可能从原S-RNA移出,但不进入任何新的S-RNA。
在实施例一中,已经着重介绍了在情景一下,如何进行传输链路管理及建立的方案,本实施例将针对情景二下传输链路管理的方案进行说明,请参见图6示出的流程图:
假定在某一时刻,主基站确定终端在主基站、辅基站均没有用户PDU会话数据会话传输,因此主基站可以执行空口Suspend流程,控制释放掉终端与主基站之间的空口无线链路以及终端与辅基站间的空口无线链路。在本实施例中,终端可以拥有同一个或两个及以上的辅基站间的空口无线链路。
在主基站控制释放终端在空口的空口无线链路后,可以降低维持空口无线链路给终端带来的功耗,以及减少对无线资源的占用,同时也可以降低空口无线链路带来的干扰。在主基站控制终端进入RRC_INACTIVE状态后,终端可以 继续进行无线测量。这里所说的无线测量可以是RRM无线测量。
S602:终端处于无线链路非激活态时,对S-RNA内的辅基站服务小区进行无线测量。
在本实施例中,终端在处于无线链路非激活态时,可以基于主、辅基站侧之前配置给出的RRM测量参数,继续对主、辅基站各自所在RAT域内的潜在目标服务小区,进行RRM测量,从而能够及时感知自己当前移动到了哪些主辅基站的服务小区集合之下。
S604:终端在根据测量结果确定自己当前已移出原S-RNA但未进入任何新S-RNA时,向主基站发送移出请求消息。
如果终端确定自己已经移出了原S-RNA,但并未计入任何新S-RNA时,可以向主基站发送移出请求消息,在本实施例的一些示例中,移出请求消息和迁移请求消息类似,都可以通过RRC Connection Resume Request(RRC连接恢复请求)消息发送。和迁移请求消息相比,移出请求消息能够表征终端当前的移动情景属于情景二,而如果终端向主基站发送的是迁移请求消息,则说明终端当前的移动情景属于前述情景一。因此,当终端的迁移请求消息和移出请求消息均通过RRC Connection Resume Request消息发送时,对应迁移请求消息RRC Connection Resume Request消息中,至少包括能够表征移动情景一的指示,而对应于移出请求消息的RRC Connection Resume Request消息中也应该至少包括能够表征移动情景二的指示信息。
S606:主基站存储终端在原辅基站侧的UE上下文信息。
主基站在接收移出请求消息后,可以确定终端当前只是移出了原S-RNA,并未进入到新S-RNA,因此,在这种情况下,没有新辅基站可以承载原本由原辅基站承载的目标PDU会话数据,为了保证后续对目标PDU会话数据的正常承载,主基站需要获取到终端在原辅基站侧的UE上下文信息,并将原本用于承载目标PDU会话数据的PDU会话数据传输通道自原辅基站迁移到本基站上。
在本实施例中,主基站可以从原辅基站获取终端的UE上下文信息,从原辅基站处获取终端的UE上下文信息时,主基站可以通过向原辅基站发送Retrieve UE Context Request(获取终端上下文请求)消息而发起上下文获取请求。当然,如果为了方便终端在原S-RNA内自由移动而让原S-RNA中每一个辅基站中均存储有终端的UE上下文信息,则主基站也可以从原S-RNA中除原辅基站以外的其他辅基站上获取终端的UE上下文信息。另外,如果主基站上原本就存储有终端在原辅基站侧的UE上下文信息,则主基站也可以不必再从原S-RNA中的辅基站上获取。
S608:主基站向核心网发送本基站为承载目标PDU会话数据所分配的主基站下行地址。
可以理解的是,将原本用于承载目标数据会话的网络传输链路迁移到主基站上,实际上也就是在主基站与核心网之间建立用于承载目标数据会话的网络传输链路。所以,主基站不仅需要知晓核心网为传输目标数据会话而分配的上行地址,同时还需要为承载该目标PDU会话数据分配主基站侧的下行地址,即主基站下行地址。该主基站下行地址包括传输层地址与隧道地址标识。分配主基站下行地址之后,主基站会将该主基站下行地址发送给核心网。
S610:主基站在核心网获得主基站下行地址后,根据终端的在原辅基站侧的UE上下文信息与核心网建立承载目标PDU会话数据的PDU会话数据传输通道。
在主基站获取到终端在原辅基站侧的UE上下文信息后,可以将向核心网侧发送链路修改指示消息(PDU Session Resource Modify Indication),在链路修改指示消息中可以包括主基站为承载目标PDU会话数据而分配的主基站下行地址。
由于需要创建的PDU会话数据传输通道实际介于主基站与核心网UPF网元之间,而主基站与UPF网元之间没有控制面传输链路,因此,主基站实际上是先将链路修改指示发送给核心网的AMF/SMF网元,然后由AMF/SMF网元将主基站下行地址发送给UPF网元的。核心网在获取到主基站分配的主基站下行地址之后,可以在UPF网元与主基站之间建立起用传输目标PDU会话数据的PDU会话数据传输通道。
在本实施例中,当主基站与核心网之间成功建立起用于传输目标PDU会话数据的PDU会话数据传输通道后,主基站可以控制原辅基站释放起所保存的终端的UE上下文信息,同时,如果原S-RNA中各辅基站均保存了终端的UE上下文信息,则主基站可以控制原S-RNA中的各辅基站均释放终端的UE上下文信息。
类似地,针对实施例一中的方案,在新辅基站与核心网之间建立起用于传输目标PDU会话数据的PDU会话数据传输通道后,主基站也可以控制原辅基站释放其原本存储的终端在原辅基站侧的UE上下文信息。或者在原S-RNA中各辅基站均保存终端在原辅基站侧的UE上下文信息的情况下,控制原S-RNA的所有辅基站均进行终端UE上下文信息的释放流程。
在本实施例的一些示例当中,主基站还可以在获取到终端在原辅基站的UE上下文信息之后,向终端发送移出响应消息,在移出响应消息中可以包括新主 索引标识,该新主索引标识由主基站配置,能够表征主基站存储终端UE上下文信息的位置。另外,主基站如果需要改变P-RNA的配置,也可以将新P-RNA信息携带在移出响应消息中一同发送给终端,毕竟向终端发送移出响应消息时,主基站本来就需要与终端进行信令交互,因此如果主基站趁此机会对P-RNA的配置进行修改,并将修改后的新P-RNA信息携带在移出响应消息中发送给终端,则可以减少与终端的间的信令交互。
在本实施例的一些示例中,移出请求消息可以通过RRC Connection Resume Reject(RRC连接恢复拒绝)消息发送给终端。类似地,如果终端的移动情景属于情景一,则主基站发送给终端的迁移响应消息也可以通过RRC Connection Resume Reject消息进行发送。
在本实施例中,当终端通过无线测量结果确定自己移出原S-RNA且并未进入任何新S-RNA后,可以向主基站发送移出请求消息,从而使主基站了解到自己已经离开原S-RNA。主基站根据移出请求消息,对原本应当由原辅基站承载目标PDU会话数据回流到主基站侧,从而使得核心网与终端之间可以通过主基站来传输目标PDU会话数据。使得终在进行前述场景二的移动后,如果有目标PDU会话数据需要传输,终端与核心网之间仍存在承载目标PDU会话数据的PDU会话数据传输通道,避免终端移出原S-RNA后,目标PDU会话数据无法进行传输的问题,增加了终端自由活动的范围,提升了用户侧的通信体验。
实施例三:
为了让本领域技术人员充分了解本申请方案的优点与细节,本实施例将结合具体示例继续对前述实施例中提供的传输链路管理方案进行介绍,
假定某终端处于与MeNB(eNB式主基站)和原S-RNA内某SgNB1(gNB式辅基站1)的双连接工作模式,并且PDU Session1锚点建立在MeNB侧,PDU Session2锚点建立在SgNB1侧。在某时刻,PDU Session1和PDU Session 2的用户数都暂时停止传输,则MeNB可以通过空口Suspend流程,将终端重配置到RRC_INACTIVE非激活态,从而释放掉MCG Radio Link(MeNB同终端间的空口无线链路)、和SCG Radio Link(SgNB1同终端间的空口无线链路)以及低层的无线配置。同时,MeNB保持NG-C网络连接和NG-U(MN)网络连接,和PDU Session1相关的高层配置;而原S-RNA内的所有基站包括SgNB1都保存着NG-U(SN)网络连接,以及PDU Session2相关的高层配置;终端保存着PDU Session1和PDU Session2相关的高层配置。请结合图7示出的传输链路管理方案中通信系统内的交互图:
S701:终端向MeNB发送RRC Connection Resume Request消息。
终端此时处于双连接配置下,同时也处于RRC_INACTIVE非激活态,虽然终端不会与MeNB、SgNB1进行信令和数据传输,但终端仍然会执行对部署有候选目标辅基站的各个异频点RRM无线测量。如果终端经测量,发现自己仍处于原S-RNA,即便为自己提供服务的辅基站发生了切换,但终端和MeNB可以不必在空口Uu进行任何控制信令交互。
如果终端经测量发现自己已进入到原S-RNA之外的某新辅基站SgNB2的服务区域后,终端可以在空口Uu触发RRC连接恢复流程,向MeNB发送迁移请求消息,在本实施例中,迁移请求消息为RRC Connection Resume Request消息。在本实施例中,RRC Connection Resume Request消息中可以包括MeNB之前给终端分配的P-I-RNTI,SgNB1之前给终端分配的S-I-RNTI,同时还可以包括终端当前所处SgNB2下服务小区的小区标识,恢复原因值Casue value,由于本实施例中终端是从原S-RNA移出并进入新S-RNA,因此Casue value=S-RNA change,Casue value=S-RNA change即表征着场景一的移动情景。可以理解的是,RRC Connection Resume Request消息中P-I-RNTI中并不是必要的,另外,小区标识还可以通过其他信息来代替,例如终端当前所处小区所属基站的基站标识,即SgNB2的基站标识,或者是终端当前所处小区的物理层标识。
在本实施例中,P-I-RNTI可以包括MeNB的基站标识和MeNB侧保存的终端UE上下文信息的主索引标识。而S-I-RNTI中可以包含SgNB1的基站标识和SgNB1侧保存的终端的UE上下文信息的原辅索引标识。
S702:MeNB通过Xn接口向原辅基站SgNB1发送UE Context Request消息。
MeNB接收到RRC Connection Resume Request消息之后,可以基于S-I-RNTI信息从SgNB1,通过索引方式找到SgNB1内保存的终端在SgNB1侧UE上下文信息(即SgNB1侧的网络连接和相关高层配置)。可选地,在本实施例中,MeNB通过Xn接口向SgNB1发送UE Context Request消息,在该SgNB1发送UE Context Request消息中,可以携带有终端在SgNB1侧的上下文索引标识。
S703:MeNB通过Xn接口接收原辅基站SgNB1发送UE Context Response消息。
在UE Context Response消息中包括SgNB1存储的终端的UE上下文信息。
S704:MeNB通过Xn接口向新辅基站SgNB2发送SN Addition Request消息。
基于终端所发送的RRC Connection Resume Request消息中的恢复原因值 Casue value=S-RNA change,MeNB可以得知终端从原S-RNA移动到了原S-RNA之外的新S-RNA下,同时基于RRC Connection Resume Request消息中携带的服务小区的小区标识,MeNB可以确定终端当前处于的SgNB2服务覆盖下。所以MeNB可以向SgNB2发送SN Addition Request消息,从而让SgNB2来承载PDU Session2。
SN Addition Request消息中包含MeNB从SgNB1侧获取的终端的UE上下文信息,基于该UE上下文信息,SgNB2得知自己需要去承载PDU Session2(原来由被SgNB1承载),以及PDU Session2相关的上下文配置。
S705:SgNB2通过Xn接口向MeNB发起SN Addition Request ACK消息。
在SN Addition Request ACK消息中,包括SgNB2为承载PDU Session2而分配的SgNB2侧下行地址信息。另外,SN Addition Request ACK消息中还可以包括SgNB2分配的S-I-RNTI消息。
对于传输PDU Session2的上行地址信息,SgNB2可以根据MeNB发送的终端的UE上下文信息确定。
S706:MeNB通过空口Uu向终端发送RRC Connection Resume Reject消息。
RRC Connection Resume Reject消息中可以包含MeNB给终端新分配的新P-I-RNTI和SgNB2分配的新S-I-RNTI,以及新P-RNA信息和新S-RNA信息,同时还包括拒绝原因值Casue value=S-RNA Change Done。应当理解的是,如果P-I-RNTI和P-RNA的配置没有发生变化,则RRC Connection Resume Reject消息可以不需要包括新P-I-RNTI和新P-RNA信息。
应当理解的是,这里的RRC Connection Resume Reject消息可以作为前述实施例中介绍的迁移响应消息。
S707:MeNB通过NG-C接口向AMF/SMF网元发送PDU Session Resource Modify Indication。
在MeNB发送给AMF/SMF网元的PDU Session Resource Modify Indication中,包括SgNB2分配的用于承载PDU Session2的SgNB2侧下行地址信息,在AMF/SMF接收到该包含下行地址信息的PDU Session Resource Modify Indication后,可以将下行地址发送给UPF网元。
S708:UPF网元和SgNB2建立完成新的NG-U(SN)网络连接。
UPF网元从AMF/SMF网元处获取到SgNB2侧下行地址信息后,可以根据该下行地址信息与SgNB2建立新的NG-U网络连接。对于SgNB2而言,其还需要进一步建立完成和MeNB之间的Xn网络连接。另外,因为是终端当前是处 于RRC_INACTIVE非激活态,因此SgNB2不需要建立SCG低层的无线配置。
S709:MeNB通过Xn接口向原S-RNA所有辅基站发送UE Context Release消息。
UE Context Release消息能够发起上下文释放流程,基于该消息,原S-RNA内所有辅基站都会将自己存储的终端的UE上下文信息释放掉。
在后续过程中,当有针对终端的下行传输需求或终端有上行传输需求时,终端可以向MeNB发起RACH流程。例如当终端有上行传输需求时,可以发起RACH流程,并向MeNB指示待发送的上行用户数据相关的DRB id或QoS Flow id信息,从而尝试恢复到RRC_ACTIVE激活状态。
实施例四:
假定某终端处于同MgNB(gNB式主基站)和原S-RNA内某SgNB1的双连接工作模式,并且PDU Session1和PDU Session 2的锚点都建立在MgNB侧,PDU Session3和PDU Session 4的锚点都建立在SgNB1侧。在某时刻,PDU Session1、PDU Session 2、PDU Session3、PDU Session 4的用户数都暂时停止传输,则MgNB可以通过空口Suspend流程,将终端重配置到RRC_INACTIVE非激活态,从而释放掉MCG Radio Link、和SCG Radio Link以及低层的无线配置。同时,MgNB保持NG-C网络连接和NG-U(MN)网络连接,和PDU Session1、PDU Session 2相关的高层配置;而原S-RNA内的所有基站包括SgNB1都保存着NG-U(SN)网络连接,以及PDU Session3、PDU Session 4相关的高层配置;终端保存着PDU Session1-PDU Session4相关的高层配置。请结合图8示出的一种通信系统交互图:
S801:终端向MgNB发送RRC Connection Resume Request消息。
终端此时处于双连接配置下,同时也处于RRC_INACTIVE非激活态,虽然终端不会与MgNB、SgNB1进行信令和数据传输,但终端仍然会执行对部署有候选目标辅基站的各个异频点RRM无线测量。如果终端经测量,发现自己仍处于原S-RNA,即便为自己提供服务的辅基站发生了切换,但终端和MgNB可以不必在空口Uu进行任何控制信令交互。如果终端经测量发现自己已进入到原S-RNA之外的某新辅基站SgNB2的服务区域后,终端可以在空口Uu触发RRC连接恢复流程,向MgNB发送RRC Connection Resume Request消息。在本实施例中,RRC Connection Resume Request消息中可以包括SgNB1之前给终端分配的S-I-RNTI,同时还可以包括终端当前所处服务小区的物理层标识NR-PCI,恢复原因值Casue value,由于本实施例中终端是从原S-RNA移出并进入新 S-RNA,因此Casue value=S-RNA change,Casue value=S-RNA change即表征着场景一的移动情景。由于终端当前没有离开MgNB的服务区域,即没有离开P-RNA,因此终端暂时不用向MgNB上报P-I-RNTI信息,另外,终端当前所处服务小区的物理层标识NR-PCI还可以通过其他信息来代替,例如终端当前所处小区所属基站的基站标识,即SgNB2的基站标识,或者是终端当前所处小区的小区标识。
S-I-RNTI中可以包含SgNB1的基站标识和原辅索引标识,原辅索引标识表征SgNB1侧保存终端的UE上下文信息的位置。
S802:MgNB通过Xn接口向原辅基站SgNB1发送UE Context Request消息。
MgNB接收到RRC Connection Resume Request消息之后,可以基于S-I-RNTI信息从SgNB1,通过索引方式找到SgNB1内保存的终端在SgNB1侧UE上下文信息(即SgNB1侧的网络连接和相关高层配置)。可选地,在本实施例中,MgNB通过Xn接口向SgNB1发送UE Context Request消息,向该SgNB1发送UE Context Request消息中,可以携带有终端在SgNB1侧的上下文索引标识(即原辅索引标识)。
S803:MgNB通过Xn接口接收原辅基站SgNB1发送UE Context Response消息。
在UE Context Response消息中包括SgNB1存储的终端在SgNB1侧的UE上下文信息。
S804:MgNB通过Xn接口向新辅基站SgNB2发送SN Addition Request消息。
基于终端所发送的RRC Connection Resume Request消息中的恢复原因值Casue value=S-RNA change,MgNB可以得知终端从原S-RNA移动到了原S-RNA之外的新原S-RNA下,同时基于RRC Connection Resume Request消息中携带的服务小区的物理层标识,MgNB可以确定终端当前处于的SgNB2服务覆盖下。所以MgNB可以向SgNB2发送SN Addition Request消息,从而让SgNB2来承载PDU Session3和PDU Session4。
SN Addition Request消息中包含MgNB从SgNB1侧获取的UE上下文信息,基于该UE上下文信息,SgNB2得知自己需要去承载PDU Session3和PDU Session4(原来由被SgNB1承载),以及PDU Session3、PDU Session4相关的上下文配置。
S805:SgNB2通过Xn接口向MgNB发起SN Addition Request ACK消息。
在SN Addition Request ACK消息中,包括SgNB2为承载PDU Session3和PDU Session4而分别分配的SgNB2侧下行地址信息。另外,SN Addition Request ACK消息中还可以包括SgNB2分配的S-I-RNTI消息。
对于传输PDU Session3、PDU Session4的上行地址信息,SgNB2可以根据MgNB发送的UE上下文信息确定。
S806:MgNB通过空口Uu向终端发送RRC Connection Resume Reject消息。
RRC Connection Resume Reject消息中可以包含SgNB2分配的新S-I-RNTI,以及新S-RNA信息,同时还包括拒绝原因值Casue value=S-RNA Change Done。应当理解的是,如果P-I-RNTI和P-RNA的配置有发生变化,则RRC Connection Resume Reject消息还可以包括新P-I-RNTI和新P-RNA信息。
S807:MgNB通过NG-C接口向AMF/SMF网元发送PDU Session Resource Modify Indication。
在MgNB发送给AMF/SMF网元的PDU Session Resource Modify Indication中,包括SgNB2分配的用于承载PDU Session3的SgNB2侧下行地址信息,用于承载PDU Session4的下行地址信息。在AMF/SMF接收到该包含下行地址信息的PDU Session Resource Modify Indication后,可以将下行地址发送给UPF网元。
S808:UPF网元和SgNB2建立完成新的NG-U(SN)网络连接。
UPF网元从AMF/SMF网元处获取到SgNB2侧下行地址信息后,可以根据该下行地址信息与SgNB2建立新的NG-U网络连接。对于SgNB2而言,其还需要进一步建立完成和MgNB之间的的Xn网络连接。另外,因为是终端当前是处于RRC_INACTIVE非激活态,因此SgNB2不需要建立SCG低层的无线配置。
S809:MgNB通过Xn接口向原S-RNA所有辅基站发送UE Context Release消息。
UE Context Release消息能够发起上下文释放流程,基于该消息,原S-RNA内所有辅基站都会将自己存储的终端的UE上下文信息释放掉。
在后续过程中,当有针对终端的下行传输需求或终端有上行传输需求时,终端可以向MgNB发起RACH流程。例如当终端有上行传输需求时,可以发起RACH流程,并向MgNB指示待发送的上行用户数据相关的DRB id或QoS Flow id信息,从而尝试恢复到RRC_ACTIVE激活状态。
实施例五:
假定某终端处于与MeNB和原S-RNA内某SgNB1的双连接工作模式,并且PDU Session1锚点建立在MeNB侧,PDU Session2锚点建立在SgNB1侧。在某时刻,PDU Session1和PDU Session 2的用户数都暂时停止传输,则MeNB可以通过空口Suspend流程,将终端重配置到RRC_INACTIVE非激活态,从而释放掉MCG Radio Link、和SCG Radio Link以及低层的无线配置。同时,MeNB保持NG-C网络连接和NG-U(MN)网络连接,和PDU Session1相关的高层配置;而原S-RNA内的所有基站包括SgNB1都保存着NG-U(SN)网络连接,以及PDU Session2相关的高层配置;终端保存着PDU Session1和PDU Session2相关的高层配置。请结合图9示出的一种通信系统交互图:
S901:终端向MeNB发送RRC Connection Resume Request消息。
处于双连接配置下的终端,同时也处于RRC_INACTIVE非激活态,虽然终端不会与MeNB、SgNB1进行信令和数据传输,但终端仍然会执行对部署有候选目标辅基站的各个异频点RRM无线测量。如果终端经测量,发现自己仍处于原S-RNA,即便为自己提供服务的辅基站发生了切换,但终端和MeNB可以不必在空口Uu进行任何控制信令交互。
如果终端经测量发现自己移出原S-RNA且未进入任何新辅基站SgNB2的服务区域,则终端可以在空口Uu触发RRC连接恢复流程,向MeNB发送RRC Connection Resume Request消息。在本实施例中,RRC Connection Resume Request消息中可以包括MeNB之前给终端分配的P-I-RNTI,SgNB1之前给终端分配的S-I-RNTI,同时还可以恢复原因值Casue value,由于本实施例中终端是从原S-RNA移出并未进入任何新S-RNA,因此Casue value=S-RNA Release,Casue value=S-RNA Release即表征着场景二的移动情景。可以理解的是,RRC Connection Resume Request消息中P-I-RNTI中并不是必要的。
在本实施例中,P-I-RNTI可以包括MeNB的基站标识和MeNB侧保存的终端UE上下文信息的原主索引标识。而S-I-RNTI中可以包含SgNB1的基站标识和SgNB1侧保存的终端UE上下文信息的原辅索引标识。
S902:MeNB通过Xn接口向原辅基站SgNB1发送UE Context Request消息。
MeNB接收到RRC Connection Resume Request消息之后,可以基于S-I-RNTI信息从SgNB1,通过索引方式找到SgNB1内保存的终端在SgNB1侧UE上下文信息(即SgNB1侧的网络连接和相关高层配置)。可选地,在本实施例中,MeNB通过Xn接口向SgNB1发送UE Context Request消息,向该SgNB1发送UE Context Request消息中,可以携带有终端在SgNB1侧的上下文索引标识。
S903:MeNB通过Xn接口接收原辅基站SgNB1发送UE Context Response 消息。
在UE Context Response消息中包括SgNB1存储的终端在SgNB1侧的UE上下文信息。
S904:MeNB通过空口Uu向终端发送RRC Connection Resume Reject消息。
RRC Connection Resume Reject消息中可以包含MeNB给终端新分配的新P-I-RNTI,同时还包括拒绝原因值Casue value=S-RNA Release Done。应当理解的是,如果P-RNA的配置有发生变化,则RRC Connection Resume Reject消息中还可以包括新P-RNA信息。
S905:MeNB通过NG-C接口向AMF/SMF网元发送PDU Session Resource Modify Indication。
在MeNB发送给AMF/SMF网元的PDU Session Resource Modify Indication中,包括MeNB分配的用于承载PDU Session2的下行地址信息,在AMF/SMF接收到该包含下行地址信息的PDU Session Resource Modify Indication后,可以将下行地址发送给UPF网元。
S906:UPF网元和MeNB建立完成新的NG-U(MN)网络连接。
UPF网元从AMF/SMF网元处获取到MeNB侧的下行地址信息后,可以根据该下行地址信息与MeNB建立新的NG-U(MN)网络连接。
S907:MeNB通过Xn接口向原S-RNA所有辅基站发送UE Context Release消息。
UE Context Release消息能够发起上下文释放流程,基于该消息,原S-RNA内所有辅基站都会将自己存储的终端的UE上下文信息释放掉。
在后续过程中,当有针对终端的下行传输需求或终端有上行传输需求时,终端可以向MeNB发起RACH流程。例如当终端有上行传输需求时,可以发起RACH流程,并向MeNB指示待发送的上行用户数据相关的DRB id或QoS Flow id信息,从而尝试恢复到RRC_ACTIVE激活状态。
实施例六:
假定某终端处于同MgNB(gNB式主基站)和原S-RNA内某SgNB1的双连接工作模式,并且PDU Session1和PDU Session 2的锚点都建立在MgNB侧,PDU Session3和PDU Session 4的锚点都建立在SgNB1侧。在某时刻,PDU Session1、PDU Session 2、PDU Session3、PDU Session 4的用户数都暂时停止传输,则MgNB可以通过空口Suspend流程,将终端重配置到RRC_INACTIVE 非激活态,从而释放掉MCG Radio Link、和SCG Radio Link以及低层的无线配置。同时,MgNB保持NG-C网络连接和NG-U(MN)网络连接,和PDU Session1、PDU Session 2相关的高层配置;而原S-RNA内的所有基站包括SgNB1都保存着NG-U(SN)网络连接,以及PDU Session3、PDU Session 4相关的高层配置;终端保存着PDU Session1-PDU Session4相关的高层配置。请结合图10示出的一种通信系统交互图:
S1001:终端向MgNB发送RRC Connection Resume Request消息。
处于双连接配置下的终端,同时也处于RRC_INACTIVE非激活态,虽然终端不会与MgNB、SgNB1进行信令和数据传输,但终端仍然会执行对部署有候选目标辅基站的各个异频点RRM无线测量。如果终端经测量,发现自己仍处于原S-RNA,即便为自己提供服务的辅基站发生了切换,但终端和MgNB可以不必在空口Uu进行任何控制信令交互。
如果终端经测量发现自己移出原S-RNA且未进入任何新辅基站SgNB2的服务区域,则终端可以在空口Uu触发RRC连接恢复流程,向MgNB发送RRC Connection Resume Request消息。在本实施例中,RRC Connection Resume Request消息中可以包括MgNB之前给终端分配的P-I-RNTI,SgNB1之前给终端分配的S-I-RNTI,同时还可以恢复原因值Casue value,由于本实施例中终端是从原S-RNA移出且未进入任何新S-RNA,因此Casue value=S-RNA Release,Casue value=S-RNA Release即表征着场景二的移动情景。可以理解的是,RRC Connection Resume Request消息中P-I-RNTI中并不是必要的。
在本实施例中,P-I-RNTI可以包括MgNB的基站标识和MgNB侧保存的终端UE上下文信息的原主索引标识。而S-I-RNTI中可以包含SgNB1的基站标识和SgNB1侧保存的终端UE上下文信息的原辅索引标识。
S1002:MgNB通过Xn接口向原辅基站SgNB1发送UE Context Request消息。
MgNB接收到RRC Connection Resume Request消息之后,可以基于S-I-RNTI信息从SgNB1,通过索引方式找到SgNB1内保存的PDU Session3和PDU Session4在SgNB1侧UE上下文信息(即SgNB1侧的网络连接和相关高层配置)。可选地,在本实施例中,MgNB通过Xn接口向SgNB1发送UE Context Request消息,向该SgNB1发送UE Context Request消息中,可以携带有SgNB1侧存储终端UE上下文信息的原辅索引标识。
S1003:MgNB通过Xn接口接收原辅基站SgNB1发送UE Context Response消息。
在UE Context Response消息中包括SgNB1存储的终端在SgNB1侧的UE上下文信息。
S1004:MgNB通过空口Uu向终端发送RRC Connection Resume Reject消息。
RRC Connection Resume Reject消息中可以包含MgNB给终端新分配的新P-I-RNTI,同时还包括拒绝原因值Casue value=S-RNA Release Done。应当理解的是,如果P-RNA的配置有发生变化,则RRC Connection Resume Reject消息中还可以包括新P-RNA信息。
S1005:MgNB通过NG-C接口向AMF/SMF网元发送PDU Session Resource Modify Indication。
在MgNB发送给AMF/SMF网元的PDU Session Resource Modify Indication中,包括MgNB分配的用于承载PDU Session3、PDU Session4的下行地址信息,在AMF/SMF接收到该包含下行地址信息的PDU Session Resource Modify Indication后,可以将下行地址发送给UPF网元。
S1006:UPF网元和MgNB建立完成新的NG-U(MN)网络连接。
UPF网元从AMF/SMF网元处获取到MgNB侧的下行地址信息后,可以根据该下行地址信息与MgNB建立新的NG-U(MN)网络连接。
S1007:MgNB通过Xn接口向原S-RNA所有辅基站发送UE Context Release消息。
UE Context Release消息能够发起上下文释放流程,基于该消息,原S-RNA内所有辅基站都会将自己存储的终端的UE上下文信息释放掉。
在后续过程中,当有针对终端的下行传输需求或终端有上行传输需求时,终端可以向MgNB发起RACH流程。例如当终端有上行传输需求时,可以发起RACH流程,并向MgNB指示待发送的上行用户数据相关的DRB id或QoS Flow id信息,从而尝试恢复到RRC_ACTIVE激活状态。
实施例七:
本实施例提供一种传输链路管理装置、传输链路建立装置以及一种传输链路迁移装置,请分别参见图11-图13示出的传输链路管理装置的结构示意图和传输链路建立装置的结构示意图、传输链路管理装置的结构示意图的结构示意图:
如图11所示,传输链路管理装置110包括迁移请求接收模块112、上下文 发送模块114、辅基站地址获取模块116以及辅基站地址发送模块118,其中迁移请求接收模块112用于接收终端在移出原辅集群区S-RNA并进入新S-RNA后发送的迁移请求消息,上下文发送模块114用于将终端在原S-RNA中原辅基站侧的UE上下文信息发送给新辅基站,辅基站地址获取模块116用于获取新辅基站为承载目标PDU会话数据而分配的辅基站下行地址。辅基站地址发送模块118用于将辅基站下行地址发送给核心网。
图12示出的传输链路建立装置120包括上下文发送模块122、辅基站地址传输模块124以及建链模块126,其中上下文发送模块122用于接收主基站发送的终端在原S-RNA中原辅基站侧的UE上下文信息;辅基站地址传输模块124用于向主基站发送为承载目标PDU会话数据而分配的辅基站下行地址;建链模块126用于在核心网获取到辅基站下行地址后根据UE上下文信息与核心网建立用于传输目标PDU会话数据的PDU会话数据传输通道。
请参见图13,传输链路迁移装置130包括无线测量模块132和迁移请求发送模块134,其中用于处于无线链路非激活态时,对辅基站服务小区进行无线测量;迁移请求发送模块134用于在根据测量结果确定自己当前已移出原S-RNA并进入新S-RNA后,向主基站发送迁移请求消息。
本实施例中的传输链路迁移装置130可以部署在终端上,其中无线测量模块132和迁移请求发送模块134的功能均可以通过终端的处理器与通信装置共同实现。
传输链路管理装置110可以部署在主基站上,其中,迁移请求接收模块112、上下文发送模块114、辅基站地址获取模块116以及辅基站地址发送模块118的功能均可以通过主基站的处理器控制通信装置实现。
传输链路建立装置120可以部署在辅基站上,其中上下文发送模块122、辅基站地址传输模块124以及建链模块126的功能均可以由辅基站的处理器与通信装置共同实现。
在本实施例中,传输链路迁移装置130可以是处于双连接配置也可以是多连接配置。在不存在针对传输链路迁移装置130的下行传输需求,同时传输链路迁移装置130也没有上行传输需求时,传输链路管理装置110控制释放掉传输链路迁移装置130在空口的空口无线链路,从而使得传输链路迁移装置130处于无线链路非激活态。
不过,尽管传输链路迁移装置130处于无线链路非激活态,但传输链路迁移装置130包括无线测量模块132还是会继续对辅基站服务小区进行无线测量,并将无线测量的测量结果信息进行上报。所谓S-RNA(辅集群区),是指包括 N个辅基站服务区域的联合服务区域,也就是说,这N个辅基站均可以作为传输链路迁移装置130的辅基站,为传输链路迁移装置130服务。其中N为正整数,所以,N可以大于等于1。当N大于1的时候,也即原S-RNA中包括两个即两个以上辅基站的服务区域时,这些辅基站之间可以进行交互。例如这N个辅基站之间可以直接与该S-RNA对应的其他辅基站进行通信,也可以通过传输链路管理装置110进行彼此之间的通信,例如,在一个原S-RNA内包括两个辅基站,这两个辅基站之间可以直接通过各自的Xn接口与对方通信,也可以将发送给对端的信息通过Xn接口先发送给传输链路管理装置110,然后由传输链路管理装置110将该信息转发给对应的辅基站。在本实施例的一些示例中,S-RNA内的各辅基站之间既存在控制面的信令传输通道,又存在用户面的数据传输通道。所以,在这些示例中,辅基站与辅基站之间可以交互传输链路迁移装置130的UE上下文信息和用户PDU会话数据中的至少一种。
和S-RNA对应的还有P-RNA(主寻呼区),P-RNA包括若干个传输链路管理装置110的服务区域,可以理解的是,P-RNA范围通常大于S-RNA的范围,因此,在本实施例中,可以假定传输链路迁移装置130暂时并不会移出P-RNA,而可以移出一个S-RNA,并进入一个新S-RNA。在本实施例中,无线测量模块132还可以对P-RNA中的各传输链路管理装置110进行无线测量,无线测量模块132无线测量所依据的测量参数由传输链路管理装置110预先分配设置。所以在本实施例中,传输链路迁移装置130在处于无线链路非激活态时,无线测量模块132可以基于主、辅基站侧之前给出的RRM测量参数,继续对主、辅基站各自所在RAT域内的潜在目标服务小区,进行RRM测量,从而能够及时感知传输链路迁移装置130当前移动到了哪些主辅基站的服务小区集合之下。
根据测量结果,无线测量模块132可以确定传输链路迁移装置130是否移出之前所在的S-RNA的范围,并进入到一个新S-RNA的范围,如果是,则迁移请求发送模块134会向传输链路管理装置110发送迁移请求消息。在本实施例的一种示例当中,迁移请求消息中包括原辅索引标识,原辅索引标识表征原辅基站侧存储UE上下文信息的位置。在本实施例的另一示例中,迁移请求消息中除了包括原辅索引标识,还包括终端对S-RNA内的辅基站服务小区的测量结果信息。应当理解的是,由于传输链路迁移装置130当前处于RRC_INACTIVE状态,所以,目前传输链路迁移装置130在空口侧的无线链路已经被释放掉,迁移请求发送模块134只能向传输链路管理装置110发送迁移请求消息。
所以,在本实施例中,S-RNA分为原S-RNA和新S-RNA,这里的原和新仅仅是相对于传输链路迁移装置130进入对应S-RNA的顺序而言的,一个传输链路迁移装置130从某一个S-RNA退出,然后进入到另一S-RNA,则传输链路迁移装置130进入的前一S-RNA就属于原S-RNA,后进入的一个S-RNA就是 该传输链路迁移装置130的新S-RNA。
当迁移请求接收模块112接收到传输链路迁移装置130发送的迁移请求消息时,传输链路管理装置110可以根据迁移请求消息确定传输链路迁移装置130已经从原S-RNA移动进入了新S-RNA,因此,在这种情况下,原S-RNA中的原辅基站不能再继续为传输链路迁移装置130提供服务了。可以理解的是,在传输链路迁移装置130移出原S-RNA之前,原S-RNA中的原辅基站是需要承载一些用户PDU会话数据会话的,当传输链路迁移装置130移出该原S-RNA之后,原本由原S-RNA中的原辅基站承载的用户PDU会话数据会话,需要由新S-RNA中的传输链路建立装置120来承载,为了便于介绍,本实施例中将原本应当由原S-RNA中原辅基站承载的用户PDU会话数据会话称为“目标PDU会话数据”。
应当理解的是,让传输链路建立装置120承载目标PDU会话数据之前,传输链路管理装置110需要先确定出传输链路建立装置120,下面对传输链路管理装置110确定传输链路建立装置120的方案进行简单介绍:
在本实施例的一种示例当中,迁移请求消息中包括指示信息,指示信息用于指示传输链路迁移装置130当前所处服务小区所属的基站。所以迁移请求接收模块112接收到迁移请求消息后,传输链路管理装置110可以根据迁移请求消息中的迁移请求消息信息确定传输链路迁移装置130当前所处服务小区所属的基站为传输链路建立装置120。指示信息可以包括但不限于传输链路迁移装置130当前所处服务小区所属基站的基站标识、传输链路迁移装置130当前所处服务小区的小区标识和服务小区物理层标识中的至少一种。当指示信息中包括基站标识时,传输链路管理装置110可以直接根据该基站标识确定出新S-RNA中可以为传输链路迁移装置130提供服务的传输链路建立装置120是哪一个或哪几个。当指示信息中包括服务小区的小区标识或服务小区物理层标识时,传输链路管理装置110可以根据小区标识或服务小区的物理层标识与基站标识之间的对应关系确定出当前可以为传输链路迁移装置130提供服务的新S-RNA中的辅基站是哪一个或哪几个。
确定出传输链路建立装置120之后,为了让传输链路建立装置120能够承载目标PDU会话数据,传输链路管理装置110还需要让传输链路建立装置120得到传输链路迁移装置130在原辅基站侧的UE上下文信息,并且帮助建立传输链路建立装置120与核心网之间的PDU会话数据传输通道。
为了将传输链路迁移装置130在原辅基站侧的UE上下文信息发送给传输链路建立装置120,传输链路管理装置110的上下文发送模块114需要先获取到传输链路迁移装置130在原辅基站侧的UE上下文信息。在本实施例的一些示例中, 上下文发送模块114可以直接从本基站上获取到传输链路迁移装置130在原辅基站侧的UE上下文信息,因为传输链路管理装置110会对传输链路迁移装置130在原辅基站侧的UE上下文信息进行备份存储。在本实施例的另一些示例中,上下文发送模块114需要从原辅基站侧得到传输链路迁移装置130的UE上下文信息:
传输链路迁移装置130发送给迁移请求接收模块112的迁移请求消息中可以包括原辅索引标识,该原辅索引标识可以表征原辅基站存储传输链路迁移装置130在原辅基站侧UE上下文信息的位置。所以,上下文发送模块114可以将从迁移请求消息中提取出的原辅索引标识携带在上下文获取请求中发送给原辅基站,例如:上下文发送模块114可以通过传输链路管理装置110的Xn接口向原辅基站发送携带原辅索引标识的上下文获取请求。原辅基站在接收到该上下文获取请求之后,可以向上下文发送模块114回复上下文获取响应:原辅基站根据其中的原辅索引标识提取出本端存储的传输链路迁移装置130在原辅基站侧的UE上下文信息,并通过Xn接口将提取出的UE上下文信息发送给上下文发送模块114。
在本实施例的一种示例中,上下文发送模块114将传输链路迁移装置130在原辅基站侧的UE上下文信息发送给传输链路建立装置120时,可以通过SN添加请求消息进行发送。
传输链路建立装置120的上下文发送模块122通过SN添加请求消息中携带的传输链路迁移装置130在原辅基站侧的UE上下文信息,可以了解自己在后续过程中需要承载的目标PDU会话数据,以及该目标PDU会话数据相关的上下文配置。简单来说,传输链路建立装置120可以根据接收到的传输链路迁移装置130在原辅基站侧的UE上行文信息确定待承载的目标PDU会话数据以及核心网侧为传输该目标PDU会话数据而分配的PDU会话数据传输通道的上行地址。不过,为了建立起传输链路建立装置120与核心网之间的PDU会话数据传输通道,还需要传输链路建立装置120分配该PDU会话数据传输通道的下行地址,在本实施例中,为了将传输链路建立装置120为建立PDU会话数据传输通道而分配的下行地址,同传输链路管理装置110为建立PDU会话数据传输通道而分配的下行地址区分开,这里将传输链路建立装置120分配的下行地址称为“辅基站下行地址”,对应地,将传输链路管理装置110分配的下行地址称为“主基站下行地址”。
可以理解的是,原本由原辅基站承载的目标PDU会话数据,也即在传输链路迁移装置130移出原S-RNA前锚点在原辅基站的用户PDU会话数据,可以不只一个,例如在本实施例的一种示例当中,原本锚点在原辅基站的用户PDU 会话数据会话包括PDU Session3和PDU Session4,则传输链路建立装置120根据UE上下文信息可以了解到自己需要承载的目标PDU会话数据包括PDU Session3和PDU Session4。无论是在原辅基站还是在传输链路建立装置120,对于这两个目标PDU会话数据而言,PDU会话数据传输通道可以不一致,所以当目标PDU会话数据不只一个时,传输链路建立装置120分配的辅基站下行地址也可以不止一个。
在本实施例的一些示例中,所谓的下行地址(例如主基站下行地址或辅基站下行地址)包括传输层地址与隧道地址标识。
根据图1、图2示出的通信系统架构可知,新辅基站与核心网之间没有控制面的信令传输通道,因此,辅基站地址传输模块124不能直接将该辅基站下行地址发送给核心网,所以,辅基站地址传输模块124只能先将辅基站下行地址发送给传输链路管理装置110,然后让传输链路管理装置110将辅基站下行地址发送给核心网。
在传输链路管理装置110的上下文发送模块114通过SN添加请求消息向传输链路建立装置120的上下文发送模块122发送传输链路迁移装置130在原辅基站侧UE上下文信息的情况下,辅基站地址传输模块124可以通过SN添加响应消息向传输链路管理装置110的辅基站地址获取模块116发送辅基站下行地址。
传输链路管理装置110的辅基站地址获取模块116在接收到传输链路建立装置120发送的辅基站下行地址之后,辅基站地址发送模块118可以将辅基站下行地址发送给核心网,让核心网根据该辅基站下行地址同传输链路建立装置120之间建立用于传输目标PDU会话数据的PDU会话数据传输通道。
由于需要与传输链路建立装置120建立PDU会话数据传输通道的是核心网中UPF网元,但由于传输链路管理装置110与UPF网元之间也不存在控制面传输链路,因此,辅基站地址发送模块118需要将传输链路建立装置120分配的下行地址先传输给核心网的AMF/SMF网元,然后由AMF/SMF网元将下行地址再传输给UPF网元,让UPF网元根据该下行地址同传输链路建立装置120之间建立PDU会话数据传输通道。
在核心网获取到辅基站下行地址后,核心网获得了需要建立的PDU会话数据传输通道的辅基站下行地址,而传输链路建立装置120已经根据UE上下文信息获得了PDU会话数据传输通道在核心网侧的上行地址,因此建链模块126和核心网可以用于传输目标PDU会话数据的PDU会话数据传输通道。
在建链模块126同核心网建立用于传输目标PDU会话数据的PDU会话数 据传输通道后,当网络侧有针对传输链路迁移装置130的下行控制信令或用户数据时,或者当传输链路迁移装置130侧有上行控制信令或用户数据需要传输时,传输链路管理装置110可以控制恢复传输链路迁移装置130与主、辅基站侧的空口无线链路,这样,同传输链路迁移装置130移出原S-RNA之前类似,传输链路迁移装置130只要在传输链路管理装置110的Paging寻呼下或者主动执行该RACH和RRC连接恢复流程,向传输链路管理装置110发送激活态恢复请求消息,该激活态恢复请求消息包括上行用户PDU会话数据关联的数据无线承载标识或PDU会话标识,据此,传输链路管理装置110可以控制恢复传输链路迁移装置130与主、辅基站侧的空口无线链路。网络侧的下行控制信令或用户数据就具有了通过新S-RNA中的传输链路建立装置120传输到传输链路迁移装置130的基础,而传输链路迁移装置130侧的上行控制信令或用户数据也可以通过新S-RNA中的传输链路建立装置120传输给网络侧。
为了保证传输链路迁移装置130从当前所在S-RNA(即前面所谓“新S-RNA”)移出,再进入另一S-RNA时,在传输链路迁移装置130有传输需求或有针对传输链路迁移装置130的传输需求时,仍可以通过RACH和RRC连接恢复流程直接让传输链路迁移装置130恢复到双连接模式/多连接模式,在本实施例的一种示例当中,传输链路建立装置120在接收到传输链路迁移装置130在原辅基站侧的UE上下文信息后,可以对传输链路迁移装置130在本基站侧的UE上下文信息进行存储,同时根据本基站存储UE上下文信息的位置配置生成新辅索引标识,并将该新辅索引标识发送给传输链路管理装置110,传输链路建立装置120可以将新辅索引标识携带在SN添加响应消息中,同传输链路建立装置120分配的辅基站下行地址一同发送给传输链路管理装置110。另外,在本实施例的一些示例中,传输链路建立装置120还可以在SN添加响应消息中携带新辅基站配置的新S-RNA信息,该新S-RNA信息用于对新S-RNA进行指示。传输链路管理装置110接收到SN添加响应消息后,可以生成包括新辅索引标识和新S-RNA信息的迁移响应消息,并将该迁移响应消息发送给传输链路迁移装置130。在此基础上,传输链路迁移装置130可以继续根据无线测量结果确定自己是否已经移出除了当前S-RNA的范围,并在移出该当前新S-RNA范围,进入另一新S-RNA后,向传输链路管理装置110发送迁移请求消息,在该迁移请求消息中,传输链路迁移装置130可以携带新辅索引标识(可以理解的是,由于原辅索引标识和新辅索引标识是相对于传输链路迁移装置130的移动前后而言的,因此这里所谓的新辅索引标识相对于移动后而言,实际上被称为原辅索引标识)。
可以理解的是,由于本实施例中传输链路迁移装置130并未移出主寻呼区P-RNA,因此,原本锚点在传输链路管理装置110侧用户PDU会话数据会话的 传输并不需要进行改动,也即针对锚点在传输链路管理装置110侧的用户PDU会话数据会话,其PDU会话数据传输通道并不需要进行迁移。因此,通常而言,传输链路管理装置110存储传输链路迁移装置130在传输链路管理装置110侧UE上下文信息的位置不会发生变化,P-RNA也不会发生变化。所以,通常,传输链路管理装置110在发送的迁移响应消息中并不需要包括新主索引标识和新P-RNA信息,但在本实施例的一些示例当中,如果传输链路管理装置110想要趁着此次传输链路迁移装置130上下文迁移和PDU会话数据传输通道的迁移的机会重新配置P-RNA或改变传输链路迁移装置130在本侧的UE上下文信息的存储位置,则可以在迁移响应消息中同时携带新辅基站新配置的新主索引标识和新P-RNA信息。
在前面的示例当中,已经介绍了传输链路迁移装置130从原S-RNA移入新S-RNA时,对PDU会话数据传输通道的管理方案,本实施例还提出一种针对传输链路迁移装置130在原S-RNA内移动时PDU会话数据传输通道的管理方案:
在原S-RNA中存在至少两个辅基站时(即N大于等于2时),可以在各个辅基站上均存储传输链路迁移装置130在原辅基站的UE上下文信息,而对于核心网而言,其在向传输链路迁移装置130传输某一目标PDU会话数据时,因为会向原S-RNA中的各辅基站均发送该目标PDU会话数据,因此可以保证原S-RNA内所有辅基站都可以获取到针对传输链路迁移装置130的目标PDU会话数据。这样,只要传输链路迁移装置130处于原S-RNA内,原S-RNA内的各辅基站总有途径与传输链路迁移装置130进行数据传输。所以,对于传输链路迁移装置130而言,无论传输链路迁移装置130的无线测量结果如何,只要其确定自身当前所在位置仍处于原S-RNA内,则传输链路迁移装置130可以不必与传输链路管理装置110侧进行信令交互。
所以,在本实施例的一些示例当中,当传输链路建立装置120获取到传输链路迁移装置130在原辅基站侧的UE上下文信息之后,可以将该UE上下文信息发送给其所属的S-RNA(即新S-RNA)内所有的辅基站进行保存,在其中一种示例当中,传输链路建立装置120可以通过本基站的Xn接口将UE上下文信息发送给新S-RNA中的各辅基站。而在另一种示例中,传输链路建立装置120是通过传输链路管理装置110向新S-RNA中的各辅基站发送传输链路迁移装置130UE上下文信息的:传输链路建立装置120通过本基站的Xn接口将传输链路迁移装置130的UE上下文信息发送给传输链路管理装置110,然后让传输链路管理装置110将该UE上下文信息发送给新S-RNA中的各辅基站。
可以理解的是,本实施例提供的传输链路管理方法和传输链路建立方法、传输链路迁移方法不仅可以应用于双连接操作的情景,也适合一个传输链路迁 移装置130同时与S-RNA内多个辅基站连接的情景,即多连接操作的场景。
基于本实施例提供的传输链路管理装置和传输链路建立装置,在传输链路管理装置通过Suspend流程将传输链路迁移装置配置进入到空口非激活态后,如果传输链路迁移装置进行移动,只要传输链路迁移装置不移出原S-RNA的范围,则由于原S-RNA中所有辅基站均保存在传输链路迁移装置的UE上下文信息,因此,传输链路迁移装置在根据无线测量结果监测到自己离开某一原辅基站的服务区域后,可以不必同传输链路管理装置进行信令交互,因为在这种情况下,当有针对传输链路迁移装置的下行传输需求或传输链路迁移装置有上行传输需求时,都可以直接通过RACH和RRC连接恢复流程进行空口无线链路恢复,然后进行用户PDU会话数据会话的传输。
另外,当传输链路迁移装置根据自己的无线测量结果确定自己因为移动,已经离开了原S-RNA,并进入了新S-RNA,则其可以向传输链路管理装置发送迁移请求消息,让传输链路管理装置根据该迁移请求消息确定能够在后续为传输链路迁移装置提供服务的传输链路建立装置,然后将原本建立在核心网与原辅基站间的用于承载目标PDU会话数据的PDU会话数据传输通道迁移到核心网与传输链路建立装置之间,这样,当有针对传输链路迁移装置的下行传输需求或传输链路迁移装置有上行传输需求时,也还可以继续通过RACH和RRC连接恢复流程进行空口无线链路恢复,然后进行用户PDU会话数据会话的传输。从而避免因为传输链路迁移装置的移动而导致传输链路迁移装置从双连接模式/多连接模式回退到单连接模式,需要通过传输链路管理装置与核心网之间进行大量信令交互才能再次进入双连接模式/多连接模式,影响用户体验,以及造成核心网侧与传输链路管理装置侧信令开销大的问题。
实施例八:
本实施将在实施例七的基础上对传输链路管理装置、传输链路迁移装置进行进一步介绍,请参见图14与图15:在本实施例中,传输链路管理装置140不仅包括迁移请求接收模块141、上下文发送模块142、辅基站地址获取模块143以及辅基站地址发送模块144,还包括移出请求接收模块145以及主基站地址发送模块146。其中迁移请求接收模块141、上下文发送模块142、辅基站地址获取模块143以及辅基站地址发送模块144四者的作用同实施例七中迁移请求接收模块、上下文发送模块、辅基站地址获取模块以及辅基站地址发送模块的作用相似,而移出请求接收模块145则用于接收终端在移出原S-RNA但未进入任何新S-RNA时发送的移出请求消息;主基站地址发送模块146用于根据移出请求消息将承载目标PDU会话数据的PDU会话数据传输通道从原辅基站处迁移 到主基站。
图15示出的传输链路迁移装置150除了包括无线测量模块151、迁移请求发送模块152以外,还包括移出请求发送模块153。
本实施例中的传输链路迁移装置150可以部署在终端上,其中无线测量模块151和迁移请求发送模块152以及移出请求发送模块153的功能均可以通过终端的处理器与通信装置共同实现。
传输链路管理装置140可以部署在主基站上,其中,迁移请求接收模块141、上下文发送模块142、辅基站地址获取模块143以及辅基站地址发送模块144、移出请求接收模块145以及主基站地址发送模块146的功能均可以通过主基站的处理器控制通信装置实现。
在实施例二中已经介绍了传输链路迁移装置150移动的两种情景,而实施例七中提供了一种可以适用于在移动情景一下对传输链路进行管理的传输链路迁移装置、传输链路管理装置,而本实施例中提供的传输链路迁移装置150、传输链路管理装置140还可以用于在移动情景二下进行传输链路的管理:
假定在某一时刻,传输链路管理装置140确定传输链路迁移装置150在传输链路管理装置140、辅基站均没有用户PDU会话数据会话传输,因此传输链路管理装置140可以执行空口Suspend流程,控制释放掉传输链路迁移装置150与传输链路管理装置140之间的空口无线链路以及传输链路迁移装置150与辅基站间的空口无线链路。在本实施例中,传输链路迁移装置150可以拥有同一个或两个及以上的辅基站间的空口无线链路。
在传输链路管理装置140控制释放传输链路迁移装置150在空口的空口无线链路后,可以降低维持空口无线链路给传输链路迁移装置150带来的功耗,以及减少对无线资源的占用,同时也可以降低空口无线链路带来的干扰。在传输链路管理装置140控制传输链路迁移装置150进入RRC_INACTIVE状态后,传输链路迁移装置150的无线测量模块151可以继续进行无线测量。这里所说的无线测量可以是RRM无线测量。
在本实施例中,传输链路迁移装置150在处于无线链路非激活态时,无线测量模块151可以基于主、辅基站侧之前给出的RRM测量参数,继续对主、辅基站各自所在RAT域内的潜在目标服务小区,进行RRM测量,从而能够及时感知自己当前移动到了哪些主辅基站的服务小区集合之下。
如果无线测量模块151确定传输链路迁移装置150已经移出了原S-RNA,但并未计入任何新S-RNA时,移出请求发送模块153可以向传输链路管理装置140发送移出请求消息,在本实施例的一些示例中,移出请求消息和迁移请求消 息类似,都可以通过RRC Connection Resume Request消息发送。和迁移请求消息相比,移出请求消息能够表征传输链路迁移装置150当前的移动情景属于情景二,而如果传输链路迁移装置150向传输链路管理装置140发送的是迁移请求消息,则说明传输链路迁移装置150当前的移动情景属于前述情景一。因此,当传输链路迁移装置150的迁移请求消息和移出请求消息均通过RRC Connection Resume Request消息发送时,对应迁移请求消息RRC Connection Resume Request消息中,至少包括能够表征移动情景一的指示,而对应于移出请求消息的RRC Connection Resume Request消息中也应该至少包括能够表征移动情景二的指示信息。
传输链路管理装置140的移出请求接收模块145在接收移出请求消息后,可以确定传输链路迁移装置150当前只是移出了原S-RNA,并未进入到新S-RNA,因此,在这种情况下,没有新辅基站可以承载原本由原辅基站承载的目标PDU会话数据,为了保证后续对目标PDU会话数据的正常承载,传输链路管理装置140需要获取到传输链路迁移装置150在原辅基站侧的UE上下文信息,并将原本用于承载目标PDU会话数据的PDU会话数据传输通道自原辅基站迁移到本基站上。
在本实施例中,传输链路管理装置140可以从原辅基站获取传输链路迁移装置150的UE上下文信息,从原辅基站处获取传输链路迁移装置150的UE上下文信息时,传输链路管理装置140可以通过向原辅基站发送Retrieve UE Context Request消息而发起上下文获取请求。当然,如果为了方便传输链路迁移装置150在原S-RNA内自由移动而让原S-RNA中每一个辅基站中均存储有传输链路迁移装置150的UE上下文信息,则传输链路管理装置140也可以从原S-RNA中除原辅基站以外的其他辅基站上获取传输链路迁移装置150的UE上下文信息。另外,如果传输链路管理装置140上原本就存储有传输链路迁移装置150在原辅基站侧的UE上下文信息,则传输链路管理装置140也可以不必再从原S-RNA中的辅基站上获取。
可以理解的是,将原本用于承载目标数据会话的网络传输链路迁移到传输链路管理装置140上,实际上也就是在传输链路管理装置140与核心网之间建立用于承载目标数据会话的网络传输链路。所以,传输链路管理装置140不仅需要知晓核心网为传输目标数据会话而分配的上行地址,同时还需要为承载该目标PDU会话数据分配传输链路管理装置140侧的下行地址,即主基站下行地址。该主基站下行地址包括传输层地址与隧道地址标识。分配主基站下行地址之后,主基站地址发送模块146会将该主基站下行地址发送给核心网。
在传输链路管理装置140获取到传输链路迁移装置150在原辅基站侧的UE 上下文信息后,主基站地址发送模块146可以将向核心网侧发送链路修改指示消息(PDU Session Resource Modify Indication),在链路修改指示消息中可以包括传输链路管理装置140为承载目标PDU会话数据而分配的主基站下行地址。
由于需要创建的PDU会话数据传输通道实际介于传输链路管理装置140与核心网UPF网元之间,而传输链路管理装置140与UPF网元之间没有控制面传输链路,因此,主基站地址发送模块146实际上是先将链路修改指示发送给核心网的AMF/SMF网元,然后由AMF/SMF网元将该主基站下行地址发送给UPF网元的。核心网在获取到传输链路管理装置140分配的主基站下行地址之后,可以在UPF网元与传输链路管理装置140之间建立起用传输目标PDU会话数据的PDU会话数据传输通道。
在本实施例中,当传输链路管理装置140与核心网之间成功建立起用于传输目标PDU会话数据的PDU会话数据传输通道后,传输链路管理装置140可以控制原辅基站释放起所保存的传输链路迁移装置150的UE上下文信息,同时,如果原S-RNA中各辅基站均保存了传输链路迁移装置150的UE上下文信息,则传输链路管理装置140可以控制原S-RNA中的各辅基站均释放传输链路迁移装置150的UE上下文信息。
类似地,针对实施例一中的方案,在新辅基站与核心网之间建立起用于传输目标PDU会话数据的PDU会话数据传输通道后,传输链路管理装置140也可以控制原辅基站释放其原本存储的传输链路迁移装置150的在原辅基站侧的UE上下文信息。或者在原S-RNA中各辅基站均保存传输链路迁移装置150在原辅基站侧的UE上下文信息的情况下,控制原S-RNA的所有辅基站均进行传输链路迁移装置150UE上下文信息的释放流程。
在本实施例的一些示例当中,传输链路管理装置140还可以在获取到传输链路迁移装置150在原辅基站的UE上下文信息之后,向传输链路迁移装置150发送移出响应消息,在移出响应消息中可以包括新主索引标识,该新主索引标识由主基站配置,能够表征传输链路管理装置140存储传输链路迁移装置150的UE上下文信息的位置。另外,传输链路管理装置140如果需要改变P-RNA的配置,也可以将新P-RNA信息携带在移出响应消息中一同发送给传输链路迁移装置150,毕竟向传输链路迁移装置150发送移出响应消息时,传输链路管理装置140本来就需要与传输链路迁移装置150进行信令交互,因此如果传输链路管理装置140趁此机会对P-RNA的配置进行修改,并将修改后的新P-RNA信息携带在移出响应消息中发送给传输链路迁移装置150,则可以减少与传输链路迁移装置150的间的信令交互。
在本实施例的一些示例中,移出请求消息可以通过RRC Connection Resume  Reject(RRC连接恢复拒绝)消息发送给传输链路迁移装置150。类似地,如果传输链路迁移装置150的移动情景属于情景一,则传输链路管理装置140发送给传输链路迁移装置150的迁移响应消息也可以通过RRC Connection Resume Reject消息进行发送。
在本实施例中,当传输链路迁移装置通过无线测量结果确定自己移出原S-RNA且并未进入任何新S-RNA后,可以向传输链路管理装置发送移出请求消息,从而使传输链路管理装置了解到自己已经离开原S-RNA。传输链路管理装置根据移出请求消息,对原本应当由原辅基站承载目标PDU会话数据回流到主基站侧,从而使得核心网与终端之间可以通过主基站来传输目标PDU会话数据。使得终在进行前述场景二的移动后,如果有目标PDU会话数据需要传输,终端与核心网之间仍存在承载目标PDU会话数据的PDU会话数据传输通道,避免终端移出原S-RNA后,目标PDU会话数据无法进行传输的问题,增加了传输链路迁移装置自由活动的范围,提升了用户侧的通信体验。
实施例九:
本实施例提供一种存储介质,该存储介质中可以存储有一个或多个可供一个或多个处理器读取、编译并执行的计算机程序,在本实施例中,该存储介质可以存储传输链路管理程序、传输链路建立程序以及传输链路迁移程序中的至少一个,其中传输链路管理程序可供一个或多个处理器执行实现前述实施例一至六中介绍的任意一种传输链路管理方法的步骤。传输链路建立程序可供一个或多个处理器执行实现前述实施例一至六中介绍的任意一种传输链路建立方法的步骤。传输链路迁移程序可供一个或多个处理器执行实现前述实施例一至六中介绍的任意一种传输链路迁移方法的步骤。
本实施例还提供一种基站,请参见图16示出的基站的硬件结构示意图:
基站16包括第一处理器161、第一存储器162以及用于连接第一处理器161与第一存储器162的第一通信总线163,其中第一存储器162可以为前述存储有传输链路管理程序的存储介质。第一处理器161可以读取第一存储器162中存储的传输链路管理程序,进行编译并执行实现实施例一至六中介绍的任意一种传输链路管理方法的步骤。或者第一存储器162可以为前述存储有传输链路建立程序的存储介质。第一处理器161可以读取第一存储器162中存储的传输链路建立程序,进行编译并执行实现实施例一至六中介绍的任意一种传输链路建立方法的步骤。基站16实现实施例一至六中上传输链路管理方法的细节以及基站16实现实施例一至六中传输链路建立方法的细节可以参见前述实施例的介绍,这里不再赘述。
本实施例还提供一种终端,请参见图17示出的终端的硬件结构示意图:
终端17包括第二处理器171、第二存储器172以及用于连接第二处理器171与第二存储器172的第二通信总线173,其中第二存储器172可以为前述存储有传输链路迁移程序的存储介质。第二处理器171可以读取第二存储器172中存储的传输链路迁移程序,进行编译并执行实现实施例一至六中介绍的任意一种传输链路迁移方法的步骤。终端17实现实施例一至六中上传输链路迁移方法的细节可以参见前述实施例的介绍,这里不再赘述。
本实施例提供基站、终端及存储介质,在终端在移出原S-RNA并进入新S-RNA后,主基站可以帮助建立新辅基站与核心网间的PDU会话数据传输通道。通过该方案,即使终端移出原S-RNA并进入新S-RNA,核心网侧仍然可以将原本应由原辅基站承载的目标PDU会话数据发送到能够为终端提供服务的新辅基站上,让终端可以在移出原S-RNA后,可以继续接收到原本通过原辅基站发送的目标PDU会话数据。所以,避免了终端在移出S-RNA之后只能恢复到单连接,然后通过配置才能回到双/多连接模式的问题,减少了基站侧与核心网间的信令交互,同时,由于终端不会因为自己的移动而回退到单连接模式,因此,相对于现有方案能够有效提升用户的通信体验。
本领域技术人员应当明白的是,本发明各实施例中提供的上行传输、通信方法、装置及基站、终端、存储介质,不仅可以应用于5G通信系统,也可以应用于未来任何一个通信系统中。
显然,本领域的技术人员应该明白,上述本发明实施例的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在计算机存储介质(ROM/RAM、磁碟、光盘)中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。所以,本申请不限制于任何特定的硬件和软件结合。
以上内容是结合具体的实施方式对本发明实施例所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (29)

  1. 一种传输链路管理方法,包括:
    接收终端在移出原辅集群区S-RNA并进入新S-RNA后发送的迁移请求消息,所述S-RNA由N个辅基站的服务区域组成,且所述N大于1时,所述S-RNA内多个所述辅基站可通信;
    将所述终端在所述原S-RNA中原辅基站侧的终端UE上下文信息发送给所述新S-RNA中的新辅基站;
    获取所述新辅基站为承载目标协议数据单元PDU会话数据而分配的辅基站下行地址,所述辅基站下行地址用于核心网设备与所述新辅基站建立PDU会话数据传输通道,所述目标PDU会话数据为原本由所述原辅基站承载的用户PDU会话数据;
    将所述辅基站下行地址发送给所述核心网设备。
  2. 如权利要求1所述的传输链路管理方法,其中,所述迁移请求消息中包括指示所述终端当前所处服务小区所属基站的指示信息,在所述将所述终端在所述原S-RNA中原辅基站侧的UE上下文信息发送给所述新S-RNA中的新辅基站之前,还包括:
    根据所述指示信息确定所述终端当前所处服务小区所属的基站为所述原S-RNA之外的新辅基站。
  3. 如权利要求2所述的传输链路管理方法,其中,所述指示信息包括所述终端当前所处服务小区所属基站的基站标识、所述终端当前所处服务小区的小区标识和服务小区物理层标识三种中的至少一种。
  4. 如权利要求1所述的传输链路管理方法,在所述将所述终端在所述原S-RNA中原辅基站侧的UE上下文信息发送给所述新S-RNA中的新辅基站之前,还包括:
    根据所述迁移请求消息携带的原辅索引标识S-I-RNTI从所述原辅基站处获取所述终端在所述原辅基站侧的UE上下文信息,所述原S-I-RNTI表征所述原辅基站存储所述终端UE上下文信息的位置;
    或,
    在本基站上预先备份存储所述终端在所述原辅基站侧的UE上下文信息。
  5. 如权利要求4所述的传输链路管理方法,其中,所述根据所述迁移请求消息携带的原S-I-RNTI从所述原辅基站处获取所述终端在所述原辅基站侧的UE上下文信息包括:
    通过本基站的Xn接口向所述原辅基站发送UE上下文获取请求,所述UE 上下文获取请求中包括所述迁移请求消息携带的原S-I-RNTI;
    通过本基站的所述Xn接口接收所述原辅基站根据所述UE上下文获取请求发送的所述终端在所述原辅基站侧的UE上下文信息。
  6. 如权利要求1所述的传输链路管理方法,其中,所述将所述终端在所述原S-RNA中原辅基站侧的UE上下文信息发送给所述新S-RNA中的新辅基站包括:将所述终端的在所述原辅基站侧的UE上下文信息携带在辅基站SN添加请求消息中发送给所述新S-RNA中的新辅基站;
    所述获取所述新辅基站为承载所述目标PDU会话数据而分配的辅基站下行地址包括:接收所述新辅基站通过SN添加响应消息发送的所述辅基站下行地址。
  7. 如权利要求1所述的传输链路管理方法,在所述获取所述新辅基站为承载所述目标PDU会话数据而分配的辅基站下行地址之后,还包括:
    向所述终端发送包含所述新辅基站新配置的新S-I-RNTI和新S-RNA信息的迁移响应消息,所述新S-I-RNTI表征所述新辅基站存储所述终端在所述新辅基站侧的UE上下文信息的位置,所述新S-RNA信息用于对所述新S-RNA进行指示。
  8. 如权利要求1-7任一项所述的传输链路管理方法,还包括:
    接收所述终端在移出所述原S-RNA但未进入任何新S-RNA时发送的移出请求消息;
    存储所述终端在所述原辅基站侧的UE上下文信息;
    向所述核心网设备发送本基站为承载所述目标PDU会话数据所分配的主基站下行地址;
    在所述核心网设备获得所述主基站下行地址后,根据所述终端的UE上下文信息与所述核心网设备建立承载目标PDU会话数据的PDU会话数据传输通道。
  9. 如权利要求8所述的传输链路管理方法,其中,所述移出请求消息中包括原S-I-RNTI,所述原S-I-RNTI表征所述原辅基站存储所述终端在所述原辅基站侧UE上下文信息的位置;在所述存储所述终端在所述原辅基站侧的UE上下文信息之前,还包括:
    通过本基站的Xn接口向所述原辅基站发送UE上下文获取请求,所述UE上下文获取请求中包括所述原S-I-RNTI;
    通过本基站的所述Xn接口接收所述原辅基站根据所述UE上下文获取请求发送的所述终端在所述原辅基站侧UE上下文信息。
  10. 如权利要求8所述的传输链路管理方法,在所述存储所述终端在所述原辅基站侧的UE上下文信息之后,还包括:
    向所述终端发送包含新主索引标识P-I-RNTI的移出响应消息,所述新主索引标识表征本基站存储所述UE上下文信息的位置。
  11. 如权利要求1-7任一项所述的传输链路管理方法,其中,所述N大于1时,所述S-RNA内多个所述辅基站之间能传输所述终端在所述原辅基站侧的UE上下文信息及用户PDU会话数据中的至少一种。
  12. 如权利要求11所述的传输链路管理方法,其中,所述N大于等于2时,所述原S-RNA中的多个辅基站上均存储有与所述原辅基站侧相同的UE上下文信息。
  13. 一种传输链路建立方法,包括:
    接收主基站发送的终端在原辅集群区S-RNA中原辅基站侧的终端UE上下文信息,所述S-RNA由N个辅基站的服务区域组成,且所述N大于1时,所述S-RNA内多个所述辅基站可通信;
    向所述主基站发送为承载目标协议数据单元PDU会话数据而分配的辅基站下行地址,所述目标PDU会话数据为原本由所述原S-RNA中原辅基站承载的用户PDU会话数据;
    在核心网设备获取到所述辅基站下行地址后,根据所述UE上下文信息与所述核心网设备建立用于传输所述目标PDU会话数据的PDU会话数据传输通道。
  14. 如权利要求13所述的传输链路建立方法,其中,所述接收主基站发送的终端在原S-RNA中原辅基站侧的UE上下文信息包括:接收所述主基站通过辅基站SN添加请求消息发送的终端在原S-RNA中原辅基站侧的UE上下文信息;
    所述向所述主基站发送为承载目标PDU会话数据而分配的辅基站下行地址包括:通过SN添加响应消息向所述主基站发送为承载目标PDU会话数据而分配的辅基站下行地址。
  15. 如权利要求14所述的传输链路建立方法,其中,所述SN添加响应消息中还包括本基站新配置的新辅索引标识S-I-RNTI,所述新S-I-RNTI表征本基站存储所述终端在本基站侧UE上下文信息的位置。
  16. 如权利要求13-15任一项所述的传输链路建立方法,还包括:
    将所述终端在本基站侧的UE上下文信息发送给本基站所在新S-RNA中的多个辅基站进行备份保存。
  17. 如权利要求16所述的传输链路建立方法,其中,所述将所述终端在本基站侧的UE上下文信息发送给本基站所在新S-RNA中的多个辅基站进行备份保存包括:
    通过本基站的Xn接口将所述终端在本基站侧的UE上下文信息发送给所述新S-RNA中的多个辅基站;
    或,
    通过本基站的Xn接口将所述终端在本基站侧的UE上下文信息发送给所述主基站,以供所述主基站中继将所述终端的UE上下文信息发送给所述新S-RNA中的多个辅基站。
  18. 一种传输链路迁移方法,包括:
    处于无线链路非激活态时,对辅基站服务小区进行无线测量;
    在根据测量结果确定自己当前已移出原辅集群区S-RNA并进入新S-RNA后,向主基站发送迁移请求消息,所述迁移请求消息用于请求所述主基站将自己在所述原S-RNA原辅基站侧的终端UE上下文信息及协议数据单元PDU会话数据传输通道迁移到所述新S-RNA中的新辅基站,所述S-RNA由N个辅基站的服务区域组成,且所述N大于1时,所述S-RNA内多个所述辅基站可通信。
  19. 如权利要求18所述的传输链路迁移方法,其中,所述对辅基站服务小区进行无线测量包括:根据所述原辅基站之前配置的测量参数对辅基站服务小区集合进行无线测量;
    所述迁移请求消息中包括对辅基站服务小区集合的测量结果信息。
  20. 如权利要求18所述的传输链路迁移方法,其中,所述迁移请求消息中包括原辅索引标识S-I-RNTI,所述原S-I-RNTI表征自己在所述原辅基站侧的UE上下文信息的存储位置。
  21. 如权利要求18所述的传输链路迁移方法,其中,所述向主基站发送迁移请求消息之后,还包括:
    接收所述主基站发送的包含所述新辅基站新配置的新S-I-RNTI和新S-RNA信息的迁移响应消息,所述新S-I-RNTI表征所述新辅基站存储所述UE上下文信息的位置,所述新S-RNA信息用于对所述新S-RNA进行指示。
  22. 如权利要求18所述的传输链路迁移方法,在所述向主基站发送迁移请求消息之后,还包括:
    在有上行传输需求的情况下,向所述主基站发送激活态恢复请求消息,所述激活态恢复请求消息包括待传的上行用户PDU会话数据关联的数据无线承载 DRB标识或PDU会话标识或待传的上行信令关联的信令无线承载SRB标识。
  23. 如权利要求18-22任一项所述的传输链路迁移方法,在所述对辅基站服务小区进行无线测量之后,还包括:
    在根据测量结果确定自己当前已移出原S-RNA但未进入任何新S-RNA的情况下,向所述主基站发送移出请求消息,所述移出请求消息包括包括对辅基站服务小区集合的测量结果信息,用于请求所述主基站将自己在所述原S-RNA原辅基站侧的UE上下文信息及PDU会话数据传输通道迁移到所述主基站上。
  24. 一种传输链路管理装置,包括:
    迁移请求接收模块,设置为接收终端在移出原辅集群区S-RNA并进入新S-RNA后发送的迁移请求消息,所述S-RNA由N个辅基站的服务区域组成,且所述N大于1时,所述S-RNA内多个所述辅基站可通信;
    上下文发送模块,设置为将所述终端在所述原S-RNA中原辅基站侧的终端UE上下文信息发送给所述新S-RNA中的新辅基站;
    辅基站地址获取模块,设置为获取所述新辅基站为承载目标PDU会话数据而分配的辅基站下行地址,所述辅基站下行地址用于核心网设备与所述新辅基站建立PDU会话数据传输通道,所述目标PDU会话数据为原本由所述原辅基站承载的用户PDU会话数据;
    辅基站地址发送模块,设置为将所述辅下行地址发送给所述核心网设备。
  25. 一种传输链路建立装置,包括:
    上下文发送模块,设置为接收主基站发送的终端在原辅集群区S-RNA中原辅基站侧的UE上下文信息,所述S-RNA由N个辅基站的服务区域组成,且所述N大于1时,所述S-RNA内多个所述辅基站可通信;
    辅基站地址传输模块,设置为向所述主基站发送为承载目标协议数据单元PDU会话数据而分配的辅基站下行地址,所述目标PDU会话数据为原本由所述原S-RNA中原辅基站承载的用户PDU会话数据;
    建链模块,设置为在核心网设备获取到所述辅基站下行地址后,根据所述UE上下文信息与所述核心网设备建立用于传输所述目标PDU会话数据的PDU会话数据传输通道。
  26. 一种传输链路迁移装置,包括:
    无线测量模块,设置为处于无线链路非激活态时,对辅基站服务小区进行无线测量;
    迁移请求发送模块,设置为在根据测量结果确定自己当前已移出原S-RNA 并进入新S-RNA后,向主基站发送迁移请求消息,所述迁移请求消息用于请求所述主基站将自己在所述原辅集群区S-RNA原辅基站侧的终端UE上下文信息及协议数据单元PDU会话数据传输通道迁移到所述新S-RNA中的新辅基站,所述S-RNA由N个辅基站的服务区域组成,且所述N大于1时,所述S-RNA内多个所述辅基站可通信。
  27. 一种基站,包括处理器、存储器及通信总线;
    所述通信总线设置为实现处理器和存储器之间的连接通信;
    所述处理器设置为执行所述存储器中存储的传输链路管理程序,以实现如权利要求1至12中任一项所述的传输链路管理方法;或所述处理器设置为执行所述存储器中存储的传输链路建立程序,以实现如权利要求13至17中任一项所述的传输链路建立方法。
  28. 一种终端,包括处理器、存储器及通信总线;
    所述通信总线设置为实现所述处理器和所述存储器之间的连接通信;
    所述处理器设置为执行所述存储器中存储的传输链路迁移程序,以实现如权利要求18至23中任一项所述的传输链路迁移方法。
  29. 一种存储介质,存储有传输链路管理程序、传输链路建立程序以及传输链路迁移程序中的至少一个,所述传输链路管理程序可被至少一个处理器执行,以实现如权利要求1至12中任一项所述的传输链路管理方法;所述传输链路建立程序可被至少一个处理器执行,以实现如权利要求13至17中任一项所述的传输链路建立方法;所述传输链路迁移程序可被至少一个处理器执行,以实现如权利要求18至23中任一项所述的传输链路迁移方法。
PCT/CN2019/090466 2018-06-12 2019-06-10 传输链路管理、建立、迁移方法、装置、基站及存储介质 WO2019237999A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810603741.7A CN110602750B (zh) 2018-06-12 2018-06-12 传输链路管理、建立、迁移方法、装置、基站及存储介质
CN201810603741.7 2018-06-12

Publications (1)

Publication Number Publication Date
WO2019237999A1 true WO2019237999A1 (zh) 2019-12-19

Family

ID=68841914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/090466 WO2019237999A1 (zh) 2018-06-12 2019-06-10 传输链路管理、建立、迁移方法、装置、基站及存储介质

Country Status (2)

Country Link
CN (1) CN110602750B (zh)
WO (1) WO2019237999A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021180202A1 (zh) * 2020-03-12 2021-09-16 华为技术有限公司 一种辅助链路补偿通话的系统、装置及芯片
CN113543368A (zh) * 2020-04-14 2021-10-22 中国移动通信有限公司研究院 网络连接的控制方法、装置、相关设备及存储介质
CN114079984A (zh) * 2020-08-14 2022-02-22 大唐移动通信设备有限公司 一种mbs业务数据传输方法和网络侧装置及设备
CN116546662A (zh) * 2023-07-04 2023-08-04 中国电信股份有限公司 实现双连接的方法和装置、主节点和辅节点

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113498024B (zh) * 2020-04-03 2023-03-24 维沃移动通信有限公司 传输通道变更方法、接入网设备及核心网设备
CN114258155B (zh) * 2020-09-21 2023-10-27 大唐移动通信设备有限公司 一种网络连接控制方法、装置、主基站及辅基站
CN112333788B (zh) * 2020-11-13 2022-10-11 武汉虹旭信息技术有限责任公司 N2接口切换场景下的会话管理方法及装置
CN113141673B (zh) * 2021-04-08 2023-03-17 成都极米科技股份有限公司 多链路系统中链路配置方法、设备、系统及存储介质
CN113573344A (zh) * 2021-06-21 2021-10-29 深圳震有科技股份有限公司 一种基于5g的smf会话检测方法及终端

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1933663A (zh) * 2005-09-14 2007-03-21 北京三星通信技术研究有限公司 Lte系统中支持用户设备移动性的方法
CN105103613A (zh) * 2013-03-29 2015-11-25 株式会社Kt 与多个基站连接的状况下的切换方法及其装置
US9585072B1 (en) * 2015-07-22 2017-02-28 Sprint Spectrum L.P. SCell triggered handover notwithstanding good PCell condition

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102404809A (zh) * 2010-09-07 2012-04-04 中兴通讯股份有限公司 数据传输通道迁移方法及系统
CN104469869B (zh) * 2013-09-23 2019-08-13 中兴通讯股份有限公司 一种小小区切换方法和基站
WO2015077982A1 (zh) * 2013-11-29 2015-06-04 富士通株式会社 信息交互装置、基站和通信系统
CN105228229A (zh) * 2014-06-27 2016-01-06 中兴通讯股份有限公司 用户设备ue资源处理方法、装置、基站及终端
CN105848222B (zh) * 2015-01-16 2021-05-28 北京三星通信技术研究有限公司 用于切换的方法和基站设备
WO2016138937A1 (en) * 2015-03-03 2016-09-09 Nokia Solutions And Networks Oy Connection suspend and resume requests for wireless network
CN107343299B (zh) * 2016-05-03 2021-01-05 株式会社Kt 用于改变ue的连接状态的方法和装置
US10225780B2 (en) * 2016-06-01 2019-03-05 Htc Corporation Device and method of handling radio resource control connection resume procedure
CN107666693B (zh) * 2016-07-29 2019-09-17 电信科学技术研究院 终端路径转移、控制终端状态转换的方法、终端及基站
CN107666692B (zh) * 2016-07-29 2019-09-17 电信科学技术研究院 一种状态转移方法、用户终端和基站
US10582523B2 (en) * 2016-08-13 2020-03-03 Qualcomm Incorporated Method and apparatus for secondary base station mobility

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1933663A (zh) * 2005-09-14 2007-03-21 北京三星通信技术研究有限公司 Lte系统中支持用户设备移动性的方法
CN105103613A (zh) * 2013-03-29 2015-11-25 株式会社Kt 与多个基站连接的状况下的切换方法及其装置
US9585072B1 (en) * 2015-07-22 2017-02-28 Sprint Spectrum L.P. SCell triggered handover notwithstanding good PCell condition

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021180202A1 (zh) * 2020-03-12 2021-09-16 华为技术有限公司 一种辅助链路补偿通话的系统、装置及芯片
CN113543368A (zh) * 2020-04-14 2021-10-22 中国移动通信有限公司研究院 网络连接的控制方法、装置、相关设备及存储介质
CN113543368B (zh) * 2020-04-14 2024-05-14 中国移动通信有限公司研究院 网络连接的控制方法、装置、相关设备及存储介质
CN114079984A (zh) * 2020-08-14 2022-02-22 大唐移动通信设备有限公司 一种mbs业务数据传输方法和网络侧装置及设备
CN114079984B (zh) * 2020-08-14 2023-08-04 大唐移动通信设备有限公司 一种mbs业务数据传输方法和网络侧装置及设备
CN116546662A (zh) * 2023-07-04 2023-08-04 中国电信股份有限公司 实现双连接的方法和装置、主节点和辅节点
CN116546662B (zh) * 2023-07-04 2024-02-09 中国电信股份有限公司 实现双连接的方法和装置、主节点和辅节点

Also Published As

Publication number Publication date
CN110602750B (zh) 2023-03-21
CN110602750A (zh) 2019-12-20

Similar Documents

Publication Publication Date Title
WO2019237999A1 (zh) 传输链路管理、建立、迁移方法、装置、基站及存储介质
WO2018145671A1 (zh) 跨系统的切换方法和装置、计算机存储介质
CN109076496B (zh) 用于改变终端连接状态的方法和装置
EP2947951B1 (en) Double-connection implementation method and base station
US11778550B2 (en) Methods and apparatus relating to inactive mode in a wireless communications network
CN110636561B (zh) 信息传输方法及装置、存储介质、电子装置
CN108617013B (zh) 用于无线网络系统之间的数据传送控制的方法及设备
CN106162765B (zh) 数据的传输方法及装置
CN109565785B (zh) 一种寻呼方法和寻呼设备
US11968576B2 (en) Address coordination method, device, base station, SMF network element and storage medium
CN106941700B (zh) 一种数据传输方法及装置和基站及ue
KR20120000859A (ko) 무선 통신 시스템 및 그 시스템에서 핸드오버 수행 방법
EP3944716A1 (en) Session processing method and apparatus, network device and storage medium
WO2018171463A1 (zh) 移动性管理方法、装置及存储介质
EP3751953A1 (en) Rrc state transition method, terminal, cu, du, and computer-readable storage medium
US11576101B2 (en) Air interface inactive state maintaining method and device
EP3979699A1 (en) Data processing method and apparatus in dual connectivity re-establishment
EP3018963B1 (en) Method and apparatus for controlling of ddn message, and computer readable medium for the same
EP3506675B1 (en) Method and apparatus for updating network side position area
CN111417154A (zh) 多连接中保持终端业务连续性的方法、网络单元
WO2018094884A1 (zh) 通信控制方法、无线控制单元、用户终端及核心网控制器
CN108307465B (zh) 一种轻连接用户设备的连接控制的方法及设备
EP3457750B1 (en) Ue context resume
CN114051286B (zh) 终端上下文处理方法及装置
CN111417167B (zh) 用户移动时支持边缘计算的方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19820619

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16/04/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19820619

Country of ref document: EP

Kind code of ref document: A1