WO2019235757A1 - 이차전지 내부 발생 가스 실시간 분석 장치 - Google Patents

이차전지 내부 발생 가스 실시간 분석 장치 Download PDF

Info

Publication number
WO2019235757A1
WO2019235757A1 PCT/KR2019/006056 KR2019006056W WO2019235757A1 WO 2019235757 A1 WO2019235757 A1 WO 2019235757A1 KR 2019006056 W KR2019006056 W KR 2019006056W WO 2019235757 A1 WO2019235757 A1 WO 2019235757A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
valve
chamber
pressure
shut
Prior art date
Application number
PCT/KR2019/006056
Other languages
English (en)
French (fr)
Inventor
황동국
김수현
박지혜
안정애
최낙희
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180130852A external-priority patent/KR102385711B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP19815369.4A priority Critical patent/EP3686595A4/en
Priority to CN201980005418.2A priority patent/CN111279191A/zh
Priority to US16/760,178 priority patent/US11626625B2/en
Priority to JP2020522966A priority patent/JP7115694B2/ja
Publication of WO2019235757A1 publication Critical patent/WO2019235757A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D16/00Control of fluid pressure
    • G05D16/20Control of fluid pressure characterised by the use of electric means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a gas analysis device for a secondary battery, and more particularly, to an analysis device capable of effectively performing quantitative analysis and qualitative analysis for gases generated until the ignition or explosion point of a secondary battery.
  • the secondary battery is a battery that can be repeatedly used through a reverse charging and discharging process that converts chemical energy into electrical energy, and is easy to apply according to a product family, and a secondary battery having electrical characteristics such as high energy density is portable.
  • a secondary battery having electrical characteristics such as high energy density is portable.
  • EVs electric vehicles
  • HVs hybrid vehicles
  • various gases are generated during operation of the secondary battery, and information on the composition and content of the secondary battery generated gas may be developed in battery material development, battery manufacturing process optimization, and battery. It is useful for identifying the cause of defect.
  • the secondary battery has a risk of ignition / explosion when exposed to high temperatures.
  • a large current flows within a short time due to overcharge, external short circuit, nail penetration, local crush, or the like, there is a risk of fire / explosion while the battery is heated by IR heat generation.
  • gas is generated to increase the battery internal pressure, and the secondary battery may explode at a predetermined pressure or more.
  • a serious problem may occur such as a swelling phenomenon of a battery or a battery igniting or exploding due to an increase in pressure in a chamber in which a secondary battery is mounted due to a temperature rise and a gas generated during a secondary battery experiment.
  • the analysis device When the battery is ignited or exploded, the analysis device is exposed to the risk of damage due to flame, dust, and high pressure gas. Therefore, real-time analysis of the secondary battery generated gas is limited. Therefore, there is a need for a device that can be extended to the point of ignition and explosion of a battery to analyze a secondary battery generated gas in real time, and further applicable to experiments related to safety evaluation (overcharge, high temperature exposure, etc.).
  • the present invention was devised to solve the above problems, while ensuring that the gas generated in the secondary battery can be analyzed in real time by expanding the secondary gas to the point of ignition and explosion, while ensuring the safety of the researchers at the time of ignition and explosion of the battery. And to provide a device that can protect the analysis device of the secondary battery generated gas.
  • a chamber capable of mounting a secondary battery therein;
  • An induction medium supply module for generating a flow of an induction medium into the chamber
  • An analysis module for analyzing a gas generated in the secondary battery introduced from the chamber by the flow of the induction medium
  • the chamber is:
  • a discharge port to which the analysis module can be connected
  • It may include a safety valve that can discharge the flame, dust, and high-pressure gas generated during explosion or ignition of the secondary battery to the outside.
  • the gas generated from the secondary battery can be extended to the point of ignition and explosion of the secondary battery to be analyzed in real time, while ensuring the safety of the researchers in the event of ignition and explosion of the battery and protecting the analysis device of the secondary battery generated gas.
  • FIG. 1 is a schematic diagram of a secondary battery internally generated gas analysis device 10 according to the present invention.
  • FIG. 2 shows a front view of an example of a secondary battery internally generated gas analyzing apparatus 10 according to the present invention.
  • FIG. 3 is a front view of a main part of the secondary battery internally generated gas analyzing apparatus 10 of FIG. 2.
  • FIG. 5 is a photograph showing a case in which dust, a flame, and a high pressure gas are ejected to the analysis module due to the ignition and explosion of the secondary battery 20 when the safety valve 160 is not provided.
  • a chamber capable of mounting a secondary battery therein;
  • An induction medium supply module for generating a flow of an induction medium into the chamber
  • An analysis module for analyzing a gas generated in the secondary battery introduced from the chamber by the flow of the induction medium
  • the chamber is:
  • a discharge port to which the analysis module can be connected
  • It may include a safety valve that can discharge the flame, dust, and high-pressure gas generated during explosion or ignition of the secondary battery to the outside.
  • the secondary battery internally generated gas analysis apparatus comprises: a first shut-off valve connected between the injection port and the chamber; And a second shutoff valve connected between the discharge port and the chamber,
  • the first shut-off valve shuts off the flow of fluid from the chamber to the induction medium supply module when the secondary battery is exploded or ignited, and the second shut-off valve is discharged from the chamber when the secondary battery is exploded or fired. It may be to block the flow of the fluid to the analysis module.
  • the first shut-off valve and the second shut-off valve is switched to a closed state at a predetermined pressure or more, and the safety valve is opened at a predetermined pressure or more. It may be to be converted.
  • the first shut-off valve and the second shut-off valve is automatically switched to the closed state when the gas of the predetermined pressure or more directly contact
  • the safety valve May be switched to the open state when the gas of the predetermined pressure or more directly contact.
  • a pressure gauge capable of measuring the pressure on the surface of the secondary battery or the pressure inside the chamber
  • the first shutoff control signal for closing the first shutoff valve, closing the second shutoff valve, and opening the safety valve, respectively.
  • a control unit configured to immediately transmit the valve, the second shut-off valve, and the safety valve.
  • the first shutoff valve and the second shutoff valve may be switched to a closed state and the safety valve may be switched to an open state.
  • a temperature sensor capable of measuring the temperature of the surface of the secondary battery or the temperature inside the chamber
  • the first shutoff of the control signals for closing the first shutoff valve, closing the second shutoff valve, and opening the safety valve respectively.
  • a control unit configured to immediately transmit the valve, the second shut-off valve, and the safety valve.
  • the first shutoff valve and the second shutoff valve may be switched to a closed state and the safety valve may be switched to an open state.
  • the secondary battery internally generated gas analysis apparatus according to the present invention: the chamber further comprises the charge-discharge terminal that the electrode of the secondary battery can be contacted, the device is the charge-discharge terminal of the secondary battery
  • the apparatus may further include a charge / discharge module electrically connected to an electrode to charge / discharge the secondary battery.
  • the chamber includes a chamber main body that can be mounted on the secondary battery and the front portion is a rectangular parallelepiped shape and the chamber cover to shield the opening,
  • the injection port may be disposed on one side of the chamber body, the discharge port may be disposed on the other side of the chamber body, and the safety valve may be disposed at the center of the chamber cover.
  • the predetermined pressure may be any one of the pressure value in the range of 0.5 Bar to 5 Bar.
  • FIG. 1 is a schematic diagram of a secondary battery internally generated gas analysis device 10 according to the present invention.
  • FIG. 2 shows a front view of an example of a secondary battery internally generated gas analyzing apparatus 10 according to the present invention
  • FIG. 3 shows a front view of a main part of the secondary battery internally generated gas analyzing apparatus 10 of FIG. 2.
  • the secondary battery internally generated gas analyzing apparatus 10 includes a chamber 100 in which the secondary battery 20 is mounted, an induction medium supply module 110, and an analysis module 120.
  • the secondary battery 20 may be a secondary battery such as a can type (cylindrical, square, etc.), pouch type, or coin cell type.
  • the secondary battery 20 may be charged or discharged by an electrochemical reaction such as an active material, a metal plate, and an electrolyte, and an internal gas may be generated by an internal electrochemical reaction while such a charge or discharge operation is performed.
  • the secondary battery 20 may be mounted in the chamber 100.
  • the chamber 100 includes a chamber body 101 and a chamber cover 102.
  • the chamber body 101 may be provided, for example, in a rectangular parallelepiped shape in which the front part is opened, and the chamber cover 102 may be provided to shield the opening of the chamber body 101.
  • the chamber body 101 and the chamber cover 102 may be tightly coupled with fixing means such as fixing pins, screws, bolts, and the like.
  • Chamber Body 101 and Chamber Cover 102 The contact surface therebetween may further include a sealing member such as an O-ring for sealing when the chamber body 101 and the chamber cover 102 are coupled.
  • the chamber body 101 and the chamber cover 102 may each have a dual structure.
  • the chamber 100 in which the chamber body 101 and the chamber cover 102 are combined has a dual structure.
  • the inner surface on which the secondary battery 20 is mounted is an insulating, insulating material and durable material at high temperature and high pressure. It may be made of Bakelite, Teflon, aerosol, and the like.
  • the outer surface surrounding the inner surface may be made of a material such as SUS and metal.
  • the chamber 100 is provided with an inlet 103 through which the induction medium supply module 110 can be connected and an outlet 104 through which the analysis module 120 can be connected.
  • the induction medium supply module 110 introduces an induction medium made of an inert gas or the like into the chamber 100 through the injection hole 103 provided in the chamber 100.
  • the induction medium supply module 110 includes a device for moving a gas medium such as a mass flow meter (MFC), a regulator, and the like.
  • MFC mass flow meter
  • the induction medium supply module 110 and the inlet 103 are connected to the induction pipe so that gas flow can be generated.
  • the induction medium made of an inert gas or the like is preferably composed of an inert gas such as helium, nitrogen, argon, etc., but the gas component constituting the induction medium may be a component of a secondary battery generating gas and a secondary battery generating gas to be detected Of course, it may be appropriately selected depending on.
  • the induction medium By controlling the flow rate in the induction medium supply module 110, the induction medium may be strongly introduced into the internal space of the chamber 100, and the induction medium introduced into the chamber 100 may be in the room with the inlet 103 of the chamber 100.
  • the pressure difference between the outlets 104 exits the chamber 100 through the outlet 104.
  • the internal gas generated in the secondary battery 20 is transferred to the analysis module 120 through the discharge port 104 together with the induction medium.
  • the analysis module 120 is connected to the discharge port 104 provided in the chamber 100 by an induction pipe so that a moving flow of the gas discharged from the discharge hole 104 provided in the chamber 100 can be generated. have.
  • the analysis module 120 may include a filter module 121 for filtering the induction medium. 1 and 2 illustrate a case in which the analysis module 120 is connected to the chamber 100 through an induction pipe, but in some cases, a gas capable of collecting the gas generated inside the secondary battery in the discharge port 104.
  • a collecting tube (not shown) is connected, and after the collection of the generated gas inside the secondary battery is completed, the gas collecting tube may be connected to the analysis module 120 to perform an analysis.
  • the inlet 103 is disposed on one side of the chamber body 101
  • the discharge hole 104 is disposed on the other side of the chamber body 101, just before the ignition or explosion of the secondary battery 20
  • FIG. 2 when the chamber 100 is viewed from the front, an inlet 103 through which the induction medium supply module 110 may be connected is located on the left side, and an outlet port through which the analysis module 120 may be connected to the right side. A case where 104 is located is shown.
  • the present invention is not limited to that shown with respect to the position of the inlet 103 and the outlet 104, and the flow of gas is in the order of the induction medium supply module 110-chamber 100-analysis module 120.
  • Various modifications and changes are possible as long as they can be formed.
  • the secondary battery internally generated gas analysis apparatus 10 of the present invention may further include a charge / discharge module 130. That is, since the secondary battery 20 may explode and ignite not only to charge and discharge, but also to high temperature or external impact, the secondary battery internally generated gas analyzing apparatus 10 of the present invention does not include the charge / discharge module 130. It may be implemented, or may be implemented including a charge and discharge module 130 because explosion, ignition may occur due to overcharge of the secondary battery (20).
  • the charge / discharge module 130 is electrically connected to the electrodes of the secondary battery 20 to drive the charge / discharge of the secondary battery 20.
  • the charge / discharge module 130 includes a power supply unit, a load unit, and a switching circuit.
  • the power supply unit adjusts the voltage and / or current to charge the secondary battery 20 to charge the secondary battery 20, and the load unit discharges the energy charged in the secondary battery 20.
  • the power supply unit and the load unit may be electrically connected to the secondary battery 20 through the charge and discharge terminals 106.
  • the charge / discharge terminals 106 may be provided in the chamber 100 and the electrodes of the secondary battery 20 may be in contact with each other.
  • the power supply unit and the load unit may be electrically connected to the secondary battery 20 selectively by a switching circuit.
  • the charge / discharge module 130 may be configured to be controlled by a user signal input through an interface means such as a computer of the user.
  • the secondary battery internally generated gas analysis device 10 when the secondary battery 20 is charged or discharged, the secondary battery 20 is exposed to high and low temperatures, the positive and negative shorts of the secondary battery 20 ( In the case of a shot phenomenon, a crush of the secondary battery 20, a nail of the secondary battery 20, or the like, there may be a situation in which the explosion or ignition of the secondary battery 20 occurs.
  • the analysis device 10 includes a first shut-off valve 140 provided between the inlet 103 and the induction medium supply module 110 and a second shut-off valve 150 provided between the outlet 104 and the analysis module 120. It includes. The first shutoff valve 140 and the second shutoff valve 150 are open / closed according to the pressure inside the chamber 110.
  • the pressure of the flame, dust, high pressure gas due to the explosion or ignition of the secondary battery 20 is the chamber 100 through the induction medium supply module 110 It may be greater than the pressure of the induction medium delivered therein.
  • the first shut-off valve 140 is open, and the flame, dust, and high-pressure gas due to the explosion or ignition of the secondary battery 20 is moved to the induction medium supply module 110 to move the induction medium supply module 110.
  • the first shut-off valve 140 is automatically closed (blocked) when the pressure in the chamber 100 becomes higher than a preset pressure.
  • the second shut-off valve 150 is open, and the flame, dust, and high-pressure gas due to explosion or ignition of the secondary battery 20 are moved to the analysis module 120 to damage the analysis module 120.
  • the second shut-off valve 150 is automatically closed (blocked) when the pressure in the chamber 100 becomes higher than a preset pressure.
  • the secondary battery internally generated gas analysis device 10 may discharge the flame, dust, and high-pressure gas generated during explosion or ignition of the secondary battery 20 to the outside of the device 10 instead of the analysis module 120.
  • the valve 100 further includes a safety valve 160.
  • the safety valve connector 105 may be provided in the chamber 100, and the safety valve 160 may be provided in the safety valve connector 105. 2 exemplarily illustrates a case in which the safety valve 160 is provided at the center of the chamber cover 102 of the chamber 100, in which the secondary battery 20 is mounted at the center of the chamber 100. In this case, to minimize the movement of the secondary battery 20 to the pressure or flame caused by the ignition or explosion.
  • the safety valve 160 since the safety valve 160 is opened at the position closest to the secondary battery 20, the gas and the flame of the high pressure inside the chamber 100 may be rapidly released to the outside through the safety valve 160. In fact, after the ignition of the secondary battery 20 and the discharge of high pressure gas inside the chamber 100, the surface of the secondary battery 20 is fitted with a position corresponding to the position of the safety valve 160 (safety valve 160). You can see that the hole is formed).
  • the present invention is not limited to the above, and when the mounting position of the secondary battery 20 inside the chamber 100 is changed, the position of the safety valve 160 may be changed accordingly, and the chamber body 101 is secured. As long as the valve 160 may be provided, as long as it can quickly discharge flame, dust, and high pressure gas generated when the chamber 100 is exploded or ignited, various modifications and changes are possible.
  • the safety valve 160 is closed, but when the pressure in the chamber 100 becomes higher than the preset pressure, the safety valve 160 is automatically opened to release flame, dust, and high pressure gas generated during explosion or ignition of the chamber 100. Can be discharged to the outside.
  • the pressure inside the chamber 100 due to the flow of the induction medium from the induction medium supply module 110 during the analysis of the gas generated in real time before the ignition of the secondary battery 20 may be between 1.0 and 1.5.
  • the preset pressure such that the first shut-off valve 140 and the second shut-off valve 150 are automatically closed and the safety valve 160 is automatically opened is 0.5 Bar to 5 Bar or 1.5 Bar to 2 Bar. It may be any one of the pressure value in the range of.
  • the preset pressure so that the first shut-off valve 140 and the second shut-off valve 150 are automatically closed and the safety valve 160 is automatically opened is not limited to the above-described one, and according to various environments in which the present invention is implemented. Adjustable
  • the first shutoff valve 140, the second shutoff valve 150, and the safety valve 160 are made of a material such as SUS or metal to withstand high temperature and high pressure due to explosion or ignition of the secondary battery 20. It may be a valve and may be a valve provided with additional components such as an O-ring.
  • the first shutoff valve 140, the second shutoff valve 150, and the safety valve 160 may be valves that can be opened and closed automatically without a driving source (for example, a voltage source), and are connected to a separate driving source.
  • the valve may be opened and closed automatically.
  • a valve that automatically shuts off when a high pressure gas generated in the event of ignition or explosion of the secondary battery 20 directly contacts the valve can be used.
  • the first shutoff valve 140 and the second shutoff valve 150 may include a check valve, a shut-off valve, a quick closing valve, a cut-off ( Valves that can cut off the flow of gas and dust, such as cut-off valves, can be used.
  • the safety valve 160 may use a relief valve or the like.
  • the chamber 100 may further include a first connector 107 and / or a second connector 108. Through the first connector 107 and / or the second connector 108, a temperature sensor to be described later may be disposed in the chamber 100.
  • the chamber 100 is a pressure gauge for measuring the pressure on the surface of the secondary battery 20 or the pressure inside the chamber 100 as a configuration for measuring the pressure and temperature of the surface of the secondary battery 20 or the chamber 100. (Not shown) and a temperature sensor (not shown) for measuring the temperature of the surface of the secondary battery 20 or the inside of the chamber 100.
  • the pressure gauge may measure the pressure inside the chamber 100 and transmit the measured pressure to the controller 200 in real time.
  • the pressure gauge may be installed as close as possible to the secondary battery 20 in the chamber 100 so that the secondary battery 20 may capture the time of ignition and explosion more quickly.
  • the temperature sensor may transmit the temperature of the surface of the secondary battery 20 or the temperature inside the chamber 100 to the controller 200 in real time.
  • the temperature sensor may also be mounted on the surface of the secondary battery 20 or as close as possible to the secondary battery 20.
  • the temperature sensor may be, for example, in the form of a line (for example, a kind of wire coated with insulators on copper).
  • the line-shaped temperature sensor is disposed through the first connector 107 or the second connector 108 to mount one end of the line-shaped temperature sensor on the surface of the secondary battery 20 and to control the other end of the temperature sensor. 200) or to a data storage device.
  • one end of the temperature sensor may be disposed at a specific location inside the chamber.
  • the temperature sensor installed in the chamber 100 is damaged by direct damage when the secondary battery 20 is ignited or exploded, it is possible to reduce costs by using a line type temperature sensor.
  • this line-type temperature sensor has the advantage that it is very easy to replace.
  • the data storage device may be a data logger, for example. Data loggers are widely used to read temperatures, cell voltages, and so on.
  • various modifications and changes are possible, such as the addition of sensor equipment to the chamber 20.
  • the pressure information measured by the pressure gauge and / or the temperature information measured by the temperature sensor may be stored in the data storage device built in or separately provided in the controller 200.
  • the chamber 100 includes the pressure of the secondary battery 20, the resistance and the generation time of the gas generated in the secondary battery 20, the amount of gas generated in the secondary battery 20, A measuring device or a sensor capable of measuring the amount of heat generated by the secondary battery 20 may be mounted in the chamber 100, and the measured data may be transmitted to the controller 200 and / or the data storage device. All other measurements made in other secondary battery safety tests are possible at the same time.
  • the pressure information measured by the pressure gauge and the temperature information measured by the temperature sensor, the pressure of the secondary battery 20, the resistance and the generation time of the gas generated in the secondary battery 20, of the gas generated in the secondary battery 20 Through the amount, the amount of heat generated by the secondary battery 20, etc., the temperature and pressure conditions at the time of ignition or explosion of the secondary battery 20 can be obtained, and such information can be used for the safety evaluation test of the secondary battery 20. have.
  • the secondary battery may include a device having an oven outside the chamber 100 to heat the chamber 100 or the chamber 100 itself may directly heat the chamber 100.
  • the temperature of 20 can be raised.
  • the safety evaluation test of the secondary battery 20 in order to be utilized not only in case of ignition or explosion of the secondary battery 20, but also in the safety evaluation test of the secondary battery 20, It is also possible to apply liquid nitrogen).
  • the pressure transmitted from the pressure gauge is equal to or greater than a preset pressure (for example, a pressure value in the range of 0.5 Bar to 5 Bar or 1.5 Bar to 2 Bar) or transmitted by the temperature sensor. If the set temperature is equal to or higher than the preset temperature (eg, 100 ° C. or higher), the closing of the first shutoff valve 140, the closing of the second shutoff valve 150, and the opening of the safety valve 160 are automatically performed.
  • the control signal for the control unit may immediately transmit the first shutoff valve 140, the second shutoff valve 150, and the safety valve 160, respectively.
  • the first shutoff valve 140 may be automatically Control signals for closing, closing of the second shutoff valve 150, and opening of the safety valve 160 are immediately sent to the first shutoff valve 140, the second shutoff valve 150, and the safety valve 160, respectively. You can also send.
  • a preset voltage value eg, 5 V or more
  • the interior of the chamber 100 before the experiment may be formed in a vacuum state so as to derive a more accurate result value.
  • the secondary battery internally generated gas analyzing apparatus 10 may further include a vacuum pump (not shown) connected to the chamber 100 to form a vacuum state inside the chamber 100.
  • FIG. 5 is a photograph showing a case in which dust, flame, and high pressure gas are ejected toward the analysis module due to ignition and explosion of the secondary battery 20 when the safety valve 160 is not provided.
  • the first shutoff valve 140, the second shutoff valve 150, and the safety valve 160 are described.
  • the operation of) is as follows.
  • the chamber 100 by a flow of a fluid provided from the induction medium supply module 110 into the chamber 100 at the time of analyzing the gas generated in real time of the secondary battery 20 before ignition or explosion of the secondary battery 20.
  • the internal pressure of the fluid may flow in the order of the induction medium supply module 110, the chamber 100, and the analysis module 120 in the range of 1.0 to 1.5 Bar.
  • the pressure in the chamber 100 may be maintained within a predetermined range by a mass flow meter (MFC) of the induction medium supply module 110.
  • MFC mass flow meter
  • the first shutoff valve 140 connected to the induction medium supply module 110 and the second shutoff valve 150 connected to the analysis module 120 are in an open state, and the safety valve 160 is in a closed state.
  • the gas generated in the secondary battery 20 may be analyzed by the analysis module 120 while charging and discharging the secondary battery 20 by the charge / discharge module 130.
  • the pressure on the surface of the secondary battery 20 measured by the pressure gauge provided in the chamber 100 or the pressure value inside the chamber 100 and the temperature of the surface of the secondary battery 20 measured by the temperature sensor or the inside of the chamber 100.
  • Information about the temperature value is transmitted to the controller 200 and the data storage device in real time or at predetermined time intervals.
  • the pressure in the chamber 100 increases, so that the pressure in the chamber 100 becomes a secondary battery. (20) It becomes a value more than any one of the maximum value (namely, preset pressure) of the range of the pressure at the time of generating gas analysis, for example, the pressure value of the range of 1.5 Bar to 2 Bar, or more than 1.5 Bar.
  • a pressure equal to or greater than the preset pressure is sensed by the pressure gauge provided in the chamber 100, a signal indicating that a pressure equal to or greater than the preset pressure is sensed from the pressure gauge is immediately transmitted to the controller 200.
  • the first shutoff valve 140 and the second shutoff valve 150 are automatically closed, and the safety valve 160 is automatically opened.
  • Automatic opening and closing of these valves may be a direct operation of the high-pressure gas due to the ignition, explosion of the secondary battery directly to the valve, or may be automatically controlled by the control unit 200 through a separate drive source. . Accordingly, the flame, dust, and high-pressure gas due to ignition or explosion of the secondary battery 20 inside the chamber 100 are discharged to the outside through the open safety valve 160, and the induction medium supply module from the chamber 100. Fluid flow to the 110 and fluid flow from the chamber 100 to the analysis module 120 can be blocked, so that the equipment of the induction medium supply module 110 and the analysis module 120 can be protected.
  • the first shut-off valve 140 connected to the induction medium supply module 110 is automatically closed, the second shut-off valve 150 connected to the analysis module 120 and automatic when the pressure is more than a predetermined pressure.
  • a safety valve 160 connected to the outside that is opened to the outside, it is possible to minimize the risk of damage to the induction medium supply module 110 and analysis module 120 due to the ignition or explosion of the secondary battery 20, and also to analyze Safety of the user (researcher, etc.) using the apparatus 10 can also be ensured.
  • the secondary battery 20 was analyzed in an environment not overcharged or exposed to a high temperature environment. That is, there is a limit for analyzing the gas generated in the secondary battery 20 only in an environment below a predetermined charging voltage or below a predetermined temperature.
  • the induction medium supply module 110, the analysis module 120, and the like can be protected even in the event of ignition or explosion of the secondary battery 20, the ignition or explosion time of the secondary battery 20
  • the analysis can be performed (more precisely, just before firing or explosion). Accordingly, according to the present invention, the analysis can be performed until the ignition or explosion time of the secondary battery 20, so in which case the secondary battery 20 ignites or explodes, and the safety evaluation of the secondary battery 20, etc. There is an advantage that can be extended to the experiment.
  • the secondary battery 20 in one device Analysis of the generated gas at the time of charging and discharging) and the stability evaluation of the secondary battery 20 can be performed, there is an advantage that can be more efficient experiments while reducing the cost.
  • the first shutoff valve, the second shutoff valve, and safety Analysis may be applicable until the operation time of the valve is delayed until after the ignition and explosion of the secondary battery 20.
  • analysis can be performed until a certain time after ignition. If the valves should be operated until the time of ignition or explosion of the secondary battery 20 (more precisely, just before the ignition or explosion), the valves should be operated within a few seconds. On the other hand, when the analysis is to be carried out until after the ignition, explosion of the secondary battery 20, the present invention can be applied even for a time from several minutes to several hours after the ignition, explosion of the secondary battery 20.
  • the gas generated from the secondary battery can be extended to the point of ignition and explosion of the secondary battery to be analyzed in real time, while ensuring the safety of the researchers in the event of ignition and explosion of the battery and protecting the analysis device of the secondary battery generated gas.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Fluid Mechanics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Pathology (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 이차전지용 가스 분석장치에 관한 것으로서, 이차전지의 발화 또는 폭발시점까지 발생하는 가스에 대한 정량 분석 및 정성 분석 등을 효과적으로 수행할 수 있는 분석장치에 관한 것이다.

Description

이차전지 내부 발생 가스 실시간 분석 장치
본 출원은 2018.06.07. 출원된 한국특허출원 10-2018-0065249호와, 2018.10.30. 출원된 한국특허출원 10-2018-0130852호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 이차전지용 가스 분석장치에 관한 것으로, 더욱 상세하게는 이차전지의 발화 또는 폭발시점까지 발생하는 가스에 대한 정량 분석 및 정성 분석 등을 효과적으로 수행할 수 있는 분석장치에 관한 것이다.
일반적으로, 이차전지는 화학에너지를 전기에너지로 변환하는 방전과 역방향인 충전과정을 통하여 반복 사용이 가능한 전지이며, 제품군에 따른 적용 용이성이 높고, 높은 에너지 밀도 등의 전기적 특성을 가지는 이차전지는 휴대용 기기뿐만 아니라 전기적 구동원에 의하여 구동하는 전기차량(EV, Electric Vehicle) 또는 하이브리드 차량(HV, Hybrid Vehicle) 등에 보편적으로 응용되고 있다.
이러한 이차전지 내에서 발생하는 가스를 포집하여 분석함에 있어서 이차전지의 작동시에 다양한 가스가 발생하며, 이러한 이차전지 발생가스의 조성 및 함량에 대한 정보는 전지소재의 개발, 전지제조공정 최적화, 전지 불량원인의 파악 등에 있어 유용하게 이용된다.
한편, 이차전지는 고온에서 노출되었을 때 발화/폭발할 위험성이 있다. 또한, 과충전, 외부단락, 침상(nail) 관통, 국부적 손상(local crush) 등에 의해 짧은 시간 내에 큰 전류가 흐르게 될 경우에도, IR 발열에 의해 전지가 가열되면서 발화/폭발의 위험성이 있다. 한 예로서, 전해액 전극 사이의 반응 결과, 가스가 발생하여 전지 내압이 상승하게 되어, 일정 압력 이상에서 이차전지가 폭발할 수 있다.
또한, 이차전지 실험 시 온도 상승 및 발생하는 가스에 의하여 이차전지 가 장착된 챔버 내의 압력 증가로 인한 일종의 전지의 부품(swelling)현상이나 전지가 발화, 폭발하는 등 심각한 문제가 발생할 수 있다. 전지가 발화, 폭발 시 화염, 분진, 고압의 가스에 의해 분석 장치는 파손 위험에 노출되는 문제점이 있기 때문에 이차전지 발생 가스의 실시간 분석이 제한적이다. 따라서, 전지의 발화, 폭발 시점까지 확대하여 이차전지 발생 가스를 실시간으로 분석하고, 나아가 안전성 평가(과충전, 고온 노출 등)와 관련된 실험에도 적용할 수 있는 장치가 요구된다.
또한, 현 이차전지의 안전성 평가(과충전, 고온 노출 등)와 관련된 실험에 대한 필요성이 점점 더 커지고 있는데, 전지의 과충전 및 고온 노출 적용 시 전지의 발화, 폭발의 위험성으로부터 연구원의 안전성 확보 및 분석 기기의 보호를 위한 방안이 요구된다.
따라서 본 발명은 상기와 같은 문제점을 해결하기 위해 창안된 것으로서, 이차전지의 발생 가스를 이차전지의 발화, 폭발시점까지 확대하여 실시간으로 분석할 수 있으면서도 전지의 발화, 폭발시에 연구원의 안전성을 확보하고 이차전지 발생 가스의 분석 기기를 보호할 수 있는 장치를 제공하는데 그 목적이 있다.
본 발명에 따른 이차전지 내부 발생 가스 분석 장치는:
내부에 이차전지가 장착 가능한 챔버;
상기 챔버 내부로 유도 매체의 흐름을 발생시키는 유도 매체 공급 모듈; 및
상기 유도 매체의 흐름에 의하여 상기 챔버로부터 유입되는 상기 이차전지 내부에서 발생하는 가스를 분석하는 분석 모듈을 포함하고,
상기 챔버는:
상기 유도 매체 공급 모듈이 연결될 수 있는 주입구;
상기 분석 모듈이 연결될 수 있는 방출구; 및
상기 이차전지의 폭발 또는 발화시에 발생하는 화염, 분진, 및 고압의 가스를 외부로 배출할 수 있는 안전 밸브를 포함할 수 있다.
본 발명에 의하면, 이차전지의 발생 가스를 이차전지의 발화, 폭발시점까지 확대하여 실시간으로 분석할 수 있으면서도 전지의 발화, 폭발시에 연구원의 안전성을 확보하고 이차전지 발생 가스의 분석 기기를 보호할 수 있는 장치를 제공할 수 있는 장점이 있다.
나아가, 이차전지의 발생 가스의 실시간 분석 외에도 안전성 평가(과충전, 고온 노출 등)와 관련된 실험이나, 이차전지의 발화, 폭발 이후의 특정시점까지의 분석에도 적용할 수 있는 장점이 있다.
도 1은 본 발명에 따른 이차전지 내부 발생 가스 분석 장치(10)의 모식도이다.
도 2는 발명에 따른 이차전지 내부 발생 가스 분석 장치(10)의 일 예시의 정면도를 보여준다.
도 3은 도 2의 이차전지 내부 발생 가스 분석 장치(10)의 일 요부의 정면도를 보여준다.
도 4는 이차전지(20)가 발화한 후의 사진이다.
도 5는 안전밸브(160)를 구비하지 않은 경우에, 이차전지(20)의 발화, 폭발로 인한 분석 모듈로 분진, 화염, 및 고압의 가스가 분출되는 경우를 보여주는 사진이다.
본 발명에 따른 이차전지 내부 발생 가스 분석 장치는:
내부에 이차전지가 장착 가능한 챔버;
상기 챔버 내부로 유도 매체의 흐름을 발생시키는 유도 매체 공급 모듈; 및
상기 유도 매체의 흐름에 의하여 상기 챔버로부터 유입되는 상기 이차전지 내부에서 발생하는 가스를 분석하는 분석 모듈을 포함하고,
상기 챔버는:
상기 유도 매체 공급 모듈이 연결될 수 있는 주입구;
상기 분석 모듈이 연결될 수 있는 방출구; 및
상기 이차전지의 폭발 또는 발화시에 발생하는 화염, 분진, 및 고압의 가스를 외부로 배출할 수 있는 안전 밸브를 포함할 수 있다.
또한, 본 발명에 따른 이차전지 내부 발생 가스 분석 장치는: 상기 주입구와 상기 챔버 사이에 연결된 제 1 차단 밸브; 및 상기 방출구와 상기 챔버 사이에 연결된 제 2 차단 밸브를 더 포함하고,
상기 제 1 차단 밸브는 상기 이차전지의 폭발 또는 발화시에 상기 챔버로부터 상기 유도 매체 공급 모듈로의 유체의 흐름을 차단하고, 상기 제 2 차단 밸브는 상기 이차전지의 폭발 또는 발화시에 상기 챔버로부터 상기 분석 모듈로의 유체의 흐름을 차단하는 것일 수 있다.
또한, 본 발명에 따른 이차전지 내부 발생 가스 분석 장치에서, 상기 제 1 차단 밸브 및 상기 제 2 차단 밸브는 미리 설정된 압력 이상에서 폐쇄 상태로 전환되고, 상기 안전 밸브는 미리 설정된 압력 이상에서 개방 상태로 전환되는 것일 수 있다.
또한, 본 발명에 따른 이차전지 내부 발생 가스 분석 장치에서, 상기 제 1 차단 밸브 및 상기 제 2 차단 밸브는 상기 미리 설정된 압력 이상의 가스가 직접적으로 접촉할 때 자동으로 폐쇄 상태로 전환되고, 상기 안전 밸브는 상기 미리 설정된 압력 이상의 가스가 직접적으로 접촉할 때 개방 상태로 전환되는 것일 수 있다.
또한, 본 발명에 따른 이차전지 내부 발생 가스 분석 장치는:
상기 이차전지의 표면의 압력 또는 챔버 내부의 압력을 측정할 수 있는 압력게이지; 및
상기 압력게이지에서 측정된 압력이 미리 설정된 압력 이상이라는 신호를 수신하면, 상기 제 1 차단 밸브의 폐쇄, 상기 제 2 차단 밸브의 폐쇄, 및 상기 안전 밸브의 개방을 위한 제어 신호를 각각 상기 제 1 차단 밸브, 상기 제 2 차단 밸브, 및 상기 안전 밸브로 즉시 전송하는 제어부를 더 포함하고,
상기 제어부의 제어 신호에 따라, 상기 제 1 차단 밸브 및 상기 제 2 차단 밸브는 폐쇄 상태로 전환되고 상기 안전 밸브는 개방 상태로 전환되는 것일 수 있다.
또한, 본 발명에 따른 이차전지 내부 발생 가스 분석 장치는:
상기 이차전지의 표면의 온도 또는 챔버 내부의 온도를 측정할 수 있는 온도 센서; 및
상기 온도센서에서 측정된 온도가 미리 설정된 온도 이상이라는 신호를 수신하면, 상기 제 1 차단 밸브의 폐쇄, 상기 제 2 차단 밸브의 폐쇄, 및 상기 안전 밸브의 개방을 위한 제어 신호를 각각 상기 제 1 차단 밸브, 상기 제 2 차단 밸브, 및 상기 안전 밸브로 즉시 전송하는 제어부를 더 포함하고,
상기 제어부의 제어 신호에 따라, 상기 제 1 차단 밸브 및 상기 제 2 차단 밸브는 폐쇄 상태로 전환되고 상기 안전 밸브는 개방 상태로 전환되는 것일 수 있다.
또한, 본 발명에 따른 이차전지 내부 발생 가스 분석 장치는: 상기 챔버는 상기 이차전지의 전극이 접촉될 수 있는 상기 충방전단자를 더 포함하고, 상기 장치는 상기 충방전단자를 통해 상기 이차전지의 전극과 전기적으로 연결되어 상기 이차전지를 충방전하는 충방전모듈을 더 포함할 수 있다.
또한, 본 발명에 따른 이차전지 내부 발생 가스 분석 장치에서, 상기 챔버는 상기 이차전지가 장착될 수 있고 정면부가 개방된 직육면체 형상인 챔버 본체 및 상기 개방부를 차폐시킬 수 있도록 된 챔버 커버를 포함하고, 상기 주입구는 상기 챔버 본체의 일측면에 배치되고, 상기 방출구는 상기 챔버 본체의 다른 측면에 배치되고, 상기 안전 밸브는 상기 챔버 커버의 중앙에 배치되는 것일 수 있다.
또한, 본 발명에 따른 이차전지 내부 발생 가스 분석 장치에서, 상기 미리 설정된 압력은 0.5 Bar 내지 5 Bar의 범위의 압력 값 중 어느 하나의 값일 수 있다.
이하, 본 발명의 일 실시예에 따른 발화 또는 폭발시까지의 이차전지 내부 발생 가스 실시간 분석 장치를 상세히 설명한다. 첨부된 도면은 본 발명의 예시적인 형태를 도시한 것으로, 이는 본 발명을 보다 상세히 설명하기 위해 제공되는 것일 뿐, 이에 의해 본 발명의 기술적인 범위가 한정되는 것은 아니다.
또한, 도면 부호에 관계없이 동일하거나 대응되는 구성요소는 동일한 참조번호를 부여하고 이에 대한 중복 설명은 생략하기로 하며, 설명의 편의를 위하여 도시된 각 구성 부재의 크기 및 형상은 과장되거나 축소될 수 있다.
도 1은 본 발명에 따른 이차전지 내부 발생 가스 분석 장치(10)의 모식도이다. 도 2는 발명에 따른 이차전지 내부 발생 가스 분석 장치(10)의 일 예시의 정면도를 보여주고, 도 3은 도 2의 이차전지 내부 발생 가스 분석 장치(10)의 일 요부의 정면도를 보여준다.
먼저 도 1을 참조하면, 이차전지 내부 발생 가스 분석 장치(10)는 이차전지(20)가 내부에 장착되는 챔버(100), 유도 매체 공급 모듈(110), 분석 모듈(120)을 포함한다.
이차전지(20)는 캔형(원통형, 각형, 등), 파우치형 또는 코인셀형 등의 이차전지일 수 있다. 이차전지(20)는 활물질, 금속판, 전해질 등의 전기 화학적 반응에 의하여 충전 또는 방전이 구동되는데, 이러한 충전 또는 방전 구동이 수행되는 동안 내부 전기 화학 반응에 의하여 내부 가스가 발생될 수 있다.
챔버(100)의 내부에 이차전지(20)를 장착할 수 있다. 챔버(100)는 도 3을 참조하면, 챔버 본체(101) 및 챔버 커버(102)로 이루어진다. 챔버 본체(101)는 예를 들면 정면부가 개방된 직육면체 형상으로 마련될 수 있고, 챔버 커버(102)는 챔버 본체(101)의 개방부를 차폐시킬 수 있도록 마련될 수 있다. 챔버 본체(101) 및 챔버 커버(102)는 고정핀, 나사, 볼트, 등의 고정 수단으로 단단히 결합될 수 있다. 챔버 본체(101) 및 챔버 커버(102) 사이의 접촉면에는 챔버 본체(101) 및 챔버 커버(102)의 결합시 밀폐를 위한 O-ring 등과 같은 밀폐 부재를 더 포함할 수 있다. 챔버 본체(101)와 챔버 커버(102)는 각각 이중구조로 되어 있을 수 있다. 보다 구체적으로, 챔버 본체(101)와 챔버 커버(102)가 결합된 챔버(100)는 이중구조로 되어 있다. 챔버 본체(101)와 챔버 커버(102)가 결합된 챔버(100)에서, 이차전지(20)가 장착되는 내부면은 절연성, 단열성의 물질이면서도 고온 고압에 내구성이 있는 물질로서, 예를 들면, 베이클라이트(Bakelite), 테플론(Teflon), 에어로졸(aerosol) 등으로 이루어질 수 있다. 내부면을 둘러싼 외부면은 SUS, 금속 등의 재질로 이루어질 수 있다.
챔버(100)에는 유도 매체 공급 모듈(110)이 연결될 수 있는 주입구(103)와 분석 모듈(120)이 연결될 수 있는 방출구(104)가 구비되어 있다.
유도 매체 공급 모듈(110)은 챔버(100)에 구비된 주입구(103)를 통하여 비활성 가스 등으로 이루어지는 유도 매체를 챔버(100) 내부로 유입시킨다. 유도 매체 공급 모듈(110)은 MFC(Mass flow meter), 레귤레이터(regulator) 등의 가스 매체를 이동시키는 장치를 포함한다. 유도 매체 공급 모듈(110)과 주입구(103)는 가스 이동 흐름이 생성될 수 있도록 유도관으로 연결되어 있다. 비활성 가스 등으로 이루어지는 유도 매체는 헬륨, 질소, 아르곤 등과 같은 비활성 가스로 구성하는 것이 바람직하지만, 유도 매체를 구성하는 가스 성분은 검출하고자 하는 이차전지 발생 가스의 성분 및 이차전지 발생 가스의 분석의 목적에 따라 적절하게 선택될 수도 있음은 물론이다.
유도 매체 공급 모듈(110)에서 유량을 조절하여 챔버(100)의 내부 공간으로 유도 매체를 강하게 유입시킬 수 있고, 챔버(100)에 유입된 유도 매체는 챔버(100)의 주입구(103)와 방출구(104) 사이의 기압차이로 인하여 방출구(104)를 통하여 챔버(100)를 빠져나가게 된다. 이러한 유도 매체의 이송 흐름에 의하여, 이차전지(20)에서 발생되는 내부 가스가 유도 매체와 함께 방출구(104)를 통하여 분석 모듈(120)로 이송된다.
분석 모듈(120)은, 챔버(100)에 구비된 방출구(104)로부터 방출되는 가스의 이동 흐름이 생성될 수 있도록, 챔버(100)에 구비된 방출구(104)와 유도관으로 연결되어 있다. 분석 모듈(120)은 유도 매체를 필터링하는 필터 모듈(121)을 포함할 수 있다. 도 1 및 도 2에서는 분석 모듈(120)이 챔버(100)와 유도관을 통하여 연결된 경우를 도시하고 있지만, 경우에 따라서는, 방출구(104)에 이차전지 내부 발생 가스를 포집할 수 있는 가스 포집관(미도시)이 연결되고, 이차전지 내부 발생 가스의 포집이 완료된 이후에 가스 포집관을 분석 모듈(120)에 연결하여 분석을 수행할 수도 있다.
일 실시예로서, 주입구(103)는 챔버 본체(101)의 일 측면에 배치되고, 방출구(104)는 챔버 본체(101)의 다른 측면에 배치되어, 이차전지(20)의 발화 또는 폭발 직전까지 발생하는 가스의 흐름이 유도 매체 공급 모듈(110) - 챔버(100) - 분석 모듈(120)의 순서로 일 방향으로 원활히 형성될 수 있도록 하였다. 도 2에서는 예시적으로, 챔버(100)를 정면에서 바라볼 때 좌측에는 유도 매체 공급 모듈(110)이 연결될 수 있는 주입구(103)가 위치하고 우측에는 분석 모듈(120)이 연결될 수 있는 방출구(104)가 위치하는 경우를 도시한다. 그러나, 본 발명은 주입구(103) 및 방출구(104)의 위치에 관하여 도시된 것에 한정되지 않고, 가스의 흐름이 유도 매체 공급 모듈(110) - 챔버(100) - 분석 모듈(120)의 순서로 형성될 수 있는 한 다양한 변형, 변경이 가능하다.
또한, 본 발명의 이차전지 내부 발생 가스 분석 장치(10)는, 추가적으로, 충방전 모듈(130)을 포함할 수도 있다. 즉, 이차전지(20)는 충방전 뿐만 아니라 고온이나 외부 충격 등에도 폭발, 발화가 발생할 수 있기 때문에 본 발명의 이차전지 내부 발생 가스 분석 장치(10)는 충방전 모듈(130)을 포함하지 않고 구현될 수도 있고, 또는 이차전지(20)가 과충전되는 등으로 폭발, 발화가 발생할 수 있기 때문에 충방전 모듈(130)을 포함하여 구현될 수도 있다. 충방전 모듈(130)은 이차전지(20)의 전극과 전기적으로 연결되어 이차전지(20)의 충방전을 구동시키는 기능을 수행한다. 충방전 모듈(130)은 전원부와 부하부 및 스위칭 회로를 포함한다. 전원부는 이차전지(20)를 충전하기 위하여 전압 및/또는 전류를 조절하여 이차전지(20)에 인가하고, 부하부는 이차전지(20)에 충전된 에너지를 방전한다. 전원부 및 부하부는 충방전 단자들(106)을 통해 이차전지(20)와 전기적으로 연결될 수 있다. 충방전 단자들(106)은 챔버(100)에 구비되고 이차전지(20)의 전극이 접촉될 수 있다. 전원부 및 부하부는 스위칭 회로에 의하여 선택적으로 이차전지(20)와 전기적으로 연결될 수 있다. 충방전 모듈(130)은 사용자의 컴퓨터 등의 인터페이스 수단을 통하여 입력된 사용자 신호에 의하여 제어되도록 구성될 수 있다.
한편, 이차전지 내부 발생 가스 분석 장치(10)에서, 이차전지(20)를 충전 또는 방전하는 경우, 고온 및 저온에의 이차전지(20)의 노출, 이차전지(20)의 양극과 음극 쇼트(shot) 현상, 이차전지(20)의 충격(crush), 이차전지(20)의 관통(nail) 등의 경우들에 있어서, 이차전지(20)의 폭발 또는 발화가 발생하는 상황이 있을 수 있다. 이러한 이차전지(20)의 폭발 또는 발화로 인한 화염, 분진, 고압의 가스가 유도 매체 공급 모듈(110) 및 분석 모듈(120)으로 이동하는 것을 방지할 수 있도록, 본 발명의 이차전지 내부 발생 가스 분석 장치(10)는 주입구(103)와 유도 매체 공급 모듈(110) 사이에 마련된 제 1 차단 밸브(140) 및 방출구(104)와 분석 모듈(120) 사이에 마련된 제 2 차단 밸브(150)를 포함한다. 제 1 차단 밸브(140) 및 제 2 차단 밸브(150)는 챔버(110) 내부의 압력에 따라 개방(open)/폐쇄(close)된다.
보다 구체적으로, 이차전지(20)의 폭발 또는 발화 시에, 이차전지(20)의 폭발 또는 발화로 인한 화염, 분진, 고압의 가스의 압력이 유도 매체 공급 모듈(110)을 통해 챔버(100) 내부로 전달되는 유도 매체의 압력보다 클 수 있다. 제 1 차단 밸브(140)는 개방되어 있다가, 이차전지(20)의 폭발 또는 발화로 인한 화염, 분진, 고압의 가스가 유도 매체 공급 모듈(110)로 이동되어 유도 매체 공급 모듈(110)을 손상시키는 것을 방지할 수 있도록, 제 1 차단 밸브(140)는 챔버(100) 내부의 압력이 미리 설정된 압력 이상이 되면, 자동으로 폐쇄(차단)된다.
또한, 제 2 차단 밸브(150)는 개방되어 있다가, 이차전지(20)의 폭발 또는 발화로 인한 화염, 분진, 고압의 가스가 분석 모듈(120)로 이동되어 분석 모듈(120)을 손상시키는 것을 방지할 수 있도록, 제 2 차단 밸브(150)는 챔버(100) 내부의 압력이 미리 설정된 압력 이상이 되면, 자동으로 폐쇄(차단)된다.
또한, 이차전지 내부 발생 가스 분석 장치(10)는 이차전지(20)의 폭발 또는 발화시에 발생하는 화염, 분진, 고압의 가스를 분석 모듈(120)이 아닌 장치(10)의 외부로 배출할 수 있도록, 챔버(100)에 구비된 안전 밸브(160)를 더 포함한다. 챔버(100)에 안전밸브 연결구(105)가 마련되고 안전밸브 연결구(105)에 안전 밸브(160)가 구비되어 있을 수 있다. 도 2에서는 예시적으로, 챔버(100)의 챔버 커버(102)의 중앙부에 안전 밸브(160)를 구비하는 경우를 도시하고 있는데, 이는 이차전지(20)가 챔버(100)의 중앙에 장착되는 경우에 이차전지(20)의 발화, 폭발에 의한 압력이나 화염이 다른 곳으로 이동하는 것을 최소화시키기 위한 것이다. 즉, 이차전지(20)와 가장 가까운 위치에서 안전 밸브(160)가 개방됨으로써 챔버(100) 내부의 고압의 가스 및 화염이 안전 밸브(160)를 통해 압력이 낮은 외부으로 신속히 방출될 수 있다. 실제로, 이차전지(20)의 발화 및 챔버(100) 내부의 고압의 가스 방출 이후에, 이차전지(20)의 표면에는 안전 밸브(160)의 위치에 대응하는 곳(안전 밸브(160)와 맞닿아 있는 곳)에 구멍이 생성되는 것을 확인할 수 있다. 본 발명은 상술한 것에 한정되지 않고, 챔버(100) 내부에 이차전지(20)의 장착 위치가 변경되는 경우 그에 따라 안전 밸브(160)의 위치가 변경될 수 있고, 챔버 본체(101)에 안전 밸브(160)가 구비될 수도 있는 등, 챔버(100)의 폭발 또는 발화시에 발생하는 화염, 분진, 고압의 가스를 신속히 배출할 수 있는 한, 다양한 변형, 변경이 가능하다.
안전 밸브(160)는 폐쇄되어 있다가, 챔버(100) 내부의 압력이 미리 설정된 압력 이상이 되면, 자동으로 개방되어 챔버(100)의 폭발 또는 발화시에 발생하는 화염, 분진, 고압의 가스를 외부로 배출할 수 있다.
예를 들어, 이차전지(20)의 발화 이전에 실시간으로 발생하는 가스의 분석 시에 유도 매체 공급 모듈(110)로부터의 유도 매체의 흐름에 의한 챔버(100) 내부의 압력은 1.0 내지 1.5 사이일 수 있고, 제 1 차단 밸브(140) 및 제 2 차단 밸브(150)가 자동으로 폐쇄되고 안전 밸브(160)가 자동으로 개방되도록 미리 설정된 압력은 O.5 Bar 내지 5 Bar 또는 1.5 Bar 내지 2 Bar의 범위의 압력 값 중 어느 하나의 값일 수 있다. 제 1 차단 밸브(140) 및 제 2 차단 밸브(150)가 자동으로 폐쇄되고 안전 밸브(160)가 자동으로 개방되도록 미리 설정된 압력은 상술한 것에 한정되지 않고, 본 발명이 구현되는 다양한 환경에 따라 조절이 가능하다.
제 1 차단 밸브(140), 제 2 차단 밸브(150), 및 안전 밸브(160)는 이차전지(20)의 폭발 또는 발화로 인한 고온, 고압에도 견딜 수 있도록, SUS, 금속 등의 물질로 이루어진 밸브일 수 있고 내부에는 O-ring 등의 부가 구성요소들이 구비된 밸브일 수 있다. 또한, 제 1 차단 밸브(140), 제 2 차단 밸브(150), 및 안전 밸브(160)는 구동원(예를 들면, 전압원 등) 없이 자동으로 개폐가 가능한 밸브일 수 있고, 별도의 구동원에 연결되어 자동으로 개폐가 가능한 밸브일 수도 있다. 구동원 없이 자동으로 개폐가 가능한 밸브로서, 이차전지(20)의 발화, 폭발시 발생하는 고압의 가스 등이 직접적으로 밸브에 접촉 시에 자동으로 차단되는 밸브를 사용할 수 있다. 예를 들면, 제 1 차단 밸브(140) 및 제 2 차단 밸브(150)는 체크 밸브(check valve), 셧-오프 밸브(shut-off) 밸브, 퀵클로징(quick closing) 밸브, 컷-오프(cut-off) 밸브 등 가스 및 분진의 흐름을 차단가능한 밸브를 사용할 수 있다. 안전 밸브(160)는 릴리프 밸브(relief valve)등을 사용할 수 있다.
챔버(100)는 제 1 연결구(107) 및/또는 제 2 연결구(108)를 더 포함할 수 있다. 제 1 연결구(107) 및/또는 제 2 연결구(108)를 통해 후술할 온도센서 등이 챔버(100)에 배치될 수 있다.
또한, 챔버(100)는 이차전지(20) 표면 또는 챔버(100) 내부의 압력과 온도를 측정하기 위한 구성으로 이차전지(20) 표면의 압력 또는 챔버(100) 내부의 압력을 측정하는 압력게이지(미도시)와 이차전지(20) 표면의 온도 또는 챔버(100) 내부의 온도를 측정하는 온도센서(미도시)를 더 포함한다. 압력게이지에서 챔버(100) 내부의 압력을 측정하여 실시간으로 제어부(200)로 전송할 수 있다. 압력게이지는 이차전지(20)가 발화, 폭발하는 시점을 보다 빠르게 포착할 수 있도록, 챔버(100) 내부 중에서도 이차전지(20)에 최대한 근접하게 설치될 수 있다. 또한, 온도센서도 이차전지(20) 표면의 온도 또는 챔버(100) 내부의 온도를 실시간으로 제어부(200)로 전송할 수 있다. 온도센서도 이차전지(20) 표면에 장착되거나 이차전지(20)에 최대한 근접하게 설치될 수 있다. 온도센서는 예를 들면, 라인(line) 형태(예를 들면, 구리에 절연체가 피복된 일종의 전선)일 수 있다. 이러한 라인 형태의 온도센서를 제 1 연결구(107) 또는 제 2 연결구(108)를 통해 배치하여 라인 형태의 온도센서의 일단부를 이차전지(20)의 표면에 장착하고 온도센서의 타단부를 제어부(200) 또는 데이터 저장 장치에 연결할 수 있다. 경우에 따라서는, 챔버 내부의 특정 위치의 온도를 측정하고자 할 때, 온도센서의 일단부를 상기 챔버 내부의 특정 위치에 배치할 수 있다. 챔버(100)에 설치된 온도센서는 이차전지(20)의 발화, 폭발 시에 직접적인 손상을 받아 파손되기 때문에, 라인 형태의 온도센서를 사용하여 비용 절감을 도모할 수 있다. 또한 이러한 라인 형태의 온도센서는 교체가 매우 용이한 장점이 있다. 한편, 데이터 저장 장치는 예를 들면 데이터 로거(data logger)일 수 있다. 데이터 로거는 온도, 전지 전압 등을 읽는데 널리 사용된다. 상술한 바 외에도 센서 장비를 챔버(20)에 추가 설치할 수 있는 등 다양한 변형, 변경이 가능하다. 제어부(200) 내에 내장되거나 별도로 마련된 데이터 저장 장치에 압력게이지에서 측정된 압력 정보 및/또는 온도센서에서 측정된 온도 정보가 저장될 수 있다. 또한, 챔버(100)에는 압력게이지 및/또는 온도센서 외에도 이차전지(20)의 압력, 저항 및 이차전지(20)에서 발생하는 가스의 발생 시점, 이차전지(20)에서 발생하는 가스의 양, 이차전지(20)의 발생 열량을 측정할 수 있는 측정기기 또는 센서 등이 챔버(100)에 장착될 수 있고 이러한 측정된 데이터들이 제어부(200) 및/또는 데이터 저장 장치로 전송될 수 있다. 그외의 이차전지 안전성 테스트에서 하는 모든 종류의 측정이 동시에 가능하다. 이러한 압력게이지에서 측정된 압력 정보와 온도센서에서 측정된 온도 정보, 이차전지(20)의 압력, 저항 및 이차전지(20)에서 발생하는 가스의 발생 시점, 이차전지(20)에서 발생하는 가스의 양, 이차전지(20)의 발생 열량 등을 통하여 이차전지(20)의 발화 또는 폭발 시점의 온도, 압력 조건 등을 구할 수 있고, 이러한 정보는 이차전지(20)의 안전성 평가 시험에도 활용될 수 있다.
추가적으로, 챔버(100)의 외부에 오븐(oven)을 구비하여 챔버(100)에 열을 가하거나 챔버(100) 자체가 챔버(100)에 직접적으로 열을 가할 수 있는 장치를 포함함으로써, 이차전지(20)의 온도를 올릴 수 있다. 이차전지(20)의 발화, 폭발의 경우뿐만 아니라 이차전지(20)의 안전성 평가 시험에도 활용할 수 있도록, 이차전지(20)의 안전성 평가 시험과 동일한 방식으로 외부 저온 오븐 또는 챔버에 저온(cooler, 액체 질소 등)을 적용 시키는 것도 가능하다.
제어부(200)에서는 압력게이지에서 전송된 압력이 미리 설정된 압력(예를 들면, O.5 Bar 내지 5 Bar 또는 1.5 Bar 내지 2 Bar의 범위의 압력 값 중 어느 하나의 값) 이상이거나 온도센서에서 전송된 온도가 미리 설정된 온도 이상(예를 들면, 100°C 이상)이면, 자동으로 제 1 차단 밸브(140)의 폐쇄, 제 2 차단 밸브(150)의 폐쇄, 및 안전 밸브(160)의 개방을 위한 제어 신호를 각각 제 1 차단 밸브(140), 제 2 차단 밸브(150), 및 안전 밸브(160)로 즉시 전송할 수 있다. 추가적으로 또는 대안적으로, 충방전 모듈(130)에서 측정된 이차전지(20)의 전압이 미리 설정된 전압값 이상(예를 들면, 5 V 이상) 이상이면, 자동으로 제 1 차단 밸브(140)의 폐쇄, 제 2 차단 밸브(150)의 폐쇄, 및 안전 밸브(160)의 개방을 위한 제어 신호를 각각 제 1 차단 밸브(140), 제 2 차단 밸브(150), 및 안전 밸브(160)로 즉시 전송할 수도 있다.
한편, 본 발명의 이차전지 내부 발생 가스 분석 장치(10)에서는, 보다 정확한 결과값을 도출할 수 있도록 실험전 챔버(100) 내부가 진공 상태로 조성될 수 있다. 이를 위해 이차전지 내부 발생 가스 분석 장치(10)는 챔버(100)와 연결되어 챔버(100) 내부에 진공 상태를 조성하는 진공펌프(미도시)를 더 구비할 수 있다.
도 4는 이차전지(20)가 발화한 후의 사진이다.
도 5는 안전밸브(160)를 구비하지 않은 경우에, 이차전지(20)의 발화, 폭발로 인한 분석 모듈 방향으로 분진, 화염, 및 고압의 가스가 분출되는 경우를 보여주는 사진이다.
이하, 본 발명의 이차전지 내부 발생 가스 분석 장치(10)에서의 이차전지(20) 발생 가스의 분석에 있어서, 제 1 차단 밸브(140), 제 2 차단 밸브(150), 및 안전 밸브(160)의 작동에 관하여 정리하면 다음과 같다.
1. 이차전지(20)의 발화 또는 폭발 이전의, 이차전지(20)의 실시간 발생 가스 분석 시에 유도 매체 공급 모듈(110)로부터 챔버(100) 내부로 제공되는 유체의 흐름에 의하여 챔버(100) 내 압력은 예를 들어 1.0 ~ 1.5 Bar 사이의 범위에서 유체가 유도 매체 공급 모듈(110), 챔버(100), 분석 모듈(120)의 순서로 흐르게 된다. 유도 매체 공급 모듈(110)의 MFC(Mass flow meter)에 의하여 챔버(100) 내 압력이 일정한 범위 내에서 유지될 수 있다.
이 때, 유도 매체 공급 모듈(110)에 연결된 제 1 차단 밸브(140)와 분석 모듈(120)에 연결된 제 2 차단 밸브(150)는 개방 상태이고, 안전 밸브(160)는 폐쇄 상태이다. 충방전 모듈(130)에 의하여 이차전지(20)를 충방전하면서 이차전지(20)에서 발생하는 가스를 분석 모듈(120)에서 분석할 수 있다. 챔버(100)에 구비된 압력게이지에서 측정된 이차전지(20) 표면의 압력 또는 챔버(100) 내부의 압력값과 온도센서에서 측정된 이차전지(20) 표면의 온도 또는 챔버(100) 내부의 온도 값에 관한 정보는 제어부(200)와 데이터 저장 장치로 실시간 또는 미리 설정된 시간 간격으로 전송된다.
2. 이차전지(20)의 과충전 또는 고온으로 인한 비이상적인 반응에 의해 이차전지(20)에 발화 또는 폭발이 발생하면 챔버(100) 내 압력이 증가하여, 챔버(100) 내부의 압력은 이차전지(20) 발생 가스 분석 시의 압력의 범위 중 최대값(즉, 미리 설정된 압력), 예를 들어 1.5 Bar 내지 2 Bar의 범위의 압력 값 중 어느 하나의 값 이상 또는 1.5 Bar 이상의 값이 된다. 챔버(100)에 구비된 압력게이지에서 미리 설정된 압력 이상의 압력이 감지되면, 즉시 압력게이지로부터 미리 설정된 압력 이상의 압력이 감지되었다는 신호가 제어부(200)로 전송된다.
이 때, 제 1 차단 밸브(140) 및 제 2 차단 밸브(150)는 자동으로 폐쇄되고, 안전 밸브(160)는 자동으로 개방된다. 이러한 밸브들의 자동 개폐는 밸브에 이차 전지의 발화, 폭발로 인한 고압의 가스가 직접적으로 접촉하여 자동으로 작동하는 것일 수도 있고, 별도의 구동원을 통하여 제어부(200)에 의하여 자동으로 제어되는 것일 수 있다. 그에 따라, 챔버(100) 내부의 이차전지(20) 발화 또는 폭발로 인한 화염, 분진, 고압의 가스가 개방된 안전 밸브(160)를 통하여 외부로 배출되고, 챔버(100)로부터 유도 매체 공급 모듈(110)로의 유체 흐름 및 챔버(100)로부터 분석 모듈(120)로의 유체 흐름은 차단되어, 유도 매체 공급 모듈(110) 및 분석 모듈(120)의 장비들이 보호될 수 있다.
이와 같은 본 발명에 의하면, 미리 설정된 압력 이상이면, 자동으로 폐쇄되는 유도 매체 공급 모듈(110)에 연결된 제 1 차단 밸브(140)와 분석 모듈(120)에 연결된 제 2 차단 밸브(150) 및 자동으로 개방되는 외부에 연결된 안전 밸브(160)를 구비함으로써, 이차전지(20)의 발화 또는 폭발로부터 인한 유도 매체 공급 모듈(110)과 분석 모듈(120) 파손의 위험을 최소화시킬 수 있고, 또한 분석 장치(10)를 사용하는 사용자(연구원, 등)의 안전도 확보할 수 있다.
또한, 이와 같은 제 1 차단 밸브(140), 제 2 차단 밸브(150) 및 안전 밸브(160)를 구비하지 않은 종래 기술에 의하면, 이차전지(20)의 발화 또는 폭발이 되는 경우를 피하고자, 이차전지(20)를 과충전하거나 고온의 환경에 노출하지 않는 환경에서 분석을 진행하였다. 즉, 소정의 충전 전압 이하나 소정의 온도 이하의 환경으로만 이차전지(20)에서 발생하는 가스를 분석하는 한계가 있었다.
그러나, 본 발명에 의하면, 이차전지(20)의 발화나 폭발의 경우에도 유도 매체 공급 모듈(110), 분석 모듈(120), 등을 보호할 수 있으므로, 이차전지(20)의 발화나 폭발시점(보다 정확하게는, 발화나 폭발 직전)까지 분석을 수행할 수 있는 장점이 있다. 그에 따라, 본 발명에 의하면, 이차전지(20)의 발화나 폭발시점까지에 분석이 가능하므로, 이차전지(20)가 어떠한 경우에 발화나 폭발하는지 등에 관한 실험이나 이차전지(20)의 안전성 평가 실험에 대하여도 확대하여 적용이 가능한 장점이 있다. 일 예로, 종전에는, 이차전지(20)의 충방전시의 발생 가스에 대한 분석 장비와 이차전지(20)의 안정성 평가 장비를 별도로 구비하였다면, 본 발명에 의하면, 하나의 장치로 이차전지(20)의 충방전시의 발생 가스에 대한 분석 및 이차전지(20)의 안정성 평가를 수행할 수 있으므로, 보다 효율적인 실험이 가능하면서도 비용의 절감이 가능한 장점이 있다. 또한, 이차전지(20)의 종류나 실험 환경에 따라, 이차전지(20)의 발화, 폭발로 인한 영향이 비교적 적어 실험 장비의 손상이 없을 경우, 제 1 차단 밸브, 제 2 차단 밸브, 및 안전 밸브의 작동 시간을 늦추어 이차전지(20)의 발화, 폭발 이후까지 분석이 적용가능할 수도 있다. 즉, 발화 이후 특정 시간까지 분석도 가능하다. 이차전지(20)의 발화나 폭발시점(보다 정확하게는, 발화나 폭발 직전)까지 밸브들이 작동하여야 하는 경우에는 수초 이내에 밸브들이 작동하도록 하여야 한다. 한편, 이차전지(20)의 발화, 폭발 이후까지 분석을 수행하려는 경우에는 이차전지(20)의 발화, 폭발 이후의 수분~ 수시간까지의 시간 동안에도 본 발명이 적용이 가능하다.
상술한 본 발명의 기술적 구성은 본 발명이 속하는 기술분야에서의 통상의 기술자가 본 발명의 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예는 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로 이해되어야 한다. 아울러, 본 발명의 범위는 상기의 상세한 설명보다는 후술하는 특허청구 범위에 의하여 나타내어진다. 또한, 특허청구범위의 의미 및 범위 그리고 그 등가개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
본 발명에 의하면, 이차전지의 발생 가스를 이차전지의 발화, 폭발시점까지 확대하여 실시간으로 분석할 수 있으면서도 전지의 발화, 폭발시에 연구원의 안전성을 확보하고 이차전지 발생 가스의 분석 기기를 보호할 수 있는 장치를 제공할 수 있는 장점이 있다.
나아가, 이차전지의 발생 가스의 실시간 분석 외에도 안전성 평가(과충전, 고온 노출 등)와 관련된 실험이나, 이차전지의 발화, 폭발 이후의 특정시점까지의 분석에도 적용할 수 있는 장점이 있다.

Claims (9)

  1. 내부에 이차전지가 장착 가능한 챔버;
    상기 챔버 내부로 유도 매체의 흐름을 발생시키는 유도 매체 공급 모듈; 및
    상기 유도 매체의 흐름에 의하여 상기 챔버로부터 유입되는 상기 이차전지 내부에서 발생하는 가스를 분석하는 분석 모듈을 포함하고,
    상기 챔버는:
    상기 유도 매체 공급 모듈이 연결될 수 있는 주입구;
    상기 분석 모듈이 연결될 수 있는 방출구; 및
    상기 이차전지의 폭발 또는 발화시에 발생하는 화염, 분진, 및 고압의 가스를 외부로 배출할 수 있는 안전 밸브를 포함하는,
    이차전지 내부 발생 가스 분석 장치.
  2. 제 1 항에 있어서,
    상기 주입구와 상기 챔버 사이에 연결된 제 1 차단 밸브; 및
    상기 방출구와 상기 챔버 사이에 연결된 제 2 차단 밸브를 더 포함하고,
    상기 제 1 차단 밸브는 상기 이차전지의 폭발 또는 발화시에 상기 챔버로부터 상기 유도 매체 공급 모듈로의 유체의 흐름을 차단하고,
    상기 제 2 차단 밸브는 상기 이차전지의 폭발 또는 발화시에 상기 챔버로부터 상기 분석 모듈로의 유체의 흐름을 차단하는 것인, 이차전지 내부 발생 가스 분석 장치.
  3. 제 2 항에 있어서,
    상기 제 1 차단 밸브 및 상기 제 2 차단 밸브는 미리 설정된 압력 이상에서 폐쇄 상태로 전환되고, 상기 안전 밸브는 미리 설정된 압력 이상에서 개방 상태로 전환되는 것인, 이차전지 내부 발생 가스 분석 장치.
  4. 제 3 항에 있어서,
    상기 제 1 차단 밸브 및 상기 제 2 차단 밸브는 상기 미리 설정된 압력 이상의 가스가 직접적으로 접촉할 때 자동으로 폐쇄 상태로 전환되고, 상기 안전 밸브는 상기 미리 설정된 압력 이상의 가스가 직접적으로 접촉할 때 개방 상태로 전환되는 것인, 이차전지 내부 발생 가스 분석 장치.
  5. 제 3 항에 있어서,
    상기 이차전지의 표면의 압력 또는 챔버 내부의 압력을 측정할 수 있는 압력게이지; 및
    상기 압력게이지에서 측정된 압력이 미리 설정된 압력 이상이라는 신호를 수신하면, 상기 제 1 차단 밸브의 폐쇄, 상기 제 2 차단 밸브의 폐쇄, 및 상기 안전 밸브의 개방을 위한 제어 신호를 각각 상기 제 1 차단 밸브, 상기 제 2 차단 밸브, 및 상기 안전 밸브로 즉시 전송하는 제어부를 더 포함하고,
    상기 제어부의 제어 신호에 따라, 상기 제 1 차단 밸브 및 상기 제 2 차단 밸브는 폐쇄 상태로 전환되고 상기 안전 밸브는 개방 상태로 전환되는 것인, 이차전지 내부 발생 가스 분석 장치.
  6. 제 2 항에 있어서,
    상기 이차전지의 표면의 온도 또는 챔버 내부의 온도를 측정할 수 있는 온도 센서; 및
    상기 온도센서에서 측정된 온도가 미리 설정된 온도 이상이라는 신호를 수신하면, 상기 제 1 차단 밸브의 폐쇄, 상기 제 2 차단 밸브의 폐쇄, 및 상기 안전 밸브의 개방을 위한 제어 신호를 각각 상기 제 1 차단 밸브, 상기 제 2 차단 밸브, 및 상기 안전 밸브로 즉시 전송하는 제어부를 더 포함하고,
    상기 제어부의 제어 신호에 따라, 상기 제 1 차단 밸브 및 상기 제 2 차단 밸브는 폐쇄 상태로 전환되고 상기 안전 밸브는 개방 상태로 전환되는 것인, 이차전지 내부 발생 가스 분석 장치.
  7. 제 1 항에 있어서,
    상기 챔버는 상기 이차전지의 전극이 접촉될 수 있는 상기 충방전단자를 더 포함하고,
    상기 장치는 상기 충방전단자를 통해 상기 이차전지의 전극과 전기적으로 연결되어 상기 이차전지를 충방전하는 충방전모듈을 더 포함하는, 이차전지 내부 발생 가스 분석 장치.
  8. 제 1 항에 있어서,
    상기 챔버는 상기 이차전지가 장착될 수 있고 정면부가 개방된 직육면체 형상인 챔버 본체 및 상기 개방부를 차폐시킬 수 있도록 된 챔버 커버를 포함하고,
    상기 주입구는 상기 챔버 본체의 일측면에 배치되고, 상기 방출구는 상기 챔버 본체의 다른 측면에 배치되고,
    상기 안전 밸브는 상기 챔버 커버의 중앙에 배치되는, 이차전지 내부 발생 가스 분석 장치.
  9. 제 3 항에 있어서,
    상기 미리 설정된 압력은 0.5 Bar 내지 5 Bar의 범위의 압력 값 중 어느 하나의 값인, 이차전지 내부 발생 가스 분석 장치.
PCT/KR2019/006056 2018-06-07 2019-05-21 이차전지 내부 발생 가스 실시간 분석 장치 WO2019235757A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19815369.4A EP3686595A4 (en) 2018-06-07 2019-05-21 REAL-TIME ANALYSIS DEVICE FOR GAS GENERATED WITHIN A SECONDARY BATTERY
CN201980005418.2A CN111279191A (zh) 2018-06-07 2019-05-21 对二次电池内部产生的气体进行实时分析的设备
US16/760,178 US11626625B2 (en) 2018-06-07 2019-05-21 Apparatus for real-time analysis of gas generated inside secondary battery
JP2020522966A JP7115694B2 (ja) 2018-06-07 2019-05-21 二次電池の内部発生ガスリアルタイム分析装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2018-0065249 2018-06-07
KR20180065249 2018-06-07
KR1020180130852A KR102385711B1 (ko) 2018-06-07 2018-10-30 이차전지 내부 발생 가스 실시간 분석 장치
KR10-2018-0130852 2018-10-30

Publications (1)

Publication Number Publication Date
WO2019235757A1 true WO2019235757A1 (ko) 2019-12-12

Family

ID=68770416

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/006056 WO2019235757A1 (ko) 2018-06-07 2019-05-21 이차전지 내부 발생 가스 실시간 분석 장치

Country Status (1)

Country Link
WO (1) WO2019235757A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114828481A (zh) * 2022-04-25 2022-07-29 武汉船用机械有限责任公司 一种具备爆炸检测功能的电控箱及其使用方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120050667A (ko) * 2010-11-11 2012-05-21 주식회사 엘지화학 이차전지 내부 발생 가스의 실시간 분석 장치
JP2013080634A (ja) * 2011-10-04 2013-05-02 Toyota Motor Corp 二次電池の測定方法および測定システム
KR20150032034A (ko) * 2013-09-17 2015-03-25 한국전기연구원 이차 전지 테스트 시스템
KR20160066909A (ko) * 2014-12-03 2016-06-13 주식회사 엘지화학 이차전지 벤팅 가스 분석장치 및 그의 분석방법
KR101760401B1 (ko) * 2014-12-15 2017-07-31 주식회사 엘지화학 이차전지용 가스 분석장치 및 그를 이용한 가스 분석방법
KR20180065249A (ko) 2016-12-07 2018-06-18 김용수 경사 방향에 따라 유체의 흐름 방향을 제어할 수 있는 밸브어셈블리
KR20180130852A (ko) 2017-05-30 2018-12-10 소원기 액체 세제 조성물

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120050667A (ko) * 2010-11-11 2012-05-21 주식회사 엘지화학 이차전지 내부 발생 가스의 실시간 분석 장치
JP2013080634A (ja) * 2011-10-04 2013-05-02 Toyota Motor Corp 二次電池の測定方法および測定システム
KR20150032034A (ko) * 2013-09-17 2015-03-25 한국전기연구원 이차 전지 테스트 시스템
KR20160066909A (ko) * 2014-12-03 2016-06-13 주식회사 엘지화학 이차전지 벤팅 가스 분석장치 및 그의 분석방법
KR101760401B1 (ko) * 2014-12-15 2017-07-31 주식회사 엘지화학 이차전지용 가스 분석장치 및 그를 이용한 가스 분석방법
KR20180065249A (ko) 2016-12-07 2018-06-18 김용수 경사 방향에 따라 유체의 흐름 방향을 제어할 수 있는 밸브어셈블리
KR20180130852A (ko) 2017-05-30 2018-12-10 소원기 액체 세제 조성물

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3686595A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114828481A (zh) * 2022-04-25 2022-07-29 武汉船用机械有限责任公司 一种具备爆炸检测功能的电控箱及其使用方法

Similar Documents

Publication Publication Date Title
KR102385711B1 (ko) 이차전지 내부 발생 가스 실시간 분석 장치
WO2020085722A1 (ko) 중대형 셀 모듈의 폭발 압력 예측 시스템 및 이를 이용한 중대형 셀 모듈의 폭발 압력 예측 방법
WO2017188633A1 (ko) 배터리 팩 및 배터리 팩의 충전 방법
WO2018128283A1 (ko) 내부의 온도를 측정할 수 있는 전지셀
US11650255B2 (en) Chamber and system for real-time analysis of gas generated inside secondary battery
WO2020009343A1 (ko) 이차전지 내부단락 시험 방법과 장치 및 이에 이용되는 내부단락 시험용 이차전지
WO2019235757A1 (ko) 이차전지 내부 발생 가스 실시간 분석 장치
WO2018151415A1 (ko) 열팽창성 테이프를 포함하는 안전성이 개선된 배터리 셀 및 이의 제조방법
CN110542861A (zh) 一种动力电池泄气量测试装置及方法
CN114636724A (zh) 一种锂离子电池热失控气体收集系统及计算方法
CN103411795A (zh) 一种用于锂离子电池工况模拟的气体收集装置
KR20200069768A (ko) 배터리 열노출 테스트 후 충방전 사이클 테스트 장치 및 방법
WO2018088685A1 (ko) 배터리 팩
WO2019235844A1 (ko) 이차전지 내부 발생 가스 실시간 분석용 챔버 및 시스템
CN115586449A (zh) 一种锂离子电池热失控产气测试系统
WO2022045589A1 (ko) 손상된 전지 셀의 검출이 가능한 전지 시스템 및 전지 모듈 평가 방법
WO2024096597A1 (ko) 이차 전지의 가스 유량 측정 장치 및 이를 이용한 측정 방법
WO2023080479A1 (ko) 과충전 방지가 가능한 이차전지 및 이의 충전방법
KR20200069775A (ko) 배터리 과방전 테스트 후 충방전 사이클 테스트 장치 및 방법
WO2022149708A1 (ko) 배터리 모듈, 이를 포함하는 배터리 팩 및 자동차
CN216052079U (zh) 一种锂电池安全试验用过充防爆观察箱
WO2023085632A1 (ko) 배터리 셀 내압 측정 장치
CN219458678U (zh) 一种新能源发电并网储能装置
WO2024106813A1 (ko) 배터리 셀 시험 시스템
WO2022065714A1 (ko) 스페이서를 포함하는 전지 셀 지그, 이를 포함하는 전지 셀의 부피 측정 장치 및 이를 이용한 전지 셀의 부피 측정 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19815369

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020522966

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019815369

Country of ref document: EP

Effective date: 20200420

NENP Non-entry into the national phase

Ref country code: DE