WO2019237223A1 - 机器人系统及自动校准方法、存储装置 - Google Patents

机器人系统及自动校准方法、存储装置 Download PDF

Info

Publication number
WO2019237223A1
WO2019237223A1 PCT/CN2018/090611 CN2018090611W WO2019237223A1 WO 2019237223 A1 WO2019237223 A1 WO 2019237223A1 CN 2018090611 W CN2018090611 W CN 2018090611W WO 2019237223 A1 WO2019237223 A1 WO 2019237223A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
calibrated
robot
identification
calibration
Prior art date
Application number
PCT/CN2018/090611
Other languages
English (en)
French (fr)
Inventor
张�浩
瓦西列夫·伊利亚
苏比迪·迪潘达
马圣源
周丹旦
Original Assignee
深圳蓝胖子机器人有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳蓝胖子机器人有限公司 filed Critical 深圳蓝胖子机器人有限公司
Priority to PCT/CN2018/090611 priority Critical patent/WO2019237223A1/zh
Priority to CN201880003219.3A priority patent/CN110167721B/zh
Publication of WO2019237223A1 publication Critical patent/WO2019237223A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1679Programme controls characterised by the tasks executed
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K17/00Methods or arrangements for effecting co-operative working between equipments covered by two or more of main groups G06K1/00 - G06K15/00, e.g. automatic card files incorporating conveying and reading operations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K17/00Methods or arrangements for effecting co-operative working between equipments covered by two or more of main groups G06K1/00 - G06K15/00, e.g. automatic card files incorporating conveying and reading operations
    • G06K17/0022Methods or arrangements for effecting co-operative working between equipments covered by two or more of main groups G06K1/00 - G06K15/00, e.g. automatic card files incorporating conveying and reading operations arrangements or provisious for transferring data to distant stations, e.g. from a sensing device
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the present application relates to the field of intelligent robot technology, and in particular, to a robot system, an automatic calibration method, and a storage device.
  • the scheme that cooperates with other devices generally during initial construction, and during a period of time or when there is a change in the relative relationship, the system needs to be calibrated so that the robot can accurately execute the equipment that cooperates with it. task.
  • the application provides a robot system, an automatic calibration method, and a storage device, which can improve the calibration efficiency of the robot system and further reduce labor costs.
  • the calibration method includes: obtaining first information of the equipment to be calibrated through an identification code of the equipment to be calibrated, The first information includes at least current pose information and / or identification information of the device to be calibrated, and a relative relationship between the device to be calibrated and the robot is obtained according to the first information and a current state parameter of the robot. Automatic calibration of the robot and the equipment to be calibrated according to the calibration information.
  • the automatic calibration system includes: a robot, the robot includes a robot arm and an end effector; a device to be calibrated, and the to-be-calibrated device At least one identification code is set on the device, the identification code includes first information of the device to be calibrated, wherein the first information includes at least pose information and / or identification information of the device to be calibrated; a sensing device, Configured to identify the identification code to obtain the first information and to obtain a current state parameter of the robot; and a control device configured to obtain the equipment to be calibrated and the equipment according to the first information and the current state parameter of the robot
  • the calibration information of the relative relationship of the robot is described, and the robot and the equipment to be calibrated are automatically calibrated according to the calibration information.
  • another technical solution adopted in the present application is to provide a storage device, where the storage device stores instructions, and the instructions execute any one of the automatic calibration methods described above.
  • a beneficial effect of the present application is to provide a robot system, an automatic calibration method, and a storage device.
  • an identification code is set on the device to be calibrated, and the posture information and And / or identification information. Automatically calibrating the two based on the posture information and / or identification information of the equipment to be calibrated and the current state parameters of the robot can improve the calibration efficiency of the robot system and further reduce labor costs.
  • Figure 1 is a schematic flowchart of a first embodiment of the robot system of the present application
  • Figure 2 is a schematic flowchart of the first embodiment of the automatic calibration method of the robot system of the present application
  • FIG. 3 is a schematic diagram of a scenario of an embodiment of a robot system according to the present application.
  • step S21 of the present application is a schematic flowchart of an embodiment of step S21 of the present application.
  • step S2 is a schematic flowchart of a second embodiment of step S2 in the present application.
  • FIG. 6 is a schematic diagram of a scenario of another embodiment of a robot system of the present application.
  • FIG. 7 is a schematic structural diagram of an embodiment of a storage device of the present application.
  • FIG. 1 is a schematic structural diagram of a first embodiment of an automatic calibration system of the present application.
  • the robot automatic calibration system in this embodiment includes a robot 10, a device to be calibrated 11, a sensing device 13, and a control device 14. .
  • the robot 10 in the present application may include a robot arm and an end effector.
  • the to-be-calibrated device 11 in the present application may be any cooperating device that needs to be calibrated with the robot 10.
  • At least one identification code is set on the to-be-calibrated device 11, and the identification code includes first information of the to-be-calibrated device 11, where the first information is at least It includes posture information and / or identification information of the device 11 to be calibrated.
  • the identification code may be multiple, and may be respectively set at different positions of the device to be calibrated, and the identification codes at different positions are different, so as to accurately obtain the current pose information of the device to be calibrated ( (Ie position and or attitude information) and / or identification information with the device to be calibrated.
  • the first information obtained by scanning the identification code by the sensing device is the current pose information of the device 11 to be calibrated.
  • the identification code may be multiple and may be set at different positions of the device 11 to be calibrated, and the identification codes at different positions are different, so as to accurately obtain the pose information of the device 11 to be calibrated.
  • the current pose information of the device to be calibrated 11 can be obtained by obtaining identification codes set on the front, back, left, and right sides of the device.
  • the current pose information can also be obtained. It is obtained by obtaining an identification code set at another position on the device 11 to be calibrated, which is not further limited here.
  • the first information obtained by identifying the identification code on the device 11 to be calibrated through the sensing device is identification information of the device 11 to be calibrated, and the identification information is associated with the pose information of the device 11 to be calibrated .
  • the identification information may be directly associated with current pose information of the device to be calibrated in the first application scenario.
  • the identification information may be directly associated with a set of poses and / or coordinate sequences of a group of equipment to be calibrated, and respectively correspond to different positions on the equipment to be calibrated.
  • the identification information may also be other information that can describe a spatial state, and the spatial state information may be converted into a set of poses and / or coordinate sequences or current pose information of the entire device 11 to be calibrated.
  • the identification information may also be position and / or attitude information of the device 11 to be calibrated in other coordinate systems, and may be converted into first pose information of the device 11 to be calibrated in the reference coordinate system.
  • different identification codes can also be set on the device 11 to be calibrated, and each identification code is provided with different identification information, and the identification information can be set to 1, 2, 3, ... or T, B, C, L ... wait, the specific setting form is not further limited in this application. Therefore, the posture information of the different positions of the device 11 to be calibrated can be obtained according to different identifiers, so as to obtain the entire state parameters (including the current posture information) of the device 11 to be calibrated.
  • the first information obtained by scanning the identification code by the sensing device is identification information of the device 11 to be calibrated, and the identification information further includes attribute information characterizing the device 11 to be calibrated.
  • the identification The information may further include function parameter information of the device to be calibrated 11 and calibration parameter information of the device to be calibrated 11.
  • the calibration parameter information may be a fixed space state parameter that is required to characterize the cooperation of the device to be calibrated 11 with respect to the robot 10, has initial parameters, and may be set in advance and stored in the identification information.
  • the different to-be-calibrated equipment 11 has different identification information.
  • the sorting device and the buffer mechanism have identification information that distinguishes the two.
  • the robot can know the type of the corresponding equipment to be calibrated, and can further obtain the corresponding coordinated operation task according to the type of the equipment, and obtain the calibration parameter information corresponding to the equipment.
  • a certain coordination task requires multiple devices to be calibrated, corresponding automatic calibration can be achieved for different devices respectively.
  • the to-be-calibrated equipment 11 in this application may be at least one of a buffer mechanism and a sorting cabinet for placing goods to be sorted.
  • a buffer mechanism for placing goods to be sorted.
  • it may be any other equipment that needs to be coordinated with a robot. No further restrictions are made here.
  • the sensing device 13 is configured to recognize an identification code provided on the device 11 to be calibrated to obtain first information, and may also be used to obtain a current state parameter of the robot.
  • the sensing device 13 may be one of a visual sensor and a code scanning sensor.
  • the sensing device 13 can be set on the equipment to be calibrated 11 and / or the robot 10, or any position where operation space can be obtained. That is, the sensing device 13 in this embodiment can be directly connected to the robot 10 without being installed on the robot. , So that the robot 10 can process / receive signals and / or control the sensing device 13.
  • the sensing device 13 may also be directly connected to the control device 14 for processing / receiving signals through the control device 14 and transmitting the signals to the robot 10, which can meet the requirements of the robot 10 and the sensing device 13 in some application scenarios. In the case of a direct communication connection, the system is still operational.
  • the control device 14 is configured to obtain the calibration information of the relative relationship between the device to be calibrated 11 and the robot 10 according to the first information and the current state parameter of the robot 10, and further automatically calibrate the robot 10 and the device to be calibrated 11 according to the calibration information.
  • the calibration information in the present application may be located as a relative calibration condition or parameter corresponding to the robot 10 and the equipment to be calibrated 11 jointly performing an operation task, so that after the calibration, the corresponding operation task can be called and accurately executed.
  • the control device 14 in the present application may be a processing unit of the automatic calibration system, and implements a communication connection between the robot 10 and / or the sensing device 13.
  • the control device 14 may also be directly integrated into the processing unit of the robot 10, which is not further limited herein.
  • the control device 14 when the first information is the current posture information of the device to be calibrated, the control device 14 is configured to convert the current posture information of the device to be calibrated 11 and the current state parameters of the robot into the first position in the reference coordinate system.
  • the posture information and the second posture information, and the relative posture relationship between the device to be calibrated 11 and the robot 10 is obtained according to the first posture information and the second posture information.
  • the world coordinate system can be used as the reference coordinate system.
  • the control device 14 After the current pose information of the device 11 to be calibrated is obtained through the identification code, it is converted into the first pose information in the world coordinate system. Similarly, after acquiring the current state parameters of the robot 10, the control device 14 converts them into the second pose information in the world coordinate system, and then according to the first pose information of the device 11 to be calibrated and the robot in the world coordinate system
  • the second posture information of 10 is used to obtain the relative posture relationship between the device 11 to be calibrated and the robot 10, and automatic calibration is performed according to the relative posture relationship between the two.
  • the control device 14 can directly obtain a set of poses about the device 11 to be calibrated through the identification information. And / or coordinate sequences respectively corresponding to different positions on the device to be calibrated, and the control device 14 obtains the current pose information of the device 11 to be calibrated according to the set of poses and / or coordinate sequences and converts them to the first position in the world coordinate system.
  • the identification information is directly associated with the current pose information of the device 11 to be calibrated, and the control device 14 directly converts the current pose information into the first pose information in the world coordinate system.
  • the identification information is other information that can describe the spatial state of the device to be calibrated, and the control device 14 can convert the information of the spatial state into the first pose information in the reference coordinate system.
  • the control device 14 may directly obtain the function parameter information of the device to be calibrated and the calibration parameter information of the device to be calibrated according to the identification information, so that This function parameter information distinguishes different to-be-calibrated equipment in different sorting scenarios, and directly performs automatic calibration on the to-be-calibrated equipment and robot according to the calibration parameter information.
  • the world coordinate system can be used as the reference coordinate system in this application.
  • the robot's own coordinate system can also be used as the reference coordinate system or the system can customize a set of reference coordinate systems, as long as it can establish the robot and to be calibrated.
  • the relative positional relationship between the devices can be used as the reference coordinate system of the present application, which is not further limited here.
  • the identification code is set on the device to be calibrated, and the posture information and / or identification information of the device to be calibrated is further obtained by identifying the identification code. According to the posture information and / or identification information of the device to be calibrated and The current state parameters of the robot, and automatic calibration of the two can improve the calibration efficiency of the robot system and further reduce labor costs.
  • FIG. 2 is a schematic flowchart of a first embodiment of an automatic calibration method for a robot system of the present application.
  • the robot automatic calibration system in the present application may include a robot, a device to be calibrated, a sensing device, and a control in the above embodiment. Devices, etc., and the system calibrated by the automatic calibration method provided in this application can accurately perform subsequent operation tasks.
  • the automatic calibration method includes the following steps:
  • the first information includes at least current pose information and / or identification information of the device to be calibrated.
  • the device to be calibrated in this application may be any device that cooperates with a robot to achieve an operation task.
  • the equipment to be calibrated may be at least one of a buffer mechanism or a sorting cabinet for placing goods to be sorted.
  • FIG. 3 is a schematic diagram of an application scenario of the robot system of the present application.
  • a buffer mechanism is used as an example to briefly introduce a robot and an automatic calibration method of the buffer mechanism.
  • the robot 10 includes a robot arm 101.
  • the end effector 102, the buffer mechanism 11 includes a cargo operation area A, and the cargo operation area A is set in an operation space of the robot.
  • the cache mechanism 11 is provided with at least one identification code a, and the identification code a may include first information of the cache mechanism, and the first information includes at least posture information and / or identification information of the cache mechanism.
  • the first information of the cache mechanism 11 is obtained by the recognition device 13 identifying the identification code provided on the cache mechanism.
  • the first information may be posture information and / or identification information of the cache mechanism 11.
  • the sensing device 13 may be one of a visual sensor and a code scanning sensor, and may be disposed on the buffer mechanism 11 and / or the robot 10, or at any position where the operation space can be obtained (as shown in the figure). ), Not further limited here.
  • the first information of the cache mechanism 11 may include the following three cases:
  • the first information is current pose information of the buffer mechanism
  • the first information is identification information of the cache mechanism, and the identification information is associated with current pose information of the cache mechanism;
  • the first information is identification information representing attribute information of the cache mechanism.
  • the sensing device in step S1 can also obtain the current state parameters of the robot.
  • the current state parameters of the robot can be obtained directly by the sensing device 13 or through a control device (control center, not shown). No further restrictions are made here.
  • step S2 the control device obtains the calibration information of the relative relationship between the cache mechanism 11 and the robot 10 by combining the first information of the cache mechanism and the current state parameter of the robot 10, as shown in FIG. 4, and this step further includes the following sub-steps:
  • S21 Convert the current pose information of the equipment to be calibrated and the current state parameters of the robot into the first pose information and the second pose information in the reference coordinate system, respectively.
  • step S21 further includes the following sub-steps:
  • the first information is the current pose information of the calibration device (buffer mechanism):
  • S211 Identify identification codes at different positions of the device to be calibrated to obtain posture information at different positions of the device to be calibrated.
  • the current pose information of the cache mechanism 11 can be obtained through identification codes set at different positions of the cache mechanism (front, back, left, and right sides, etc.), each of which corresponds to a different cache mechanism.
  • the position and the sensing device respectively obtain posture information of different positions of the buffer mechanism.
  • the position where the identification code is set can be accurately set to a specific position according to the morphological and functional characteristics of the device to be calibrated, and the posture information of the corresponding position can be obtained through the identification code of the corresponding position; it can also be set at a non-specific position and identified
  • the code obtains pose information of a specific position.
  • control device can accurately obtain the current status of the cache mechanism according to the posture information at different positions of the cache mechanism 11 and description information known to the cache mechanism, such as shape, size, structural characteristics, and functional characteristics. Posture information.
  • S213 Convert the current pose information of the device to be calibrated into the first pose information in the reference coordinate system.
  • the world coordinate system can be used as the reference coordinate system.
  • the robot's own coordinate system can also be used as the reference coordinate system or the system can customize a set of reference coordinate systems, as long as it can establish a robot and the equipment to be calibrated.
  • the relative positional relationships of the two can be used as the reference coordinate system of the present application, and are not further limited herein.
  • step S21 further includes the following sub-steps:
  • S211a Identify an identification code of the device to be calibrated to obtain identification information of the device to be calibrated.
  • step S211a different identification codes are set on the cache mechanism 11, and each identification code is provided with different identification information, and the identification information may be set to 1, 2, 3, ..., or T, B, C, L, etc.
  • the identification information at different positions is respectively associated with the current pose information at different positions of the cache mechanism 11.
  • the pose information of different positions of the cache mechanism 11 can be obtained according to different identifiers, so as to obtain the current pose information of the entire cache mechanism 11.
  • the cache mechanism 11 may also be provided with only one identification code, and the identification information obtained by the identification code may be directly associated with a set of postures and / or coordinate sequences of the cache mechanism 11, which respectively correspond to different positions on the cache mechanism 11.
  • the identification information may also be other information that can describe the spatial state of the cache mechanism 11.
  • the spatial state information may be converted into a set of poses and / or coordinate sequences or the current pose information of the entire cache mechanism 11, and / or the cache Descriptive information known to the organization, such as shape, size, structural characteristics, and functional characteristics.
  • S212a Obtain current pose information of the device to be calibrated according to the identification information.
  • step S212a the control device can obtain the current pose information of the cache mechanism 11 according to the above identification information.
  • S213a Convert the current pose information of the device to be calibrated into the first pose information in the reference coordinate system.
  • control device may obtain the relative pose relationship of the two based on the first pose information of the cache mechanism 11 and the second pose information of the robot 10 person.
  • Step S2 further includes the following sub-steps:
  • S21a Identify an identification code of the device to be calibrated to obtain attribute information of the device to be calibrated.
  • the identification information obtained by the sensing device 13 through the identification code may characterize the function of the device to be calibrated, that is, distinguish between different devices to be calibrated.
  • the identification information may further include function parameter information of the buffer mechanism 11 and calibration parameter information of the buffer mechanism 11.
  • the calibration parameter information may be a fixed space state parameter with respect to the robot 10 that characterizes the buffer mechanism, has initial parameters, and may be preset to be stored in the identification information.
  • Calibration information of the buffer mechanism 11 relative to the robot 10 can be obtained through the identification information, where the identification information can be directly sent to the control device of the system after the identification code is recognized by the sensing device 13 (or a control center integrated on the robot) , From the control device to the world coordinate system and any other data format that can provide robot calibration.
  • the calibration information may be located as a relative calibration condition or parameter corresponding to the robot 10 and the buffer mechanism 11 when performing an operation task together, so that the robot 10 and the buffer mechanism 11 can accurately cooperate to achieve the corresponding operation task.
  • step S4 when the robot and the buffer mechanism 11 are calibrated, it can also be determined whether the positional relationship between the two has changed. Re-calibrate automatically.
  • the current posture information and current state parameters of the buffer mechanism 11 and the robot can be obtained through the sensing device, and the current posture information of the buffer mechanism 11 is converted into a reference.
  • the third pose information in the coordinate system converts the current state parameters of the robot into the fourth pose information in the reference coordinate system. Based on the third pose information and the fourth pose information, it is determined whether the two have occurred. Variety.
  • the robot 10 and the buffer mechanism 11 are automatically calibrated again.
  • the automatic calibration method is the same as the method in the foregoing embodiment. For detailed principles, refer to the specific description in the foregoing embodiment, and details are not described herein again.
  • FIG. 6 are schematic diagrams of another application scenario of the robot system of the present application, wherein the principle of the automatic calibration method is substantially the same, and each includes a robot 20, a device to be calibrated 21 (in this example, a sorting cabinet is used as an example), and a sensing device 23 Control device (not shown), etc., and the sorting cabinet 21 may further include an object placement area 211 for placing items to be sorted, and providing an identification code 212 for the calibration of 20 people of the machine, and the identification code 212 may be set At the respective sorting ports of the sorting cabinet 21, or at the four corners of each sorting cabinet, or at other positions suitable for the shape of the sorting cabinet 21, it is not further limited here.
  • the identification code 212 in this embodiment is set at a different sorting port of the sorting cabinet 21, and each identification code can be set with different identification information, which respectively correlates the current pose information at different positions of the sorting cabinet 11, through the sensing device 23 An identification code identifying different sorting ports can obtain the current posture information of the entire sorting cabinet.
  • only one identification code 212 can be set on the sorting cabinet 21, and the identification information obtained by the identification code can be directly associated with the pose and / or coordinate sequence of a group of sorting cabinets 21, respectively corresponding to the sorting cabinet. 21 different sorting port positions.
  • the identification information may also be other information that can describe the space state of the sorting cabinet structure 21, and the space state information may be converted into a set of poses and / or coordinate sequences or the current pose information of the entire sorting cabinet 21. , And / or descriptive information known to the sorting cabinet 21, such as shape, size, structural characteristics, functional characteristics, and so on.
  • the automatic calibration method of the sorting cabinet 21 and the robot 20 system is the same as that of the buffer mechanism and the robot composition system. For the detailed calibration process, please refer to the specific description in the above embodiment, which will not be repeated here. .
  • the system calibrated by the automatic calibration method of the present application when the acquired items to be sorted correspond to the sorting port of the sorting cabinet 21, according to the position / coordinates of the sorting cabinet 21 or the sorting cabinet 21 after updating and calibration
  • the position / coordinates of the corresponding sorting ports are used for motion planning and goods placement.
  • multiple sorting cabinets can also be flexibly allocated.
  • the sorting cabinet 21 may have wheels for manual deployment, or a sorting cabinet that needs to be deployed for mobile robot traction, or a sorting cabinet with a mobile chassis, which is not further limited here.
  • the sorting center includes multiple robots, each of which is equipped with at least one sorting cabinet and a buffer device to form a sorting unit system, so that the robot can complete the sorting operation task.
  • at least one of the buffer devices must be sorted.
  • Multiple sorting unit systems can perform sorting tasks with different target sorting locations. When the flow of one sorting unit system is too large and the flow rate of another sorting unit system is small, it can flexibly allocate low flow rates. From sorting cabinets to high-volume sorting unit systems. Achieve flexible scheduling and improve the execution rate of the entire sorting system.
  • the identification code is set on the device to be calibrated, and the posture information and / or identification information of the device to be calibrated is further obtained by identifying the identification code. According to the posture information and / or identification information of the device to be calibrated and The current state parameters of the robot, and automatic calibration of the two can improve the calibration efficiency of the robot system and further reduce labor costs.
  • FIG. 7 is a schematic structural diagram of an embodiment of a storage device of the present application.
  • the storage device of the present application stores a program file 31 capable of implementing all the methods described above, wherein the program file 31 may be stored in the storage device in the form of a software product, and includes several instructions for making one or more accessible
  • a computer device which may be a personal computer, a server, or a network device
  • a processor executes all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage device includes: a U disk, a mobile hard disk, and a read-only memory (ROM, Read-Only Memory), Random Access Memory (RAM, Random Access Memory), magnetic disks or compact discs, and other media that can store program code, or terminal devices such as computers, servers, mobile phones, and tablets.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • magnetic disks or compact discs and other media that can store program code, or terminal devices such as computers, servers, mobile phones, and tablets.
  • an identification code is set on a device to be calibrated, and the to-be-calibrated is further obtained by identifying the identification code.
  • the pose information and / or identification information of the device Automatically calibrating the two based on the pose information and / or identification information of the device to be calibrated and the current state parameters of the robot can improve the calibration efficiency of the robot system and further reduce Labor cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manipulator (AREA)

Abstract

一种机器人系统及自动校准方法、存储装置。校准方法包括:通过待校准设备(11)的识别码获取待校准设备(11)的第一信息,第一信息至少包括待校准设备(11)的当前位姿信息和/或标识信息;根据第一信息及机器人(10)的当前状态参数得到待校准设备(11)和机器人(10)的相对关系的校准信息;根据校准信息对机器人(10)和待校准设备(11)进行自动校准。该技术节省了人力成本。

Description

机器人系统及自动校准方法、存储装置
【技术领域】
本申请涉及智能机器人技术领域,特别是涉及一种机器人系统及自动校准方法、存储装置。
【背景技术】
机器人系统应用于具体实施场景时,与其它装置配合的方案,一般初始搭建时,以及执行一段时间或者获知存在相对关系变化,均需要对系统进行校准,使得机器人可以准确与其相互配合的设备完成执行任务。
现有技术中,对机器人和其配合的设备组成系统的校准一般采用人工,在校准的过程中需要不断的调试,且人工成本较高其执行效率低。
【发明内容】
本申请提供一种机器人系统及自动校准方法、存储装置,能够提高机器人系统的校准效率,进一步减少人工成本。
为解决上述技术问题,本申请采用的另一个技术方案是:提供一种机器人系统的自动校准方法,所述校准方法包括:通过待校准设备的识别码获取所述待校准设备的第一信息,所述第一信息至少包括所述待校准设备的当前位姿信息和/或标识信息;根据所述第一信息及所述机器人的当前状态参数得到所述待校准设备和所述机器人的相对关系的校准信息;根据所述校准信息对所述机器人和所述待校准设备进行自动校准。
为解决上述技术问题,本申请采用的另一个技术方案是:提供一种机器人系统,所述自动校准系统包括:机器人,所述机器人包括机械臂及末端执行器;待校准设备,所述待校准设备上至少设置一识别码,所述识别码包括所述待校准设备的第一信息,其中,所述第一信息至少包括所述待校准设备的位姿信息和/或标识信息;感知装置,用于识别所述识别码以获得所述第一信息及获取所述机器人当前的状态参数;控制装置,用于根据所述第一信息和所述机器人当前状态参数得到所述待校准设备和所述机器人的相对关系的校准信息,根据所述校准信息对所述机器人和所述待校准设备进行自动校准。
为解决上述技术问题,本申请采用的另一个技术方案是:提供一种存储装置,所述存储装置存储有指令,所述指令执行上述任一所述的自动校准方法。
本申请的有益效果是:提供一种机器人系统及自动校准方法、存储装置,上述实施方式中,通过在待校准设备上设置识别码,通过识别该识别码进一步获取待校准设备的位姿信息和/或标识信息,根据待校准设备的该位姿信息和/或标识信息以及机器人的当前的状态参数,对二者进行自动校准,可以提高机器人系统的校准效率,进一步减少人工成本。
【附图说明】
图1是本申请机器人系统第一实施方式的流程示意图;
图2是本申请机器人系统的自动校准方法第一实施方式的流程示意图;
图3是本申请机器人系统一实施方式的场景示意图;
图4是本申请步骤S21一实施方式的流程示意图;
图5是本申请中步骤S2第二实施方式的流程示意图;;
图6是本申请机器人系统又一实施方式的场景示意图;
图7是本申请存储装置一实施方式的结构示意图。
【具体实施方式】
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
请参阅图1,图1为本申请自动校准系统第一实施方式的结构示意图,如图1,本实施例中机器人自动校准系统中包括机器人10、待校准设备11、感知装置13、控制装置14。
其中,本申请中机器人10可以包括机械臂及末端执行器。
本申请中的待校准设备11可以为任何需要和机器人10校准的配合设备,该待校准设备11上至少设置一识别码,识别码包括待校准设备11的第一信息,其中,第一信息至少包括待校准设备11的位姿信息和/或标识信息。在具体的实施例中,该识别码可以为多个,且可以分别设置在待校准设备的不同位置,且不同位置处的识别码不相同,以准确获取该待校准设备的当前位姿信息(即位置和或姿态信息)和/或与该待校准设备的标识信息。
在本申请具体一应用场景中,通过感知装置扫描识别码获取到的第一信息为待校准设备11当前位姿信息。其中,该识别码可以为多个且可以设置在待校准设备11的不同位置,不同位置处的识别码不同,以准确获取待校准设备11的位姿信息。通过在待校准设备11的不同位置处设置不同的识别码,且该识别码和其对应设置的位置存在对应关系,即可以通过不同位置处的识别码代表该待校准设备不同位置处的位姿信息。举例来说,该待校准设备11的当前位姿信息的获取可以通过获取设置在其正面、背面、左侧面以及右侧面上的识别码来获取,当然该当前位姿信息的获取还可以是通过获取设置在待校准设备11上其他位置处的识别码而得到,此处不做进一步限定。
在本申请具体另一应用场景中,通过感知装置识别待校准设备11上的识别码获取到的第一信息为待校准设备11的标识信息,该标识信息和待校准设备11的位姿信息关联。该标识信息可以直接关联第一应用场景中待校准设备的当前位姿信息。具体来说,该标识信息可以直接关联一组待校准设备的位姿和/或坐标序列,分别对应待校准设备上的不同位置。该标识信息也可以为其他可以描述空间状态的信息,该空间状态信息可以转换为一组位姿和/或坐标序列或者整个待校准设备11的当前位姿信息。当然,该标识信息也可以是待校准设备11在其他坐标系下位置和/或姿态信息,且可以转换为该基准坐标系下待校准设备11的第一位姿信息。
可选地,还可以在待校准设备11上设置不同的识别码,且每一识别码设置不同的标识信息,该标识信息可以设置为1、2、3……或者T、B、C、L……等等,具体的设置形式,本申请不做进一步限定。从而可以根据不同的标识得到待校准设备11的不同位置的位姿信息,从而得到待校准设备11的整个状态参数(包括当前位姿信息)。
此外,在本申请具体又一应用场景中,通过感知装置扫描识别码获取到的第一信息为待校准设备11的标识信息,该标识信息还包括表征该待校准设备11的属性信息.该标识信息还可以包括该待校准设备11的功能参数信息以及该待校准设备11的校准参数信息。其中,该校准参数信息可以为表征该待校准设备11相对于机器人10配合所需的固定空间状态参数,具有初始参数,可以预先设置好存储在该标识信息中。可选地,不同的待校准设备11的具有不同的标识信息,例如在分拣场景中,分拣装置和缓存机构存在区分二者的标识信息。通过该标识信息,机器人可以获知对应的待校准设备的类型,进而可以根据该设备的类型,获得对应配合的操作任务,得到对应该设备的校准参数信息。当某一配合任务需要多个待校准设备时,可分别对不同设备实现对应的自动校准。
综上,本申请中的待校准设备11可以为放置待分拣货物的缓存机构及分拣柜中至少一种,当然在其他实施方式中还可以是其他任何需要和机器人校准配合的设备,此处不做进一步限定。
感知装置13用于识别设置于上述待校准设备11上的识别码以获得第一信息,还可以用于获取机器人当前的状态参数。本申请中,感知装置13可以为视觉传感器及扫码传感器中的一种。该感知装置13可以设置于待校准设备11和/或机器人10上,或者设置于可以获取操作空间的任意位置,即本实施例中感知装置13可以不设置于机器人上,直接与机器人10通信连接,使得机器人10可以处理/接收信号和/或控制感知装置13。可选地,该感知装置13还可以直接和控制装置14通信连接,通过控制装置14处理/接收信号,并将信号传送给机器人10,可以满足某些应用场景下,机器人10与感知装置13不直接建立通信连接的情况,系统依然可运作。
控制装置14用于根据第一信息和机器人10当前状态参数得到待校准设备11和机器人10相对关系的校准信息,并进一步根据该校准信息对机器人10和待校准设备11进行自动校准。其中,本申请中的校准信息可以定位为机器人10和待校准设备11共同执行某操作任务时对应的相对校准条件或参数,以使得校准后,可以调用对应操作任务并准确执行。
本申请中控制装置14可以为该自动校准系统的处理单元,实现机器人10和/或感知装置13的通信连接。该控制装置14也可以直接集成于机器人10的处理单元,此处不做进一步限定。可选地,当第一信息为待校准设备当前位姿信息时,该控制装置14用于将待校准设备11的当前位姿信息及机器人的当前状态参数转换为基准坐标系下的第一位姿信息及第二位姿信息,并根据第一位姿信息及第二位姿信息得到待校准设备11和机器人10的相对位姿关系。本申请中可以采用世界坐标系作为基准坐标系,在通过识别码获取到待校准设备11的当前位姿信息后,将其转换为世界坐标系下的第一位姿信息。同理,在获取到机器人10当前状态参数后,控制装置14将其转换为世界坐标系下的第二位姿信息,然后根据该世界坐标系下待校准设备11的第一位姿信息及机器人10的第二位姿信息,得到待校准设备11和机器人10之间的相对位姿关系,并根据二者的相对位姿关系进行自动校准。
同理,当第一信息为待校准设备标识信息时,且该标识信息和待校准设备11的位姿信息关联。在感知装置13通过识别码获取到该标识信息后,当该标识信息直接关联待校准设备的当前位姿信息,控制装置14可以直接通过该标识信息获取到关于待校准设备11的一组位姿和/或坐标序列,分别对应待校准设备上的不同位置,控制装置14根据该组位姿和/或坐标序列得到待校准设备11的当前位姿信息并将其转换为世界坐标系下的第一位姿信息。或者该标识信息直接关联该待校准设备11的当前位姿信息,控制装置14直接将当前位姿信息转换为世界坐标系下的第一位姿信息。或者该标识信息为其他可以描述待校准设备空间状态的信息,控制装置14可以将该空间状态的信息转换为基准坐标系下的第一位姿信息。
可选地,当标识信息为表征待校准设备11的属性信息时,控制装置14可以根据该标识信息直接获取到待校准设备11的功能参数信息以及该待校准设备11的校准参数信息,从而根据该功能参数信息区分不同分拣场景中的不同待校准设备,根据校准参数信息直接对待校准设备及机器人进行自动校准。
当然,本申请中可以采用世界坐标系作为基准坐标系,在其它实施例中也可以采用机器人自身的坐标系为基准坐标系或者系统自定义一套基准坐标系,其只要能建立机器人和待校准设备间的相对位置关系,均可以作为本申请的基准坐标系,此处不做进一步限定。
上述实施方式中,通过在待校准设备上设置识别码,通过识别该识别码进一步获取待校准设备的位姿信息和/或标识信息,根据待校准设备的该位姿信息和/或标识信息以及机器人的当前的状态参数,对二者进行自动校准,可以提高机器人系统的校准效率,进一步减少人工成本。
请参阅图2,图2为本申请机器人系统的自动校准方法第一实施方式的流程示意图,本申请中的机器人自动校准系统中可以包括上述实施方式中的机器人、待校准设备、感知装置、控制装置等等,且通过本申请所提供的自动校准方法校准后的系统可以准确执行后续的操作任务。该自动校准方法具体包括如下步骤:
S1,通过待校准设备的识别码获取待校准设备的第一信息,第一信息至少包括待校准设备的当前位姿信息和/或标识信息。
首先,本申请中的待校准设备可以为任何和机器人相互配合以实现某操作任务的设备。例如,将该方法应于货物分拣操作任务的系统作为示例该待校准设备可以为放置待分拣货物的缓存机构或者分拣柜中的至少一种。本实施例中,请参见图3,图3为本申请机器人系统一应用场景示意图,具体以缓存机构为例简单介绍机器人和该缓存机构组成系统的自动校准方法,其中,机器人10包括机械臂101及末端执行器102,缓存机构11包括货物操作区A,该获货物操作区A设置于机器人的操作空间内。其中,货物操作区A中放置有待分拣货物,机器人于该货物操作区中获取待分拣货物。缓存机构11上至少设置一识别码a,该识别码a可以包括该缓存机构的第一信息,该第一信息至少包括缓存机构的位姿信息和/或标识信息。
通过感知装置13识别设置于缓存机构上的识别码获取该缓存机构11的第一信息,本实施例中,该第一信息可以为缓存机构11的位姿信息和/或标识信息。其中,该感知装置13可以为视觉传感器及扫码传感器中的一种,可以设置于缓存机构11上和/或机器人10上,或者设置于可以获取操作空间的任意位置(如图所示的位置),此处不做进一步限定。本实施例中缓存机构11上的识别码可以为多个,且可以分别设置在缓存机构11的不同位置,且不同位置处的识别码不相同,以准确获取该缓存机构11的当前位姿信息(即位置和或姿态信息)和/或与标识信息。
其中,该缓存机构11的第一信息可以包括如下三种情况:
1. 该第一信息为缓存机构的当前位姿信息;
2. 该第一信息为缓存机构的标识信息,该标识信息关联该缓存机构的当前位姿信息;
3. 该第一信息为表征缓存机构属性信息的标识信息。
其中,上述缓存机构第一信息的具体应用和详细描述,可以详见上述自动校准系统实施方式中的具体描述,此处不再赘述。
此外,步骤S1中感知装置还可以获取机器人的当前状态参数,其中,机器人当前的状态参数的获取可以是感知装置13直接获取,也可以是通过控制装置(控制中心,图未示)获取,此处不做进一步限定。
S2,根据第一信息及机器人的当前状态参数得到待校准设备和机器人的相对关系的校准信息。
步骤S2中,控制装置结合上述缓存机构的第一信息和机器人10的当前状态参数得到缓存机构11和机器人10相对关系的校准信息,参阅图4,且该步骤进一步包括如下子步骤:
S21,分别将待校准设备当前位姿信息和机器人的当前状态参数转化为基准坐标系下的第一位姿信息及第二位姿信息。
本实施例中,当获取到的第一信息为缓存机构11的当前位姿信息时,控制装置可以将该当前位姿信息转换为基准坐标系下缓存机构11的第一位姿信息,并将机器人的当前状态参数转换为基准坐标系下的第二位姿信息。进一步参阅图4,步骤S21进一步包括如下子步骤:
1. 当第一信息为校准设备(缓存机构)当前位姿信息时:
S211,识别待校准设备不同位置处的识别码以得到待校准设备不同位置处的位姿信息。
本实施例中缓存机构11的当前位姿信息可以通过设置在缓存机构不同位置(正面、背面、左侧面以及右侧面等位置)的识别码获取,每一识别码分别对应缓存机构的不同位置,感知装置分别获取缓存机构不同位置的位姿信息。其中,识别码设置的位置可以根据待校准设备的形态特点、功能特点准确设定于特定位置,通过对应位置的识别码获取该对应位置的位姿信息;也可以设置于非特定位置,通过识别码获取到特定位置的位姿信息。
S212,根据待校准设备不同位置处的位姿信息得到待校准设备的当前位姿信息。
可选地,控制装置可以根据缓存机构11不同位置处的位姿信息以及该缓存机构已知的的描述信息,例如形态、尺寸、结构特征以及功能特征等等,可以准确得到该缓存机构的当前位姿信息。
S213,将待校准设备的当前位姿信息转换为基准坐标系下的第一位姿信息。
本申请中可以采用世界坐标系作为基准坐标系,在其它实施例中也可以采用机器人自身的坐标系为基准坐标系或者系统自定义一套基准坐标系,其只要能建立机器人和待校准设备间的相对位置关系,均可以作为本申请的基准坐标系,此处不做进一步限定。
2. 当第一信息为校准设备(缓存机构)的标识信息时,该标识信息和待校准设备的位姿信息关联,继续参阅图4,步骤S21进一步还包括如下子步骤:
S211a,识别待校准设备的识别码以得到待校准设备的标识信息。
步骤S211a中,缓存机构11上设置不同的识别码,且每一识别码设置不同的标识信息,该标识信息可以设置为1、2、3……或者T、B、C、L……等等,不同位置处的标识信息分别关联缓存机构11不同位置处的当前位姿信息。可以根据不同的标识得到缓存机构11不同位置的位姿信息,从而得到整个缓存机构11的当前位姿信息。
当然,该缓存机构11上还可以只设置一个标识码,由该标识码得到的标识信息可以直接关联一组缓存机构11的位姿和/或坐标序列,分别对应缓存机构11上的不同位置。该标识信息也可以为其他可以描述该缓存机构11空间状态的信息,该空间状态信息可以转换为一组位姿和/或坐标序列或者整个缓存机构11的当前位姿信息,和/或该缓存机构已知的描述信息,例如形态,尺寸,结构特征,功能特征。
S212a,根据标识信息得到待校准设备的当前位姿信息。
步骤S212a中,根据上述的标识信息,控制装置可以得到该缓存机构11当前的位姿信息。
S213a,将待校准设备的当前位姿信息转换为基准坐标系下的第一位姿信息。
S22,根据第一位姿信息及第二位姿信息得到待校准设备和所述机器人的相对位姿关系。
步骤S22中,控制装置可以根据缓存机构11的第一位姿信息及机器10人的第二位姿信息得到二者的相对位姿关系。
进一步请参阅图5,当标识信息包括用于表征待校准设备的属性信息时,机该标识信息用于区分不同的待校准设备,步骤S2进一步包括如下子步骤:
S21a,识别待校准设备的识别码以得到待校准设备的属性信息。
步骤S21a中,感知装置13通过识别码获取到的标识信息可以表征该待校准设备功能,即区分不同的待校准设备。例如,在不同的分拣场景下,缓存机构11和分拣柜具有不同的标识信息。进一步,该标识信息还可以包括该缓存机构11的功能参数信息以及该缓存机构11的校准参数信息。其中,该校准参数信息可以为表征该缓存机构的相对于机器人10的固定空间状态参数,具有初始参数,可以预先设置好存储在该标识信息中。
S22a,根据待校准设备的属性信息得到待校准设备的校准信息。
通过该标识信息可以得到该缓存机构11相对于该机器人10的校准信息,其中,上述标识信息可以直接由感知装置13识别识别码后发送给系统的控制装置(或者集成于机器人上的控制中心),由控制装置转化为世界坐标系下等任何可以提供机器人校准的数据形式。本实施例中,校准信息可以定位为机器人10和缓存机构11共同执行某操作任务时对应的相对校准条件或参数,以使得机器人10和缓存机构11可以准确配合实现对应的操作任务。
S3,根据校准信息对机器人和待校准设备进行自动校准。
根据上述校准信息对机器人和缓存机构(待校准设备)进行自动校准。且采用上述自动校准方法校准后的机器人系统,可以准确的执行后续的分拣传输等任务。
S4,判断待校准设备是否相对机器人发生位移。
步骤S4中,当机器人和缓存机构11校准后,还可以判断二者位置关系是否发生变化,若缓存机构11移动了位置,或者机器人移动了位置,即二者的位置关系发生了变化,则需要重新自动校准。本实施例中,机器人10和待校准设备位置关系的变化,可以通过感知装置分别获取缓存机构11及机器人的当前位姿信息及当前状态参数,并将缓存机构11的当前位姿信息转换为基准坐标系下的第三位姿信息,将机器人的当前状态参数转换为基准坐标系下的第四位姿信息,根据该第三位姿信息及第四位姿信息,判断二者是否发生了位置变化。
S5,若判断为是,则识别待校准设备的识别码和/或校准信息,对机器人及所述待校准设备进行重新校准。
本实施例中,在判断机器人10相对于缓存机构11的位置关系发生了变化,则重新对该机器人10及缓存机构11进行自动校准。其中,该自动校准方法和上述实施方式中的方法相同,详细原理请参见上述实施例中的具体描述,此处不再赘述。
当然上述实施方式中仅仅是以缓存机构为例来详细介绍了本申请中机器人系统的自动校准方法的具体实施原理及过程,在其它实施例中,还可以以分拣柜为例来说明,参见图6,图6为本申请机器人系统又一应用场景的示意图,其中,该自动校准方法原理大致相同,且均包括机器人20、待校准设备21(该示例采用分拣柜示意)、感知装置23、控制装置(图未示)等等,且分拣柜21还可以包括物件放置区211,用于放置待分拣物,以及提供机器20人校准的识别码212,且该识别码212可以设置于该分拣柜21的各个分拣口、或者设置于每一分拣柜的四个角或者其他适宜分拣柜21形态所需的位置,此处不做进一步限定。本实施例中的识别码212设置在分拣柜21的不同分拣口,且每一识别码可以设置不同的标识信息,分别关联分拣柜11不同位置处的当前位姿信息,通过感知装置23识别不同分拣口的识别码,可以得到整个分拣柜的当前位姿信息。
可选地,该分拣柜21上还可以只设置一个识别码212,由该标识码得到的标识信息可以直接关联一组分拣柜21的位姿和/或坐标序列,分别对应分拣柜21上的不同分拣口位置。
可选地,该标识信息也可以为其他可以描述分拣柜构21空间状态的信息,该空间状态信息可以转换为一组位姿和/或坐标序列或者整个分拣柜21的当前位姿信息,和/或该分拣柜21已知的描述信息,例如形态,尺寸,结构特征,功能特征等等。且本实施例中,分拣柜21和机器人20组成系统的自动校准方法和缓存机构和机器人组成系统的校准方法相同,详细的校准过程可以参见上述实施例中的具体描述,此处不再赘述。
且由本申请自动校准方法校准后的系统,当获取的待分拣物件对应该分拣柜21的分拣口,则根据更新校准后的该分拣柜21的位置/坐标或该分拣柜21对应的分拣口的位置/坐标,进行运动规划,完成货物放置。该方式下还可以实现灵活调配多个分拣柜。具体地,该分拣柜21可以具有轮子,人为移动调配,也可以为移动机器人牵引需调配的分拣柜,也可以为分拣柜具有移动底盘,此处不做进一步限定。例如,分拣中心包括多个机器人,每个机器人分别配备至少一个分拣柜以及缓存装置形成一个分拣单元系统,以使机器人完成分拣操作任务,具体可以为将缓存装置中至少一个待分拣物,一一获持待分拣物并通过其对应的目标分拣口置入该目标分拣口对应的物件放置区。多个分拣单元系统可以执行不一样的目标分拣地的分拣任务,当某一分拣单元系统的流量过大时,而另一分拣单元系统的流量较小时,可以灵活调配低流量的分拣柜至流量大的分拣单元系统。实现灵活的调度,提升整个分拣系统的执行率。
上述实施方式中,通过在待校准设备上设置识别码,通过识别该识别码进一步获取待校准设备的位姿信息和/或标识信息,根据待校准设备的该位姿信息和/或标识信息以及机器人的当前的状态参数,对二者进行自动校准,可以提高机器人系统的校准效率,进一步减少人工成本。
请参阅图7,图7为本申请存储装置一实施方式的结构示意图。本申请的存储装置存储有能够实现上述所有方法的程序文件31,其中,该程序文件31可以以软件产品的形式存储在上述存储装置中,包括若干指令用以使得一台或多台可通行的计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施方式所述方法的全部或部分步骤。而前述的存储装置包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质,或者是计算机、服务器、手机、平板等终端设备。
综上所述,本领域技术人员容易理解,本申请提供一种机器人系统及自动校准方法存储装置,上述实施方式中,通过在待校准设备上设置识别码,通过识别该识别码进一步获取待校准设备的位姿信息和/或标识信息,根据待校准设备的该位姿信息和/或标识信息以及机器人的当前的状态参数,对二者进行自动校准,可以提高机器人系统的校准效率,进一步减少人工成本。
以上所述仅为本申请的实施方式,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (16)

  1. 一种机器人系统的自动校准方法,其特征在于,所述校准方法包括:
    通过待校准设备的识别码获取所述待校准设备的第一信息,所述第一信息至少包括所述待校准设备的当前位姿信息和/或标识信息;
    根据所述第一信息及所述机器人的当前状态参数得到所述待校准设备和所述机器人的相对关系的校准信息;
    根据所述校准信息对所述机器人和所述待校准设备进行自动校准。
  2. 根据权利要求1所述的校准方法,其特征在于,所述第一信息为所述待校准设备当前位姿信息;
    所述根据所述第一信息及所述机器人的当前状态参数得到所述待校准设备和所述机器人的相对关系的校准信息包括:
    分别将所述待校准设备当前位姿信息和所述机器人的当前状态参数转化为基准坐标系下的第一位姿信息及第二位姿信息;
    根据所述第一位姿信息及所述第二位姿信息得到所述待校准设备和所述机器人的相对位姿关系。
  3. 根据权利要求2所述的校准方法,其特征在于,所述识别码为多个,分别设置在所述待校准设备的不同位置,不同位置处的所述识别码不同,用于准确获取所述待校准设备的位姿信息。
  4. 根据权利要求3所述的校准方法,其特征在于,所述方法包括:
    分别识别所述待校准设备不同位置处的所述识别码以得到所述待校准设备不同位置处的位姿信息;
    根据所述待校准设备不同位置处的所述位姿信息得到所述待校准设备的当前位姿信息;
    将所述待校准设备的当前位姿信息转换为基准坐标系下的第一位姿信息。
  5. 根据权利要求3所述的校准方法,其特征在于,所述第一信息为所述待校准设备的标识信息,所述标识信息和所述待校准设备的位姿信息关联;
    所述方法包括:
    识别所述待校准设备的所述识别码以得到所述待校准设备的标识信息;
    根据所述标识信息得到所述待校准设备的当前位姿信息;
    将所述待校准设备的当前位姿信息转换为基准坐标系下的第一位姿信息。
  6. 根据权利要求3所述的校准方法,其特征在于,所述标识信息还包括表征所述待校准设备的属性信息,所述属性信息用于区分不同的待校准设备;
    所述方法包括:
    识别所述待校准设备的所述识别码以得到所述待校准设备的所述属性信息;
    根据所述待校准设备的所述属性信息得到所述待校准设备的校准信息。
  7. 根据权利要求1所述的校准方法,其特征在于,所述方法进一步包括:
    判断所述待校准设备是否相对所述机器人发生位移;
    若判断为是,则识别所述待校准设备的所述识别码和/或所述校准信息,对所述机器人及所述待校准设备进行重新校准。
  8. 一种机器人的自动校准系统,其特征在于,所述自动校准系统包括:
    机器人,所述机器人包括机械臂及末端执行器;
    待校准设备,所述待校准设备上至少设置一识别码,所述识别码包括所述待校准设备的第一信息,其中,所述第一信息至少包括所述待校准设备的位姿信息和/或标识信息;
    感知装置,用于识别所述识别码以获得所述第一信息及获取所述机器人当前的状态参数;
    控制装置,用于根据所述第一信息和所述机器人当前状态参数得到所述待校准设备和所述机器人相对关系的校准信息,根据所述校准信息对所述机器人和所述待校准设备进行自动校准。
  9. 根据权利要求8所述的自动校准系统,其特征在于,所述识别码为多个,所述第一信息为所述待校准设备当前位姿信息;
    所述控制装置还用于将所述待校准设备当前位姿信息及所述机器人的当前状态参数转换为基准坐标系下的第一位姿信息及第二位姿信息,并根据所述第一位姿信息及所述第二位姿信息得到所述待校准设备和所述机器人的相对位姿关系。
  10. 根据权利要求9所述的自动校准系统,其特征在于,所述识别码所分别设置在所述待校准设备的不同位置,不同位置处的所述识别码不同,以准确获取所述待校准设备的位姿信息。
  11. 根据权利要求10所述的自动校准系统,其特征在于,所述第一信息为所述待校准设备的标识信息,所述标识信息和所述待校准设备的位姿信息关联。
  12. 根据权利要求11所述的自动校准系统,其特征在于,所述标识信息还包括表征所述待校准设备的属性信息,所述属性信息用于区分不同的待校准设备。
  13. 根据权利要求12所述的自动校准系统,其特征在于,所述属性信息至少包括所述待校准设备的待校准参数。
  14. 根据权利要求10所述的自动校准系统,其特征在于,所述待校准设备为放置待分拣货物的缓存机构及分拣柜中至少一种。
  15. 根据权利要求10所述的自动校准系统,其特征在于,所述感知装置为视觉传感器及扫码传感器中的至少一种。
  16. 一种存储装置,其特征在于,所述存储装置存储有指令,所述指令执行权利要求1-8中任一所述的自动校准方法。
PCT/CN2018/090611 2018-06-11 2018-06-11 机器人系统及自动校准方法、存储装置 WO2019237223A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/090611 WO2019237223A1 (zh) 2018-06-11 2018-06-11 机器人系统及自动校准方法、存储装置
CN201880003219.3A CN110167721B (zh) 2018-06-11 2018-06-11 机器人系统及自动校准方法、存储装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/090611 WO2019237223A1 (zh) 2018-06-11 2018-06-11 机器人系统及自动校准方法、存储装置

Publications (1)

Publication Number Publication Date
WO2019237223A1 true WO2019237223A1 (zh) 2019-12-19

Family

ID=67645388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/090611 WO2019237223A1 (zh) 2018-06-11 2018-06-11 机器人系统及自动校准方法、存储装置

Country Status (2)

Country Link
CN (1) CN110167721B (zh)
WO (1) WO2019237223A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111113490B (zh) * 2019-12-31 2021-11-23 深圳市远弗科技有限公司 一种视觉机器人大规模客制化的自动化校准系统及方法
CN114290330B (zh) * 2021-12-13 2023-09-05 库卡机器人制造(上海)有限公司 机器人的校准方法和校准装置、机器人和可读存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007044865A (ja) * 2005-08-10 2007-02-22 Honda Research Inst Europe Gmbh 方向付け/位置決めシステム制御方法
CN103372862A (zh) * 2012-04-12 2013-10-30 精工爱普生株式会社 机器人系统及其校准方法、机器人、校准装置及数码相机
CN104057457A (zh) * 2013-03-19 2014-09-24 株式会社安川电机 机器人系统及校准方法
CN104999202A (zh) * 2015-08-06 2015-10-28 苏州五圣通机器人自动化有限公司 一种高精度机器人自动焊接装置及其工作方法
CN105364924A (zh) * 2015-12-18 2016-03-02 珠海格力电器股份有限公司 机器人零点校准系统及机器人零点校准方法
WO2017055955A1 (en) * 2015-09-29 2017-04-06 Koninklijke Philips N.V. Automatic robotic arm calibration to camera system using a laser

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10003611A1 (de) * 2000-01-28 2001-08-09 Duerr Systems Gmbh Verfahren zum Einmessen eines Roboters
CN102922521B (zh) * 2012-08-07 2015-09-09 中国科学技术大学 一种基于立体视觉伺服的机械臂系统及其实时校准方法
JP6126067B2 (ja) * 2014-11-28 2017-05-10 ファナック株式会社 工作機械及びロボットを備えた協働システム
CN105976380B (zh) * 2016-05-11 2018-12-14 华中科技大学 一种基于视觉的机器人喷涂轨迹校准方法
CN106347919A (zh) * 2016-11-10 2017-01-25 杭州南江机器人股份有限公司 一种自动仓储系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007044865A (ja) * 2005-08-10 2007-02-22 Honda Research Inst Europe Gmbh 方向付け/位置決めシステム制御方法
CN103372862A (zh) * 2012-04-12 2013-10-30 精工爱普生株式会社 机器人系统及其校准方法、机器人、校准装置及数码相机
CN104057457A (zh) * 2013-03-19 2014-09-24 株式会社安川电机 机器人系统及校准方法
CN104999202A (zh) * 2015-08-06 2015-10-28 苏州五圣通机器人自动化有限公司 一种高精度机器人自动焊接装置及其工作方法
WO2017055955A1 (en) * 2015-09-29 2017-04-06 Koninklijke Philips N.V. Automatic robotic arm calibration to camera system using a laser
CN105364924A (zh) * 2015-12-18 2016-03-02 珠海格力电器股份有限公司 机器人零点校准系统及机器人零点校准方法

Also Published As

Publication number Publication date
CN110167721B (zh) 2023-05-02
CN110167721A (zh) 2019-08-23

Similar Documents

Publication Publication Date Title
US6112224A (en) Patient monitoring station using a single interrupt resource to support multiple measurement devices
CN103297306B (zh) 一种农业物联网系统
CN107155090A (zh) 一种基于智能分户主机的可视对讲系统以及实现方法
TW200825762A (en) Apparatus and method for computer management
WO2019237223A1 (zh) 机器人系统及自动校准方法、存储装置
WO2018086423A1 (zh) 终端及其主动备份数据的方法
WO2019047218A1 (zh) 一种图形化编程方法、装置、计算机存储介质及视觉系统
WO2015165150A1 (zh) 一种移动设备之间信息转移和共享的方法及系统
JPS63255760A (ja) 制御システム
CN108881247A (zh) 报文转换方法、装置、网关设备及存储介质
CN210724830U (zh) 架接接口模块
CN105225035B (zh) 一种实现电子政务统一的机器人
CN110417573A (zh) 一种数据传送的方法及系统
WO2015143939A1 (zh) 一种坐标系生成方法
WO2019104618A1 (zh) 基于svm的样本数据更新方法、分类系统和存储装置
CN111405022B (zh) 一种异构设备柔性组网通信平台
US20020174387A1 (en) Stealth module for bus data analyzer
WO2019232782A1 (zh) 一种物体特征的识别方法、视觉识别装置及机器人
WO2020080666A1 (ko) 반도체 공정에서의 지능형 영상 추적 시스템
CN207037768U (zh) 配电系统
CN206650770U (zh) 一种自动报警的物联网系统
WO2022114277A1 (ko) 자산 관리 셸 기반의 로봇 시스템 정보 모델링 및 상호 연동 방법
CN109521917A (zh) 交互系统、电子设备、电子装置及交互控制方法
CN109108984B (zh) 一种实体机器人接入云端语音平台的方法及实体机器人
WO2023113074A1 (ko) 디지털 트윈 서버와 장비의 opc ua 데이터 연동을 위한 iec 63278 기반 모델링 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18922862

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18922862

Country of ref document: EP

Kind code of ref document: A1