WO2019235654A1 - 탄소배출량 저감을 이행하기 위한 딥러닝을 활용한 차량의 에너지 소모량 산출 방법 - Google Patents

탄소배출량 저감을 이행하기 위한 딥러닝을 활용한 차량의 에너지 소모량 산출 방법 Download PDF

Info

Publication number
WO2019235654A1
WO2019235654A1 PCT/KR2018/006373 KR2018006373W WO2019235654A1 WO 2019235654 A1 WO2019235654 A1 WO 2019235654A1 KR 2018006373 W KR2018006373 W KR 2018006373W WO 2019235654 A1 WO2019235654 A1 WO 2019235654A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
neural network
energy consumption
artificial neural
road
Prior art date
Application number
PCT/KR2018/006373
Other languages
English (en)
French (fr)
Inventor
고광호
전진호
정승현
Original Assignee
데이터 엠 리미티드
피씨알시스템 주식회사
주식회사 스마트에코
이영철
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 데이터 엠 리미티드, 피씨알시스템 주식회사, 주식회사 스마트에코, 이영철 filed Critical 데이터 엠 리미티드
Priority to PCT/KR2018/006373 priority Critical patent/WO2019235654A1/ko
Publication of WO2019235654A1 publication Critical patent/WO2019235654A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods

Definitions

  • the present invention relates to a method for calculating energy consumption of a vehicle, and more particularly, to a method for calculating energy consumption of a vehicle using deep learning, which is a kind of machine learning by an artificial neural network, for implementing a carbon emission reduction.
  • Republic of Korea Patent Registration No. 10-1205983 discloses a vehicle eco-drive indicator using a smartphone
  • Republic of Korea Patent Registration No. 10-1308264 registered Sep. 06. 2013
  • the present invention discloses a navigation apparatus and a method
  • Korean Patent Registration No. 10-1249421 discloses an eco-drive induction apparatus by real-time input of GPS data only.
  • the fuel consumption of the vehicle is expressed by the product of the vehicle output and the conversion coefficient
  • the vehicle output is expressed by the product of the vehicle driving force and the vehicle speed
  • the vehicle driving force is the rolling resistance, air resistance, gradient resistance and acceleration resistance It can be expressed as a sum. That is, the fuel consumption amount of the vehicle can be calculated from the vehicle driving force.
  • the exact value of the rolling resistance coefficient and the air resistance coefficient of the vehicle has a limitation that it is not generally known outside the vehicle manufacturer and tire manufacturer, so that the fuel consumption of the vehicle cannot be accurately calculated from the vehicle driving force.
  • Korean Patent Registration No. 10-0274579 discloses a vehicle model recognition method using a neural network model technique
  • Korean Patent Registration No. 10-0837244 discloses on June 04, 2008
  • the present invention discloses an image recognition system of a license plate and a method thereof
  • Korean Patent Registration No. 10-1703163 discloses an apparatus and method for predicting a complex failure of a vehicle.
  • 10-2018-0029543 discloses a method for diagnosing vehicle status through deep learning
  • Korean Utility Model Registration No. 20-0173957 discloses a neural network.
  • Disclosed is a mileage automatic maintenance system used
  • Korea Utility Model Publication No. 1999-0028544 discloses an air-fuel ratio control system of a vehicle.
  • An object of the present invention is to provide a vehicle that can calculate the energy consumption of a vehicle more accurately and more flexibly by using the artificial neural network, in particular, by calculating the energy consumption of the vehicle such as fuel consumption of the vehicle or electric consumption of the vehicle by using deep learning. It is to provide a method of calculating the energy consumption of the.
  • the test vehicle is driven on an actual road to measure the speed of the test vehicle and the inclination angle of the road on which the test vehicle travels at every predetermined time interval by the GPS receiver, and the same time every time by the energy consumption measuring unit.
  • the energy consumption of the test vehicle is measured at intervals, and the energy of the test vehicle measured by the speed and inclination angle of the road and the energy consumption measuring unit measured by the GPS receiver by the data collecting device.
  • Collecting experimental data by matching consumption Delivering the experimental data collected by the data collection device to an artificial neural network server having an artificial neural network including an input layer, one or more hidden layers, and an output layer;
  • the neural network server inputs the speed of the test vehicle and the inclination angle of the road into the input layer as input values, and converts the input layer from the first hidden layer to the first hidden layer, and if there are a plurality of hidden layers, converts from the hidden layer to the next hidden layer. And arbitrarily setting parameters applied to the conversion from the last hidden layer to the output layer and comparing the output value calculated at the output layer with the energy consumption of the experimental vehicle received from the data collection device.
  • the artificial neural network server recalculating the output value after changing the parameters applied to the artificial neural network when it is determined that an error between the output value and the energy consumption of the experimental vehicle is out of a predetermined allowable range; Determining, by the artificial neural network server, the parameters applied to the artificial neural network when it is determined that an error between the output value and the energy consumption of the experimental vehicle is within a predetermined allowable range; The neural network server storing parameter data matched with the determined parameters for at least one of a vehicle model of the experimental vehicle, a type of the road applied to the experiment, and a section of the road applied to the experiment; Transmitting the parameter data calculated by the artificial neural network server to an artificial neural network energy consumption calculating device mounted on a certain driving vehicle;
  • the apparatus for calculating energy consumption of the artificial neural network of the traveling vehicle has an artificial neural network identical to the artificial neural network applied to the artificial neural network server, and the type of the traveling vehicle, the type of the road on which the traveling vehicle runs, and the experiment And calculating energy consumption of the driving vehicle according to the speed
  • the neural network preferably has two or more hidden layers.
  • the apparatus for calculating the artificial neural network energy consumption of the driving vehicle measures the speed of the driving vehicle and the inclination angle of the road on which the driving vehicle travels at every predetermined time interval by the GPS receiver.
  • the apparatus for calculating the energy consumption of the neural network energy of the driving vehicle has map data, and combines the position of the driving vehicle and the map data determined by the GPS receiver to determine the type of road or road that the driving vehicle is driving. It is preferable to determine the section and to calculate the energy consumption amount of the driving vehicle accordingly.
  • the parameters applied to the artificial neural network may be changed by the following equation (i).
  • Wi Wi- x Gi ----- (i)
  • Wi represents the i-th parameter
  • Gi is the slope of Wi, calculated by the following equation (ii):
  • Equation (ii) h is a very small arbitrary value mathematically converging to 0, for example, may be 0.0001, and L is calculated by the following Equation (iii).
  • Equation (iii) Y represents the final output value of the artificial neural network, t represents the experimental measurement of the energy consumption of the experimental vehicle)
  • the energy consumption calculation method of the vehicle according to the present invention can calculate the energy consumption of the vehicle more accurately and more flexibly by utilizing an artificial neural network, in particular, deep learning.
  • the method of the present invention can also effectively implement the MRV scheme in the transport sector NAMA.
  • FIG. 1 is a view showing a schematic configuration of a system for calculating the energy consumption of a vehicle implementing the method of calculating the energy consumption of the vehicle according to the present invention.
  • FIG. 2 is a diagram illustrating a schematic configuration of a data collecting device applied to the energy consumption calculating system of the vehicle illustrated in FIG. 1.
  • FIG. 3 is a diagram illustrating a schematic configuration of an artificial neural network server applied to an energy consumption calculation system of a vehicle shown in FIG. 1.
  • FIG. 4 is a diagram illustrating a schematic configuration of an apparatus for calculating energy consumption of an artificial neural network applied to an energy consumption calculation system of a vehicle illustrated in FIG. 1.
  • FIG. 5 is a view schematically illustrating an example of an artificial neural network applied to an artificial neural network server applied to the energy consumption calculation system of the vehicle shown in FIG. 1.
  • FIG. 6 is a flowchart illustrating a learning process in which an artificial neural network server applied to an energy consumption calculation system of a vehicle shown in FIG. 1 determines values of parameters by an artificial neural network.
  • FIG. 7 is a diagram illustrating a concept of dividing a section of a road and applying values of parameters to each section of the road in the present invention.
  • FIG. 1 A schematic configuration of an energy consumption calculation system of a vehicle implementing the method for calculating energy consumption of a vehicle according to the present invention is shown in FIG. 1.
  • the system 10 for calculating energy consumption of a vehicle according to the present invention includes an apparatus for calculating energy consumption of an artificial neural network installed in a data collection device 100, an artificial neural network server 200, and a driving vehicle 14 mounted on an experimental vehicle 12. 300.
  • the data collection device 100 may include a GPS receiver 110, an energy consumption measurer 120, a controller 130, and a memory.
  • the unit 140 and the communication unit 150 is included.
  • the artificial neural network server 200 includes a communication unit 210, a control unit 220 and a memory unit 230.
  • the artificial neural network server 200 may further include a display unit 240.
  • the artificial neural network energy consumption calculation apparatus includes a GPS receiver 310, a controller 320, a memory 330, and a communicator 340.
  • the data collection device 100 is mounted on the experiment vehicle 12 so that the speed V and the experiment vehicle of the experiment vehicle 12 when the experiment vehicle 12 actually travels.
  • the actual energy consumption t of the experimental vehicle 12 corresponding to the inclination ⁇ of the road on which 12 has traveled is actually measured. That is, the data collection device 100 constructs experimental data including the speed V of the test vehicle, the inclination angle of the road ⁇ , and the actual energy consumption t of the test vehicle as a database, and stores the test data in the memory unit 140. Save it.
  • the data collection device 100 also includes the type of the experimental vehicle 12. If necessary, climatic conditions such as snow, rain, and fog may be included in the experimental data when the experimental vehicle 12 performs the experimental driving.
  • the data collection device 100 may also include latitude, longitude, and altitude, which are the source data obtained by the GPS receiver 110.
  • latitude, longitude, and altitude are the source data obtained by the GPS receiver 110.
  • the speed V of the experimental vehicle 12 and the inclination angle ⁇ of the road are calculated from the data of latitude, longitude and altitude obtained by the GPS receiver 110.
  • the data collecting device 100 measures the data at every predetermined time interval and stores the data in the memory unit 140. That is, the data collecting device 100 may measure the speed V and the test vehicle 12 of the test vehicle 12 at every predetermined time interval by the GPS receiver 110 when the test vehicle 12 is driving on an actual road. Measures the inclination angle ⁇ of the road on which. The data collection device 100 may measure, for example, the speed of the test vehicle 12 and the inclination angle of the road on which the test vehicle 12 travels at an interval of 1 second.
  • the data collection device 100 also measures the actual energy consumption t of the experimental vehicle 12 at the same time interval by the energy consumption measurement unit 120.
  • the energy consumption measuring unit 120 is a fuel injection amount measuring device when the experimental vehicle 12 has an internal combustion engine, and when the experimental vehicle 12 is an electric vehicle, a current value from a power line connecting a main battery and a motor using a constant voltage. It may be a device for measuring the electricity consumption by measuring the power, calculates the amount of power in accordance with such a current value and accumulates the amount of power over time.
  • the controller 130 of the data collection device 100 sets a plurality of sets by matching data such as the speed V of the test vehicle, the inclination angle of the road ⁇ , the actual energy consumption t of the test vehicle, and the like, generated every time interval. Collect the experimental data of, and build such a database to store in the memory unit 140. The control unit 130 of the data collection device 100 also transmits such a database to the artificial neural network server 200 through the communication unit 150.
  • the actual road driving experiment by the experiment vehicle 12 equipped with the data collection device 100 is preferably performed in all sections of all roads present. However, in order to reduce the actual test volume, the experiment can be omitted from other roads of the same type of road, such as highways, national highways, and provincial roads. The experiment may be omitted for other road segments where the road conditions are considered equal. As described in more detail below, the parameters for the artificial neural network described below, which are to be applied to the roads and road sections, in which the experiment is omitted, are applied to the artificial neural network applied to similar roads and road sections on which the experiment is performed. Can be replaced with
  • the artificial neural network server 200 is an artificial neural network that inputs the speed (V) of the experimental vehicle and the inclination angle ( ⁇ ) of the road on which the experimental vehicle travels, and outputs the actual energy consumption (t) of the experimental vehicle. By learning, accurate parameters are determined for each type of vehicle, road type, and road section.
  • An artificial neural network generally comprises an input layer, one or more hidden layers and an output layer, and FIG. 5 shows an example of an artificial neural network having two hidden layers applied to the present invention.
  • FIG. 6 is a flowchart illustrating an operation of the artificial neural network server 200, that is, a learning process in which the artificial neural network server 200 determines values of parameters by an artificial neural network.
  • the artificial neural network applied in the present invention has two input values, that is, an input layer having two input values, namely, the speed V of the test vehicle and the inclination angle ⁇ of the road on which the test vehicle traveled as one input value.
  • the above concealed layer may be composed of, for example, two hidden layers, and an output layer having one output value.
  • the output value of a node of the hidden layer is the result of multiplying the input value inputted to the node by the connection strength of the input value as the input of the transfer function.
  • the output value of the output layer is the result of multiplying the output value of the hidden layer inputted to the output layer by the connection strength of the value as the input of the transfer function.
  • Connection strength in the neural network is represented by parameters W 1 , W 2 and W 3 in FIG. 5.
  • the input (X) input to the input layer of the artificial neural network may be a single data set including a matrix (V, ⁇ ) of one row and two columns, but as shown in FIG. 5, for example, 100 rows It is preferably a plurality of data sets composed of a matrix of two columns. Such a plurality of data sets are used as input values input to the input layer to determine parameters W 1 , W 2 and W 3 applied to the artificial neural network. How many rows the data set will consist of may be determined arbitrarily or as appropriate.
  • Such a data set may be representative of only the specific section of the road on which the test vehicle 12 has traveled, if the experimental vehicle 12 is obtained as a result of driving the continuous section of the road.
  • such a data set is representative of the whole of the road or includes those discrete areas of the road if the experimental vehicle 12 is the sum of the data obtained as a result of driving the discrete areas of a road. It may be representative of any section of the road.
  • the input matrix X of (100 x 2) is internally matrixed with the parametric matrix W 1 of (2 x 20) and converted into a matrix P of the first hidden layer of (100 x 20), and (100 x 20)
  • the matrix P of is transformed into a matrix Q of a parameter matrix W 2 of (20 x 10) and transformed into a matrix Q of the second hidden layer of (100 x 10), and the matrix Q of (100 x 10) is of (10 x 1)
  • (ixj) denotes a matrix of i rows and j columns.
  • P sigmoid (X.W 1 ) is applied
  • Y Q.W 3 can be applied.
  • the artificial neural network server 200 includes the vehicle model and the speed V of the experimental vehicle 12, the inclination angle ⁇ of the road on which the experimental vehicle 12 traveled, and the experimental vehicle ( Experimental data including the actual energy consumption t of 12) is received from the data collection device 100 (step S100).
  • the reception of the experimental data is preferably made by wireless communication, but by other means, for example, by wired communication, for example, the data collection device 100 stores the experimental data in an external USB memory or The neural network server 200 may copy the experimental data stored in such a USB memory.
  • the experimental data preferably includes data of latitude, longitude, and altitude obtained by the GPS receiver 110.
  • the artificial neural network server 200 inputs, among the received experimental data, the speed V of the experimental vehicle 12 and the inclination angle ⁇ of the road on which the experimental vehicle 12 has traveled into the input layer of the artificial neural network as described above.
  • the value X is input (step S110), and the values of the parameters W 1 , W 2 and W 3 are arbitrarily set (step S120).
  • the output value Y of the output layer is calculated based on the values of the input values V and ⁇ and the parameters W 1 , W 2 and W 3 of the input layer according to the method described above (step S130). .
  • the error L is calculated by comparing the output value Y thus calculated with the actual energy consumption t of the experimental vehicle 12 actually measured, and it is determined whether the error L is equal to or less than the threshold (step) S140). In this case, L is calculated by Equation (iii) expressed below.
  • step S150 If the error L is greater than the threshold value, the values of the parameters W 1 , W 2 and W 3 are changed, for example, by the following equation (i) (step S150), and then return to step S130 again.
  • the output value Y is calculated again.
  • Wi Wi- x Gi ----- (i)
  • Wi represents the i th parameter, Represents the learning rate.
  • Learning rate ( ) Can be set appropriately with very small values.
  • Gi is a slope of Wi and is calculated by the following equation (ii).
  • Equation (ii) h is any value very small than 1, in particular very small arbitrary value converging mathematically to 0, for example 0.0001.
  • Gradient Gi is an example calculated by the gradient descent method is expressed in Equation (ii), but various gradient calculation methods such as an error backpropagation method may be applied.
  • L is calculated by the following equation (iii).
  • Equation (iii) Y represents a final output value of the artificial neural network, and t represents an experimental measurement of the actual energy consumption of the experimental vehicle.
  • the output matrix Y has the form (100 x 1).
  • the actual energy consumption t of the experimental vehicle 12 actually measured is also in the form of (100 ⁇ 1). Therefore, the equation (iii) is solved as follows.
  • the artificial neural network server 200 determines that the error L between the output value Y and the actual energy consumption t of the experimental vehicle 12 is within a predetermined allowable range, that is, a parameter applied to the artificial neural network.
  • the values W 1 , W 2, and W 3 are determined (step S160).
  • the parameter data including the values of the determined parameters W 1 , W 2, and W 3 are stored in its memory unit 230, and the parameter data is also stored in the artificial neural network energy consumption calculator. Forward to 300.
  • the parameter data may be values of parameters determined for at least one of the type of the experimental vehicle, the type of the road applied to the experiment, and the specific section of the road applied to the experiment.
  • the specific section of the road applied to the experiment may be specified by the continuation of the positions (latitude, longitude and altitude of the experiment vehicle) on which the experiment vehicle traveled.
  • the artificial neural network energy consumption calculating apparatus 300 receives and uses the parameter data from the artificial neural network server 200. To this end, the artificial neural network energy consumption calculation apparatus 300 has the same artificial neural network as the artificial neural network applied to the artificial neural network server 200. Thus, the neural network energy consumption calculation apparatus 300 applies the artificial neural network by applying parameter data applied to at least one of the type of the traveling vehicle, the type of the road on which the traveling vehicle runs, and the section of the road applied to the experiment.
  • the energy consumption of the driving vehicle is calculated according to the speed of the vehicle and the inclination angle of the driving road.
  • the energy consumption of the traveling vehicle is preferably made in real time.
  • the control unit 320 of the neural network energy consumption calculating apparatus 300 is a speed of the driving vehicle 14 and a road on which the driving vehicle 14 travels at every predetermined time interval by the GPS receiver 310. Measure the angle of inclination.
  • the control unit 320 sets the measured velocity V of the traveling vehicle 14 and the inclination angle ⁇ of the road on which the traveling vehicle 14 travels as the input X of the input layer in the artificial neural network,
  • the values of the corresponding parameters W 1 , W 2, and W 3 received from the neural network server 200 are applied to obtain an output Y of the output floor, and the output values are estimated as energy consumption of the driving vehicle. Therefore, when the total energy consumption for every time interval of the driving vehicle is accumulated, the energy consumption for the total driving of the driving vehicle can be calculated.
  • the artificial neural network energy consumption calculating apparatus 300 calculates the energy consumption of the traveling vehicle by applying the values of the parameters W 1 , W 2 and W 3 for the section 1. The same applies to the other sections. This means that the cumulative energy consumption of the driving vehicle depends not only on the speed of the driving vehicle and the inclination angle of the road on which the driving vehicle travels, but also the path of consecutive sections. Therefore, according to the present invention, more accurate energy consumption can be calculated.
  • the neural network server 200 has a disadvantage in that there are many operations to be processed. Therefore, it may be realistic to set the section from one node of the road to another neighboring node as the road section for the parameters W 1 , W 2 and W 3 .
  • the node of the road means a branching point of the road.
  • the same parameters (W 1 , W 2, and W 3 ) are applied to the entire section of a particular highway to calculate the energy consumption of the driving vehicle. If only a part of the road section is not driven, the energy consumption calculated by the artificial neural network energy consumption calculating apparatus 300 may be significantly different from the energy consumption actually consumed by the driving vehicle. This is because the parameters W 1 , W 2 and W 3 reflecting the characteristics of the road sections of the particular highway that the driving vehicle does not actually drive are used to calculate the energy consumption of the driving vehicle. Therefore, in order to apply the parameters W 1 , W 2 and W 3 reflecting only the characteristics of the road section on the path actually driven by the driving vehicle, it is preferable to divide the road into road sections of appropriate size. .
  • the values of the parameters are calculated for all sections of all the roads for the type of the experiment vehicle 12. That is, a map of the values of the parameters (hereinafter referred to as the 'parameter map' ) is completed for each vehicle type and every section of every road. If the experiment is not performed for all roads, there will be a road where the parametric map of the values of the parameters is incomplete, with certain roads and roads presumably similar in nature to the uncompleted roads and road segments.
  • the values of parameters W 1 , W 2 and W 3 for the interval can be applied.
  • the neural network energy consumption calculation apparatus 300 when the neural network energy consumption calculation apparatus 300 does not have the same as the driving vehicle among the experimental vehicles included in the parameter data received from the artificial neural network server 200, the driving vehicle and the characteristics thereof are the most.
  • a similar experimental vehicle can be regarded as a driving vehicle to calculate energy consumption. For example, if the driving vehicle is a brand-name vehicle of Company A, and the experiment has not been performed with the vehicle and there is no parameter data for the vehicle, then the experiment vehicle equivalent to the vehicle may be selected according to a random or predetermined method. The corresponding test vehicle can be selected.
  • the neural network energy consumption calculating apparatus 300 may have map data, and combines the location of the driving vehicle and the map data determined by the GPS receiver 310 to determine the type of road or the section of the road on which the driving vehicle travels. You can make faster and more accurate decisions. That is, the neural network energy consumption calculating apparatus 300 may utilize general map data when necessary to more accurately interpret the parametric map represented in the parametric data received from the neural network server 200.
  • Gradient descent method Gradient calculation using numerical differential method (rate of loss when parameter is changed minutely) ⁇
  • Various gradient calculation methods such as error backpropagation can be applied.
  • the neural network server 200 constructs parameter data for specific vehicles, specific roads, and specific road sections, and the artificial neural network energy consumption calculation apparatus 300 performs such parameters.
  • the data can be used to calculate the energy consumption of the driving vehicle.
  • the data collection device 100 may perform more sophisticated and more various experiments, and then the artificial neural network server 200 may further improve the parameter data by performing a learning process on additional experimental data. have.
  • the artificial neural network energy consumption calculating apparatus 300 can more accurately calculate the energy consumption of the driving vehicle by using the updated parameter data.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Software Systems (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Automation & Control Theory (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Traffic Control Systems (AREA)

Abstract

실제 주행하는 실험 차량에 설치되는 데이터 수집장치에 의하여 미리 정해진 매 시간간격마다 실험 차량의 속도, 실험 차량이 주행하는 도로의 경사각 및 실험 차량의 실제 에너지 소모량을 측정하여 데이터를 수집하고, 인공신경망 서버는 실험 차량의 속도 및 실험 차량이 주행하는 도로의 경사각을 인공신경망의 입력으로 하는 학습과정에 의하여 산출된 출력값이 실험 차량의 실제 에너지 소모량과 비교할 때 미리 정해진 오차범위 이내가 될 때 인공신경망에 적용되는 매개변수들의 값들을 확정하며, 주행 차량에 설치되는 인공신경망 에너지 소모량 산출장치는 미리 정해진 매 시간간격마다 주행 차량의 속도, 주행 차량이 주행하는 도로의 경사각을 측정하고, 이것을 인공신경망의 입력으로 사용하고 인공신경망 서버로부터 수신한 확정된 매개변수들의 값들을 사용하여 주행 차량의 에너지 소모량을 산출하는 차량의 에너지 소모량 산출방법이 개시된다. 본 발명에 따른 차량의 에너지 소모량 산출 방법은 인공신경망, 특히 딥러닝을 활용함으로써 차량의 에너지 소모량을 더욱 정확하게 그리고 더욱 융통성 있게 산출할 수 있다.

Description

탄소배출량 저감을 이행하기 위한 딥러닝을 활용한 차량의 에너지 소모량 산출 방법
본 발명은 차량의 에너지 소모량 산출 방법에 관한 것으로서, 더욱 상세하게는, 탄소배출량 저감을 이행하기 위한 인공신경망에 의한 기계 학습의 일종인 딥러닝을 활용한 차량의 에너지 소모량 산출 방법에 관한 것이다.
최근들어 차량의 연비를 향상시켜 환경오염을 줄이려는 에코드라이빙에 관심이 높아져 가고 있다. 운전자가 에코드라이빙을 할 수 있도록 하기 위해서는, 연료소모량을 실시간으로 측정하여 운전자에게 디스플레이할 필요가 있다. 그런데, 순시적 연료소모율을 정확하게 측정하고 표시하기 위해서는, 연료분사량 측정장치를 별도로 차량에 설치하여야 한다. 그러한 장치의 장착 없이 출고된 완성차에 그러한 장치를 장착하는 것은 자동차의 가격을 불필요하게 상승시키는 요인이 되므로 특별한 목적을 수행하기 위한 것이 아니라면 바람직하지 않다. 완성차의 조립단계에서 그러한 장치를 장착하는 경우라도 추가되는 기능 대비 높은 비용을 지불하여야 하므로 바람직하지 않다.
대한민국 특허등록 제10-1205983호(2012. 11. 22. 등록는 스마트폰을 이용한 차량용 에코드라이브 인디케이터를 개시하고, 대한민국 특허등록 제10-1308264호(2013. 09. 06. 등록)는 에너지 소모율을 고려하는 네비게이션 장치 및 방법을 개시하며, 대한민국 특허등록 제10-1249421호(2013. 03. 26. 등록)는 지피에스 데이터만의 실시간 입력에 의한 에코드라이브 유도장치를 개시한다.
상기한 발명들에서는 차량의 연료소모량은 차량출력과 변환계수의 곱으로 표현되고, 차량출력은 차량구동력과 차량속도의 곱으로 표현되며, 차량구동력은 구름저항력, 공기저항력, 구배저항력 및 가속저항력의 합으로 표현될 수 있다. 즉, 차량의 연료소모량은 차량구동력으로부터 산출할 수 있다. 차량구동력을 산출하기 위해서는, 차량의 속도 및 도로의 경사도뿐만 아니라 차량의 중량, 구름저항계수, 공기저항계수 등을 알아야 한다. 그런데, 차량의 구름저항계수 및 공기저항계수에 대한 정확한 값은 일반적으로 차량 제조사 및 타이어 제조사 외부에 알려져 있지 않다는 한계가 있어 차량구동력으로부터 차량의 연료소모량을 정확하게 산출할 수 없다는 한계가 있었다.
상기한 에코드라이빙은 기후변화협약에 따른 온실가스 감축목표를 구체적으로 이행하기 위한 방안으로서 합의된 교토의정서에 기초한 온실가스배출저감, 특히 탄소배출저감을 위한 각 국의 노력과도 부합된다. 개발도상국이 국제연합 기후변화협약(UNFCCC: United Nations Framework Convention on Climate Change)에 직접 보고하도록 되어 있는 자발적인 온실가스 감축 조치를 의미하는 국가적정 온실가스 감축행동(NAMA; Nationally Appropriate Mitigation Actions)이 개발도상국의 중요한 행동지침으로 제시되고 있다. 선진국과 개발도상국의 온실가스 저감행동은 측정, 보고 및 검증가능한 방식, 즉 MRV(Measurable, Reportable And Verifiable) 방식이어야 한다. 에코드라이빙은 교통부문에서 NAMA를 실행하는 유력한 수단이 될 수 있지만, 아직까지 실효성있는 MRV 방식이 충분히 개발되어 있지 않다는 한계가 있다.
한편, 대한민국 특허등록 제10-0274579호(2000. 09. 14. 등록)는 신경망 모형 기법을 통한 차종 인식방법을 개시하고, 대한민국 특허등록 제10-0837244호(2008. 06. 04. 등록)는 자동차 번호판의 영상 인식 시스템 및 그 방법을 개시하며, 대한민국 특허등록 제10-1703163호(2017. 01. 31. 등록)는 차량의 복합 고장을 예측하기 위한 장치 및 방법을 개시하고, 대한민국 특허공개 제10-2018-0029543호(2018. 03. 21. 공개)는 딥러닝을 통한 자동차 상태 진단 방법을 개시하며, 대한민국 실용신안등록 제20-0173957호(1999. 12. 23. 등록)는 신경망회로를 이용한 주행거리 자동유지시스템을 개시하고, 대한민국 실용신안공개 제1999-0028544호(1999. 07. 15. 공개)는 차량의 공연비 제어 시스템을 개시한다.
지금까지 인공신경망에 의한, 특히 딥러닝을 활용하여 차량의 연료소모량을 실시간으로 측정하려는 시도는 없었다.
본 발명의 목적은 인공신경망에 의하여, 특히 딥러닝을 활용하여 차량의 연료소모량 또는 차량의 전기소모량과 같은 차량의 에너지 소모량을 산출함으로써 차량의 에너지 소모량을 더욱 정확하게 그리고 더욱 융통성 있게 산출할 수 있는 차량의 에너지 소모량 산출 방법을 제공하는 것이다.
본 발명의 목적은 또한 교통부문 NAMA에서 MRV 방식을 실효성있게 구현할 수 있는 차량의 에너지 소모량 산출 방법을 제공하는 것이다.
상기한 목적을 달성하기 위한 본 발명에 따른 차량의 에너지 소모량 산출 방법은 실험 차량에 GPS 수신부 및 에너지 소모량 측정부를 포함하는 데이터 수집장치를 설치하는 단계; 상기 실험 차량을 실제 도로에서 주행시켜 상기 GPS 수신부에 의하여 미리 정해진 매 시간간격마다 상기 실험 차량의 속도 및 상기 실험 차량이 주행하는 상기 도로의 경사각을 측정하고 또한 상기 에너지 소모량 측정부에 의하여 동일한 매 시간간격마다 상기 실험 차량의 에너지 소모량을 측정하며, 상기 데이터 수집장치에 의하여 상기 GPS 수신부에 의하여 측정한 상기 실험 차량의 속도 및 상기 도로의 경사각 그리고 상기 에너지 소모량 측정부에 의하여 측정한 상기 실험 차량의 에너지 소모량을 매칭시킴으로써 실험 데이터를 수집하는 단계; 상기 데이터 수집장치에 의하여 수집된 상기 실험 데이터를 입력층, 하나 이상의 은닉층 및 출력층을 포함하는 인공신경망을 가지는 인공신경망 서버에게 전달하는 단계; 상기 인공신경망 서버는 상기 실험 차량의 속도 및 상기 도로의 경사각을 입력값으로 상기 입력층에 입력하고, 상기 입력층에서 첫번째 은닉층으로의 변환, 은닉층이 복수개로 존재하는 경우 은닉층에서 다음 은닉층으로의 변환 및 마지막 은닉층에서 상기 출력층으로의 변환에 적용되는 매개변수들을 임의로 설정한 후 상기 출력층에서 산출되는 출력값을 상기 데이터 수집장치로부터 전달받은 상기 실험 차량의 에너지 소모량과 비교하는 단계; 상기 인공신경망 서버는 상기 출력값과 상기 실험 차량의 에너지 소모량 간의 오차가 미리 정해진 허용범위를 벗어나는 것으로 판단하는 경우, 상기 인공신경망에 적용되는 상기 매개변수들을 변경한 후 상기 출력값을 다시 산출하는 단계; 상기 인공신경망 서버는 상기 출력값과 상기 실험 차량의 에너지 소모량 간의 오차가 미리 정해진 허용범위 이내인 것으로 판단하는 경우, 상기 인공신경망에 적용된 상기 매개변수들을 확정하는 단계; 상기 인공신경망 서버는 상기 실험 차량의 차종, 상기 실험에 적용된 상기 도로의 종류 및 상기 실험에 적용된 상기 도로의 구간 중 최소한 하나에 대하여 상기 확정된 매개변수들이 매칭된 매개변수 데이터를 저장하는 단계; 상기 인공신경망 서버에 의하여 산출된 상기 매개변수 데이터를 어떤 주행 차량에 장착되는 인공신경망 에너지 소모량 산출장치에 전달하는 단계; 상기 주행 차량의 상기 인공신경망 에너지 소모량 산출장치는 상기 인공신경망 서버에 적용된 상기 인공신경망과 동일한 인공신경망을 가지고, 그러한 인공신경망에 상기 주행 차량의 종류, 상기 주행 차량이 주행하는 도로의 종류 및 상기 실험에 적용된 상기 도로의 구간 중 최소한 하나에 대하여 적용되는 상기 매개변수 데이터를 적용하여 상기 주행 차량의 속도 및 주행 도로의 경사각에 따른 상기 주행 차량의 에너지 소모량을 산출하는 단계를 포함한다.
상기 인공신경망은 두 개 이상의 은닉층을 가지는 것이 바람직하다.
상기 주행 차량의 상기 인공신경망 에너지 소모량 산출장치는 GPS 수신부에 의하여 미리 정해진 매 시간간격마다 상기 주행 차량의 속도 및 상기 주행 차량이 주행하는 상기 도로의 경사각을 측정하는 것이다.
상기 주행 차량의 상기 인공신경망 에너지 소모량 산출장치는 지도 데이터를 가지고 있고, 상기 GPS 수신부에 의하여 파악된 상기 주행 차량의 위치와 상기 지도 데이터를 결합하여 상기 주행 차량이 주행하고 있는 도로의 종류 또는 도로의 구간을 결정하고, 그에 따라 상기 주행 차량의 에너지 소모량을 산출하는 것이 바람직하다.
상기 인공신경망 서버는 상기 출력값과 상기 실험 차량의 에너지 소모량 간의 오차가 미리 정해진 허용범위를 벗어나는 것으로 판단하는 경우, 상기 인공신경망에 적용되는 상기 매개변수들을 다음 수학식 (i)에 의하여 변경할 수 있다.
Wi = Wi -
Figure PCTKR2018006373-appb-I000001
x Gi ----- (i)
(상기 수학식 (i)에서, Wi는 i번째 매개변수를 나타내고,
Figure PCTKR2018006373-appb-I000002
는 학습률을 나나내며, Gi는 Wi의 기울기로서 다음 수학식 (ii)에 의하여 산출됨)
Gi = [L(Wi + h) - L(Wi - h)] / (2 x h) ----- (ii)
(상기 수학식 (ii)에서, h는 수학적으로 0에 수렴하는 매우 작은 임의의 값으로서, 예를 들어 0.0001일 수 있고, L은 다음 수학식 (iii)에 의하여 산출됨)
L = 0.5 x Σ(Y - t)2 ----- (iii)
(상기 수학식 (iii)에서, Y는 상기 인공신경망의 최종 출력값을 나타내고, t는 상기 실험 차량의 에너지 소모량에 대한 실험 측정치를 나타냄)
본 발명에 따른 차량의 에너지 소모량 산출 방법은 인공신경망, 특히 딥러닝을 활용함으로써 차량의 에너지 소모량을 더욱 정확하게 그리고 더욱 융통성 있게 산출할 수 있다. 본 발명의 방법은 또한 교통부문 NAMA에서 MRV 방식을 실효성있게 구현할 수 있다.
도 1은 본 발명에 따른 차량의 에너지 소모량 산출 방법을 구현하는 차량의 에너지 소모량 산출 시스템의 개략적 구성을 나타낸 도면이다.
도 2는 도 1에 도시된 차량의 에너지 소모량 산출 시스템에 적용되는 데이터 수집장치의 개략적 구성을 나타낸 도면이다.
도 3은 도 1에 도시된 차량의 에너지 소모량 산출 시스템에 적용되는 인공신경망 서버의 개략적 구성을 나타낸 도면이다.
도 4는 도 1에 도시된 차량의 에너지 소모량 산출 시스템에 적용되는 인공신경망 에너지 소모량 산출장치의 개략적 구성을 나타낸 도면이다.
도 5는 도 1에 도시된 차량의 에너지 소모량 산출 시스템에 적용되는 인공신경망 서버에 적용되는 인공신경망의 한 예를 개략적으로 도시한 도면이다.
도 6은 도 1에 도시된 차량의 에너지 소모량 산출 시스템에 적용되는 인공신경망 서버가 인공신경망에 의하여 매개변수들의 값을 확정하는 학습과정을 도시한 흐름도이다.
도 7은 본 발명에서 도로의 구간을 구획하고, 도로의 구간 별로 매개변수들의 값을 적용하는 개념을 설명하기 위한 도면이다.
이하, 도면을 참조하여 본 발명을 상세하게 설명한다.
본 발명에 따른 차량의 에너지 소모량 산출 방법을 구현하는 차량의 에너지 소모량 산출 시스템의 개략적 구성이 도 1에 도시되어 있다. 본 발명에 따른 차량의 에너지 소모량 산출 시스템(10)은 실험 차량(12)에 장착되는 데이터 수집장치(100), 인공신경망 서버(200) 및 주행 차량(14)에 장착되는 인공신경망 에너지 소모량 산출장치(300)를 포함한다.
본 발명에 따른 차량의 에너지 소모량 산출 시스템(10)에서, 데이터 수집장치(100)는 도 2에 도시된 바와 같이, GPS 수신부(110), 에너지 소모량 측정부(120), 제어부(130), 메모리부(140) 및 통신부(150)를 포함한다. 또한 인공신경망 서버(200)는 도 3에 도시된 바와 같이, 통신부(210), 제어부(220) 및 메모리부(230)를 포함한다. 인공신경망 서버(200)는 디스플레이부(240)를 더 포함할 수 있다. 인공신경망 에너지 소모량 산출장치는 도 4에 도시된 바와 같이, GPS 수신부(310), 제어부(320), 메모리부(330) 및 통신부(340)를 포함한다.
본 발명에 따른 차량의 에너지 소모량 산출 방법에서, 데이터 수집장치(100)는 실험 차량(12)에 장착되어 실험 차량(12)이 실제로 주행할 때 실험 차량(12)의 속도(V) 및 실험 차량(12)이 주행한 도로의 경사도(θ)에 대응하는 실험 차량(12)의 실제 에너지 소모량(t)을 실제로 측정하는 것이다. 즉, 데이터 수집장치(100)는 실험 차량의 속도(V), 도로의 경사각도(θ) 및 실험 차량의 실제 에너지 소모량(t)을 포함하는 실험 데이터를 데이터베이스로 구축하여 메모리부(140)에 저장한다. 이때, 데이터 수집장치(100)는 실험 차량(12)의 종류도 포함한다. 필요한 경우, 실험 차량(12)이 실험 주행을 할 때 눈, 비, 안개 등과 같은 기후 상황도 실험 데이터에 포함될 수 있다.
데이터 수집장치(100)는 또한 GPS 수신부(110)에 의하여 획득하는 원천적인 데이터인 위도, 경도 및 고도를 포함할 수 있다. 실제로 실험 차량(12)의 속도(V) 및 도로의 경사각도(θ)는 GPS 수신부(110)에 의하여 획득되는 위도, 경도 및 고도의 데이터로부터 산출된다.
데이터 수집장치(100)는 미리 정해진 매 시간각격마다 상기한 데이터를 측정하고 메모리부(140)에 저장한다. 즉, 데이터 수집장치(100)는 실험 차량(12)이 실제 도로에서 주행할 때, GPS 수신부(110)에 의하여 미리 정해진 매 시간각격마다 실험 차량(12)의 속도(V) 및 실험 차량(12)이 주행하는 도로의 경사각(θ)을 측정한다. 데이터 수집장치(100)는 예를 들어, 1초 간격으로 실험 차량(12)의 속도 및 실험 차량(12)이 주행한 도로의 경사각을 측정할 수 있다.
데이터 수집장치(100)는 또한 에너지 소모량 측정부(120)에 의하여 동일한 매 시간간격마다 실험 차량(12)의 실제 에너지 소모량(t)을 측정한다. 에너지 소모량 측정부(120)는 실험 차량(12)이 내연기관을 가지는 경우 연료분사량 측정장치이고, 실험 차량(12)이 전기자동차인 경우 정전압을 사용하는 메인배터리와 모터를 연결하는 전력선으로부터 전류값을 측정하고 그러한 전류값에 따라 전력량을 계산하고 그러한 전력량을 시간에 따라 누적함으로써 전기사용량을 측정하는 장치일 수 있다.
데이터 수집장치(100)의 제어부(130)는 매 시간간격마다 생성되는 실험 차량의 속도(V), 도로의 경사각(θ), 실험 차량의 실제 에너지 소모량(t) 등의 데이터를 매칭시켜서 복수개 세트의 실험 데이터를 수집하고, 그러한 데이터를 데이터베이스로 구축하여 메모리부(140)에 저장한다. 데이터 수집장치(100)의 제어부(130)는 또한 통신부(150)를 통하여 그러한 데이터베이스를 인공신경망 서버(200)에게 전달한다.
데이터 수집장치(100)가 장착된 실험 차량(12)에 의한 실제 도로 주행 실험은 존재하는 모든 도로의 모든 구간에서 수행되는 것이 바람직하다. 그러나, 실제 실험량을 줄이기 위하여, 고속도로, 국도 및 지방도로 등과 같은 도로의 종류가 동일한 다른 도로에서 실험을 생략할 수 있고, 또한 동일한 도로(예를 들어, 특정 고속도로)에서 실험한 어떤 도로 구간과 도로상태가 동일한 것으로 인정되는 다른 도로 구간에서 실험을 생략할 수 있다. 아래에서 더욱 상세하게 설명하는 바와 같이, 이렇게 실험이 생략된 도로 및 도로 구간에 대하여 적용하여야 할, 후술하는 인공신경망에 대한 매개변수들은 실험을 수행한 유사한 도로 및 도로 구간에 대하여 적용하는 인공신경망에 대한 매개변수들로 대체될 수 있다.
본 발명에서, 인공신경망 서버(200)는 실험 차량의 속도(V) 및 실험 차량이 주행하는 도로의 경사각(θ)을 입력으로 하고 실험 차량의 실제 에너지 소모량(t)을 출력으로 하는 인공신경망을 학습시킴으로써 차량의 종류 및 도로의 종류 또는 도로의 구간 별로 정확한 매개변수들을 확정하는 것이다.
인공신경망은 일반적으로 입력층, 하나 이상의 은닉층 및 출력층을 포함하여 구성되며, 도 5에는 본 발명에 적용되는 은닉층이 2개인 인공신경망의 예가 도시되어 있다. 또한 도 6에는 인공신경망 서버(200)의 동작, 즉 인공신경망 서버(200)가 인공신경망에 의하여 매개변수들의 값을 확정하는 학습과정을 도시한 흐름도가 예시되어 있다.
도 5에 예시된 바와 같이, 본 발명에서 적용하는 인공신경망은 두 개의 입력값, 즉 실험 차량의 속도(V) 및 실험 차량이 주행한 도로의 경사각(θ)을 입력값으로 갖는 입력층, 하나 이상의 은닉층, 예를 들어 2개의 은닉층, 및 한 개의 출력값을 갖는 출력층으로 구성될 수 있다. 은닉층의 한 노드의 출력값은 해당 노드로 입력되는 입력값과 그 입력값에 대한 연결강도를 곱한 결과를 전달함수의 입력으로 한 결과이다. 마찬가지로 출력층의 출력값은 출력층에 입력되는 은닉층의 출력값과 그 값에 대한 연결강도를 곱한 결과를 전달함수의 입력으로 한 결과이다. 전달함수는 통상적으로 시그모이드 함수가 채용될 수 있으며, 출력값에 대해서는 f(x)=x와 같은 함수가 적용될 수도 있다. 인공신경망에서의 연결강도는 도 5에서 매개변수들 W1, W2 및 W3로 표현되었다.
본 발명에서 인공신경망의 입력층에 입력되는 입력(X)은 1행 2열의 행렬(V, θ)로 구성되는 단일의 데이터 세트일 수도 있으나, 도 5에 도시된 바와 같이, 예를 들어 100행 2열의 행렬로 구성되는 복수개의 데이터 세트인 것이 바람직하다. 이러한 복수개의 데이터 세트는 인공신경망에 적용되는 매개변수들(W1, W2 및 W3)을 확정하기 위하여 입력층에 입력되는 입력값으로 사용된다. 데이터 세트를 몇 행으로 구성할 것인지는 임의적으로 또는 필요에 따라 적절하게 결정될 수 있다.
이러한 데이트 세트는 실험 차량(12)이 도로의 연속된 특정 구간을 주행한 결과 얻은 것이라면, 실험 차량(12)이 주행한 도로의 해당 특정 구간만을 대표하는 것일 수 있다. 한편, 이러한 데이트 세트는 실험 차량(12)이 어떤 도로의 불연속된 특정 구간들을 주행한 결과 얻은 데이터를 합친 것이라면, 해당 도로의 전체를 대표하는 것이거나 해당 도로의 그러한 불연속된 특정 구간들을 포함하는 해당 도로의 어떤 구간을 대표하는 것일 수 있다.
도 5에서, (100 x 2)의 입력 행렬 X는 (2 x 20)의 매개변수 행렬 W1과 행렬내적되어 (100 x 20)의 제1 은닉층의 행렬 P로 변환되고, (100 x 20)의 행렬 P는 (20 x 10)의 매개변수 행렬 W2와 행렬내적되어 (100 x 10)의 제2 은닉층의 행렬 Q로 변환되며, (100 x 10)의 행렬 Q는 (10 x 1)의 매개변수 행력 W3과 행렬내적되어 (100 x 1)의 출력 행력 Y로 변환된다. 이때, (i x j)는 i행 j열의 행렬을 의미한다. 이러한 변환에서, P = sigmoid(X·W1)이 적용되고, Q = sigmoid(P·W2)가 적용되며, Y = Q·W3이 적용될 수 있다.
이제, 도 6을 참조하면, 본 발명에서, 인공신경망 서버(200)는 실험 차량(12)의 차종 및 속도(V), 실험 차량(12)이 주행한 도로의 경사각(θ) 그리고 실험 차량(12)의 실제 에너지 소모량(t)을 포함하는 실험 데이터를 데이터 수집장치(100)로부터 수신한다(단계 S100). 이때, 실험 데이터의 수신은 무선 통신에 의하여 이루어지는 것이 바람직하지만, 그 외의 다른 수단, 예를 들어 유선 통신에 의하여 이루어지거나, 예를 들어 데이터 수집장치(100)가 외부 USB 메모리에 실험 데이터를 저장 또는 복사하고, 인공신경망 서버(200)가 그러한 USB 메모리에 저장된 실험 데이터를 복사하는 방식으로 수행될 수도 있다. 실험 데이터에는 GPS 수신부(110)에 의하여 획득되는 위도, 경도 및 고도의 데이터가 포함되는 것이 바람직하다.
인공신경망 서버(200)는 수신한 실험 데이터 중에서 실험 차량(12)의 속도(V) 및 실험 차량(12)이 주행한 도로의 경사각(θ)을 상기에서 설명한 바와 같은 인공신경망의 입력층에 입력값(X)으로 입력하고(단계 S110), 매개변수들(W1, W2 및 W3)의 값을 임의로 설정한다(단계 S120). 그런 후 상기에서 설명한 방식에 따라 입력층의 입력값들(V 및 θ) 및 매개변수들(W1, W2 및 W3)의 값들에 의하여 출력층의 출력값(Y)을 산출한다(단계 S130). 이렇게 산출한 출력값(Y)을 실제로 측정한 실험 차량(12)의 실제 에너지 소모량(t)과 비교하여 오차(L)을 산출하고, 그 오차(L)가 임계값 이하인지 여부를 판단한다(단계 S140). 이때, L은 아래에 표현된 수학식 (iii)에 의하여 산출된다.
오차(L)가 임계값보다 크다면 매개변수들(W1, W2 및 W3)의 값은 예를 들어, 아래 수학식 (i)에 의하여 변경된 후(단계 S150), 다시 단계 S130으로 리턴되어 출력값(Y)를 다시 산출한다.
Wi = Wi -
Figure PCTKR2018006373-appb-I000003
x Gi ----- (i)
상기 수학식 (i)에서, Wi는 i번째 매개변수를 나타내고,
Figure PCTKR2018006373-appb-I000004
는 학습률을 나타낸다. 학습률(
Figure PCTKR2018006373-appb-I000005
)은 매우 작은 값으로 적절하게 설정될 수 있다. Gi는 Wi의 기울기로서 다음 수학식 (ii)에 의하여 산출된다.
Gi = [L(Wi + h) - L(Wi - h)] / (2 x h) ----- (ii)
상기 수학식 (ii)에서, h는 1보다 매우 작은 임의의 값, 특히 수학적으로 0에 수렴하는 매우 작은 임의의 값으로서, 예를 들어 0.0001일 수 있다. 기울기(Gradient) Gi는 경사하강법으로 계산되는 예가 수학식 (ii)에 표현되어 있으나 오차역전파법 등의 다양한 기울기 계산 방식이 적용될 수 있다. L은 다음 수학식 (iii)에 의하여 산출된다.
L = 0.5 x Σ(Y - t)2 ----- (iii)
상기 수학식 (iii)에서, Y는 상기 인공신경망의 최종 출력값을 나타내고, t는 상기 실험 차량의 실제 에너지 소모량에 대한 실험 측정치를 나타낸다. (100 x 2)의 입력 행렬 X에 대하여 출력 행렬 Y는 (100 x 1)의 형태를 가진다. 이에 대응하여, 실제로 측정한 실험 차량(12)의 실제 에너지 소모량(t)도 (100 x 1)의 형태를 가진다. 따라서, 상기 수학식 (iii)을 풀어쓰면 다음과 같다.
L = 0.5 x [(Y1 - t1)2 + (Y2 - t2)2 + ······+ (Y100 - t100)2]
한편, 인공신경망 서버(200)는 출력값(Y)과 실험 차량(12)의 실제 에너지 소모량(t) 간의 오차(L)가 미리 정해진 허용범위, 즉 임계치 이내인 것으로 판단하면 인공신경망에 적용된 매개변수들(W1, W2 및 W3)의 값을 확정한다(단계 S160). 그런 후, 확정된 매개변수들(W1, W2 및 W3)의 값을 포함하는 매개변수 데이터를 자신의 메모리부(230)에 저장하고, 또한 그러한 매개변수 데이터를 인공신경망 에너지 소모량 산출장치(300)에 전달한다. 이때, 매개변수 데이터는 실험 차량의 종류, 실험에 적용된 도로의 종류, 실험에 적용된 도로의 특정 구간 중 최소한 하나에 대하여 확정된 매개변수들의 값들일 수 있다. 실험에 적용된 도로의 특정 구간은 실험 차량이 주행한 위치들(실험 차량의 위도, 경도 및 고도)의 연속에 의하여 특정될 수 있다.
인공신경망 에너지 소모량 산출장치(300)는 상기한 매개변수 데이터를 인공신경망 서버(200)로부터 수신하여 사용한다. 이를 위하여, 인공신경망 에너지 소모량 산출장치(300)는 인공신경망 서버(200)에 적용된 인공신경망과 동일한 인공신경망을 가진다. 그리하여, 인공신경망 에너지 소모량 산출장치(300)는 그러한 인공신경망에 주행 차량의 종류, 주행 차량이 주행하는 도로의 종류 및 실험에 적용된 도로의 구간 중 최소한 하나에 대하여 적용되는 매개변수 데이터를 적용하여 주행 차량의 속도 및 주행 도로의 경사각에 따른 주행 차량의 에너지 소모량을 산출한다. 인공신경망 에너지 소모량 산출장치(300)에서 주행 차량의 에너지 소모량 산출은 실시간으로 이루어지는 것이 바람직하다.
좀 더 구체적으로, 인공신경망 에너지 소모량 산출장치(300)의 제어부(320)는 GPS 수신부(310)에 의하여 미리 정해진 매 시간각격마다 주행 차량(14)의 속도 및 주행 차량(14)이 주행하는 도로의 경사각을 측정한다. 제어부(320)는 이렇게 측정한 주행 차량(14)의 속도(V) 및 주행 차량(14)이 주행하는 도로의 경사각(θ)를 인공신경망에서 입력층의 입력(X)으로 설정하고, 그것에 인공신경망 서버(200)로부터 수신한 해당 매개변수들(W1, W2 및 W3)의 값들을 적용하여 출력층의 출력(Y)을 얻고, 그러한 출력값을 주행 차량의 에너지 소모량으로 추정한다. 따라서, 주행 차량의 매 시간간격에 대한 에너지 소모량을 모두 적산하면 주행 차량의 총 주행에 대한 에너지 소모량을 산출할 수 있게 된다.
본 발명은 도로의 구간을 구획하고, 도로의 구간 별로 매개변수들(W1, W2 및 W3)의 값들을 정하는 것이 이론적으로는 가장 바람직하다. 도 7을 참조하여, 모든 도로를 구간별로 구획하고 도로의 구간 별로 매개변수들(W1, W2 및 W3)의 값들이 정해진 상황에서, 주행 차량이 주행하는 경로에 따라 매개변수들(W1, W2 및 W3)이 적용되는 개념을 설명한다. 도 7에는 주행 차량이 주행하는 경로가 아닌 다른 경로 상에 있는 도로의 구간들에 대해서는 특별히 표시하지 않았다.
어떤 주행 차량이 ①-②-③-④-⑤-⑥-⑦-⑧의 경로 또는 ①-②-③-④-⑤-⑨-⑩-⑪의 경로를 따라 주행한다고 가정한다. 이때, 각 구간별로 매개변수들(W1, W2 및 W3)의 값들은 서로 다르다. 주행 차량이 ① 구간을 주행 중일 때에는 인공신경망 에너지 소모량 산출장치(300)는 ① 구간에 대한 매개변수들(W1, W2 및 W3)의 값들을 적용하여 주행 차량의 에너지 소모량을 산출한다. 다른 구간들에 대해서도 마찬가지이다. 이것은 주행 차량의 누적 에너지 소모량은 주행 차량의 속도 및 주행 차량이 주행하는 도로의 경사각뿐만 아니라 연속된 구간들의 경로에 따라 달라지게 된다는 것을 의미한다. 따라서, 본 발명에 의하면, 더욱 정확한 에너지 소모량의 산출이 가능하게 된다.
도로의 구간을 정하는 기준은 특별히 없지만, 정확도를 높이기 위해서는 하나의 도로구간이 가급적 짧은 거리를 가지게 하는 것이 바람직하다. 그러나, 이 경우에는 인공신경망 서버(200)가 처리해야 할 연산이 많아지게 된다는 단점이 있다. 따라서, 도로의 한 노드에서 이웃하는 다른 노드까지의 구간을 매개변수들(W1, W2 및 W3)을 위한 도로구간으로 정하는 것이 현실적일 수 있다. 이때, 도로의 노드라 함은 도로의 분기되는 지점을 의미한다.
하나의 도로구간에 대하여 동일한 매개변수들(W1, W2 및 W3)을 적용한다는 것은 해당 도로구간을 평균적으로 처리한다는 것을 의미한다. 즉, 해당 도로구간에서 각 지점들은 각각의 특성을 잃고 해당 도로구간의 전체 특성으로 대체된다는 것을 의미한다.
예를 들어, 어떤 특정 고속도로의 전체구간에 대하여 동일한 매개변수들(W1, W2 및 W3)을 적용하여 주행 차량의 에너지 소모량을 산출한다고 가정할 때, 해당 주행 차량이 해당 특정 고속도로의 전체구간을 주행하지 않고, 단지 일부 도로구간만을 주행한다면 인공신경망 에너지 소모량 산출장치(300)에 의하여 산출된 에너지 소모량은 주행 차량이 실제로 소모한 에너지 소모량과 상당히 다를 수 있다. 왜냐하면, 주행 차량이 실제로 주행하지 않은 해당 특정 고속도로의 도로구간들의 특성이 반영된 매개변수들(W1, W2 및 W3)을 주행 차량의 에너지 소모량 산출에 사용하였기 때문이다. 따라서, 주행 차량이 실제로 주행한 경로 상에 있는 도로구간의 특성만이 반영된 매개변수들(W1, W2 및 W3)을 적용하기 위하여, 도로를 적절한 크기의 도로구간으로 구획하는 것이 바람직하다.
본 발명에서, 실험 차량(12)을 존재하는 모든 도로의 모든 구간에서 주행시키는 실험을 수행한다면 해당 실험 차량(12)의 종류에 대해서는 모든 도로의 모든 구간에 대하여 매개변수들의 값들이 산출된다. 즉, 차종별로 그리고 모든 도로의 모든 구간별로 매개변수들의 값들에 관한 지도(이하, '매개변수 지도'라 함)가 완성된다고 할 수 있다. 만약 실험이 모든 도로에 대하여 수행되지 못한다면 매개변수들의 값들에 관한 매개변수 지도가 완성되지 않은 도로가 존재하게 되는데, 완성되지 않은 도로들 및 도로 구간들에 대해서는 특성이 유사하다고 추정되는 특정 도로 및 도로구간에 대한 매개변수들(W1, W2 및 W3)의 값들을 적용할 수 있다.
본 발명에서, 인공신경망 에너지 소모량 산출장치(300)는 인공신경망 서버(200)로부터 수신한 매개변수 데이터에 포함된 실험 차량들 중에서 주행 차량과 동일한 것이 없는 경우에는, 그 중 주행 차량과 특성이 가장 유사한 실험 차량을 주행 차량으로 간주하여 에너지 소모량을 산출할 수 있다. 예를 들어, 주행 차량이 A사의 특정 브랜드 차량인데, 해당 차량으로는 아직 실험이 수행되지 않아 해당 차량에 대한 매개변수 데이터가 없다면, 해당 차량과 동급인 실험 차량들 중에서 임의로 또는 미리 정해진 방법에 따라 대응되는 실험 차량을 선택할 수 있다.
인공신경망 에너지 소모량 산출장치(300)는 지도 데이터를 가질 수 있고, GPS 수신부(310)에 의하여 파악된 주행 차량의 위치와 지도 데이터를 결합하여 주행 차량이 주행하고 있는 도로의 종류 또는 도로의 구간을 더욱 빠르고 정확하게 결정할 수 있다. 즉, 인공신경망 에너지 소모량 산출장치(300)는 인공신경망 서버(200)로부터 수신하는 매개변수 데이터에 표현된 매개변수 지도를 더욱 정확하게 해석하기 위하여 필요한 경우 일반적인 지도 데이터를 활용할 수 있다.
상기에서 설명한 사항을 요약적으로 표로 나타내면 다음과 같다.
No. 항목 내용 행 x 열 비고
1 입력값 X = (V, θ)1) 1 x 2 GPS 데이터(1Hz)
2 매개변수 1 W1 2 x 20 초기값=랜덤
3 중간출력값 1 P = sigmoid(X·W1) 1 x 20 행렬내적 및 시그모이드2) 활성화함수
4 매개변수 2 W2 20 x 10 초기값=랜덤
5 중간출력값 2 Q = sigmoid(P·W2) 1 x 10 행렬내적 및 시그모이드 활성화 함수
6 매개변수 3 W3 10 x 1 초기값=랜덤
7 최종 출력값 Y = Q·W3 1 x 1 에너지소모량 계산결과값
8 라벨3) t 1 x 1 에너지소모량 실험측정치
9 손실(오차) L = 0.5 x Σ(Y-t)2 계산치와 실측치의 오차
10 기울기 G1 = [L(W1+h)-L(W1-h)] / (2 x h)G2 = [L(W2+h)-L(W2-h)] / (2 x h)G3 = [L(W3+h)-L(W3-h)] / (2 x h) 2 x 2020 x 1010 x 1 경사하강법으로 계산4): h=0.0001 정도로 작은 값: 수학적으로 h→0에 대해 계산
11 매개변수 갱신 W1 = W1 -
Figure PCTKR2018006373-appb-I000006
x G1W2 = W2 -
Figure PCTKR2018006373-appb-I000007
x G2W3 = W3 -
Figure PCTKR2018006373-appb-I000008
x G3
2 x 2020 x 1010 x 1 손실을 최소화하는 매 개변수(
Figure PCTKR2018006373-appb-I000009
= 학습률)
12 반복 연산
13 매개변수 결정 W1, W2, W3 최종값 기억
14 실차 주행 속도, 경사도 측정(X)→ 에너지 소모량(Y) 계산 Y = sigmoid(sigmoid(X·W1)·W2)·W3
상기 표에 기재된 각 주에 대한 설명1) 입력값(X): 실험시간이 100초이면 100행 x 2열, 200초이면 200행 x 2열로 됨
2) 시그모이드 함수: Sigmoid(x) = 1 / (1 + exp(-x))
3) 라벨(t): 정답에 해당하는 값(실험으로 측정한 에너지 소모량)
4) 경사하강법: 수치미분 방식의 기울기 계산(매개변수를 미세하게 변화시켰을 때 손실의 변화율) → 오차역전파법 등의 다양한 기울기 계산 방식을 적용할 수 있음
본 발명의 방법은 매우 많은 종류의 차량 및 매우 많은 도로들에 대하여 서로 다른 속도로 주행하여 얻은 실험 데이터에 기초하기 때문에 처음부터 실험 데이터를 완벽하게 구축할 수 없다. 이에 일단 실험 데이터가 어느 정도 구축되면, 인공신경망 서버(200)는 특정 차량, 특정 도로들 및 특정 도로구간들에 대하여 매개변수 데이터를 구축하고, 인공신경망 에너지 소모량 산출장치(300)는 그러한 매개변수 데이터를 사용하여 주행 차량의 에너지 소모량을 산출할 수 있다. 그런 후 데이터 수집장치(100)는 더욱 정교하고 더욱 다양한 실험을 수행할 수 있고, 그러면 인공신경망 서버(200)는 추가적 실험 데이터에 대하여도 학습과정을 수행함으로써 매개변수 데이터를 더욱 정교하게 향상시킬 수 있다. 인공신경망 에너지 소모량 산출장치(300)는 그렇게 갱신된 매개변수 데이터를 사용하여 주행 차량의 에너지 소모량 산출을 더욱 정확하게 수행할 수 있게 된다.

Claims (5)

  1. 실험 차량에 GPS 수신부 및 에너지 소모량 측정부를 포함하는 데이터 수집장치를 설치하는 단계;
    상기 실험 차량을 실제 도로에서 주행시켜 상기 GPS 수신부에 의하여 미리 정해진 매 시간간격마다 상기 실험 차량의 속도 및 상기 실험 차량이 주행하는 상기 도로의 경사각을 측정하고 또한 상기 에너지 소모량 측정부에 의하여 동일한 매 시간간격마다 상기 실험 차량의 에너지 소모량을 측정하며, 상기 데이터 수집장치에 의하여 상기 GPS 수신부에 의하여 측정한 상기 실험 차량의 속도 및 상기 도로의 경사각 그리고 상기 에너지 소모량 측정부에 의하여 측정한 상기 실험 차량의 에너지 소모량을 매칭시킴으로써 실험 데이터를 수집하는 단계;
    상기 데이터 수집장치에 의하여 수집된 상기 실험 데이터를 입력층, 하나 이상의 은닉층 및 출력층을 포함하는 인공신경망을 가지는 인공신경망 서버에게 전달하는 단계;
    상기 인공신경망 서버는 상기 실험 차량의 속도 및 상기 도로의 경사각을 입력값으로 상기 입력층에 입력하고, 상기 입력층에서 첫번째 은닉층으로의 변환, 은닉층이 복수개로 존재하는 경우 은닉층에서 다음 은닉층으로의 변환 및 마지막 은닉층에서 상기 출력층으로의 변환에 적용되는 매개변수들을 임의로 설정한 후 상기 출력층에서 산출되는 출력값을 상기 데이터 수집장치로부터 전달받은 상기 실험 차량의 에너지 소모량과 비교하는 단계;
    상기 인공신경망 서버는 상기 출력값과 상기 실험 차량의 에너지 소모량 간의 오차가 미리 정해진 허용범위를 벗어나는 것으로 판단하는 경우, 상기 인공신경망에 적용되는 상기 매개변수들을 변경한 후 상기 출력값을 다시 산출하는 단계;
    상기 인공신경망 서버는 상기 출력값과 상기 실험 차량의 에너지 소모량 간의 오차가 미리 정해진 허용범위 이내인 것으로 판단하는 경우, 상기 인공신경망에 적용된 상기 매개변수들을 확정하는 단계;
    상기 인공신경망 서버는 상기 실험 차량의 차종, 상기 실험에 적용된 상기 도로의 종류 및 상기 실험에 적용된 상기 도로의 구간 중 최소한 하나에 대하여 상기 확정된 매개변수들이 매칭된 매개변수 데이터를 저장하는 단계;
    상기 인공신경망 서버에 의하여 산출된 상기 매개변수 데이터를 어떤 주행 차량에 장착되는 인공신경망 에너지 소모량 산출장치에 전달하는 단계;
    상기 주행 차량의 상기 인공신경망 에너지 소모량 산출장치는 상기 인공신경망 서버에 적용된 상기 인공신경망과 동일한 인공신경망을 가지고, 그러한 인공신경망에 상기 주행 차량의 종류, 상기 주행 차량이 주행하는 도로의 종류 및 상기 실험에 적용된 상기 도로의 구간 중 최소한 하나에 대하여 적용되는 상기 매개변수 데이터를 적용하여 상기 주행 차량의 속도 및 주행 도로의 경사각에 따른 상기 주행 차량의 에너지 소모량을 산출하는 단계를 포함하는 차량의 에너지 소모량 산출 방법.
  2. 제1항에 있어서,
    상기 인공신경망은 두 개 이상의 은닉층을 가지는 것을 특징으로 하는 차량의 에너지 소모량 산출 방법.
  3. 제1항 및 제2항 중 어느 한 항에 있어서,
    상기 주행 차량의 상기 인공신경망 에너지 소모량 산출장치는 GPS 수신부에 의하여 미리 정해진 매 시간간격마다 상기 주행 차량의 속도 및 상기 주행 차량이 주행하는 상기 도로의 경사각을 측정하는 것임을 특징으로 하는 차량의 에너지 소모량 산출 방법.
  4. 제3항에 있어서,
    상기 주행 차량의 상기 인공신경망 에너지 소모량 산출장치는 지도 데이터를 가지고 있고, 상기 GPS 수신부에 의하여 파악된 상기 주행 차량의 위치와 상기 지도 데이터를 결합하여 상기 주행 차량이 주행하고 있는 도로의 종류 또는 도로의 구간을 결정하고, 그에 따라 상기 주행 차량의 에너지 소모량을 산출하는 것을 특징으로 하는 차량의 에너지 소모량 산출 방법.
  5. 제1항 내지 제4항 중 어느 한 항에 있어서,
    상기 인공신경망 서버는 상기 출력값과 상기 실험 차량의 에너지 소모량 간의 오차가 미리 정해진 허용범위를 벗어나는 것으로 판단하는 경우, 상기 인공신경망에 적용되는 상기 매개변수들을 다음 수학식 (i)에 의하여 변경하는 것을 특징으로 하는 차량의 에너지 소모량 산출 방법.
    Wi = Wi -
    Figure PCTKR2018006373-appb-I000010
    x Gi ----- (i)
    (상기 수학식 (i)에서, Wi는 i번째 매개변수를 나타내고,
    Figure PCTKR2018006373-appb-I000011
    는 학습률을 나나내며, Gi는 Wi의 기울기로서 다음 수학식 (ii)에 의하여 산출됨)
    Gi = [L(Wi + h) - L(Wi - h)] / (2 x h) ----- (ii)
    (상기 수학식 (ii)에서, h는 수학적으로 0에 수렴하는 매우 작은 임의의 값으로서, 예를 들어 0.0001일 수 있고, L은 다음 수학식 (iii)에 의하여 산출됨)
    L = 0.5 x Σ(Y - t)2 ----- (iii)
    (상기 수학식 (iii)에서, Y는 상기 인공신경망의 최종 출력값을 나타내고, t는 상기 실험 차량의 에너지 소모량에 대한 실험 측정치를 나타냄)
PCT/KR2018/006373 2018-06-04 2018-06-04 탄소배출량 저감을 이행하기 위한 딥러닝을 활용한 차량의 에너지 소모량 산출 방법 WO2019235654A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2018/006373 WO2019235654A1 (ko) 2018-06-04 2018-06-04 탄소배출량 저감을 이행하기 위한 딥러닝을 활용한 차량의 에너지 소모량 산출 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2018/006373 WO2019235654A1 (ko) 2018-06-04 2018-06-04 탄소배출량 저감을 이행하기 위한 딥러닝을 활용한 차량의 에너지 소모량 산출 방법

Publications (1)

Publication Number Publication Date
WO2019235654A1 true WO2019235654A1 (ko) 2019-12-12

Family

ID=68769307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/006373 WO2019235654A1 (ko) 2018-06-04 2018-06-04 탄소배출량 저감을 이행하기 위한 딥러닝을 활용한 차량의 에너지 소모량 산출 방법

Country Status (1)

Country Link
WO (1) WO2019235654A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112964476A (zh) * 2020-12-25 2021-06-15 中汽研汽车检验中心(天津)有限公司 一种重型柴油车实际道路颗粒物排放在线预测方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060134550A (ko) * 2005-06-23 2006-12-28 현대자동차주식회사 국내 도로 환경을 고려한 최적 주행 경로 알고리즘
KR20130090977A (ko) * 2012-02-07 2013-08-16 주식회사 엔지스테크널러지 에너지 소모율을 고려하는 네비게이션 장치 및 방법
JP2015135552A (ja) * 2014-01-16 2015-07-27 株式会社デンソー 学習システム、車載装置、及び、サーバ
KR20170007661A (ko) * 2015-07-10 2017-01-19 (주)로드피아 단위 구간별 연비 데이터 구축 장치 및 그 방법
KR20180029543A (ko) * 2016-09-13 2018-03-21 오토시맨틱스 주식회사 딥러닝을 통한 자동차 상태 진단 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060134550A (ko) * 2005-06-23 2006-12-28 현대자동차주식회사 국내 도로 환경을 고려한 최적 주행 경로 알고리즘
KR20130090977A (ko) * 2012-02-07 2013-08-16 주식회사 엔지스테크널러지 에너지 소모율을 고려하는 네비게이션 장치 및 방법
JP2015135552A (ja) * 2014-01-16 2015-07-27 株式会社デンソー 学習システム、車載装置、及び、サーバ
KR20170007661A (ko) * 2015-07-10 2017-01-19 (주)로드피아 단위 구간별 연비 데이터 구축 장치 및 그 방법
KR20180029543A (ko) * 2016-09-13 2018-03-21 오토시맨틱스 주식회사 딥러닝을 통한 자동차 상태 진단 방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112964476A (zh) * 2020-12-25 2021-06-15 中汽研汽车检验中心(天津)有限公司 一种重型柴油车实际道路颗粒物排放在线预测方法
CN112964476B (zh) * 2020-12-25 2022-11-25 中汽研汽车检验中心(天津)有限公司 一种重型柴油车实际道路颗粒物排放在线预测方法

Similar Documents

Publication Publication Date Title
CN108422886B (zh) 基于路线规划的电动汽车充电控制装置及控制方法
CN104715605B (zh) 一种基于vsp分布的交通运行数据与排放数据耦合方法与系统
CN108761509B (zh) 一种基于历史数据的汽车行驶轨迹及里程预测方法
CN105216782B (zh) 基于能量预测的插电式混合动力汽车能量管理方法
CN104778834B (zh) 一种基于车辆gps数据的城市道路交通拥堵判别方法
US20100305839A1 (en) Method for ascertaining consumption and/or emission values
GB2569750A (en) Comfort-based self-driving planning method
CN118025203B (zh) 一种融合复杂网络和图Transformer的自动驾驶车辆行为预测方法及系统
KR101925988B1 (ko) 탄소배출량 저감을 이행하기 위한 딥러닝을 활용한 차량의 에너지 소모량 산출 방법
CN110239577B (zh) 一种车内污染环境下列车乘员健康防护系统及其方法
US20130096818A1 (en) Method and system for vehicle range analysis
CN105865472A (zh) 一种基于最佳油耗的车载导航方法
CN110414803B (zh) 不同网联程度下自动驾驶系统智能水平的测评方法及装置
US20110106419A1 (en) Methods for reducing the consumption and cost of fuel
CN106971536A (zh) 一种融合浮动车与路侧视频的高速公路拥堵状态检测方法
CN108510129B (zh) 一种无人驾驶车辆实时电量智慧预测方法及装置
CN110514255A (zh) 汽车排放量检测方法及其检测系统
US20140107913A1 (en) Vehicle range analysis using driving environment information with optional continuous averaging
US11295044B2 (en) System for the dynamic determination of the environmental footprint linked to the overall mobility of a user
CN114492919A (zh) 一种基于交通流量的电动汽车充电负荷预测系统及方法
CN108510130B (zh) 一种智能无人驾驶车辆极限里程智能多源评估方法及装置
AU2022422056A1 (en) Method and device for providing at least one emission value for a means of transport
WO2019235654A1 (ko) 탄소배출량 저감을 이행하기 위한 딥러닝을 활용한 차량의 에너지 소모량 산출 방법
CN108759850A (zh) 新能源汽车充电导航系统
Zhan et al. Data accuracy oriented method for deploying fixed and mobile traffic sensors along a freeway

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18921917

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19/04/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18921917

Country of ref document: EP

Kind code of ref document: A1