WO2019237303A1 - 信道状态信息传输方法、相关装置及通信系统 - Google Patents

信道状态信息传输方法、相关装置及通信系统 Download PDF

Info

Publication number
WO2019237303A1
WO2019237303A1 PCT/CN2018/091257 CN2018091257W WO2019237303A1 WO 2019237303 A1 WO2019237303 A1 WO 2019237303A1 CN 2018091257 W CN2018091257 W CN 2018091257W WO 2019237303 A1 WO2019237303 A1 WO 2019237303A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna port
port set
srs
terminal device
configuration information
Prior art date
Application number
PCT/CN2018/091257
Other languages
English (en)
French (fr)
Inventor
张瑞齐
李雪茹
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2018/091257 priority Critical patent/WO2019237303A1/zh
Priority to CN201880094505.5A priority patent/CN112262588B/zh
Publication of WO2019237303A1 publication Critical patent/WO2019237303A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a channel state information transmission method, a related device, and a communication system.
  • LTE Long term evolution
  • MIMO multiple-input multiple-output
  • the information of the precoding matrix is fed back by the terminal device.
  • the terminal device obtains the downlink channel information by measuring the channel state information reference information (CSI-RS), and feeds the information of the precoding matrix to the network device in the form of a precoding matrix indicator (PMI).
  • PMI precoding matrix indicator
  • the network device selects a precoding matrix for precoding data by reading the PMI feedback from the terminal device. The higher the feedback accuracy of the precoding matrix, the more beneficial it is to improve the performance of downlink data transmission.
  • the terminal device also feedbacks a rank indication (RI) and a channel quality indicator (CQI).
  • RI rank indication
  • CQI channel quality indicator
  • CQI indicates the channel quality and is used by network equipment to provide a reference for determining the modulation and coding scheme; RI indicates the number of data layers that a network device can transmit to a terminal at the same time. A larger RI indicates that more data layers are transmitted simultaneously. RI, PMI, and CQI can constitute channel state information (channel state information).
  • the network device can obtain the downlink channel by measuring the uplink channel of the terminal device, which can further obtain beamforming Weights (ie, precoding matrices). Therefore, for a TDD system, obtaining beamforming weights depends on the sounding reference signal (SRS) sent by the terminal device to the network device.
  • SRS sounding reference signal
  • the network device obtains the uplink channel matrix according to the received signal and the SRS.
  • the network device can obtain the downlink channel matrix.
  • the network device does not need the terminal device to feedback the PMI to obtain the downlink CSI, and only needs the terminal device to feedback the CQI and / or RI, which greatly reduces the overhead required to obtain the downlink CSI.
  • the number of transmitting and receiving antennas of a terminal device is not equal. This is because each transmitting antenna of the terminal equipment needs to be linked with a power amplifier, and the cost of the power amplifier is relatively high, so often the terminal equipment is only equipped with a small number of transmitting antennas, but is equipped with multiple receiving antennas. In this case, the terminal equipment can only use the transmitting antenna to send the SRS.
  • the network device can only obtain the channel information corresponding to the transmitting antenna by estimating the SRS channel.
  • the terminal device In the case where the transmitting antenna can be switched, because the SRS resource is limited, the terminal device has to use a longer period to send the SRS, so that after the network device collects the channels of all antennas, the channel information of some antenna ports has expired, thus Affects the performance of TDD.
  • SRS and CSI can be combined to enable the network device to obtain complete channel information of the antenna port.
  • the network device can obtain the channel information of some antenna ports according to the SRS, if the terminal reports the CSI of the channels of all antenna ports to the network device, it will occupy a large amount of uplink time-frequency resources, and the CSI reporting overhead is large.
  • the embodiments of the present application provide a channel state information feedback method, related device and communication system, which can enable a terminal to selectively report CSI of a channel of a certain antenna port to a network device, save uplink time-frequency resources, and reduce CSI reporting overhead. .
  • an embodiment of the present application provides a channel state information feedback method, including: a network device sends configuration information of channel state information CSI to a terminal device; the configuration information of the CSI is associated with first information, and the first information is used For indicating the first antenna port set of the terminal device, the CSI configuration information is used to indicate a CSI reporting parameter corresponding to the antenna port set; the network device receives the CSI corresponding to the first antenna port set sent by the terminal device.
  • the CSI configuration information is associated with the first information, so that the terminal device determines the CSI of the channel to be reported according to the first information, without the need to blindly report the CSI of the channels of all antenna ports to the network device, saving uplink time-frequency resources To reduce the CSI reporting overhead.
  • the terminal device includes N antenna ports, the N antenna ports include a second antenna port set and a third antenna port set, and the second antenna port set includes m antenna ports.
  • the CSI includes: the network device receives the CSI corresponding to the first antenna port set sent by the terminal device through some or all of the antenna ports in the second antenna port set, where m, n, and N are integers.
  • the terminal device includes m transmitting antennas, N receiving antennas, and the N receiving antennas include n non-transmitting antennas and the foregoing m transmitting antennas, and the terminal device may send the network devices through the m transmitting antennas.
  • Channel state information may be used to determine whether the network devices are transmitting antennas.
  • the first antenna port set is a subset of the third antenna port set.
  • the first antenna port set determined by the terminal device according to the first information is a subset of the third antenna port set, that is, the first antenna port is a part or all of the foregoing n non-transmitting antennas.
  • the network device may Obtain channel state information corresponding to some or all antenna ports of the n non-transmitting antennas.
  • the first information is further used to indicate configuration information of a sounding reference signal SRS
  • the configuration information of the SRS is used to enable the terminal device to obtain a fourth antenna port set for transmitting the SRS, and the fourth antenna The port set is a subset of the second antenna port set, and the antenna port in the fourth antenna port set is different from the antenna port in the first antenna port set
  • the method further includes: the network device receives the terminal The SRS sent by the device through the antenna port included in the fourth antenna port set.
  • the configuration information of the SRS is associated with the first information.
  • the terminal device After receiving the configuration information of the CSI sent by the network device, the terminal device can further obtain the configuration information of the SRS according to the first information, and the fourth antenna port
  • the antenna ports in the set are at least one different from the antenna ports in the first antenna port set, which can ensure that after the network device obtains some channel information according to the SRS, the terminal device will no longer report the CSI of the channels of all antenna ports to Network equipment saves uplink time-frequency resources and reduces CSI reporting overhead.
  • the first information is configuration information of SRS
  • the CSI configuration information includes configuration information of the SRS
  • the configuration information of the SRS is used to enable the terminal device to obtain a fourth antenna port that sends an SRS.
  • the fourth antenna port set is a subset of the second antenna port set, and the antenna ports in the fourth antenna port set are different from the antenna ports in the first antenna port set; the method further includes: The network device receives the SRS sent by the terminal device through an antenna port included in the fourth antenna port set.
  • the SRS configuration information is included in the CSI configuration information.
  • the terminal device After receiving the CSI configuration information sent by the network device, the terminal device can directly obtain the SRS configuration information, and the antenna in the fourth antenna port set The port is at least one different from the antenna port in the first antenna port set, which can ensure that after the network device obtains the channel information of some antenna ports according to the SRS, the terminal device will no longer report the CSI of the channels of all antenna ports to the network.
  • Equipment to save uplink time-frequency resources and reduce CSI reporting overhead.
  • the first information is configuration information of the SRS
  • the CSI report configuration information is included in the configuration information of the SRS
  • the configuration information of the SRS is sent by the network device to the terminal device
  • the SRS The configuration information is used to enable the terminal device to obtain a fourth antenna port set for sending SRS
  • the fourth antenna port set is a subset of the second antenna port set
  • the antenna ports in the fourth antenna port set are the same as the first antenna port set.
  • At least one antenna port in the antenna port set is different; the above method further includes: the network device receives an SRS sent by the terminal device through an antenna port included in the fourth antenna port set.
  • the CSI configuration information is included in the SRS configuration information.
  • the terminal device After receiving the configuration information of the SRS sent by the network device, the terminal device can directly obtain the CSI configuration information, and the antenna in the fourth antenna port set The port is at least one different from the antenna port in the first antenna port set, which can ensure that after the network device obtains the channel information of some antenna ports according to the SRS, the terminal device will no longer report the CSI of the channels of all antenna ports to the network.
  • Equipment to save uplink time-frequency resources and reduce CSI reporting overhead.
  • the configuration information of the SRS is used to determine the number of antenna ports in a fourth antenna port set in which the terminal device sends an SRS.
  • the network device only knows the number of transmitting antenna ports provided by the terminal device, and uses the SRS configuration information to instruct the terminal to send the number of antenna ports in the fourth antenna port set corresponding to the SRS, and the terminal device receives the SRS configuration.
  • the fourth antenna port set corresponding to the SRS that it needs to send can be determined according to the number of antenna ports in the fourth antenna port set indicated by it, so as to determine the first antenna port set corresponding to the CSI.
  • the implementation method is that the first antenna set includes all or part of the antenna ports except the fourth antenna port set.
  • the network device does not need to know the specific antenna port number for sending SRS, and it does not need to know the CSI reported by the terminal device. Corresponding antenna port number.
  • the network device only needs to know that the antenna port corresponding to the SRS and the antenna port corresponding to the CSI are mutually exclusive, and can combine the channel state information on the CSI and SRS to obtain the precoding matrix.
  • This method can Avoid repeatedly reporting the channel state information of some antenna ports and save uplink time-frequency resources. Reduce CSI reporting overhead.
  • the configuration information of the SRS is used to instruct the terminal device to send an antenna port index in a fourth antenna port set corresponding to the SRS.
  • the network device not only knows the number of transmitting antenna ports provided by the terminal device, but also knows the port number information of the transmitting antenna provided by the terminal device. After receiving the configuration information of the SRS, the terminal device can clearly know what it needs to send.
  • the fourth antenna port set corresponding to the SRS so as to determine the first antenna port set corresponding to the CSI.
  • the first antenna set includes all of the N antenna ports except the fourth antenna port set or For some antenna ports, this method can avoid repeatedly reporting the channel state information of some antenna ports, save uplink time-frequency resources, and reduce the CSI reporting overhead.
  • the fourth antenna port set is the second antenna port set
  • the first antenna port set is the third antenna port set
  • the antenna port set reported by the terminal device through the SRS and the antenna port set reported through the CSI are completely mutually exclusive, which saves the uplink time-frequency resources to the greatest extent, reduces the CSI reporting overhead, and ensures that the network device can obtain completeness.
  • Downlink channel state information so that network equipment can determine the precoding matrix and improve signal transmission quality or rate.
  • the method further includes: the network device sends downlink control information DCI to the terminal device, the DCI includes an indication bit, and the indication bit is used to instruct the terminal device to send the first to the network device.
  • the CSI corresponding to an antenna port set and the SRS transmitted through the antenna port of the fourth antenna port set.
  • the same indicator bit is used to simultaneously trigger the terminal device to send the CSI of the first antenna port set and the SRS of the fourth antenna port set, thereby saving DCI. Bit overhead.
  • the first information is further used to indicate configuration information of a sounding reference signal SRS
  • the configuration information of the SRS is used to enable the terminal device to obtain the second antenna port set
  • the first information is SRS configuration information
  • the CSI configuration information includes the SRS configuration information
  • the SRS configuration information is used to enable the terminal device to obtain the second antenna port set
  • the first information is SRS configuration information
  • the CSI configuration The information is included in the configuration information of the SRS.
  • the configuration information of the SRS is sent by the network device to the terminal device, and the configuration information of the SRS is used to enable the terminal device to obtain the second antenna port set.
  • the terminal device may determine the second antenna port set according to the configuration information of the SRS.
  • the method further includes: the network device sends downlink control information DCI to the terminal device, the DCI includes an indication bit, and the indication bit is used to instruct the terminal device to send the network device to the network device.
  • the CSI of the first antenna port set and the SRS are transmitted through the antenna ports of the fourth antenna port set, wherein the fourth antenna port set is a subset of the second antenna port set, and the antennas in the fourth antenna port set The port is different from at least one antenna port in the first antenna port set.
  • the method further includes: receiving, by the network device, an SRS sent by the terminal device through an antenna port included in the fourth antenna port set.
  • the configuration information of the SRS includes one or more SRS resource configuration information, and each of the SRS resource configuration information includes a number of antenna ports for sending the SRS.
  • the SRS configuration information includes at least one SRS resource configuration information, and each SRS resource configuration information includes the number of antenna ports that send SRS. Pieces of SRS resource configuration information are used to instruct the terminal device to send SRS parameter information.
  • the third antenna port set is a subset of the first antenna port set.
  • the first antenna port set is a subset of the second antenna port set.
  • the terminal device has 8 antenna ports (in turn, antenna ports 0, 1, 2, 3, 4, 5, 6, and 7), the terminal device has two power amplifiers, of which antenna ports 0, 1, 2 , 3 can be used for antenna port switching, that is, the terminal device can use antennas 0 and 1 to send SRS, and it can also use antennas 2 and 3 to send SRS.
  • the second antenna port set includes antenna ports 0, 1, 2, and 3, and the third antenna port set includes antenna ports 4, 5, 6, and 7.
  • the second antenna port set is two antenna ports among antenna ports 0, 1, 2, and 3, and the third antenna port set includes the remaining six antenna ports. .
  • the first antenna port set is a subset of the third antenna port set.
  • This first antenna port set is a third antenna port set. It can also be said that the first antenna port set is a subset of the third antenna port set.
  • the antenna port corresponding to the CSI reported by the terminal device is 2, 3, 4, 5, 6, and 7;
  • the terminal device reports The antenna ports corresponding to CSI are 0, 1, 4, 5, 6, and 7.
  • the third antenna port set is a subset of the first antenna port set.
  • the terminal device has 4 antenna ports (in turn, antenna ports 0, 1, 2, 3), the terminal device has two power amplifiers, and the terminal device can be used between antenna ports 0, 1 and antenna ports 2, 3 respectively.
  • Antenna transmission switch If the terminal device has 4 antenna ports (in turn, antenna ports 0, 1, 2, 3), the terminal device has two power amplifiers, and the terminal device can be used between antenna ports 0, 1 and antenna ports 2, 3 respectively.
  • Antenna transmission switch If the terminal device has 4 antenna ports (in turn, antenna ports 0, 1, 2, 3), the terminal device has two power amplifiers, and the terminal device can be used between antenna ports 0, 1 and antenna ports 2, 3 respectively.
  • Antenna transmission switch is antenna transmission switch.
  • the second antenna port set includes antenna ports 0, 1, 2, and 3, and the third antenna set is an empty set.
  • the antenna ports corresponding to the CSI reported by the terminal equipment are 2, 3; when SRS is transmitted using antennas 2 and 3, the antenna ports corresponding to the CSI reported by the terminal equipment are 0 and 1.
  • the first antenna port set is a subset of the second antenna port set.
  • the foregoing indication bit is a CSI request domain or an SRS request domain.
  • the existing CSI request domain or SRS request domain is used to simultaneously trigger the terminal device to send the CSI of the first antenna port set and the fourth antenna port set.
  • SRS saving bit overhead in DCI.
  • all or part of the reported parameters of the CSI is used to indicate a channel corresponding to the first antenna port set, or to indicate a correlation matrix of channels corresponding to the first antenna port set, or to indicate A precoding matrix corresponding to the first antenna port set.
  • the network device generates a precoding matrix according to an SRS sent by the terminal device through an antenna port of the fourth antenna port set and a CSI corresponding to the first antenna port set.
  • an embodiment of the present application provides a method for transmitting channel state information, including:
  • the terminal device receives the configuration information of the channel state information CSI sent by the network device; the configuration information of the CSI is associated with first information, the first information is used to indicate a first antenna port set of the terminal device, and the configuration information of the CSI is used to indicate The CSI reporting parameter corresponding to the first antenna port set; the terminal device determines the CSI corresponding to the first antenna port set according to the CSI configuration information; the terminal device sends the CSI corresponding to the first antenna port set to the network device .
  • the CSI configuration information is associated with the first information, so that the terminal device determines the CSI of the channel to be reported according to the first information, without the need to blindly report the CSI of the channels of all antenna ports to the network device, saving uplink time-frequency resources. To reduce the CSI reporting overhead.
  • the terminal device includes N antenna ports, the N antenna ports include a second antenna port set and a third antenna port set, and the second antenna port set includes m antenna ports.
  • the method includes: the terminal device sends the CSI corresponding to the first antenna port set to the network device through all or part of the antenna ports in the second antenna port set, where the m, n, and N are integers.
  • the terminal device includes m transmitting antennas, N receiving antennas, and the N receiving antennas include n non-transmitting antennas and the foregoing m transmitting antennas, and the terminal device may send the network devices through the m transmitting antennas.
  • Channel state information may be used to determine whether the network devices are transmitting antennas.
  • the first antenna port set is a subset of the third antenna port set.
  • the first antenna port set determined by the terminal device according to the first information is a subset of the third antenna port set, that is, the first antenna port is a part or all of the foregoing n non-transmitting antennas.
  • the network device may Obtain channel state information corresponding to some or all antenna ports of the n non-transmitting antennas.
  • the first information is further used to indicate configuration information of a sounding reference signal SRS
  • the configuration information of the SRS is used to enable the terminal device to obtain a fourth antenna port set for transmitting the SRS, and the fourth antenna The port set is a subset of the second antenna port set, and the antenna port in the fourth antenna port set is different from the antenna port in the first antenna port set
  • the method further includes: the terminal device passes the first The four-antenna port set includes antenna ports that transmit SRS.
  • the configuration information of the SRS is associated with the first information.
  • the terminal device After receiving the configuration information of the CSI sent by the network device, the terminal device can further obtain the configuration information of the SRS according to the first information, and the fourth antenna port
  • the antenna ports in the set are at least one different from the antenna ports in the first antenna port set, which can ensure that after the network device obtains some channel information according to the SRS, the terminal device will no longer report the CSI of the channels of all antenna ports to Network equipment saves uplink time-frequency resources and reduces CSI reporting overhead.
  • the first information is configuration information of SRS
  • the CSI configuration information includes configuration information of the SRS
  • the configuration information of the SRS is used to enable the terminal device to obtain a fourth antenna port that sends an SRS.
  • the fourth antenna port set is a subset of the second antenna port set, and the antenna ports in the fourth antenna port set are different from the antenna ports in the first antenna port set; the method further includes: The terminal device sends an SRS to the network device through an antenna port included in the fourth antenna port set.
  • the SRS configuration information is included in the CSI configuration information.
  • the terminal device After receiving the CSI configuration information sent by the network device, the terminal device can directly obtain the SRS configuration information, and the antenna in the fourth antenna port set The port is at least one different from the antenna port in the first antenna port set, which can ensure that after the network device obtains the information of some channels according to the SRS, the terminal device will no longer report the CSI of the channels of all antenna ports to the network device, saving Uplink time-frequency resources to reduce CSI reporting overhead.
  • the first information is SRS configuration information
  • the CSI configuration information is included in the SRS configuration information
  • the SRS configuration information is sent by the network device to the terminal device
  • the SRS The configuration information is used to enable the terminal device to obtain a fourth antenna port set corresponding to the SRS
  • the fourth antenna port set is a subset of the second antenna port set
  • the antenna ports in the fourth antenna port set are the same as the first antenna port set.
  • At least one antenna port in an antenna port set is different; the above method further includes: the terminal device sends an SRS to the network device through an antenna port included in the fourth antenna port set.
  • the CSI configuration information is included in the SRS configuration information.
  • the terminal device After receiving the configuration information of the SRS sent by the network device, the terminal device can directly obtain the CSI configuration information, and the antenna in the fourth antenna port set The port is at least one different from the antenna port in the first antenna port set, which can ensure that after the network device obtains the information of some channels according to the SRS, the terminal device will no longer report the CSI of the channels of all antenna ports to the network device, saving Uplink time-frequency resources to reduce CSI reporting overhead.
  • the configuration information of the SRS is used to determine the number of antenna ports in a fourth antenna port set in which the terminal device sends an SRS.
  • the network device only knows the number of transmitting antenna ports provided by the terminal device, and uses the SRS configuration information to instruct the terminal to send the number of antenna ports in the fourth antenna port set corresponding to the SRS, and the terminal device receives the SRS configuration.
  • the fourth antenna port set corresponding to the SRS that it needs to send can be determined according to the number of antenna ports in the fourth antenna port set indicated by it, so as to determine the first antenna port set corresponding to the CSI.
  • the implementation method is that the first antenna set includes all or part of the antenna ports except the fourth antenna port set.
  • the network device does not need to know the specific antenna port number for sending SRS, and it does not need to know the CSI reported by the terminal device. Corresponding antenna port number.
  • the network device only needs to know that the antenna port corresponding to the SRS and the antenna port corresponding to the CSI are mutually exclusive, and can combine the channel state information on the CSI and SRS to obtain the precoding matrix.
  • This method can Avoid repeatedly reporting the channel state information of some antenna ports and save uplink time-frequency resources. Reduce CSI reporting overhead.
  • the configuration information of the SRS is used to instruct the terminal device to send an antenna port index in a fourth antenna port set corresponding to the SRS.
  • the network device not only knows the number of transmitting antenna ports provided by the terminal device, but also the port number information of the transmitting antenna provided by the terminal device. After receiving the configuration information of the SRS, the terminal device can clearly know that it needs to send The fourth antenna port set corresponding to the SRS to determine the first antenna port set corresponding to the CSI.
  • the first antenna set includes all of the N antenna ports except the fourth antenna port set. Or part of the antenna port, this method can avoid repeatedly reporting the channel state information of a certain part of the antenna port, save uplink time-frequency resources, and reduce the CSI reporting overhead.
  • the fourth antenna port set is the second antenna port set
  • the first antenna port set is the third antenna port set.
  • the antenna port set reported by the terminal device through the SRS and the antenna port set reported through the CSI are completely mutually exclusive, which saves the uplink time-frequency resources to the greatest extent, reduces the CSI reporting overhead, and ensures that the network device can obtain completeness.
  • Downlink channel state information so that network equipment can determine the precoding matrix and improve signal transmission quality or rate.
  • the method further includes: the terminal device receives downlink control information DCI sent by the network device, the DCI includes an indication bit, and the indication bit is used to instruct the terminal device to send to the network device CSI corresponding to the first antenna port set and SRS transmitted through the antenna port of the fourth antenna port set.
  • the same indicator bit is used to simultaneously trigger the terminal device to send the CSI of the first antenna port set and the SRS of the fourth antenna port set, thereby saving DCI. Bit overhead.
  • the first information is further used to indicate configuration information of a sounding reference signal SRS
  • the configuration information of the SRS is used to enable the terminal device to obtain the second antenna port set
  • the first information is SRS configuration information
  • the CSI configuration information includes the SRS configuration information
  • the SRS configuration information is used to enable the terminal device to obtain the second antenna port set
  • the first information is SRS configuration information
  • the CSI configuration The information is included in the configuration information of the SRS.
  • the configuration information of the SRS is sent by the network device to the terminal device, and the configuration information of the SRS is used to enable the terminal device to obtain the second antenna port set.
  • the terminal device may determine the second antenna port set according to the configuration information of the SRS.
  • the method further includes: the terminal device receives downlink control information DCI sent by the network device, the DCI includes an indication bit, and the indication bit is used to instruct the terminal device to send a corresponding response to the network device.
  • the CSI of the first antenna port set and the SRS are transmitted through the antenna ports of the fourth antenna port set, where the fourth antenna port set is a subset of the second antenna port set, and the The antenna port is different from at least one antenna port in the first antenna port set.
  • the method further includes: the terminal device sends an SRS to the network device through an antenna port included in the fourth antenna port set.
  • the configuration information of the SRS includes one or more SRS resource configuration information, and each of the SRS resource configuration information includes a number of antenna ports for sending the SRS.
  • the SRS configuration information includes at least one SRS resource configuration information, and each SRS resource configuration information includes the number of antenna ports that send SRS. Pieces of SRS resource configuration information are used to instruct the terminal device to send SRS parameter information.
  • the third antenna port set is a subset of the first antenna port set.
  • the first antenna port set is a subset of the second antenna port set.
  • the terminal device has 8 antenna ports (in turn, antenna ports 0, 1, 2, 3, 4, 5, 6, and 7), the terminal device has two power amplifiers, of which antenna ports 0, 1, 2 , 3 can be used for antenna port switching, that is, the terminal device can use antennas 0 and 1 to send SRS, and it can also use antennas 2 and 3 to send SRS.
  • the second antenna port set includes antenna ports 0, 1, 2, and 3, and the third antenna port set includes antenna ports 4, 5, 6, and 7.
  • the second antenna port set is two antenna ports among antenna ports 0, 1, 2, and 3, and the third antenna port set includes the remaining six antenna ports. .
  • the first antenna port set is a subset of the third antenna port set.
  • This first antenna port set is a third antenna port set. It can also be said that the first antenna port set is a subset of the third antenna port set.
  • the antenna port corresponding to the CSI reported by the terminal device is 2, 3, 4, 5, 6, and 7;
  • the terminal device reports The antenna ports corresponding to CSI are 0, 1, 4, 5, 6, and 7.
  • the third antenna port set is a subset of the first antenna port set.
  • the terminal device has 4 antenna ports (in turn, antenna ports 0, 1, 2, 3), the terminal device has two power amplifiers, and the terminal device can be used between antenna ports 0, 1 and antenna ports 2, 3 respectively.
  • Antenna transmission switch If the terminal device has 4 antenna ports (in turn, antenna ports 0, 1, 2, 3), the terminal device has two power amplifiers, and the terminal device can be used between antenna ports 0, 1 and antenna ports 2, 3 respectively.
  • Antenna transmission switch If the terminal device has 4 antenna ports (in turn, antenna ports 0, 1, 2, 3), the terminal device has two power amplifiers, and the terminal device can be used between antenna ports 0, 1 and antenna ports 2, 3 respectively.
  • Antenna transmission switch is antenna transmission switch.
  • the second antenna port set includes antenna ports 0, 1, 2, and 3, and the third antenna set is an empty set.
  • the antenna ports corresponding to the CSI reported by the terminal equipment are 2, 3; when SRS is transmitted using antennas 2 and 3, the antenna ports corresponding to the CSI reported by the terminal equipment are 0 and 1.
  • the first antenna port set is a subset of the second antenna port set.
  • the foregoing indication bit is a CSI request domain or an SRS request domain.
  • the existing CSI request domain or SRS request domain is used to simultaneously trigger the terminal device to send the CSI of the first antenna port set and the fourth antenna port set.
  • SRS saving bit overhead in DCI.
  • all or part of the reported parameters of the CSI are used to indicate a channel corresponding to the first antenna set, or to indicate a correlation matrix of channels corresponding to the first antenna set, or to indicate the The precoding matrix corresponding to the first antenna set.
  • an embodiment of the present application provides a network device, including: a first sending unit configured to send configuration information of channel state information CSI to a terminal device; the configuration information of the CSI is associated with first information, and the first information It is used to indicate the first antenna port set of the terminal device, and the CSI configuration information is used to indicate the CSI reporting parameter corresponding to the first antenna port set.
  • the first receiving unit is configured to receive the first antenna sent by the terminal device. The CSI corresponding to the port set.
  • the terminal device includes N antenna ports, the N antenna ports include a second antenna port set and a third antenna port set, and the second antenna port set includes m antenna ports.
  • the CSI corresponding to the foregoing first antenna port set sent by all or part of the antenna ports in the port set, where m, n, and N are integers.
  • the first antenna port set is a subset of the third antenna port set.
  • the first information is further used to indicate configuration information of a sounding reference signal SRS
  • the configuration information of the SRS is used to enable the terminal device to obtain a fourth antenna port set for transmitting the SRS, and the fourth antenna
  • the port set is a subset of the second antenna port set, and the antenna port in the fourth antenna port set is different from the antenna port in the first antenna port set; the first receiving unit is further configured to receive the port.
  • the first information is configuration information of SRS
  • the CSI configuration information includes configuration information of the SRS
  • the configuration information of the SRS is used to enable the terminal device to obtain a fourth antenna port that sends an SRS.
  • the fourth antenna port set is a subset of the second antenna port set, and the antenna ports in the fourth antenna port set are different from the antenna ports in the first antenna port set;
  • the first receiving unit And is further configured to receive the SRS sent by the terminal device through an antenna port included in the fourth antenna port set.
  • the first information is configuration information of the SRS
  • the CSI report configuration information is included in the configuration information of the SRS
  • the configuration information of the SRS is sent by the network device to the terminal device
  • the SRS The configuration information is used to enable the terminal device to obtain a fourth antenna port set for sending SRS
  • the fourth antenna port set is a subset of the second antenna port set
  • the antenna ports in the fourth antenna port set are the same as the first antenna port set.
  • At least one antenna port in the antenna port set is different.
  • the first receiving unit is further configured to receive the SRS sent by the terminal device through an antenna port included in the fourth antenna port set.
  • the configuration information of the SRS is used to determine the number of antenna ports in a fourth antenna port set in which the terminal device sends an SRS.
  • the configuration information of the SRS is used to instruct the terminal device to send an antenna port index in a fourth antenna port set corresponding to the SRS.
  • the fourth antenna port set is the second antenna port set
  • the first antenna port set is the third antenna port set
  • the first sending unit is further configured to send downlink control information DCI to the terminal device.
  • the DCI includes an indication bit, and the indication bit is used to instruct the terminal device to send the first antenna port set.
  • the corresponding CSI and the SRS transmitted through the antenna port of the fourth antenna port set.
  • the first information is further used to indicate configuration information of a sounding reference signal SRS
  • the configuration information of the SRS is used to enable the terminal device to obtain the second antenna port set
  • the first information is SRS configuration information
  • the CSI configuration information includes the SRS configuration information
  • the SRS configuration information is used to enable the terminal device to obtain the second antenna port set
  • the first information is SRS configuration information
  • the CSI configuration The information is included in the configuration information of the SRS.
  • the configuration information of the SRS is sent by the network device to the terminal device, and the configuration information of the SRS is used to enable the terminal device to obtain the second antenna port set.
  • the first sending unit is further configured to send downlink control information DCI to the terminal device, where the DCI includes an indication bit, and the indication bit is used to instruct the terminal device to send the network device corresponding to the
  • the CSI of the first antenna port set and the SRS are transmitted through the antenna ports of the fourth antenna port set, wherein the fourth antenna port set is a subset of the second antenna port set, and the antennas in the fourth antenna port set The port is different from at least one antenna port in the first antenna port set.
  • the first receiving unit is further configured to receive an SRS sent by the terminal device through an antenna port included in the fourth antenna port set.
  • the configuration information of the SRS includes one or more SRS resource configuration information, and each of the SRS resource configuration information includes a number of antenna ports for sending the SRS.
  • the fourth antenna port set is the second antenna port set
  • the first antenna port set is the third antenna port set
  • the third antenna port set is a subset of the first antenna port set.
  • the first antenna port set is a subset of the second antenna port set.
  • the foregoing indication bit is a CSI request domain or an SRS request domain.
  • all or part of the reported parameters of the CSI is used to indicate a channel corresponding to the first antenna set, or to indicate a correlation matrix of the channels corresponding to the first antenna set, or to indicate the The precoding matrix corresponding to the first antenna set.
  • the network device further includes a generating unit, configured to generate a precoding matrix according to an SRS sent by the terminal device through an antenna port of the fourth antenna port set and a CSI corresponding to the first antenna set.
  • a generating unit configured to generate a precoding matrix according to an SRS sent by the terminal device through an antenna port of the fourth antenna port set and a CSI corresponding to the first antenna set.
  • an embodiment of the present application provides a terminal device, including: a second receiving unit configured to receive configuration information of channel state information CSI sent by a network device, where the configuration information of the CSI is associated with first information, and the first The information is used to indicate the first antenna port set of the terminal device, and the CSI configuration information is used to indicate the CSI reporting parameter corresponding to the first antenna port set.
  • the determining unit is configured to determine the first antenna according to the CSI configuration information.
  • CSI corresponding to the port set ; a second sending unit, configured to send the CSI corresponding to the first antenna port set to the network device.
  • the terminal device includes N antenna ports, the N antenna ports include a second antenna port set and a third antenna port set, and the second antenna port set includes m antenna ports.
  • the first antenna port set is a subset of the third antenna port set.
  • the first information is further used to indicate configuration information of a sounding reference signal SRS
  • the configuration information of the SRS is used to enable the terminal device to obtain a fourth antenna port set for transmitting the SRS, and the fourth antenna
  • the port set is a subset of the second antenna port set, and the antenna port in the fourth antenna port set is at least one different from the antenna port in the first antenna port set; the second sending unit is further configured to pass through the first antenna port set.
  • the antenna port included in the four-antenna port set transmits the above-mentioned SRS.
  • the first information is SRS configuration information
  • the CSI configuration information includes the SRS configuration information
  • the SRS configuration information is used to enable the terminal device to obtain a fourth antenna that sends an SRS.
  • Port set, the fourth antenna port set is a subset of the second antenna port set, and the antenna ports in the fourth antenna port set are different from the antenna ports in the first antenna port set;
  • the second transmitting The unit is further configured to send an SRS to the network device through an antenna port included in the fourth antenna port set.
  • the first information is SRS configuration information
  • the CSI configuration information is included in the SRS configuration information
  • the SRS configuration information is sent by the network device to the terminal device
  • the SRS The configuration information is used to enable the terminal device to obtain a fourth antenna port set for sending SRS
  • the fourth antenna port set is a subset of the second antenna port set
  • the antenna ports in the fourth antenna port set are the same as the first antenna port set. At least one antenna port in the antenna port set is different.
  • the second sending unit is further configured to send an SRS to the network device through an antenna port included in the fourth antenna port set.
  • the configuration information of the SRS is used to determine the number of antenna ports in a fourth antenna port set in which the terminal device sends an SRS.
  • the configuration information of the SRS is used to instruct the terminal device to send an antenna port index in a fourth antenna port set corresponding to the SRS.
  • the fourth antenna port set is the second antenna port set
  • the first antenna port set is the third antenna port set
  • the second receiving unit is further configured to receive downlink control information DCI sent by the network device, the DCI includes an indication bit, and the indication bit is used to instruct the terminal device to send to the network device CSI corresponding to the first antenna port set and SRS transmitted through the antenna port of the fourth antenna port set.
  • the first information is further used to indicate configuration information of a sounding reference signal SRS
  • the configuration information of the SRS is used to enable the terminal device to obtain the second antenna port set
  • the first information is SRS configuration information
  • the CSI configuration information includes the SRS configuration information
  • the SRS configuration information is used to enable the terminal device to obtain the second antenna port set
  • the first information is SRS configuration information
  • the CSI configuration The information is included in the configuration information of the SRS.
  • the configuration information of the SRS is sent by the network device to the terminal device, and the configuration information of the SRS is used to enable the terminal device to obtain the second antenna port set.
  • the second receiving unit is further configured to receive downlink control information DCI sent by the network device.
  • the DCI includes an indication bit, and the indication bit is used to instruct the terminal device to send a corresponding response to the network device.
  • the CSI of the first antenna port set and the SRS are transmitted through the antenna ports of the fourth antenna port set, where the fourth antenna port set is a subset of the second antenna port set, and the The antenna port is different from at least one antenna port in the first antenna port set.
  • the second sending unit is further configured to send an SRS to the network device through an antenna port included in the fourth antenna port set.
  • the configuration information of the SRS includes one or more SRS resource configuration information, and each of the SRS resource configuration information includes a number of antenna ports for sending the SRS.
  • the third antenna port set is a subset of the first antenna port set.
  • the first antenna port set is a subset of the second antenna port set.
  • the foregoing indication bit is a CSI request domain or an SRS request domain.
  • all or part of the reported parameters of the CSI is used to indicate a channel corresponding to the first antenna set, or to indicate a correlation matrix of the channels corresponding to the first antenna set, or to indicate the The precoding matrix corresponding to the first antenna set.
  • an embodiment of the present application provides a communication system, which is characterized by including a network device and a terminal device.
  • the foregoing network device is the network provided by the third aspect of the embodiment of the present application or any one of the implementation manners of the third aspect.
  • an embodiment of the present application provides a network device, including a processor, a memory, and a transceiver.
  • the processor, the memory, and the transceiver are connected to each other.
  • the memory is used to store a computer program.
  • the program includes program instructions, and the processor is configured to call the program instructions to execute the channel state information transmission method provided by the first aspect of the embodiment of the present application or any implementation manner of the first aspect.
  • an embodiment of the present application provides a terminal device including a processor, a memory, and a transceiver, where the processor, the memory, and the transceiver are connected to each other, and the memory is used to store a computer program, and the computer
  • the program includes program instructions, and the processor is configured to call the program instructions to execute the channel state information transmission method provided by the second aspect of the embodiment of the present application or any implementation manner of the second aspect.
  • an embodiment of the present application provides a computer-readable storage medium.
  • the computer-readable storage medium stores a computer program.
  • the computer program includes program instructions. When the program instructions are executed by a processor, the processor causes the processor.
  • the method for transmitting channel state information provided by the first aspect or any implementation manner of the first aspect of the embodiments of the present application is implemented.
  • an embodiment of the present application provides a computer-readable storage medium.
  • the computer-readable storage medium stores a computer program.
  • the computer program includes program instructions. When the program instructions are executed by a processor, the processor causes the processor.
  • the method for transmitting channel state information provided by the second aspect or any implementation manner of the second aspect of the embodiments of the present application is implemented.
  • the first information may be associated in the CSI configuration information, so that the terminal device can determine the first antenna port set corresponding to the CSI that it needs to report according to the first information. , The terminal device will no longer report the CSI of all channels to the network device, saving uplink time-frequency resources and reducing the CSI reporting overhead. Further, the same bit is used to simultaneously trigger the terminal device to send the CSI of the first antenna port set and the SRS of the fourth antenna port set, thereby saving the bit overhead in the DCI.
  • FIG. 1 is a schematic structural diagram of a communication system according to an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a channel state information feedback method according to an embodiment of the present application
  • FIG. 3 is a schematic diagram of an antenna port of a terminal device according to an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of another channel state information feedback method according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a terminal device according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of another network device according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of another terminal device according to an embodiment of the present application.
  • GSM global mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • FDD LTE frequency division duplex
  • TDD time division duplex
  • UMTS universal mobile communication system
  • the terminal device may also be referred to as user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal , Wireless communication equipment, user agent, or user device.
  • the access terminal can be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), and wireless communication.
  • the network device may be a device for communicating with a mobile device.
  • the network device may be a base station (BTS) in GSM or CDMA, or a base station in WCDMA, or may be LTE Evolutionary NodeB (eNodeB), or relay station or access point, or vehicle-mounted equipment, wearable equipment, and network-side equipment in 5G networks.
  • BTS base station
  • eNodeB LTE Evolutionary NodeB
  • relay station or access point or vehicle-mounted equipment, wearable equipment, and network-side equipment in 5G networks.
  • FIG. 1 is a schematic diagram of a communication system using a channel state information transmission method of the present application.
  • the communication system may be any one of the communication systems described above.
  • the communication system 100 includes a network device 101 and a plurality of terminal devices (such as the terminal device 102 and the terminal device 103 in the figure).
  • the network device 101 can communicate with the terminal device 102 and the terminal device 103.
  • the network device 101 can communicate with any number of terminal devices similar to the terminal devices 102 or 103.
  • the terminal device 102 communicates with the network device 101, where the network device 101 sends information to the terminal device 102 through the forward link 104 and receives information from the terminal device 102 through the reverse link 105.
  • the terminal device 103 communicates with the network device 101, where the network device 101 sends information to the terminal device 103 through the forward link 107 and receives information from the terminal device 103 through the reverse link 106.
  • the forward link 104 may utilize a different frequency band from that used by the reverse link 105, and the forward link 107 may utilize a different frequency band from that used by the reverse link 106.
  • the forward link 104 and the reverse link 105 may use a common frequency band, and the forward link 107 and the reverse link 106 may use a common frequency band.
  • the network device 101, the terminal device 102, or the terminal device 103 may be a wireless communication sending device and / or a wireless communication receiving device.
  • the wireless communication transmitting device may encode the data for transmission.
  • the wireless communication transmitting device may obtain (for example, generate, receive from another communication device, or save in a memory, etc.) a certain number of data bits to be transmitted to the wireless communication receiving device through a channel.
  • Such data bits may be contained in a transport block (or transport blocks) of data, which may be segmented to generate a plurality of code blocks.
  • the sender of the signal obtains the channel information between the sender and the receiver (for example, a terminal device), and then the precoding processing may be performed on the transmitted signal according to the obtained channel information, so that the network device can send the signal.
  • Energy is concentrated in the direction in which the terminal device is located, so that the terminal device can obtain a higher signal reception signal-to-noise ratio.
  • the network device sends multiple layers of data streams to the terminal device at the same time, this way can Some or all interference between data streams is eliminated in advance at the transmitting end, thereby improving system performance.
  • This embodiment of the present application mainly relates to how a terminal device sends channel state information to a network device, so that the network device determines a scheme of the precoding matrix according to the channel information, and a matrix used by a transmitting end when performing precoding processing is a precoding matrix.
  • FIG. 2 is a schematic flowchart of a channel state information transmission method according to an embodiment of the present application. The method shown in FIG. 2 may be applied to the foregoing TDD system or other system scenarios, which is not limited in the embodiment of the present application.
  • TDD system uses the TDD system as an example to introduce the channel state information transmission method in the embodiment of the present application, but the embodiment of the present application is not limited to this, and can also be applied to the FDD system.
  • the above TDD system includes a terminal device and a network device.
  • the terminal device includes N antenna ports.
  • the N antenna ports are configured with receiving channels and can be used to receive downlink data and downlink reference signals. It can be called a set of receiving antenna ports; where m antenna ports can be connected to a power amplifier for sending uplink data and / or uplink reference information, it is called a set of transmitting antenna ports, and the m antenna ports are included in the N antenna ports.
  • the terminal device can send uplink data or uplink reference signals through m0 antenna ports at the same time (that is, there are m power amplifiers), and it can support x antenna switching.
  • the number m of antenna ports included in the second antenna port set may be less than N, or may be equal to N.
  • the channel state information transmission method shown in FIG. 2 may include at least the following steps:
  • the network device sends the CSI configuration information to the terminal device.
  • the CSI configuration information is associated with first information, the first information is used to indicate a first antenna port set of the terminal device, and the CSI configuration information is used to indicate a CSI reporting parameter corresponding to the first antenna port set. .
  • the CSI configuration information is used to instruct the terminal device to send CSI reporting parameters.
  • the CSI reporting parameters may specifically include the content of the CSI reporting, such as whether to include RI, PMI, CQI, etc .; the CSI reporting parameters may also include the CSI reporting method. For example, whether the reporting method is periodic reporting, semi-periodical reporting or aperiodic reporting; if the reporting method is periodic reporting, the CSI reporting parameters may also include the specific period of the CSI reporting, and the time offset position of the reporting (that is, the reporting time Point is located in the several subframes or time slots in the time domain).
  • the CSI reporting parameters may also include the time position of the CSI reporting; the CSI reporting parameters may also include the entire system. The broadband is still reported by the subband; if the CSI reporting parameter is reported for the subband, the CSI reporting parameter may also include the specific subband for which the reporting is specific, and so on.
  • the CSI reporting parameters are not limited to this, and are not limited in this embodiment of the present application.
  • the terminal device determines a CSI report parameter of the first antenna port set according to the CSI configuration information.
  • the terminal device determines various reporting parameters of the CSI to be reported according to the received CSI configuration information, as described above.
  • the terminal device also needs to determine the first antenna port set corresponding to the reported CSI according to the first information associated with the CSI configuration information.
  • the terminal device sends the CSI corresponding to the first antenna port set to the network device.
  • the terminal device after determining the CSI of the first antenna port set, the terminal device sends the CSI to the network device, so that the network device determines the channel state information corresponding to the antenna port included in the first antenna port set according to the CSI, and then according to the channel state The information determines the precoding matrix and improves the signal transmission quality or rate.
  • the terminal device may send the CSI corresponding to the first antenna port set to the network device through all or part of the antenna ports in the second antenna port set.
  • the CSI of the first antenna port set is sent by the terminal device through all antenna ports in the second antenna port set; If the terminal device supports antenna switching, since the antenna ports capable of transmitting uplink data or reference signals simultaneously are part of the antenna ports in the second antenna port set, the CSI of the first antenna port set is passed by the terminal device through the second antenna. Send from some antenna ports in the port set.
  • the first antenna port set may include only some of the N antenna ports of the terminal device.
  • the first information may be associated with the configuration information of the CSI, so that the terminal device determines that it needs to upload according to the first information.
  • the antenna port corresponding to CSI does not need to blindly report the CSI of all channels to the network equipment, which saves uplink time-frequency resources and reduces the CSI reporting overhead.
  • FIG. 4 is another channel state information transmission method according to an embodiment of the present application. As shown in FIG. 4, the channel state information transmission method may include at least the following steps:
  • the network device sends the CSI configuration information to the terminal device.
  • the above CSI configuration information is associated with first information, and the first information is used to determine a first antenna port set corresponding to the terminal device sending the CSI.
  • the above CSI configuration information is used to enable a terminal device to determine a CSI report parameter of the first antenna port set.
  • CSI report parameter For details of the CSI report parameter, refer to the description in S201, and details are not described herein again.
  • the network device may know the number of transmitting antenna ports provided by the terminal device, and the number of receiving antenna ports provided by the terminal device.
  • the first information associated with the CSI configuration information may be used to determine the number of antenna ports in the first antenna port set.
  • the first information may indicate the number of antenna ports in the first antenna port set; or the first information may also indicate the number of antenna ports included in the complement of the first antenna port set, so that the terminal device determines the first The number of antenna ports in the antenna port set.
  • the complement of the first antenna port set and the union of the first antenna port set are a set of N antenna ports included in the terminal device.
  • the complement of the first antenna port set and the union of the first antenna port set are a true subset of a set of N antenna ports included in the terminal device, and the true subset may be in a predefined manner or a base station.
  • the configuration method or the terminal device report method is determined.
  • the first information is also associated with the configuration information of the SRS, and the terminal device can determine the CSI correspondence that needs to be finally reported through the configuration information of the SRS and the number of antenna ports in the first antenna port set. Antenna port in the first antenna port set.
  • the first information is also used to indicate configuration information of the SRS, that is, the configuration information of the CSI and the configuration information of the SRS are relatively independent, and are two separate resources, and the two are related through the first information.
  • the first information may be, for example, an index number of the configuration information of the SRS, and is a part of the configuration information of the CSI.
  • the terminal device reads the configuration information of the CSI, it can obtain the index number of the configuration information of the SRS according to the first information in the configuration information of the CSI, so that the terminal device can read the configuration information of the SRS.
  • the first information may be, for example, an index number of the configuration information of the CSI, and is a part of the configuration information of the SRS.
  • the terminal device When the terminal device reads the configuration information of the SRS, it can obtain the index number of the CSI configuration information according to the first information in the configuration information of the SRS, so that the terminal device can read the CSI configuration information.
  • the first information is configuration information of the SRS
  • the configuration information of the CSI includes the configuration information of the SRS. That is, the SRS configuration information is a part of the CSI configuration information.
  • the terminal device When the terminal device reads the CSI configuration information, it can directly obtain the SRS configuration information.
  • the first information is configuration information of the SRS
  • the configuration information of the CSI is included in the configuration information of the SRS
  • the configuration information of the CSI is a part of the configuration information of the SRS. That is, the configuration information of the SRS includes the configuration information of the CSI, and the terminal device can directly obtain the configuration information of the CSI when reading the configuration information of the SRS.
  • the configuration information of the SRS is used to enable the terminal device to obtain a fourth antenna port set for sending the SRS.
  • the fourth antenna port set is a subset of the foregoing second antenna port set, that is, the antenna ports in the fourth antenna port set are part or all of the transmitting antenna ports, and the antenna ports in the fourth antenna port set and the first antenna port set There is at least one difference in the antenna port.
  • the antenna ports in the fourth antenna port set are part or all of the transmitting antenna ports, and the channel state information corresponding to the antenna ports in the fourth antenna port set can be obtained by estimating the SRS.
  • the channel state information corresponding to the antenna port in the first antenna port set is sent by the terminal device to the network device.
  • the SRS configuration information may be used to indicate the number of antenna ports in the fourth antenna port set corresponding to the terminal device sending the SRS.
  • the terminal device may perform the behavior or according to a predefined rule or combine other Configuration information (such as information indicated by radio resource control (RRC), media access control element (MAC, CE) or downlink control information (DCI) signaling) It is determined which n0 antenna ports among the above m transmit antenna ports are included in the fourth antenna port set.
  • RRC radio resource control
  • MAC media access control element
  • DCI downlink control information
  • the first antenna port set may include a part or all of the foregoing non-transmitting antenna ports, and may further include a transmitting antenna port.
  • the first antenna port set may have an intersection with the fourth antenna port set.
  • the transmitting antenna port included in the antenna port set is different from the antenna port included in the first antenna port set by at least one, which can save uplink time-frequency resources to a certain extent and reduce CSI reporting overhead.
  • the fourth antenna port set is the aforementioned second antenna port set, and the first antenna port set is the aforementioned third antenna port set. That is, the fourth antenna port set is all transmitting antenna ports of the terminal device, and the first antenna port set is all non-transmitting antenna ports of the terminal device.
  • the channel state information corresponding to all the transmitting antenna ports is fed back to the network device by the terminal device through the SRS, and the channel state information corresponding to all the non-transmitting antenna ports is fed back to the network device by the terminal device through the CSI.
  • Network devices can obtain complete channel status information through a combination of two methods, which saves the uplink time-frequency resources to the greatest extent and saves the CSI reporting overhead to the greatest extent.
  • the configuration information of the SRS is used to instruct the terminal device to send parameter information of the SRS.
  • the parameter information of the SRS may specifically include an SRS reporting method, such as periodic reporting, semi-periodical reporting, or aperiodic reporting; if the reporting method is periodic reporting, SRS
  • the parameter information of the SRS may also include the specific reporting period, and the reporting time point is specifically located in the several subframes or time slots in the time domain.
  • the parameter information of the SRS may also include whether it is specific to the entire bandwidth or a part of the bandwidth. and many more.
  • the parameter information of the SRS is not limited to this, and is not limited in the embodiment of the present application.
  • the network device may not only know the number of transmitting antenna ports and receiving antenna ports provided by the terminal device, but also the port number information of the transmitting antenna ports of the terminal device.
  • the first information associated with the CSI configuration information may be directly used to indicate a specific antenna port in the first antenna port set, that is, to indicate a port number of the antenna in the first antenna port set.
  • the terminal device After receiving the CSI configuration information, the terminal device can clearly know the antenna port corresponding to the CSI that it needs to report.
  • the first antenna port set is a subset of the third antenna port set.
  • the first information associated with the CSI configuration information may be directly used to indicate a specific antenna port included in a complement of the first antenna port set, that is, an antenna port number included in the complement of the first antenna port set.
  • the terminal device may determine which ports need to report corresponding CSI by determining which ports (ie, antenna ports included in the complement of the first antenna port set) need not be reported.
  • the SRS configuration information may be used to instruct the terminal device to send the port number information of the antenna port included in the fourth antenna port set corresponding to the SRS. After receiving the configuration information of the SRS, the terminal device can clearly know the antenna port corresponding to the SRS that it needs to report.
  • the first antenna port set may be a subset of the third antenna port set, that is, the antenna ports in the first antenna port set may be some or all non-transmitting antenna ports.
  • the terminal device can send the SRS to the network device to enable the network device to know the channel state information corresponding to the transmitting antenna port, and the network device cannot obtain the channel state information corresponding to the non-sending antenna port, so the channel state corresponding to the transmitting antenna port is sent by combining the SRS
  • the information and the CSI obtain part or all of the channel state information corresponding to the non-transmitting antenna port to obtain the state information of the downlink channel.
  • the terminal device can also switch the transmit antenna. To the remaining non-transmitting antenna port, and sending an SRS to the network device through the remaining non-transmitting antenna port, so that the network device obtains channel state information corresponding to the remaining non-transmitting antenna port.
  • the terminal device may send an SRS to the network device through the antenna 0, so that the network device obtains the channel state information corresponding to the antenna 0.
  • the terminal device may also send the CSI to the network device via antenna 0 to obtain the channel state information corresponding to antenna 2 and antenna 3.
  • the terminal device can switch the transmitting antenna from antenna 0 to the remaining non-transmitting world port antenna 1, and then send an SRS to the network device through the antenna 1, so that the network device obtains the channel state information corresponding to the antenna 1. From then on, the network device can obtain complete status information of the downlink channel.
  • the terminal device switches the transmitting antenna to the remaining non-transmitting antenna ports and obtains the channel state information corresponding to the remaining non-transmitting antenna ports.
  • the time interval between the channel status information and the channel state information obtained before the switching should not be too long, so as not to obtain When transmitting the channel state information corresponding to the antenna port, the previously obtained channel state information has become invalid.
  • the channel state information transmission method may further include: a network device sends downlink control information (downlink control information) to the terminal device.
  • the DCI includes an indicator bit, and It instructs the terminal device to send the CSI corresponding to the first antenna port set to the network device, and sends the SRS through the fourth antenna port set.
  • the indication bit may be a CSI request field, or an SRS request field, or other bits, which is not limited in the embodiment of the present application. For example, when the value of the bit is 1, the terminal device may be instructed to send the CSI of the first antenna port set and the SRS of the fourth antenna port set to the network device.
  • the terminal device may be instructed not to send the CSI of the first antenna port set and the SRS of the fourth antenna port set to the network device.
  • the bit is not limited to 1 bit, and the value of the bit and the execution action of the terminal device are not limited to the above-mentioned corresponding relationship, which is not limited in the embodiment of the present application.
  • the same indicator bit is used to simultaneously trigger the terminal device to send the CSI of the first antenna port set and the SRS of the fourth antenna port set, thereby saving DCI. Bit overhead.
  • the terminal device switches the transmit antenna port depends on: 1) whether the terminal device has the ability to switch the transmit antenna port; 2) whether the network device enables the switch of the transmit antenna port of the terminal device.
  • the switching of the transmitting antenna port of the terminal device can be realized.
  • Whether the switching of the transmitting antenna port of the terminal device is enabled by the network device can be determined by the configuration information of the SRS.
  • the SRS configuration information sent by the network device to the terminal device may include at least one SRS resource configuration information, and each SRS resource configuration information includes the number of antenna ports that send SRS.
  • the terminal device After receiving the configuration information of the SRS, the terminal device can determine the number of transmit antenna ports that it needs to switch based on the configuration information, and then determine the specific SRS transmit antenna port (that is, determine the fourth antenna port set). After the switch, SRS is sent to the network device on the transmitting antenna port.
  • the number of SRS resource configuration information is the same as the number of port groups of antenna ports that send SRS.
  • Each group of ports includes at least one antenna port.
  • the antenna ports in a group of ports can send SRS at the same time.
  • Each SRS resource configuration information is used to instruct the terminal device to send SRS parameter information.
  • the configuration information of the SRS may include a domain, which may be used to indicate whether the terminal device performs a switch of a transmitting antenna port, and may also be used to indicate a specific group of antenna ports to switch to.
  • the specific content of the SRS sent by the terminal device to the network device on the switched antenna port after the switching is determined by the above SRS resource configuration information.
  • One SRS resource configuration information corresponds to a group of transmitting antenna ports, that is, the content of the SRS that the terminal device sends to the network device on the group of transmitting antenna ports is determined by the SRS resource configuration information corresponding to the group of transmitting antenna ports.
  • the foregoing first information is further used to indicate configuration information of the SRS, that is, the configuration information of the CSI and the configuration information of the SRS are relatively independent, and are two separate resources, and the two are related by the first information.
  • the first information may be, for example, an index number of the configuration information of the SRS, and is a part of the configuration information of the CSI.
  • the terminal device reads the configuration information of the CSI, it can obtain the index number of the configuration information of the SRS according to the first information in the configuration information of the CSI, so that the terminal device can read the configuration information of the SRS.
  • the first information may be, for example, an index number of the configuration information of the CSI, and is a part of the configuration information of the SRS.
  • the terminal device reads the configuration information of the SRS, it can obtain the index number of the CSI configuration information according to the first information in the configuration information of the SRS, so that the terminal device can read the CSI configuration information.
  • the first information is configuration information of the SRS
  • the configuration information of the CSI includes the configuration information of the SRS. That is, the SRS configuration information is a part of the CSI configuration information.
  • the terminal device reads the CSI configuration information, it can directly obtain the SRS configuration information.
  • the first information is configuration information of the SRS
  • the configuration information of the CSI is included in the configuration information of the SRS
  • the configuration information of the CSI is a part of the configuration information of the SRS. That is, the configuration information of the SRS includes the configuration information of the CSI, and the terminal device can directly obtain the configuration information of the CSI when reading the configuration information of the SRS.
  • the SRS configuration information is sent by the network device to the terminal device.
  • the configuration information of the SRS is used to enable the terminal device to obtain the second antenna port set. For example, if a terminal device has 4 antenna ports (in turn, antenna ports 0, 1, 2, and 3), the terminal device has two power amplifiers, and the terminal device can be connected to antenna ports 0, 1, and antenna ports 2, 3, respectively. Intermittent antenna transmission switching. If the network device is configured to enable the antenna switching to the terminal device, the terminal device may know that the second antenna port set includes antenna ports 0, 1, 2, and 3 through the configuration information of the SRS. In a possible case, the terminal device determines to send SRS by using antenna ports 0, 1, 2, and 3 through antenna switching, that is, the fourth antenna port set is the second antenna port set.
  • the terminal device determines that antenna ports 0, 1, 2, and 3 are used to send SRS through antenna switching, but SRS sent by ports 0, 1, and 2 and 3 are located in unused time units (for example, subframes ), The terminal device may determine which two ports are the fourth antenna port set by itself or according to a predefined rule.
  • the terminal device determines that the two ports corresponding to the SRS transmission that is not closest to the time when the CSI is reported are the fourth antenna port set (for example, ports 0 and 1 transmit SRS at subframe n1, and ports 2 and 3 transmit at subframe n2 SRS, the time of subframe n2 is later than the time of subframe n1, the terminal device sends CSI in the subsequent n3 subframes, then the fourth antenna port set is ports 0, 1), and the fourth antenna port set is the second A subset of the antenna port set.
  • the fourth antenna port set for example, ports 0 and 1 transmit SRS at subframe n1, and ports 2 and 3 transmit at subframe n2 SRS, the time of subframe n2 is later than the time of subframe n1, the terminal device sends CSI in the subsequent n3 subframes, then the fourth antenna port set is ports 0, 1), and the fourth antenna port set is the second A subset of the antenna port set.
  • the terminal device determines the fourth antenna port set through further information indication of the network device, and the fourth antenna port set is a subset of the second antenna port set.
  • the channel state information transmission method may further include: the network device sends DCI to the terminal device, and the DCI includes an indication bit for instructing the terminal device to send the first The CSI corresponding to the antenna port set and the SRS are transmitted through the fourth antenna port set.
  • the fourth antenna port set is a subset of the second antenna port set, and the antenna port in the fourth day port set is different from the antenna port in the first antenna port set by at least one.
  • the indication bit may be a CSI request field, or an SRS request field, or other bits, which is not limited in the embodiment of the present application.
  • the terminal device may be instructed to send the CSI of the first antenna port set and the SRS of the fourth antenna port set to the network device.
  • the terminal device may be instructed not to send the CSI of the first antenna port set and the SRS of the fourth antenna port set to the network device.
  • the bit is not limited to 1 bit, and the value of the bit and the execution action of the terminal device are not limited to the above-mentioned corresponding relationship, which is not limited in the embodiment of the present application.
  • the first antenna port set may be a subset of the third antenna port set; or the third antenna port set may be a subset of the first antenna port set; or the first antenna port set may be the second antenna A subset of the port collection.
  • the terminal device has 8 antenna ports (in turn, antenna ports 0, 1, 2, 3, 4, 5, 6, and 7), the terminal device has two power amplifiers, of which antenna ports 0, 1, 2 , 3 can be used for antenna port switching, that is, the terminal device can use antennas 0 and 1 to send SRS, and it can also use antennas 2 and 3 to send SRS.
  • the second antenna port set includes antenna ports 0, 1, 2, and 3, and the third antenna port set includes antenna ports 4, 5, 6, and 7.
  • the second antenna port set is two antenna ports among antenna ports 0, 1, 2, and 3, and the third antenna port set includes the remaining six antenna ports. .
  • the first antenna port set is a subset of the third antenna port set.
  • This first antenna port set is a third antenna port set. It can also be said that the first antenna port set is a subset of the third antenna port set.
  • the antenna port corresponding to the CSI reported by the terminal device is 2, 3, 4, 5, 6, and 7;
  • the terminal device reports The antenna ports corresponding to CSI are 0, 1, 4, 5, 6, and 7.
  • the third antenna port set is a subset of the first antenna port set.
  • the terminal device has 4 antenna ports (in turn, antenna ports 0, 1, 2, 3), the terminal device has two power amplifiers, and the terminal device can be used between antenna ports 0, 1 and antenna ports 2, 3 respectively.
  • Antenna transmission switch If the terminal device has 4 antenna ports (in turn, antenna ports 0, 1, 2, 3), the terminal device has two power amplifiers, and the terminal device can be used between antenna ports 0, 1 and antenna ports 2, 3 respectively.
  • Antenna transmission switch If the terminal device has 4 antenna ports (in turn, antenna ports 0, 1, 2, 3), the terminal device has two power amplifiers, and the terminal device can be used between antenna ports 0, 1 and antenna ports 2, 3 respectively.
  • Antenna transmission switch is antenna transmission switch.
  • the second antenna port set includes antenna ports 0, 1, 2, and 3, and the third antenna set is an empty set.
  • the antenna ports corresponding to the CSI reported by the terminal equipment are 2, 3; when SRS is transmitted using antennas 2 and 3, the antenna ports corresponding to the CSI reported by the terminal equipment are 0 and 1.
  • the first antenna port set is a subset of the second antenna port set.
  • the network device sends a CSI-RS to the terminal device.
  • the network device may send a CSI-RS for the terminal to measure the downlink CSI, and feedback the information of the precoding matrix to the network device in the form of a PMI.
  • the network device selects a precoding matrix for precoding data by reading the PMI feedback from the terminal device.
  • the network device sends the SRS configuration information to the terminal device.
  • the SRS configuration information sent by the network device to the terminal device may be sent through the CSI configuration information.
  • the configuration information of the SRS may be sent through the first information associated with the configuration information of the CSI; or the configuration information of the SRS may be included in the configuration information of the CSI; or the configuration information of the SRS may be Contains CSI configuration information. It can be seen that the occurrence times of S401 and S403 are the same, regardless of the sequence.
  • the terminal device determines the CSI of the first antenna port set according to the CSI configuration information and the CSI-RS.
  • the terminal device determines a reporting parameter of the CSI to be reported according to the received CSI configuration information, as described above.
  • the terminal device also needs to determine the first antenna port set corresponding to the CSI according to the first information associated with the CSI configuration information.
  • the terminal device also needs to measure the downlink CSI according to the CSI-RS, and feed back the information of the precoding matrix to the network device in the form of PMI.
  • the network device selects a precoding matrix for precoding data by reading the PMI feedback from the terminal device.
  • the CSI may be used to indicate a channel corresponding to the first antenna port set, or to indicate a correlation matrix of the channel corresponding to the first antenna port set, or to indicate a precoding corresponding to the first antenna port set. matrix.
  • the terminal device determines the SRS of the fourth antenna port set according to the SRS configuration information.
  • the terminal device determines various parameter information of the SRS to be reported according to the received configuration information of the SRS, as described above.
  • the terminal device also needs to determine the fourth port set for sending the SRS according to the configuration information of the SRS.
  • S404 and S405 are implemented in no particular order, and this embodiment of the present application does not limit this.
  • the terminal device sends the CSI corresponding to the first antenna port set to the network device.
  • the terminal device after determining the CSI corresponding to the first antenna port set, the terminal device sends the CSI to the network device, so that the network device determines the channel state information corresponding to the antenna port included in the first antenna port set according to the CSI.
  • the terminal device may send the CSI corresponding to the first antenna port set to the network device through all or part of the antenna ports in the second antenna port set.
  • the CSI of the first antenna port set is sent by the terminal device through all antenna ports in the second antenna port set; If the terminal device supports antenna switching, since the antenna ports capable of transmitting uplink data or reference signals simultaneously are part of the antenna ports in the second antenna port set, the CSI of the first antenna port set is passed by the terminal device through the second antenna. Send from some antenna ports in the port set.
  • the terminal device sends an SRS to the network device through the antenna port included in the fourth antenna port set.
  • the terminal device After the terminal device determines the fourth antenna port set and the SRS configuration to be sent, the terminal device sends an SRS to the network device through the ports included in the fourth antenna port set, so that the network device determines that the fourth antenna port set includes The channel state information corresponding to the antenna port of.
  • S406 and S407 are implemented in no particular order, and this embodiment of the present application does not limit this.
  • the network device determines downlink channel state information according to the CSI of the first antenna port set and the SRS of the fourth antenna port set.
  • the network device may determine the state information of the entire downlink channel by combining the CSI of the first antenna port set and the SRS of the fourth antenna port set, thereby obtaining a precoding matrix for precoding data, improving signal transmission quality, or effectiveness.
  • the first information can be associated in the CSI configuration information, so that the terminal device can determine the first antenna port set corresponding to the CSI that it needs to report according to the first information. After the information is received, the terminal device does not need to report the channel information of all antenna ports to the network device, which saves uplink time-frequency resources and reduces the CSI reporting overhead. Further, using the same bit to simultaneously trigger the terminal device to send the CSI corresponding to the first antenna port set and send the SRS through the antenna port of the fourth antenna port set can save the bit overhead in the DCI.
  • the fourth antenna port set is the second antenna port set
  • the first antenna port set is the third antenna port set
  • the PMI is used to indicate the antenna port of the network device and the terminal device.
  • the channel between antenna ports in the first antenna port set, then in the TDD system, the specific process for the network device to obtain the precoding matrix according to the CSI of the first antenna port set and the SRS of the fourth antenna port set may include the following steps :
  • the terminal device transmits SRS on the fourth antenna port to the antenna port set, so that the network device to obtain the m-th transmit antenna ports corresponding to the channel matrix H u.
  • the terminal device measures the CSI-RS sent by the network device, obtains and feeds back PMI information, and the PMI indicates a channel matrix H d corresponding to n non-transmitting antenna ports of the first antenna port set of the terminal device.
  • M is the number of transmitting antenna ports of the network equipment
  • N is the number of receiving antenna ports of the terminal equipment.
  • the network device can obtain complete downlink channel state information, thereby obtaining a precoding matrix for precoding data. Improve the performance of downlink data transmission.
  • FIGS. 2 to 4 are merely to help those skilled in the art to understand the embodiments of the present application, rather than The embodiments of the present application are to be limited to the specific numerical values or specific scenarios illustrated. Those skilled in the art can obviously make various equivalent modifications or changes according to the examples shown in FIG. 2 to FIG. 4, and such modifications or changes also fall within the scope of the embodiments of the present application.
  • the network device according to the embodiment of the present application will be described below with reference to FIGS. 5 and 7, and the terminal device according to the embodiment of the present application will be described with reference to FIGS. 6 and 8.
  • FIG. 5 shows a schematic structural diagram of a network device 50 according to an embodiment of the present application.
  • the network device 50 may include at least a first sending unit 510 and a first receiving unit 520. among them:
  • a first sending unit 510 is configured to send configuration information of channel state information CSI to a terminal device; the configuration information of the CSI is associated with first information, and the first information is used to indicate a first antenna port set of the terminal device, and the configuration of the CSI The information is used to indicate a CSI reporting parameter corresponding to the first antenna port set.
  • Detailed description can refer to the description of S201 and S401.
  • the first receiving unit 520 is configured to receive the CSI corresponding to the first antenna port set sent by the terminal device. For details, refer to the description of S203 and S406.
  • the terminal device includes N antenna ports, the N antenna ports include a second antenna port set and a third antenna port set, and the second antenna port set includes m antenna ports.
  • the first receiving unit 520 is configured to receive CSI corresponding to the first antenna port set sent by the terminal device through all or part of the antenna ports in the second antenna port set.
  • the number of receiving antennas of the terminal device is greater than the number of power amplifiers, if the terminal device does not support antenna switching, the CSI of the first antenna port set is sent by the terminal device through all antenna ports in the second antenna port set; If the terminal device supports antenna switching, since the antenna ports capable of transmitting uplink data or reference signals simultaneously are part of the antenna ports in the second antenna port set, the CSI of the first antenna port set is passed by the terminal device through the second antenna. Send from some antenna ports in the port set.
  • the first antenna port set is a subset of the third antenna port set.
  • the first information is further used to indicate configuration information of a sounding reference signal SRS
  • the configuration information of the SRS is used to enable the terminal device to obtain a fourth antenna port set for transmitting the SRS, and the fourth antenna
  • the port set is a subset of the second antenna port set, and the antenna ports in the fourth antenna port set are different from the antenna ports in the first antenna port set.
  • the first receiving unit 520 is further configured to receive that the terminal device sends an SRS through an antenna port included in a fourth antenna port set.
  • the first information is configuration information of SRS
  • the CSI configuration information includes configuration information of the SRS
  • the configuration information of the SRS is used to enable the terminal device to obtain a fourth antenna port for sending the SRS.
  • the fourth antenna port set is a subset of the second antenna port set, and at least one antenna port in the fourth antenna port set is different from the antenna port in the first antenna port set.
  • the first receiving unit 520 is further configured to receive an SRS sent by the terminal device through an antenna port included in a fourth antenna port set.
  • the first information is configuration information of the SRS
  • the CSI report configuration information is included in the configuration information of the SRS
  • the configuration information of the SRS is sent by the network device to the terminal device
  • the SRS The configuration information is used to enable the terminal device to obtain a fourth antenna port set for sending SRS
  • the fourth antenna port set is a subset of the second antenna port set
  • the antenna ports in the fourth antenna port set are the same as the first antenna port set. At least one antenna port in the antenna port set is different.
  • the first receiving unit 520 is further configured to receive the SRS sent by the terminal device through an antenna port included in the fourth antenna port.
  • the configuration information of the SRS is used to indicate the number of antenna ports in the fourth antenna port set sent by the terminal device to the SRS.
  • the configuration information of the SRS is used to instruct the terminal device to send an antenna port index in a fourth antenna port set corresponding to the SRS.
  • the fourth antenna port set is the second antenna port set, and the first antenna port set is the third antenna port set.
  • the first sending unit is further configured to send downlink control information DCI to the terminal device.
  • the DCI includes an indication bit, and the indication bit is used to instruct the terminal device to send the first antenna port set.
  • the corresponding CSI and the SRS are transmitted through the antenna port of the fourth antenna port set.
  • the first information is further used to indicate configuration information of a sounding reference signal SRS, and the configuration information of the SRS is used by the terminal device to obtain the second antenna port set, or the first information is SRS
  • the configuration information of the CSI includes the configuration information of the SRS.
  • the configuration information of the SRS is used by the terminal device to determine the second antenna port set, or the first information is configuration information of the SRS.
  • the configuration information of the CSI report includes In the configuration information of the SRS, the configuration information of the SRS is sent by the network device to the terminal device, and the configuration information of the SRS is used by the terminal device to determine the second antenna port set.
  • the first sending unit 510 is further configured to send downlink control information DCI to the terminal device, where the DCI includes an indication bit, and the indication bit is used to instruct the terminal device to send a corresponding response to the network device 50 to the network device 50.
  • the CSI of the first antenna port set and the SRS are transmitted through the antenna ports of the fourth antenna port set, wherein the fourth antenna port set is a subset of the second antenna port set, and the antennas in the fourth antenna port set The port is different from at least one antenna port in the first antenna port set.
  • the first receiving unit 520 is further configured to receive an SRS sent by the terminal device through an antenna port included in the fourth antenna port set.
  • the configuration information of the SRS includes one or more SRS resource configuration information, and each of the SRS resource configuration information includes the number of antenna ports for sending the SRS.
  • the fourth antenna port set is an empty set.
  • the first antenna port set includes N receiving antenna ports of the terminal device.
  • the third antenna port set is a subset of the first antenna port set.
  • the first antenna port set is a subset of the second antenna port set.
  • the terminal device has 8 antenna ports (in turn, antenna ports 0, 1, 2, 3, 4, 5, 6, and 7), the terminal device has two power amplifiers, of which antenna ports 0, 1, 2 , 3 can be used for antenna port switching, that is, the terminal device can use antennas 0 and 1 to send SRS, and it can also use antennas 2 and 3 to send SRS.
  • the second antenna port set includes antenna ports 0, 1, 2, and 3, and the third antenna port set includes antenna ports 4, 5, 6, and 7.
  • the second antenna port set is two antenna ports among antenna ports 0, 1, 2, and 3, and the third antenna port set includes the remaining six antenna ports. .
  • the first antenna port set is a subset of the third antenna port set.
  • This first antenna port set is a third antenna port set. It can also be said that the first antenna port set is a subset of the third antenna port set.
  • the antenna port corresponding to the CSI reported by the terminal device is 2, 3, 4, 5, 6, and 7;
  • the terminal device reports The antenna ports corresponding to CSI are 0, 1, 4, 5, 6, and 7.
  • the third antenna port set is a subset of the first antenna port set.
  • the terminal device has 4 antenna ports, the terminal device has two power amplifiers, and the terminal device can perform antenna transmission switching between antenna ports 0 and 1 and antenna ports 2 and 3, respectively.
  • the second antenna port set includes antenna ports 0, 1, 2, and 3, and the third antenna set is an empty set.
  • the antenna ports corresponding to the CSI reported by the terminal equipment are 2, 3; when SRS is transmitted using antennas 2 and 3, the antenna ports corresponding to the CSI reported by the terminal equipment are 0 and 1.
  • the first antenna port set is a subset of the second antenna port set.
  • the indication bit is a CSI request domain or an SRS request domain.
  • all or part of the reported parameters of the CSI are used to indicate a channel corresponding to the first antenna set, or to indicate a correlation matrix of channels corresponding to the first antenna set, or to indicate the The precoding matrix corresponding to the first antenna set.
  • the network device 50 further includes a generating unit, configured to generate a precoding matrix according to the SRS sent by the terminal device through the antenna port of the fourth antenna port set and the CSI corresponding to the first antenna set.
  • FIG. 6 shows a schematic structural diagram of a terminal device 60 provided in an embodiment of the present application.
  • the terminal device 60 may include at least a second receiving unit 610, a determining unit 620, and a second sending unit 630. among them:
  • the second receiving unit 610 is configured to receive configuration information of channel state information CSI sent by a network device, where the configuration information of the CSI is associated with first information, and the first information is used to indicate a first antenna port set of the terminal device, and the CSI
  • the configuration information is used to indicate a CSI reporting parameter corresponding to the first antenna port set.
  • Detailed description can refer to the description of S201 and S401.
  • the determining unit 620 is configured to determine a CSI corresponding to the first antenna port set according to the CSI configuration information. Detailed description can refer to the description of S202 and S404.
  • the second sending unit 630 is configured to send the CSI corresponding to the first antenna port set to the network device. Detailed description can refer to the description of S203 and S406.
  • the terminal device 60 includes N antenna ports.
  • the N antenna ports include a second antenna port set and a third antenna port set.
  • the second antenna port set includes m antenna ports.
  • the second sending unit 630 is configured to send the CSI corresponding to the first antenna port set to the network device through all or part of the antenna ports in the second antenna port set.
  • the CSI of the first antenna port set is passed by the terminal device 60 through all antennas in the second antenna port set If the terminal device 60 supports antenna switching, since the antenna ports capable of transmitting uplink data or reference signals at the same time are part of the antenna ports in the second antenna port set, the CSI of the first antenna port set is determined by the terminal device 60 Send through some antenna ports in the second antenna port set.
  • the first antenna port set is a subset of the third antenna port set.
  • the first information is further used to indicate configuration information of a sounding reference signal SRS
  • the configuration information of the SRS is used to enable the terminal device 60 to obtain a fourth antenna port set for sending an SRS
  • the fourth The antenna port set is a subset of the second antenna port set, and the antenna port in the fourth antenna port set is at least one different from the antenna port in the first world port set.
  • the second sending unit 630 is further configured to send the SRS through an antenna port included in the fourth antenna port set.
  • the first information is configuration information of the SRS
  • the CSI configuration information includes the configuration information of the SRS
  • the configuration information of the SRS is used to enable the terminal device 60 to obtain a fourth information for transmitting the SRS.
  • the fourth antenna port set is a subset of the second antenna port set. At least one antenna port in the fourth antenna port set is different from the antenna port in the first antenna port set.
  • the second sending unit 630 is further configured to send the SRS to the network device 50 through an antenna port included in the fourth antenna port set.
  • Detailed description can refer to the description of S407.
  • the first information is SRS configuration information
  • the CSI configuration information is included in the SRS configuration information
  • the SRS configuration information is sent by the network device 50 to the terminal device 60
  • the SRS The configuration information is used to enable the terminal device 60 to obtain a fourth antenna port set for transmitting SRS
  • the fourth antenna port set is a subset of the second antenna port set
  • the antenna ports in the fourth antenna port set are the same as the first antenna port set. At least one antenna port in an antenna port set is different.
  • the second sending unit 630 is further configured to send the SRS to the network device 50 through an antenna port included in the fourth antenna port set.
  • the configuration information of the SRS is used to determine the number of antenna ports in the fourth antenna port set sent by the terminal device 60 to the SRS.
  • the configuration information of the SRS is used to instruct the terminal device to send an antenna port index in a fourth antenna port set corresponding to the SRS.
  • the fourth antenna port set is the second antenna port set, and the first antenna port set is the third antenna port set.
  • the second receiving unit 610 is further configured to receive downlink control information DCI sent by the network device 50.
  • the DCI includes an indication bit, and the indication bit is used to instruct the terminal device 60 to send the foregoing to the network device 50.
  • the CSI corresponding to the first antenna port set and the SRS transmitted through the antenna port of the fourth antenna port set.
  • the first information is further used to indicate configuration information of a sounding reference signal SRS
  • the configuration information of the SRS is used to enable the terminal device 60 to obtain the second antenna port set, or the first information Is SRS configuration information
  • the CSI configuration information includes the SRS configuration information
  • the SRS configuration information is used to enable the terminal device 60 to obtain the second antenna port set, or the first information is SRS configuration information
  • the CSI The configuration information of the SRS is included in the configuration information of the SRS.
  • the configuration information of the SRS is sent by the network device 50 to the terminal device 60.
  • the configuration information of the SRS is used to enable the terminal device 60 to obtain the second antenna port set.
  • the second receiving unit 610 is further configured to receive downlink control information DCI sent by the network device 50.
  • the DCI includes an indication bit, and the indication bit is used to instruct the terminal device 60 to the network.
  • the device 50 sends the CSI corresponding to the first antenna port set and the SRS through the antenna ports of the fourth antenna port set, where the fourth antenna port set is a subset of the second antenna port set, and the fourth antenna At least one antenna port in the port set is different from the antenna port in the first antenna port set.
  • the second sending unit 630 is further configured to send an SRS to the network device 50 through an antenna port included in the fourth antenna port set.
  • the configuration information of the SRS includes one or more SRS resource configuration information, and each of the SRS resource configuration information includes the number of antenna ports for sending the SRS.
  • the fourth antenna port set is an empty set.
  • the first antenna port set includes N receiving antenna ports of the terminal device 60.
  • the third antenna port set is a subset of the first antenna port set.
  • the first antenna port set is a subset of the second antenna port set.
  • the terminal device has 8 antenna ports (in turn, antenna ports 0, 1, 2, 3, 4, 5, 6, and 7), the terminal device has two power amplifiers, of which antenna ports 0, 1, 2 , 3 can be used for antenna port switching, that is, the terminal device can use antennas 0 and 1 to send SRS, and it can also use antennas 2 and 3 to send SRS.
  • the second antenna port set includes antenna ports 0, 1, 2, and 3, and the third antenna port set includes antenna ports 4, 5, 6, and 7.
  • the second antenna port set is two antenna ports among antenna ports 0, 1, 2, and 3, and the third antenna port set includes the remaining six antenna ports. .
  • the first antenna port set is a subset of the third antenna port set.
  • This first antenna port set is a third antenna port set. It can also be said that the first antenna port set is a subset of the third antenna port set.
  • the antenna port corresponding to the CSI reported by the terminal device is 2, 3, 4, 5, 6, and 7;
  • the terminal device reports The antenna ports corresponding to CSI are 0, 1, 4, 5, 6, and 7.
  • the third antenna port set is a subset of the first antenna port set.
  • the terminal device has 4 antenna ports, the terminal device has two power amplifiers, and the terminal device can perform antenna transmission switching between antenna ports 0 and 1 and antenna ports 2 and 3, respectively.
  • the second antenna port set includes antenna ports 0, 1, 2, and 3, and the third antenna set is an empty set.
  • the antenna ports corresponding to the CSI reported by the terminal equipment are 2, 3; when SRS is transmitted using antennas 2 and 3, the antenna ports corresponding to the CSI reported by the terminal equipment are 0 and 1.
  • the first antenna port set is a subset of the second antenna port set.
  • the indication bit is a CSI request domain or an SRS request domain.
  • all or part of the reported parameters of the CSI are used to indicate a channel corresponding to the first antenna set, or to indicate a correlation matrix of channels corresponding to the first antenna set, or to indicate the The precoding matrix corresponding to the first antenna set.
  • FIG. 7 is a schematic structural diagram of another network device 70 according to an embodiment of the present application.
  • the network device 70 may include at least one processor 701, at least one network interface 704, a user interface 703, a memory 705, at least one communication bus 702, and a display screen 706.
  • the communication bus 702 is used to implement connection and communication between these components. It should be understood that each component in the network device 70 may also be coupled through other connectors.
  • the other connectors may include various interfaces, transmission lines, or buses. In various embodiments of the present application, coupling refers to mutual connection in a specific manner, including direct connection or indirect connection through other devices.
  • the processor 701 may include at least one of the following types: a general-purpose central processing unit (CPU), a digital signal processor (DSP), a microprocessor, and an application-specific integrated circuit (application specific integrated circuit). ASIC), microcontroller (MCU), field programmable gate array (FPGA), or integrated circuit for implementing logic operations.
  • the processor 701 may be a single-CPU processor or a multi-CPU processor.
  • the multiple processors or units included in the processor 701 may be integrated in one chip or located on multiple different chips.
  • the user interface 703 may include a keyboard, physical buttons (press buttons, rocker buttons, etc.), dials, slide switches, joysticks, click wheels, light mice (light mice are touch-sensitive surfaces that do not display visual output, or are made of An extension of a touch-sensitive surface formed by a touch screen) and so on.
  • the network interface 704 may optionally include a standard wired interface and a wireless interface (such as a WI-FI interface).
  • the memory 705 may be a non-power-down volatile memory, such as an embedded multimedia card (EMMC), a universal flash memory (UFS), or a read-only memory (ROM).
  • the memory 705 includes the flash in the embodiment of the present application, or other types of static storage devices that can store static information and instructions, and may also be a volatile memory (volatile memory), such as a random access memory ( random access memory (RAM) or other types of dynamic storage devices that can store information and instructions, can also be electrically erasable programmable read-only memory (EEPROM) read-only memory (EEPROM), compact read-only disc (compact disc read -only memory (CD-ROM) or other optical disc storage, optical disc storage (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disc storage media or other magnetic storage devices, or can be used to carry or store Any other program code in the form of instructions or data structures that can be accessed by a computer Computer-readable storage media, but is not limited thereto
  • the memory 705 may exist independently and is coupled to the processor 701 through a connector.
  • the memory 705 may also be integrated with the processor 701.
  • the memory 705 can store various computer program instructions including the program instructions that execute the solution of the present application, and is controlled and executed by the processor 701.
  • the various computer program instructions that are executed can also be regarded as the drivers of the processor 701 program.
  • the processor 701 is configured to execute computer program instructions stored in the memory 705, so as to implement each process related to a network device in the method embodiments in FIG. 2 and FIG. 4 in the present application.
  • the number of the computer program instructions is large, and can form computer-executable instructions that can be executed by at least one of the processors 701 to drive related processors to perform various processes, such as communication signals that support the above-mentioned various wireless communication protocols. Processing algorithms, operating system operations, or application operations.
  • the display screen 706 is configured to display information input by a user.
  • the display screen 706 may include a display panel and a touch panel.
  • the display panel may use a liquid crystal display (LCD), an organic light-emitting diode (OLED), a light-emitting diode (LED) display device, or a cathode-ray tube , CRT) and so on to configure the display panel.
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • LED light-emitting diode
  • CRT cathode-ray tube
  • Touch panels also known as touch screens, touch-sensitive screens, etc.
  • Touch panels can collect user's contact or non-contact operations on or near them (such as users using fingers, stylus and any other suitable objects or accessories on the touch panel or Operations near the touch panel may also include somatosensory operations; the operations include single-point control operations, multi-point control operations, and other types of operations), and drive the corresponding connection device according to a preset program.
  • FIG. 8 is a schematic structural diagram of another terminal device 80 according to an embodiment of the present application.
  • the terminal device 80 may include at least one processor 801, at least one network interface 804, user interface 803, memory 805, at least one communication bus 802, and a display screen 806.
  • the communication bus 802 is used to implement connection and communication between these components. It should be understood that each component in the terminal device 80 may also be coupled through other connectors.
  • the other connectors may include various interfaces, transmission lines, or buses. In various embodiments of the present application, coupling refers to mutual connection in a specific manner, including direct connection or indirect connection through other devices.
  • the processor 801 may include at least one of the following types: a central processing unit (CPU), a digital signal processor (DSP), a microprocessor, and an application-specific integrated circuit (application specific integrated circuit). ASIC), microcontroller (MCU), field programmable gate array (FPGA), or integrated circuit for implementing logic operations.
  • the processor 801 may be a single-core processor or a multi-core processor.
  • the multiple processors or units included in the processor 801 may be integrated in one chip or located on multiple different chips.
  • the user interface 803 may include a keyboard, physical buttons (press buttons, rocker buttons, etc.), dials, slide switches, joysticks, click wheels, light mice (light mice are touch-sensitive surfaces that do not display visual output, or An extension of a touch-sensitive surface formed by a touch screen) and so on.
  • the network interface 804 may optionally include a standard wired interface and a wireless interface (such as a WI-FI interface).
  • the memory 805 may be a non-power-down volatile memory, such as an embedded multimedia card (EMMC), a universal flash memory (UFS), or a read-only memory (ROM).
  • the memory 805 includes the flash in the embodiment of the present application, or other types of static storage devices that can store static information and instructions, and may also be a volatile memory (volatile memory), such as a random access memory ( random access memory (RAM) or other types of dynamic storage devices that can store information and instructions, can also be electrically erasable programmable read-only memory (EEPROM) read-only memory (EEPROM), compact read-only disc (compact disc read -only memory (CD-ROM) or other optical disc storage, optical disc storage (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disc storage media or other magnetic storage devices, or can be used to carry or store Any other program code in the form of instructions or data structures that can be accessed by a computer Computer-readable storage media, but is not limited thereto
  • the memory 805 may exist independently and is coupled to the processor 801 through a connector.
  • the memory 805 may also be integrated with the processor 801.
  • the memory 805 can store various computer program instructions including the program instructions executing the solution of the present application, and is controlled and executed by the processor 801.
  • the executed computer program instructions can also be regarded as the driver of the processor 801 program.
  • the processor 801 is configured to execute computer program instructions stored in the memory 805, so as to implement each process related to the terminal device in the method embodiments in FIG. 2 and FIG. 4 in the present application.
  • the number of computer program instructions is large, and can form computer-executable instructions that can be executed by at least one of the processors 801 to drive related processors to perform various processes, such as communication signals that support the above-mentioned various wireless communication protocols. Processing algorithms, operating system operations, or application operations.
  • the display screen 806 is configured to display information input by a user.
  • the display screen 806 may include a display panel and a touch panel.
  • the display panel may use a liquid crystal display (LCD), an organic light-emitting diode (OLED), a light-emitting diode (LED) display device, or a cathode-ray tube , CRT) and so on to configure the display panel.
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • LED light-emitting diode
  • CRT cathode-ray tube
  • Touch panels also known as touch screens, touch-sensitive screens, etc.
  • Touch panels can collect user's contact or non-contact operations on or near them (such as users using fingers, stylus and any other suitable objects or accessories on the touch panel or on the Operations near the touch panel may also include somatosensory operations; the operations include single-point control operations, multi-point control operations, and other types of operations), and drive the corresponding connection device according to a preset program.
  • An embodiment of the present application further provides a computer-readable storage medium.
  • the computer-readable storage medium stores instructions, and when the computer-readable storage medium runs on the computer or the processor, the computer or the processor executes any of the foregoing channel state information transmission.
  • One or more steps in a method When each component module of the above device is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in the computer-readable storage medium.
  • the embodiments of the present application further provide a computer program product containing instructions.
  • the technical solution of the present application is essentially a part that contributes to the existing technology or all or part of the technical solution may be a software product.
  • the computer software product is stored in a storage medium, and includes several instructions for causing a computer device, a mobile terminal, or a processor therein to execute all or part of the steps of the method described in the embodiments of the present application.
  • For the type of the storage medium refer to the related description of the memory 705 or 805.
  • the modules in the apparatus of the embodiment of the present application may be combined, divided, and deleted according to actual needs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种信道状态信息传输方法、相关装置及通信系统。其中,该方法包括:网络设备向终端设备发送信道状态信息CSI的配置信息;上述CSI的配置信息关联第一信息,上述第一信息用于指示上述终端设备的第一天线端口集合,上述CSI的配置信息用于指示上述第一天线端口集合对应的CSI的上报参数;上述网络设备接收上述终端设备发送的上述第一天线端口集合对应的CSI。实施本申请实施例可以通过将CSI配置信息关联第一信息,使终端设备根据第一信息确定需要上报的天线端口的信道的CSI,无需盲目地上报所有天线端口的信道的CSI至网络设备,节约了上行时频资源,减小CSI上报开销。

Description

信道状态信息传输方法、相关装置及通信系统 技术领域
本申请涉及通信技术领域,尤其涉及一种信道状态信息传输方法、相关装置及通信系统。
背景技术
长期演进(long term evolution,LTE)和下一代无线系统广泛采用了多输入多输出(multiple input and multiple output,MIMO)技术。如果网络设备可以获得全部或者部分下行信道信息的时候,可以采用预编码技术来提高信号传输质量或者速率。
在频分双工(frequency division duplexing,FDD)系统中,预编码矩阵的信息靠终端设备进行反馈。终端设备通过测量信道状态信息参考信息(channel state information reference signal,CSI-RS)获得下行信道信息,并将预编码矩阵的信息以预编码矩阵指示(precoding matrix indicator,PMI)的形式反馈给网络设备。网络设备通过读取终端设备反馈的PMI选择用于对数据进行预编码的预编码矩阵。预编码矩阵的反馈精度越高,越有利于提高下行数据传输的性能。除了反馈PMI,终端设备还反馈秩指示(rank indication,RI)和信道质量指示(channel quality indicator,CQI)。CQI指示信道质量,用于网络设备对确定调制编码方案提供参考;RI指示网络设备可以同时对终端传输的数据层数,RI越大,表示同时传输的数据层数越多。RI、PMI和CQI可以构成信道状态信息(channel state information,CSI)。随着无线通信系统对CSI反馈精度要求的提高,反馈下行CSI占用的上行时频资源越来越多,造成反馈开销增大,不利于系统吞吐量的提升。
在时分复用(time division duplexing,TDD)系统中,由于上行和下行信道之间具有互易性,因此网络设备可以通过测量终端设备的上行信道来获得下行的信道,从而可以进一步得到波束赋形权值(即预编码矩阵)。因此对于TDD系统来说,波束赋形权值的获得依赖于终端设备向网络设备发送的探测参考信号(sounding reference signal,SRS)。网络设备根据接收信号和SRS获得上行信道矩阵,通过信道互易性,网络设备即可获得下行信道矩阵。此时,网络设备获取下行CSI无需终端设备进行反馈PMI,只需要终端设备反馈CQI和/或RI,大大降低了获取下行CSI需要的开销。
但是,在实际的实现中,终端设备的发射和接收天线个数并不相等。这是由于终端设备的每个发射天线需要链接有一个功率放大器,而功率放大器的造价比较高,因此往往终端设备只有配有少量的发射天线,却配有多个接收天线。在这种情况下,终端设备只能采用发射天线发送SRS。网络设备通过估计SRS的信道,只能获得发射天线对应的信道信息。在发射天线可以切换的情况下,由于SRS资源有限,终端设备不得不采用较长的周期来发送SRS,从而使得网络设备收集到所有天线的信道之后,有些天线端口的信道的信息已经过期,从而影响了TDD的性能。
为了解决上述问题,现有技术中可以将SRS和CSI(包括PMI、CQI、RI)相结合,使网络设备获得完整的天线端口的信道信息。但是由于网络设备可以根据SRS获得部分天线端口的信道的信息,若终端再将所有天线端口的信道的CSI上报至网络设备,会占用大 量的上行时频资源,CSI上报开销较大。
发明内容
本申请实施例提供了一种信道状态信息反馈方法、相关装置及通信系统,可以使终端有选择性地上报部分天线端口的信道的CSI至网络设备,节约上行时频资源,减小CSI上报开销。
第一方面,本申请实施例提供了一种信道状态信息反馈方法,包括:网络设备向终端设备发送信道状态信息CSI的配置信息;上述CSI的配置信息中关联第一信息,上述第一信息用于指示上述终端设备的第一天线端口集合,上述CSI的配置信息用于指示上述一天线端口集合对应的CSI的上报参数;上述网络设备接收上述终端设备发送的上述第一天线端口集合对应的CSI。
本申请实施例通过将CSI配置信息关联第一信息,使终端设备根据第一信息确定需要上报的信道的CSI,无需盲目地上报所有天线端口的信道的CSI至网络设备,节约了上行时频资源,减小CSI上报开销。
在一种可能的实现方式中,上述终端设备包括N个天线端口,上述N个天线端口包括第二天线端口集合与第三天线端口集合;上述第二天线端口集合包括m个天线端口,上述第三天线端口集合包括n个天线端口,上述m+n=N;上述第二天线端口集合与上述第三天线端口集合无交集;上述网络设备接收上述终端设备发送的上述第一天线端口集合对应的CSI包括:上述网络设备接收上述终端设备通过上述第二天线端口集合中的部分或者全部天线端口发送的上述第一天线端口集合对应的CSI,其中,m、n和N为整数。
本申请实施例中,终端设备包括m个发射天线,N个接收天线,N个接收天线中包括n个非发射天线与前述m个发射天线,终端设备可以通过该m个发射天线向网络设备发送信道状态信息。
在一种可能的实现方式中,上述第一天线端口集合为上述第三天线端口集合的子集。
本申请实施例中,终端设备可以根据第一信息确定的第一天线端口集合为第三天线端口集合的子集,即第一天线端口为上述n个非发射天线的部分或者全部,网络设备可以获知该n个非发射天线的部分或者全部的天线端口对应的信道状态信息。在一种可能的实现方式中,上述第一信息还用于指示探测参考信号SRS的配置信息,上述SRS的配置信息用于使上述终端设备获得发送SRS的第四天线端口集合,上述第四天线端口集合为上述第二天线端口集合的子集,上述第四天线端口集合中的天线端口与上述第一天线端口集合中的天线端口至少有一个不同;上述方法还包括:上述网络设备接收上述终端设备通过第四天线端口集合包括的天线端口发送的SRS。
本申请实施例中,通过第一信息关联了SRS的配置信息,终端设备在接收到网络设备发送的CSI的配置信息后,可以根据该第一信息进一步获知SRS的配置信息,且第四天线端口集合中的天线端口与上述第一天线端口集合中的天线端口至少有一个不同,可以保证网络设备在根据SRS获得部分信道的信息后,终端设备不会再将所有天线端口的信道的CSI上报至网络设备,节约上行时频资源,减小CSI上报开销。
在一种可能的实现方式中,上述第一信息为SRS的配置信息,上述CSI的配置信息包 含上述SRS的配置信息,上述SRS的配置信息用于使上述终端设备获得发送SRS的第四天线端口集合,上述第四天线端口集合为上述第二天线端口集合的子集,上述第四天线端口集合中的天线端口与上述第一天线端口集合中的天线端口至少有一个不同;上述方法还包括:上述网络设备接收上述终端设备通过第四天线端口集合包括的天线端口发送的SRS。
本申请实施例中,将SRS的配置信息包含于CSI配置信息中,终端设备在接收到网络设备发送的CSI的配置信息后,可以直接获取SRS的配置信息,且第四天线端口集合中的天线端口与上述第一天线端口集合中的天线端口至少有一个不同,可以保证网络设备在根据SRS获得部分天线端口的信道的信息后,终端设备不会再将所有天线端口的信道的CSI上报至网络设备,节约上行时频资源,减小CSI上报开销。
在一种可能的实现方式中,上述第一信息为SRS的配置信息,上述CSI上报配置信息包含于上述SRS的配置信息中,上述SRS的配置信息由上述网络设备向上述终端设备发送,上述SRS的配置信息用于使上述终端设备获得发送SRS的第四天线端口集合,上述第四天线端口集合为上述第二天线端口集合的子集,上述第四天线端口集合中的天线端口与上述第一天线端口集合中的天线端口至少有一个不同;上述方法还包括:上述网络设备接收上述终端设备通过第四天线端口集合包括的天线端口发送的SRS。
本申请实施例中,将CSI配置信息包含于SRS的配置信息中,终端设备在接收到网络设备发送的SRS的配置信息后,可以直接获取CSI的配置信息,且第四天线端口集合中的天线端口与上述第一天线端口集合中的天线端口至少有一个不同,可以保证网络设备在根据SRS获得部分天线端口的信道的信息后,终端设备不会再将所有天线端口的信道的CSI上报至网络设备,节约上行时频资源,减小CSI上报开销。
在一种可能的实现方式中,所述SRS的配置信息用于确定所述终端设备发送SRS的第四天线端口集合中天线端口的个数。
本申请实施例中,网络设备只知道终端设备具备的发射天线端口的数量,通过SRS的配置信息指示终端发送SRS对应的第四天线端口集合中天线端口的个数,终端设备接收到SRS的配置信息后,可以根据其指示的第四天线端口集合中天线端口的个数确定其需要发送的SRS对应的第四天线端口集合,从而确定出CSI所对应的第一天线端口集合,一种可能的实现方式是第一天线集合包含N个天线端口中除第四天线端口集合之外的全部或者部分天线端口,网络设备不需要知道发送SRS的具体天线端口号,也不需要知道终端设备上报的CSI对应的天线端口号,网络设备只需要知道发送所述SRS对应的天线端口和所述CSI对应的天线端口互斥,就可以组合CSI和SRS上的信道状态信息来获得预编码矩阵,该方法可以避免重复上报某部分天线端口的信道的状态信息,节约上行时频资源,减小CSI上报开销。
在另外一种可能的实现方式中,所述SRS的配置信息用于指示所述终端设备发送SRS对应的第四天线端口集合中的天线端口索引。
本申请实施例中,网络设备不仅知道终端设备具备的发射天线端口的数量,还知道终端设备具备的发射天线的端口号信息,终端设备在接收到SRS的配置信息后可以明确获知其需要发送的SRS对应的第四天线端口集合,从而确定出CSI所对应的第一天线端口集合,一种可能的实现方式是第一天线集合包含N个天线端口中除第四天线端口集合之外的全部 或者部分天线端口,该方法可以避免重复上报某部分天线端口的信道的状态信息,节约上行时频资源,减小CSI上报开销。
在一种可能的实现方式中,上述第四天线端口集合为上述第二天线端口集合,上述第一天线端口集合为上述第三天线端口集合。
在本申请实施例中,终端设备通过SRS上报的天线端口集合与通过CSI上报的天线端口集合完全互斥,最大程度上节约上行时频资源,减小CSI上报开销,并保证网络设备可以获取完整的下行信道状态信息,以便网络设备确定预编码矩阵,提高信号传输质量或者速率。
在一种可能的实现方式中,上述方法还包括:上述网络设备向上述终端设备发送下行控制信息DCI,上述DCI中包含指示位,上述指示位用于指示上述终端设备向上述网络设备发送上述第一天线端口集合对应的CSI及通过上述第四天线端口集合的天线端口发送的SRS。
本申请实施例中,在CSI和SRS的非周期上报的场景中,采用同一个指示位同时触发终端设备发送第一天线端口集合的CSI及所述第四天线端口集合的SRS,节省DCI中的比特位开销。
在一种可能的实现方式中,上述第一信息还用于指示探测参考信号SRS的配置信息,上述SRS的配置信息用于使上述终端设备获得上述第二天线端口集合,或者上述第一信息为SRS的配置信息,上述CSI的配置信息包含上述SRS的配置信息,SRS的配置信息用于使上述终端设备获得上述第二天线端口集合,或者上述第一信息为SRS的配置信息,上述CSI的配置信息包含于上述SRS的配置信息中,上述SRS的配置信息由上述网络设备向上述终端设备发送,SRS的配置信息用于使上述终端设备获得上述第二天线端口集合。
本申请实施例中,在终端设备发射天线可切换的场景中,在网络设备使能了终端设备切换发射天线时,终端设备可以根据SRS的配置信息确定第二天线端口集合。
在一种可能的实现方式中,上述方法还包括:上述网络设备向上述终端设备发送下行控制信息DCI,上述DCI中包含指示位,上述指示位用于指示上述终端设备向上述网络设备发送对应上述第一天线端口集合的上述CSI及通过第四天线端口集合的天线端口发送SRS,其中,上述第四天线端口集合是上述第二天线端口集合的子集,并且上述第四天线端口集合中的天线端口与上述第一天线端口集合中的天线端口至少有一个不同。
在一种可能的实现方式中,上述方法还包括:上述网络设备接收上述终端设备通过上述第四天线端口集合包括的天线端口发送的SRS。
在一种可能的实现方式中,SRS的配置信息中包含有一个或者多个SRS资源配置信息,每个所述SRS资源配置信息中包含有发送SRS的天线端口个数。
本申请实施例中,在终端设备发射天线端口可切换的场景中,SRS的配置信息中包含有至少一个SRS资源配置信息,且每个SRS资源配置信息中包含发送SRS的天线端口个数,每个SRS资源配置信息用于指示终端设备发送SRS的参数信息。
在一种可能的实现方式中,上述第三天线端口集合为上述第一天线端口集合的子集。
在一种可能的实现方式中,上述第一天线端口集合为上述第二天线端口集合的子集。
例如,若终端设备有8个天线端口(依次为天线端口0、1、2、3、4、5、6、7),该 终端设备具有两个功率放大器,其中,天线端口0、1、2、3可以做天线端口切换,即终端设备可以采用天线0、1发送SRS,也可以采用天线2、3发送SRS。若网络设备向终端设备配置了天线切换的使能,那么第二天线端口集合包括天线端口0、1、2、3,第三天线端口集合包括天线端口4、5、6、7。若网络设备没有向终端设备配置天线端口切换的使能,那么第二天线端口集合是天线端口0、1、2、3中的两个天线端口,第三天线端口集合包括剩余的6个天线端口。
在网络设备向终端设备配置了天线切换的使能的情况下,存在以下几种使用场景:
1)当SRS采用天线端口0、1发送时候,终端设备上报的CSI对应的天线端口是4、5;当SRS采用天线端口2、3发送的时候,终端设备上报的CSI对应的天线端口是6、7。此时第一天线端口集合是第三天线端口集合的子集。
2)当SRS采用天线0、1发送的时候,终端设备上报的CSI对应的天线端口是4、5、6、7;当SRS采用天线2、3发送的时候,终端设备上报的CSI对应的天线端口是4、5、6、7。此第一天线端口集合就是第三天线端口集合,也可以说第一天线端口集合是第三天线端口集合的子集。
3)当SRS采用天线0、1发送的时候,终端设备上报的CSI对应的天线端口是2、3、4、5、6、7;当SRS采用天线2、3发送的时候,终端设备上报的CSI对应的天线端口是0、1、4、5、6、7。此时第三天线端口集合是第一天线端口集合的子集。
若终端设备有4个天线端口(依次为天线端口0、1、2、3),该终端设备具有两个功率放大器,终端设备可以分别在天线端口0、1和天线端口2、3之间做天线发送切换。
如果网络设备向终端设备配置了天线切换的使能,此时第二天线端口集合包括天线端口0、1、2、3,第三天线集合是空集。当SRS采用天线0、1发送的时候,终端设备上报的CSI对应的天线端口是2、3;当SRS采用天线2、3发送的时候,终端设备上报的CSI对应的天线端口是0、1。此时,第一天线端口集合是第二天线端口集合的子集。
在一种可能的实现方式中,上述指示位为CSI请求域或SRS请求域。
本申请实施例中,在CSI和SRS的非周期上报的场景中,采用现有的CSI请求域或SRS请求域来同时触发终端设备发送第一天线端口集合的CSI及所述第四天线端口集合的SRS,节省DCI中的比特位开销。
在一种可能的实现方式中,所述CSI的全部或部分上报参数用于指示所述第一天线端口集合对应的信道,或者指示所述第一天线端口集合对应的信道的相关矩阵,或者指示所述第一天线端口集合对应的预编码矩阵。
所述网络设备根据所述终端设备通过所述第四天线端口集合的天线端口发送的SRS和所述第一天线端口集合对应的CSI产生预编码矩阵。
第二方面,本申请实施例提供了一种信道状态信息传输方法,包括:
终端设备接收网络设备发送的信道状态信息CSI的配置信息;上述CSI的配置信息关联第一信息,上述第一信息用于指示上述终端设备的第一天线端口集合,上述CSI的配置信息用于指示上述第一天线端口集合对应的CSI的上报参数;上述终端设备根据上述CSI的配置信息确定上述第一天线端口集合对应的CSI;上述终端设备向上述网络设备发送上 述第一天线端口集合对应的CSI。
本申请实施例通过将CSI配置信息关联第一信息,使终端设备根据第一信息确定需要上报的信道的CSI,无需盲目地上报所有天线端口的信道的CSI至网络设备,节约了上行时频资源,减小CSI上报开销。
在一种可能的实现方式中,上述终端设备包括N个天线端口,上述N个天线端口包括第二天线端口集合与第三天线端口集合;上述第二天线端口集合包括m个天线端口,上述第三天线端口集合包括n个天线端口,上述m+n=N;上述第二天线端口集合与上述第三天线端口集合无交集;上述终端设备向上述网络设备发送上述第一天线端口集合对应的CSI包括:上述终端设备通过上述第二天线端口集合中的全部或者部分天线端口向上述网络设备发送上述第一天线端口集合对应的CSI,其中,上述m、n和N为整数。
本申请实施例中,终端设备包括m个发射天线,N个接收天线,N个接收天线中包括n个非发射天线与前述m个发射天线,终端设备可以通过该m个发射天线向网络设备发送信道状态信息。
在一种可能的实现方式中,上述第一天线端口集合为上述第三天线端口集合的子集。
本申请实施例中,终端设备可以根据第一信息确定的第一天线端口集合为第三天线端口集合的子集,即第一天线端口为上述n个非发射天线的部分或者全部,网络设备可以获知该n个非发射天线的部分或者全部的天线端口对应的信道状态信息。
在一种可能的实现方式中,上述第一信息还用于指示探测参考信号SRS的配置信息,上述SRS的配置信息用于使上述终端设备获得发送SRS的第四天线端口集合,上述第四天线端口集合为上述第二天线端口集合的子集,上述第四天线端口集合中的天线端口与上述第一天线端口集合中的天线端口至少有一个不同;上述方法还包括:上述终端设备通过上述第四天线端口集合包括的天线端口发送SRS。
本申请实施例中,通过第一信息关联了SRS的配置信息,终端设备在接收到网络设备发送的CSI的配置信息后,可以根据该第一信息进一步获知SRS的配置信息,且第四天线端口集合中的天线端口与上述第一天线端口集合中的天线端口至少有一个不同,可以保证网络设备在根据SRS获得部分信道的信息后,终端设备不会再将所有天线端口的信道的CSI上报至网络设备,节约上行时频资源,减小CSI上报开销。
在一种可能的实现方式中,上述第一信息为SRS的配置信息,上述CSI的配置信息包含上述SRS的配置信息,上述SRS的配置信息用于使上述终端设备获得发送SRS的第四天线端口集合,上述第四天线端口集合为上述第二天线端口集合的子集,上述第四天线端口集合中的天线端口与上述第一天线端口集合中的天线端口至少有一个不同;上述方法还包括:上述终端设备通过第四天线端口集合包括的天线端口向上述网络设备发送SRS。
本申请实施例中,将SRS的配置信息包含于CSI配置信息中,终端设备在接收到网络设备发送的CSI的配置信息后,可以直接获取SRS的配置信息,且第四天线端口集合中的天线端口与上述第一天线端口集合中的天线端口至少有一个不同,可以保证网络设备在根据SRS获得部分信道的信息后,终端设备不会再将所有天线端口的信道的CSI上报至网络设备,节约上行时频资源,减小CSI上报开销。
在一种可能的实现方式中,上述第一信息为SRS的配置信息,上述CSI的配置信息包 含于上述SRS的配置信息中,上述SRS的配置信息由上述网络设备向上述终端设备发送,上述SRS的配置信息用于使上述终端设备获得发送SRS对应的第四天线端口集合,上述第四天线端口集合为上述第二天线端口集合的子集,上述第四天线端口集合中的天线端口与上述第一天线端口集合中的天线端口至少有一个不同;上述方法还包括:上述终端设备通过第四天线端口集合包括的天线端口向上述网络设备发送SRS。
本申请实施例中,将CSI配置信息包含于SRS的配置信息中,终端设备在接收到网络设备发送的SRS的配置信息后,可以直接获取CSI的配置信息,且第四天线端口集合中的天线端口与上述第一天线端口集合中的天线端口至少有一个不同,可以保证网络设备在根据SRS获得部分信道的信息后,终端设备不会再将所有天线端口的信道的CSI上报至网络设备,节约上行时频资源,减小CSI上报开销。
在一种可能的实现方式中,所述SRS的配置信息用于确定所述终端设备发送SRS的第四天线端口集合中天线端口的个数。
本申请实施例中,网络设备只知道终端设备具备的发射天线端口的数量,通过SRS的配置信息指示终端发送SRS对应的第四天线端口集合中天线端口的个数,终端设备接收到SRS的配置信息后,可以根据其指示的第四天线端口集合中天线端口的个数确定其需要发送的SRS对应的第四天线端口集合,从而确定出CSI所对应的第一天线端口集合,一种可能的实现方式是第一天线集合包含N个天线端口中除第四天线端口集合之外的全部或者部分天线端口,网络设备不需要知道发送SRS的具体天线端口号,也不需要知道终端设备上报的CSI对应的天线端口号,网络设备只需要知道发送所述SRS对应的天线端口和所述CSI对应的天线端口互斥,就可以组合CSI和SRS上的信道状态信息来获得预编码矩阵,该方法可以避免重复上报某部分天线端口的信道的状态信息,节约上行时频资源,减小CSI上报开销。
在另外一种可能的实现方式中,所述SRS的配置信息用于指示所述终端设备发送SRS对应的第四天线端口集合中的天线端口索引。
本申请实施例中,网络设备不仅知道终端设备具备的发射天线端口的数量,还知道终端设备具备的发射天线的端口号信息,终端设备在接收到SRS的配置信息后可以明确获知其其需要发送的SRS对应的第四天线端口集合,从而确定出CSI所对应的第一天线端口集合,一种可能的实现方式是第一天线集合包含N个天线端口中除第四天线端口集合之外的全部或者部分天线端口,该方法可以避免重复上报某部分天线端口的信道的状态信息,节约上行时频资源,减小CSI上报开销。在一种可能的实现方式中,上述第四天线端口集合为上述第二天线端口集合,上述第一天线端口集合为上述第三天线端口集合。
在本申请实施例中,终端设备通过SRS上报的天线端口集合与通过CSI上报的天线端口集合完全互斥,最大程度上节约上行时频资源,减小CSI上报开销,并保证网络设备可以获取完整的下行信道状态信息,以便网络设备确定预编码矩阵,提高信号传输质量或者速率。
在一种可能的实现方式中,上述方法还包括:上述终端设备接收上述网络设备发送的下行控制信息DCI,上述DCI中包含指示位,上述指示位用于指示上述终端设备向所述网络设备发送上述第一天线端口集合对应的CSI及通过上述第四天线端口集合的天线端口发 送的SRS。
本申请实施例中,在CSI和SRS的非周期上报的场景中,采用同一个指示位同时触发终端设备发送第一天线端口集合的CSI及所述第四天线端口集合的SRS,节省DCI中的比特位开销。
在一种可能的实现方式中,上述第一信息还用于指示探测参考信号SRS的配置信息,上述SRS的配置信息用于使上述终端设备获得上述第二天线端口集合,或者上述第一信息为SRS的配置信息,上述CSI的配置信息包含上述SRS的配置信息,SRS的配置信息用于使上述终端设备获得上述第二天线端口集合,或者上述第一信息为SRS的配置信息,上述CSI的配置信息包含于上述SRS的配置信息中,上述SRS的配置信息由上述网络设备向上述终端设备发送,SRS的配置信息用于使上述终端设备获得上述第二天线端口集合。
本申请实施例中,在终端设备发射天线可切换的场景中,在网络设备使能了终端设备切换发射天线时,终端设备可以根据SRS的配置信息确定第二天线端口集合。
在一种可能的实现方式中,上述方法还包括:上述终端设备接收上述网络设备发送的下行控制信息DCI,上述DCI中包含指示位,上述指示位用于指示上述终端设备向上述网络设备发送对应上述第一天线端口集合的上述CSI及通过第四天线端口集合的天线端口发送SRS,其中,上述第四天线端口集合是上述第二天线端口集合的子集,并且上述第四天线端口集合中的天线端口与上述第一天线端口集合中的天线端口至少有一个不同。
在一种可能的实现方式中,上述方法还包括:上述终端设备通过上述第四天线端口集合包括的天线端口向上述网络设备发送SRS。
在一种可能的实现方式中,SRS的配置信息中包含有一个或者多个SRS资源配置信息,每个所述SRS资源配置信息中包含有发送SRS的天线端口个数。
本申请实施例中,在终端设备发射天线端口可切换的场景中,SRS的配置信息中包含有至少一个SRS资源配置信息,且每个SRS资源配置信息中包含发送SRS的天线端口个数,每个SRS资源配置信息用于指示终端设备发送SRS的参数信息。
在一种可能的实现方式中,上述第三天线端口集合为上述第一天线端口集合的子集。
在一种可能的实现方式中,上述第一天线端口集合为上述第二天线端口集合的子集。
例如,若终端设备有8个天线端口(依次为天线端口0、1、2、3、4、5、6、7),该终端设备具有两个功率放大器,其中,天线端口0、1、2、3可以做天线端口切换,即终端设备可以采用天线0、1发送SRS,也可以采用天线2、3发送SRS。若网络设备向终端设备配置了天线切换的使能,那么第二天线端口集合包括天线端口0、1、2、3,第三天线端口集合包括天线端口4、5、6、7。若网络设备没有向终端设备配置天线端口切换的使能,那么第二天线端口集合是天线端口0、1、2、3中的两个天线端口,第三天线端口集合包括剩余的6个天线端口。
在网络设备向终端设备配置了天线切换的使能的情况下,存在以下几个使用场景:
1)当SRS采用天线端口0、1发送时候,终端设备上报的CSI对应的天线端口是4、5;当SRS采用天线端口2、3发送的时候,终端设备上报的CSI对应的天线端口是6、7。此时第一天线端口集合是第三天线端口集合的子集。
2)当SRS采用天线0、1发送的时候,终端设备上报的CSI对应的天线端口是4、5、 6、7;当SRS采用天线2、3发送的时候,终端设备上报的CSI对应的天线端口是4、5、6、7。此第一天线端口集合就是第三天线端口集合,也可以说第一天线端口集合是第三天线端口集合的子集。
3)当SRS采用天线0、1发送的时候,终端设备上报的CSI对应的天线端口是2、3、4、5、6、7;当SRS采用天线2、3发送的时候,终端设备上报的CSI对应的天线端口是0、1、4、5、6、7。此时第三天线端口集合是第一天线端口集合的子集。
若终端设备有4个天线端口(依次为天线端口0、1、2、3),该终端设备具有两个功率放大器,终端设备可以分别在天线端口0、1和天线端口2、3之间做天线发送切换。
如果网络设备向终端设备配置了天线切换的使能,此时第二天线端口集合包括天线端口0、1、2、3,第三天线集合是空集。当SRS采用天线0、1发送的时候,终端设备上报的CSI对应的天线端口是2、3;当SRS采用天线2、3发送的时候,终端设备上报的CSI对应的天线端口是0、1。此时,第一天线端口集合是第二天线端口集合的子集。
在一种可能的实现方式中,上述指示位为CSI请求域或SRS请求域。
本申请实施例中,在CSI和SRS的非周期上报的场景中,采用现有的CSI请求域或SRS请求域来同时触发终端设备发送第一天线端口集合的CSI及所述第四天线端口集合的SRS,节省DCI中的比特位开销。
在一种可能的实现方式中,所述CSI的全部或部分上报参数用于指示所述第一天线集合对应的信道,或者指示所述第一天线集合对应的信道的相关矩阵,或者指示所述第一天线集合对应的预编码矩阵。
第三方面,本申请实施例提供了一种网络设备,包括:第一发送单元,用于向终端设备发送信道状态信息CSI的配置信息;上述CSI的配置信息关联第一信息,上述第一信息用于指示上述终端设备的第一天线端口集合,上述CSI的配置信息用于指示第一天线端口集合对应的CSI的上报参数;第一接收单元,用于接收上述终端设备发送的上述第一天线端口集合对应的CSI。
在一种可能的实现方式中,上述终端设备包括N个天线端口,上述N个天线端口包括第二天线端口集合与第三天线端口集合;上述第二天线端口集合包括m个天线端口,上述第三天线端口集合包括n个天线端口,上述m+n=N;上述第二天线端口集合与上述第三天线端口集合无交集;上述第一接收单元,用于接收上述终端设备通过上述第二天线端口集合中的全部或者部分天线端口发送的上述第一天线端口集合对应的CSI,其中,m、n和N为整数。
在一种可能的实现方式中,上述第一天线端口集合为上述第三天线端口集合的子集。
在一种可能的实现方式中,上述第一信息还用于指示探测参考信号SRS的配置信息,上述SRS的配置信息用于使上述终端设备获得发送SRS的第四天线端口集合,上述第四天线端口集合为上述第二天线端口集合的子集,上述第四天线端口集合中的天线端口与上述第一天线端口集合中的天线端口至少有一个不同;上述第一接收单元,还用于接收上述终端设备通过第四天线端口集合包括的天线端口发送的SRS。
在一种可能的实现方式中,上述第一信息为SRS的配置信息,上述CSI的配置信息包 含上述SRS的配置信息,上述SRS的配置信息用于使上述终端设备获得发送SRS的第四天线端口集合,上述第四天线端口集合为上述第二天线端口集合的子集,上述第四天线端口集合中的天线端口与上述第一天线端口集合中的天线端口至少有一个不同;上述第一接收单元,还用于接收上述终端设备通过第四天线端口集合包括的天线端口发送的SRS。
在一种可能的实现方式中,上述第一信息为SRS的配置信息,上述CSI上报配置信息包含于上述SRS的配置信息中,上述SRS的配置信息由上述网络设备向上述终端设备发送,上述SRS的配置信息用于使上述终端设备获得发送SRS的第四天线端口集合,上述第四天线端口集合为上述第二天线端口集合的子集,上述第四天线端口集合中的天线端口与上述第一天线端口集合中的天线端口至少有一个不同;上述第一接收单元,还用于接收上述终端设备通过第四天线端口集合包括的天线端口发送的SRS。
在一种可能的实现方式中,所述SRS的配置信息用于确定所述终端设备发送SRS的第四天线端口集合中天线端口的个数。
在另外一种可能的实现方式中,所述SRS的配置信息用于指示所述终端设备发送SRS对应的第四天线端口集合中的天线端口索引。
在一种可能的实现方式中,上述第四天线端口集合为上述第二天线端口集合,上述第一天线端口集合为上述第三天线端口集合。
在一种可能的实现方式中,上述第一发送单元还用于向上述终端设备发送下行控制信息DCI,上述DCI中包含指示位,上述指示位用于指示上述终端设备发送上述第一天线端口集合对应的CSI及通过上述第四天线端口集合的天线端口发送的SRS。
在一种可能的实现方式中,上述第一信息还用于指示探测参考信号SRS的配置信息,上述SRS的配置信息用于使上述终端设备获得上述第二天线端口集合,或者上述第一信息为SRS的配置信息,上述CSI的配置信息包含上述SRS的配置信息,SRS的配置信息用于使上述终端设备获得上述第二天线端口集合,或者上述第一信息为SRS的配置信息,上述CSI的配置信息包含于上述SRS的配置信息中,上述SRS的配置信息由上述网络设备向上述终端设备发送,SRS的配置信息用于使上述终端设备获得上述第二天线端口集合。
在一种可能的实现方式中,上述第一发送单元还用于向上述终端设备发送下行控制信息DCI,上述DCI中包含指示位,上述指示位用于指示上述终端设备向上述网络设备发送对应上述第一天线端口集合的上述CSI及通过第四天线端口集合的天线端口发送SRS,其中,上述第四天线端口集合是上述第二天线端口集合的子集,并且上述第四天线端口集合中的天线端口与上述第一天线端口集合中的天线端口至少有一个不同。
在一种可能的实现方式中,上述第一接收单元还用于接收上述终端设备通过上述第四天线端口集合包括的天线端口发送的SRS。
在一种可能的实现方式中,SRS的配置信息中包含有一个或者多个SRS资源配置信息,每个所述SRS资源配置信息中包含有发送SRS的天线端口个数。
在一种可能的实现方式中,上述第四天线端口集合为上述第二天线端口集合,上述第一天线端口集合为上述第三天线端口集合。
在一种可能的实现方式中,上述第三天线端口集合为上述第一天线端口集合的子集。
在一种可能的实现方式中,上述第一天线端口集合为上述第二天线端口集合的子集。
在一种可能的实现方式中,上述指示位为CSI请求域或SRS请求域。
在一种可能的实现方式中,所述CSI的全部或部分上报参数用于指示所述第一天线集合对应的信道,或者指示所示第一天线集合对应的信道的相关矩阵,或者指示所述第一天线集合对应的预编码矩阵。
所述网络设备还包括产生单元,用于根据所述终端设备通过所述第四天线端口集合的天线端口发送的SRS和所述第一天线集合对应的CSI产生预编码矩阵。
第四方面,本申请实施例提供了一种终端设备,包括:第二接收单元,用于接收网络设备发送的信道状态信息CSI的配置信息,上述CSI的配置信息关联第一信息,上述第一信息用于指示上述终端设备的第一天线端口集合,上述CSI的配置信息用于指示第一天线端口集合对应的CSI的上报参数;确定单元,用于根据上述CSI的配置信息确定上述第一天线端口集合对应的CSI;第二发送单元,用于向上述网络设备发送上述第一天线端口集合对应的CSI。
在一种可能的实现方式中,上述终端设备包括N个天线端口,上述N个天线端口包括第二天线端口集合与第三天线端口集合;上述第二天线端口集合包括m个天线端口,上述第三天线端口集合包括n个天线端口,上述m+n=N;上述第二天线端口集合与上述第三天线端口集合无交集;上述第二发送单元:用于通过上述第二天线端口集合中的全部或者部分天线端口向上述网络设备发送上述第一天线端口集合对应的CSI,其中,上述m、n和N为整数。
在一种可能的实现方式中,上述第一天线端口集合为上述第三天线端口集合的子集。
在一种可能的实现方式中,上述第一信息还用于指示探测参考信号SRS的配置信息,上述SRS的配置信息用于使上述终端设备获得发送SRS的第四天线端口集合,上述第四天线端口集合为上述第二天线端口集合的子集,上述第四天线端口集合中的天线端口与上述第一天线端口集合中的天线端口至少有一个不同;上述第二发送单元,还用于通过第四天线端口集合包括的天线端口发送上述SRS。
在一种可能的实现方式中,上述第一信息为SRS的配置信息,上述CSI的配置信息中包含上述SRS的配置信息,上述SRS的配置信息用于使上述终端设备获得发送SRS的第四天线端口集合,上述第四天线端口集合为上述第二天线端口集合的子集,上述第四天线端口集合中的天线端口与上述第一天线端口集合中的天线端口至少有一个不同;上述第二发送单元,还用于通过第四天线端口集合包括的天线端口向上述网络设备发送SRS。
在一种可能的实现方式中,上述第一信息为SRS的配置信息,上述CSI的配置信息包含于上述SRS的配置信息中,上述SRS的配置信息由上述网络设备向上述终端设备发送,上述SRS的配置信息用于使上述终端设备获得发送SRS的第四天线端口集合,上述第四天线端口集合为上述第二天线端口集合的子集,上述第四天线端口集合中的天线端口与上述第一天线端口集合中的天线端口至少有一个不同;上述第二发送单元,还用于通过第四天线端口集合包括的天线端口向上述网络设备发送SRS。
在一种可能的实现方式中,所述SRS的配置信息用于确定所述终端设备发送SRS的第四天线端口集合中天线端口的个数。
在另外一种可能的实现方式中,所述SRS的配置信息用于指示所述终端设备发送SRS对应的第四天线端口集合中的天线端口索引。
在一种可能的实现方式中,上述第四天线端口集合为上述第二天线端口集合,上述第一天线端口集合为上述第三天线端口集合。
在一种可能的实现方式中,上述第二接收单元还用于接收上述网络设备发送的下行控制信息DCI,上述DCI中包含指示位,上述指示位用于指示上述终端设备向所述网络设备发送上述第一天线端口集合对应的CSI及通过上述第四天线端口集合的天线端口发送的SRS。
在一种可能的实现方式中,上述第一信息还用于指示探测参考信号SRS的配置信息,上述SRS的配置信息用于使上述终端设备获得上述第二天线端口集合,或者上述第一信息为SRS的配置信息,上述CSI的配置信息包含上述SRS的配置信息,SRS的配置信息用于使上述终端设备获得上述第二天线端口集合,或者上述第一信息为SRS的配置信息,上述CSI的配置信息包含于上述SRS的配置信息中,上述SRS的配置信息由上述网络设备向上述终端设备发送,SRS的配置信息用于使上述终端设备获得上述第二天线端口集合。
在一种可能的实现方式中,上述第二接收单元还用于接收上述网络设备发送的下行控制信息DCI,上述DCI中包含指示位,上述指示位用于指示上述终端设备向上述网络设备发送对应上述第一天线端口集合的上述CSI及通过第四天线端口集合的天线端口发送SRS,其中,上述第四天线端口集合是上述第二天线端口集合的子集,并且上述第四天线端口集合中的天线端口与上述第一天线端口集合中的天线端口至少有一个不同。
在一种可能的实现方式中,上述第二发送单元还用于通过上述第四天线端口集合包括的天线端口向上述网络设备发送SRS。
在一种可能的实现方式中,SRS的配置信息中包含有一个或者多个SRS资源配置信息,每个所述SRS资源配置信息中包含有发送SRS的天线端口个数。
在一种可能的实现方式中,上述第三天线端口集合为上述第一天线端口集合的子集。
在一种可能的实现方式中,上述第一天线端口集合为上述第二天线端口集合的子集。
在一种可能的实现方式中,上述指示位为CSI请求域或SRS请求域。
在一种可能的实现方式中,所述CSI的全部或部分上报参数用于指示所述第一天线集合对应的信道,或者指示所示第一天线集合对应的信道的相关矩阵,或者指示所述第一天线集合对应的预编码矩阵。
第五方面,本申请实施例提供了一种通信系统,其特征在于,包括网络设备及终端设备,上述网络设备为本申请实施例第三方面或者第三方面的任意一种实现方式提供的网络设备,上述终端设备本申请实施例第四方面或者第四方面的任意一种实现方式提供的终端设备。
第六方面,本申请实施例提供了一种网络设备,包括:处理器、存储器和收发器,其中:上述处理器、上述存储器和上述收发器相互连接,上述存储器用于存储计算机程序,上述计算机程序包括程序指令,上述处理器被配置用于调用上述程序指令,执行本申请实 施例第一方面或者第一方面的任意一种实现方式提供的信道状态信息传输方法。
第七方面,本申请实施例提供了一种终端设备,包括:处理器、存储器和收发器,其中:上述处理器、上述存储器和上述收发器相互连接,上述存储器用于存储计算机程序,上述计算机程序包括程序指令,上述处理器被配置用于调用上述程序指令,执行本申请实施例第二方面或者第二方面的任意一种实现方式提供的信道状态信息传输方法。
第八方面,本申请实施例提供了一种计算机可读存储介质,上述计算机可读存储介质存储有计算机程序,上述计算机程序包括程序指令,上述程序指令当被处理器执行时,使上述处理器执行本申请实施例第一方面或者第一方面的任意一种实现方式提供的信道状态信息传输方法。
第九方面,本申请实施例提供了一种计算机可读存储介质,上述计算机可读存储介质存储有计算机程序,上述计算机程序包括程序指令,上述程序指令当被处理器执行时,使上述处理器执行本申请实施例第二方面或者第二方面的任意一种实现方式提供的信道状态信息传输方法。
实施本申请实施例可以通过在CSI配置信息中关联第一信息,使终端设备可以根据第一信息确定其需要上报的CSI对应的第一天线端口集合,网络设备在根据SRS获得部分信道的信息后,终端设备不会再将所有信道的CSI上报至网络设备,节约上行时频资源,减小CSI上报开销。进一步地,采用同一个比特位同时触发终端设备发送第一天线端口集合的CSI及所述第四天线端口集合的SRS,节省DCI中的比特位开销。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍。
图1为本申请实施例提供的通信系统结构示意图;
图2为本申请实施例提供的一种信道状态信息反馈方法流程示意图;
图3为本申请实施例提供的一种终端设备天线端口示意图;
图4为本申请实施例提供的另一种信道状态信息反馈方法流程示意图;
图5为本申请实施例提供的一种网络设备结构示意图;
图6为本申请实施例提供的一种终端设备结构示意图;
图7为本申请实施例提供的另一种网络设备结构示意图;
图8为本申请实施例提供的另一种终端设备结构示意图。
具体实施方式
下面将结合附图对本申请实施例中的技术方案进行清楚、详尽地描述。
本申请实施例可应用于各种通信系统,因此,下面的描述不限制于特定通信系统。例 如,本申请实施例可以应用于全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)等。
本申请实施例中,终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及5G网络中的终端设备。
本申请实施例中,网络设备可以是用于与移动设备通信的设备,网络设备可以是GSM或CDMA中的基站(base transceiver station,BTS),也可以是WCDMA中的基站,还可以是LTE中的演进型基站(evolutional Node B,eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及5G网络中的网络侧设备。
图1是使用本申请的信道状态信息传输方法的通信系统的示意图。该通信系统可以上述任意一种通信系统。如图1所示,该通信系统100包括网络设备101、多个终端设备(如图中的终端设备102及终端设备103)。网络设备101可以与终端设备102及终端设备103通信。然而,可以理解,网络设备101可以与类似于终端设备102或103的任意数目的终端设备通信。
如图1所示,终端设备102与网络设备101通信,其中网络设备101通过前向链路104向终端设备102发送信息,并通过反向链路105从终端设备102接收信息。此外,终端设备103与网络设备101通信,其中网络设备101通过前向链路107向终端设备103发送信息,并通过反向链路106从终端设备103接收信息。
例如,在FDD系统中,前向链路104可利用与反向链路105所使用的不同频带,前向链路107可利用与反向链路106所使用的不同频带。再例如,TDD系统和全双工系统中,前向链路104和反向链路105可使用共同频带,前向链路107和反向链路106可使用共同频带。
在给定时间,网络设备101、终端设备102或终端设备103可以是无线通信发送装置和/或无线通信接收装置。当发送数据时,无线通信发送装置可对数据进行编码以用于传输。具体地,无线通信发送装置可获取(例如生成、从其它通信装置接收、或在存储器中保存等)要通过信道发送至无线通信接收装置的一定数目的数据比特。这种数据比特可包含在数据的传输块(或多个传输块)中,传输块可被分段以产生多个码块。
为了使得本申请实施例更容易理解,下面首先对本申请实施例中涉及的一些描述加以说明,这些说明不应视为对本申请所需要保护的范围的限定。
信号的发送端(例如,网络设备)获得发送端到接收端(例如,终端设备)之间的信 道信息,则可以根据获得的信道信息对发送信号进行预编码处理,这样可以使得网络设备发送信号的能量集中在所述终端设备所在的方向,从而使得终端设备可以获得较高的信号接收信噪比,另一方面,如果网络设备同时向终端设备发送多层的数据流,通过这种方式可以在发送端预先消除数据流之间的部分或全部干扰,从而提高系统性能。
本申请实施例中主要涉及终端设备如何向网络设备发送信道状态信息,以使得网络设备根据该信道信息确定该预编码矩阵的方案,发送端进行预编码处理时使用的矩阵即为预编码矩阵。
以下,为了便于理解和说明,作为示例而非限定,以将本申请的信道状态信息传输方法在通信系统中的执行过程和动作进行说明。
图2是本申请一个实施例提供的信道状态信息传输方法流程示意图。如图2所示的方法可以应用于上述TDD系统或者其他系统场景中,本申请实施例并不对此做限定。
下文以TDD系统为例介绍本申请实施例的信道状态信息传输方法,但本申请实施例并不限于此,也可以应用于FDD系统。
具体地,上述TDD系统包括终端设备和网络设备,上述终端设备包括N个天线端口,如图3所示,上述N个天线端口都配置了收通道,可以用于接收下行数据和下行参考信号,可以称为接收天线端口集合;其中m个天线端口可以连接功率放大器,用于发送上行数据和/或上行参考信息,称为发送天线端口集合,上述m个天线端口包含于上述N个天线端口中,上述N个天线端口中除了上述m个天线端口外,还包括n个非发送天线端口,构成第三天线端口集合,其中m、n、N均为正整数,且m+n=N。
可选的,若终端设备具有天线切换能力,每次可以同时通过m0个天线端口发送上行数据或上行参考信号(即有m个功率放大器),并且可以支持x次天线切换。若网络设备的配置信息使能了上述天线切换能力,并允许y<=x次天线切换,则共m=m0*y个天线端口可以连接功率放大器,则第二天线端口集合包括上述共m=m0*y个天线端口。若网络设备的配置信息未使能上述天线切换能力,则只有m=m0个天线端口可以连接功率放大器,则第二天线端口集合包括上述共m=m0个天线端口。
可选的,若终端设备不具有天线切换能力,则第二天线端口集合包括m=m0个天线端口。
可选的,上述第二天线端口集合包括的天线端口个数m可以小于N,也可以等于N。
具体而言,如图2所示的信道状态信息传输方法至少可以包括以下几个步骤:
S201:网络设备向终端设备发送CSI的配置信息。
具体地,上述CSI的配置信息中关联有第一信息,第一信息用于指示终端设备的第一天线端口集合,上述CSI的配置信息用于指示上述第一天线端口集合对应的CSI的上报参数。
具体地,CSI配置信息用于指示终端设备发送CSI的上报参数,CSI的上报参数具体可以包括CSI上报的内容,例如是否包括RI、PMI、CQI等;CSI的上报参数还可以包括CSI的上报方式,例如上报方式是周期上报、半周期上报还是非周期上报;若其上报方式是周期上报,CSI的上报参数还可以包括CSI上报的周期具体是多少,上报的时间偏移位置(即上报的时间点具体位于时域上的第几个子帧或者时隙),若其上报方式的非周期上报,CSI 的上报参数还可以包括CSI上报的时间位置;CSI的上报参数还可以包括是针对整个系统的宽带还是子带上报的;若CSI的上报参数是针对子带上报的,CSI的上报参数还可以包括具体是针对哪个子带上报的,等等。CSI的上报参数不限于此,本申请实施例对此不做限定。
S202:终端设备根据上述CSI的配置信息确定第一天线端口集合的CSI的上报参数。
具体地,终端设备根据接收到的CSI配置信息,确定需要上报的CSI的各种上报参数,如上所述。终端设备还需根据CSI配置信息关联的第一信息确定上报的CSI所对应的第一天线端口集合。
S203:终端设备向网络设备发送第一天线端口集合对应的CSI。
具体地,终端设备确定第一天线端口集合的CSI后,将其发送至网络设备,以使网络设备根据该CSI确定第一天线端口集合中包含的天线端口对应的信道状态信息,进而根据信道状态信息确定预编码矩阵,提高信号传输质量或者速率。
具体地,终端设备可以通过第二天线端口集合中的全部或者部分天线端口向上述网络设备发送第一天线端口集合对应的CSI。当终端设备的接收天线数大于具有的功率放大器数时,若该终端设备不支持天线切换,则上述第一天线端口集合的CSI由终端设备通过上述第二天线端口集合中的全部天线端口发送;若该终端设备支持天线切换,由于能够同时发送上行数据或参考信号的天线端口是上述第二天线端口集合中的部分天线端口,则上述第一天线端口集合的CSI由终端设备通过上述第二天线端口集合中的部分天线端口发送。
第一天线端口集合可以仅包括终端设备的N个天线端口中的部分端口,则实施本申请实施例可以通过在CSI的配置信息中关联第一信息,使终端设备根据第一信息确定其需要上传的CSI对应的天线端口,无需盲目地上报所有信道的CSI至网络设备,节约了上行时频资源,减小CSI上报开销。
请参阅图4。图4为本申请实施例提供的另外一种信道状态信息传输方法,如图4所示,信道状态信息传输方法至少可以包括以下几个步骤:
S401:网络设备向终端设备发送CSI的配置信息。
具体地,上述CSI的配置信息中关联有第一信息,第一信息用于确定终端设备发送CSI对应的第一天线端口集合。上述CSI的配置信息用于使终端设备确定第一天线端口集合的CSI的上报参数,CSI的上报参数具体可参照S201中的描述,在此不再赘述。
在一种可能的实施例中,网络设备可以知道终端设备具备的发射天线端口的数量,以及终端设备具备的接收天线端口的数量。与CSI的配置信息关联的第一信息可以用于确定第一天线端口集合中天线端口的个数。具体的,第一信息可以指示第一天线端口集合中天线端口的个数;或者,第一信息还可以指示第一天线端口集合的补集包括的天线端口个数,从而使终端设备确定第一天线端口集合中天线端口的个数。可选的,第一天线端口集合的补集和第一天线端口集合两者的并集是终端设备包括的N个天线端口组成的集合。可选的,第一天线端口集合的补集和第一天线端口集合两者的并集是终端设备包括的N个天线端口组成的集合的真子集,该真子集可以通过预定义的方式或者基站配置的方式或者终端设备上报的方式确定。
在一种可能的实施例中,第一信息还与SRS的配置信息关联,终端设备可以通过SRS 的配置信息,并结合第一天线端口集合中天线端口的个数,确定最终需要上报的CSI对应的第一天线端口集合中的天线端口。
可选地,第一信息还用于指示SRS的配置信息,即CSI的配置信息与SRS的配置信息相对独立,是两个单独的资源,且两者之间通过第一信息关联起来。第一信息例如可以是SRS的配置信息的索引号,并且是CSI的配置信息中的一部分。终端设备在读取CSI的配置信息时,可以根据CSI的配置信息中的第一信息获取SRS的配置信息的索引号,进而使终端设备读取到SRS的配置信息。或者,第一信息例如可以是CSI的配置信息的索引号,并且是上述SRS的配置信息中的一部分。终端设备在读取SRS的配置信息时,可以根据SRS的配置信息中的第一信息获取上述CSI配置信息的索引号,进而使终端设备读取到CSI配置信息。可选地,第一信息为SRS的配置信息,上述CSI的配置信息中包含SRS的配置信息。即SRS的配置信息是CSI的配置信息中的一部分,终端设备在读取CSI的配置信息时,可直接获取SRS的配置信息。
可选地,第一信息为SRS的配置信息,上述CSI的配置信息包含于SRS的配置信息中,上述CSI的配置信息是SRS的配置信息中的一部分。即上述SRS的配置信息中包含有CSI的配置信息,终端设备在读取SRS的配置信息时,可直接获取CSI的配置信息。
具体地,SRS的配置信息用于使终端设备获得发送SRS的第四天线端口集合。第四天线端口集合为上述第二天线端口集合的子集,即第四天线端口集合中的天线端口为部分或者全部的发射天线端口,第四天线端口集合中的天线端口与第一天线端口集合中的天线端口至少有一个不同。第四天线端口集合中的天线端口为部分或者全部的发射天线端口,第四天线端口集合中的天线端口对应的信道状态信息可以通过对SRS的估计获得。第一天线端口集合中的天线端口对应的信道状态信息由终端设备向网络设备发送CSI反馈。
具体地,若网络设备只知道终端设备具备的发射天线端口的数量,那么SRS的配置信息可以用于指示终端设备发送SRS对应的第四天线端口集合中天线端口的个数。具体的,若终端设备具有m个可以连接功率放大器的发射天线端口,SRS的配置信息指示第四天线端口集合包括n0个天线端口,则终端设备可以根据实现行为或根据预定义的规则或结合其他配置信息(如后续通过无线资源控制(radio resource control,RRC),媒体访问控制层控制元素(media access control control element,MAC CE)或下行控制信息(downlink control information,DCI)信令指示的信息)确定第四天线端口集合包括的是上述m个发射天线端口中的哪n0个天线端口。
在本申请实施例中,第一天线端口集合可以包括上述非发射天线端口的部分或者全部,还可以包括发射天线端口,第一天线端口集合可以与第四天线端口集合有交集,只需第四天线端口集合中包括的发射天线端口与第一天线端口集合中包括的天线端口至少有一个不同,即可在一定程度上节约上行时频资源,减小CSI上报开销。
在一种较优的实现方式中,第四天线端口集合为前述第二天线端口集合,第一天线端口集合为前述第三天线端口集合。即第四天线端口集合为该终端设备所有的发射天线端口,第一天线端口集合为该终端设备所有的非发射天线端口。所有的发射天线端口对应的信道状态信息由终端设备通过SRS向网络设备反馈,所有的非发射天线端口对应的信道状态信息由终端设备通过CSI向网络设备反馈。网络设备可以通过两种方式的结合获取完整的信 道状态信息,最大程度上节约了上行时频资源,并在最大程度上节约CSI上报开销。
具体地,SRS的配置信息用于指示终端设备发送SRS的参数信息,SRS的参数信息具体可以包括SRS上报方式,例如是周期上报、半周期上报或者是非周期上报;若上报方式是周期上报,SRS的参数信息还可以包括上报的周期具体是多少,上报的时间点具体位于时域上的第几个子帧或者时隙;SRS的参数信息还可以包括具体是针对整个带宽的还是针对部分带宽的,等等。SRS的参数信息不限于此,本申请实施例对比不做限定。
在另外一种可能的实施例中,网络设备不仅可以知道终端设备具备的发射天线端口以及接收天线端口的数量,还可以知道终端设备的发射天线端口的端口号信息。与CSI的配置信息关联的第一信息可以直接用于指示第一天线端口集合中的具体天线端口,即指示第一天线端口集合中天线的端口号。终端设备在接收到CSI的配置信息之后,可以明确知道其需要上报的CSI对应的天线端口。第一天线端口集合为第三天线端口集合的子集。或者,与CSI的配置信息关联的第一信息可以直接用于指示第一天线端口集合的补集包括的具体天线端口,即指示第一天线端口集合的补集包括的天线端口号。终端设备在接收到CSI的配置信息之后,可以通过确定不需要上报哪些端口(即第一天线端口集合的补集包括的天线端口)来确定需要上报哪些天线端端口对应的CSI。同样地,SRS的配置信息可以用于指示终端设备发送SRS对应的第四天线端口集合中包含的天线端口的端口号信息。终端设备在接收到SRS的配置信息之后,可以明确知道其需要上报的SRS对应的天线端口。
具体地,第一天线端口集合可以是上述第三天线端口集合的子集,即第一天线端口集合中的天线端口可以是部分或者全部非发送天线端口。由于终端设备可以通过向网络设备发送SRS使网络设备获知发射天线端口对应的信道状态信息,而网络设备无法获知非发送天线端口对应的信道状态信息,因此通过结合SRS发送发射天线端口对应的信道状态信息以及CSI获得部分或者全部非发射天线端口对应的信道状态信息,来获得下行信道的状态信息。
若通过CSI可获得部分非发射天线端口对应的信道状态信息,而非全部非发射天线端口对应的信道状态信息,为了使网络设备可获得完整的下行信道的状态信息,终端设备还可以切换发射天线至剩余的非发射天线端口,通过该剩余的非发射天线端口向网络设备发送SRS,从而使网络设备获得剩余的非发射天线端口对应的信道状态信息。
例如,若终端设备具备4个天线,天线0、天线1、天线2及天线3,其中,有一个天线为发射天线,假设初始状态下天线0为发射天线,天线0、天线1、天线2及天线3为接收天线,故天线1、天线2及天线3为非发射天线。若与CSI的配置信息关联的第一信息指示的第一天线端口集合包括的天线端口为天线2及天线3。那么终端设备可以通过天线0向网络设备发送SRS,以使网络设备获得天线0对应的信道状态信息。此外,终端设备还可以通过天线0向网络设备发送CSI获得天线2和天线3对应的信道状态信息。此后,终端设备可以将发射天线从天线0切换至剩余的非发射天下端口天线1,再通过天线1向网络设备发送SRS,以使网络设备获取天线1对应的信道状态信息。自此,网络设备即可获得完整的下行信道的状态信息。
终端设备将发射天线切换至剩余的非发射天线端口,获得剩余的非发射天线端口对应的信道状态信息,与切换之前获得的信道状态信息之间的时间间隔不宜太久,以免在获得 剩余的非发射天线端口对应的信道状态信息时,之前获得的信道状态信息已失效。
此外,在DCI及SRS的上报方式为非周期上报时,该信道状态信息传输方法还可以包括:网络设备向终端设备发送下行控制信息(downlink control information,DCI),DCI中包含有指示位,用于指示终端设备向网络设备发送上述第一天线端口集合对应的CSI及通过上述第四天线端口集合发送SRS。具体地,该指示位可以是CSI请求域,或者是SRS请求域,或者是其他的比特位,本申请实施例对此不做限制。例如当该比特位的值为1时,可以指示终端设备向网络设备发送第一天线端口集合的CSI及第四天线端口集合的SRS。当该指示位的值为0时,可以指示终端设备无需向网络设备发送第一天线端口集合的CSI及第四天线端口集合的SRS。当然,该比特位不限于是1个比特,比特位的值与终端设备的执行动作也不限于是上述对应关系,本申请实施例对此不做限定。
实施本申请实施例可以在CSI和SRS的非周期上报的场景中,采用同一个指示位同时触发终端设备发送第一天线端口集合的CSI及所述第四天线端口集合的SRS,节省DCI中的比特位开销。
在终端设备可切换发射天线端口的场景中,终端设备切换发射天线端口取决于:1)终端设备是否具有切换发射天线端口的能力;2)网络设备是否使能终端设备的发射天线端口的切换。当满足以上两个条件时,可以实现终端设备发射天线端口的切换。而网络设备是否使能终端设备的发射天线端口的切换可由SRS的配置信息决定。网络设备向终端设备发送的SRS的配置信息中可以包含至少一个SRS资源配置信息,每个SRS资源配置信息中包含发送SRS的天线端口的个数。终端设备在接收到该SRS的配置信息后,可根据该配置信息确定其需要切换的发射天线端口的数量,进而自行确定具体的SRS发射天线端口(即确定第四天线端口集合),在切换后的发射天线端口上向网络设备发送SRS。其中,SRS资源配置信息的个数与发送SRS的天线端口的端口组数一致,每组端口包括至少一个天线端口,一组端口内的天线端口可以同时发送SRS。每个SRS资源配置信息用于指示终端设备发送SRS的参数信息。SRS的参数信息具体包括的内容可参见前述实施例中的相关描述,在此不再赘述。此外,该SRS的配置信息中可以包含一个域,该域可以用来指示终端设备是否进行发射天线端口切换,还可以用来指示具体切换至哪一组天线端口。
具体地,终端设备在切换后的发射天线端口上向网络设备发送的SRS具体的内容由上述SRS资源配置信息决定。一个SRS资源配置信息对应一组发射天线端口,即终端设备在该组发射天线端口上向网络设备发送的SRS的内容由该组发射天线端口对应的SRS资源配置信息决定。
可选地,上述第一信息还用于指示SRS的配置信息,即CSI的配置信息与SRS的配置信息相对独立,是两个单独的资源,且两者之间通过第一信息关联起来。第一信息例如可以是SRS的配置信息的索引号,并且是CSI的配置信息中的一部分。终端设备在读取CSI的配置信息时,可以根据CSI的配置信息中的第一信息获取SRS的配置信息的索引号,进而使终端设备读取到SRS的配置信息。或者,第一信息例如可以是CSI的配置信息的索引号,并且是上述SRS的配置信息中的一部分。终端设备在读取SRS的配置信息时,可以根据SRS的配置信息中的第一信息获取上述CSI配置信息的索引号,进而使终端设备读取到 CSI配置信息。
可选地,上述第一信息为SRS的配置信息,CSI的配置信息包含该SRS的配置信息。即SRS的配置信息是CSI的配置信息中的一部分,终端设备在读取CSI的配置信息时,可直接获取SRS的配置信息。
可选地,上述第一信息为SRS的配置信息,CSI的配置信息包含于该SRS的配置信息中,上述CSI的配置信息是SRS的配置信息中的一部分。即上述SRS的配置信息中包含有CSI的配置信息,终端设备在读取SRS的配置信息时,可直接获取CSI的配置信息。SRS的配置信息由网络设备向终端设备发送。
具体地,SRS的配置信息用于使终端设备获得第二天线端口集合。例如,若终端设备有4个天线端口(依次为天线端口0、1、2、3),该终端设备具有两个功率放大器,终端设备可以分别在天线端口0、1和天线端口2、3之间做天线发送切换。如果网络设备向终端设备配置了天线切换的使能,此时终端设备可以通过SRS的配置信息获知第二天线端口集合包括天线端口0、1、2、3。在一种可能的情况下,终端设备确定通过天线切换使用天线端口0、1、2、3发送SRS,即第四天线端口集合就是第二天线端口集合。在另外一种可能的情况下,终端设备确定通过天线切换使用天线端口0、1、2、3发送SRS,但是端口0、1和端口2、3发送的SRS位于不用的时间单元(例如子帧),则终端设备可以自行确定或者根据预定义的规则确定哪两个端口为第四天线端口集合。例如,终端设备确定离上报CSI时刻非最近的一次SRS发送对应的两个端口为第四天线端口集合(例如,端口0、1在子帧n1时刻发送SRS,端口2、3在子帧n2发送SRS,子帧n2的时刻晚于子帧n1的时刻,终端设备在后续的n3子帧发送CSI,则第四天线端口集合为端口0、1),此时第四天线端口集合是是第二天线端口集合的子集。
在另外一种可能的情况下,终端设备通过网络设备的进一步信息指示来确定第四天线端口集合,第四天线端口集合是是第二天线端口集合的子集。例如,在SRS的发送方式为非周期发送时,该信道状态信息传输方法还可以包括:网络设备向终端设备发送DCI,DCI中包含有指示位,用于指示终端设备向网络设备发送上述第一天线端口集合对应的CSI及通过第四天线端口集合发送SRS。其中,第四天线端口集合为第二天线端口集合的子集,且第四天下端口集合中的天线端口与第一天线端口集合中的天线端口至少有一个不同。
具体地,该指示位可以是CSI请求域,或者是SRS请求域,或者是其他的比特位,本申请实施例对此不做限制。例如当该比特位的值为1时,可以指示终端设备向网络设备发送第一天线端口集合的CSI及第四天线端口集合的SRS。当该指示位的值为0时,可以指示终端设备无需向网络设备发送第一天线端口集合的CSI及第四天线端口集合的SRS。当然,该比特位不限于是1个比特,比特位的值与终端设备的执行动作也不限于是上述对应关系,本申请实施例对此不做限定。
具体地,上述第一天线端口集合可以是第三天线端口集合的子集;或者上述第三天线端口集合可以是第一天线端口集合的子集;或者上述第一天线端口集合可以是第二天线端口集合的子集。
例如,若终端设备有8个天线端口(依次为天线端口0、1、2、3、4、5、6、7),该终端设备具有两个功率放大器,其中,天线端口0、1、2、3可以做天线端口切换,即终端 设备可以采用天线0、1发送SRS,也可以采用天线2、3发送SRS。若网络设备向终端设备配置了天线切换的使能,那么第二天线端口集合包括天线端口0、1、2、3,第三天线端口集合包括天线端口4、5、6、7。若网络设备没有向终端设备配置天线端口切换的使能,那么第二天线端口集合是天线端口0、1、2、3中的两个天线端口,第三天线端口集合包括剩余的6个天线端口。
在网络设备向终端设备配置了天线切换的使能的情况下,存在以下几种使用场景:
1)当SRS采用天线端口0、1发送时候,终端设备上报的CSI对应的天线端口是4、5;当SRS采用天线端口2、3发送的时候,终端设备上报的CSI对应的天线端口是6、7。此时第一天线端口集合是第三天线端口集合的子集。
2)当SRS采用天线0、1发送的时候,终端设备上报的CSI对应的天线端口是4、5、6、7;当SRS采用天线2、3发送的时候,终端设备上报的CSI对应的天线端口是4、5、6、7。此第一天线端口集合就是第三天线端口集合,也可以说第一天线端口集合是第三天线端口集合的子集。
3)当SRS采用天线0、1发送的时候,终端设备上报的CSI对应的天线端口是2、3、4、5、6、7;当SRS采用天线2、3发送的时候,终端设备上报的CSI对应的天线端口是0、1、4、5、6、7。此时第三天线端口集合是第一天线端口集合的子集。
若终端设备有4个天线端口(依次为天线端口0、1、2、3),该终端设备具有两个功率放大器,终端设备可以分别在天线端口0、1和天线端口2、3之间做天线发送切换。
如果网络设备向终端设备配置了天线切换的使能,此时第二天线端口集合包括天线端口0、1、2、3,第三天线集合是空集。当SRS采用天线0、1发送的时候,终端设备上报的CSI对应的天线端口是2、3;当SRS采用天线2、3发送的时候,终端设备上报的CSI对应的天线端口是0、1。此时,第一天线端口集合是第二天线端口集合的子集。
S402:网络设备向终端设备发送CSI-RS。
具体地,下行传输中,网络设备可以发送CSI-RS,用于终端测量下行CSI,并将预编码矩阵的信息以PMI的形式反馈给网络设备。网络设备通过读取终端设备反馈的PMI选择用于对数据进行预编码的预编码矩阵。
S403:网络设备向终端设备发送SRS的配置信息。
具体地,网络设备向终端设备发送的SRS的配置信息可以是通过CSI的配置信息发送的。如S401中的描述,SRS的配置信息可以是通过与CSI的配置信息关联的第一信息发送的;或者,SRS的配置信息可以是包含于CSI的配置信息中的;或者,SRS的配置信息可以包含CSI的配置信息。可以看出,S401与S403的发生时间一致,不分先后。
S404:终端设备根据CSI的配置信息及CSI-RS确定第一天线端口集合的CSI。
具体地,终端设备根据接收到的CSI配置信息,确定需要上报的CSI的上报参数,如上所述。终端设备还需根据CSI配置信息关联的第一信息确定上报CSI对应的第一天线端口集合。终端设备还需要根据CSI-RS测量下行CSI,并将预编码矩阵的信息以PMI的形式反馈给网络设备。网络设备通过读取终端设备反馈的PMI选择用于对数据进行预编码的预编码矩阵。
具体地,上述CSI可以用来指示上述第一天线端口集合对应的信道,或者用于指示上 述第一天线端口集合对应的信道的相关矩阵,或者用于指示上述第一天线端口集合对应的预编码矩阵。
S405:终端设备根据SRS的配置信息确定第四天线端口集合的SRS。
具体地,终端设备根据接收到的SRS的配置信息,确定需要上报的SRS的各种参数信息,如上所述。终端设备还需根据SRS的配置信息确定发送SRS的第四端口集合。
具体地,S404与S405的实现不分先后,本申请实施例对此不做限制。
S406:终端设备向网络设备发送第一天线端口集合对应的CSI。
具体地,终端设备确定第一天线端口集合对应的CSI后,将其发送至网络设备,以使网络设备根据该CSI确定第一天线端口集合中包含的天线端口对应的信道状态信息。
具体地,终端设备可以通过第二天线端口集合中的全部或者部分天线端口向上述网络设备发送第一天线端口集合对应的CSI。当终端设备的接收天线数大于具有的功率放大器数时,若该终端设备不支持天线切换,则上述第一天线端口集合的CSI由终端设备通过上述第二天线端口集合中的全部天线端口发送;若该终端设备支持天线切换,由于能够同时发送上行数据或参考信号的天线端口是上述第二天线端口集合中的部分天线端口,则上述第一天线端口集合的CSI由终端设备通过上述第二天线端口集合中的部分天线端口发送。
S407:终端设备通过第四天线端口集合包括的天线端口向网络设备发送SRS。
具体地,终端设备确定第四天线端口集合以及需要发送的SRS配置后,通过第四天线端口集合包括的端口发送SRS给网络设备,以使网络设备通过测量该SRS确定第四天线端口集合中包含的天线端口对应的信道状态信息。
具体地,S406与S407的实现不分先后,本申请实施例对此不做限制。
S408:网络设备根据第一天线端口集合的CSI及第四天线端口集合的SRS确定下行信道状态信息。
具体地,网络设备可以结合第一天线端口集合的CSI以及第四天线端口集合的SRS确定整个下行信道的状态信息,从而获得用于对数据进行预编码的预编码矩阵,提高信号的传输质量或者效率。
实施本申请实施例可以通过在CSI配置信息中关联第一信息,使终端设备可以根据第一信息确定其需要上报的CSI对应的第一天线端口集合,网络设备在根据SRS获得部分天线端口对应信道信息后,终端设备不需要再将所有天线端口的信道信息上报至网络设备,节约上行时频资源,减小CSI上报开销。进一步地,采用同一个比特位同时触发终端设备发送第一天线端口集合对应的CSI及通过所述第四天线端口集合的天线端口发送SRS,可以节省DCI中的比特位开销。
在一个具体的实施例中,若第四天线端口集合为前述第二天线端口集合,第一天线端口集合为前述第三天线端口集合,且上述PMI用于指示网络设备的天线端口和终端设备的第一天线端口集合中的天线端口之间的信道,那么在TDD系统中网络设备根据第一天线端口集合的CSI以及第四天线端口集合的SRS获取预编码矩阵的具体流程可以包括以下几个步骤:
a)终端设备在第四天线端口集合的天线端口上发送SRS,使网络设备获得m个发射天线端口对应的信道矩阵H u
b)终端设备测量网络设备发送的CSI-RS,获得并反馈PMI信息,该PMI指示终端设备的第一天线端口集合的n个非发射天线端口对应的信道矩阵H d
c)网络设备通过PMI指示的第一天线端口集合的n个非发射天线端口对应的信道矩阵H d,以及通过SRS测量的第四天线端口集合的m个发射天线端口对应的信道矩阵H u,重构整个下行信道矩阵:
Figure PCTCN2018091257-appb-000001
其中,M为网络设备的发射天线端口数,N为终端设备的接收天线端口数。
可以看出,通过结合m个发射天线端口对应的SRS与n个非发射天线端口对应的CSI,网络设备可以获得完整的下行信道状态信息,从而获得用于对数据进行预编码的预编码矩阵,提高下行数据传输的性能。
上文中,结合图2-图4详细描述了本申请实施例提供的信道状态信息传输方法,应注意,图2-图4的例子仅仅是为了帮助本领域技术人员理解本申请实施例,而非要将本申请实施例限于所例示的具体数值或具体场景。本领域技术人员根据所给出的图2-图4的例子,显然可以进行各种等价的修改或变化,这样的修改或变化也落入本申请实施例的范围内。
下面将结合图5和7描述本申请实施例的网络设备,结合图6和图8描述本申请实施例的终端设备。
图5示出了本申请实施例提供的网络设备50的结构示意图,具体地,如图5所示,该网络设备50至少可以包括:第一发送单元510和第一接收单元520。其中:
第一发送单元510,用于向终端设备发送信道状态信息CSI的配置信息;上述CSI的配置信息关联第一信息,上述第一信息用于指示终端设备的第一天线端口集合,上述CSI的配置信息用于指示上述第一天线端口集合对应的CSI的上报参数。详细说明可参照S201及S401的描述。
第一接收单元520,用于接收上述终端设备发送的上述第一天线端口集合对应的CSI,详细说明可参照S203及S406的描述。
在一种可能的实施例中,上述终端设备包括N个天线端口,上述N个天线端口包括第二天线端口集合与第三天线端口集合;上述第二天线端口集合包括m个天线端口,上述第三天线端口集合包括n个天线端口,上述m+n=N;上述第二天线端口集合与上述第三天线端口集合无交集,其中,m、n和N为整数。在一种可能的实施例中,终端设备的接收天线数大于具有的功率放大器数。若该终端设备不支持天线切换,则上述第二天线端口集合的天线端口数m<N。若该终端设备支持天线切换,则上述第二天线端口集合的天线端口数m小于等于N。可选的,此时,m=N。
第一接收单元520,用于接收上述终端设备通过上述第二天线端口集合中的全部或部分天线端口发送的上述第一天线端口集合对应的CSI。当终端设备的接收天线数大于具有的功率放大器数时,若该终端设备不支持天线切换,则上述第一天线端口集合的CSI由终端设备通过上述第二天线端口集合中的全部天线端口发送;若该终端设备支持天线切换,由于能够同时发送上行数据或参考信号的天线端口是上述第二天线端口集合中的部分天线端口,则上述第一天线端口集合的CSI由终端设备通过上述第二天线端口集合中的部分天 线端口发送。
在一种可能的实施例中,上述第一天线端口集合为上述第三天线端口集合的子集。
在一种可能的实施例中,上述第一信息还用于指示探测参考信号SRS的配置信息,上述SRS的配置信息用于使上述终端设备获得发送SRS的第四天线端口集合,上述第四天线端口集合为上述第二天线端口集合的子集,上述第四天线端口集合中的天线端口与上述第一天线端口集合中的天线端口至少有一个不同。
第一接收单元520,还用于接收上述终端设备通过第四天线端口集合包括的天线端口发送SRS。
在一种可能的实施例中,上述第一信息为SRS的配置信息,上述CSI的配置信息包含上述SRS的配置信息,上述SRS的配置信息用于使上述终端设备获得发送SRS的第四天线端口集合,上述第四天线端口集合为上述第二天线端口集合的子集,上述第四天线端口集合中的天线端口与上述第一天线端口集合中的天线端口至少有一个不同。
第一接收单元520,还用于接收上述终端设备通过第四天线端口集合包括的天线端口发送的SRS。
在一种可能的实施例中,上述第一信息为SRS的配置信息,上述CSI上报配置信息包含于上述SRS的配置信息中,上述SRS的配置信息由上述网络设备向上述终端设备发送,上述SRS的配置信息用于使上述终端设备获得发送SRS的第四天线端口集合,上述第四天线端口集合为上述第二天线端口集合的子集,上述第四天线端口集合中的天线端口与上述第一天线端口集合中的天线端口至少有一个不同。
第一接收单元520,还用于接收上述终端设备通过第四天线端口包括的天线端口发送的SRS。
在一种可能的实施例中,所述SRS的配置信息用于指示所述终端设备发送SRS的第四天线端口集合中天线端口的个数。
在另外一种可能的实施例中,所述SRS的配置信息用于指示所述终端设备发送SRS对应的第四天线端口集合中的天线端口索引。
在一种可能的实施例中,上述第四天线端口集合为上述第二天线端口集合,上述第一天线端口集合为上述第三天线端口集合。
在一种可能的实施例中,上述第一发送单元还用于向上述终端设备发送下行控制信息DCI,上述DCI中包含指示位,上述指示位用于指示上述终端设备发送上述第一天线端口集合对应的CSI及通过上述第四天线端口集合的天线端口发送SRS。
在一种可能的实施例中,上述第一信息还用于指示探测参考信号SRS的配置信息,上述SRS的配置信息用于上述终端设备获得上述第二天线端口集合,或上述第一信息为SRS的配置信息,上述CSI的配置信息包含上述SRS的配置信息,SRS的配置信息用于上述终端设备确定上述第二天线端口集合,或上述第一信息为SRS的配置信息,上述CSI上报配置信息包含于上述SRS的配置信息中,上述SRS的配置信息由上述网络设备向上述终端设备发送,SRS的配置信息用于上述终端设备确定上述第二天线端口集合。
在一种可能的实施例中,第一发送单元510还用于向上述终端设备发送下行控制信息DCI,上述DCI中包含指示位,上述指示位用于指示上述终端设备向网络设备50发送对应 上述第一天线端口集合的上述CSI及通过第四天线端口集合的天线端口发送SRS,其中,上述第四天线端口集合是上述第二天线端口集合的子集,并且上述第四天线端口集合中的天线端口与上述第一天线端口集合中的天线端口至少有一个不同。
在一种可能的实施例中,第一接收单元520还用于接收上述终端设备通过上述第四天线端口集合包括的天线端口发送的SRS。
在一种可能的实施例中,SRS的配置信息中包含有一个或者多个SRS资源配置信息,每个所述SRS资源配置信息中包含有发送SRS的天线端口个数。
在一种可能的实施例中,上述第四天线端口集合为空集。
在一种可能的实施例中,上述第一天线端口集合包括上述终端设备的N个接收天线端口。
在一种可能的实施例中,上述第三天线端口集合为上述第一天线端口集合的子集。
在一种可能的实施例中,上述第一天线端口集合为上述第二天线端口集合的子集。
例如,若终端设备有8个天线端口(依次为天线端口0、1、2、3、4、5、6、7),该终端设备具有两个功率放大器,其中,天线端口0、1、2、3可以做天线端口切换,即终端设备可以采用天线0、1发送SRS,也可以采用天线2、3发送SRS。若网络设备向终端设备配置了天线切换的使能,那么第二天线端口集合包括天线端口0、1、2、3,第三天线端口集合包括天线端口4、5、6、7。若网络设备没有向终端设备配置天线端口切换的使能,那么第二天线端口集合是天线端口0、1、2、3中的两个天线端口,第三天线端口集合包括剩余的6个天线端口。
在网络设备向终端设备配置了天线切换的使能的情况下,存在以下几个使用场景:
1)当SRS采用天线端口0、1发送时候,终端设备上报的CSI对应的天线端口是4、5;当SRS采用天线端口2、3发送的时候,终端设备上报的CSI对应的天线端口是6、7。此时第一天线端口集合是第三天线端口集合的子集。
2)当SRS采用天线0、1发送的时候,终端设备上报的CSI对应的天线端口是4、5、6、7;当SRS采用天线2、3发送的时候,终端设备上报的CSI对应的天线端口是4、5、6、7。此第一天线端口集合就是第三天线端口集合,也可以说第一天线端口集合是第三天线端口集合的子集。
3)当SRS采用天线0、1发送的时候,终端设备上报的CSI对应的天线端口是2、3、4、5、6、7;当SRS采用天线2、3发送的时候,终端设备上报的CSI对应的天线端口是0、1、4、5、6、7。此时第三天线端口集合是第一天线端口集合的子集。
若终端设备有4个天线端口,该终端设备具有两个功率放大器,终端设备可以分别在天线端口0、1和天线端口2、3之间做天线发送切换。
如果网络设备向终端设备配置了天线切换的使能,此时第二天线端口集合包括天线端口0、1、2、3,第三天线集合是空集。当SRS采用天线0、1发送的时候,终端设备上报的CSI对应的天线端口是2、3;当SRS采用天线2、3发送的时候,终端设备上报的CSI对应的天线端口是0、1。此时,第一天线端口集合是第二天线端口集合的子集。在一种可能的实施例中,上述指示位为CSI请求域或SRS请求域。
在一种可能的实施例中,所述CSI的全部或部分上报参数用于指示所述第一天线集合 对应的信道,或者指示所示第一天线集合对应的信道的相关矩阵,或者指示所述第一天线集合对应的预编码矩阵。
所述网络设备50还包括产生单元,用于根据终端设备通过第四天线端口集合的天线端口发送的SRS和所述第一天线集合对应的CSI产生预编码矩阵。
图6示出了本申请实施例提供终端设备60的结构示意图,具体地,如图6所示,该终端设备60至少可以包括:第二接收单元610、确定单元620和第二发送单元630。其中:
第二接收单元610,用于接收网络设备发送的信道状态信息CSI的配置信息,上述CSI的配置信息关联第一信息,上述第一信息用于指示上述终端设备的第一天线端口集合,上述CSI的配置信息用于指示上述第一天线端口集合对应的CSI的上报参数。详细说明可参照S201及S401的描述。
确定单元620,用于根据上述CSI的配置信息确定上述第一天线端口集合对应的CSI。详细说明可参照S202及S404的描述。
第二发送单元630,用于向上述网络设备发送上述第一天线端口集合对应的CSI。详细说明可参照S203及S406的描述。
在一种可能的实施例中,终端设备60包括N个天线端口,上述N个天线端口包括第二天线端口集合与第三天线端口集合;上述第二天线端口集合包括m个天线端口,上述第三天线端口集合包括n个天线端口,上述m+n=N;上述第二天线端口集合与上述第三天线端口集合无交集,其中,上述m、n和N为整数。
在一种可能的实施例中,终端设备60的接收天线数大于具有的功率放大器数。若该终端设备60不支持天线切换,则上述第二天线端口集合的天线端口数m<N。若该终端设备60支持天线切换,则上述第二天线端口集合的天线端口数m小于等于N。可选的,此时,m=N。
第二发送单元630,用于通过上述第二天线端口集合中的全部或者部分天线端口向上述网络设备发送上述第一天线端口集合对应的CSI。当终端设备60的接收天线数大于具有的功率放大器数时,若该终端设备60不支持天线切换,则上述第一天线端口集合的CSI由终端设备60通过上述第二天线端口集合中的全部天线端口发送;若该终端设备60支持天线切换,由于能够同时发送上行数据或参考信号的天线端口是上述第二天线端口集合中的部分天线端口,则上述第一天线端口集合的CSI由终端设备60通过上述第二天线端口集合中的部分天线端口发送。
在一种可能的实施例中,上述第一天线端口集合为上述第三天线端口集合的子集。
在一种可能的实施例中,上述第一信息还用于指示探测参考信号SRS的配置信息,上述SRS的配置信息用于使上述终端设备60获得发送SRS的第四天线端口集合,上述第四天线端口集合为上述第二天线端口集合的子集,上述第四天线端口集合中的天线端口与上述第一天下端口集合中的天线端口至少有一个不同。
第二发送单元630,还用于通过第四天线端口集合包括的天线端口发送SRS。
在一种可能的实施例中,上述第一信息为SRS的配置信息,上述CSI的配置信息中包含上述SRS的配置信息,上述SRS的配置信息用于使上述终端设备60获得发送SRS的第 四天线端口集合,上述第四天线端口集合为上述第二天线端口集合的子集,上述第四天线端口集合中的天线端口与上述第一天线端口集合中的天线端口至少有一个不同。
第二发送单元630,还用于通过第四天线端口集合包括的天线端口向网络设备50发送SRS。详细说明可参照S407的描述。
在一种可能的实施例中,上述第一信息为SRS的配置信息,上述CSI的配置信息包含于上述SRS的配置信息中,上述SRS的配置信息由网络设备50向终端设备60发送,上述SRS的配置信息用于使上述终端设备60获得发送SRS的第四天线端口集合,上述第四天线端口集合为上述第二天线端口集合的子集,上述第四天线端口集合中的天线端口与上述第一天线端口集合中的天线端口至少有一个不同。
第二发送单元630,还用于通过第四天线端口集合包括的天线端口向网络设备50发送SRS。
在一种可能的实施例中,所述SRS的配置信息用于确定所述终端设备60发送SRS的第四天线端口集合中天线端口的个数。
在另外一种可能的实施例中,所述SRS的配置信息用于指示所述终端设备发送SRS对应的第四天线端口集合中的天线端口索引。
在一种可能的实施例中,上述第四天线端口集合为上述第二天线端口集合,上述第一天线端口集合为上述第三天线端口集合。
在一种可能的实施例中,第二接收单元610还用于接收网络设备50发送的下行控制信息DCI,上述DCI中包含指示位,上述指示位用于指示终端设备60向网络设备50发送上述第一天线端口集合对应的CSI及通过上述第四天线端口集合的天线端口发送的SRS。
在一种可能的实施例中,上述第一信息还用于指示探测参考信号SRS的配置信息,上述SRS的配置信息用于使上述终端设备60获得上述第二天线端口集合,或者上述第一信息为SRS的配置信息,上述CSI的配置信息包含上述SRS的配置信息,SRS的配置信息用于使上述终端设备60获得上述第二天线端口集合,或者上述第一信息为SRS的配置信息,上述CSI的配置信息包含于上述SRS的配置信息中,上述SRS的配置信息由上述网络设备50向上述终端设备60发送,SRS的配置信息用于使上述终端设备60获得上述第二天线端口集合。
在一种可能的实施例中,上述第二接收单元610还用于接收上述网络设备50发送的下行控制信息DCI,上述DCI中包含指示位,上述指示位用于指示上述终端设备60向上述网络设备50发送对应上述第一天线端口集合的上述CSI及通过第四天线端口集合的天线端口发送SRS,其中,上述第四天线端口集合是上述第二天线端口集合的子集,并且上述第四天线端口集合中的天线端口与上述第一天线端口集合中的天线端口至少有一个不同。
在一种可能的实施例中,上述第二发送单元630还用于通过上述第四天线端口集合包括的天线端口向上述网络设备50发送SRS。
在一种可能的实施例中,SRS的配置信息中包含有一个或者多个SRS资源配置信息,每个所述SRS资源配置信息中包含有发送SRS的天线端口个数。
在一种可能的实施例中,上述第四天线端口集合为空集。
在一种可能的实施例中,上述第一天线端口集合包括上述终端设备60的N个接收天线 端口。
在一种可能的实施例中,上述第三天线端口集合为上述第一天线端口集合的子集。
在一种可能的实施例中,上述第一天线端口集合为上述第二天线端口集合的子集。
例如,若终端设备有8个天线端口(依次为天线端口0、1、2、3、4、5、6、7),该终端设备具有两个功率放大器,其中,天线端口0、1、2、3可以做天线端口切换,即终端设备可以采用天线0、1发送SRS,也可以采用天线2、3发送SRS。若网络设备向终端设备配置了天线切换的使能,那么第二天线端口集合包括天线端口0、1、2、3,第三天线端口集合包括天线端口4、5、6、7。若网络设备没有向终端设备配置天线端口切换的使能,那么第二天线端口集合是天线端口0、1、2、3中的两个天线端口,第三天线端口集合包括剩余的6个天线端口。
在网络设备向终端设备配置了天线切换的使能的情况下,存在以下几个使用场景:
1)当SRS采用天线端口0、1发送时候,终端设备上报的CSI对应的天线端口是4、5;当SRS采用天线端口2、3发送的时候,终端设备上报的CSI对应的天线端口是6、7。此时第一天线端口集合是第三天线端口集合的子集。
2)当SRS采用天线0、1发送的时候,终端设备上报的CSI对应的天线端口是4、5、6、7;当SRS采用天线2、3发送的时候,终端设备上报的CSI对应的天线端口是4、5、6、7。此第一天线端口集合就是第三天线端口集合,也可以说第一天线端口集合是第三天线端口集合的子集。
3)当SRS采用天线0、1发送的时候,终端设备上报的CSI对应的天线端口是2、3、4、5、6、7;当SRS采用天线2、3发送的时候,终端设备上报的CSI对应的天线端口是0、1、4、5、6、7。此时第三天线端口集合是第一天线端口集合的子集。
若终端设备有4个天线端口,该终端设备具有两个功率放大器,终端设备可以分别在天线端口0、1和天线端口2、3之间做天线发送切换。
如果网络设备向终端设备配置了天线切换的使能,此时第二天线端口集合包括天线端口0、1、2、3,第三天线集合是空集。当SRS采用天线0、1发送的时候,终端设备上报的CSI对应的天线端口是2、3;当SRS采用天线2、3发送的时候,终端设备上报的CSI对应的天线端口是0、1。此时,第一天线端口集合是第二天线端口集合的子集。
在一种可能的实施例中,上述指示位为CSI请求域或SRS请求域。
在一种可能的实施例中,所述CSI的全部或部分上报参数用于指示所述第一天线集合对应的信道,或者指示所示第一天线集合对应的信道的相关矩阵,或者指示所述第一天线集合对应的预编码矩阵。
图7示出了本申请实施例提供的另外一种网络设备70的结构示意图。如图7所示,网络设备70至少可以包括:至少一个处理器701,至少一个网络接口704,用户接口703,存储器705,至少一个通信总线702,显示屏706。其中,通信总线702用于实现这些组件之间的连接通信,应当理解,网络设备70中的各个组件还可以通过其他连接器相耦合,所述其他连接器可包括各类接口、传输线或总线等,在本申请的各个实施例中,耦合是指通过特定方式的相互联系,包括直接相连或通过其他设备间接相连。
其中,处理器701可以包括如下至少一种类型:通用中央处理器(central processing unit, CPU)、数字信号处理器(digital signal processor,DSP)、微处理器、专用集成电路(application specific integrated circuit,ASIC)、微控制器(microcontroller unit,MCU)、现场可编程门阵列(field programmable gate array,FPGA)、或者用于实现逻辑运算的集成电路。例如,处理器701可以是一个单核(single-CPU)处理器或多核(multi-CPU)处理器。处理器701内包括的多个处理器或单元可以是集成在一个芯片中或位于多个不同的芯片上。
用户接口703可以包括键盘、物理按钮(按压按钮、摇臂按钮等)、拨号盘、滑动开关、操纵杆、点击滚轮、光鼠(光鼠是不显示可视输出的触摸敏感表面,或者是由触摸屏形成的触摸敏感表面的延伸)等等。网络接口704可选的可以包括标准的有线接口、无线接口(如WI-FI接口)。
存储器705可以是非掉电易失性存储器,例如是嵌入式多媒体卡(embedded multi media card,EMMC)、通用闪存存储(universal flash storage,UFS)或只读存储器(read-only memory,ROM),可选的,存储器705包括本申请实施例中的flash,或者是可存储静态信息和指令的其他类型的静态存储设备,还可以是掉电易失性存储器(volatile memory),例如随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的程序代码并能够由计算机存取的任何其他计算机可读存储介质,但不限于此。可选的,存储器705可选的还可以是至少一个位于远离前述处理器701的存储系统。如图7所示,作为一种计算机存储介质的存储器705中可以包括操作系统、网络通信模块、用户接口模块以及程序指令。
存储器705可以是独立存在,通过连接器与处理器701相耦合。存储器705也可以和处理器701集成在一起。其中,存储器705能够存储执行本申请方案的程序指令在内的各类计算机程序指令,并由处理器701来控制执行,被执行的各类计算机程序指令也可被视为是处理器701的驱动程序。例如,处理器701用于执行存储器705中存储的计算机程序指令,从而实现本申请中图2及图4方法实施例中涉及网络设备的各个过程。所述计算机程序指令数量很大,可形成能够被处理器701中的至少一个处理器执行的计算机可执行指令,以驱动相关处理器执行各类处理,如支持上述各类无线通信协议的通信信号处理算法、操作系统运行或应用程序运行。
显示屏706,用于显示由用户输入的信息。示例性的,显示屏706可以包括显示面板和触控面板。其中,显示面板可以采用液晶显示器(liquid crystal display,LCD)、有机发光二极管(organic light-emitting diode,OLED)、发光二级管(light emitting diode,LED)显示设备或阴极射线管(cathode ray tube,CRT)等来配置显示面板。触控面板,也称为触摸屏、触敏屏等,可收集用户在其上或附近的接触或者非接触操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板上或在触控面板附近的操作,也可以包括体感操作;该操作包括单点控制操作、多点控制操作等操作类型),并根据预先设定的程式驱动相应的连接装置。
图8示出了本申请实施例提供的另外一种终端设备80的结构示意图。如图8所示,终端设备80至少可以包括:至少一个处理器801,至少一个网络接口804,用户接口803,存储器805,至少一个通信总线802,显示屏806。其中,通信总线802用于实现这些组件之间的连接通信,应当理解,终端设备80中的各个组件还可以通过其他连接器相耦合,所述其他连接器可包括各类接口、传输线或总线等,在本申请的各个实施例中,耦合是指通过特定方式的相互联系,包括直接相连或通过其他设备间接相连。
其中,处理器801可以包括如下至少一种类型:通用中央处理器(central processing unit,CPU)、数字信号处理器(digital signal processor,DSP)、微处理器、专用集成电路(application specific integrated circuit,ASIC)、微控制器(microcontroller unit,MCU)、现场可编程门阵列(field programmable gate array,FPGA)、或者用于实现逻辑运算的集成电路。例如,处理器801可以是一个单核(single-CPU)处理器或多核(multi-CPU)处理器。处理器801内包括的多个处理器或单元可以是集成在一个芯片中或位于多个不同的芯片上。
用户接口803可以包括键盘、物理按钮(按压按钮、摇臂按钮等)、拨号盘、滑动开关、操纵杆、点击滚轮、光鼠(光鼠是不显示可视输出的触摸敏感表面,或者是由触摸屏形成的触摸敏感表面的延伸)等等。网络接口804可选的可以包括标准的有线接口、无线接口(如WI-FI接口)。
存储器805可以是非掉电易失性存储器,例如是嵌入式多媒体卡(embedded multi media card,EMMC)、通用闪存存储(universal flash storage,UFS)或只读存储器(read-only memory,ROM),可选的,存储器805包括本申请实施例中的flash,或者是可存储静态信息和指令的其他类型的静态存储设备,还可以是掉电易失性存储器(volatile memory),例如随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的程序代码并能够由计算机存取的任何其他计算机可读存储介质,但不限于此。可选的,存储器805可选的还可以是至少一个位于远离前述处理器801的存储系统。如图8所示,作为一种计算机存储介质的存储器805中可以包括操作系统、网络通信模块、用户接口模块以及程序指令。
存储器805可以是独立存在,通过连接器与处理器801相耦合。存储器805也可以和处理器801集成在一起。其中,存储器805能够存储执行本申请方案的程序指令在内的各类计算机程序指令,并由处理器801来控制执行,被执行的各类计算机程序指令也可被视为是处理器801的驱动程序。例如,处理器801用于执行存储器805中存储的计算机程序指令,从而实现本申请中图2及图4方法实施例中涉及终端设备的各个过程。所述计算机程序指令数量很大,可形成能够被处理器801中的至少一个处理器执行的计算机可执行指令,以驱动相关处理器执行各类处理,如支持上述各类无线通信协议的通信信号处理算法、操作系统运行或应用程序运行。
显示屏806,用于显示由用户输入的信息。示例性的,显示屏806可以包括显示面板 和触控面板。其中,显示面板可以采用液晶显示器(liquid crystal display,LCD)、有机发光二极管(organic light-emitting diode,OLED)、发光二级管(light emitting diode,LED)显示设备或阴极射线管(cathode ray tube,CRT)等来配置显示面板。触控面板,也称为触摸屏、触敏屏等,可收集用户在其上或附近的接触或者非接触操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板上或在触控面板附近的操作,也可以包括体感操作;该操作包括单点控制操作、多点控制操作等操作类型),并根据预先设定的程式驱动相应的连接装置。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质的类型请参考对存储器705或805的描述。
本申请实施例还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机或处理器上运行时,使得计算机或处理器执行上述任一个信道状态信息传输方法中的一个或多个步骤。上述装置的各组成模块如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在所述计算机可读取存储介质中。
基于这样的理解,本申请实施例还提供一种包含指令的计算机程序产品,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备、移动终端或其中的处理器执行本申请各个实施例所述方法的全部或部分步骤。该存储介质的种类请参考存储器705或805的相关描述。
本申请实施例方法中的步骤可以根据实际需要进行顺序调整、合并和删减。
本申请实施例装置中的模块可以根据实际需要进行合并、划分和删减。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (49)

  1. 一种信道状态信息传输方法,其特征在于,包括:
    网络设备向终端设备发送信道状态信息CSI的配置信息;所述CSI的配置信息关联第一信息,所述第一信息用于指示所述终端设备的第一天线端口集合,所述CSI的配置信息用于指示所述第一天线端口集合对应的CSI的上报参数;
    所述网络设备接收所述终端设备发送的所述第一天线端口集合对应的所述CSI。
  2. 如权利要求1所述的方法,其特征在于,所述终端设备包括N个天线端口,所述N个天线端口包括第二天线端口集合与第三天线端口集合;所述第二天线端口集合包括m个天线端口,所述第三天线端口集合包括n个天线端口,所述m+n=N;所述第二天线端口集合与所述第三天线端口集合无交集,m、n和N为整数;
    所述网络设备接收所述终端设备发送的所述第一天线端口集合对应的所述CSI包括:所述网络设备接收所述终端设备通过所述第二天线端口集合中的全部或部分天线端口发送的所述第一天线端口集合对应的所述CSI。
  3. 如权利要求2所述的方法,其特征在于,所述第一天线端口集合为所述第三天线端口集合的子集。
  4. 如权利要求2所述的方法,其特征在于,所述第一信息还用于指示探测参考信号SRS的配置信息,或
    所述第一信息为SRS的配置信息,所述CSI的配置信息包含所述SRS的配置信息,或
    所述第一信息为SRS的配置信息,所述CSI的配置信息包含于所述SRS的配置信息中,所述SRS的配置信息由所述网络设备向所述终端设备发送;
    所述SRS的配置信息用于使所述终端设备获得发送SRS的第四天线端口集合,所述第四天线端口集合为所述第二天线端口集合的子集,所述第四天线端口集合中的天线端口与所述第一天线端口集合中的天线端口至少有一个不同;
    所述方法还包括:所述网络设备接收所述终端设备通过所述第四天线端口集合包括的天线端口发送的SRS。
  5. 如权利要求4所述的方法,其特征在于,所述第四天线端口集合为所述第二天线端口集合,所述第一天线端口集合为所述第三天线端口集合。
  6. 如权利要求4或5所述的方法,其特征在于,所述方法还包括:所述网络设备向所述终端设备发送下行控制信息DCI,所述DCI中包含指示位,所述指示位用于指示所述终端设备向所述网络设备发送所述第一天线端口集合对应的所述CSI及通过所述第四天线端口集合的天线端口发送SRS。
  7. 如权利要求2所述的方法,其特征在于,所述第一信息还用于指示探测参考信号SRS的配置信息,所述SRS的配置信息用于使所述终端设备获得所述第二天线端口集合,或
    所述第一信息为SRS的配置信息,所述CSI的配置信息包含所述SRS的配置信息,SRS的配置信息用于使所述终端设备获得所述第二天线端口集合,或
    所述第一信息为SRS的配置信息,所述CSI的配置信息包含于所述SRS的配置信息中, 所述SRS的配置信息由所述网络设备向所述终端设备发送,所述SRS的配置信息用于使所述终端设备获得所述第二天线端口集合。
  8. 如权利要求7所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送下行控制信息DCI,所述DCI中包含指示位,所述指示位用于指示所述终端设备向所述网络设备发送对应所述第一天线端口集合的所述CSI及通过第四天线端口集合的天线端口发送SRS,其中,所述第四天线端口集合是所述第二天线端口集合的子集,并且所述第四天线端口集合中的天线端口与所述第一天线端口集合中的天线端口至少有一个不同。
  9. 如权利要求8所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收所述终端设备通过所述第四天线端口集合包括的天线端口发送的SRS。
  10. 如权利要求7-9任一项所述的方法,其特征在于,所述第三天线端口集合为所述第一天线端口集合的子集。
  11. 如权利要求6、8或9任一项所述的方法,其特征在于,所述指示位为CSI请求域或SRS请求域。
  12. 一种信道状态信息传输方法,其特征在于,包括:
    终端设备接收网络设备发送的信道状态信息CSI的配置信息;所述CSI的配置信息关联第一信息,所述第一信息用于指示所述终端设备的第一天线端口集合,所述CSI的配置信息用于指示所述第一天线端口集合对应的CSI的上报参数;
    所述终端设备根据所述CSI的配置信息确定所述第一天线端口集合对应的所述CSI;
    所述终端设备向所述网络设备发送所述第一天线端口集合对应的所述CSI。
  13. 如权利要求12所述的方法,其特征在于,所述终端设备包括N个天线端口,所述N个天线端口包括第二天线端口集合与第三天线端口集合;所述第二天线端口集合包括m个天线端口,所述第三天线端口集合包括n个天线端口,所述m+n=N;所述第二天线端口集合与所述第三天线端口集合无交集,所述m、n和N为整数;
    所述终端设备向所述网络设备发送所述第一天线端口集合对应的所述CSI包括:所述终端设备通过所述第二天线端口集合中的全部或部分天线端口向所述网络设备发送所述第一天线端口集合对应的所述CSI。
  14. 如权利要求13所述的方法,其特征在于,所述第一天线端口集合为所述第三天线端口集合的子集。
  15. 如权利要求13所述的方法,其特征在于,所述第一信息还用于指示探测参考信号SRS的配置信息,或
    所述第一信息为SRS的配置信息,所述CSI的配置信息包含所述SRS的配置信息,或
    所述第一信息为SRS的配置信息,所述CSI的配置信息包含于所述SRS的配置信息中,所述SRS的配置信息由所述网络设备向所述终端设备发送;
    所述SRS的配置信息用于使所述终端设备获得发送SRS的第四天线端口集合,所述第四天线端口集合为所述第二天线端口集合的子集,所述第四天线端口集合中的天线端口与 所述第一天线端口集合中的天线端口至少有一个不同;
    所述方法还包括:所述终端设备通过所述第四天线端口集合包括的天线端口发送SRS。
  16. 如权利要求15所述的方法,其特征在于,所述第四天线端口集合为所述第二天线端口集合,所述第一天线端口集合为所述第三天线端口集合。
  17. 如权利要求15或16所述的方法,其特征在于,所述方法还包括:所述终端设备接收所述网络设备发送的下行控制信息DCI,所述DCI中包含指示位,所述指示位用于指示所述终端设备向所述网络设备发送所述第一天线端口集合对应的所述CSI及通过所述第四天线端口集合的天线端口发送SRS。
  18. 如权利要求13所述的方法,其特征在于,所述第一信息还用于指示探测参考信号SRS的配置信息,所述SRS的配置信息用于使所述终端设备获得所述第二天线端口集合,或
    所述第一信息为SRS的配置信息,所述CSI的配置信息包括所述SRS的配置信息,所述SRS的配置信息用于使所述终端设备获得所述第二天线端口集合,或
    所述第一信息为SRS的配置信息,所述CSI的配置信息包含于所述SRS的配置信息中,所述SRS的配置信息用于使所述终端设备获得所述第二天线端口集合。
  19. 如权利要求18所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收所述网络设备发送的下行控制信息DCI,所述DCI中包含指示位,所述指示位用于指示所述终端设备向所述网络设备发送对应所述第一天线端口集合的所述CSI及通过第四天线端口集合的天线端口发送SRS,其中,所述第四天线端口集合是所述第二天线端口集合的子集,并且所述第四天线端口集合中的天线端口与所述第一天线端口集合中的天线端口至少有一个不同。
  20. 如权利要求19所述的方法,其特征在于,所述方法还包括:
    所述终端设备通过所述第四天线端口集合包括的天线端口向所述网络设备发送SRS。
  21. 如权利要求18-20任一项所述的方法,其特征在于,所述第三天线端口集合为所述第一天线端口集合的子集。
  22. 如权利要求17、19或20任一项所述的方法,其特征在于,所述指示位为CSI请求域或SRS请求域。
  23. 一种网络设备,其特征在于,包括:
    第一发送单元,用于向终端设备发送信道状态信息CSI的配置信息;所述CSI的配置信息关联第一信息,所述第一信息用于指示所述终端设备的第一天线端口集合,所述CSI的配置信息用于指示所述第一天线端口集合对应的CSI的上报参数;
    第一接收单元,用于接收所述终端设备发送的所述第一天线端口集合对应的所述CSI。
  24. 如权利要求23所述的网络设备,其特征在于,所述终端设备包括N个天线端口,所述N个天线端口包括第二天线端口集合与第三天线端口集合;所述第二天线端口集合包括m个天线端口,所述第三天线端口集合包括n个天线端口,所述m+n=N;所述第二天线端口集合与所述第三天线端口集合无交集,m、n和N为整数;
    所述第一接收单元,用于接收所述终端设备通过所述第二天线端口集合中的全部或部 分天线端口发送的所述第一天线端口集合对应的所述CSI。
  25. 如权利要求24所述的网络设备,其特征在于,所述第一天线端口集合为所述第三天线端口集合的子集。
  26. 如权利要求24所述的网络设备,其特征在于,所述第一信息还用于指示探测参考信号SRS的配置信息,或
    所述第一信息为SRS的配置信息,所述CSI的配置信息包含所述SRS的配置信息,或
    所述第一信息为SRS的配置信息,所述CSI的配置信息包含于所述SRS的配置信息中,所述SRS的配置信息由所述网络设备向所述终端设备发送;
    所述SRS的配置信息用于使所述终端设备获得发送SRS的第四天线端口集合,所述第四天线端口集合为所述第二天线端口集合的子集,所述第四天线端口集合中的天线端口与所述第一天线端口集合中的天线端口至少有一个不同;
    所述第一接收单元,还用于接收所述终端设备通过所述第四天线端口集合包括的天线端口发送的SRS。
  27. 如权利要求26所述的网络设备,其特征在于,所述第四天线端口集合为所述第二天线端口集合,所述第一天线端口集合为所述第三天线端口集合。
  28. 如权利要求26或27所述的网络设备,其特征在于,所述第一发送单元还用于向所述终端设备发送下行控制信息DCI,所述DCI中包含指示位,所述指示位用于指示所述终端设备发送所述第一天线端口集合对应的所述CSI及通过所述第四天线端口集合的天线端口发送SRS。
  29. 如权利要求24所述的网络设备,其特征在于,所述第一信息还用于指示探测参考信号SRS的配置信息,所述SRS的配置信息用于使所述终端设备获得所述第二天线端口集合,或
    所述第一信息为SRS的配置信息,所述CSI的配置信息包含所述SRS的配置信息,SRS的配置信息用于使所述终端设备获得所述第二天线端口集合,或
    所述第一信息为SRS的配置信息,所述CSI的配置信息包含于所述SRS的配置信息中,所述SRS的配置信息由所述网络设备向所述终端设备发送,所述SRS的配置信息用于使所述终端设备获得所述第二天线端口集合。
  30. 如权利要求29所述的网络设备,其特征在于,所述第一发送单元还用于向所述终端设备发送下行控制信息DCI,所述DCI中包含指示位,所述指示位用于指示所述终端设备向所述网络设备发送对应所述第一天线端口集合的所述CSI及通过第四天线端口集合的天线端口发送SRS,其中,所述第四天线端口集合是所述第二天线端口集合的子集,并且所述第四天线端口集合中的天线端口与所述第一天线端口集合中的天线端口至少有一个不同。
  31. 如权利要求30所述的网络设备,其特征在于,所述第一接收单元还用于接收所述终端设备通过所述第四天线端口集合包括的天线端口发送的SRS。
  32. 如权利要求29-31任一项所述的网络设备,其特征在于,所述第三天线端口集合为所述第一天线端口集合的子集。
  33. 如权利要求28、30或31任一项所述的网络设备,其特征在于,所述指示位为CSI 请求域或SRS请求域。
  34. 一种终端设备,其特征在于,包括:
    第二接收单元,用于接收网络设备发送的信道状态信息CSI的配置信息,所述CSI的配置信息关联第一信息,所述第一信息用于指示所述终端设备的第一天线端口集合,所述CSI的配置信息用于指示所述第一天线端口集合对应的CSI的上报参数;
    确定单元,用于根据所述CSI的配置信息确定所述第一天线端口集合对应的所述CSI;
    第二发送单元,用于向所述网络设备发送所述第一天线端口集合对应的所述CSI。
  35. 如权利要求34所述的终端设备,其特征在于,所述终端设备包括N个天线端口,所述N个天线端口包括第二天线端口集合与第三天线端口集合;所述第二天线端口集合包括m个天线端口,所述第三天线端口集合包括n个天线端口,所述m+n=N;所述第二天线端口集合与所述第三天线端口集合无交集,所述m、n和N为整数;
    所述第二发送单元,用于通过所述第二天线端口集合中的全部或部分天线端口向所述网络设备发送所述第一天线端口集合对应的所述CSI。
  36. 如权利要求35所述的终端设备,其特征在于,所述第一天线端口集合为所述第三天线端口集合的子集。
  37. 如权利要求35所述的终端设备,其特征在于,所述第一信息还用于指示探测参考信号SRS的配置信息,或
    所述第一信息为SRS的配置信息,所述CSI的配置信息包含所述SRS的配置信息,或
    所述第一信息为SRS的配置信息,所述CSI的配置信息包含于所述SRS的配置信息中,所述SRS的配置信息由所述网络设备向所述终端设备发送;
    所述SRS的配置信息用于使所述终端设备获得发送SRS的第四天线端口集合,所述第四天线端口集合为所述第二天线端口集合的子集,所述第四天线端口集合中的天线端口与所述第一天线端口集合中的天线端口至少有一个不同;
    所述第二发送单元,还用于通过所述第四天线端口集合包括的天线端口发送SRS。
  38. 如权利要求37所述的终端设备,其特征在于,所述第四天线端口集合为所述第二天线端口集合,所述第一天线端口集合为所述第三天线端口集合。
  39. 如权利要求37或38所述的终端设备,其特征在于,所述第二接收单元还用于接收所述网络设备发送的下行控制信息DCI,所述DCI中包含指示位,所述指示位用于指示所述终端设备向所述网络设备发送所述第一天线端口集合对应的所述CSI及通过所述第四天线端口集合的的天线端口发送SRS。
  40. 如权利要求35所述的终端设备,其特征在于,所述第一信息还用于指示探测参考信号SRS的配置信息,所述SRS的配置信息用于使所述终端设备获得所述第二天线端口集合,或
    所述第一信息为SRS的配置信息,所述CSI的配置信息包括所述SRS的配置信息,所述SRS的配置信息用于使所述终端设备获得所述第二天线端口集合,或
    所述第一信息为SRS的配置信息,所述CSI的配置信息包含于所述SRS的配置信息中,所述SRS的配置信息用于使所述终端设备获得所述第二天线端口集合。
  41. 如权利要求40所述的终端设备,其特征在于,所述第二接收单元还用于接收所述网络设备发送的下行控制信息DCI,所述DCI中包含指示位,所述指示位用于指示所述终端设备向所述网络设备发送对应所述第一天线端口集合的所述CSI及通过第四天线端口集合的天线端口发送SRS,其中,所述第四天线端口集合是所述第二天线端口集合的子集,并且所述第四天线端口集合中的天线端口与所述第一天线端口集合中的天线端口至少有一个不同。
  42. 如权利要求41所述的终端设备,其特征在于,所述第二发送单元还用于通过所述第四天线端口集合包括的天线端口向所述网络设备发送SRS。
  43. 如权利要求40-42任一项所述的终端设备,其特征在于,所述第三天线端口集合为所述第一天线端口集合的子集。
  44. 如权利要求39、41或42任一项所述的终端设备,其特征在于,所述指示位为CSI请求域或SRS请求域。
  45. 一种通信系统,其特征在于,包括网络设备及终端设备,所述网络设备如权利要求23-33任一项所述的网络设备,所述终端设备如权利要求34-44任一项所述的终端设备。
  46. 一种网络设备,其特征在于,包括:处理器、存储器和收发器,其中:
    所述处理器、所述存储器和所述收发器相互连接,所述存储器用于存储计算机程序,所述计算机程序包括程序指令,所述处理器被配置用于调用所述程序指令,执行如权利要求1-11任一项所述的信道状态信息传输方法。
  47. 一种终端设备,其特征在于,包括:处理器、存储器和收发器,其中:
    所述处理器、所述存储器和所述收发器相互连接,所述存储器用于存储计算机程序,所述计算机程序包括程序指令,所述处理器被配置用于调用所述程序指令,执行如权利要求12-22任一项所述的信道状态信息传输方法。
  48. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序包括程序指令,所述程序指令当被处理器执行时,使所述处理器执行如权利要求1-11任一项所述的信道状态信息传输方法。
  49. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序包括程序指令,所述程序指令当被处理器执行时,使所述处理器执行如权利要求12-22任一项所述的信道状态信息传输方法。
PCT/CN2018/091257 2018-06-14 2018-06-14 信道状态信息传输方法、相关装置及通信系统 WO2019237303A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/091257 WO2019237303A1 (zh) 2018-06-14 2018-06-14 信道状态信息传输方法、相关装置及通信系统
CN201880094505.5A CN112262588B (zh) 2018-06-14 2018-06-14 信道状态信息传输方法、相关装置及通信系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/091257 WO2019237303A1 (zh) 2018-06-14 2018-06-14 信道状态信息传输方法、相关装置及通信系统

Publications (1)

Publication Number Publication Date
WO2019237303A1 true WO2019237303A1 (zh) 2019-12-19

Family

ID=68841692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/091257 WO2019237303A1 (zh) 2018-06-14 2018-06-14 信道状态信息传输方法、相关装置及通信系统

Country Status (2)

Country Link
CN (1) CN112262588B (zh)
WO (1) WO2019237303A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113676234A (zh) * 2020-05-14 2021-11-19 上海诺基亚贝尔股份有限公司 具有长传播延迟的ntn中的增强csi反馈
CN113676293A (zh) * 2020-05-15 2021-11-19 华为技术有限公司 一种信息发送、接收方法、装置和系统
WO2022012393A1 (zh) * 2020-07-15 2022-01-20 大唐移动通信设备有限公司 一种csi测量上报方法、终端及网络侧设备
WO2022183471A1 (en) * 2021-03-05 2022-09-09 Qualcomm Incorporated Techniques for reporting channel state information
WO2023024107A1 (en) * 2021-08-27 2023-03-02 Nec Corporation Methods, devices, and computer readable medium for communication
EP4144159A4 (en) * 2020-04-29 2024-02-28 Qualcomm Incorporated CHANNEL STATE FEEDBACK FOR RECEIVE ANTENNA SWITCHING

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115473614A (zh) * 2021-06-11 2022-12-13 中国移动通信有限公司研究院 一种csi上报方法及装置、终端设备、网络设备
CN116073972A (zh) * 2021-11-04 2023-05-05 展讯通信(上海)有限公司 资源配置方法、装置及设备
WO2023201460A1 (zh) * 2022-04-18 2023-10-26 富士通株式会社 参数发送和接收的方法、装置和通信系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103812619A (zh) * 2009-10-28 2014-05-21 华为技术有限公司 实现信道测量的方法及装置
US20150003271A1 (en) * 2012-01-20 2015-01-01 Lg Electronics Inc. Method and apparatus for channel state information feedback in wireless communication system
CN106465097A (zh) * 2014-05-22 2017-02-22 高通股份有限公司 用于mimo的定期和非定期信道状态信息(csi)报告
CN106559277A (zh) * 2015-09-25 2017-04-05 中兴通讯股份有限公司 探测参考信号的发送方法及装置、信令配置方法及装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013093171A1 (en) * 2011-12-20 2013-06-27 Nokia Corporation Joint first reference signal and second reference signal based channel state information feedback
CN103220068B (zh) * 2012-01-19 2018-10-26 中兴通讯股份有限公司 信道状态信息处理方法、装置及系统
CN107771378B (zh) * 2015-06-17 2021-01-26 Lg 电子株式会社 使用非周期性信道状态信息-参考信号的信道状态报告的方法及其装置
US20180054290A1 (en) * 2015-09-03 2018-02-22 Lg Electronics Inc. Method for reporting channel state information in wireless communication system and device therefor
EP3358752A1 (en) * 2015-09-25 2018-08-08 Huawei Technologies Co., Ltd. Method and apparatus for selecting a resource, and electronic device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103812619A (zh) * 2009-10-28 2014-05-21 华为技术有限公司 实现信道测量的方法及装置
US20150003271A1 (en) * 2012-01-20 2015-01-01 Lg Electronics Inc. Method and apparatus for channel state information feedback in wireless communication system
CN106465097A (zh) * 2014-05-22 2017-02-22 高通股份有限公司 用于mimo的定期和非定期信道状态信息(csi)报告
CN106559277A (zh) * 2015-09-25 2017-04-05 中兴通讯股份有限公司 探测参考信号的发送方法及装置、信令配置方法及装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4144159A4 (en) * 2020-04-29 2024-02-28 Qualcomm Incorporated CHANNEL STATE FEEDBACK FOR RECEIVE ANTENNA SWITCHING
CN113676234A (zh) * 2020-05-14 2021-11-19 上海诺基亚贝尔股份有限公司 具有长传播延迟的ntn中的增强csi反馈
CN113676293A (zh) * 2020-05-15 2021-11-19 华为技术有限公司 一种信息发送、接收方法、装置和系统
WO2022012393A1 (zh) * 2020-07-15 2022-01-20 大唐移动通信设备有限公司 一种csi测量上报方法、终端及网络侧设备
WO2022183471A1 (en) * 2021-03-05 2022-09-09 Qualcomm Incorporated Techniques for reporting channel state information
WO2023024107A1 (en) * 2021-08-27 2023-03-02 Nec Corporation Methods, devices, and computer readable medium for communication

Also Published As

Publication number Publication date
CN112262588A (zh) 2021-01-22
CN112262588B (zh) 2022-05-06

Similar Documents

Publication Publication Date Title
WO2019237303A1 (zh) 信道状态信息传输方法、相关装置及通信系统
US11283503B2 (en) Communication method and communications apparatus
WO2020156103A1 (zh) 信息反馈方法及装置
KR102557455B1 (ko) 측정 보고 방법, 단말기 및 네트워크 기기
WO2018171727A1 (zh) 传输信道状态信息的方法、终端设备和网络设备
WO2019047979A1 (zh) 一种通信方法及设备
WO2022083605A1 (zh) 信道状态信息的处理方法及装置、终端
WO2017020749A1 (zh) 一种fd mimo系统信道状态信息反馈方法及相关设备
US11109251B2 (en) Method and apparatus for channel state information reporting
US11239895B2 (en) Data transmission method, terminal device, and network device
US11888563B2 (en) Channel state information reporting method and apparatus
CN111262608B (zh) 信道测量的配置方法及通信装置
WO2015074262A1 (zh) 一种信道状态信息的反馈方法及装置
US11445396B2 (en) Channel measurement method and apparatus
WO2019148399A1 (zh) 上报信道状态信息csi的方法和装置
WO2019137445A1 (zh) 信道状态信息的测量方法和装置
JP5883867B2 (ja) チャネル情報の送信方法、端末、基地局及びlte−aシステム
US20220225337A1 (en) Interference measurement reporting method and communications apparatus
US11290906B2 (en) Channel measurement method
JP2022517608A (ja) チャネル状態情報を送受信するための方法、端末装置およびネットワーク装置
CN112585884B (zh) 通信方法、装置、网络设备、终端设备及系统
WO2015003367A1 (zh) 反馈信道状态信息csi的方法、用户设备和基站
CN112054831B (zh) 信道状态信息的反馈方法及装置
WO2021083303A1 (zh) 信道信息反馈的方法和设备
JP2024512581A (ja) Csiフィードバック方法、装置、機器及び可読記憶媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18922472

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18922472

Country of ref document: EP

Kind code of ref document: A1