WO2019237839A1 - 测量小区的方法及终端设备 - Google Patents

测量小区的方法及终端设备 Download PDF

Info

Publication number
WO2019237839A1
WO2019237839A1 PCT/CN2019/084263 CN2019084263W WO2019237839A1 WO 2019237839 A1 WO2019237839 A1 WO 2019237839A1 CN 2019084263 W CN2019084263 W CN 2019084263W WO 2019237839 A1 WO2019237839 A1 WO 2019237839A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
threshold
cell
value
equal
Prior art date
Application number
PCT/CN2019/084263
Other languages
English (en)
French (fr)
Inventor
才宇
何彦召
王键
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19819638.8A priority Critical patent/EP3787333A4/en
Priority to US16/973,357 priority patent/US11496935B2/en
Publication of WO2019237839A1 publication Critical patent/WO2019237839A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • H04W36/0094Definition of hand-off measurement parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • the present application relates to the field of communications, and more particularly, to a method for measuring a cell and a terminal device.
  • a terminal device In a long term evolution (LTE) system, a terminal device first selects a public land mobile network (PLMN) after it is powered on. Once the terminal device selects a PLMN, the terminal device selects a suitable cell camping belonging to the PLMN, wherein the terminal device selects a suitable cell based on the cell selection criteria. When a terminal device resides in a cell, the terminal device searches periodically to find and select a better cell and camps according to the cell reselection criteria. The cell where the terminal equipment resides is the serving cell of the terminal equipment. When a terminal device resides in a cell, the terminal device measures or evaluates the serving cell and neighboring cells.
  • PLMN public land mobile network
  • a method for measuring or evaluating a cell by a terminal device is known.
  • the terminal device performs measurement or evaluation of a serving cell or a neighboring cell of the terminal device according to a discontinuous reception (DRX) period, without considering the actual situation of the serving cell or the neighboring cell.
  • DRX discontinuous reception
  • the present application provides a method for measuring a cell and a terminal device.
  • the terminal device can flexibly select a period for measuring or evaluating the serving cell or the neighboring cell according to different conditions of the serving cell or the neighboring cell of the terminal device.
  • a method for measuring a cell including: if the terminal device determines that the cell meets a first preset condition, the terminal device uses the first period as a period for measuring or evaluating the cell; if the terminal device It is determined that the cell does not meet the first preset condition, and the terminal device uses the second period as a period for measuring or evaluating the cell.
  • the first period is not equal to the second period. In some embodiments, the first period may be larger than the second period.
  • the first preset condition includes that a measured amount of the cell meets a second preset condition, and the terminal device does not perform a neighboring cell Measure, the cell meets at least one of a cell selection criterion or the cell meets a cell reselection criterion; or, if the cell is a neighboring cell of the terminal device, the first preset condition includes the cell's The measurement quantity satisfies at least one of a third preset condition, the cell does not satisfy the cell selection criterion, or the cell does not satisfy the cell reselection criterion.
  • the terminal device determines different measurement or evaluation cycles according to whether the serving cell or the neighboring cell of the terminal device meets the first preset condition. It can flexibly configure the period for measuring or evaluating the serving cell or the neighboring cell of the terminal device according to different conditions of the serving cell or the neighboring cell of the terminal device. And according to the method for measuring a cell provided in the embodiment of the present application, different first preset conditions are preset according to the relationship between the cell and the terminal device.
  • the first preset condition may be that the serving cell meets the cell selection criterion or the serving cell meets the cell reselection criterion, that the terminal device does not perform neighbor cell measurement, or that the measurement amount of the serving cell meets the first Two preset conditions.
  • the first preset condition may be that the neighbor cell does not satisfy the cell selection criterion or the neighbor cell does not satisfy the cell reselection criterion or that the measurement value of the neighbor cell meets the third preset condition.
  • the above-mentioned first preset condition may be predefined.
  • the neighbor cell measurement not performed by the terminal device may be that the neighbor cell measurement is not triggered by the terminal device.
  • the terminal device does not perform neighbor cell measurement, specifically, the terminal device does not perform low priority neighbor cell measurement.
  • the neighboring cell measurement is a co-frequency neighboring cell measurement.
  • the neighboring cell measurement is an inter-frequency neighboring cell measurement.
  • the terminal device may determine whether to perform neighbor cell measurement according to a measurement amount of the serving cell.
  • the terminal device can reduce the frequency of measuring or evaluating the serving cell, thereby reducing the power consumption of the terminal device.
  • the terminal device can reduce the frequency of measuring or evaluating the neighboring cell, thereby reducing the power consumption of the terminal device.
  • the first period is greater than the second period.
  • the first period used when the terminal device determines that the cell meets the first preset condition is greater than the second period used when the terminal device determines that the cell does not meet the first preset condition. It can be understood that when the cell meets the first preset condition, the terminal device reduces the frequency of measuring or evaluating the cell, which can save the terminal device measuring or evaluating the power consumption of the cell.
  • the second period may be a DRX period of the terminal device
  • the second period may be a multiple of a DRX period of the terminal device.
  • the determining, by the terminal device, that a cell meets a first preset condition includes: determining, by the terminal device N times, that the cell satisfies the first A preset condition, or the terminal device determines that a cell meets the first preset condition within a first period of time, where N is a positive integer.
  • the terminal device determines that the cell meets the first preset condition, it is comprehensively considered based on the results of multiple determinations, which can increase the accuracy of the terminal device to determine that the cell meets the first preset condition.
  • the terminal equipment reduces the measurement or evaluation frequency because the cell meets the first preset condition at a certain time.
  • the first period of time is X third periods, where X is a positive integer.
  • the third period may be the first period or the second period.
  • the method further includes:
  • the terminal device determines a measurement amount of the cell according to at least one of the cell-specific reference signal CRS, a synchronization signal block SSB, a channel state information reference signal CSI-RS, or a demodulation reference signal DMRS.
  • the method for measuring a cell further includes: the terminal device according to the cell-specific reference signal CRS, a synchronization signal block SSB, and a channel At least one of a status information reference signal CSI-RS or a demodulation reference signal DMRS determines a measurement amount of the cell.
  • the SSB may also be a synchronization signal / physical broadcast channel block (synchronization signal, PBCH block, SS / PBCH block).
  • synchronization signal PBCH block, SS / PBCH block.
  • the terminal device can determine the measurement amount of the cell according to various signals, which increases the flexibility of the terminal device to obtain the measurement amount of the cell.
  • the measurement quantity of the cell includes: a reference signal received power of the cell, RSRP, a value based on the RSRP, and the cell At least one of a reference signal reception quality RSRQ, a value based on the RSRQ, a ratio of the power of a signal sent by the cell to interference and noise power, or a value based on the SINR.
  • the measurement amount of the cell may be one of a variety of measurable or calculable values, which can increase flexibility for the terminal device to determine the measurement amount of the cell.
  • the second preset condition includes: a value based on the RSRP is greater than or equal to a first threshold value, and a value based on the RSRQ Is greater than or equal to the second threshold, the value based on the SINR is greater than or equal to the third threshold, the RSRP is greater than or equal to the fourth threshold, the RSRQ is greater than or equal to the fifth threshold, or the SINR is greater than or equal to the sixth threshold At least one.
  • the value based on the RSRP is Srxlev used in the cell selection criterion (the parameter Srxlev can be understood as a reception level parameter).
  • the value based on the RSRQ is Squal used in the cell selection criterion (the parameter Squal can be understood as the reception quality).
  • At least one of the first threshold, the second threshold, the third threshold, the fourth threshold, the fifth threshold, and the sixth threshold is based on The mobility of the terminal device is determined.
  • At least one of the first threshold, the second threshold, the third threshold, the fourth threshold, the fifth threshold, and the sixth threshold is based on a target The threshold is determined, wherein the target threshold is a threshold used by the terminal device to determine to perform intra-frequency measurement and / or a threshold value used by the terminal device to determine to perform inter-frequency measurement.
  • the first threshold value is the threshold value used by the terminal device to determine to perform intra-frequency measurement plus a first offset; or the first threshold value is the The threshold determined by the terminal device to perform inter-frequency measurement plus a second offset; or, the first threshold value is the threshold value used by the terminal device to determine intra-frequency measurement and the threshold value used by the terminal device to determine inter -frequency The maximum of the measured thresholds, plus a third offset.
  • the second threshold value is the threshold value for determining intra-frequency measurement of the terminal device plus a fourth offset; or the first threshold value is the threshold value for the terminal device. Determining a threshold value for performing inter-frequency measurement plus a fifth offset; or the first threshold value is the threshold value for determining the intra-frequency measurement for the terminal device and the inter-frequency setting for determining the inter-frequency for the terminal device The maximum of the measured thresholds, plus a sixth offset.
  • the method for measuring a cell provided in the embodiment of the present application, according to a relationship between a cell and a terminal device, different conditions that a cell measurement quantity should satisfy are determined.
  • the cell is a serving cell of a terminal device
  • various parameters included in the measurement of the serving cell should be greater than or equal to a corresponding preset threshold.
  • the third preset condition includes: a value based on the RSRP is less than or equal to a seventh threshold value, and a value based on the RSRQ Is less than or equal to the eighth threshold, the value based on the SINR is less than or equal to the ninth threshold, the RSRP is less than or equal to the tenth threshold, the RSRQ is less than or equal to the eleventh threshold, or the SINR is less than or equal to the twelfth At least one of the thresholds.
  • the method for measuring a cell provided in the embodiment of the present application, according to a relationship between a cell and a terminal device, different conditions that a cell measurement quantity should satisfy are determined.
  • various parameters included in the measurement of the neighbor cell should be less than or equal to a corresponding preset threshold.
  • the value based on the RSRP is Rn used in the cell reselection criterion.
  • At least one of the seventh threshold, the eighth threshold, the ninth threshold, the tenth threshold, the eleventh threshold, and the twelfth threshold is Determined according to the mobility of the terminal device.
  • At least one of the seventh threshold, the eighth threshold, the ninth threshold, the tenth threshold, the eleventh threshold, and the twelfth threshold is It is determined according to the measurement of the serving cell of the terminal.
  • the seventh threshold is Rs used in the cell reselection criterion plus a seventh offset.
  • the N times include N consecutive times.
  • the terminal device determines that the cell meets the first preset condition N consecutive times, and can determine that the cell has always met the first preset condition for a certain period of time. Accuracy of preset conditions.
  • the second preset condition includes that the RSRP or a range of values based on the RSRP is less than or equal to a thirteenth threshold .
  • the range of variation of the RSRQ or the value based on the RSRQ is less than or equal to the fourteenth threshold, the range of the variation of the SINR or the value of the SINR based on the at least one of the fifteenth threshold.
  • the third preset condition includes that the RSRP or a range of values based on the RSRP is less than or equal to a thirteenth threshold .
  • the range of variation of the RSRQ or the value based on the RSRQ is less than or equal to the fourteenth threshold, the range of the variation of the SINR or the value of the SINR based on the at least one of the fifteenth threshold.
  • the premise that the measurement quantity of the cell satisfies a preset condition further includes that a variation range of the multiple measurement quantity is kept within an acceptable threshold range. It can ensure the stability of multiple measurements and increase the accuracy of the measurements.
  • the RSRP or a range of values based on the RSRP is less than or equal to a thirteenth threshold includes: the RSRP or based on the RSRP The variation range of the difference between the maximum value and the minimum value of the RSRP value is less than or equal to the thirteenth threshold value; or, the absolute value of the difference between the RSRP and the first reference value is less than or equal to the thirteenth threshold value, or, based on The absolute value of the difference between the value of the RSRP and the second reference value is less than or equal to the thirteenth threshold; the range of change of the RSRQ or the value based on the RSRQ is less than or equal to the fourteenth threshold includes: the RSRQ or based on The variation range of the difference between the maximum value and the minimum value of the RSRQ value is less than or equal to the fourteenth threshold value; or the absolute value of the difference between the RSRQ and the third reference value
  • whether a change amount of a cell measurement amount is within an acceptable range may be determined based on multiple times.
  • the maximum and minimum values of the cell measurement amount in the first preset condition may be determined multiple times.
  • the difference between the measured values to determine whether the variation range of the measured quantity is less than a preset threshold, and the absolute value of the difference between the measured value of the cell in the first preset condition and the preset reference value may be determined at least once, Determine whether the variation range of the measurement quantity is less than a preset threshold.
  • At least one of the thirteenth threshold, the fourteenth threshold, and the fifteenth threshold is determined according to the mobility of the terminal device.
  • the mobility of the terminal device includes the moving speed of the terminal device, the terminal device is stationary, the terminal device is moving, the terminal device is at a low speed, and the terminal device is at At least one of medium speed, the terminal device is at a high speed, the terminal device is at a normal mobility state, the terminal device is at a medium mobility state, and the terminal device is at a high mobility state.
  • a terminal device for measuring a cell is provided, and the terminal device can be used to perform the operations of the terminal device in the first aspect and any possible implementation manner of the first aspect.
  • the terminal device includes means corresponding to the steps or functions described in the first aspect, which may be the terminal device of the first aspect.
  • the steps or functions may be implemented by software, or by hardware, or by a combination of hardware and software.
  • a communication system includes a processor.
  • the processor is configured to support the server to perform the functions in the first aspect and its various implementations.
  • the server may further include a transceiver for supporting the server to receive or send information.
  • the server may further include a memory, which is used to be coupled to the processor and stores program instructions and data necessary for the server.
  • the server includes a memory and a processor, where the memory is used to store a computer program, and the processor is used to call and run the computer program from the memory, so that the server executes any of the foregoing first aspects and various implementations thereof. A method of measuring cells.
  • a computer-readable storage medium stores a program that causes a server to execute the method for measuring a cell in any one of the first aspect and various implementation manners.
  • the computer-readable storage medium is used for storing computer software instructions used by the server, and includes a program designed to execute the method of the first aspect.
  • a chip system includes a processor, and is configured to support a server to implement the functions involved in the first aspect and various implementation manners.
  • the method for measuring a cell and the terminal device provided in this application flexibly selects a period for measuring or evaluating a cell according to different conditions of the cell, which can increase the flexibility of the terminal device for measuring or evaluating a cell.
  • FIG. 1 is a schematic diagram of an example of a system to which a method for measuring a cell according to an embodiment of the present application is applied;
  • FIG. 1 is a schematic diagram of an example of a system to which a method for measuring a cell according to an embodiment of the present application is applied;
  • FIG. 2 is a schematic diagram of a method for measuring a cell according to an embodiment of the present application
  • FIG. 3 is a schematic diagram of a measurement or evaluation cycle of a terminal equipment measurement cell
  • FIG. 4 is a schematic diagram of a measurement or evaluation cycle of another terminal device measuring a cell
  • FIG. 5 is a schematic diagram of a measurement or evaluation cycle of another terminal device measuring a cell
  • FIG. 6 is a schematic diagram of a measurement or evaluation cycle of another terminal device measuring a cell
  • FIG. 7 is a schematic diagram of a terminal device 10 for measuring a cell according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a terminal device 20 provided in this application.
  • a component may be, but is not limited to, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and / or a computer.
  • an application running on a computing device and a computing device can be components.
  • One or more components can reside within a process and / or thread of execution, and a component can be localized on one computer and / or distributed between 2 or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • a component may, for example, be based on a signal having one or more data packets (e.g., data from two components that interact with another component between a local system, a distributed system, and / or a network, such as the Internet that interacts with other systems through signals) Communicate via local and / or remote processes.
  • data packets e.g., data from two components that interact with another component between a local system, a distributed system, and / or a network, such as the Internet that interacts with other systems through signals
  • the embodiments of the present application can be applied to various communication systems, for example, a global mobile communication (GSM) system, a code division multiple access (CDMA) system, and a broadband code division multiple access (wideband code division multiple access (WCDMA) system, general packet radio service (GPRS), long term evolution (LTE) system, advanced long term evolution (LTE-A) system , Universal mobile communication system (universal mobile telecommunication system, UMTS), wireless local area networks (WLAN), wireless fidelity (WiFi), or next-generation communication systems, etc.
  • the next-generation communication system may include, for example, , A fifth-generation (fifth-generation, 5G) communication system.
  • D2D device-to-device
  • M2M machine-to-machine
  • MTC machine-type communication
  • V2V vehicle-to-vehicle
  • Terminal equipment can also be referred to as user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user Agent or user device.
  • the terminal device can be a station (staion, ST) in the WLAN, a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, and personal digital processing (personal digital assistant, PDA) devices, handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, and next-generation communication systems, such as terminal devices in 5G networks or Terminal equipment and the like in a future evolved public land mobile network (PLMN) network.
  • PLMN public land mobile network
  • the terminal device may also be a wearable device.
  • Wearable devices can also be referred to as wearable smart devices, which are the general name for applying wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a device that is worn directly on the body or is integrated into the user's clothing or accessories. Wearable devices are not only a hardware device, but also powerful functions through software support, data interaction, and cloud interaction.
  • Broad-spectrum wearable smart devices include full-featured, large-sized, full or partial functions that do not rely on smart phones, such as smart watches or smart glasses, and only focus on certain types of application functions, and need to cooperate with other devices such as smart phones Use, such as smart bracelets, smart jewelry, etc. for physical signs monitoring.
  • the terminal device may also be a terminal device in an Internet of Things (IoT) system.
  • IoT Internet of Things
  • the IoT is an important part of the future development of information technology. Its main technical feature is to pass items through communication technology. It is connected to the network, so as to realize the intelligent network of human-machine interconnection and internet of things.
  • the network device may be a base station (BS), and the base station may have various forms, such as a macro base station, a micro base station, a relay station, and an access point.
  • BS base station
  • the base station may have various forms, such as a macro base station, a micro base station, a relay station, and an access point.
  • the base station involved in this embodiment of the present application may be a base station in NR, where the base station in NR may also be referred to as a transmission and reception point (TRP) or a next-generation Node B (next generation Node B).
  • TRP transmission and reception point
  • gNB next-generation Node B
  • BTS base transceiver station
  • NodeB, NB Node B
  • WCDMA WCDMA
  • evolutionary node B evolutional node in an LTE system
  • the network device involved in the embodiment of the present application may also include a device that is deployed in a wireless access network and is capable of performing wireless communication with a terminal.
  • the network device may be a relay station, an access point, a network device in a future 5G network, or a public land mobile that is evolving in the future.
  • Network equipment in a public network PLMN
  • PLMN public network
  • eNB evolved Node B
  • RNC radio network controller
  • Node B, NB node B
  • BSC Network Equipment Controller
  • BTS Network Equipment Transceiver Station
  • BBU Baseband Unit
  • the device that implements the function of the network device may be a network device, or may be a device that supports the network device to implement the function, such as a chip, a circuit, or other device.
  • the technical solution provided in the embodiment of the present application is described by taking the device that implements the functions of the network device as a network device as an example.
  • a network device provides services for a cell
  • a terminal device communicates with the network device through a transmission resource (for example, a frequency domain resource or a spectrum resource) used by the cell
  • the cell may be a network device (For example, a base station)
  • the corresponding cell can belong to a macro base station or a small cell.
  • the small cell here can include: urban cell, micro cell, and pico cell. (pico cell), femto cell (femto cell), etc. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-rate data transmission services.
  • multiple carriers on the carrier in the LTE system or 5G system can work on the same frequency at the same time.
  • the above carrier and cell concepts can be considered equivalent.
  • CA carrier aggregation
  • the concept of a carrier is the same as a cell.
  • a UE accessing a carrier and accessing a cell are equivalent.
  • the terminal device or the network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • This hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and a memory (also called main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through processes, such as a Linux operating system, a Unix operating system, an Android operating system, an iOS operating system, or a windows operating system.
  • This application layer contains applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiment of the present application does not specifically limit the specific structure of the execution subject of the method provided by the embodiment of the present application, as long as the program that records the code of the method provided by the embodiment of the application can be run to provide the program according to the embodiment of the application.
  • the communication may be performed by using the method described above.
  • the method execution subject provided in the embodiment of the present application may be a terminal device or a network device, or a function module in the terminal device or the network device that can call a program and execute the program.
  • various aspects or features of the embodiments of the present application may be implemented as a method, an apparatus, or an article of manufacture using standard programming and / or engineering techniques.
  • article of manufacture encompasses a computer program accessible from any computer-readable device, carrier, or medium.
  • computer-readable media may include, but are not limited to: magnetic storage devices (eg, hard disks, floppy disks, or magnetic tapes, etc.), optical disks (eg, compact discs (CDs), digital versatile discs (DVDs) Etc.), smart cards and flash memory devices (for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.).
  • various storage media described herein may represent one or more devices and / or other machine-readable media used to store information.
  • machine-readable medium may include, but is not limited to, wireless channels and various other media capable of storing, containing, and / or carrying instruction (s) and / or data.
  • FIG. 1 is a schematic diagram of a system 100 capable of applying a method for measuring a cell according to an embodiment of the present application.
  • the wireless communication system 100 may include one or more network devices, for example, network device # 1, network device # 2, 112, and network device # 3 shown in FIG. 1; the wireless communication system 100 It may also include one or more terminal devices, for example, the terminal device 121 shown in FIG. 1.
  • the wireless communication system 100 can also support CoMP transmission, that is, multiple cells or multiple network devices can cooperate to participate in data transmission of a terminal device or jointly receive data sent by a terminal device, or multiple cells or multiple network devices can perform Cooperative scheduling or cooperative beamforming.
  • the multiple cells may belong to the same network device or different network devices, and may be selected according to channel gain or path loss, received signal strength, received signal instruction, and the like.
  • one of the network device # 1 to the network device # 3 may be a serving network device, and the serving network device may refer to a wireless air interface protocol as A terminal device is a network device that provides at least one of RRC connection, non-access stratum (NAS) mobility management, and security input services.
  • network device # 2 and network device # 3 may be cooperative network devices.
  • the serving network device can send control signaling to the terminal device, the cooperative network device can send data to the terminal device; or the serving network device can send control signaling to the terminal device, and the serving network device and the cooperative network device can send data to the terminal device; Or, both the serving network device and the cooperative network device can send control signaling to the terminal device, and both the serving network device and the cooperative network device can send data to the terminal device; or, the cooperative network device can send control signaling to the terminal device and service At least one of the network device and the cooperative network device may send data to the terminal device; or, the cooperative network device may send control signaling and data to the terminal device.
  • This embodiment of the present application does not specifically limit this.
  • FIG. 1 is only for easy understanding, and schematically shows network device # 1 to network device # 3 and terminal device, but this should not constitute any limitation to this application, and the wireless communication system may include more Or a smaller number of network devices, or a larger number of terminal devices, the network devices communicating with different terminal devices can be the same network device, or they can be different network devices, and the network communicating with different terminal devices The number of devices may be the same or different, which is not limited in this application.
  • the network device # 1 and the terminal device 121 are taken as an example to briefly explain the communication between the network device and the terminal device.
  • Network device # 1111 may include 1 antenna or multiple antennas.
  • the network device # 1 may additionally include a transmitter chain and a receiver chain.
  • Those of ordinary skill in the art can understand that each of them can include multiple components related to signal transmission and reception (such as a processor, a modulator, Router, demodulator, demultiplexer or antenna, etc.).
  • the terminal device 121 can communicate with multiple terminal devices.
  • the terminal device 121 may be, for example, a cellular phone, a smart phone, a portable computer, a handheld communication device, a handheld computing device, a satellite radio, a global positioning system, a PDA, and / or any other suitable device for communicating on the wireless communication system 100.
  • the terminal device 121 communicates with the network device # 1, where the network device # 1 sends information to the terminal device 121 through a forward link (also referred to as a downlink), and through a reverse link (Also called uplink) Network device # 1 receives information from terminal device 121.
  • a forward link also referred to as a downlink
  • a reverse link Also called uplink
  • the forward link and the reverse link use different frequency bands.
  • FDD frequency division duplex
  • the forward link and the reverse link may use a common frequency band.
  • Each antenna (or antenna group consisting of multiple antennas) and / or area designed for communication is called a sector of network device # 1 111.
  • the antenna group may be designed to communicate with terminal devices in a sector covered by the network device # 1 111.
  • Network device # 1 can send signals to all terminal devices in its corresponding sector through a single antenna or multiple antenna transmit diversity.
  • the transmitting antenna of the network device # 1 can also use beamforming to improve the signal-to-noise ratio of the forward link.
  • network device # 1 uses beamforming to send randomly scattered terminal devices 121 in the relevant coverage area.
  • signalling mobile devices in adjacent cells experience less interference.
  • the network device # 1 and the terminal device 121 may be a wireless communication transmitting device and / or a wireless communication receiving device.
  • the wireless communication transmitting device may encode the data for transmission.
  • the wireless communication transmitting device may obtain (for example, generate, receive from another communication device, or save in a memory, etc.) a certain number of data bits to be transmitted to the wireless communication receiving device through a channel.
  • Such data bits may be contained in a transport block (or transport blocks) of data, which may be segmented to generate a plurality of code blocks.
  • the communication system 100 may be a PLMN network, a D2D network, an M2M network, an IoT network, or other networks.
  • FIG. 1 is only a simplified schematic diagram of an example.
  • the network may also include other network devices or terminal devices, which are not shown in FIG. 1. .
  • the cell selection criterion is hereinafter also referred to as a cell selection criterion S.
  • the cell selection criterion S is a selection criterion that satisfies the following conditions.
  • RSRP reference signal received power
  • RSRQ reference signal received quality
  • the embodiment of the present application is not limited to the cell measured by the terminal device.
  • Q rxlevmeas is the RSRP of the cell measured by the terminal device
  • Q qualmeas is the RSRQ of the cell measured by the terminal device
  • Q rxlevmin is used to indicate the minimum required reception level in the cell measured by the terminal device.
  • the size of the Q rxlevmin value can be configured by the network device.
  • Q qualmin is used to indicate the minimum required quality level in the cell measured by the terminal device.
  • the size of the Q rxlevmin value can be configured by the network device.
  • Q rxlevminoffset for instructing the terminal device to shift Q rxlevmin performed when accessing public land mobile network (visited public land mobile network, VPLMN ) search residing on a high-priority PLMN.
  • public land mobile network visited public land mobile network, VPLMN
  • Q qualminoffset for instructing the terminal device to shift Q qualmin performed when accessing public land mobile network (visited public land mobile network, VPLMN ) search residing on a high-priority PLMN.
  • public land mobile network visited public land mobile network, VPLMN
  • Pcompensation is determined based on P EMAX1 , P EMAX2 and P PowerClass .
  • P EMAX1 and P EMAX2 are configured by network equipment.
  • P PowerClass is defined in the standard protocol and is the maximum uplink transmit power determined by the power priority of the terminal equipment.
  • Q offsettemp is also configured by the network device.
  • the RSRP and RSRQ of the cell are determined according to a cell-specific reference signal (CRS).
  • CRS cell-specific reference signal
  • the RSRP of a cell is the average power on the resource element (resource element, RE) carrying the CRS within the measurement bandwidth.
  • RSRP is used to indicate the received power of the signal being measured.
  • RSRQ is used to indicate the received quality of the signal being measured, and can be determined according to RSRP and received signal strength indicator (RSSI).
  • the terminal device When a terminal device resides in a cell, the terminal device searches regularly and seeks to select a better cell according to the cell reselection criteria.
  • a terminal device in a radio resource control idle (RRC IDLE) state needs to measure the RSRP and RSRQ of the serving cell at least every discontinuous reception (DRX) period.
  • RRC IDLE radio resource control idle
  • intra-frequency intra-frequency measurements are measurements of intra-frequency intra-frequency cells
  • inter-frequency inter-frequency measurements are measurements of inter-frequency inter-frequency cells.
  • the intra-frequency measurement may include RSRP and RSRQ measurements on an intra-frequency cell
  • the inter-frequency measurement may include RSRP and RSRQ measurements on an inter-frequency cell.
  • the first condition is: Srxlev ⁇ S IntraSearchP and Squal ⁇ S IntraSearchQ .
  • the second condition is: Srxlev ⁇ S nonIntraSearchP or Squal ⁇ S nonIntraSearchQ .
  • S IntraSearchP S IntraSearchQ
  • S nonIntraSearchP S nonIntraSearchQ
  • S nonIntraSearchQ are configured by network equipment.
  • the EUTRAN_Intra performs RSRP and RSRQ measurement of the intra-frequency cell at least every T measure .
  • the terminal device performs RSRP and RSRQ measurement of the inter-frequency cell at least every T measure, EUTRAN_Inter , or K * T measure, EUTRAN_Inter .
  • K is a positive integer.
  • K may be the number of inter-frequency carriers.
  • K is a multiple of the number of inter-frequency carriers.
  • T measure EUTRAN_Intra
  • T measure EUTRAN_Inter
  • the terminal device sorts the serving cell and neighboring cells according to the R criterion.
  • the terminal device may sort the R criteria for all cells satisfying the above-mentioned cell selection criterion S.
  • the R criterion is defined as follows.
  • R n Q meas, n -Qoffset-Qoffset temp + Qoffset SCPTM
  • R s is a cell ranking criterion of the serving cell
  • R n is a cell ranking criterion of the neighboring cell.
  • Q meas is the RSRP of the cell. Specifically, Q meas, s is the RSRP of the serving cell, and Q meas, n is the RSRP of the neighboring cell.
  • Qoffset is determined according to Qoffset s, n and Qoffset frequency , and Qoffset s, n and Qoffset frequency are configured by the network device.
  • Q hyst , Qoffset temp and Qoffset SCPTM are configured by the network device.
  • the terminal device performs cell reselection to the cell.
  • the RSRP of a cell is the synchronization signal-reference signal received power of the cell (synchronization, reference, and received power), or synchronization signal-based and reference-received power (SS-RSRP).
  • the RSRQ of a cell is the synchronization signal-reference signal reception quality (synchronization, reference, and signal reception quality) of the cell, or synchronization signal-based and reference-received quality (SS-RSRQ).
  • SS-RSRP and SS-RSRQ are determined according to a synchronization signal / physical broadcast channel block (synchronization signal and PBCH block).
  • An SS / PBCH block is composed of a primary synchronization signal (PSS), a secondary synchronization signal (SSS), and a physical broadcast channel (PBCH).
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • PBCH physical broadcast channel
  • the SS / PBCH block is simply referred to as a synchronization signal block (SSB).
  • SS-RSRP and SS-RSRQ can be determined according to SSS; or, SS-RSRP and SS-RSRQ can be determined based on SSS and PBCH demodulation reference signals (demodulation reference signals, DMRS) and channel state information reference signals (channel state). information (reference, signal, CSI-RS).
  • demodulation reference signals demodulation reference signals, DMRS
  • channel state information reference signals channel state. information (reference, signal, CSI-RS).
  • the terminal device In the RRC_IDLE state and / or the radio resource control inactive (RRC_INACTIVE) state, the terminal device needs to measure the RSRP and RSRQ of the serving cell at least every DRX cycle.
  • the symbols and values used in the NR to indicate the period during which the terminal device measures the cell may be Different from LTE.
  • the terminal device performs NR_Intra RSRP and RSRQ measurement of the intra-frequency cell at least every T measure .
  • T measure the value of the above-mentioned NR_Intra T measure, may not be the same value EUTRAN_Intra.
  • cell selection criteria and cell reselection criteria may be different. Some parameters in the LTE guidelines may not appear in the NR guidelines. In addition, some parameters may have different meanings.
  • the current NR protocol is defined as follows.
  • R n Q meas, n + Qoffset
  • the cell selection criterion is still based on the cell's RSRP and the cell's RSRQ.
  • the definition of the cell reselection criterion is still based on the RSRP of the cell.
  • the expression in addition to the above-described R & lt s Q meas, s may be other than the parameter does not appear, the expression in addition to R n Q meas, n parameters may not occur.
  • the updated NR protocol may also be defined as follows.
  • R s Q meas, s + Q hyst -Qoffset temp
  • R n Q meas, n -Qoffset-Qoffset temp
  • one or more of the parameters other than Q meas, s in the above expression of R s may not appear, and parameters other than Q meas, n in the expression of R n One or more of them may be absent.
  • the cell selection criteria the expressions in the cell selection criteria, the cell reselection criteria, and the expressions in the cell reselection criteria may be different from the above examples.
  • FIG. 2 is a schematic diagram of a method for measuring a cell according to an embodiment of the present application, which includes two steps S110-S120. The two steps are described in detail below.
  • the terminal device determines that the cell meets the first preset condition, the first period is used as a period for measuring or evaluating the cell.
  • the terminal device determines whether the cell satisfies the first preset condition according to whether the cell is a serving cell of the terminal device or a neighboring cell of the terminal device, and includes the following two cases:
  • the first type if the cell is a serving cell of the terminal device.
  • the first preset condition includes:
  • the measurement quantity of the serving cell satisfies the second preset condition, the terminal device does not perform neighbor cell measurement, the serving cell meets at least one of a cell selection criterion, or the serving cell meets a cell reselection criterion.
  • the neighbor cell measurement not performed by the terminal device may be that the neighbor cell measurement is not triggered by the terminal device.
  • the terminal device does not perform neighbor cell measurement, specifically, the terminal device does not perform low priority neighbor cell measurement.
  • the neighboring cell measurement is a co-frequency neighboring cell measurement.
  • the neighboring cell measurement is an inter-frequency neighboring cell measurement.
  • the terminal device may determine whether to perform neighbor cell measurement according to a measurement amount of the serving cell.
  • the terminal device may determine whether to perform neighbor cell measurement according to the method in the prior art.
  • the measurement amount of the serving cell is determined according to the measurement of the signal sent by the serving cell.
  • the signal sent by the serving cell can be understood as a signal sent by a network device.
  • the measurement quantity of the serving cell is determined by the terminal device according to the specific reference signal CRS of the serving cell, or the synchronization signal block SSB of the serving cell, or the channel state information reference signal CSI-RS of the serving cell, or the demodulation reference of the serving cell PBCH. At least one of the signals DMRS is determined.
  • the measurement value of the serving cell includes the reference signal received power RSRP of the serving cell described above, or based on the value of the RSRP, or the reference signal reception quality of the serving cell, RSRQ, or based on the RSRQ value, or the serving cell.
  • RSRP reference signal received power
  • RSRQ reference signal reception quality of the serving cell
  • RSRQ reference signal reception quality of the serving cell
  • a ratio SINR of the power of the transmitted signal to the interference and noise power or at least one of the values based on the SINR.
  • RSRP is used to indicate the received power of the signal being measured.
  • RSRQ is used to indicate the received quality of the signal being measured, and can be determined according to RSRP and RSSI, and RSSI is used to indicate the received signal strength.
  • SINR is used to represent the ratio of the measured signal power to interference and noise power.
  • the RSRP of the serving cell can be used to indicate the received power of signals transmitted by the serving cell
  • the RSRQ of the serving cell can be used to indicate the reception quality of signals sent by the serving cell, which can be determined according to RSRP and RSSI, and RSSI is used to indicate the received signal strength;
  • the SINR of the serving cell can be used to represent the ratio of the power of the transmitted signal to the interference and noise power of the serving cell.
  • the measurement quantity of the serving cell may also be the SS-RSRP of the serving cell, or the SS-RSRQ of the serving cell, where SS-RSRP is similar to RSRP and SS-RSRQ is similar to RSRQ.
  • the terminal device may determine SS-RSRP and SS-RSRQ based on the SSB.
  • the SSB includes PSS, SSS, and PBCH, and the terminal device determines SS-RSRP and SS-RSRQ according to the SSS therein.
  • determining the SS-RSRP and SS-RSRQ (or RSRP and RSRQ) according to the DMRS of the CRS, SSB, CSI-RS, or PBCH can be based on the determination method in the prior art. I won't repeat them here.
  • the measurement quantity of the serving cell meeting the second preset condition includes:
  • the value of RSRP based on the serving cell is greater than or equal to the first threshold, the value of RSRQ based on the serving cell is greater than or equal to the second threshold, the value of SINR based on the serving cell is greater than or equal to the third threshold, and the RSRP of the serving cell is greater than or equal to At least one of the four thresholds, the RSRQ of the serving cell is greater than or equal to the fifth threshold, or the SINR of the serving cell is greater than or equal to the sixth threshold.
  • the value of the RSRP based on the serving cell may be Srxlev used in the cell selection criteria, and the value of the RSRQ based on the serving cell may be Squal used in the cell selection criteria.
  • the value of Srxlev is determined according to the RSRP of the serving cell, and the value of Squal is determined according to the RSRQ of the serving cell.
  • Rs Q meas, s + Q hyst -Qoffset temp
  • R s Q meas, s -Qoffset
  • R s Q meas, s + Q hyst
  • serving cell based on the value of RSRQ may be Rsq.
  • Q hyst , Qoffset and Qoffset temp may be defined in the existing standards.
  • the first threshold, the second threshold, the third threshold, the fourth threshold, the fifth threshold, and the sixth threshold may be configured by a network device, may be predefined, or may be determined by a terminal.
  • the first threshold value, the second threshold value, the third threshold value, the fourth threshold value, the fifth threshold value, and the sixth threshold value are configured by a network device, and the network device is configured through system information.
  • the network device may be configured by the first threshold value, the second threshold value, the fourth threshold value, and the fifth threshold value as follows:
  • thresP represents the first threshold
  • thresQ represents the second threshold
  • thresP represents the fourth threshold
  • thresQ represents the fifth threshold
  • the first threshold or the fourth threshold is a threshold (S IntraSearchP or S nonIntraSearchP ) for triggering the terminal device to perform the intra-frequency measurement or the inter-frequency measurement
  • the second threshold or the fifth threshold is for triggering the terminal device.
  • the threshold for performing the above intra-frequency measurement or inter-frequency measurement (S IntraSearchQ or S nonIntraSearchQ ).
  • the first threshold value is determined by the terminal device according to the mobility of the terminal device.
  • the mobility of a terminal device can include the terminal device's moving speed, the terminal device is stationary, the terminal device is moving, the terminal device is at a low speed, the terminal device is at a medium speed, the terminal device is at a high speed, the terminal device is at a normal mobility state, and the terminal device is at At least one of a medium mobility state and a terminal device in a high mobility state.
  • the network device may configure a mapping relationship between the mobility of the terminal device and the first threshold, and the terminal device determines the first threshold according to the mobility and the mapping relationship.
  • the determination of the first threshold value by the terminal device according to mobility may further be specifically that the terminal device determines the first threshold value according to the mobility and the first time length.
  • the first time length may be a first period.
  • the first threshold value is determined according to a threshold value used by the terminal device for determining intra-frequency measurement and / or a threshold value used for the terminal device for determining inter-frequency measurement.
  • the first threshold may further be determined according to the mobility of the terminal device, and a threshold used for the terminal device to determine to perform intra-frequency measurement and / or a threshold value used for the terminal device to determine to perform inter-frequency measurement.
  • a first threshold value for determining the threshold terminal intra-frequency measurements (S IntraSearchP), or a first threshold value for determining the threshold terminal inter-frequency measurements (S nonIntraSearchP), or the first the threshold value (S IntraSearchP) threshold value to determine a terminal device for intra-frequency measurements and determine a terminal device for inter-frequency measurement threshold (S nonIntraSearchP) maximum value.
  • the first threshold value is a threshold value (S IntraSearchP ) for determining the intra-frequency measurement of the terminal device plus an offset
  • the first threshold value is the threshold value (S for determining the inter-frequency measurement of the terminal device (S nonIntraSearchP) plus an offset
  • a first threshold value for determining the threshold terminal intra-frequency measurements (S IntraSearchP) for determining the inter-frequency measurement threshold (S nonIntraSearchP and a terminal device) in The maximum value, plus an offset.
  • the offset may be configured by a network device, or may be predefined, or determined by a terminal device.
  • the terminal device may determine the offset according to the mobility of the terminal device.
  • the mobility of a terminal device can include the terminal device's moving speed, the terminal device is stationary, the terminal device is moving, the terminal device is at a low speed, the terminal device is at a medium speed, the terminal device is at a high speed, the terminal device is at a normal mobility state, and the terminal device is at At least one of a medium mobility state and a terminal device in a high mobility state.
  • the network device can configure the mapping relationship between the mobility and the offset of the terminal device, and the terminal device determines the offset according to its mobility and the mapping relationship.
  • the determination of the offset amount by the terminal device according to the mobility may further specifically be that the terminal device determines the offset amount according to the mobility and the first time length.
  • the first time length may be a first period.
  • the first threshold value is a threshold value (S IntraSearchP ) for determining the intra-frequency measurement by the terminal device, or the first threshold value is a threshold value (S nonIntraSearchP ) for determining the inter-frequency measurement by the terminal device. multiplied by a scaling factor, or the first threshold value is the maximum value for the terminal determines the threshold value of the intra-frequency measurement (S IntraSearchP) and a terminal device for determining the inter-frequency measurement threshold (S nonIntraSearchP) is then Multiply by a scaling factor.
  • the scaling factor may be configured by a network device, or may be predefined, or determined by a terminal device.
  • the terminal device may determine the scaling factor according to the mobility of the terminal device.
  • the mobility of a terminal device can include the terminal device's moving speed, the terminal device is stationary, the terminal device is moving, the terminal device is at a low speed, the terminal device is at a medium speed, the terminal device is at a high speed, the terminal device is at a normal mobility state, and the terminal device is at At least one of a medium mobility state and a terminal device in a high mobility state.
  • the network device can configure the mapping relationship between the mobility of the terminal device and the scaling factor, and the terminal device determines the scaling factor according to its mobility and the mapping relationship.
  • the terminal device determining the scaling factor according to the mobility may further be specifically that the terminal device determines the scaling factor according to the mobility and the first time length.
  • the first time length may be a first period.
  • the first threshold value is zero.
  • the second threshold value is determined by the terminal device according to the mobility of the terminal device.
  • the mobility of a terminal device can include the terminal device's moving speed, the terminal device is stationary, the terminal device is moving, the terminal device is at a low speed, the terminal device is at a medium speed, the terminal device is at a high speed, the terminal device is at a normal mobility state, and the terminal device is at At least one of a medium mobility state and a terminal device in a high mobility state.
  • the network device may configure a mapping relationship between the mobility of the terminal device and the second threshold, and the terminal device determines the second threshold according to the mobility and the mapping relationship.
  • the determination of the second threshold value by the terminal device according to the mobility may further specifically be that the terminal device determines the second threshold value according to the mobility and the first time length.
  • the first time length may be a first period.
  • the second threshold value is determined according to a threshold value used by the terminal device for determining intra-frequency measurement and / or a threshold value used for the terminal device for determining inter-frequency measurement.
  • the second threshold may further be determined according to the mobility of the terminal device, and a threshold used for the terminal device to determine to perform intra-frequency measurement and / or a threshold value used for the terminal device to determine to perform inter-frequency measurement.
  • the second threshold is used to determine the threshold terminal intra-frequency measurements (S IntraSearchQ), or the second threshold is used to determine the threshold terminal inter-frequency measurements (S nonIntraSearchQ), or second threshold is used to determine the terminal device for intra-frequency measurement threshold (S IntraSearchQ) and a terminal device for determining the inter-frequency measurement threshold (S nonIntraSearchQ) maximum value.
  • the second threshold value is a threshold value (S IntraSearchQ ) for the terminal device to determine to perform intra-frequency measurement plus an offset
  • the second threshold value is the threshold value for the terminal device to determine to perform inter-frequency measurement (S nonIntraSearchQ) plus an offset
  • the second threshold is used to determine the threshold terminal intra-frequency measurements (S IntraSearchQ) for determining the inter-frequency measurement threshold (S nonIntraSearchQ and a terminal device) in The maximum value, plus an offset.
  • the offset may be configured by a network device, or may be predefined, or determined by a terminal device.
  • the terminal device may determine the offset according to the mobility of the terminal device.
  • the mobility of a terminal device can include the terminal device's moving speed, the terminal device is stationary, the terminal device is moving, the terminal device is at a low speed, the terminal device is at a medium speed, the terminal device is at a high speed, the terminal device is at a normal mobility state, and the terminal device is at At least one of a medium mobility state and a terminal device in a high mobility state.
  • the network device can configure the mapping relationship between the mobility and the offset of the terminal device, and the terminal device determines the offset according to its mobility and the mapping relationship.
  • the determination of the offset amount by the terminal device according to the mobility may further specifically be that the terminal device determines the offset amount according to the mobility and the first time length.
  • the first time length may be a first period.
  • the threshold value (S IntraSearchQ) the second threshold is a terminal device for determining the intra-frequency measurements multiplied by a scaling threshold value (S nonIntraSearchQ) factor, or the second threshold is a terminal device for determining the inter-frequency measurement multiplied by a scaling factor, or the second threshold value is the maximum value for the terminal determines the threshold value of the intra-frequency measurement (S IntraSearchQ) and a terminal device for determining the inter-frequency measurement threshold (S nonIntraSearchQ) is then Multiply by a scaling factor.
  • the scaling factor may be configured by a network device, or may be predefined, or determined by a terminal device.
  • the terminal device may determine the scaling factor according to the mobility of the terminal device.
  • the mobility of a terminal device can include the terminal device's moving speed, the terminal device is stationary, the terminal device is moving, the terminal device is at a low speed, the terminal device is at a medium speed, the terminal device is at a high speed, the terminal device is at a normal mobility state, and the terminal device is at At least one of a medium mobility state and a terminal device in a high mobility state.
  • the network device can configure the mapping relationship between the mobility of the terminal device and the scaling factor, and the terminal device determines the scaling factor according to its mobility and the mapping relationship.
  • the terminal device determining the scaling factor according to the mobility may further be specifically that the terminal device determines the scaling factor according to the mobility and the first time length.
  • the first time length may be a first period.
  • the second threshold value is zero.
  • the third threshold value is determined by the terminal device according to the mobility of the terminal device.
  • the mobility of a terminal device can include the terminal device's moving speed, the terminal device is stationary, the terminal device is moving, the terminal device is at a low speed, the terminal device is at a medium speed, the terminal device is at a high speed, the terminal device is at a normal mobility state, and the terminal device is at At least one of a medium mobility state and a terminal device in a high mobility state.
  • the network device may configure a mapping relationship between the mobility of the terminal device and the third threshold, and the terminal device determines the third threshold according to the mobility and the mapping relationship.
  • the determination of the third threshold value by the terminal device according to the mobility may further be specifically that the terminal device determines the third threshold value according to the mobility and the first time length.
  • the first time length may be a first period.
  • the fourth threshold is determined by the terminal device according to the mobility of the terminal device.
  • the mobility of a terminal device can include the terminal device's moving speed, the terminal device is stationary, the terminal device is moving, the terminal device is at a low speed, the terminal device is at a medium speed, the terminal device is at a high speed, the terminal device is at a normal mobility state, and the terminal device is at At least one of a medium mobility state and a terminal device in a high mobility state.
  • the network device may configure a mapping relationship between the mobility of the terminal device and the fourth threshold, and the terminal device determines the fourth threshold according to the mobility and the mapping relationship.
  • the determination of the fourth threshold by the terminal device according to the mobility may further be specifically that the terminal device determines the fourth threshold according to the mobility and the first time length.
  • the first time length may be a first period.
  • the fourth threshold value is determined according to a threshold value used by the terminal device for determining intra-frequency measurement and / or a threshold value used for the terminal device for determining inter-frequency measurement.
  • the fourth threshold may further be determined according to the mobility of the terminal device, and a threshold used by the terminal device to determine intra-frequency measurement and / or a threshold value used by the terminal device to determine inter-frequency measurement.
  • the fourth threshold value for determining the threshold terminal intra-frequency measurements (S IntraSearchP), or the fourth threshold value for determining the threshold terminal inter-frequency measurements (S nonIntraSearchP), or fourth the threshold value (S IntraSearchP) threshold value to determine a terminal device for intra-frequency measurements and determine a terminal device for inter-frequency measurement threshold (S nonIntraSearchP) maximum value.
  • the fourth threshold value is a threshold value (S IntraSearchP ) for determining that the terminal device performs intra-frequency measurement plus ((Q rxlevmin + Q rxlevminoffset ) + P compensation + Qoffset temp ).
  • the fourth threshold value is a threshold value (S nonIntraSearchP ) for determining that the terminal device performs inter-frequency measurement plus ((Q rxlevmin + Q rxlevminoffset ) + P compensation + Qoffset temp ).
  • the threshold value of the fourth threshold is a terminal device for determining the intra-frequency measurements with a terminal device for determining the inter-frequency measurement threshold (S nonIntraSearchP) maximum value, plus the ((Q rxlevmin + Q rxlevminoffset ) + P compensation + Qoffset temp ).
  • the fourth threshold value is the threshold value (S IntraSearchP ) used by the terminal device to determine to perform intra-frequency measurement plus ((Q rxlevmin + Q rxlevminoffset ) + P compensation + Qoffset temp ), plus an offset
  • the fourth threshold is the threshold (S nonIntraSearchP ) used by the terminal device to determine the inter-frequency measurement plus ((Q rxlevmin + Q rxlevminoffset ) + P compensation + Qoffset temp ), plus an offset
  • the maximum threshold value (S IntraSearchP) four terminal device for determining the threshold for intra-frequency measurements and determine a terminal device for inter-frequency measurement threshold (S nonIntraSearchP) is, together with the ((Q rxlevmin + Q rxlevminoffset ) + P compensation + Qoffset temp ), plus an offset.
  • the offset may be configured by a network device, or may be predefined, or determined by a terminal device.
  • the terminal device may determine the offset according to the mobility of the terminal device.
  • the mobility of a terminal device can include the terminal device's moving speed, the terminal device is stationary, the terminal device is moving, the terminal device is at a low speed, the terminal device is at a medium speed, the terminal device is at a high speed, the terminal device is at a normal mobility state, and the terminal device is at At least one of a medium mobility state and a terminal device in a high mobility state.
  • the network device can configure the mapping relationship between the mobility and the offset of the terminal device, and the terminal device determines the offset according to its mobility and the mapping relationship.
  • the determination of the offset amount by the terminal device according to the mobility may further specifically be that the terminal device determines the offset amount according to the mobility and the first time length.
  • the first time length may be a first period.
  • the fourth threshold value is a threshold value (S IntraSearchP ) used by the terminal device to determine to perform intra-frequency measurement plus ((Q rxlevmin + Q rxlevminoffset ) + P compensation + Qoffset temp ), and then multiplied by a scaling factor, or,
  • the fourth threshold is the threshold (S nonIntraSearchP ) used by the terminal device to determine the inter-frequency measurement plus ((Q rxlevmin + Q rxlevminoffset ) + P compensation + Qoffset temp ), and then multiplied by a scaling factor, or the fourth threshold determining a terminal device to perform intra-frequency measurement threshold of (S IntraSearchP) with a threshold value (S nonIntraSearchP) a terminal device for inter-frequency measurements to determine the maximum value, plus the ((Q rxlevmin + Q rxlevminoffset) + P compensation + Qoffset temp ), and then multiply by a scaling factor.
  • the scaling factor may be configured by a network device, or may be predefined, or determined by a terminal device.
  • the terminal device may determine a scaling factor according to the mobility of the terminal device.
  • the mobility of a terminal device can include the terminal device's moving speed, the terminal device is stationary, the terminal device is moving, the terminal device is at a low speed, the terminal device is at a medium speed, the terminal device is at a high speed, the terminal device is at a normal mobility state, and the terminal device is at At least one of a medium mobility state and a terminal device in a high mobility state.
  • the network device can configure the mapping relationship between the mobility of the terminal device and the scaling factor, and the terminal device determines the scaling factor according to its mobility and the mapping relationship.
  • the terminal device determining the scaling factor according to the mobility may further be specifically that the terminal device determines the scaling factor according to the mobility and the first time length.
  • the first time length may be a first period.
  • the fourth threshold value is the threshold value (S IntraSearchP ) used by the terminal device to determine to perform intra-frequency measurement multiplied by a scaling factor, plus ((Q rxlevmin + Q rxlevminoffset ) + P compensation + Qoffset temp ), or
  • the four thresholds are used to determine the inter-frequency measurement threshold (S nonIntraSearchP ) of the terminal device multiplied by a scaling factor, plus ((Q rxlevmin + Q rxlevminoffset ) + P compensation + Qoffset temp ), or the fourth threshold is used determining the maximum value of the terminal device for intra-frequency measurement threshold (S IntraSearchP) and a terminal device for determining the inter-frequency measurement threshold (S nonIntraSearchP) is then multiplied by a scaling factor, coupled with the ((Q rxlevmin + Q rxlevminoffset ) + P compensation + Qoffset temp ).
  • the scaling factor may be configured by a network device, or may be predefined, or determined by a terminal device.
  • the terminal device may determine the scaling factor according to the mobility of the terminal device.
  • the mobility of a terminal device can include the terminal device's moving speed, the terminal device is stationary, the terminal device is moving, the terminal device is at a low speed, the terminal device is at a medium speed, the terminal device is at a high speed, the terminal device is at a normal mobility state, and the terminal device is at At least one of a medium mobility state and a terminal device in a high mobility state.
  • the network device can configure the mapping relationship between the mobility of the terminal device and the scaling factor, and the terminal device determines the scaling factor according to its mobility and the mapping relationship.
  • the terminal device determining the scaling factor according to the mobility may further be specifically that the terminal device determines the scaling factor according to the mobility and the first time length.
  • the first time length may be a first period.
  • the fourth threshold value is ((Q rxlevmin + Q rxlevminoffset ) + P compensation + Qoffset temp ).
  • the fifth threshold is determined by the terminal device according to the mobility of the terminal device.
  • the mobility of a terminal device can include the terminal device's moving speed, the terminal device is stationary, the terminal device is moving, the terminal device is at a low speed, the terminal device is at a medium speed, the terminal device is at a high speed, the terminal device is at a normal mobility state, and the terminal device is at At least one of a medium mobility state and a terminal device in a high mobility state.
  • the network device may configure a mapping relationship between the mobility of the terminal device and the fifth threshold, and the terminal device determines the fifth threshold according to the mobility and the mapping relationship.
  • the determination of the fifth threshold value by the terminal device according to the mobility may further be specifically that the terminal device determines the fifth threshold value according to the mobility and the first time length.
  • the first time length may be a first period.
  • the fifth threshold value is determined according to a threshold value used by the terminal device for determining intra-frequency measurement and / or a threshold value used for the terminal device for determining inter-frequency measurement.
  • the fifth threshold may further be determined according to the mobility of the terminal device, and a threshold used by the terminal device to determine intra-frequency measurement and / or a threshold value used by the terminal device to determine inter-frequency measurement.
  • the fifth threshold value for determining the threshold terminal intra-frequency measurements (S IntraSearchQ), or fifth threshold value for determining the threshold terminal inter-frequency measurements (S nonIntraSearchQ), or fifth threshold is used to determine the terminal device for intra-frequency measurement threshold (S IntraSearchQ) and a terminal device for determining the inter-frequency measurement threshold (S nonIntraSearchQ) maximum value.
  • the fifth threshold value is a threshold value (S IntraSearchQ ) used by the terminal device to determine to perform intra-frequency measurement plus ((Q qualmin + Q qualminoffset ) + Qoffset temp ).
  • the fifth threshold value is a threshold value (S nonIntraSearchQ ) for determining that the terminal device performs inter-frequency measurement plus ((Q qualmin + Q qualminoffset ) + Qoffset temp ).
  • the threshold value (S IntraSearchQ) the fifth threshold value to determine a terminal device for intra-frequency measurements with the maximum value for the terminal determines the threshold value of the inter-frequency measurement (S nonIntraSearchQ) is, together with the ((Q qualmin + Q qualminoffset ) + Qoffset temp ).
  • the fifth threshold value is a threshold value (S IntraSearchQ ) for the terminal device to determine to perform intra-frequency measurement plus ((Q qualmin + Q qualminoffset ) + Qoffset temp ), plus an offset, or, the fifth The threshold value is the threshold value (S nonIntraSearchQ ) plus ((Q qualmin + Q qualminoffset ) + Qoffset temp ) used by the terminal device to determine the inter-frequency measurement, plus an offset, or the fifth threshold value is used for the terminal The device determines the maximum value for the intra-frequency measurement threshold (S IntraSearchQ ) and the terminal device determines the inter-frequency measurement threshold (S nonIntraSearchQ ), plus ((Q qualmin + Q qualminoffset ) + Qoffset temp ) , Plus an offset.
  • S IntraSearchQ the threshold value for the terminal device to determine to perform intra-frequency measurement plus ((Q qualmin + Q qualminoffset ) + Qoffset temp ), plus an offset.
  • the offset may be configured by a network device, or may be predefined, or determined by a terminal device.
  • the terminal device may determine the offset according to the mobility of the terminal device.
  • the mobility of a terminal device can include the terminal device's moving speed, the terminal device is stationary, the terminal device is moving, the terminal device is at a low speed, the terminal device is at a medium speed, the terminal device is at a high speed, the terminal device is at a normal mobility state, and the terminal device is at At least one of a medium mobility state and a terminal device in a high mobility state.
  • the network device can configure the mapping relationship between the mobility and the offset of the terminal device, and the terminal device determines the offset according to its mobility and the mapping relationship.
  • the determination of the offset amount by the terminal device according to the mobility may further specifically be that the terminal device determines the offset amount according to the mobility and the first time length.
  • the first time length may be a first period.
  • the fifth threshold value is the threshold value (S IntraSearchQ ) used by the terminal device to determine to perform intra-frequency measurement plus ((Q qualmin + Q qualminoffset ) + Qoffset temp ), and then multiplied by a scaling factor, or the fifth threshold value
  • the threshold value To determine the threshold for inter-frequency measurement (S nonIntraSearchQ ) plus ((Q qualmin + Q qualminoffset ) + Qoffset temp ) for terminal equipment determination, and then multiply by a scaling factor, or the fifth threshold value is used for terminal equipment determination
  • the scaling factor may be configured by a network device, or may be predefined, or determined by a terminal device.
  • the terminal device may determine a scaling factor according to the mobility of the terminal device.
  • the mobility of a terminal device can include the terminal device's moving speed, the terminal device is stationary, the terminal device is moving, the terminal device is at a low speed, the terminal device is at a medium speed, the terminal device is at a high speed, the terminal device is at a normal mobility state, and the terminal device is at At least one of a medium mobility state and a terminal device in a high mobility state.
  • the network device can configure the mapping relationship between the mobility of the terminal device and the scaling factor, and the terminal device determines the scaling factor according to its mobility and the mapping relationship.
  • the terminal device determining the scaling factor according to the mobility may further be specifically that the terminal device determines the scaling factor according to the mobility and the first time length.
  • the first time length may be a first period.
  • the fifth threshold value is a threshold value (S IntraSearchQ ) for the terminal device to determine to perform intra-frequency measurement multiplied by a scaling factor, plus ((Q qualmin + Q qualminoffset ) + Qoffset temp ), or the fifth threshold value is The threshold value (S nonIntraSearchQ ) used by the terminal device to determine the inter-frequency measurement is multiplied by a scaling factor, plus ((Q qualmin + Q qualminoffset ) + Qoffset temp ), or the fifth threshold value is used by the terminal device to determine the intra -frequency measurement threshold (S IntraSearchQ ) and the maximum value for the terminal device to determine the inter-frequency measurement threshold (S nonIntraSearchQ ), multiply by a scaling factor, and add ((Q qualmin + Q qualminoffset ) + Qoffset temp ).
  • S IntraSearchQ a threshold value for the terminal device to determine to perform intra-frequency measurement multiplied by a scaling factor, plus ((Q qualmin + Q qualminoffset
  • the scaling factor may be configured by a network device, or may be predefined, or determined by a terminal device.
  • the terminal device may determine the scaling factor according to the mobility of the terminal device.
  • the mobility of a terminal device can include the terminal device's moving speed, the terminal device is stationary, the terminal device is moving, the terminal device is at a low speed, the terminal device is at a medium speed, the terminal device is at a high speed, the terminal device is at a normal mobility state, and the terminal device is at At least one of a medium mobility state and a terminal device in a high mobility state.
  • the network device can configure the mapping relationship between the mobility of the terminal device and the scaling factor, and the terminal device determines the scaling factor according to its mobility and the mapping relationship.
  • the terminal device determining the scaling factor according to the mobility may further be specifically that the terminal device determines the scaling factor according to the mobility and the first time length.
  • the first time length may be a first period.
  • the fifth threshold value is ((Q qualmin + Q qualminoffset ) + Qoffset temp ).
  • the sixth threshold is determined by the terminal device according to the mobility of the terminal device.
  • the mobility of a terminal device can include the terminal device's moving speed, the terminal device is stationary, the terminal device is moving, the terminal device is at a low speed, the terminal device is at a medium speed, the terminal device is at a high speed, the terminal device is at a normal mobility state, and the terminal device is at At least one of a medium mobility state and a terminal device in a high mobility state.
  • the network device may configure a mapping relationship between the mobility of the terminal device and the sixth threshold, and the terminal device determines the sixth threshold according to the mobility and the mapping relationship.
  • the determination of the sixth threshold value by the terminal device according to the mobility may further specifically be that the terminal device determines the sixth threshold value according to the mobility and the first time length.
  • the first time length may be a first period.
  • the serving cell meets the cell selection criterion as the serving cell meets the above-mentioned cell selection criterion S criterion.
  • the parameter Srxlev used in the cell selection criterion S is a value based on SS-RSRP (or, RSRP), and the parameter Squal used in the cell selection criterion S is a value based on SS-RSRQ (or, RSRQ). Then, after determining the SS-RSRP or SS-RSRQ according to at least one of the above-mentioned CRS, SSB, CSI-RS, or DMRS, the terminal device can determine whether the serving cell meets the cell selection criterion.
  • the above serving cell meeting the cell reselection criteria can be understood as:
  • the terminal device can be reselected to the serving cell, or the ranking result of the serving cell is the best under the cell reselection criteria defined by the existing standards.
  • the parameters R s and R n in the cell reselection criterion R are values based on SS-RSRP (or, RSRP). Then, the terminal device is at least one of After determining the SS-RSRP, it can determine whether the serving cell meets the cell reselection criteria.
  • the terminal device determines that the serving cell meets the first preset condition N times,
  • the terminal device determines that the serving cell meets the first preset condition within a first period of time
  • N is a positive integer.
  • the N is configured by a network device. Further, the network device may configure N through system information.
  • the foregoing N is predefined.
  • the first period of time is X third periods, where X is a positive integer.
  • the third period may be the first period or the second period.
  • the terminal device determines that the serving cell meets the first preset condition N consecutive times.
  • the terminal device judges whether the serving cell meets the first preset condition M times, where N times in the M judgments, when the terminal device determines that the serving cell meets the first preset condition, the terminal device determines that the serving cell meets the first preset condition A condition where M is a positive integer and N is an integer greater than or equal to M / 2 and less than or equal to M.
  • the terminal device judges whether the serving cell meets the first preset condition M times, where N times in the M judgments, when the terminal device determines that the serving cell meets the first preset condition, the terminal device determines that the serving cell meets the first preset condition A condition where M is a positive integer and N is an integer greater than or equal to 1 and less than or equal to M.
  • the time interval between the terminal device determining whether the cell satisfies the first preset condition twice may be the first period or the second period.
  • the terminal device determines that the serving cell meets the first preset condition once within the first time period.
  • the duration of the first time period may be configured for a network device, or may be predefined.
  • the terminal device determines that the serving cell meets the first preset condition multiple times in the first time period. It can be understood that the terminal device makes a total of M times to determine whether the serving cell meets the first preset condition in the first time period, and N times of the M determinations determine that the serving cell meets the first preset condition.
  • M is a positive integer
  • N is an integer greater than or equal to M / 2 and less than or equal to M.
  • N is an integer of 1 or more and M or less.
  • the first period of time may be X third periods, and the terminal device determines whether the serving cell meets the first preset condition within the first period of time, and may determine whether or not the serving cell is in each third period. The first preset condition is satisfied.
  • the terminal device determines that the serving cell meets the first preset condition in at least one of the X third periods, it can be considered that the serving cell satisfies the first preset condition in the first time period. Set conditions.
  • the terminal device may consider that the serving cell satisfies the first preset within the first period of time. condition.
  • the terminal device may consider that the serving cell meets the first preset condition in the first period of time.
  • Y is an integer greater than or equal to X / 2 and less than or equal to X.
  • Y is an integer greater than or equal to 1 and less than or equal to X.
  • the terminal device may perform one or more times to determine whether the serving cell meets the first preset condition.
  • the terminal device judges whether the serving cell meets the first preset condition one or more times in each third cycle, and the serving cell P meets the first preset condition P times, then the terminal device determines that the first The serving cell meets a first preset condition during the period, where P is a positive integer.
  • the terminal device makes Q times to determine whether the serving cell meets the first preset condition.
  • Q is a positive integer
  • P is an integer greater than or equal to Q / 2 and less than or equal to Q.
  • the terminal device determines whether the serving cell satisfies the first preset condition Q times.
  • the terminal device determines that the serving cell meets the first preset condition in the Q times.
  • the terminal device It is determined that the serving cell meets the first preset condition in the third period, Q is a positive integer, and P is an integer greater than or equal to 1 and less than or equal to Q.
  • the terminal device may flexibly select different measurement periods to measure or evaluate the cell according to whether the serving cell signal is stable, or the terminal device is in the serving cell in order to ensure whether the serving cell meets the first preset condition.
  • the judgment made when the signal is stable may determine the serving cell according to the RSRP, the value based on the RSRP, the RSRQ, the value based on the RSRQ, the SINR, or the range of change of the SINR value. Whether the signal is stable.
  • the service is considered to be
  • the signal of the cell is stable, and / or, when the SINR or the range of change based on the value of the SINR is less than or equal to the fifteenth threshold, the signal of the serving cell is considered to be stable.
  • Determining that the RSRP or the range of changes based on the RSRP value is less than or equal to the thirteenth threshold includes:
  • a difference between a maximum value and a minimum value of the RSRP or the value based on the RSRP is less than or equal to a thirteenth threshold
  • the absolute value of the difference between the RSRP and the first reference value is less than or equal to the thirteenth threshold, or the absolute value based on the difference of the RSRP value and the second reference value is less than or equal to the thirteenth threshold.
  • Determining that the RSRQ or a range of values based on the RSRQ is less than or equal to a fourteenth threshold includes:
  • a difference between a maximum value and a minimum value of the RSRQ or the value based on the RSRQ is less than or equal to a fourteenth threshold
  • the absolute value of the difference between the RSRQ and the third reference value is less than or equal to the fourteenth threshold, and the absolute value based on the difference between the value of the RSRQ and the fourth reference value is less than or equal to the fourteenth threshold.
  • Determining that the SINR or a variation range based on the SINR value is less than or equal to the fifteenth threshold includes:
  • a change range of the SINR or a difference between a maximum value and a minimum value based on the SINR value is less than or equal to a fifteenth threshold
  • the absolute value of the difference between the SINR and the fifth reference value is less than or equal to the fifteenth threshold, or the absolute value based on the difference between the value of the SINR and the sixth reference value is less than or equal to the fifteenth threshold.
  • the absolute value of the difference between the RSRP and the first reference value is determined to be less than or equal to the thirteenth threshold, and it may be that the absolute value of the difference between the serving cell RSRP and the first reference value is less than or equal to the thirteenth threshold. Or, it may be that at least one absolute value of the absolute value of the difference between the serving cell RSRP and the first reference value obtained from multiple measurements is less than or equal to the thirteenth threshold.
  • the absolute value based on the difference between the RSRP value and the second reference value is less than or equal to the thirteenth threshold, and may be multiple measurements based on the absolute value of the difference between the RSRP value and the second reference value being less than Or equal to the thirteenth threshold; or, it may be that at least one of absolute values based on the difference between the RSRP value and the second reference value obtained from multiple measurements is less than or equal to the thirteenth threshold.
  • Determining that the absolute value of the difference between the RSRQ and the third reference value is less than or equal to the fourteenth threshold may be that the absolute value of the difference between the neighboring cell RSRQ and the third reference value obtained after multiple measurements is less than or equal to the fourteenth threshold; or , It may be that at least one absolute value of the absolute value of the difference between the neighboring cell RSRQ and the third reference value obtained through multiple measurements is less than or equal to the fourteenth threshold.
  • the absolute value of the difference between the value based on the RSRQ value and the fourth reference value is less than or equal to the fourteenth threshold, and may be the difference between the value based on the RSRQ value and the fourth reference value obtained through multiple measurements.
  • the absolute values are all less than or equal to the fourteenth threshold; or, it may be that at least one of the absolute values based on the difference between the RSRQ value and the fourth reference value obtained from multiple measurements is less than or equal to the fourteenth threshold.
  • the absolute value of the difference between the SINR and the fifth reference value is less than or equal to the fifteenth threshold, and may be that the absolute value of the difference between the neighboring cell SINR and the fifth reference value obtained from multiple measurements is less than or equal to the fifteenth threshold; or It may be that at least one absolute value of the absolute value of the difference between the neighboring cell SINR and the fifth reference value obtained through multiple measurements is less than or equal to the fifteenth threshold.
  • the absolute value of the difference between the value based on the SINR value and the sixth reference value is less than or equal to the fifteenth threshold, and may be the difference between the value based on the SINR value and the sixth reference value obtained through multiple measurements.
  • the absolute values are all less than or equal to the fifteenth threshold; or, it may be that at least one of the absolute values based on the difference between the SINR value and the sixth reference value obtained from multiple measurements is less than or equal to the fifteenth threshold.
  • the RSRPs of the serving cell for three measurements are 1, 2, and 3 respectively, and it is assumed that the thirteenth threshold is 1.
  • the difference between the maximum value and the minimum value of RSRP is calculated to be 2. Then, the difference value is greater than the thirteenth threshold value, which proves that the signal stability is insufficient. It is further determined that the serving cell does not meet the second preset condition.
  • the RSRPs of the serving cell for three measurements are 1, 2, and 3 respectively, the first reference value is 2, and the thirteenth threshold is assumed to be 1.
  • the absolute values of the differences between the RSRP and the first reference value are 1, 0, and 1, respectively. Then, the absolute values of the differences between the RSRP and the first reference value are less than or equal to the thirteenth threshold, which proves that the signal is stable.
  • the thirteenth threshold value is 0, only one absolute value of the difference between the RSRP and the first reference value is less than or equal to the thirteenth threshold value, which can also prove that the signal is stable.
  • the measured serving cell RSRP is 1
  • the first reference value is 2
  • the thirteenth threshold is assumed to be 1.
  • the absolute value of the difference between the RSRP and the first reference value is calculated as 1, then, the absolute value of the difference between the RSRP and the first reference value is less than or equal to the thirteenth threshold, which proves that the signal is stable.
  • the thirteenth threshold, the fourteenth threshold, and the fifteenth threshold may be configured by a network device, may be predefined, or may be determined by a terminal.
  • the thirteenth threshold, the fourteenth threshold, and the fifteenth threshold are determined by the terminal device according to the mobility of the terminal device.
  • the mobility of a terminal device may include the speed of the terminal device, the terminal device being stationary, the terminal device being moving, the terminal device being at a low speed, the terminal device being at a medium speed, the terminal device being at a high speed, the terminal device being at a normal mobility state, and the terminal device being At least one of a medium mobility state and a terminal device in a high mobility state.
  • the network device may configure a mapping relationship between the mobility of the terminal device and the first threshold, and the terminal device determines the first threshold according to the mobility and the mapping relationship.
  • the determination of the first threshold value by the terminal device according to mobility may further be specifically that the terminal device determines the first threshold value according to the mobility and the first time length.
  • the first time length may be a first period.
  • the second type if the cell is a neighboring cell of the terminal device.
  • the first preset condition includes:
  • the measurement quantity of the neighboring cell satisfies at least one of the third preset condition, the neighboring cell does not satisfy the cell selection criterion, or the neighboring cell does not satisfy the cell reselection criterion.
  • the measurement amount of the neighboring cell is determined according to the measurement of the signal sent by the neighboring cell.
  • Signals sent by neighboring cells can be understood as signals sent by network equipment.
  • the measurement quantity of the neighboring cell is determined by the terminal device according to the specific reference signal CRS of the neighboring cell, or the synchronization signal block SSB of the neighboring cell, or the channel state information reference signal CSI-RS of the neighboring cell, or the demodulation reference of the neighboring cell PBCH
  • At least one of the signals DMRS is determined.
  • the measurement value of the neighboring cell includes the reference signal received power RSRP of the neighboring cell described above, or based on the value of the RSRP, or the reference signal reception quality of the neighboring cell, RSRQ, or based on the RSRQ value, or the neighboring cell A ratio SINR of the power of the transmitted signal to the interference and noise power, or at least one of the values based on the SINR.
  • RSRP is used to indicate the received power of the signal being measured.
  • RSRQ is used to indicate the received quality of the signal being measured, and can be determined according to RSRP and RSSI, and RSSI is used to indicate the received signal strength.
  • SINR is used to represent the ratio of the measured signal power to interference and noise power.
  • the RSRP of the neighboring cell can be used to indicate the received power of the signal sent by the neighboring cell
  • the RSRQ of the neighboring cell can be used to indicate the reception quality of the signal sent by the neighboring cell, which can be determined according to RSRP and RSSI, and the RSSI is used to indicate the received signal strength;
  • the SINR of the neighboring cell can be used to represent the ratio of the power of the transmitted signal of the neighboring cell to the interference and noise power.
  • the above-mentioned measurement of the neighboring cell may also be the SS-RSRP of the neighboring cell, or the SS-RSRQ of the neighboring cell, where SS-RSRP is similar to RSRP and SS-RSRQ is similar to RSRQ.
  • SS-RSRP is similar to RSRP
  • SS-RSRQ is similar to RSRQ.
  • the measurement value of the neighboring cell satisfies the third preset condition includes:
  • the neighboring cell-based RSRP value is less than or equal to the seventh threshold
  • the neighboring cell-based RSRQ value is less than or equal to the eighth threshold
  • the SINR-based value is less than or equal to the ninth threshold
  • the neighboring cell's RSRP is less than or equal to the third threshold.
  • At least one of the ten threshold value, the RSRQ of the neighboring cell is less than or equal to the eleventh threshold value, or the SINR is less than or equal to the twelfth threshold value.
  • the value of the RSRP based on the neighboring cell may be Srxlev used in the cell selection criterion, and the value of the RSRQ based on the neighboring cell may be Squal used in the cell selection criterion.
  • the value of Srxlev is determined according to the RSRP of the neighboring cell, and the value of Squal is determined according to the RSRQ of the neighboring cell.
  • Q hyst , Qoffset and Qoffset temp may be defined in the existing standards.
  • the seventh threshold, the eighth threshold, the ninth threshold, the tenth threshold, the eleventh threshold, and the twelfth threshold may be configured by a network device, may be defined in advance, or may be determined by a terminal. .
  • the seventh threshold, the eighth threshold, the ninth threshold, the tenth threshold, the eleventh threshold, and the twelfth threshold are configured by the network device, and the network device is configured through system information.
  • the network device may be:
  • thresP represents the seventh threshold
  • thresQ represents the eighth threshold
  • thresP represents the tenth threshold
  • thresQ represents the eleventh threshold
  • the seventh threshold or the tenth threshold is a threshold (S IntraSearchP or S nonIntraSearchP ) for triggering the terminal device to perform the intra-frequency measurement or the inter-frequency measurement
  • the eighth threshold or the eleventh threshold is for triggering the terminal.
  • the threshold for the device to perform the above-mentioned intra-frequency measurement or inter-frequency measurement (S IntraSearchQ or S nonIntraSearchQ ).
  • the seventh threshold may be 0, and the eighth threshold may be 0.
  • the seventh threshold may be Rs +/- offset1
  • the eighth threshold may be Rsq +/- offset2.
  • the tenth threshold is RSRP +/- offset3 of the serving cell of the terminal device, and the eleventh threshold is RSRQ +/- offset4 of the serving cell of the terminal device.
  • Rs is the RSRP value of the serving cell based on the terminal device
  • Rs may be the definition in the existing standard
  • Rsq is the RSRQ value of the serving cell based on the terminal device
  • Rsq RSRQ +/- Qhyst-Qoffsettemp, where Qhyst and Qoffsettemp are defined in the existing standards.
  • offset1, offset2, offset3, or offset4 are parameters configured or predefined by the network device.
  • the seventh threshold is determined by the terminal device according to the mobility of the terminal device.
  • the mobility of a terminal device may include the speed of the terminal device, the terminal device being stationary, the terminal device being moving, the terminal device being at a low speed, the terminal device being at a medium speed, the terminal device being at a high speed, the terminal device being at a normal mobility state, and the terminal device being At least one of a medium mobility state and a terminal device in a high mobility state.
  • the network device may configure a mapping relationship between the mobility of the terminal device and the seventh threshold, and the terminal device determines the seventh threshold according to the mobility and the mapping relationship.
  • the determination of the seventh threshold by the terminal device according to the mobility may further specifically be that the terminal device determines the seventh threshold according to the mobility and the first time length.
  • the first time length may be a first period.
  • the seventh threshold value is determined according to a threshold value used by the terminal device for determining intra-frequency measurement and / or a threshold value used for the terminal device for determining inter-frequency measurement.
  • the seventh threshold may further be determined according to the mobility of the terminal device, and a threshold used for the terminal device to determine to perform intra-frequency measurement and / or a threshold value used for the terminal device to determine to perform inter-frequency measurement.
  • the seventh threshold value is used to determine the threshold terminal intra-frequency measurements (S IntraSearchP), or seventh threshold value to determine a terminal device for inter-frequency measurement threshold of (S nonIntraSearchP), or seventh the threshold value (S IntraSearchP) threshold value to determine a terminal device for intra-frequency measurements and determine a terminal device for inter-frequency measurement threshold (S nonIntraSearchP) minimum value.
  • the seventh threshold is determined according to the RSRP of the serving cell.
  • the seventh threshold may be further determined according to the RSRP of the serving cell and the mobility of the terminal device.
  • the seventh threshold value is determined according to the RSRP value of the serving cell based on the terminal device.
  • the RSRP value of the serving cell based on the terminal device may be Rs in the cell reselection criterion, where Rs is the RSRP value of the serving cell based on the terminal device, and Rs may be defined in the existing standard.
  • the seventh threshold value is based on the RSRP value of the serving cell of the terminal device plus an offset. The offset can be greater than 0, or less than 0, or equal to 0.
  • the offset may be configured by a network device, or may be predefined, or determined by a terminal device.
  • the terminal device may determine the offset according to the mobility of the terminal device.
  • the mobility of a terminal device may include the speed of the terminal device, the terminal device being stationary, the terminal device being moving, the terminal device being at a low speed, the terminal device being at a medium speed, the terminal device being at a high speed, the terminal device being at a normal mobility state, and the terminal device being At least one of a medium mobility state and a terminal device in a high mobility state.
  • the network device can configure the mapping relationship between the mobility and the offset of the terminal device, and the terminal device determines the offset according to its mobility and the mapping relationship.
  • the determination of the offset amount by the terminal device according to the mobility may further specifically be that the terminal device determines the offset amount according to the mobility and the first time length.
  • the first time length may be a first period.
  • the seventh threshold value is based on the RSRP value of the serving cell of the terminal device multiplied by a scaling factor.
  • the scaling factor can be greater than 1, or less than 1, or equal to 1.
  • the scaling factor may be configured by a network device, or may be predefined, or determined by a terminal device. In a case where the scaling factor is determined by a terminal device, the terminal device may determine the scaling factor according to the mobility of the terminal device.
  • the mobility of a terminal device may include the speed of the terminal device, the terminal device being stationary, the terminal device being moving, the terminal device being at a low speed, the terminal device being at a medium speed, the terminal device being at a high speed, the terminal device being at a normal mobility state, and the terminal device being At least one of a medium mobility state and a terminal device in a high mobility state.
  • the network device can configure the mapping relationship between the mobility of the terminal device and the scaling factor, and the terminal device determines the scaling factor according to its mobility and the mapping relationship.
  • the terminal device determining the scaling factor according to the mobility may further be specifically that the terminal device determines the scaling factor according to the mobility and the first time length.
  • the first time length may be a first period.
  • the seventh threshold is zero.
  • the eighth threshold is determined by the terminal device according to the mobility of the terminal device.
  • the mobility of a terminal device may include the speed of the terminal device, the terminal device being stationary, the terminal device being moving, the terminal device being at a low speed, the terminal device being at a medium speed, the terminal device being at a high speed, the terminal device being at a normal mobility state, and the terminal device being At least one of a medium mobility state and a terminal device in a high mobility state.
  • the network device may configure a mapping relationship between the mobility of the terminal device and the eighth threshold, and the terminal device determines the eighth threshold according to the mobility and the mapping relationship.
  • the determination of the eighth threshold by the terminal device according to the mobility may further be specifically that the terminal device determines the eighth threshold according to the mobility and the first time length.
  • the first time length may be a first period.
  • the eighth threshold value is determined according to a threshold value used by the terminal device for determining intra-frequency measurement and / or a threshold value used for the terminal device for determining inter-frequency measurement.
  • the eighth threshold may further be determined according to the mobility of the terminal device, and a threshold used for the terminal device to determine to perform intra-frequency measurement and / or a threshold value used for the terminal device to determine to perform inter-frequency measurement.
  • the eighth threshold value is a threshold value for the terminal device to determine to perform intra-frequency measurement (S IntraSearchQ ), or the eighth threshold value is the threshold value for the terminal device to determine to perform the inter-frequency measurement (S nonIntraSearchQ ), or the eighth threshold value is threshold is used to determine the terminal device for intra-frequency measurement threshold (S IntraSearchQ) and a terminal device for determining the inter-frequency measurement threshold (S nonIntraSearchQ) minimum value.
  • the eighth threshold is determined according to the RSRQ of the serving cell.
  • the eighth threshold may be further determined according to the RSRQ of the serving cell and the mobility of the terminal device.
  • the eighth threshold value is determined according to the RSRQ value of the serving cell based on the terminal device.
  • the eighth threshold is the value of the RSRQ of the serving cell based on the terminal device plus an offset.
  • the offset can be greater than 0, or less than 0, or equal to 0.
  • the offset may be configured by a network device, or may be predefined, or determined by a terminal device.
  • the terminal device may determine the offset according to the mobility of the terminal device.
  • the mobility of a terminal device can include the terminal device's moving speed, the terminal device is stationary, the terminal device is moving, the terminal device is at a low speed, the terminal device is at a medium speed, the terminal device is at a high speed, the terminal device is at a normal mobility state, and the terminal device is at At least one of a medium mobility state and a terminal device in a high mobility state.
  • the network device can configure the mapping relationship between the mobility and the offset of the terminal device, and the terminal device determines the offset according to its mobility and the mapping relationship.
  • the determination of the offset amount by the terminal device according to the mobility may further specifically be that the terminal device determines the offset amount according to the mobility and the first time length.
  • the first time length may be a first period.
  • the eighth threshold is a value based on the RSRQ of the serving cell of the terminal device multiplied by a scaling factor.
  • the scaling factor can be greater than 1, or less than 1, or equal to 1.
  • the scaling factor may be configured by a network device, or may be predefined, or determined by a terminal device. In a case where the scaling factor is determined by a terminal device, the terminal device may determine the scaling factor according to the mobility of the terminal device.
  • the mobility of a terminal device may include the speed of the terminal device, the terminal device being stationary, the terminal device being moving, the terminal device being at a low speed, the terminal device being at a medium speed, the terminal device being at a high speed, the terminal device being at a normal mobility state, and the terminal device being At least one of a medium mobility state and a terminal device in a high mobility state.
  • the network device can configure the mapping relationship between the mobility of the terminal device and the scaling factor, and the terminal device determines the scaling factor according to its mobility and the mapping relationship.
  • the terminal device determining the scaling factor according to the mobility may further be specifically that the terminal device determines the scaling factor according to the mobility and the first time length.
  • the first time length may be a first period.
  • the eighth threshold is zero.
  • the ninth threshold is determined by the terminal device according to the mobility of the terminal device.
  • the mobility of a terminal device may include the speed of the terminal device, the terminal device being stationary, the terminal device being moving, the terminal device being at a low speed, the terminal device being at a medium speed, the terminal device being at a high speed, the terminal device being at a normal mobility state, and the terminal device being At least one of a medium mobility state and a terminal device in a high mobility state.
  • the network device may configure a mapping relationship between the mobility of the terminal device and the ninth threshold, and the terminal device determines the ninth threshold according to the mobility and the mapping relationship.
  • the determination of the ninth threshold by the terminal device according to the mobility may further be specifically that the terminal device determines the ninth threshold according to the mobility and the first time length.
  • the first time length may be a first period.
  • the ninth threshold is determined according to the SINR of the serving cell. Further, the ninth threshold is determined according to the SINR value based on the serving cell of the terminal device. The ninth threshold may be further determined according to the mobility of the terminal device and the SINR of the serving cell. For example, the ninth threshold is a value based on the SINR of the serving cell of the terminal device plus an offset.
  • the offset can be greater than 0, or less than 0, or equal to 0.
  • the offset may be configured by a network device, or may be predefined, or determined by a terminal device.
  • the terminal device may determine the offset according to the mobility of the terminal device.
  • the mobility of a terminal device may include the speed of the terminal device, the terminal device being stationary, the terminal device being moving, the terminal device being at a low speed, the terminal device being at a medium speed, the terminal device being at a high speed, the terminal device being at a normal mobility state, and the terminal device being At least one of a medium mobility state and a terminal device in a high mobility state.
  • the network device can configure the mapping relationship between the mobility and the offset of the terminal device, and the terminal device determines the offset according to its mobility and the mapping relationship.
  • the determination of the offset amount by the terminal device according to the mobility may further specifically be that the terminal device determines the offset amount according to the mobility and the first time length.
  • the first time length may be a first period.
  • the ninth threshold is a value based on the SINR of the serving cell of the terminal device multiplied by a scaling factor.
  • the scaling factor can be greater than 1, or less than 1, or equal to 1.
  • the scaling factor may be configured by a network device, or may be predefined, or determined by a terminal device. In a case where the scaling factor is determined by a terminal device, the terminal device may determine the scaling factor according to the mobility of the terminal device.
  • the mobility of a terminal device may include the speed of the terminal device, the terminal device being stationary, the terminal device being moving, the terminal device being at a low speed, the terminal device being at a medium speed, the terminal device being at a high speed, the terminal device being at a normal mobility state, and the terminal device being At least one of a medium mobility state and a terminal device in a high mobility state.
  • the network device can configure the mapping relationship between the mobility of the terminal device and the scaling factor, and the terminal device determines the scaling factor according to its mobility and the mapping relationship.
  • the terminal device determining the scaling factor according to the mobility may further specifically be that the terminal device determines the scaling factor according to the mobility and the first time length.
  • the first time length may be a first period.
  • the tenth threshold is determined by the terminal device according to the mobility of the terminal device.
  • the mobility of a terminal device may include the speed of the terminal device, the terminal device being stationary, the terminal device being moving, the terminal device being at a low speed, the terminal device being at a medium speed, the terminal device being at a high speed, the terminal device being at a normal mobility state, and the terminal device being At least one of a medium mobility state and a terminal device in a high mobility state.
  • the network device may configure a mapping relationship between the mobility of the terminal device and the tenth threshold, and the terminal device determines the tenth threshold according to the mobility and the mapping relationship.
  • the determination of the tenth threshold by the terminal device according to the mobility may further specifically be that the terminal device determines the tenth threshold according to the mobility and the first time length.
  • the first time length may be a first period.
  • the tenth threshold is determined according to a threshold used for terminal equipment to determine to perform intra-frequency measurement and / or a threshold used for terminal equipment to determine to perform inter-frequency measurement.
  • the tenth threshold may further be determined according to the mobility of the terminal device, and a threshold used for the terminal device to determine to perform intra-frequency measurement and / or a threshold value used for the terminal device to determine to perform inter-frequency measurement.
  • the tenth threshold value is the threshold value (S IntraSearchP ) for terminal equipment to determine to perform intra-frequency measurement plus ((Q rxlevmin + Q rxlevminoffset ) + P compensation + Qoffset temp ), or the tenth threshold value is for terminal equipment Determine the threshold for performing inter-frequency measurement (S nonIntraSearchP ) plus ((Q rxlevmin + Q rxlevminoffset ) + P compensation + Qoffset temp ), or the tenth threshold is the threshold used for the terminal device to determine to perform intra-frequency measurement (S IntraSearchP ) and the minimum value of the threshold (S nonIntraSearchP ) used by the terminal device to determine the inter-frequency measurement, plus ((Q rxlevmin + Q rxlevminoffset ) + P compensation + Qoffset temp ).
  • the tenth threshold is determined according to the RSRP of the serving cell.
  • the tenth threshold may be further determined according to the RSRP of the serving cell and the mobility of the terminal device.
  • the tenth threshold value is determined according to the RSRP value of the serving cell based on the terminal device.
  • the value of the RSRP based on the serving cell of the terminal device may be the RSRP of the serving cell of the terminal device.
  • the tenth threshold value is based on the RSRP value of the serving cell of the terminal device plus an offset.
  • the offset can be greater than 0, or less than 0, or equal to 0.
  • the offset may be configured by a network device, or may be predefined, or determined by a terminal device.
  • the terminal device may determine the offset according to the mobility of the terminal device.
  • the mobility of a terminal device may include the speed of the terminal device, the terminal device being stationary, the terminal device being moving, the terminal device being at a low speed, the terminal device being at a medium speed, the terminal device being at a high speed, the terminal device being at a normal mobility state, and the terminal device being At least one of a medium mobility state and a terminal device in a high mobility state.
  • the network device can configure the mapping relationship between the mobility and the offset of the terminal device, and the terminal device determines the offset according to its mobility and the mapping relationship.
  • the determination of the offset amount by the terminal device according to the mobility may further specifically be that the terminal device determines the offset amount according to the mobility and the first time length.
  • the first time length may be a first period.
  • the tenth threshold is a value based on the RSRP of the serving cell of the terminal device multiplied by a scaling factor.
  • the scaling factor can be greater than 1, or less than 1, or equal to 1.
  • the scaling factor may be configured by a network device, or may be predefined, or determined by a terminal device. In a case where the scaling factor is determined by a terminal device, the terminal device may determine the scaling factor according to the mobility of the terminal device.
  • the mobility of a terminal device may include the speed of the terminal device, the terminal device being stationary, the terminal device being moving, the terminal device being at a low speed, the terminal device being at a medium speed, the terminal device being at a high speed, the terminal device being at a normal mobility state, and the terminal device being At least one of a medium mobility state and a terminal device in a high mobility state.
  • the network device can configure the mapping relationship between the mobility of the terminal device and the scaling factor, and the terminal device determines the scaling factor according to its mobility and the mapping relationship.
  • the terminal device determining the scaling factor according to the mobility may further be specifically that the terminal device determines the scaling factor according to the mobility and the first time length.
  • the first time length may be a first period.
  • the tenth threshold value is based on the RSRP value of the serving cell of the terminal device multiplied by a scaling factor, plus an offset.
  • the eleventh threshold is determined by the terminal device according to the mobility of the terminal device.
  • the mobility of a terminal device may include the speed of the terminal device, the terminal device being stationary, the terminal device being moving, the terminal device being at a low speed, the terminal device being at a medium speed, the terminal device being at a high speed, the terminal device being at a normal mobility state, and the terminal device being At least one of a medium mobility state and a terminal device in a high mobility state.
  • the network device may configure a mapping relationship between the mobility of the terminal device and the eleventh threshold, and the terminal device determines the eleventh threshold according to the mobility and the mapping relationship.
  • the determination of the eleventh threshold by the terminal device according to the mobility may further specifically be that the terminal device determines the eleventh threshold according to the mobility and the first time length.
  • the first time length may be a first period.
  • the eleventh threshold value is determined according to a threshold value used by the terminal device for determining intra-frequency measurement and / or a threshold value used for the terminal device for determining inter-frequency measurement.
  • the eleventh threshold may further be determined according to the mobility of the terminal device, and a threshold used for the terminal device to determine to perform intra-frequency measurement and / or a threshold value used for the terminal device to determine to perform inter-frequency measurement.
  • the eleventh threshold value is the threshold value (S IntraSearchP ) plus ((Q qualmin + Q qualminoffset ) + Qoffset temp ) used for terminal device determination for intra-frequency measurement, or the eleventh threshold value is used for terminal device determination
  • the threshold value for performing inter-frequency measurement (S nonIntraSearchP ) plus ((Q qualmin + Q qualminoffset ) + Qoffset temp ), or the eleventh threshold value is used for the terminal device to determine the threshold value for performing intra-frequency measurement (S IntraSearchP ) and Used for the terminal device to determine the minimum value of the threshold (S nonIntraSearchP ) for performing inter-frequency measurement, plus ((Q qualmin + Q qualminoffset ) + Qoffset temp ).
  • the eleventh threshold is determined according to the RSRQ of the serving cell.
  • the eleventh threshold may be further determined according to the RSRQ of the serving cell and the mobility of the terminal device. Further, the eleventh threshold is determined according to the value of the RSRQ of the serving cell based on the terminal device.
  • the value of the RSRQ of the serving cell of the terminal device may be the RSRQ of the serving cell of the terminal device.
  • the eleventh threshold is the value of the RSRQ of the serving cell based on the terminal device plus an offset.
  • the offset can be greater than 0, or less than 0, or equal to 0.
  • the offset may be configured by a network device, or may be predefined, or determined by a terminal device.
  • the terminal device may determine the offset according to the mobility of the terminal device.
  • the mobility of a terminal device may include the speed of the terminal device, the terminal device being stationary, the terminal device being moving, the terminal device being at a low speed, the terminal device being at a medium speed, the terminal device being at a high speed, the terminal device being at a normal mobility state, and the terminal device being At least one of a medium mobility state and a terminal device in a high mobility state.
  • the network device can configure the mapping relationship between the mobility and the offset of the terminal device, and the terminal device determines the offset according to its mobility and the mapping relationship.
  • the determination of the offset amount by the terminal device according to the mobility may further specifically be that the terminal device determines the offset amount according to the mobility and the first time length.
  • the first time length may be a first period.
  • the eleventh threshold is a value based on the RSRQ of the serving cell of the terminal device multiplied by a scaling factor.
  • the scaling factor can be greater than 1, or less than 1, or equal to 1.
  • the scaling factor may be configured by a network device, or may be predefined, or determined by a terminal device. In a case where the scaling factor is determined by a terminal device, the terminal device may determine the scaling factor according to the mobility of the terminal device.
  • the mobility of a terminal device may include the speed of the terminal device, the terminal device being stationary, the terminal device being moving, the terminal device being at a low speed, the terminal device being at a medium speed, the terminal device being at a high speed, the terminal device being at a normal mobility state, and the terminal device being At least one of a medium mobility state and a terminal device in a high mobility state.
  • the network device can configure the mapping relationship between the mobility of the terminal device and the scaling factor, and the terminal device determines the scaling factor according to its mobility and the mapping relationship.
  • the terminal device determining the scaling factor according to the mobility may further be specifically that the terminal device determines the scaling factor according to the mobility and the first time length.
  • the first time length may be a first period.
  • the eleventh threshold is a value based on the RSRQ of the serving cell of the terminal device multiplied by a scaling factor, and an offset is added.
  • the twelfth threshold is determined by the terminal device according to the mobility of the terminal device.
  • the mobility of a terminal device may include the speed of the terminal device, the terminal device being stationary, the terminal device being moving, the terminal device being at a low speed, the terminal device being at a medium speed, the terminal device being at a high speed, the terminal device being at a normal mobility state, and the terminal device being At least one of a medium mobility state and a terminal device in a high mobility state.
  • the network device may configure a mapping relationship between the mobility of the terminal device and the twelfth threshold, and the terminal device determines the twelfth threshold according to its mobility and the mapping relationship.
  • the determination of the twelfth threshold by the terminal device according to the mobility may further specifically be that the terminal device determines the twelfth threshold according to the mobility and the first time length.
  • the first time length may be a first period.
  • the twelfth threshold is determined according to the SINR of the serving cell. Further, the twelfth threshold is determined according to the SINR value of the serving cell based on the terminal device. The twelfth threshold may be further determined according to the mobility of the terminal device and the SINR of the serving cell. For example, the twelfth threshold is a value based on the SINR of the serving cell of the terminal device plus an offset. The offset can be greater than 0, or less than 0, or equal to 0. The offset may be configured by a network device, or may be predefined, or determined by a terminal device. The terminal device may determine the offset according to the mobility of the terminal device.
  • the mobility of a terminal device may include the speed of the terminal device, the terminal device being stationary, the terminal device being moving, the terminal device being at a low speed, the terminal device being at a medium speed, the terminal device being at a high speed, the terminal device being at a normal mobility state, and the terminal device being At least one of a medium mobility state and a terminal device in a high mobility state.
  • the network device can configure the mapping relationship between the mobility and the offset of the terminal device, and the terminal device determines the offset according to its mobility and the mapping relationship.
  • the determination of the offset amount by the terminal device according to the mobility may further specifically be that the terminal device determines the offset amount according to the mobility and the first time length.
  • the first time length may be a first period.
  • the twelfth threshold is a value based on the SINR of the serving cell of the terminal device multiplied by a scaling factor.
  • the scaling factor can be greater than 1, or less than 1, or equal to 1.
  • the scaling factor may be configured by a network device, or may be predefined, or determined by a terminal device. In a case where the scaling factor is determined by a terminal device, the terminal device may determine the scaling factor according to the mobility of the terminal device.
  • the mobility of a terminal device may include the speed of the terminal device, the terminal device being stationary, the terminal device being moving, the terminal device being at a low speed, the terminal device being at a medium speed, the terminal device being at a high speed, the terminal device being at a normal mobility state, and the terminal device being At least one of a medium mobility state and a terminal device in a high mobility state.
  • the network device can configure the mapping relationship between the mobility of the terminal device and the scaling factor, and the terminal device determines the scaling factor according to its mobility and the mapping relationship.
  • the terminal device determining the scaling factor according to the mobility may further be specifically that the terminal device determines the scaling factor according to the mobility and the first time length.
  • the first time length may be a first period.
  • the neighboring cell satisfies the cell selection criterion, and the neighboring cell satisfies the above-mentioned cell selection criterion S criterion.
  • the parameter Srxlev used in the cell selection criterion S is a value based on SS-RSRP (or, RSRP), and the parameter Squal used in the cell selection criterion S is a value based on SS-RSRQ (or, RSRQ). Then, after determining the SS-RSRP or SS-RSRQ according to at least one of the above-mentioned CRS, SSB, CSI-RS, or DMRS, the terminal device can determine whether the neighboring cell meets the cell selection criterion.
  • Terminal equipment can reselect to neighboring cells, or, according to cell reselection criteria defined by existing standards, the ranking results of neighboring cells are the best, or, according to cell reselection criteria defined by existing standards, The ranking result is better than the serving cell of the terminal device.
  • the parameters R s and R n in the cell reselection criterion R are values based on SS-RSRP (or, RSRP). Then, after determining the SS-RSRP according to at least one of the above-mentioned CRS, SSB, CSI-RS, or DMRS, the terminal device can determine whether the neighboring cell meets the cell reselection criterion.
  • the terminal device determines that the neighboring cell meets the first preset condition N times,
  • the terminal device determines that a neighboring cell meets the first preset condition within a first time period
  • N is a positive integer.
  • the N is configured by a network device. Further, the network device may configure N through system information.
  • the foregoing N is predefined.
  • the first period of time is X third periods, where X is a positive integer.
  • the third period may be the first period or the second period.
  • the terminal device determines that the neighboring cell satisfies the first preset condition N consecutive times, the terminal device determines that the neighboring cell satisfies the first preset condition.
  • the terminal device judges whether the neighboring cell satisfies the first preset condition M times, where N times in the M judgments, when the terminal device determines that the neighboring cell meets the first preset condition, the terminal device determines that the neighboring cell meets the first preset condition A condition where M is a positive integer and N is an integer greater than or equal to M / 2 and less than or equal to M.
  • the terminal device judges whether the neighboring cell satisfies the first preset condition M times, where N times in the M judgments, when the terminal device determines that the neighboring cell meets the first preset condition, the terminal device determines that the neighboring cell meets the first preset condition A condition where M is a positive integer and N is an integer greater than or equal to 1 and less than or equal to M.
  • the time interval between the terminal device determining whether the cell satisfies the first preset condition twice may be the first period or the second period.
  • the terminal device determines that the neighboring cell meets the first preset condition at a time within the first time period.
  • the duration of the first time period may be configured for a network device, or may be predefined.
  • the terminal device determines whether the neighboring cell meets the first preset condition multiple times in the first time period. It can be understood that the terminal device makes a total of M times to determine whether the neighboring cell meets the first preset condition in the first time period. And N times in M judgments determine that the neighboring cell satisfies the first preset condition.
  • M is a positive integer
  • N is an integer greater than or equal to M / 2 and less than or equal to M.
  • N is an integer of 1 or more and M or less.
  • the first period of time may be X third periods.
  • the terminal device determines whether the neighboring cell meets the first preset condition within the first period of time, and may determine whether the serving cell is in each third period. The first preset condition is satisfied.
  • the terminal device may consider that the neighboring cell satisfies the first preset condition in the first time period. Set conditions.
  • the terminal device may consider that the serving cell satisfies the first preset within the first period of time. condition.
  • the terminal device may consider that the serving cell meets the first preset condition in the first period of time.
  • Y is an integer greater than or equal to X / 2 and less than or equal to X.
  • Y is an integer greater than or equal to 1 and less than or equal to X.
  • the terminal device may perform one or more times to determine whether a neighboring cell meets the first preset condition.
  • the terminal device judges whether the neighboring cell meets the first preset condition one or more times in each third cycle, and the neighboring cell meets the first preset condition P times, the terminal device determines that Neighboring cells in the period satisfy the first preset condition, where P is a positive integer.
  • the terminal device makes Q times to determine whether the neighboring cell satisfies the first preset condition.
  • Q is a positive integer
  • P is an integer greater than or equal to Q / 2 and less than or equal to Q.
  • the terminal device determines whether the neighboring cell satisfies the first preset condition Q times.
  • the terminal device determines that the neighboring cell satisfies the first preset condition in the Q times.
  • the terminal device It is determined that in the third period, the neighboring cell satisfies the first preset condition, Q is a positive integer, and P is an integer greater than or equal to 1 and less than or equal to Q.
  • the terminal device may flexibly select different measurement periods to measure or evaluate the cell according to whether the signal of the neighboring cell is stable, or the terminal device is in the neighboring cell in order to ensure that the result of judging whether the neighboring cell meets the first preset condition is
  • the judgment made when the signal is stable may determine whether the signal is stable according to the RSRP, the value based on the RSRP, the RSRQ or the value based on the RSRQ, the SINR, or the range of change of the SINR value .
  • a signal is considered Is stable.
  • Determining that the RSRP or the range of changes based on the RSRP value is less than or equal to the thirteenth threshold includes:
  • a difference between a maximum value and a minimum value of the RSRP or the value based on the RSRP is less than or equal to a thirteenth threshold
  • the absolute value of the difference between the RSRP and the first reference value is less than or equal to the thirteenth threshold, and the absolute value based on the difference of the RSRP value and the second reference value is less than or equal to the thirteenth threshold.
  • Determining that the RSRQ or a range of values based on the RSRQ is less than or equal to a fourteenth threshold includes:
  • a difference between a maximum value and a minimum value of the RSRQ or the value based on the RSRQ is less than or equal to a fourteenth threshold
  • the absolute value of the difference between the RSRQ and the third reference value is less than or equal to the fourteenth threshold, and the absolute value based on the difference between the value of the RSRQ and the fourth reference value is less than or equal to the fourteenth threshold.
  • Determining that the SINR or a variation range based on the SINR value is less than or equal to the fifteenth threshold includes:
  • a change range of the SINR or a difference between a maximum value and a minimum value based on the SINR value is less than or equal to a fifteenth threshold
  • the absolute value of the difference between the SINR and the fifth reference value is less than or equal to the fifteenth threshold, or the absolute value based on the difference between the value of the SINR and the sixth reference value is less than or equal to the fifteenth threshold.
  • the absolute value of the difference between the RSRP and the first reference value is less than or equal to the thirteenth threshold, and it may be that the absolute value of the difference between the neighboring cell RSRP and the first reference value obtained by multiple measurements is less than or equal to the thirteenth threshold Or, it may be that at least one absolute value of the absolute value of the difference between the neighboring cell RSRP and the first reference value obtained through multiple measurements is less than or equal to the thirteenth threshold.
  • the absolute value based on the difference between the RSRP value and the second reference value is less than or equal to the thirteenth threshold, and may be multiple measurements based on the absolute value of the difference between the RSRP value and the second reference value being less than Or equal to the thirteenth threshold; or, it may be that at least one of absolute values based on the difference between the RSRP value and the second reference value obtained from multiple measurements is less than or equal to the thirteenth threshold.
  • Determining that the absolute value of the difference between the RSRQ and the third reference value is less than or equal to the fourteenth threshold may be that the absolute value of the difference between the neighboring cell RSRQ and the third reference value obtained after multiple measurements is less than or equal to the fourteenth threshold; or , It may be that at least one absolute value of the absolute value of the difference between the neighboring cell RSRQ and the third reference value obtained through multiple measurements is less than or equal to the fourteenth threshold.
  • the absolute value of the difference between the value based on the RSRQ value and the fourth reference value is less than or equal to the fourteenth threshold, and may be the difference between the value based on the RSRQ value and the fourth reference value obtained through multiple measurements.
  • the absolute values are all less than or equal to the fourteenth threshold; or, it may be that at least one of the absolute values based on the difference between the RSRQ value and the fourth reference value obtained from multiple measurements is less than or equal to the fourteenth threshold.
  • the absolute value of the difference between the SINR and the fifth reference value is less than or equal to the fifteenth threshold, and may be that the absolute value of the difference between the neighboring cell SINR and the fifth reference value obtained from multiple measurements is less than or equal to the fifteenth threshold; or It may be that at least one absolute value of the absolute value of the difference between the neighboring cell SINR and the fifth reference value obtained through multiple measurements is less than or equal to the fifteenth threshold.
  • the absolute value of the difference between the value based on the SINR value and the sixth reference value is less than or equal to the fifteenth threshold, and may be the difference between the value based on the SINR value and the sixth reference value obtained through multiple measurements.
  • the absolute values are all less than or equal to the fifteenth threshold; or, it may be that at least one of the absolute values based on the difference between the SINR value and the sixth reference value obtained from multiple measurements is less than or equal to the fifteenth threshold.
  • the RSRPs of neighboring cells for three measurements are 1, 2, and 3 respectively, and the thirteenth threshold is assumed to be 1.
  • the difference between the maximum value and the minimum value of the neighbor cell RSRP is calculated to be 2.
  • the difference is greater than the thirteenth threshold value, which proves that the signal stability is insufficient. It is further determined that the neighbor cell does not meet the third preset condition.
  • the RSRP of the neighboring cell for three measurements is 1, 2, and 3 respectively, the first reference value is 2, and the thirteenth threshold is assumed to be 1.
  • the absolute value of the difference between RSRP and the first reference value is 1, 0, 1, respectively. Then, the absolute value of the difference between RSRP and the first reference value is less than or equal to the thirteenth threshold, which proves that the signal is stable.
  • the thirteenth threshold value is 0, only one absolute value of the difference between the RSRP and the first reference value is less than or equal to the thirteenth threshold value, which can also prove that the signal is stable.
  • the neighbor cell RSRP is measured as 1, the first reference value is 2, and the thirteenth threshold is assumed to be 1.
  • the absolute value of the difference between the RSRP and the first reference value is calculated as 1, then, the absolute value of the difference between the RSRP and the first reference value is less than or equal to the thirteenth threshold, which proves that the signal is stable.
  • the value change range is less than or equal to the thirteenth threshold value, which is similar to the foregoing determination that the RSRP value change range is less than or equal to the thirteenth threshold value, and no further examples are given here.
  • the thirteenth threshold, the fourteenth threshold, and the fifteenth threshold may be configured by a network device, may be predefined, or may be determined by a terminal.
  • the thirteenth threshold, the fourteenth threshold, and the fifteenth threshold are determined by the terminal device according to the mobility of the terminal device.
  • the mobility of a terminal device may include the speed of the terminal device, the terminal device being stationary, the terminal device being moving, the terminal device being at a low speed, the terminal device being at a medium speed, the terminal device being at a high speed, the terminal device being at a normal mobility state, and the terminal device being At least one of a medium mobility state and a terminal device in a high mobility state.
  • the network device may configure a mapping relationship between the mobility of the terminal device and the first threshold, and the terminal device determines the first threshold according to the mobility and the mapping relationship.
  • the determination of the first threshold value by the terminal device according to mobility may further be specifically that the terminal device determines the first threshold value according to the mobility and the first time length.
  • the first time length may be a first period.
  • the terminal device After the terminal device performs the foregoing judgment, it can determine whether the cell meets the first preset condition.
  • step S110 If the terminal device determines that the cell meets the first preset condition, execute step S110,
  • step S120 is performed.
  • the measurement cell may be a measurement amount of the measurement cell
  • the evaluation cell may be an evaluation cell selection criterion or a cell reselection criterion.
  • a method of measuring a cell includes measuring a measurement amount of the cell and evaluating whether the cell meets a cell selection criterion or a cell reselection criterion.
  • the period that the terminal device uses the first period as the measurement or evaluation cell can be understood as that the terminal device performs the measurement or evaluation cell at least every first period.
  • the second period is used as a period for measuring or evaluating the cell.
  • the first period is different from the second period, that is, the terminal device uses different measurement or evaluation periods to perform cell measurement or evaluation according to different conditions of the cell.
  • the above-mentioned first period is greater than the second period, that is, when the cell satisfies the first preset condition, the measurement period in which the terminal device measures the cell to be measured is larger than the measurement period when the cell does not meet the first preset condition .
  • the measurement quantity of the above cell satisfies the second preset condition, or the terminal device does not measure neighboring cells, or the cell meets the cell selection criterion, or the cell meets the cell reselection criterion, proving the cell The signal is better, and the possibility of cell reselection by the terminal device is low.
  • the terminal device uses the first period as the period for measuring or evaluating the cell, and the frequency of measuring or evaluating the cell by the terminal device is low, which can save the terminal device. Power consumption.
  • the measurement quantity of the above cell satisfies the third preset condition, or the cell does not satisfy the cell selection criterion, or the cell does not satisfy the cell reselection criterion, which proves that the signal quality of the cell is poor and the terminal device reselects The probability of the cell is low.
  • the terminal device uses the first period as the period for measuring or evaluating the cell, and the frequency of the terminal device measuring or evaluating the cell is low, which can save the power consumption of the terminal device.
  • the first period is greater than the second period, and the first period may be an integer multiple of the second period.
  • the foregoing multiples are different under different values of the second period.
  • the second period may be a DRX cycle used by the terminal device, or may be an integer multiple of the DRX cycle used by the terminal device.
  • the second period may be a DRX period; if the cell is a neighboring cell of the terminal device, the second period may be an integer multiple of the DRX period.
  • first period, the second period, and the third period may be configured for a network device, or the first period, the second period, and the third period may be predefined.
  • the network device may configure the first period, the second period, and the third period through the system information.
  • the first cycle when configured for a network device, the following two configuration methods can be referred to.
  • the first period is the number of time units, and the time units may be frames, subframes, time slots, seconds, milliseconds, and so on.
  • CellMeasCycle represents the first cycle
  • rf32 represents 32 radio frames
  • rf64 represents 64 radio frames
  • the first period is a multiple of the second period
  • Network device configuration parameters can be:
  • CellMeasCycle represents the first cycle
  • 2 represents the first cycle is twice the second cycle
  • 4 represents the first cycle is 4 times the second cycle
  • 8 represents the first cycle is 8 times the second cycle.
  • the period when the terminal device uses the second period as the measurement or evaluation cell can be understood as that the terminal device performs the measurement or evaluation cell at least every second period.
  • the terminal device may use the second period during initial measurement or evaluation of the cell.
  • the above-mentioned first reference value may be that the terminal device measures the first measurement / the first measurement in the first preset condition N times that the cell meets or does not satisfy the first preset condition, and the terminal device obtains RSRP of the cell.
  • the foregoing first reference value may be that the terminal device determines whether the cell meets or does not meet the first measurement in the first preset condition / before the first measurement within the first time period.
  • RSRP of the cell measured by the terminal device may be that the terminal device determines whether the cell meets or does not meet the first measurement in the first preset condition / before the first measurement within the first time period.
  • the foregoing first reference value may be that the terminal device measures M times or the first measurement in the first preset condition or the first measurement in the cell before the terminal device measures RSRP of the obtained cell.
  • the second reference value may be based on the terminal device determining N times whether the cell meets or does not meet the first measurement / first measurement in the first preset condition, and the terminal device measures The RSRP value of the obtained cell.
  • the second reference value may be based on whether the cell meets or fails to meet the first measurement / first measurement in the first preset condition based on the first time period of the terminal device. Previously, the RSRP value of the cell measured by the terminal device.
  • the second reference value may be based on the terminal device M times determining that the cell meets or does not meet the first measurement / first measurement in the first preset condition, the terminal device The RSRP value of the measured cell.
  • the above-mentioned third reference value may be that the terminal device obtains N times of determining whether the cell meets or does not meet the first measurement / first measurement in the first preset condition, and the terminal device obtains RSRQ of the cell.
  • the third reference value may be that the terminal device determines whether the cell meets or does not meet the first measurement in the first preset condition / before the first measurement within the first time period. , The RSRQ of the cell measured by the terminal device.
  • the third reference value may be that the terminal device measures M times before determining whether the cell meets or does not meet the first measurement in the first preset condition / the first measurement, and the terminal device measures The RSRQ of the obtained cell.
  • the fourth reference value may be based on the terminal device determining N times whether the cell meets or does not meet the first measurement / first measurement in the first preset condition, and the terminal device measures The RSRQ value of the obtained cell.
  • the fourth reference value may be based on whether it is determined in the first time period of the terminal device that the cell meets or does not meet the first measurement / before the first measurement in the first preset condition. Previously, the RSRQ value of the cell measured by the terminal device.
  • the fourth reference value may be based on the terminal device M times determining that the cell meets or does not satisfy the first measurement / first measurement in the first preset condition, the terminal device The RSRQ value of the measured cell.
  • the above-mentioned fifth reference value may be that the terminal device obtains the first measurement / the first measurement in the first preset condition N times when the terminal device determines whether the cell meets or does not satisfy the first preset condition.
  • the SINR of the cell may be that the terminal device obtains the first measurement / the first measurement in the first preset condition N times when the terminal device determines whether the cell meets or does not satisfy the first preset condition.
  • the foregoing fifth reference value may be that the terminal device determines whether the cell meets or does not satisfy the first measurement in the first preset condition / before the first measurement within the first time period. , The SINR of the cell measured by the terminal device.
  • the foregoing fifth reference value may be that the terminal device measures M times before determining whether the cell meets or does not satisfy the first measurement in the first preset condition / the first measurement, and the terminal device measures The SINR of the obtained cell.
  • the sixth reference value may be based on the terminal device determining N times whether the cell meets or does not meet the first measurement / first measurement in the first preset condition, and the terminal device measures The SINR value of the obtained cell.
  • the foregoing sixth reference value may be based on whether it is determined in the first time period of the terminal device that the cell meets or does not satisfy the first measurement / before the first measurement in the first preset condition. Previously, the SINR value of the cell measured by the terminal device.
  • the sixth reference value may be based on the terminal device M times determining that the cell meets or does not satisfy the first measurement / first measurement in the first preset condition, the terminal device The SINR value of the measured cell.
  • the first reference value, the second reference value, the third reference value, the fourth reference value, the fifth reference value, and the sixth reference value may be configured for a network device.
  • the first reference value, the second reference value, the third reference value, the fourth reference value, the fifth reference value, and the sixth reference value may be predefined.
  • FIG. 3 to FIG. 6 are schematic diagrams of measuring a cell cycle by a terminal device in the present application.
  • FIG. 3 is a schematic diagram of a measurement or evaluation cycle of a terminal equipment measurement cell.
  • the terminal device when the cell does not meet the first preset condition, the terminal device performs cell measurement or evaluation in the second period. When the cell satisfies the first preset condition, the terminal device performs cell measurement or evaluation in a first cycle.
  • FIG. 4 is a schematic diagram of a measurement or evaluation cycle of another type of terminal equipment measurement cell.
  • the terminal device performs cell measurement or evaluation in the second cycle.
  • the terminal device When the terminal device performs cell measurement or evaluation in the second period, when it is determined that the cell meets the first preset condition within the first time period, the terminal device performs cell measurement or evaluation in the first period. That is, when the terminal device measures the cell in the second period, when the terminal device determines that the cell meets the first preset condition, the terminal device no longer measures or evaluates the cell in the second period, and the terminal device replaces the measurement or evaluation cell period as First cycle.
  • FIG. 5 is a schematic diagram of a measurement or evaluation cycle of a terminal equipment measurement cell.
  • the terminal device performs cell measurement or evaluation in the first cycle.
  • the terminal device When the terminal device performs cell measurement or evaluation in the first period, when it is determined that the cell does not meet the first preset condition within the first period of time, the terminal device performs cell measurement or evaluation in the second period. That is, when the terminal device measures or evaluates the cell in the first period, when the terminal device determines that the cell does not meet the first preset condition, the terminal device no longer measures or evaluates the cell in the first period, and the terminal device replaces the measurement or evaluation.
  • the period is the second period.
  • FIG. 6 is a schematic diagram of a measurement or evaluation cycle of a terminal equipment measurement cell.
  • the terminal device performs cell measurement or evaluation in the second cycle.
  • the terminal device performs cell measurement or evaluation in the second cycle.
  • the terminal device performs cell measurement or evaluation in the first cycle. That is, when the terminal device measures or evaluates the cell in the second period, when the terminal device determines that the cell meets the first preset condition, the terminal device no longer measures or evaluates the cell in the second period, and the terminal device replaces the measurement or evaluation period. Is the first cycle.
  • FIG. 7 is a schematic diagram of a device 10 for measuring a cell according to an embodiment of the present application.
  • the device for measuring a cell may be a terminal device, or a chip or a circuit, such as a chip or a circuit that can be installed in the terminal device .
  • the terminal device may correspond to the terminal device in the foregoing method.
  • the communication device 10 may include a processor 11 and a memory 12.
  • the memory 12 is configured to store instructions
  • the processor 11 is configured to execute the instructions stored in the memory 12 to enable the apparatus 20 to implement the steps performed by the terminal device in the corresponding methods shown in FIGS. 3 to 6.
  • the processor 11 may perform determining whether a cell satisfies a first preset condition, and measure or evaluate the cell with a first period or a second period.
  • the processor 11 may determine the above-mentioned cell measurement.
  • the communication device 10 may further include an input port 13 and an output port 14.
  • the processor 11, the memory 12, the input port 13, and the output port 14 can communicate with each other through an internal connection path, and transfer control and / or data signals.
  • the memory 12 is used to store a computer program.
  • the processor 11 may be used to call and run the computer program from the memory 12 to control the input port 13 to receive signals and control the output port 14 to send signals to complete the steps of the terminal device in the above method.
  • the memory 12 may be integrated in the processor 11 or may be provided separately from the processor 11.
  • the input port 13 is a receiver
  • the output port 14 is a transmitter.
  • the receiver and the transmitter may be the same or different physical entities. When they are the same physical entity, they can be collectively referred to as transceivers.
  • the input port 13 is an input interface
  • the output port 14 is an output interface
  • the functions of the input port 13 and the output port 14 may be considered to be implemented through a transceiver circuit or a dedicated chip for transceiver.
  • the processor 11 may be implemented by a dedicated processing chip, a processing circuit, a processor, or a general-purpose chip.
  • a manner of using a general-purpose computer may be considered to implement the terminal device provided in the embodiment of the present application.
  • the program code that is to implement the functions of the processor 11, the input port 13, and the output port 14 is stored in the memory 12, and the general-purpose processor implements the functions of the processor 11, the input port 13, and the output port 14 by executing the code in the memory 12.
  • FIG. 8 is a schematic structural diagram of a terminal device 20 provided in this application.
  • the terminal device 20 includes a processor, a memory, a control circuit, an antenna, and an input / output device.
  • the processor is mainly used to process the communication protocol and communication data, and control the entire terminal device, execute a software program, and process the data of the software program.
  • the processor is used to support the terminal device to execute the foregoing method for transmitting a precoding matrix.
  • the memory is mainly used to store software programs and data, such as the codebook described in the foregoing embodiment.
  • the control circuit is mainly used for conversion of baseband signals and radio frequency signals and processing of radio frequency signals.
  • the control circuit and the antenna can also be called a transceiver, which is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input / output devices such as a touch screen, a display screen, and a keyboard, are mainly used to receive data input by the user and output data to the user.
  • the processor can read the software program in the storage unit, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit. After the radio frequency circuit processes the baseband signal, the radio frequency signal is sent out in the form of electromagnetic waves through the antenna.
  • the RF circuit receives the RF signal through the antenna, converts the RF signal into a baseband signal, and outputs the baseband signal to the processor.
  • the processor converts the baseband signal into data and processes the data.
  • FIG. 8 shows only one memory and a processor. In an actual terminal device, there may be multiple processors and memories.
  • the memory may also be referred to as a storage medium or a storage device, which is not limited in the embodiment of the present application.
  • the processor may include a baseband processor and a central processor.
  • the baseband processor is mainly used to process communication protocols and communication data
  • the central processor is mainly used to control and execute the entire terminal device.
  • the processor in FIG. 8 integrates the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit may also be independent processors, which are interconnected through technologies such as a bus.
  • the terminal device may include multiple baseband processors to adapt to different network standards, the terminal device may include multiple central processors to enhance its processing capabilities, and various components of the terminal device may be connected through various buses.
  • the baseband processor may also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit may also be expressed as a central processing circuit or a central processing chip.
  • the function of processing communication protocols and communication data may be built in the processor or stored in the storage unit in the form of a software program, and the processor executes the software program to implement the baseband processing function.
  • the antenna and the control circuit having a transmitting and receiving function may be regarded as the transmitting and receiving unit 201 of the terminal device 20, and the processor having the processing function may be regarded as the processing unit 202 of the terminal device 20.
  • the terminal device 20 includes a transceiver unit 201 and a processing unit 202.
  • the transceiver unit may also be referred to as a transceiver, a transceiver, a transceiver device, and the like.
  • the device for implementing the receiving function in the transceiver unit 201 can be regarded as a receiving unit
  • the device for implementing the transmitting function in the transceiver unit 201 can be regarded as a transmitting unit, that is, the transceiver unit 201 includes a receiving unit and a transmitting unit.
  • the receiving unit may also be called a receiver, a receiver, a receiving circuit, and the like
  • the sending unit may be called a transmitter, a transmitter, or a transmitting circuit and the like.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, which may be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objective of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each of the units may exist separately physically, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially a part that contributes to the existing technology or a part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the method described in the embodiments of the present application.
  • the aforementioned storage media include: U disks, mobile hard disks, read-only memories (ROM), random access memories (RAM), magnetic disks or optical disks, and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种测量小区的方法及终端设备。该测量小区的方法包括:终端设备首先确定小区是否满足第一预设条件,当终端设备确定小区满足第一预设条件时,终端设备以第一周期去测量或评估小区,而当终端设备确定小区不满足第一预设条件时,终端设备以第二周期去测量或评估小区,针对小区为终端设备的服务小区还是邻小区,对应不同的第一预设条件,其中,所述第一周期与所述第二周期相异。本申请提供的技术方案可以使得终端设备在进行小区测量的时候,能够根据服务小区或邻小区满足的不同预设条件,灵活选择不同的测量周期测量或评估小区。

Description

测量小区的方法及终端设备 技术领域
本申请涉及通信领域,并且更具体地,涉及一种测量小区的方法及终端设备。
背景技术
在长期演进(long term evolution,LTE)系统中,终端设备在开机后首先进行公共陆地移动网(public land mobile network,PLMN)选择。一旦终端设备选择了一个PLMN,终端设备会选择一个属于该PLMN的合适的小区驻留,其中,终端设备基于小区选择准则选择一个合适的小区。当终端设备驻留在一个小区时,终端设备会定期地搜索以寻找并根据小区重选准则选择一个更好的小区并驻留。终端设备驻留的小区为终端设备的服务小区。当终端设备驻留在一个小区时,终端设备会测量或评估服务小区和邻小区。
目前已知一种终端设备测量或评估小区的方法,终端设备根据非连续接收(discontinuous receive,DRX)周期进行终端设备的服务小区或邻小区测量或评估,没有考虑服务小区或邻小区的实际情况灵活地配置测量或评估服务小区或邻小区的周期,因此如何根据服务小区或邻小区不同的情况灵活地选择测量或评估服务小区或邻小区的周期,成为亟待解决的问题。
发明内容
本申请提供一种测量小区的方法及终端设备,终端设备能够根据终端设备的服务小区或邻小区的不同情况,灵活选择测量或评估服务小区或邻小区的周期。
第一方面,提供了一种测量小区的方法,包括:若终端设备确定小区满足第一预设条件,所述终端设备以第一周期作为测量或评估所述小区的周期;若所述终端设备确定小区不满足所述第一预设条件,所述终端设备以第二周期作为测量或评估所述小区的周期。
其中,所述第一周期不等于所述第二周期。在一些实施例中,所述第一周期可以大于所述第二周期。
在一些可能的实现方式中,若所述小区是所述终端设备的服务小区,所述第一预设条件包括所述小区的测量量满足第二预设条件、所述终端设备没有进行邻小区测量、所述小区满足小区选择准则或所述小区满足小区重选准则中的至少一个;或者,若所述小区是所述终端设备的邻小区,所述第一预设条件包括所述小区的测量量满足第三预设条件、所述小区不满足所述小区选择准则或所述小区不满足所述小区重选准则中的至少一个。
根据本申请实施例提供的测量小区的方法,终端设备根据终端设备的服务小区或邻小区是否满足第一预设条件,确定不同的测量或评估周期。能够根据终端设备的服务小区或邻小区不同的情况,灵活配置测量或评估终端设备的服务小区或邻小区的周期。并且根据本申请实施例提供的测量小区的方法,根据小区与终端设备的关系,预设不同的第一预设条件。当小区为终端设备的服务小区时,第一预设条件可以是服务小区满足小区选择准则或服务小区满足小区重选准则、所述终端设备没有进行邻小区测量、或服务小区的测量量满足第二预设条件。当小区为终端设备的邻小区时,第一预设条件可以是邻小区不满足小区选择准则或邻小区不满足小区重选准则或邻小区的测量量满足第三预设条件。
可选地,上述第一预设条件可以为预先定义的。
应理解,所述终端设备没有进行邻小区测量可以为所述终端设备没有触发邻小区测量。
可选地,所述终端设备没有进行邻小区测量具体为所述终端设备没有进行低优先级邻小区测量。
可选地,所述邻小区测量为同频邻小区测量。可选地,所述邻小区测量为异频邻小区测量。
可选地,所述终端设备可以根据服务小区的测量量确定是否进行邻小区测量。
应理解,当服务小区满足上述第一预设条件中的任意一种或多种的情况下,证明服务小区的信号质量较好,终端设备进行小区重选的可能性低。进一步地,终端设备能够降低测量或评估服务小区的频率,从而能够降低终端设备的功耗。
还应理解,当邻小区满足上述第一预设条件中的任意一种或多种的情况下,证明邻小区的信号质量较差,终端设备选择该邻小区的可能性低。进一步地,终端设备能够降低测量或评估该邻小区的频率,从而能够降低终端设备的功耗。
结合第一方面,在第一方面的一种实现方式中,所述第一周期大于所述第二周期。
根据本申请实施例提供的测量小区的方法,终端设备确定小区满足第一预设条件时,使用的第一周期,大于终端设备确定小区不满足第一预设条件时,使用的第二周期。可以理解为,当小区满足第一预设条件时,终端设备降低测量或评估小区的频率,能够节省终端设备测量或评估小区的功耗。
可选地,在一些实施例中,上述第二周期可以为终端设备的DRX周期;
可选地,在另一些实施例中,上述第二周期可以为终端设备的DRX周期的倍数。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,所述终端设备确定小区满足第一预设条件包括:所述终端设备N次确定小区均满足所述第一预设条件,或者,所述终端设备在第一时间段内确定小区满足所述第一预设条件,其中,N为正整数。
根据本申请实施例提供的测量小区的方法,终端设备确定小区满足第一预设条件时,是根据多次确定的结果综合考虑的,能够增加终端设备确定小区满足第一预设条件的准确性,避免终端设备因小区某一次满足第一预设条件而降低测量或评估频率。
可选地,在一些实施例中,上述第一时间段为X个第三周期,其中,X为正整数。
可选地,第三周期可以为第一周期或第二周期。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,所述方法还包括:
所述终端设备根据所述小区特定参考信号CRS、同步信号块SSB、信道状态信息参考信号CSI-RS或解调参考信号DMRS中的至少一种确定所述小区的测量量。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,所述测量小区的方法还包括:所述终端设备根据所述小区特定参考信号CRS、同步信号块SSB、信道状态信息参考信号CSI-RS或解调参考信号DMRS中的至少一种确定所述小区的测量量。
其中,上述SSB也可以为同步信号/物理广播信道块(synchronization signal and PBCH block,SS/PBCH block)。
根据本申请实施例提供的测量小区的方法,终端设备能够根据多种信号确定小区的测量量,增加了终端设备获取小区测量量的灵活性。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,所述小区的测量量包括:所述小区的参考信号接收功率RSRP、基于所述RSRP的值、所述小区的参考信号接收质量RSRQ、基于所述RSRQ的值、所述小区发送的信号的功率与干扰和噪声功率的比值SINR或基于所述SINR的值中的至少一种。
根据本申请实施例提供的测量小区的方法,小区的测量量可以是多种可测量或可计算的值中的一种,能够为终端设备确定小区的测量量增加灵活性。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,所述第二预设条件包括:基于所述RSRP的值大于或等于第一阈值、基于所述RSRQ的值大于或等于第二阈值、基于所述SINR的值大于或等于第三阈值、所述RSRP大于或等于第四阈值、所述RSRQ大于或等于第五阈值或所述SINR 大于或等于第六阈值中的至少一种。
在一些可能的实现方式中,所述基于所述RSRP的值为所述小区选择准则中使用的Srxlev(该参数Srxlev可理解为接收水平参数)。
在一些可能的实现方式中,所述基于所述RSRQ的值为所述小区选择准则中使用的Squal(该参数Squal可理解为接收质量)。
在一些可能的实现方式中,所述第一阈值、所述第二阈值、所述第三阈值、所述第四阈值、所述第五阈值和所述第六阈值中的至少一个为根据所述终端设备的移动性确定的。
在一些可能的实现方式中,所述第一阈值、所述第二阈值、所述第三阈值、所述第四阈值、所述第五阈值和所述第六阈值中的至少一个为根据目标阈值确定的,其中,所述目标阈值为用于终端设备确定进行intra-frequency测量的阈值和/或用于终端设备确定进行异频inter-frequency测量的阈值。
在一些可能的实现方式中,所述第一阈值为所述用于终端设备确定进行同频intra-frequency测量的阈值加上第一偏移量;或者,所述第一阈值为所述用于终端设备确定进行inter-frequency测量的阈值加上第二偏移量;或者,所述第一阈值为所述用于终端设备确定进行intra-frequency测量的阈值与所述用于终端设备确定进行inter-frequency测量的阈值中的最大值,再加上第三偏移量。
在一些可能的实现方式中,所述第二阈值为所述用于终端设备确定进行intra-frequency测量的阈值加上第四偏移量;或者,所述第一阈值为所述用于终端设备确定进行inter-frequency测量的阈值加上第五偏移量;或者,所述第一阈值为所述用于终端设备确定进行intra-frequency测量的阈值与所述用于终端设备确定进行inter-frequency测量的阈值中的最大值,再加上第六偏移量。
根据本申请实施例提供的测量小区的方法,根据小区与终端设备的关系,确定小区测量量应该满足的不同条件。当小区为终端设备的服务小区时,服务小区的测量量中包括的各种参数应该大于或者等于对应的预设阈值。
应理解,当服务小区的测量量中包括的各种参数满足大于或者等于对应的预设阈值时,可以确定服务小区的信号质量较好,增加了确定小区信号质量可能的方法。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,所述第三预设条件包括:基于所述RSRP的值小于或等于第七阈值、基于所述RSRQ的值小于或等于第八阈值、基于所述SINR的值小于或等于第九阈值、所述RSRP小于或等于第十阈值、所述RSRQ小于或等于第十一阈值或所述SINR小于或等于第十二阈值中的至少一种。
根据本申请实施例提供的测量小区的方法,根据小区与终端设备的关系,确定小区测量量应该满足的不同条件。当小区为终端设备的邻小区时,邻小区的测量量中包括的各种参数应该小于或者等于对应的预设阈值。
应理解,当邻小区的测量量中包括的各种参数满足小于或者等于对应的预设阈值时,可以确定邻小区的信号质量较差,增加了确定小区信号质量可能的方法。
在一些可能的实现方式中,所述基于所述RSRP的值为所述小区重选准则中使用的Rn。
在一些可能的实现方式中,所述第七阈值、所述第八阈值、所述第九阈值、所述第十阈值、所述第十一阈值和所述第十二阈值中的至少一个为根据所述终端设备的移动性确定的。
在一些可能的实现方式中,所述第七阈值、所述第八阈值、所述第九阈值、所述第十阈值、所述第十一阈值和所述第十二阈值中的至少一个为根据所述终端的服务小区的测量量确定的。
在一些可能的实现方式中,所述第七阈值为所述小区重选准则中使用的Rs加上第七偏移量。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,所述N次包括连续的N次。
根据本申请实施例提供的测量小区的方法,终端设备连续N次确定小区满足第一预设条件,能够确 定小区在某一段时间是一直满足第一预设条件,增加终端设备确定小区满足第一预设条件的准确性。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,所述第二预设条件包括:所述RSRP或基于所述RSRP的值变化范围小于或等于第十三阈值、所述RSRQ或基于所述RSRQ的值变化范围小于或等于第十四阈值、所述SINR或基于所述SINR的值变化范围小于或等于第十五阈值中的至少一种。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,所述第三预设条件包括:所述RSRP或基于所述RSRP的值变化范围小于或等于第十三阈值、所述RSRQ或基于所述RSRQ的值变化范围小于或等于第十四阈值、所述SINR或基于所述SINR的值变化范围小于或等于第十五阈值中的至少一种。
根据本申请实施例提供的测量小区的方法,小区的测量量满足预设条件的前提还包括,多次测量量的变化范围保持在一个可接受的阈值范围内。能够保证多次测量量是稳定的,增加测量量的准确性。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,所述RSRP或基于所述RSRP的值变化范围小于或等于第十三阈值包括:所述RSRP或基于所述RSRP的值的最大值与最小值的差值的变化范围小于或等于第十三阈值;或者,所述RSRP与第一参考值之差的绝对值均小于或等于第十三阈值,或者,基于所述RSRP的值与第二参考值之差的绝对值均小于或等于第十三阈值;所述RSRQ或基于所述RSRQ的值变化范围小于或等于第十四阈值包括:所述RSRQ或基于所述RSRQ的值的最大值与最小值的差值的变化范围小于或等于第十四阈值;或者,所述RSRQ与第三参考值之差的绝对值均小于或等于第十四阈值,或者,基于所述RSRQ的值与第四参考值之差的绝对值均小于或等于第十四阈值;所述SINR或基于所述SINR的值变化范围小于或等于第十五阈值包括:所述SINR或基于所述SINR的值的最大值与最小值的差值的变化范围小于或等于第十五阈值;或者,所述SINR与第五参考值之差的绝对值小于或等于第十五阈值,或者,基于所述SINR的值与第六参考值之差的绝对值小于或等于第十五阈值。
根据本申请实施例提供的测量小区的方法,确定小区测量量的变化量是否在可接受的范围内,可以根据多次确定小区满足第一预设条件中的小区测量量的最大值与最小值的差值,确定测量量的变化范围是否小于预设的阈值,还可以根据至少一次确定小区满足第一预设条件中的小区测量量与预设的参考值之间的差值的绝对值,确定测量量的变化范围是否小于预设的阈值。
在一些可能的实现方式中,所述第十三阈值、所述第十四阈值和所述第十五阈值中的至少一个为根据所述终端设备的移动性确定的。
在一些可能的实现方式中,所述终端设备的移动性包括所述终端设备的移动速度、所述终端设备处于静止、所述终端设备处于移动、所述终端设备处于低速、所述终端设备处于中速、所述终端设备处于高速、所述终端设备处于正常移动性状态、所述终端设备处于中等移动性状态、所述终端设备处于高移动性状态中的至少一种。
第二方面,提供了一种测量小区的终端设备,该终端设备可以用来执行第一方面及第一方面的任意可能的实现方式中的终端设备的操作。具体地,终端设备包括用于执行上述第一方面所描述的步骤或功能相对应的部件(means)可以是第一方面的终端设备。所述步骤或功能可以通过软件实现,或硬件实现,或者通过硬件和软件结合来实现。
第三方面,提供了一种通信系统,通信系统的结构中包括处理器。该处理器被配置为支持服务器执行上述第一方面及其各种实现方式中的功能,在一个可能的设计中,该服务器还可以包括收发器,用于支持服务器接收或发送信息。在一个可能的设计中,该服务器还可以包括存储器,该存储器用于与处理器耦合,保存服务器必要的程序指令和数据。或者说,该服务器包括存储器和处理器,该存储器用于存 储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得服务器执行上述第一方面中及其各种实现方式中的任一种测量小区的方法。
第四方面,提供了一种计算机可读存储介质,所述计算机可读存储介质存储有程序,所述程序使得服务器执行上述第一方面及其各种实现方式中的任一种测量小区的方法。或者说,该计算机可读存储介质用于储存为上述服务器所用的计算机软件指令,其包含用于执行上述第一方面的方法所设计的程序。
第五方面,提供了一种芯片系统,该芯片系统包括处理器,用于支持服务器实现上述第一方面及其各种实现方式中所涉及的功能。
本申请提出的测量小区的方法及终端设备,终端设备根据小区的不同情况,灵活选择测量或评估小区的周期,能够增加终端设备测量或评估小区的灵活性。
附图说明
图1是适用本申请实施例的测量小区的方法的系统的一例的示意图;
图2是本申请实施例提供的一种测量小区的方法示意图;
图3是一种终端设备测量小区的测量或评估周期示意图;
图4是另一种终端设备测量小区的测量或评估周期示意图;
图5是另一种终端设备测量小区的测量或评估周期示意图;
图6是另一种终端设备测量小区的测量或评估周期示意图;
图7为本申请实施例提供的测量小区的终端设备10的示意图;
图8为本申请提供的一种终端设备20的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
应理解,本申请实施例可以应用于各种通信系统,例如:全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、先进的长期演进(advanced long term evolution,LTE-A)系统、通用移动通信系统(universal mobile telecommunication system,UMTS)、无线局域网(wireless local area networks,WLAN)、无线保真(wireless fidelity,WiFi)或下一代通信系统等,这里,下一代通信系统可以包括例如,第五代(fifth-generation,5G)通信系统。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(device to device,D2D)通信,机器到机器(machine to machine,M2M)通信,机器类型通信(machine type communication,MTC),以及车辆间(vehicle to vehicle,V2V)通信。
本申请实施例结合终端设备描述了各个实施例,其中:
终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备可以是WLAN中的站点(staion,ST),可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及下一代通信系统,例如,5G网络中的终端设备或者未来演进的公共陆地移动网络(public land mobile network,PLMN)网络中的终端设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
此外,在本申请实施例中,终端设备还可以是物联网(internet of things,IoT)系统中的终端设备,IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。
作为示例而非限定,在本申请实施例中,该网络设备可以是基站(base station,BS),而基站可能有多种形式,比如宏基站、微基站、中继站和接入点等。
示例性地,本申请实施例涉及到的基站可以是NR中的基站,其中,NR中的基站还可以称为发送接收点(transmission reception point,TRP)或下一代节点B(next generation Node B,gNB),也可以是GSM或CDMA中的基站收发台(base transceiver station,BTS),也可以是WCDMA系统中的节点B(NodeB,NB),还可以是LTE系统中的演进型节点B(evolutional Node B,eNB或eNodeB)。
本申请实施例涉及到的网络设备也可以包括一种部署在无线接入网中能够和终端进行无线通信的设备。
例如,可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点以及未来5G网络中的网络设备或者未来演进的公共陆地移动网络(public land mobile network,PLMN)中的网络设备等,例如,演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、网络设备控制器(base station controller,BSC)、网络设备收发台(base transceiver station,BTS)、家庭网络设备(例如,home evolved NodeB,或Home Node B,HNB)、基带单元(baseband unit,BBU)等。本申请实施例中,实现网络设备的功能的装置可以是网络设备,也可以是支持网络设备实现该功能的装置,例如芯片、电路或者其它装置。本申请实施例中,以实现网络设备的功能的装置是网络设备为例,描述本申请实施例提供的技术方案。
另外,在本申请实施例中,网络设备为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(small cell)对应的基站,这里的小小区可以包括:城市小区(metro cell)、微小区(micro cell)、微微小区(pico cell)、毫微微小区(femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
此外,LTE系统或5G系统中的载波上可以同时有多个小区同频工作,在某些特殊场景下,也可以认为上述载波与小区的概念等同。例如在载波聚合(carrier aggregation,CA)场景下,当为UE配置辅载波时,会同时携带辅载波的载波索引和工作在该辅载波的辅小区的小区标识(cell indentify,Cell ID),在这种情况下,可以认为载波与小区的概念等同,比如UE接入一个载波和接入一个小区是等同的。
在本申请实施例中,终端设备或网络设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
此外,本申请实施例的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
图1是能够适用本申请实施例测量小区的方法的系统100的示意图。
如图1所示,该无线通信系统100可以包括一个或多个网络设备,例如,图1所示的网络设备#1 111、网络设备#2 112、网络设备#3 113;该无线通信系统100还可以包括一个或多个终端设备,例如,图1所示的终端设备121。
该无线通信系统100也可支持CoMP传输,即,多个小区或多个网络设备可以协同参与一个终端设备的数据传输或者联合接收一个终端设备发送的数据,或者多个小区或多个网络设备进行协作调度或者协作波束成型。其中,该多个小区可以属于相同的网络设备或者不同的网络设备,并且可以根据信道增益或路径损耗、接收信号强度、接收信号指令等来选择。
可选地,图1示出的通信系统100中,网络设备#1至网络设备#3中的一个(例如网络设备#1)可以为服务网络设备,服务网络设备可以是指通过无线空口协议为终端设备提供RRC连接、非接入层(non-access stratum,NAS)移动性管理和安全性输入中至少一项服务的网络设备。可选地,网络设备#2和网络设备#3可以为协作网络设备。服务网络设备可以向终端设备发送控制信令,协作网络设备可以向终端设备发送数据;或者,服务网络设备可以向终端设备发送控制信令,服务网络设备和协作网络设备可以向终端设备发送数据;或者,服务网络设备和协作网络设备均可以向终端设备发送控制信令,并且服务网络设备和协作网络设备均可以向终端设备发送数据;或者,协作网络设备可以向终端设备发送控制信令,服务网络设备和协作网络设备中的至少一个可以向终端设备发送数据;或者,协作网络设备可以向终端设备发送控制信令和数据。本申请实施例对此并未特别限定。
应理解,图1中仅为便于理解,示意性地示出了网络设备#1至网络设备#3和终端设备,但这不应对本申请构成任何限定,该无线通信系统中还可以包括更多或更少数量的网络设备,也可以包括更多数量的终端设备,与不同的终端设备通信的网络设备可以是相同的网络设备,也可以是不同的网络设备, 与不同的终端设备通信的网络设备的数量可以相同,也可以不同,本申请对此不做限定。
下面,以网络设备#1 111和终端设备121为例简单说明,网络设备与终端设备之间的通信。
网络设备#1 111可包括1个天线或多个天线。另外,网络设备#1 111可附加地包括发射机链和接收机链,本领域普通技术人员可以理解,它们均可包括与信号发送和接收相关的多个部件(例如处理器、调制器、复用器、解调器、解复用器或天线等)。
网络设备#1 111可以与多个终端设备通信。终端设备121可以是例如蜂窝电话、智能电话、便携式电脑、手持通信设备、手持计算设备、卫星无线电装置、全球定位系统、PDA和/或用于在无线通信系统100上通信的任意其它适合设备。
如图1所示,终端设备121与网络设备#1 111通信,其中,网络设备#1 111通过前向链路(也称为下行链路)向终端设备121发送信息,并通过反向链路(也称为上行链路)网络设备#1 111从终端设备121接收信息。
例如,在频分双工(frequency division duplex,FDD)系统中,例如,前向链路与反向链路使用不同的频带。
再例如,在时分双工(time division duplex,TDD)系统和全双工(full duplex)系统中,前向链路和反向链路可使用共同频带。
被设计用于通信的每个天线(或者由多个天线组成的天线组)和/或区域称为网络设备#1 111的扇区。
例如,可将天线组设计为与网络设备#1 111覆盖区域的扇区中的终端设备通信。网络设备#1 111可以通过单个天线或多天线发射分集向其对应的扇区内所有的终端设备发送信号。在网络设备#1 111通过前向链路与终端设备121进行通信的过程中,网络设备#1 111的发射天线也可利用波束成形来改善前向链路的信噪比。
此外,与网络设备#1 111通过单个天线或多天线发射分集向它所有的终端设备发送信号的方式相比,在网络设备#1 111利用波束成形向相关覆盖区域中随机分散的终端设备121发送信号时,相邻小区中的移动设备会受到较少的干扰。
在给定时间,网络设备#1 111、终端设备121可以是无线通信发送装置和/或无线通信接收装置。当发送数据时,无线通信发送装置可对数据进行编码以用于传输。具体地,无线通信发送装置可获取(例如生成、从其它通信装置接收、或在存储器中保存等)要通过信道发送至无线通信接收装置的一定数目的数据比特。这种数据比特可包含在数据的传输块(或多个传输块)中,传输块可被分段以产生多个码块。
此外,该通信系统100可以是PLMN网络、D2D网络、M2M网络、IoT网络或者其他网络,图1只是举例的简化示意图,网络中还可以包括其他网络设备或终端设备,图1中未予以画出。
为了便于理解本申请记载的技术方案,首先简单介绍本申请实施例中会涉及到的、现有技术中的小区选择准则和小区重选准则。
小区选择准则,以下也称为小区选择准则S。
具体地,小区选择准则S为满足以下条件的选择准则。
条件:Srxlev>0以及Squal>0,其中,Srxlev为基于终端设备测量的小区的参考信号接收功率(reference signal received power,RSRP)的值,Squal为基于终端设备测量的小区的参考信号接收质量(reference signal received quality,RSRQ)的值。
本申请实施例对于终端设备测量的小区并不限制。
进一步地,
上述Srxlev=Q rxlevmeas–(Q rxlevmin+Q rxlevminoffset)–Pcompensation-Qoffset temp
上述Squal=Q qualmeas–(Q qualmin+Q qualminoffset)–Qoffset temp
其中,Q rxlevmeas为终端设备测量的小区的RSRP;
Q qualmeas为终端设备测量的小区的RSRQ;
Q rxlevmin用于指示上述终端设备测量的小区内最小的要求的接收水平。Q rxlevmin值的大小可以由网络设备配置。
Q qualmin用于指示上述终端设备测量的小区内最小的要求的质量水平。Q rxlevmin值的大小可以由网络设备配置。
Q rxlevminoffset用于指示终端设备驻留在访问公用陆地移动网(visited public land mobile network,VPLMN)上搜索高优先级PLMN时对Q rxlevmin进行的偏移。
Q qualminoffset用于指示终端设备驻留在访问公用陆地移动网(visited public land mobile network,VPLMN)上搜索高优先级PLMN时对Q qualmin进行的偏移。
Pcompensation是根据P EMAX1,P EMAX2和P PowerClass确定的。P EMAX1和P EMAX2是网络设备配置的,P PowerClass是标准协议中定义的,为由终端设备功率优先级决定的最大上行发送功率。
Q offsettemp也是由网络设备配置的。
可选地,在一些情况下,上述Srxlev的表达式中除了Q rxlevmeas以外的参数中的一个或多个可以是不出现的,Squal的表达式中除了Q qualmeas以外的参数中的一个或多个可以是不出现的。
上述各个参数的含义参见下表-表1。
Figure PCTCN2019084263-appb-000001
上述小区的RSRP和小区的RSRQ是根据小区特定参考信号(cell-specific reference signal,CRS)确定的。
在LTE中,小区的RSRP为在测量带宽内承载CRS的资源元素(resource element,RE)上的平均功率。RSRP用于表示被测量的信号的接收功率。RSRQ用于表示被测量的信号的接收质量,可以为根据 RSRP和接收信号强度指示信息(received signal strength indicator,RSSI)确定。
当终端设备驻留在一个小区时,终端设备会定期地搜索并根据小区重选准则以寻找选择一个更好的小区。
在处于无线资源控制空闲(radio resource control idle,RRC IDLE)状态下的终端设备,在至少每个非连续接收(discontinuous receive,DRX)周期需要测量服务小区的RSRP和RSRQ。
当服务小区的RSRP和RSRQ(或者,基于服务小区的RSRP和基于服务小区的RSRQ的测量值)满足条件一时,UE需要进行同频(intra-frequency)测量,当服务小区的RSRQ和RSRQ(或者,基于服务小区的RSRP和基于服务小区的RSRQ的测量值)满足条件二时,UE需要进行异频(inter-frequency)测量。可以理解的是同频intra-frequency测量是同频intra-frequency小区的测量,异频inter-frequency测量是异频inter-frequency小区的测量。
其中,intra-frequency测量可以包括对intra-frequency小区的RSRP和RSRQ测量,inter-frequency测量可以包括对inter-frequency小区的RSRP和RSRQ测量。
上述条件一为:Srxlev≤S IntraSearchP以及Squal≤S IntraSearchQ
上述条件二为:Srxlev≤S nonIntraSearchP或者Squal≤S nonIntraSearchQ
其中,S IntraSearchP,S IntraSearchQ,S nonIntraSearchP和S nonIntraSearchQ是网络设备配置的。
在进行intra-frequency测量的情况下,终端设备至少每T measure,EUTRAN_Intra进行intra-frequency小区的RSRP和RSRQ测量。
在进行inter-frequency测量的情况下,终端设备至少每T measure,EUTRAN_Inter,或者K*T measure, EUTRAN_Inter进行inter-frequency小区的RSRP和RSRQ测量。其中,K为正整数。
可选地,在一些实施例中,K可以为inter-frequency载波的个数。
可选地,在另一些实施例中,K为inter-frequency载波的个数的倍数。
T measure,EUTRAN_Intra和T measure,EUTRAN_Inter的值在标准协议中规定,见下表-表2。
Figure PCTCN2019084263-appb-000002
小区重选准则。
终端设备对服务小区和邻小区根据R准则进行排序。
可选地,根据R准则进行排序时,终端设备可以对所有满足上述小区选择准则S的小区进行R准则排序。
具体地,R准则的定义如下。
R s=Q meas,s+Q hyst-Qoffset temp+Qoffset SCPTM
R n=Q meas,n-Qoffset-Qoffset temp+Qoffset SCPTM
其中,R s是服务小区的小区排序准则,R n是邻小区的小区排序准则。
Q meas是小区的RSRP,具体的,Q meas,s是服务小区的RSRP,Q meas,n是邻小区的RSRP。
Qoffset是根据Qoffset s,n和Qoffset frequency确定,Qoffset s,n和Qoffset frequency是网络设备配置的。
Q hyst,Qoffset temp和Qoffset SCPTM是网络设备配置的。
上述各个参数的含义以及作用参见下表-表3。
如果一个小区是按照上述小区重选准则R准则排序结果最好的小区,则终端设备进行小区重选到该小区。
在新空口(New Radio,NR)中,部分内容与上述LTE系统的内容相同。不同的部分包括:
1、小区的RSRP是小区的同步信号-参考信号接收功率(synchronization signal reference signal received power,或者,synchronization signal based reference signal received power,SS-RSRP)。
小区的RSRQ是小区的同步信号-参考信号接收质量(synchronization signal reference signal received quality,或者,synchronization signal based reference signal received quality,SS-RSRQ)。
其中,SS-RSRP和SS-RSRQ是根据同步信号/物理广播信道块(synchronization signal and PBCH block,SS/PBCH block)确定的。
一个SS/PBCH block是由主同步信号(primary synchronization signal,PSS)、辅同步信号(secondary synchronization signal,SSS)以及物理广播信道(physical broadcast channel,PBCH)组成的。在本申请实施例中,将SS/PBCH block简称为同步信号块(synchronization signal block,SSB)。
具体的,SS-RSRP和SS-RSRQ可以根据SSS确定;或者,SS-RSRP和SS-RSRQ可以根据SSS以及PBCH的解调参考信号(demodulation reference signals,DMRS)和信道状态信息参考信号(channel state information reference signal,CSI-RS)中的至少一种确定。
2、终端设备在RRC_IDLE态和/或无线资源控制非活动(radio resource control inactive,RRC_INACTIVE)状态下至少每个DRX周期需要测量服务小区的RSRP和RSRQ。
3、一些时间值、阈值等的符号及取值可能不同。
具体的,NR中用于表示终端设备测量小区的周期的符号和取值、判断是否需要测量邻小区的阈值的符号和取值、小区选择准则及小区重选准则中使用的符号和取值可能与LTE不同。
例如,在进行intra-frequency测量的情况下,终端设备至少每T measure,NR_Intra进行intra-frequency小区的RSRP和RSRQ测量。T measure,NR_Intra的值与上述的T measure,EUTRAN_Intra的值可能不相同。
4、小区选择准则和小区重选准则的定义(或者表达式)可能有所不同。LTE准则中的某些参数可能没有在NR的准则中出现。另外,某些参数的含义也可能不同。
例如,对于小区重选准则R准则,目前NR协议中定义如下。
R s=Q meas,s+Q hyst
R n=Q meas,n+Qoffset
上述各个参数的含义以及作用参见下表-表4。
Figure PCTCN2019084263-appb-000004
虽然在NR中,终端设备进行小区测量过程中,部分内容与上述LTE系统的内容不同,但其核心含义并未改变。例如,在NR中,小区选择准则仍是基于小区的RSRP和小区的RSRQ。小区重选准则(R准则)的定义仍是基于小区的RSRP。
可选地,在一些情况下,上述R s的表达式中除了Q meas,s以外的参数可以是不出现的,R n的表达式中除了Q meas,n以外的参数可以是不出现的。
又如,对于小区重选准则R准则,更新的NR协议中还可以定义如下。
R s=Q meas,s+Q hyst-Qoffset temp
R n=Q meas,n-Qoffset-Qoffset temp
上述各个参数的含义以及作用参见下表-表5。
Figure PCTCN2019084263-appb-000005
可选地,在一些情况下,上述R s的表达式中除了Q meas,s以外的参数中的一个或多个可以是不出现的,R n的表达式中除了Q meas,n以外的参数中的一个或多个可以是不出现的。
应理解,随着标准协议的更新,小区选择准则、小区选择准则中的表达式、小区重选准则以及小区重选准则中的表达式可以与上述举例不同。
基于上述相关内容简单的介绍,下面结合图2-图6详细介绍本申请提供的测量小区的方法。
图2是本申请实施例提供的一种测量小区的方法示意图,包括S110-S120两个步骤,下面详细介绍这两个步骤。
根据本申请提供的测量小区的方法,终端设备为了能够根据小区信号的不同情况,灵活配置不同的测量或评估周期进行小区测量或评估。
S110,若终端设备确定小区满足第一预设条件,以第一周期作为测量或评估小区的周期。
终端设备根据小区为所述终端设备的服务小区还是所述终端设备的邻小区,终端设备确定小区是否满足第一预设条件包括以下两种情况:
第一种:若所述小区为所述终端设备的服务小区。
当所述小区为所述终端设备的服务小区时,所述第一预设条件包括:
服务小区的测量量满足第二预设条件、所述终端设备没有进行邻小区测量、服务小区满足小区选择准则或服务小区满足小区重选准则中的至少一个。
应理解,所述终端设备没有进行邻小区测量可以为所述终端设备没有触发邻小区测量。
可选地,所述终端设备没有进行邻小区测量具体为所述终端设备没有进行低优先级邻小区测量。
可选地,所述邻小区测量为同频邻小区测量。可选地,所述邻小区测量为异频邻小区测量。
可选地,所述终端设备可以根据服务小区的测量量确定是否进行邻小区测量。终端设备可以根据现有技术中的方法确定是否进行邻小区测量。
其中,服务小区的测量量是根据对服务小区发送的信号的测量确定的。服务小区发送的信号可以理解为网络设备发送的信号。具体地,服务小区的测量量由终端设备根据服务小区的特定参考信号CRS,或者服务小区的同步信号块SSB,或者服务小区的信道状态信息参考信号CSI-RS,或者服务小区PBCH的解调参考信号DMRS中的至少一种确定。
具体地,服务小区的测量量包括上面介绍的服务小区的参考信号接收功率RSRP,或者基于所述RSRP的值,或者服务小区的参考信号接收质量RSRQ,或者基于所述RSRQ的值,或者服务小区发送的信号的功率与干扰和噪声功率的比值SINR,或者基于所述SINR的值中的至少一种。
RSRP用于表示被测量的信号的接收功率。RSRQ用于表示被测量的信号的接收质量,可以为根据RSRP和RSSI确定,RSSI用于表示接收信号强度。SINR用于表示被测量的信号的功率与干扰和噪声功率的比值。
服务小区的RSRP可以用于表示服务小区的发送的信号的接收功率;
服务小区的RSRQ可以用于表示服务小区的发送的信号的接收质量,可以为根据RSRP和RSSI确定,RSSI用于表示接收信号强度;
服务小区的SINR可以用于表示服务小区的发送的信号的功率与干扰和噪声功率的比值。
还应理解,在NR中,上述的服务小区的测量量还可以是服务小区的SS-RSRP,或者服务小区的SS-RSRQ,其中,SS-RSRP与RSRP类似,SS-RSRQ与RSRQ类似。上面相关知识介绍中已经有相关描述,这里不再赘述。
例如,终端设备可以根据SSB确定SS-RSRP和SS-RSRQ。具体地,SSB中包括PSS、SSS以及PBCH,终端设备根据其中的SSS确定SS-RSRP和SS-RSRQ。
另外根据CRS、SSB、CSI-RS或PBCH的DMRS确定SS-RSRP和SS-RSRQ(或,RSRP和RSRQ)可以根据现有技术中的确定方法。这里不再赘述。
进一步地,上述服务小区的测量量满足第二预设条件包括:
基于服务小区的RSRP的值大于或等于第一阈值、基于服务小区的RSRQ的值大于或等于第二阈值、基于服务小区的SINR的值大于或等于第三阈值、服务小区的RSRP大于或等于第四阈值、服务小区的RSRQ大于或等于第五阈值或服务小区的SINR大于或等于第六阈值中的至少一种。
可选地,在一些实施例中,基于服务小区的RSRP的值可以为小区选择准则中使用的Srxlev,基于服务小区的RSRQ的值可以为小区选择准则中使用的Squal。其中,Srxlev的值根据服务小区的RSRP确定,Squal的值根据服务小区的RSRQ确定。
应理解,上述Srxlev与Squal可以为现有标准中的定义,这里不再赘述。
可选地,在另一些实施例中,基于服务小区的RSRP的值可以为小区重选准则中使用的Rs,例如,R s=Q meas,s+Q hyst-Qoffset temp,或者R s=Q meas,s–Qoffset,或者R s=Q meas,s+Q hyst,基于服务小区的RSRQ的值可以为Rsq。其中,Rsq可以为Rsq=RSRQ+/-Q hyst,或者Rsq=RSRQ+/-Q hyst–Qoffset temp
应理解,上述小区重选准则中使用的Rs可以为现有标准中的定义,这里不再赘述。
应理解,上述Q hyst、Qoffset以及Qoffset temp可以为现有标准中的定义。
具体地,上述第一阈值、第二阈值、第三阈值、第四阈值、第五阈值以及第六阈值可以是由网络设备配置的,也可以是预先定义的,也可以是终端确定的。
其中,上述第一阈值、第二阈值、第三阈值、第四阈值、第五阈值以及第六阈值由网络设备配置包 括网络设备通过系统信息配置。
例如,网络设备通过配置上述第一阈值、第二阈值、第四阈值以及第五阈值可以是:
CellMeasInfo SEQUENCE{
             thresP INTEGER(0..31),
             thresQ INTEGER(0..31)
          }
其中,thresP代表第一阈值,thresQ代表第二阈值,或者thresP代表第四阈值,thresQ代表第五阈值。
具体地,第一阈值或第四阈值为用于触发终端设备进行上述intra-frequency测量或inter-frequency测量的阈值(S IntraSearchP或S nonIntraSearchP),第二阈值或第五阈值为用于触发终端设备进行上述intra-frequency测量或inter-frequency测量的阈值(S IntraSearchQ或S nonIntraSearchQ)。
可选地,在一些实施例中,第一阈值为终端设备根据终端设备的移动性确定的。终端设备的移动性可以包括终端设备的移动速度、终端设备处于静止、终端设备处于移动、终端设备处于低速、终端设备处于中速、终端设备处于高速、终端设备处于正常移动性状态、终端设备处于中等移动性状态、终端设备处于高移动性状态中的至少一种。网络设备可以配置终端设备的移动性与第一阈值的映射关系,终端设备根据其移动性及映射关系确定第一阈值。终端设备根据移动性确定第一阈值还可以具体为,终端设备根据移动性和第一时间长度确定第一阈值。第一时间长度可以为第一周期。
可选地,在另一些实施例中,第一阈值为根据用于终端设备确定进行intra-frequency测量的阈值和/或用于终端设备确定进行inter-frequency测量的阈值确定的。第一阈值还可以进一步为根据终端设备的移动性,以及用于终端设备确定进行intra-frequency测量的阈值和/或用于终端设备确定进行inter-frequency测量的阈值确定的。
例如,第一阈值为用于终端设备确定进行intra-frequency测量的阈值(S IntraSearchP),或者,第一阈值为用于终端设备确定进行inter-frequency测量的阈值(S nonIntraSearchP),或者,第一阈值为用于终端设备确定进行intra-frequency测量的阈值(S IntraSearchP)与用于终端设备确定进行inter-frequency测量的阈值(S nonIntraSearchP)中的最大值。
又如,第一阈值为用于终端设备确定进行intra-frequency测量的阈值(S IntraSearchP)加上一个偏移量,或者,第一阈值为用于终端设备确定进行inter-frequency测量的阈值(S nonIntraSearchP)加上一个偏移量,或者,第一阈值为用于终端设备确定进行intra-frequency测量的阈值(S IntraSearchP)与用于终端设备确定进行inter-frequency测量的阈值(S nonIntraSearchP)中的最大值,再加上一个偏移量。所述偏移量可以是网络设备配置的,或者是预先定义的,或者是终端设备确定的。所述终端设备可以根据终端设备的移动性确定偏移量。终端设备的移动性可以包括终端设备的移动速度、终端设备处于静止、终端设备处于移动、终端设备处于低速、终端设备处于中速、终端设备处于高速、终端设备处于正常移动性状态、终端设备处于中等移动性状态、终端设备处于高移动性状态中的至少一种。网络设备可以配置终端设备的移动性与偏移量的映射关系,终端设备根据其移动性及映射关系确定偏移量。终端设备根据移动性确定偏移量还可以具体为,终端设备根据移动性和第一时间长度确定偏移量。第一时间长度可以为第一周期。
又如,第一阈值为用于终端设备确定进行intra-frequency测量的阈值(S IntraSearchP)乘上一个缩放因子,或者第一阈值为用于终端设备确定进行inter-frequency测量的阈值(S nonIntraSearchP)乘上一个缩放因子,或者第一阈值为用于终端设备确定进行intra-frequency测量的阈值(S IntraSearchP)与用于终端设备确定进行inter-frequency测量的阈值(S nonIntraSearchP)中的最大值,再乘上一个缩放因子。所述缩放因子可以是网络设备配置的,或者是预先定义的,或者是终端设备确定的。在所述缩放因子是终端设备确定的 情况下,所述终端设备可以根据终端设备的移动性确定缩放因子。终端设备的移动性可以包括终端设备的移动速度、终端设备处于静止、终端设备处于移动、终端设备处于低速、终端设备处于中速、终端设备处于高速、终端设备处于正常移动性状态、终端设备处于中等移动性状态、终端设备处于高移动性状态中的至少一种。网络设备可以配置终端设备的移动性与缩放因子的映射关系,终端设备根据其移动性及映射关系确定缩放因子。终端设备根据移动性确定缩放因子还可以具体为,终端设备根据移动性和第一时间长度确定缩放因子。第一时间长度可以为第一周期。
可选地,在另一些实施例中,第一阈值为0。
可选地,在一些实施例中,第二阈值为终端设备根据终端设备的移动性确定的。终端设备的移动性可以包括终端设备的移动速度、终端设备处于静止、终端设备处于移动、终端设备处于低速、终端设备处于中速、终端设备处于高速、终端设备处于正常移动性状态、终端设备处于中等移动性状态、终端设备处于高移动性状态中的至少一种。网络设备可以配置终端设备的移动性与第二阈值的映射关系,终端设备根据其移动性及映射关系确定第二阈值。终端设备根据移动性确定第二阈值还可以具体为,终端设备根据移动性和第一时间长度确定第二阈值。第一时间长度可以为第一周期。
可选地,在另一些实施例中,第二阈值为根据用于终端设备确定进行intra-frequency测量的阈值和/或用于终端设备确定进行inter-frequency测量的阈值确定的。第二阈值还可以进一步为根据终端设备的移动性,以及用于终端设备确定进行intra-frequency测量的阈值和/或用于终端设备确定进行inter-frequency测量的阈值确定的。
例如,第二阈值为用于终端设备确定进行intra-frequency测量的阈值(S IntraSearchQ),或者,第二阈值为用于终端设备确定进行inter-frequency测量的阈值(S nonIntraSearchQ),或者,第二阈值为用于终端设备确定进行intra-frequency测量的阈值(S IntraSearchQ)与用于终端设备确定进行inter-frequency测量的阈值(S nonIntraSearchQ)中的最大值。
又如,第二阈值为用于终端设备确定进行intra-frequency测量的阈值(S IntraSearchQ)加上一个偏移量,或者,第二阈值为用于终端设备确定进行inter-frequency测量的阈值(S nonIntraSearchQ)加上一个偏移量,或者,第二阈值为用于终端设备确定进行intra-frequency测量的阈值(S IntraSearchQ)与用于终端设备确定进行inter-frequency测量的阈值(S nonIntraSearchQ)中的最大值,再加上一个偏移量。所述偏移量可以是网络设备配置的,或者是预先定义的,或者是终端设备确定的。所述终端设备可以根据终端设备的移动性确定偏移量。终端设备的移动性可以包括终端设备的移动速度、终端设备处于静止、终端设备处于移动、终端设备处于低速、终端设备处于中速、终端设备处于高速、终端设备处于正常移动性状态、终端设备处于中等移动性状态、终端设备处于高移动性状态中的至少一种。网络设备可以配置终端设备的移动性与偏移量的映射关系,终端设备根据其移动性及映射关系确定偏移量。终端设备根据移动性确定偏移量还可以具体为,终端设备根据移动性和第一时间长度确定偏移量。第一时间长度可以为第一周期。
又如,第二阈值为用于终端设备确定进行intra-frequency测量的阈值(S IntraSearchQ)乘上一个缩放因子,或者第二阈值为用于终端设备确定进行inter-frequency测量的阈值(S nonIntraSearchQ)乘上一个缩放因子,或者第二阈值为用于终端设备确定进行intra-frequency测量的阈值(S IntraSearchQ)与用于终端设备确定进行inter-frequency测量的阈值(S nonIntraSearchQ)中的最大值,再乘上一个缩放因子。所述缩放因子可以是网络设备配置的,或者是预先定义的,或者是终端设备确定的。在所述缩放因子是终端设备确定的情况下,所述终端设备可以根据终端设备的移动性确定缩放因子。终端设备的移动性可以包括终端设备的移动速度、终端设备处于静止、终端设备处于移动、终端设备处于低速、终端设备处于中速、终端设备处于高速、终端设备处于正常移动性状态、终端设备处于中等移动性状态、终端设备处于高移动性状态中的至少一种。网络设备可以配置终端设备的移动性与缩放因子的映射关系,终端设备根据其移动性 及映射关系确定缩放因子。终端设备根据移动性确定缩放因子还可以具体为,终端设备根据移动性和第一时间长度确定缩放因子。第一时间长度可以为第一周期。
可选地,在另一些实施例中,第二阈值为0。
可选地,在一些实施例中,第三阈值为终端设备根据终端设备的移动性确定的。终端设备的移动性可以包括终端设备的移动速度、终端设备处于静止、终端设备处于移动、终端设备处于低速、终端设备处于中速、终端设备处于高速、终端设备处于正常移动性状态、终端设备处于中等移动性状态、终端设备处于高移动性状态中的至少一种。网络设备可以配置终端设备的移动性与第三阈值的映射关系,终端设备根据其移动性及映射关系确定第三阈值。终端设备根据移动性确定第三阈值还可以具体为,终端设备根据移动性和第一时间长度确定第三阈值。第一时间长度可以为第一周期。
可选地,在一些实施例中,第四阈值为终端设备根据终端设备的移动性确定的。终端设备的移动性可以包括终端设备的移动速度、终端设备处于静止、终端设备处于移动、终端设备处于低速、终端设备处于中速、终端设备处于高速、终端设备处于正常移动性状态、终端设备处于中等移动性状态、终端设备处于高移动性状态中的至少一种。网络设备可以配置终端设备的移动性与第四阈值的映射关系,终端设备根据其移动性及映射关系确定第四阈值。终端设备根据移动性确定第四阈值还可以具体为,终端设备根据移动性和第一时间长度确定第四阈值。第一时间长度可以为第一周期。
可选地,在另一些实施例中,第四阈值为根据用于终端设备确定进行intra-frequency测量的阈值和/或用于终端设备确定进行inter-frequency测量的阈值确定的。第四阈值还可以进一步为根据终端设备的移动性,以及用于终端设备确定进行intra-frequency测量的阈值和/或用于终端设备确定进行inter-frequency测量的阈值确定的。
例如,第四阈值为用于终端设备确定进行intra-frequency测量的阈值(S IntraSearchP),或者,第四阈值为用于终端设备确定进行inter-frequency测量的阈值(S nonIntraSearchP),或者,第四阈值为用于终端设备确定进行intra-frequency测量的阈值(S IntraSearchP)与用于终端设备确定进行inter-frequency测量的阈值(S nonIntraSearchP)中的最大值。
又如,第四阈值为用于终端设备确定进行intra-frequency测量的阈值(S IntraSearchP)加上((Q rxlevmin+Q rxlevminoffset)+P compensation+Qoffset temp)。或者,第四阈值为用于终端设备确定进行inter-frequency测量的阈值(S nonIntraSearchP)加上((Q rxlevmin+Q rxlevminoffset)+P compensation+Qoffset temp)。或者,第四阈值为用于终端设备确定进行intra-frequency测量的阈值(S IntraSearchP)与用于终端设备确定进行inter-frequency测量的阈值(S nonIntraSearchP)中的最大值,再加上((Q rxlevmin+Q rxlevminoffset)+P compensation+Qoffset temp)。
又如,第四阈值为用于终端设备确定进行intra-frequency测量的阈值(S IntraSearchP)加上((Q rxlevmin+Q rxlevminoffset)+P compensation+Qoffset temp),再加上一个偏移量,或者,第四阈值为用于终端设备确定进行inter-frequency测量的阈值(S nonIntraSearchP)加上((Q rxlevmin+Q rxlevminoffset)+P compensation+Qoffset temp),再加上一个偏移量,或者,第四阈值为用于终端设备确定进行intra-frequency测量的阈值(S IntraSearchP)与用于终端设备确定进行inter-frequency测量的阈值(S nonIntraSearchP)中的最大值,再加上((Q rxlevmin+Q rxlevminoffset)+P compensation+Qoffset temp),再加上一个偏移量。所述偏移量可以是网络设备配置的,或者是预先定义的,或者是终端设备确定的。所述终端设备可以根据终端设备的移动性确定偏移量。终端设备的移动性可以包括终端设备的移动速度、终端设备处于静止、终端设备处于移动、终端设备处于低速、终端设备处于中速、终端设备处于高速、终端设备处于正常移动性状态、终端设备处于中等移动性状态、终端设备处于高移动性状态中的至少一种。网络设备可以配置终端设备的移动性与偏移量的映射关系,终端设备根据其移动性及映射关系确定偏移量。终端设备根据移动性确定偏移量还可以具体为,终端设备根据移动性和第一时间长度确定偏移量。第一时间长度可以为第一周期。
又如,第四阈值为用于终端设备确定进行intra-frequency测量的阈值(S IntraSearchP)加上((Q rxlevmin+Q rxlevminoffset)+P compensation+Qoffset temp),再乘以一个缩放因子,或者,第四阈值为用于终端设备确定进行inter-frequency测量的阈值(S nonIntraSearchP)加上((Q rxlevmin+Q rxlevminoffset)+P compensation+Qoffset temp),再乘以一个缩放因子,或者,第四阈值为用于终端设备确定进行intra-frequency测量的阈值(S IntraSearchP)与用于终端设备确定进行inter-frequency测量的阈值(S nonIntraSearchP)中的最大值,再加上((Q rxlevmin+Q rxlevminoffset)+P compensation+Qoffset temp),再乘以一个缩放因子。所述缩放因子可以是网络设备配置的,或者是预先定义的,或者是终端设备确定的。所述终端设备可以根据终端设备的移动性确定缩放因子。终端设备的移动性可以包括终端设备的移动速度、终端设备处于静止、终端设备处于移动、终端设备处于低速、终端设备处于中速、终端设备处于高速、终端设备处于正常移动性状态、终端设备处于中等移动性状态、终端设备处于高移动性状态中的至少一种。网络设备可以配置终端设备的移动性与缩放因子的映射关系,终端设备根据其移动性及映射关系确定缩放因子。终端设备根据移动性确定缩放因子还可以具体为,终端设备根据移动性和第一时间长度确定缩放因子。第一时间长度可以为第一周期。
又如,第四阈值为用于终端设备确定进行intra-frequency测量的阈值(S IntraSearchP)乘上一个缩放因子,再加上((Q rxlevmin+Q rxlevminoffset)+P compensation+Qoffset temp),或者第四阈值为用于终端设备确定进行inter-frequency测量的阈值(S nonIntraSearchP)乘上一个缩放因子,再加上((Q rxlevmin+Q rxlevminoffset)+P compensation+Qoffset temp),或者第四阈值为用于终端设备确定进行intra-frequency测量的阈值(S IntraSearchP)与用于终端设备确定进行inter-frequency测量的阈值(S nonIntraSearchP)中的最大值,再乘上一个缩放因子,再加上((Q rxlevmin+Q rxlevminoffset)+P compensation+Qoffset temp)。所述缩放因子可以是网络设备配置的,或者是预先定义的,或者是终端设备确定的。在所述缩放因子是终端设备确定的情况下,所述终端设备可以根据终端设备的移动性确定缩放因子。终端设备的移动性可以包括终端设备的移动速度、终端设备处于静止、终端设备处于移动、终端设备处于低速、终端设备处于中速、终端设备处于高速、终端设备处于正常移动性状态、终端设备处于中等移动性状态、终端设备处于高移动性状态中的至少一种。网络设备可以配置终端设备的移动性与缩放因子的映射关系,终端设备根据其移动性及映射关系确定缩放因子。终端设备根据移动性确定缩放因子还可以具体为,终端设备根据移动性和第一时间长度确定缩放因子。第一时间长度可以为第一周期。
可选地,在另一些实施例中,第四阈值为((Q rxlevmin+Q rxlevminoffset)+P compensation+Qoffset temp)。
可选地,在一些实施例中,第五阈值为终端设备根据终端设备的移动性确定的。终端设备的移动性可以包括终端设备的移动速度、终端设备处于静止、终端设备处于移动、终端设备处于低速、终端设备处于中速、终端设备处于高速、终端设备处于正常移动性状态、终端设备处于中等移动性状态、终端设备处于高移动性状态中的至少一种。网络设备可以配置终端设备的移动性与第五阈值的映射关系,终端设备根据其移动性及映射关系确定第五阈值。终端设备根据移动性确定第五阈值还可以具体为,终端设备根据移动性和第一时间长度确定第五阈值。第一时间长度可以为第一周期。
可选地,在另一些实施例中,第五阈值为根据用于终端设备确定进行intra-frequency测量的阈值和/或用于终端设备确定进行inter-frequency测量的阈值确定的。第五阈值还可以进一步为根据终端设备的移动性,以及用于终端设备确定进行intra-frequency测量的阈值和/或用于终端设备确定进行inter-frequency测量的阈值确定的。
例如,第五阈值为用于终端设备确定进行intra-frequency测量的阈值(S IntraSearchQ),或者,第五阈值为用于终端设备确定进行inter-frequency测量的阈值(S nonIntraSearchQ),或者,第五阈值为用于终端设备确定进行intra-frequency测量的阈值(S IntraSearchQ)与用于终端设备确定进行inter-frequency测量的阈值(S nonIntraSearchQ)中的最大值。
又如,第五阈值为用于终端设备确定进行intra-frequency测量的阈值(S IntraSearchQ)加上((Q qualmin+Q qualminoffset)+Qoffset temp)。或者,第五阈值为用于终端设备确定进行inter-frequency测量的阈值(S nonIntraSearchQ)加上((Q qualmin+Q qualminoffset)+Qoffset temp)。或者,第五阈值为用于终端设备确定进行intra-frequency测量的阈值(S IntraSearchQ)与用于终端设备确定进行inter-frequency测量的阈值(S nonIntraSearchQ)中的最大值,再加上((Q qualmin+Q qualminoffset)+Qoffset temp)。
又如,第五阈值为用于终端设备确定进行intra-frequency测量的阈值(S IntraSearchQ)加上((Q qualmin+Q qualminoffset)+Qoffset temp),再加上一个偏移量,或者,第五阈值为用于终端设备确定进行inter-frequency测量的阈值(S nonIntraSearchQ)加上((Q qualmin+Q qualminoffset)+Qoffset temp),再加上一个偏移量,或者,第五阈值为用于终端设备确定进行intra-frequency测量的阈值(S IntraSearchQ)与用于终端设备确定进行inter-frequency测量的阈值(S nonIntraSearchQ)中的最大值,再加上((Q qualmin+Q qualminoffset)+Qoffset temp),再加上一个偏移量。所述偏移量可以是网络设备配置的,或者是预先定义的,或者是终端设备确定的。所述终端设备可以根据终端设备的移动性确定偏移量。终端设备的移动性可以包括终端设备的移动速度、终端设备处于静止、终端设备处于移动、终端设备处于低速、终端设备处于中速、终端设备处于高速、终端设备处于正常移动性状态、终端设备处于中等移动性状态、终端设备处于高移动性状态中的至少一种。网络设备可以配置终端设备的移动性与偏移量的映射关系,终端设备根据其移动性及映射关系确定偏移量。终端设备根据移动性确定偏移量还可以具体为,终端设备根据移动性和第一时间长度确定偏移量。第一时间长度可以为第一周期。
又如,第五阈值为用于终端设备确定进行intra-frequency测量的阈值(S IntraSearchQ)加上((Q qualmin+Q qualminoffset)+Qoffset temp),再乘以一个缩放因子,或者,第五阈值为用于终端设备确定进行inter-frequency测量的阈值(S nonIntraSearchQ)加上((Q qualmin+Q qualminoffset)+Qoffset temp),再乘以一个缩放因子,或者,第五阈值为用于终端设备确定进行intra-frequency测量的阈值(S IntraSearchQ)与用于终端设备确定进行inter-frequency测量的阈值(S nonIntraSearchQ)中的最大值,再加上((Q qualmin+Q qualminoffset)+Qoffset temp),再乘以一个缩放因子。所述缩放因子可以是网络设备配置的,或者是预先定义的,或者是终端设备确定的。所述终端设备可以根据终端设备的移动性确定缩放因子。终端设备的移动性可以包括终端设备的移动速度、终端设备处于静止、终端设备处于移动、终端设备处于低速、终端设备处于中速、终端设备处于高速、终端设备处于正常移动性状态、终端设备处于中等移动性状态、终端设备处于高移动性状态中的至少一种。网络设备可以配置终端设备的移动性与缩放因子的映射关系,终端设备根据其移动性及映射关系确定缩放因子。终端设备根据移动性确定缩放因子还可以具体为,终端设备根据移动性和第一时间长度确定缩放因子。第一时间长度可以为第一周期。
又如,第五阈值为用于终端设备确定进行intra-frequency测量的阈值(S IntraSearchQ)乘上一个缩放因子,再加上((Q qualmin+Q qualminoffset)+Qoffset temp),或者第五阈值为用于终端设备确定进行inter-frequency测量的阈值(S nonIntraSearchQ)乘上一个缩放因子,再加上((Q qualmin+Q qualminoffset)+Qoffset temp),或者第五阈值为用于终端设备确定进行intra-frequency测量的阈值(S IntraSearchQ)与用于终端设备确定进行inter-frequency测量的阈值(S nonIntraSearchQ)中的最大值,再乘上一个缩放因子,再加上((Q qualmin+Q qualminoffset)+Qoffset temp)。所述缩放因子可以是网络设备配置的,或者是预先定义的,或者是终端设备确定的。在所述缩放因子是终端设备确定的情况下,所述终端设备可以根据终端设备的移动性确定缩放因子。终端设备的移动性可以包括终端设备的移动速度、终端设备处于静止、终端设备处于移动、终端设备处于低速、终端设备处于中速、终端设备处于高速、终端设备处于正常移动性状态、终端设备处于中等移动性状态、终端设备处于高移动性状态中的至少一种。网络设备可以配置终端设备的移动性与缩放因子的映射关系,终端设备根据其移动性及映射关系确定缩放因子。终端设备根据移动性确定缩 放因子还可以具体为,终端设备根据移动性和第一时间长度确定缩放因子。第一时间长度可以为第一周期。
可选地,在另一些实施例中,第五阈值为((Q qualmin+Q qualminoffset)+Qoffset temp)。
可选地,在一些实施例中,第六阈值为终端设备根据终端设备的移动性确定的。终端设备的移动性可以包括终端设备的移动速度、终端设备处于静止、终端设备处于移动、终端设备处于低速、终端设备处于中速、终端设备处于高速、终端设备处于正常移动性状态、终端设备处于中等移动性状态、终端设备处于高移动性状态中的至少一种。网络设备可以配置终端设备的移动性与第六阈值的映射关系,终端设备根据其移动性及映射关系确定第六阈值。终端设备根据移动性确定第六阈值还可以具体为,终端设备根据移动性和第一时间长度确定第六阈值。第一时间长度可以为第一周期。
进一步地,上述服务小区满足小区选择准则为服务小区满足上述的小区选择准则S准则。
应理解,小区选择准则S中使用的参数Srxlev为基于SS-RSRP(或,RSRP)的值,以及小区选择准则S中使用的参数Squal为基于SS-RSRQ(或,RSRQ)的值。则,终端设备在根据上述的CRS、SSB、CSI-RS或DMRS中的至少一种确定SS-RSRP或SS-RSRQ之后,能够判断服务小区是否满足小区选择准则。
进一步地,上述服务小区满足小区重选准则可以理解为:
终端设备可以重选到服务小区,或者,按照现有标准定义的小区重选准则下,服务小区的排序结果是最好的。
应理解,小区重选准则R中的参数R s以及R n为基于SS-RSRP(或,RSRP)的值,则,终端设备在根据上述的CRS、SSB、CSI-RS或DMRS中的至少一种确定SS-RSRP之后,能够判断服务小区是否满足小区重选准则。
可选地,在一些实施例中,终端设备N次确定服务小区满足第一预设条件,
或者,
终端设备在第一时间段内确定服务小区满足所述第一预设条件;
其中,N为正整数。
可选的,在一些实施例中,上述N是网络设备配置的,进一步地,网络设备可通过系统信息配置N。
可选的,在另一些实施例中,上述N是预先定义的。
可选地,在一些实施例中,上述第一时间段为X个第三周期,其中,X为正整数。可选地,第三周期可以为第一周期或第二周期。
例如,终端设备连续N次确定服务小区满足第一预设条件时,终端设备确定服务小区满足第一预设条件。
或者,终端设备进行M次判断服务小区是否满足第一预设条件,其中,M次判断中有N次终端设备确定服务小区满足第一预设条件时,终端设备确定服务小区满足第一预设条件,其中,M为正整数,N为大于或等于M/2且小于或等于M的整数。
或者,终端设备进行M次判断服务小区是否满足第一预设条件,其中,M次判断中有N次终端设备确定服务小区满足第一预设条件时,终端设备确定服务小区满足第一预设条件,其中,M为正整数,N为大于等于1且小于或等于M的整数。
应理解,终端设备每两次确定小区是否满足的第一预设条件之间的时间间隔可以为第一周期或者第二周期。
或者,终端设备在第一时间段内确定服务小区一次满足所述第一预设条件。其中,第一时间段的时长可以为网络设备配置的,也可以为预先定义的。
或者,终端设备在第一时间段内多次确定服务小区满足第一预设条件,可以理解为在第一时间段内终端设备一共进行了M次判断服务小区是否满足第一预设条件,而M次判断中有N次确定服务小区满足第一预设条件。其中,M为正整数,N为大于或等于M/2且小于或等于M的整数。或者,N为大于等于1且小于或等于M的整数。
具体地,上述第一时间段可以为X个第三周期,终端设备在第一时间段内确定服务小区是否满足所述第一预设条件,可以是在每个第三周期内确定服务小区是否满足所述第一预设条件。
进一步地,当在X个第三周期中的至少一个第三周期内,终端设备确定服务小区满足所述第一预设条件,可以认为在第一时间段内确定服务小区满足所述第一预设条件。
或者,当在X个第三周期中每个第三周期内,终端设备确定服务小区均满足所述第一预设条件,可以认为在第一时间段内确定服务小区满足所述第一预设条件。
或者,当在X个第三周期中Y个第三周期内,终端设备确定服务小区满足所述第一预设条件,可以认为在第一时间段内确定服务小区满足所述第一预设条件。其中,Y为大于或等于X/2且小于或等于X的整数。或者,Y为大于等于1且小于或等于X的整数。
应理解,在每个第三周期内终端设备可以进行一次或多次判断服务小区是否满足所述第一预设条件。
当在每个第三周期内终端设备进行一次或多次判断服务小区是否满足所述第一预设条件中,服务小区P次满足第一预设条件时,则,终端设备确定在该第一周期内服务小区满足第一预设条件,其中,P为正整数。
例如,在一个第三周期内终端设备进行Q次判断服务小区是否满足所述第一预设条件,当上述Q次判断中有P次终端设备确定服务小区满足所述第一预设条件时,终端设备确定在该第三周期内服务小区满足所述第一预设条件,Q为正整数,且,P为大于或等于Q/2且小于或等于Q的整数。
或者,
在一个第三周期内终端设备进行Q次判断服务小区是否满足所述第一预设条件,当上述Q次判断中有P次终端设备确定服务小区满足所述第一预设条件时,终端设备确定在该第三周期内服务小区满足所述第一预设条件,Q为正整数,且,P为大于等于1且小于或等于Q的整数。
可选地,终端设备可以根据服务小区信号是否稳定,灵活选择不同的测量周期测量或评估小区,或者,终端设备为了保证判断服务小区是否满足所述第一预设条件的结果、是在服务小区信号稳定的情况下做出的判断,可以根据所述RSRP、基于所述RSRP的值、所述RSRQ、基于所述RSRQ的值、所述SINR或基于所述SINR的值变化范围确定服务小区的信号是否稳定。
例如,当所述RSRP或基于所述RSRP的值变化范围小于或等于第十三阈值,和/或,所述RSRQ或基于所述RSRQ的值变化范围小于或等于第十四阈值时,认为服务小区的信号为稳定的,和/或,所述SINR或基于所述SINR的值变化范围小于或等于第十五阈值时,认为服务小区的信号为稳定的。
确定所述RSRP或基于所述RSRP的值变化范围小于或等于第十三阈值包括:
所述RSRP或基于所述RSRP的值的最大值与最小值的差值小于或等于第十三阈值;
或者,
所述RSRP与第一参考值之差的绝对值小于或等于第十三阈值,或者,基于所述RSRP的值与第二参考值之差的绝对值小于或等于第十三阈值。
确定所述RSRQ或基于所述RSRQ的值变化范围小于或等于第十四阈值包括:
所述RSRQ或基于所述RSRQ的值的最大值与最小值的差值小于或等于第十四阈值;
或者,
所述RSRQ与第三参考值之差的绝对值小于或等于第十四阈值,以及,基于所述RSRQ的值与第四 参考值之差的绝对值小于或等于第十四阈值。
确定所述SINR或基于所述SINR的值变化范围小于或等于第十五阈值包括:
所述SINR或基于所述SINR的值的最大值与最小值的差值的变化范围小于或等于第十五阈值;
或者,
所述SINR与第五参考值之差的绝对值小于或等于第十五阈值,或者,基于所述SINR的值与第六参考值之差的绝对值小于或等于第十五阈值。
其中,确定RSRP与第一参考值之差的绝对值小于或等于第十三阈值,可以是多次测量得到的服务小区RSRP与第一参考值之差的绝对值均小于或等于第十三阈值;或者,可以是多次测量得到的服务小区RSRP与第一参考值之差的绝对值中的至少一个绝对值小于或等于第十三阈值。
确定基于所述RSRP的值与第二参考值之差的绝对值小于或等于第十三阈值,可以是多次测量得到的基于所述RSRP的值与第二参考值之差的绝对值均小于或等于第十三阈值;或者,可以是多次测量得到的基于所述RSRP的值与第二参考值之差的绝对值中的至少一个绝对值小于或等于第十三阈值。
确定RSRQ与第三参考值之差的绝对值小于或等于第十四阈值,可以是多次测量得到的邻小区RSRQ与第三参考值之差的绝对值均小于或等于第十四阈值;或者,可以是多次测量得到的邻小区RSRQ与第三参考值之差的绝对值中的至少一个绝对值小于或等于第十四阈值。
确定基于所述RSRQ的值的值与第四参考值之差的绝对值小于或等于第十四阈值,可以是多次测量得到的基于所述RSRQ的值的值与第四参考值之差的绝对值均小于或等于第十四阈值;或者,可以是多次测量得到的基于所述RSRQ的值与第四参考值之差的绝对值中的至少一个绝对值小于或等于第十四阈值。
确定SINR与第五参考值之差的绝对值小于或等于第十五阈值,可以是多次测量得到的邻小区SINR与第五参考值之差的绝对值均小于或等于第十五阈值;或者,可以是多次测量得到的邻小区SINR与第五参考值之差的绝对值中的至少一个绝对值小于或等于第十五阈值。
确定基于所述SINR的值的值与第六参考值之差的绝对值小于或等于第十五阈值,可以是多次测量得到的基于所述SINR的值的值与第六参考值之差的绝对值均小于或等于第十五阈值;或者,可以是多次测量得到的基于所述SINR的值与第六参考值之差的绝对值中的至少一个绝对值小于或等于第十五阈值。
例如,3次测量服务小区的RSRP分别为1、2、3,假设第十三阈值为1。
首先,计算RSRP的最大值与最小值的差值为2,则,差值大于第十三阈值的值,证明信号稳定度不够,进一步的确定,服务小区不满足第二预设条件。
再例如,3次测量服务小区的RSRP分别为1、2、3,第一参考值为2,假设第十三阈值为1。
首先,计算RSRP与第一参考值之差的绝对值分别为1、0、1,则,RSRP与第一参考值之差的绝对值均小于或等于第十三阈值,证明信号稳定。
或者,假设第十三阈值为0,则,RSRP与第一参考值之差的绝对值中只有一个绝对值小于或等于第十三阈值,也可以证明信号稳定。
再例如,测量服务小区RSRP为1,第一参考值为2,假设第十三阈值为1。首先计算RSRP与第一参考值之差的绝对值为1,则,RSRP与第一参考值之差的绝对值小于或等于第十三阈值,证明信号稳定。
结合上述的判断方法判断服务小区是否满足第一预设条件。
其中,确定所述RSRQ或基于所述RSRQ的值变化范围小于或等于第十四阈值、确定所述SINR或基于所述SINR的值变化范围小于或等于第十五阈值以及确定基于所述RSRP的值变化范围小于或等于第十三阈值,与上述确定所述RSRP变化范围小于或等于第十三阈值类似,这里不再举例说明。
第十三阈值、第十四阈值以及第十五阈值可以是由网络设备配置的,也可以是预先定义的,也可以是终端确定的。
可选地,在一些实施例中,第十三阈值、第十四阈值以及第十五阈值为终端设备根据终端设备的移动性确定的。终端设备的移动性可以包括终端设备的移动速度、终端设备处于静止、终端设备处于移动、终端设备处于低速、终端设备处于中速、终端设备处于高速、终端设备处于正常移动性状态、终端设备处于中等移动性状态、终端设备处于高移动性状态中的至少一种。网络设备可以配置终端设备的移动性与第一阈值的映射关系,终端设备根据其移动性及映射关系确定第一阈值。终端设备根据移动性确定第一阈值还可以具体为,终端设备根据移动性和第一时间长度确定第一阈值。第一时间长度可以为第一周期。
第二种:若所述小区为所述终端设备的邻小区。
当所述待测量或评估的小区为所述终端设备的邻小区时,所述第一预设条件包括:
邻小区的测量量满足第三预设条件、邻小区不满足小区选择准则或邻小区不满足小区重选准则中的至少一个。
其中,邻小区的测量量是根据对邻小区发送的信号的测量确定的。邻小区发送的信号可以理解为网络设备发送的信号。具体地,邻小区的测量量由终端设备根据邻小区的特定参考信号CRS,或者邻小区的同步信号块SSB,或者邻小区的信道状态信息参考信号CSI-RS,或者邻小区PBCH的解调参考信号DMRS中的至少一种确定。
具体地,邻小区的测量量包括上面介绍的邻小区的参考信号接收功率RSRP,或者基于所述RSRP的值,或者邻小区的参考信号接收质量RSRQ,或者基于所述RSRQ的值,或者邻小区发送的信号的功率与干扰和噪声功率的比值SINR,或者基于所述SINR的值中的至少一种。
RSRP用于表示被测量的信号的接收功率。RSRQ用于表示被测量的信号的接收质量,可以为根据RSRP和RSSI确定,RSSI用于表示接收信号强度。SINR用于表示被测量的信号的功率与干扰和噪声功率的比值。
邻小区的RSRP可以用于表示邻小区的发送的信号的接收功率;
邻小区的RSRQ可以用于表示邻小区的发送的信号的接收质量,可以为根据RSRP和RSSI确定,RSSI用于表示接收信号强度;
邻小区的SINR可以用于表示邻小区的发送的信号的功率与干扰和噪声功率的比值。
还应理解,在NR中,上述的邻小区的测量量还可以是邻小区的SS-RSRP,或者邻小区的SS-RSRQ,其中,SS-RSRP与RSRP类似,SS-RSRQ与RSRQ类似。上面相关知识介绍中已经有相关描述,这里不再赘述。
进一步地,上述邻小区的测量量满足第三预设条件包括:
基于邻小区的RSRP的值小于或等于第七阈值、基于邻小区的RSRQ的值小于或等于第八阈值、基于所述SINR的值小于或等于第九阈值、邻小区的RSRP小于或等于第第十阈值、邻小区的RSRQ小于或等于第十一阈值或所述SINR小于或等于第十二阈值中的至少一种。
可选地,在一些实施例中,基于邻小区的RSRP的值可以为小区选择准则中使用的Srxlev,基于邻小区的RSRQ的值可以为小区选择准则中使用的Squal。其中,Srxlev的值根据邻小区的RSRP确定,Squal的值根据邻小区的RSRQ确定。
应理解,上述Srxlev与Squal可以为现有标准中的定义,这里不再赘述。
可选地,在另一些实施例中,基于邻小区的RSRP的值可以为小区重选准则中使用的Rn,例如,R n=Q meas,n–Qoffset-Qoffset temp,或者R n=Q meas,n–Qoffset,其中,Q meas,n为邻小区的RSRP。基于邻小区 的RSRQ的值可以为Rnq,其中,Rnq可以为Rnq=RSRQ+/-Q hyst,或者Rnq=RSRQ+/-Qoffset,或者Rsq=RSRQ+/-Q hyst–Qoffset temp,或者Rsq=RSRQ+/-Qoffset–Qoffset temp,其中,RSRQ为邻小区的RSRQ。
应理解,上述小区重选准则中使用的Rn可以为现有标准中的定义,这里不再赘述。
应理解,上述Q hyst、Qoffset以及Qoffset temp可以为现有标准中的定义。
具体地,上述第七阈值、第八阈值、第九阈值、第十阈值、第十一阈值以及第十二阈值可以是由网络设备配置的,也可以是预先定义的,也可以是终端确定的。
其中,上述第七阈值、第八阈值、第九阈值、第十阈值、第十一阈值以及第十二阈值由网络设备配置包括网络设备通过系统信息配置。
例如,网络设备通过配置上述第七阈值、第八阈值、第十阈值以及第十一阈值可以是:
CellMeasInfo SEQUENCE{
             thresP INTEGER(0..31),
             thresQ INTEGER(0..31)
          }
其中,thresP代表第七阈值,thresQ代表第八阈值,或者thresP代表第十阈值,thresQ代表第十一阈值。
具体地,第七阈值或第十阈值为用于触发终端设备进行上述intra-frequency测量或inter-frequency测量的阈值(S IntraSearchP或S nonIntraSearchP),第八阈值或第十一阈值为用于触发终端设备进行上述intra-frequency测量或inter-frequency测量的阈值(S IntraSearchQ或S nonIntraSearchQ)。
具体地,第七阈值可以为0,第八阈值可以为0。或者,第七阈值可以为Rs+/-offset1,第八阈值可以为Rsq+/-offset2。
第十阈值为终端设备的服务小区的RSRP+/-offset3,第十一阈值为终端设备的服务小区的RSRQ+/-offset4。
其中,Rs为基于终端设备的服务小区的RSRP的值,Rs可以为现有标准中的定义,Rsq为基于终端设备的服务小区的RSRQ的值,Rsq可以为Rsq=RSRQ+/-Qhyst,或者Rsq=RSRQ+/-Qhyst–Qoffsettemp,Qhyst、Qoffsettemp为现有标准中的定义。offset1、offset2、offset3或offset4为网络设备配置的或预先定义的参数。
可选地,在一些实施例中,第七阈值为终端设备根据终端设备的移动性确定的。终端设备的移动性可以包括终端设备的移动速度、终端设备处于静止、终端设备处于移动、终端设备处于低速、终端设备处于中速、终端设备处于高速、终端设备处于正常移动性状态、终端设备处于中等移动性状态、终端设备处于高移动性状态中的至少一种。网络设备可以配置终端设备的移动性与第七阈值的映射关系,终端设备根据其移动性及映射关系确定第七阈值。终端设备根据移动性确定第七阈值还可以具体为,终端设备根据移动性和第一时间长度确定第七阈值。第一时间长度可以为第一周期。
可选地,在另一些实施例中,第七阈值为根据用于终端设备确定进行intra-frequency测量的阈值和/或用于终端设备确定进行inter-frequency测量的阈值确定的。第七阈值还可以进一步为根据终端设备的移动性,以及用于终端设备确定进行intra-frequency测量的阈值和/或用于终端设备确定进行inter-frequency测量的阈值确定的。
例如,第七阈值为用于终端设备确定进行intra-frequency测量的阈值(S IntraSearchP),或者,第七阈值为用于终端设备确定进行inter-frequency测量的阈值(S nonIntraSearchP),或者,第七阈值为用于终端设备确定进行intra-frequency测量的阈值(S IntraSearchP)与用于终端设备确定进行inter-frequency测量的阈值(S nonIntraSearchP)中的最小值。
可选地,在另一些实施例中,第七阈值为根据服务小区的RSRP确定的。第七阈值还可以进一步为根据服务小区的RSRP,以及终端设备的移动性确定的。进一步,第七阈值为根据基于终端设备的服务小区的RSRP的值确定的。基于终端设备的服务小区的RSRP的值可以为小区重选准则中的Rs,其中,Rs为基于终端设备的服务小区的RSRP的值,Rs可以为现有标准中的定义。例如,第七阈值为基于终端设备的服务小区的RSRP的值加上一个偏移量。偏移量可以大于0,或者小于0,或者等于0。所述偏移量可以是网络设备配置的,或者是预先定义的,或者是终端设备确定的。所述终端设备可以根据终端设备的移动性确定偏移量。终端设备的移动性可以包括终端设备的移动速度、终端设备处于静止、终端设备处于移动、终端设备处于低速、终端设备处于中速、终端设备处于高速、终端设备处于正常移动性状态、终端设备处于中等移动性状态、终端设备处于高移动性状态中的至少一种。网络设备可以配置终端设备的移动性与偏移量的映射关系,终端设备根据其移动性及映射关系确定偏移量。终端设备根据移动性确定偏移量还可以具体为,终端设备根据移动性和第一时间长度确定偏移量。第一时间长度可以为第一周期。
又如,第七阈值为基于终端设备的服务小区的RSRP的值乘上一个缩放因子。缩放因子可以大于1,或者小于1,或者等于1。所述缩放因子可以是网络设备配置的,或者是预先定义的,或者是终端设备确定的。在所述缩放因子是终端设备确定的情况下,所述终端设备可以根据终端设备的移动性确定缩放因子。终端设备的移动性可以包括终端设备的移动速度、终端设备处于静止、终端设备处于移动、终端设备处于低速、终端设备处于中速、终端设备处于高速、终端设备处于正常移动性状态、终端设备处于中等移动性状态、终端设备处于高移动性状态中的至少一种。网络设备可以配置终端设备的移动性与缩放因子的映射关系,终端设备根据其移动性及映射关系确定缩放因子。终端设备根据移动性确定缩放因子还可以具体为,终端设备根据移动性和第一时间长度确定缩放因子。第一时间长度可以为第一周期。
可选地,在另一些实施例中,第七阈值为0。
可选地,在一些实施例中,第八阈值为终端设备根据终端设备的移动性确定的。终端设备的移动性可以包括终端设备的移动速度、终端设备处于静止、终端设备处于移动、终端设备处于低速、终端设备处于中速、终端设备处于高速、终端设备处于正常移动性状态、终端设备处于中等移动性状态、终端设备处于高移动性状态中的至少一种。网络设备可以配置终端设备的移动性与第八阈值的映射关系,终端设备根据其移动性及映射关系确定第八阈值。终端设备根据移动性确定第八阈值还可以具体为,终端设备根据移动性和第一时间长度确定第八阈值。第一时间长度可以为第一周期。
可选地,在另一些实施例中,第八阈值为根据用于终端设备确定进行intra-frequency测量的阈值和/或用于终端设备确定进行inter-frequency测量的阈值确定的。第八阈值还可以进一步为根据终端设备的移动性,以及用于终端设备确定进行intra-frequency测量的阈值和/或用于终端设备确定进行inter-frequency测量的阈值确定的。
例如,第八阈值为用于终端设备确定进行intra-frequency测量的阈值(S IntraSearchQ),或者,第八阈值为用于终端设备确定进行inter-frequency测量的阈值(S nonIntraSearchQ),或者,第八阈值为用于终端设备确定进行intra-frequency测量的阈值(S IntraSearchQ)与用于终端设备确定进行inter-frequency测量的阈值(S nonIntraSearchQ)中的最小值。
可选地,在另一些实施例中,第八阈值为根据服务小区的RSRQ确定的。第八阈值还可以进一步为根据服务小区的RSRQ,以及终端设备的移动性确定的。进一步,第八阈值为根据基于终端设备的服务小区的RSRQ的值确定的。基于终端设备的服务小区的RSRQ的值可以为Rsq,其中,Rsq为基于终端设备的服务小区的RSRQ的值,Rsq可以为Rsq=RSRQ meas,s+/-Qoffset,或者Rsq=RSRQ meas,s+/-Qoffset–Qoffset temp,或者Rsq=RSRQ meas,s+Q hyst,或者RSRQ meas,s+Q hyst-Qoffset temp,Qoffset、Q hyst、Qoffset temp可 以为现有标准中的定义,RSRQ meas,s为终端设备的服务小区的RSRQ。例如,第八阈值为基于终端设备的服务小区的RSRQ的值加上一个偏移量。偏移量可以大于0,或者小于0,或者等于0。所述偏移量可以是网络设备配置的,或者是预先定义的,或者是终端设备确定的。所述终端设备可以根据终端设备的移动性确定偏移量。终端设备的移动性可以包括终端设备的移动速度、终端设备处于静止、终端设备处于移动、终端设备处于低速、终端设备处于中速、终端设备处于高速、终端设备处于正常移动性状态、终端设备处于中等移动性状态、终端设备处于高移动性状态中的至少一种。网络设备可以配置终端设备的移动性与偏移量的映射关系,终端设备根据其移动性及映射关系确定偏移量。终端设备根据移动性确定偏移量还可以具体为,终端设备根据移动性和第一时间长度确定偏移量。第一时间长度可以为第一周期。
又如,第八阈值为基于终端设备的服务小区的RSRQ的值乘上一个缩放因子。缩放因子可以大于1,或者小于1,或者等于1。所述缩放因子可以是网络设备配置的,或者是预先定义的,或者是终端设备确定的。在所述缩放因子是终端设备确定的情况下,所述终端设备可以根据终端设备的移动性确定缩放因子。终端设备的移动性可以包括终端设备的移动速度、终端设备处于静止、终端设备处于移动、终端设备处于低速、终端设备处于中速、终端设备处于高速、终端设备处于正常移动性状态、终端设备处于中等移动性状态、终端设备处于高移动性状态中的至少一种。网络设备可以配置终端设备的移动性与缩放因子的映射关系,终端设备根据其移动性及映射关系确定缩放因子。终端设备根据移动性确定缩放因子还可以具体为,终端设备根据移动性和第一时间长度确定缩放因子。第一时间长度可以为第一周期。
可选地,在另一些实施例中,第八阈值为0。
可选地,在一些实施例中,第九阈值为终端设备根据终端设备的移动性确定的。终端设备的移动性可以包括终端设备的移动速度、终端设备处于静止、终端设备处于移动、终端设备处于低速、终端设备处于中速、终端设备处于高速、终端设备处于正常移动性状态、终端设备处于中等移动性状态、终端设备处于高移动性状态中的至少一种。网络设备可以配置终端设备的移动性与第九阈值的映射关系,终端设备根据其移动性及映射关系确定第九阈值。终端设备根据移动性确定第九阈值还可以具体为,终端设备根据移动性和第一时间长度确定第九阈值。第一时间长度可以为第一周期。
可选地,在另一些实施例中,第九阈值为根据服务小区的SINR确定的。进一步,第九阈值为根据基于终端设备的服务小区的SINR的值确定的。第九阈值还可以进一步为根据终端设备的移动性,以及服务小区的SINR确定的。例如,第九阈值为基于终端设备的服务小区的SINR的值加上一个偏移量。偏移量可以大于0,或者小于0,或者等于0。所述偏移量可以是网络设备配置的,或者是预先定义的,或者是终端设备确定的。所述终端设备可以根据终端设备的移动性确定偏移量。终端设备的移动性可以包括终端设备的移动速度、终端设备处于静止、终端设备处于移动、终端设备处于低速、终端设备处于中速、终端设备处于高速、终端设备处于正常移动性状态、终端设备处于中等移动性状态、终端设备处于高移动性状态中的至少一种。网络设备可以配置终端设备的移动性与偏移量的映射关系,终端设备根据其移动性及映射关系确定偏移量。终端设备根据移动性确定偏移量还可以具体为,终端设备根据移动性和第一时间长度确定偏移量。第一时间长度可以为第一周期。
又如,第九阈值为基于终端设备的服务小区的SINR的值乘上一个缩放因子。缩放因子可以大于1,或者小于1,或者等于1。所述缩放因子可以是网络设备配置的,或者是预先定义的,或者是终端设备确定的。在所述缩放因子是终端设备确定的情况下,所述终端设备可以根据终端设备的移动性确定缩放因子。终端设备的移动性可以包括终端设备的移动速度、终端设备处于静止、终端设备处于移动、终端设备处于低速、终端设备处于中速、终端设备处于高速、终端设备处于正常移动性状态、终端设备处于中等移动性状态、终端设备处于高移动性状态中的至少一种。网络设备可以配置终端设备的移动性与缩放因子的映射关系,终端设备根据其移动性及映射关系确定缩放因子。终端设备根据移动性确定缩放因 子还可以具体为,终端设备根据移动性和第一时间长度确定缩放因子。第一时间长度可以为第一周期。
可选地,在一些实施例中,第十阈值为终端设备根据终端设备的移动性确定的。终端设备的移动性可以包括终端设备的移动速度、终端设备处于静止、终端设备处于移动、终端设备处于低速、终端设备处于中速、终端设备处于高速、终端设备处于正常移动性状态、终端设备处于中等移动性状态、终端设备处于高移动性状态中的至少一种。网络设备可以配置终端设备的移动性与第十阈值的映射关系,终端设备根据其移动性及映射关系确定第十阈值。终端设备根据移动性确定第十阈值还可以具体为,终端设备根据移动性和第一时间长度确定第十阈值。第一时间长度可以为第一周期。
可选地,在另一些实施例中,第十阈值为根据用于终端设备确定进行intra-frequency测量的阈值和/或用于终端设备确定进行inter-frequency测量的阈值确定的。第十阈值还可以进一步为根据终端设备的移动性,以及用于终端设备确定进行intra-frequency测量的阈值和/或用于终端设备确定进行inter-frequency测量的阈值确定的。
例如,第十阈值为用于终端设备确定进行intra-frequency测量的阈值(S IntraSearchP)加上((Q rxlevmin+Q rxlevminoffset)+P compensation+Qoffset temp),或者,第十阈值为用于终端设备确定进行inter-frequency测量的阈值(S nonIntraSearchP)加上((Q rxlevmin+Q rxlevminoffset)+P compensation+Qoffset temp),或者,第十阈值为用于终端设备确定进行intra-frequency测量的阈值(S IntraSearchP)与用于终端设备确定进行inter-frequency测量的阈值(S nonIntraSearchP)中的最小值,再加上((Q rxlevmin+Q rxlevminoffset)+P compensation+Qoffset temp)。
可选地,在另一些实施例中,第十阈值为根据服务小区的RSRP确定的。第十阈值还可以进一步为根据服务小区的RSRP,以及终端设备的移动性确定的。进一步,第十阈值为根据基于终端设备的服务小区的RSRP的值确定的。基于终端设备的服务小区的RSRP的值可以为终端设备的服务小区的RSRP。例如,第十阈值为基于终端设备的服务小区的RSRP的值加上一个偏移量。偏移量可以大于0,或者小于0,或者等于0。所述偏移量可以是网络设备配置的,或者是预先定义的,或者是终端设备确定的。所述终端设备可以根据终端设备的移动性确定偏移量。终端设备的移动性可以包括终端设备的移动速度、终端设备处于静止、终端设备处于移动、终端设备处于低速、终端设备处于中速、终端设备处于高速、终端设备处于正常移动性状态、终端设备处于中等移动性状态、终端设备处于高移动性状态中的至少一种。网络设备可以配置终端设备的移动性与偏移量的映射关系,终端设备根据其移动性及映射关系确定偏移量。终端设备根据移动性确定偏移量还可以具体为,终端设备根据移动性和第一时间长度确定偏移量。第一时间长度可以为第一周期。
又如,第十阈值为基于终端设备的服务小区的RSRP的值乘上一个缩放因子。缩放因子可以大于1,或者小于1,或者等于1。所述缩放因子可以是网络设备配置的,或者是预先定义的,或者是终端设备确定的。在所述缩放因子是终端设备确定的情况下,所述终端设备可以根据终端设备的移动性确定缩放因子。终端设备的移动性可以包括终端设备的移动速度、终端设备处于静止、终端设备处于移动、终端设备处于低速、终端设备处于中速、终端设备处于高速、终端设备处于正常移动性状态、终端设备处于中等移动性状态、终端设备处于高移动性状态中的至少一种。网络设备可以配置终端设备的移动性与缩放因子的映射关系,终端设备根据其移动性及映射关系确定缩放因子。终端设备根据移动性确定缩放因子还可以具体为,终端设备根据移动性和第一时间长度确定缩放因子。第一时间长度可以为第一周期。
可选地,在另一些实施例中,第十阈值为基于终端设备的服务小区的RSRP的值乘上一个缩放因子,再加上一个偏移量。
可选地,在一些实施例中,第十一阈值为终端设备根据终端设备的移动性确定的。终端设备的移动性可以包括终端设备的移动速度、终端设备处于静止、终端设备处于移动、终端设备处于低速、终端设 备处于中速、终端设备处于高速、终端设备处于正常移动性状态、终端设备处于中等移动性状态、终端设备处于高移动性状态中的至少一种。网络设备可以配置终端设备的移动性与第十一阈值的映射关系,终端设备根据其移动性及映射关系确定第十一阈值。终端设备根据移动性确定第十一阈值还可以具体为,终端设备根据移动性和第一时间长度确定第十一阈值。第一时间长度可以为第一周期。
可选地,在另一些实施例中,第十一阈值为根据用于终端设备确定进行intra-frequency测量的阈值和/或用于终端设备确定进行inter-frequency测量的阈值确定的。第十一阈值还可以进一步为根据终端设备的移动性,以及用于终端设备确定进行intra-frequency测量的阈值和/或用于终端设备确定进行inter-frequency测量的阈值确定的。
例如,第十一阈值为用于终端设备确定进行intra-frequency测量的阈值(S IntraSearchP)加上((Q qualmin+Q qualminoffset)+Qoffset temp),或者,第十一阈值为用于终端设备确定进行inter-frequency测量的阈值(S nonIntraSearchP)加上((Q qualmin+Q qualminoffset)+Qoffset temp),或者,第十一阈值为用于终端设备确定进行intra-frequency测量的阈值(S IntraSearchP)与用于终端设备确定进行inter-frequency测量的阈值(S nonIntraSearchP)中的最小值,再加上((Q qualmin+Q qualminoffset)+Qoffset temp)。
可选地,在另一些实施例中,第十一阈值为根据服务小区的RSRQ确定的。第十一阈值还可以进一步为根据服务小区的RSRQ,以及终端设备的移动性确定的。进一步,第十一阈值为根据基于终端设备的服务小区的RSRQ的值确定的。基于终端设备的服务小区的RSRQ的值可以为终端设备的服务小区的RSRQ。例如,第十一阈值为基于终端设备的服务小区的RSRQ的值加上一个偏移量。偏移量可以大于0,或者小于0,或者等于0。所述偏移量可以是网络设备配置的,或者是预先定义的,或者是终端设备确定的。所述终端设备可以根据终端设备的移动性确定偏移量。终端设备的移动性可以包括终端设备的移动速度、终端设备处于静止、终端设备处于移动、终端设备处于低速、终端设备处于中速、终端设备处于高速、终端设备处于正常移动性状态、终端设备处于中等移动性状态、终端设备处于高移动性状态中的至少一种。网络设备可以配置终端设备的移动性与偏移量的映射关系,终端设备根据其移动性及映射关系确定偏移量。终端设备根据移动性确定偏移量还可以具体为,终端设备根据移动性和第一时间长度确定偏移量。第一时间长度可以为第一周期。
又如,第十一阈值为基于终端设备的服务小区的RSRQ的值乘上一个缩放因子。缩放因子可以大于1,或者小于1,或者等于1。所述缩放因子可以是网络设备配置的,或者是预先定义的,或者是终端设备确定的。在所述缩放因子是终端设备确定的情况下,所述终端设备可以根据终端设备的移动性确定缩放因子。终端设备的移动性可以包括终端设备的移动速度、终端设备处于静止、终端设备处于移动、终端设备处于低速、终端设备处于中速、终端设备处于高速、终端设备处于正常移动性状态、终端设备处于中等移动性状态、终端设备处于高移动性状态中的至少一种。网络设备可以配置终端设备的移动性与缩放因子的映射关系,终端设备根据其移动性及映射关系确定缩放因子。终端设备根据移动性确定缩放因子还可以具体为,终端设备根据移动性和第一时间长度确定缩放因子。第一时间长度可以为第一周期。
可选地,在另一些实施例中,第十一阈值为基于终端设备的服务小区的RSRQ的值乘上一个缩放因子,再加上一个偏移量。
可选地,在一些实施例中,第十二阈值为终端设备根据终端设备的移动性确定的。终端设备的移动性可以包括终端设备的移动速度、终端设备处于静止、终端设备处于移动、终端设备处于低速、终端设备处于中速、终端设备处于高速、终端设备处于正常移动性状态、终端设备处于中等移动性状态、终端设备处于高移动性状态中的至少一种。网络设备可以配置终端设备的移动性与第十二阈值的映射关系,终端设备根据其移动性及映射关系确定第十二阈值。终端设备根据移动性确定第十二阈值还可以具体为, 终端设备根据移动性和第一时间长度确定第十二阈值。第一时间长度可以为第一周期。
可选地,在另一些实施例中,第十二阈值为根据服务小区的SINR确定的。进一步,第十二阈值为根据基于终端设备的服务小区的SINR的值确定的。第十二阈值还可以进一步为根据终端设备的移动性,以及服务小区的SINR确定的。例如,第十二阈值为基于终端设备的服务小区的SINR的值加上一个偏移量。偏移量可以大于0,或者小于0,或者等于0。所述偏移量可以是网络设备配置的,或者是预先定义的,或者是终端设备确定的。所述终端设备可以根据终端设备的移动性确定偏移量。终端设备的移动性可以包括终端设备的移动速度、终端设备处于静止、终端设备处于移动、终端设备处于低速、终端设备处于中速、终端设备处于高速、终端设备处于正常移动性状态、终端设备处于中等移动性状态、终端设备处于高移动性状态中的至少一种。网络设备可以配置终端设备的移动性与偏移量的映射关系,终端设备根据其移动性及映射关系确定偏移量。终端设备根据移动性确定偏移量还可以具体为,终端设备根据移动性和第一时间长度确定偏移量。第一时间长度可以为第一周期。
又如,第十二阈值为基于终端设备的服务小区的SINR的值乘上一个缩放因子。缩放因子可以大于1,或者小于1,或者等于1。所述缩放因子可以是网络设备配置的,或者是预先定义的,或者是终端设备确定的。在所述缩放因子是终端设备确定的情况下,所述终端设备可以根据终端设备的移动性确定缩放因子。终端设备的移动性可以包括终端设备的移动速度、终端设备处于静止、终端设备处于移动、终端设备处于低速、终端设备处于中速、终端设备处于高速、终端设备处于正常移动性状态、终端设备处于中等移动性状态、终端设备处于高移动性状态中的至少一种。网络设备可以配置终端设备的移动性与缩放因子的映射关系,终端设备根据其移动性及映射关系确定缩放因子。终端设备根据移动性确定缩放因子还可以具体为,终端设备根据移动性和第一时间长度确定缩放因子。第一时间长度可以为第一周期。
进一步地,上述邻小区满足小区选择准则为邻小区满足上述的小区选择准则S准则。
应理解,小区选择准则S中使用的参数Srxlev为基于SS-RSRP(或,RSRP)的值,以及小区选择准则S中使用的参数Squal为基于SS-RSRQ(或,RSRQ)的值。则,终端设备在根据上述的CRS、SSB、CSI-RS或DMRS中的至少一种确定SS-RSRP或SS-RSRQ之后,能够判断邻小区是否满足小区选择准则。
进一步地,上述邻小区满足小区重选准则可以理解为:
终端设备可以重选到邻小区,或者,按照现有标准定义的小区重选准则下,邻小区的排序结果是最好的,或者,按照现有标准定义的小区重选准则下,邻小区的排序结果比终端设备的服务小区好。
应理解,小区重选准则R中的参数R s以及R n为基于SS-RSRP(或,RSRP)的值,。则,终端设备在根据上述的CRS、SSB、CSI-RS或DMRS中的至少一种确定SS-RSRP之后,能够判断邻小区是否满足小区重选准则。
可选地,在一些实施例中,终端设备N次确定邻小区满足第一预设条件,
或者,
终端设备在第一时间段内确定邻小区满足所述第一预设条件;
其中,N为正整数。
可选的,在一些实施例中,上述N是网络设备配置的,进一步地,网络设备可通过系统信息配置N。
可选的,在另一些实施例中,上述N是预先定义的。
可选地,在一些实施例中,上述第一时间段为X个第三周期,其中,X为正整数。可选地,第三周期可以为第一周期或第二周期。
例如,终端设备连续N次确定邻小区满足第一预设条件时,终端设备确定邻小区满足第一预设条件。
或者,终端设备进行M次判断邻小区是否满足第一预设条件,其中,M次判断中有N次终端设备 确定邻小区满足第一预设条件时,终端设备确定邻小区满足第一预设条件,其中,M为正整数,N为大于或等于M/2且小于或等于M的整数。
或者,终端设备进行M次判断邻小区是否满足第一预设条件,其中,M次判断中有N次终端设备确定邻小区满足第一预设条件时,终端设备确定邻小区满足第一预设条件,其中,M为正整数,N为大于等于1且小于或等于M的整数。
应理解,终端设备每两次确定小区是否满足的第一预设条件之间的时间间隔可以为第一周期或者第二周期。
或者,终端设备在第一时间段内确定邻小区一次满足所述第一预设条件。其中,第一时间段的时长可以为网络设备配置的,也可以为预先定义的。
或者,终端设备在第一时间段内多次确定邻小区是否满足第一预设条件,可以理解为在第一时间段内终端设备一共进行了M次判断邻小区是否满足第一预设条件,而M次判断中有N次确定邻小区满足第一预设条件。其中,M为正整数,N为大于或等于M/2且小于或等于M的整数。或者,N为大于等于1且小于或等于M的整数。
具体地,上述第一时间段可以为X个第三周期,终端设备在第一时间段内确定邻小区是否满足所述第一预设条件,可以是在每个第三周期内确定服务小区是否满足所述第一预设条件。
进一步地,当在X个第三周期中的至少一个第三周期内,终端设备确定邻小区满足所述第一预设条件,可以认为在第一时间段内确定邻小区满足所述第一预设条件。
或者,当在X个第三周期中每个第三周期内,终端设备确定服务小区均满足所述第一预设条件,可以认为在第一时间段内确定服务小区满足所述第一预设条件。
或者,当在X个第三周期中Y个第三周期内,终端设备确定服务小区满足所述第一预设条件,可以认为在第一时间段内确定服务小区满足所述第一预设条件。其中,Y为大于或等于X/2且小于或等于X的整数。或者,Y为大于等于1且小于或等于X的整数。
应理解,在每个第三周期内终端设备可以进行一次或多次判断邻小区是否满足所述第一预设条件。
当在每个第三周期内终端设备进行一次或多次判断邻小区是否满足所述第一预设条件中,邻小区P次满足第一预设条件时,则,终端设备确定在该第三周期内邻小区满足第一预设条件,其中,P为正整数。
例如,在一个第三周期内终端设备进行Q次判断邻小区是否满足所述第一预设条件,当上述Q次判断中有P次终端设备确定邻小区满足所述第一预设条件时,终端设备确定在该第三周期内邻小区满足所述第一预设条件,Q为正整数,且,P为大于或等于Q/2且小于或等于Q的整数。
或者,
在一个第三周期内终端设备进行Q次判断邻小区是否满足所述第一预设条件,当上述Q次判断中有P次终端设备确定邻小区满足所述第一预设条件时,终端设备确定在该第三周期内邻小区满足所述第一预设条件,Q为正整数,且,P为大于等于1且小于或等于Q的整数。
可选地,终端设备可以根据邻小区信号是否稳定,灵活选择不同的测量周期测量或评估小区,或者,终端设备为了保证判断邻小区是否满足所述第一预设条件的结果、是在邻小区信号稳定的情况下做出的判断,可以根据所述RSRP、基于所述RSRP的值、所述RSRQ或基于所述RSRQ的值、所述SINR或基于所述SINR的值变化范围确定信号是否稳定。
例如,当所述RSRP或基于所述RSRP的值变化范围小于或等于第十三阈值,和/或,所述RSRQ或基于所述RSRQ的值变化范围小于或等于第十四阈值时,认为信号为稳定的。
确定所述RSRP或基于所述RSRP的值变化范围小于或等于第十三阈值包括:
所述RSRP或基于所述RSRP的值的最大值与最小值的差值小于或等于第十三阈值;
或者,
所述RSRP与第一参考值之差的绝对值小于或等于第十三阈值,以及,基于所述RSRP的值与第二参考值之差的绝对值小于或等于第十三阈值。
确定所述RSRQ或基于所述RSRQ的值变化范围小于或等于第十四阈值包括:
所述RSRQ或基于所述RSRQ的值的最大值与最小值的差值小于或等于第十四阈值;
或者,
所述RSRQ与第三参考值之差的绝对值小于或等于第十四阈值,以及,基于所述RSRQ的值与第四参考值之差的绝对值小于或等于第十四阈值。
确定所述SINR或基于所述SINR的值变化范围小于或等于第十五阈值包括:
所述SINR或基于所述SINR的值的最大值与最小值的差值的变化范围小于或等于第十五阈值;
或者,
所述SINR与第五参考值之差的绝对值小于或等于第十五阈值,或者,基于所述SINR的值与第六参考值之差的绝对值小于或等于第十五阈值。
其中,确定RSRP与第一参考值之差的绝对值小于或等于第十三阈值,可以是多次测量得到的邻小区RSRP与第一参考值之差的绝对值均小于或等于第十三阈值;或者,可以是多次测量得到的邻小区RSRP与第一参考值之差的绝对值中的至少一个绝对值小于或等于第十三阈值。
确定基于所述RSRP的值与第二参考值之差的绝对值小于或等于第十三阈值,可以是多次测量得到的基于所述RSRP的值与第二参考值之差的绝对值均小于或等于第十三阈值;或者,可以是多次测量得到的基于所述RSRP的值与第二参考值之差的绝对值中的至少一个绝对值小于或等于第十三阈值。确定RSRQ与第三参考值之差的绝对值小于或等于第十四阈值,可以是多次测量得到的邻小区RSRQ与第三参考值之差的绝对值均小于或等于第十四阈值;或者,可以是多次测量得到的邻小区RSRQ与第三参考值之差的绝对值中的至少一个绝对值小于或等于第十四阈值。
确定基于所述RSRQ的值的值与第四参考值之差的绝对值小于或等于第十四阈值,可以是多次测量得到的基于所述RSRQ的值的值与第四参考值之差的绝对值均小于或等于第十四阈值;或者,可以是多次测量得到的基于所述RSRQ的值与第四参考值之差的绝对值中的至少一个绝对值小于或等于第十四阈值。
确定SINR与第五参考值之差的绝对值小于或等于第十五阈值,可以是多次测量得到的邻小区SINR与第五参考值之差的绝对值均小于或等于第十五阈值;或者,可以是多次测量得到的邻小区SINR与第五参考值之差的绝对值中的至少一个绝对值小于或等于第十五阈值。
确定基于所述SINR的值的值与第六参考值之差的绝对值小于或等于第十五阈值,可以是多次测量得到的基于所述SINR的值的值与第六参考值之差的绝对值均小于或等于第十五阈值;或者,可以是多次测量得到的基于所述SINR的值与第六参考值之差的绝对值中的至少一个绝对值小于或等于第十五阈值。
例如,3次测量邻小区RSRP分别为1、2、3,假设第十三阈值为1。首先计算邻小区RSRP的最大值与最小值的差值为2,则,差值大于第十三阈值的值,证明信号稳定度不够,进一步的确定,邻小区不满足第三预设条件。
再例如,3次测量邻小区RSRP分别为1、2、3,第一参考值为2,假设第十三阈值为1。
首先计算RSRP与第一参考值之差的绝对值分别为1、0、1,则,RSRP与第一参考值之差的绝对值均小于或等于第十三阈值,证明信号稳定。
或者,假设第十三阈值为0,则,RSRP与第一参考值之差的绝对值中只有一个绝对值小于或等于第十三阈值,也可以证明信号稳定。
再例如,测量邻小区RSRP为1,第一参考值为2,假设第十三阈值为1。首先计算RSRP与第一参考值之差的绝对值为1,则,RSRP与第一参考值之差的绝对值小于或等于第十三阈值,证明信号稳定。
结合上述的判断方法判断邻小区是否满足第一预设条件。
其中,确定所述RSRQ或基于所述RSRQ的值变化范围小于或等于第十四阈值、确定所述SINR或基于所述SINR的值变化范围小于或等于第十五阈值以及确定基于所述RSRP的值变化范围小于或等于第十三阈值,与上述确定所述RSRP的值变化范围小于或等于第十三阈值类似,这里不再举例说明。
第十三阈值、第十四阈值以及第十五阈值可以是由网络设备配置的,也可以是预先定义的,也可以是终端确定的。
可选地,在一些实施例中,第十三阈值、第十四阈值以及第十五阈值为终端设备根据终端设备的移动性确定的。终端设备的移动性可以包括终端设备的移动速度、终端设备处于静止、终端设备处于移动、终端设备处于低速、终端设备处于中速、终端设备处于高速、终端设备处于正常移动性状态、终端设备处于中等移动性状态、终端设备处于高移动性状态中的至少一种。网络设备可以配置终端设备的移动性与第一阈值的映射关系,终端设备根据其移动性及映射关系确定第一阈值。终端设备根据移动性确定第一阈值还可以具体为,终端设备根据移动性和第一时间长度确定第一阈值。第一时间长度可以为第一周期。
终端设备经过上述判断后,能够确定小区是否满足第一预设条件。
若终端设备确定小区满足第一预设条件,执行步骤S110,
若终端设备确定小区不满足第一预设条件时,执行步骤S120。
进一步地,测量小区可以为测量小区的测量量,以及,评估小区可以为评估小区选择准则或小区重选准则。在本申请中,测量小区的方法包括测量小区的测量量以及评估小区是否满足小区选择准则或小区重选准则。
应理解,终端设备以第一周期作为测量或评估小区的周期可以理解为终端设备至少每个第一周期进行测量或评估小区。
S120,若终端设备确定小区不满足第一预设条件,以第二周期作为测量或评估小区的周期。
其中,上述第一周期与上述第二周期相异,即,终端设备根据小区的不同情况,使用不同的测量或评估周期进行小区测量或评估。
具体地,上述第一周期大于第二周期,即,当小区满足第一预设条件的情况下,终端设备测量待测量的小区的测量周期比小区不满足第一预设条件时的测量周期大。
应理解,终端设备进行小区测量时周期越大,即,终端设备测量频率越低,从而节省终端设备的功耗。
例如,当小区为终端设备的服务小区时,上述小区的测量量满足第二预设条件,或者终端设备没有进行邻小区测量、或者小区满足小区选择准则,或者小区满足小区重选准则,证明小区的信号较好,终端设备进行小区重选的可能性低,此时,终端设备以第一周期作为测量或评估所述小区的周期,终端设备的测量或评估小区的频率低,能够节省终端设备的功耗。
当小区为终端设备的邻小区时,上述小区的测量量满足第三预设条件,或者小区不满足小区选择准则,或者小区不满足小区重选准则,证明小区的信号质量差,终端设备重选到该小区可能性低,此时,终端设备以第一周期作为测量或评估所述小区的周期,终端设备测量或评估小区的频率低,能够节省终端设备的功耗。
可选地,在一些实施例中,上述第一周期大于第二周期,且第一周期可以为第二周期的整数倍。可选的,不同的第二周期取值下,上述倍数值不同。
可选的,上述第二周期可以为终端设备使用的DRX周期,也可以是终端设备使用的DRX周期的整数倍。
可选的,若小区为终端设备的服务小区,第二周期可以为DRX周期;若小区为终端设备的邻小区,第二周期可以为DRX周期的整数倍。
应理解,上述第一周期、第二周期以及第三周期可以为网络设备配置的,或者,上述第一周期、第二周期以及第三周期可以为预先定义的。可选地,网络设备可通过系统信息配置上述第一周期、第二周期以及第三周期。
例如,当第一周期为网络设备配置的,可以参考以下两种配置方法。
1)第一周期为时间单位的数量,时间单位可以为帧、子帧、时隙、秒、毫秒等。
CellMeasCycle ENUMERATED{rf32,rf64,rf128,rf256}。
CellMeasCycle代表第一周期,rf32代表32个无线帧,rf64代表64个无线帧,以此类推。
2)第一周期为第二周期的倍数
网络设备配置参数可以为:
CellMeasCycle ENUMERATED{2,4,8}。
CellMeasCycle代表第一周期,2代表第一周期为第二周期的2倍,4代表第一周期为第二周期的4倍,8代表第一周期为第二周期的8倍。
还应理解,本申请实施例中,对终端设备是处于IDLE状态,处于INACTIVE状态,还是处于无线资源控制连接(radio resource control connected,RRC_CONNECTED)状态不做限制。
应理解,终端设备以第二周期作为测量或评估小区的周期可以理解为终端设备至少每个第二周期进行测量或评估小区。
可选地,终端设备在初始测量或评估所述小区可以使用第二周期。
可选地,在一些实施例中,上述第一参考值可以为,终端设备N次确定小区满足或不满足第一预设条件中的第一次测量/第一次测量之前,终端设备测量得到的小区的RSRP。
可选地,在另一些实施例中,上述第一参考值可以为,终端设备第一时间段内确定小区满足或不满足第一预设条件中的第一次测量/第一次测量之前之前,终端设备测量得到的小区的RSRP。
可选地,在另一些实施例中,上述第一参考值可以为,终端设备M次确定小区满足或不满足第一预设条件中的第一次测量/第一次测量之前,终端设备测量得到的小区的RSRP。
可选地,在一些实施例中,上述第二参考值可以为,基于终端设备N次确定小区满足或不满足第一预设条件中的第一次测量/第一次测量之前,终端设备测量得到的小区的RSRP的值。
可选地,在另一些实施例中,上述第二参考值可以为,基于终端设备第一时间段内确定小区满足或不满足第一预设条件中的第一次测量/第一次测量之前之前,终端设备测量得到的小区的RSRP的值。
可选地,在另一些实施例中,上述第二参考值可以为,基于终端设备M次确定小区满足或不满足第一预设条件中的第一次测量/第一次测量之前,终端设备测量得到的小区的RSRP的值。
可选地,在一些实施例中,上述第三参考值可以为,终端设备N次确定小区满足或不满足第一预设条件中的第一次测量/第一次测量之前,终端设备测量得到的小区的RSRQ。
可选地,在另一些实施例中,上述第三参考值可以为,终端设备第一时间段内确定小区满足或不满足第一预设条件中的第一次测量/第一次测量之前之前,终端设备测量得到的小区的RSRQ。
可选地,在另一些实施例中,上述第三参考值可以为,终端设备M次确定小区满足或不满足第一 预设条件中的第一次测量/第一次测量之前,终端设备测量得到的小区的RSRQ。
可选地,在一些实施例中,上述第四参考值可以为,基于终端设备N次确定小区满足或不满足第一预设条件中的第一次测量/第一次测量之前,终端设备测量得到的小区的RSRQ的值。
可选地,在另一些实施例中,上述第四参考值可以为,基于终端设备第一时间段内确定小区满足或不满足第一预设条件中的第一次测量/第一次测量之前之前,终端设备测量得到的小区的RSRQ的值。
可选地,在另一些实施例中,上述第四参考值可以为,基于终端设备M次确定小区满足或不满足第一预设条件中的第一次测量/第一次测量之前,终端设备测量得到的小区的RSRQ的值。
可选地,在一些实施例中,上述第五参考值可以为,终端设备N次确定小区满足或不满足第一预设条件中的第一次测量/第一次测量之前,终端设备测量得到的小区的SINR。
可选地,在另一些实施例中,上述第五参考值可以为,终端设备第一时间段内确定小区满足或不满足第一预设条件中的第一次测量/第一次测量之前之前,终端设备测量得到的小区的SINR。
可选地,在另一些实施例中,上述第五参考值可以为,终端设备M次确定小区满足或不满足第一预设条件中的第一次测量/第一次测量之前,终端设备测量得到的小区的SINR。
可选地,在一些实施例中,上述第六参考值可以为,基于终端设备N次确定小区满足或不满足第一预设条件中的第一次测量/第一次测量之前,终端设备测量得到的小区的SINR的值。
可选地,在另一些实施例中,上述第六参考值可以为,基于终端设备第一时间段内确定小区满足或不满足第一预设条件中的第一次测量/第一次测量之前之前,终端设备测量得到的小区的SINR的值。
可选地,在另一些实施例中,上述第六参考值可以为,基于终端设备M次确定小区满足或不满足第一预设条件中的第一次测量/第一次测量之前,终端设备测量得到的小区的SINR的值。
可选地,在一些实施例中,上述第一参考值、第二参考值、第三参考值、第四参考值、第五参考值以及第六参考值可以为网络设备配置的。
可选地,在另一些实施例中,上述第一参考值、第二参考值、第三参考值、第四参考值、第五参考值以及第六参考值可以为预先定义的。
上述RSRP、RSRQ等称呼均为便于区分而定义的称呼,不应对本申请构成任何限定,本申请并不排除在现有或未来的协议中使用其他的名称来替代上述各个名称的可能。
图3-图6为本申请中终端设备测量小区周期示意图。
图3是一种终端设备测量小区的测量或评估周期示意图。
从图3中可以看出,当小区不满足第一预设条件时,终端设备以第二周期进行小区测量或评估。当小区满足第一预设条件时,终端设备以第一周期进行小区测量或评估。
图4是另一种终端设备测量小区的测量或评估周期示意图。
从图4中可以看出,在时间轴的开始阶段终端设备以第二周期进行小区测量或评估。
在终端设备以第二周期进行小区测量或评估过程中,确定小区在第一时间段内满足第一预设条件时,终端设备以第一周期进行小区测量或评估。即,当终端设备以第二周期测量小区的过程中,当终端设备判断小区满足第一预设条件之后,终端设备不再以第二周期测量或评估小区,终端设备更换测量或评估小区周期为第一周期。
图5是一种终端设备测量小区的测量或评估周期示意图。
从图5中可以看出,在时间轴的开始阶段终端设备以第一周期进行小区测量或评估。
终端设备以第一周期进行小区测量或评估过程中,确定小区在第一时间段内不满足第一预设条件时,终端设备以第二周期进行小区测量或评估。即,当终端设备以第一周期测量或评估小区的过程中,当终端设备判断小区不满足第一预设条件之后,终端设备不再以第一周期测量或评估小区,终端设备更换测 量或评估周期为第二周期。
图6是一种终端设备测量小区的测量或评估周期示意图。
从图6中可以看出,可以连续N次确定小区是否满足第一预设条件。在时间轴的开始阶段终端设备以第二周期进行小区测量或评估。终端设备以第二周期进行小区测量或评估过程中,连续N次确定小区满足第一预设条件时,终端设备以第一周期进行小区测量或评估。即,当终端设备以第二周期测量或评估小区的过程中,当终端设备判断小区满足第一预设条件之后,终端设备不再以第二周期测量或评估小区,终端设备更换测量或评估周期为第一周期。
图7为本申请实施例提供的测量小区的设备10的示意图,如图7所示,该测量小区的设备可以为终端设备,也可以为芯片或电路,比如可设置于终端设备的芯片或电路。其中,该终端设备可以对应上述方法中的终端设备。
该通信装置10可以包括处理器11和存储器12。该存储器12用于存储指令,该处理器11用于执行该存储器12存储的指令,以使该装置20实现如图3-图6中对应的方法中终端设备执行的步骤。
例如,处理器11可以执行确定小区是否满足第一预设条件,以及以第一周期或第二周期测量或评估小区。
还例如,处理器11可以确定上述小区测量量。
进一步的,该通信装置10还可以包括输入口13和输出口14。
进一步的,该处理器11、存储器12、输入口13和输出口14可以通过内部连接通路互相通信,传递控制和/或数据信号。该存储器12用于存储计算机程序。
该处理器11可以用于从该存储器12中调用并运行该计算计程序,以控制输入口13接收信号,控制输出口14发送信号,完成上述方法中终端设备的步骤。该存储器12可以集成在处理器11中,也可以与处理器11分开设置。
可选地,若该通信装置10为终端设备,该输入口13为接收器,该输出口14为发送器。其中,接收器和发送器可以为相同或者不同的物理实体。为相同的物理实体时,可以统称为收发器。
可选地,若该通信装置10为芯片或电路,该输入口13为输入接口,该输出口14为输出接口。
作为一种实现方式,输入口13和输出口14的功能可以考虑通过收发电路或者收发的专用芯片实现。处理器11可以考虑通过专用处理芯片、处理电路、处理器或者通用芯片实现。
作为另一种实现方式,可以考虑使用通用计算机的方式来实现本申请实施例提供的终端设备。即将实现处理器11、输入口13和输出口14功能的程序代码存储在存储器12中,通用处理器通过执行存储器12中的代码来实现处理器11、输入口13和输出口14的功能。
该装置10所涉及的与本申请实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于这些内容的描述,此处不做赘述。
图8为本申请提供的一种终端设备20的结构示意图。为了便于说明,图8仅示出了终端设备的主要部件。如图8所示,终端设备20包括处理器、存储器、控制电路、天线以及输入输出装置。
处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端设备进行控制,执行软件程序,处理软件程序的数据,例如用于支持终端设备执行上述传输预编码矩阵的指示方法实施例中所描述的动作。存储器主要用于存储软件程序和数据,例如存储上述实施例中所描述的码本。控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。控制电路和天线一起也可以叫做收发器,主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当终端设备开机后,处理器可以读取存储单元中的软件程序,解释并执行软件程序的指令,处理软 件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图8仅示出了一个存储器和处理器。在实际的终端设备中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据。图8中的处理器集成了基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端设备可以包括多个基带处理器以适应不同的网络制式,终端设备可以包括多个中央处理器以增强其处理能力,终端设备的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
示例性的,在本申请实施例中,可以将具有收发功能的天线和控制电路视为终端设备20的收发单元201,将具有处理功能的处理器视为终端设备20的处理单元202。
如图8所示,终端设备20包括收发单元201和处理单元202。收发单元也可以称为收发器、收发机、收发装置等。可选的,可以将收发单元201中用于实现接收功能的器件视为接收单元,将收发单元201中用于实现发送功能的器件视为发送单元,即收发单元201包括接收单元和发送单元。示例性的,接收单元也可以称为接收机、接收器、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者 该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (45)

  1. 一种测量小区的方法,其特征在于,包括:
    若终端设备确定小区满足第一预设条件,
    所述终端设备以第一周期作为测量或评估所述小区的周期;
    若所述终端设备确定小区不满足所述第一预设条件,
    所述终端设备以第二周期作为测量或评估所述小区的周期,其中,所述第一周期不等于所述第二周期。
  2. 根据权利要求1所述的方法,其特征在于,所述第一周期大于所述第二周期。
  3. 根据权利要求1或2所述的方法,其特征在于,所述小区是所述终端设备的服务小区,所述第一预设条件包括所述小区的测量量满足第二预设条件、所述终端设备没有进行邻小区测量、所述小区满足小区选择准则或所述小区满足小区重选准则中的至少一个;
    或者,所述小区是所述终端设备的邻小区,所述第一预设条件包括所述小区的测量量满足第三预设条件、所述小区不满足小区选择准则或所述小区不满足小区重选准则中的至少一个。
  4. 根据权利要求3所述的方法,其特征在于,所述小区的测量量包括:
    所述小区的参考信号接收功率RSRP、基于所述RSRP的值、所述小区的参考信号接收质量RSRQ、基于所述RSRQ的值、所述小区发送的信号的功率与干扰和噪声功率的比值SINR或基于所述SINR的值中的至少一种。
  5. 根据权利要求4所述的方法,其特征在于,所述第二预设条件包括:
    基于所述RSRP的值大于或等于第一阈值、基于所述RSRQ的值大于或等于第二阈值、基于所述SINR的值大于或等于第三阈值、所述RSRP大于或等于第四阈值、所述RSRQ大于或等于第五阈值或所述SINR大于或等于第六阈值中的至少一种。
  6. 根据权利要求5所述的方法,其特征在于,所述基于所述RSRP的值为所述小区选择准则中使用的Srxlev。
  7. 根据权利要求5或6所述的方法,其特征在于,所述基于所述RSRQ的值为所述小区选择准则中使用的Squal。
  8. 根据权利要求5-7任一项所述的方法,其特征在于,所述第一阈值、所述第二阈值、所述第三阈值、所述第四阈值、所述第五阈值和所述第六阈值中的至少一个为根据所述终端设备的移动性确定的。
  9. 根据权利要求5-8任一项所述的方法,其特征在于,所述第一阈值、所述第二阈值、所述第三阈值、所述第四阈值、所述第五阈值和所述第六阈值中的至少一个为根据目标阈值确定的,其中,所述目标阈值为用于终端设备确定进行intra-frequency测量的阈值和/或用于终端设备确定进行inter-frequency测量的阈值。
  10. 根据权利要求9所述的方法,其特征在于,所述第一阈值为所述用于终端设备确定进行intra-frequency测量的阈值加上第一偏移量;
    或者,所述第一阈值为所述用于终端设备确定进行inter-frequency测量的阈值加上第二偏移量;
    或者,所述第一阈值为所述用于终端设备确定进行intra-frequency测量的阈值与所述用于终端设备确定进行inter-frequency测量的阈值中的最大值,再加上第三偏移量。
  11. 根据权利要求9或10所述的方法,其特征在于,所述第二阈值为所述用于终端设备确定进行intra-frequency测量的阈值加上第四偏移量;
    或者,所述第一阈值为所述用于终端设备确定进行inter-frequency测量的阈值加上第五偏移量;
    或者,所述第一阈值为所述用于终端设备确定进行intra-frequency测量的阈值与所述用于终端设备确定进行inter-frequency测量的阈值中的最大值,再加上第六偏移量。
  12. 根据权利要求4所述的方法,其特征在于,所述第三预设条件包括:
    基于所述RSRP的值小于或等于第七阈值基于所述RSRQ的值小于或等于第八阈值、基于所述SINR的值小于或等于第九阈值、所述RSRP小于或等于第十阈值、所述RSRQ小于或等于第十一阈值或所述SINR小于或等于第十二阈值中的至少一种。
  13. 根据权利要求12所述的方法,其特征在于,所述基于所述RSRP的值为所述小区重选准则中使用的Rn。
  14. 根据权利要求12或13所述的方法,其特征在于,所述第七阈值、所述第八阈值、所述第九阈值、所述第十阈值、所述第十一阈值和所述第十二阈值中的至少一个为根据所述终端设备的移动性确定的。
  15. 根据权利要求12-14任一项所述的方法,其特征在于,所述第七阈值、所述第八阈值、所述第九阈值、所述第十阈值、所述第十一阈值和所述第十二阈值中的至少一个为根据所述终端的服务小区的测量量确定的。
  16. 根据权利要求15所述的方法,其特征在于,所述第七阈值为所述小区重选准则中使用的Rs加上第七偏移量。
  17. 根据权利要求12-16任一项所述的方法,其特征在于,所述第二预设条件包括:
    所述RSRP或基于所述RSRP的值变化范围小于或等于第十三阈值、所述RSRQ或基于所述RSRQ的值变化范围小于或等于第十四阈值、所述SINR或基于所述SINR的值变化范围小于或等于第十五阈值中的至少一种;
    所述第三预设条件包括:
    所述RSRP或基于所述RSRP的值变化范围小于或等于第十三阈值、所述RSRQ或基于所述RSRQ的值变化范围小于或等于第十四阈值、所述SINR或基于所述SINR的值变化范围小于或等于第十五阈值中的至少一种。
  18. 根据权利要求17所述的方法,其特征在于,所述RSRP或基于所述RSRP的值变化范围小于或等于第十三阈值包括:
    所述RSRP或基于所述RSRP的值的最大值与最小值的差值小于或等于第十三阈值;或者,
    所述RSRP与第一参考值之差的绝对值小于或等于第十三阈值,或者,基于所述RSRP的值与第二参考值之差的绝对值小于或等于第十三阈值;
    所述RSRQ或基于所述RSRQ的值变化范围小于或等于第十四阈值包括:
    所述RSRQ或基于所述RSRQ的值的最大值与最小值的差值的变化范围小于或等于第十四阈值;或者,
    所述RSRQ与第三参考值之差的绝对值小于或等于第十四阈值,或者,基于所述RSRQ的值与第四参考值之差的绝对值小于或等于第十四阈值;
    所述SINR或基于所述SINR的值变化范围小于或等于第十五阈值包括:
    所述SINR或基于所述SINR的值的最大值与最小值的差值的变化范围小于或等于第十五阈值;或者,
    所述SINR与第五参考值之差的绝对值小于或等于第十五阈值,或者,基于所述SINR的值与第 六参考值之差的绝对值小于或等于第十五阈值。
  19. 根据权利要求17或18所述的方法,其特征在于,所述第十三阈值、所述第十四阈值和所述第十五阈值中的至少一个为根据所述终端设备的移动性确定的。
  20. 根据权利要求8、14、19中任一项所述的方法,其特征在于,所述终端设备的移动性包括所述终端设备的移动速度、所述终端设备处于静止、所述终端设备处于移动、所述终端设备处于低速、所述终端设备处于中速、所述终端设备处于高速、所述终端设备处于正常移动性状态、所述终端设备处于中等移动性状态、所述终端设备处于高移动性状态中的至少一种。
  21. 一种测量小区的终端设备,其特征在于,包括:
    确定单元,用于确定小区是否满足第一预设条件;
    测量单元,用于测量或评估所述小区;
    若所述确定单元确定所述小区满足第一预设条件,
    所述测量单元以第一周期作为测量或评估所述小区的周期;
    若所述确定单元确定小区不满足所述第一预设条件,
    所述测量单元以第二周期作为测量或评估所述小区的周期,其中,所述第一周期不等于所述第二周期。
  22. 根据权利要求21所述的终端设备,其特征在于,所述第一周期大于所述第二周期。
  23. 根据权利要求21或22所述的终端设备,其特征在于,所述小区是所述终端设备的服务小区,所述第一预设条件包括所述小区的测量量满足第二预设条件、所述终端设备没有进行邻小区测量、所述小区满足小区选择准则或所述小区满足小区重选准则中的至少一个;
    或者,所述小区是所述终端设备的邻小区,所述第一预设条件包括所述小区的测量量满足第三预设条件、所述小区不满足小区选择准则或所述小区不满足小区重选准则中的至少一个。
  24. 根据权利要求23所述的终端设备,其特征在于,所述小区的测量量包括:
    所述小区的参考信号接收功率RSRP、基于所述RSRP的值、所述小区的参考信号接收质量RSRQ、基于所述RSRQ的值、所述小区发送的信号的功率与干扰和噪声功率的比值SINR或基于所述SINR的值中的至少一种。
  25. 根据权利要求24所述的终端设备,其特征在于,所述第二预设条件包括:
    基于所述RSRP的值大于或等于第一阈值、基于所述RSRQ的值大于或等于第二阈值、基于所述SINR的值大于或等于第三阈值、
    所述RSRP大于或等于第四阈值、所述RSRQ大于或等于第五阈值或所述SINR大于或等于第六阈值中的至少一种。
  26. 根据权利要求25所述的终端设备,其特征在于,所述基于所述RSRP的值为所述小区选择准则中使用的Srxlev。
  27. 根据权利要求25或26所述的终端设备,其特征在于,所述基于所述RSRQ的值为所述小区选择准则中使用的Squal。
  28. 根据权利要求25-27任一项所述的终端设备,其特征在于,所述第一阈值、所述第二阈值、所述第三阈值、所述第四阈值、所述第五阈值和所述第六阈值中的至少一个为根据所述终端设备的移动性确定的。
  29. 根据权利要求25-28任一项所述的终端设备,其特征在于,所述第一阈值、所述第二阈值、所述第三阈值、所述第四阈值、所述第五阈值和所述第六阈值中的至少一个为根据目标阈值确定的,其中,所述目标阈值为用于终端设备确定进行intra-frequency测量的阈值和/或用于终端设备确定进行 inter-frequency测量的阈值。
  30. 根据权利要求29所述的终端设备,其特征在于,所述第一阈值为所述用于终端设备确定进行intra-frequency测量的阈值加上第一偏移量;
    或者,所述第一阈值为所述用于终端设备确定进行inter-frequency测量的阈值加上第二偏移量;
    或者,所述第一阈值为所述用于终端设备确定进行intra-frequency测量的阈值与所述用于终端设备确定进行inter-frequency测量的阈值中的最大值,再加上第三偏移量。
  31. 根据权利要求29或30所述的终端设备,其特征在于,所述第二阈值为所述用于终端设备确定进行intra-frequency测量的阈值加上第四偏移量;
    或者,所述第一阈值为所述用于终端设备确定进行inter-frequency测量的阈值加上第五偏移量;
    或者,所述第一阈值为所述用于终端设备确定进行intra-frequency测量的阈值与所述用于终端设备确定进行inter-frequency测量的阈值中的最大值,再加上第六偏移量。
  32. 根据权利要求24所述的终端设备,其特征在于,所述第三预设条件包括:
    基于所述RSRP的值小于或等于第七阈值、基于所述RSRQ的值小于或等于第八阈值、基于所述SINR的值小于或等于第九阈值、所述RSRP小于或等于第十阈值、所述RSRQ小于或等于第十一阈值或所述SINR小于或等于第十二阈值中的至少一种。
  33. 根据权利要求32所述的终端设备,其特征在于,所述基于所述RSRP的值为所述小区重选准则中使用的Rn。
  34. 根据权利要求32或33所述的终端设备,其特征在于,所述第七阈值、所述第八阈值、所述第九阈值、所述第十阈值、所述第十一阈值和所述第十二阈值中的至少一个为根据所述终端设备的移动性确定的。
  35. 根据权利要求32-34任一项所述的终端设备,其特征在于,所述第七阈值、所述第八阈值、所述第九阈值、所述第十阈值、所述第十一阈值和所述第十二阈值中的至少一个为根据所述终端的服务小区的测量量确定的。
  36. 根据权利要求35所述的终端设备,其特征在于,所述第七阈值为所述小区重选准则中使用的Rs加上第七偏移量。
  37. 根据权利要求32-36任一项所述的终端设备,其特征在于,所述第二预设条件包括:
    所述RSRP或基于所述RSRP的值变化范围小于或等于第十三阈值、所述RSRQ或基于所述RSRQ的值变化范围小于或等于第十四阈值、所述SINR或基于所述SINR的值变化范围小于或等于第十五阈值中的至少一种;
    所述第三预设条件包括:
    所述RSRP或基于所述RSRP的值变化范围小于或等于第十三阈值、所述RSRQ或基于所述RSRQ的值变化范围小于或等于第十四阈值、所述SINR或基于所述SINR的值变化范围小于或等于第十五阈值中的至少一种。
  38. 根据权利要求37所述的终端设备,其特征在于,所述RSRP或基于所述RSRP的值变化范围小于或等于第十三阈值包括:
    所述RSRP或基于所述RSRP的值的最大值与最小值的差值小于或等于第十三阈值;或者,
    所述RSRP与第一参考值的绝对值小于或等于第十三阈值,或者,基于所述RSRP的值与第二参考值之差的绝对值小于或等于第十三阈值;
    所述RSRQ或基于所述RSRQ的值变化范围小于或等于第十四阈值包括:
    所述RSRQ或基于所述RSRQ的值的最大值与最小值的差值小于或等于第十四阈值;或者,
    所述RSRQ与第三参考值之差的绝对值小于或等于第十四阈值,或者,基于所述RSRQ的值与第四参考值之差的绝对值小于或等于第十四阈值;
    所述SINR或基于所述SINR的值变化范围小于或等于第十五阈值包括:
    所述SINR或基于所述SINR的值的最大值与最小值的差值的变化范围小于或等于第十五阈值;或者,
    所述SINR与第五参考值之差的绝对值小于或等于第十五阈值,或者,基于所述SINR的值与第六参考值之差的绝对值小于或等于第十五阈值。
  39. 根据权利要求37或38所述的终端设备,其特征在于,所述第十三阈值、所述第十四阈值和所述第十五阈值中的至少一个为根据所述终端设备的移动性确定的。
  40. 根据权利要求28、34、39中任一项所述的终端设备,其特征在于,所述终端设备的移动性包括所述终端设备的移动速度、所述终端设备处于静止、所述终端设备处于移动、所述终端设备处于低速、所述终端设备处于中速、所述终端设备处于高速、所述终端设备处于正常移动性状态、所述终端设备处于中等移动性状态、所述终端设备处于高移动性状态中的至少一种。
  41. 一种通信装置,其特征在于,包括处理器和存储器,所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,以使所述通信装置实现如权利要求1-20中任一项所述的方法。
  42. 根据权利要求41所述的通信装置,其特征在于,所述通信装置为终端设备、芯片或电路。
  43. 根据权利要求41所述的通信装置,其特征在于,所述芯片或电路为可设置于终端设备的芯片或电路。
  44. 一种计算机可读存储介质,所述计算机可读存储介质存储有程序,所述程序使得通信装置执行如权利要求1-20中任一项所述的方法。
  45. 一种芯片系统,该芯片系统包括处理器,用于支持通信装置实现如权利要求1-20中任一项所述的方法。
PCT/CN2019/084263 2018-06-15 2019-04-25 测量小区的方法及终端设备 WO2019237839A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19819638.8A EP3787333A4 (en) 2018-06-15 2019-04-25 CELL MEASUREMENT METHOD AND TERMINAL DEVICE
US16/973,357 US11496935B2 (en) 2018-06-15 2019-04-25 Cell measurement method and terminal device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810623955.0 2018-06-15
CN201810623955.0A CN110611922B (zh) 2018-06-15 2018-06-15 测量小区的方法及终端设备

Publications (1)

Publication Number Publication Date
WO2019237839A1 true WO2019237839A1 (zh) 2019-12-19

Family

ID=68841918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/084263 WO2019237839A1 (zh) 2018-06-15 2019-04-25 测量小区的方法及终端设备

Country Status (4)

Country Link
US (1) US11496935B2 (zh)
EP (1) EP3787333A4 (zh)
CN (1) CN110611922B (zh)
WO (1) WO2019237839A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210001346A (ko) * 2019-06-27 2021-01-06 삼성전자주식회사 무선 통신 시스템에서 랜덤 액세스을 위한 방법 및 장치
KR20210007354A (ko) * 2019-07-11 2021-01-20 삼성전자주식회사 통신 장치의 동작 방법 및 통신 장치에 포함된 신호 처리 장치
CN111278066B (zh) * 2020-01-16 2022-01-28 展讯通信(上海)有限公司 邻区测量方法、用户设备及计算机可读存储介质
WO2021146872A1 (zh) * 2020-01-20 2021-07-29 北京小米移动软件有限公司 数据传输方法、装置、通信设备及存储介质
WO2021203380A1 (zh) * 2020-04-09 2021-10-14 Oppo广东移动通信有限公司 无线资源管理测量的控制方法、终端设备、网络设备
WO2021226761A1 (zh) * 2020-05-09 2021-11-18 Oppo广东移动通信有限公司 测量放松的方法及装置、终端设备、网络设备
CN111787563A (zh) * 2020-06-23 2020-10-16 广东小天才科技有限公司 一种执行放松测量的方法及终端设备
CN112637801B (zh) * 2020-12-11 2023-05-23 深圳市汇顶科技股份有限公司 一种小区驻留方法、终端及计算机可读存储介质
CN112601263A (zh) * 2020-12-11 2021-04-02 Oppo广东移动通信有限公司 一种目标小区确认方法、终端设备及存储介质
CN114172612A (zh) * 2021-10-11 2022-03-11 哲库科技(北京)有限公司 小区搜索方法、装置、电子设备及计算机可读存储介质
WO2023249365A1 (en) * 2022-06-24 2023-12-28 Lg Electronics Inc. Multicast cfr based ranking
CN118542021A (zh) * 2022-12-23 2024-08-23 北京小米移动软件有限公司 信息处理方法及装置、通信设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102143505A (zh) * 2010-02-03 2011-08-03 华为技术有限公司 聚合载波小区测量的方法、装置及系统
US20120307665A1 (en) * 2010-02-12 2012-12-06 St-Ericsson Handling of Measurements for Selecting a Cell in a Network
CN105636106A (zh) * 2014-10-31 2016-06-01 上海摩波彼克半导体有限公司 一种邻小区测量系统及方法以及移动终端
WO2017077463A1 (en) * 2015-11-02 2017-05-11 Telefonaktiebolaget Lm Ericsson (Publ) Adapting d2d operation on non-serving carrier frequency

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7590413B2 (en) * 2006-04-03 2009-09-15 Research In Motion Limited Free busy calendar interface
US9220028B2 (en) * 2010-02-12 2015-12-22 Blackberry Limited Methods and apparatus to perform measurements
CN102917380B (zh) * 2012-10-09 2015-12-02 大唐移动通信设备有限公司 小区测量方法与装置
US10405267B2 (en) * 2013-04-03 2019-09-03 Interdigital Patent Holdings, Inc. Cell detection, identification, and measurements for small cell deployments
US9294974B2 (en) * 2014-05-30 2016-03-22 Apple Inc. Motion based search and measurement periodicity
CN105208543A (zh) * 2014-06-09 2015-12-30 中国移动通信集团公司 一种小小区发现方法及系统、基站、用户设备
WO2017123009A1 (ko) * 2016-01-11 2017-07-20 삼성전자 주식회사 무선 통신 시스템에서 셀의 커버리지 향상 방법 및 장치
US10959118B2 (en) * 2016-02-02 2021-03-23 Lg Electronics Inc. Method and device for performing measurement in wireless communication system
CN105898777B (zh) * 2016-04-19 2019-10-25 华为技术有限公司 邻区测量方法及装置
CN107306177B (zh) * 2016-04-22 2023-11-10 华为技术有限公司 传输数据的方法、用户设备和网络侧设备
US10165473B2 (en) * 2016-06-02 2018-12-25 Qualcomm Incorporated Collision avoidance in multi-subscriber identity module (SIM) wireless communication devices
CN111092640B (zh) * 2018-10-24 2021-03-09 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102143505A (zh) * 2010-02-03 2011-08-03 华为技术有限公司 聚合载波小区测量的方法、装置及系统
US20120307665A1 (en) * 2010-02-12 2012-12-06 St-Ericsson Handling of Measurements for Selecting a Cell in a Network
CN105636106A (zh) * 2014-10-31 2016-06-01 上海摩波彼克半导体有限公司 一种邻小区测量系统及方法以及移动终端
WO2017077463A1 (en) * 2015-11-02 2017-05-11 Telefonaktiebolaget Lm Ericsson (Publ) Adapting d2d operation on non-serving carrier frequency

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3787333A4 *

Also Published As

Publication number Publication date
US11496935B2 (en) 2022-11-08
EP3787333A4 (en) 2021-06-16
CN110611922A (zh) 2019-12-24
CN110611922B (zh) 2021-10-22
US20210258841A1 (en) 2021-08-19
EP3787333A1 (en) 2021-03-03

Similar Documents

Publication Publication Date Title
WO2019237839A1 (zh) 测量小区的方法及终端设备
CN107637150B (zh) 信道测量与测量结果上报的方法和装置
US20220330133A1 (en) Cell Reselection Method, Terminal Device, and Network Device
WO2020200120A1 (zh) 一种测量方法、设备及装置
CN113543193B (zh) 一种放松测量方法和通信装置
WO2019191992A1 (zh) 小区测量的方法、终端设备和网络设备
WO2020097813A1 (zh) 一种移动性测量的方法、装置和系统
US20230209426A1 (en) Cell reselection method, terminal device, and network device
CN114830712B (zh) 测量方法和终端设备
WO2020164453A1 (zh) 信息上报方法、装置及设备
EP3569015A1 (en) A wireless communication device and a method therein for reporting signal quality measurements
CN116669119B (zh) 用于小区切换的方法和装置
CN115004749A (zh) 一种测量方法及装置
WO2021248391A1 (zh) 无线通信的方法和终端设备
US11706677B2 (en) Handover processing between communication networks
CN116438828A (zh) 测量配置方法、终端设备、网络设备、芯片和存储介质
WO2021062769A1 (zh) 一种跨网络移动的方法、装置和通信设备
WO2024120176A1 (zh) 一种通信方法、装置及系统
WO2023030458A1 (zh) 小区重选方法和通信装置
US20230371011A1 (en) Wireless communication method and device
WO2024187383A1 (zh) 测量方法、第一终端和服务设备
WO2024066909A1 (zh) 一种通信方法、装置及系统
KR20220149464A (ko) 무선 네트워크에서 다양한 능력들을 갖는 사용자 장비들에 대한 이동성 지원
WO2021161212A1 (en) Systems and methods for operating during a transition phase when a wireless device transitions between operational scenarios
US20170215141A1 (en) Wireless communications energy aware power sharing radio resources method and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19819638

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019819638

Country of ref document: EP

Effective date: 20201127

NENP Non-entry into the national phase

Ref country code: DE