WO2019235652A1 - 해상에서의 수처리 시스템 - Google Patents

해상에서의 수처리 시스템 Download PDF

Info

Publication number
WO2019235652A1
WO2019235652A1 PCT/KR2018/006333 KR2018006333W WO2019235652A1 WO 2019235652 A1 WO2019235652 A1 WO 2019235652A1 KR 2018006333 W KR2018006333 W KR 2018006333W WO 2019235652 A1 WO2019235652 A1 WO 2019235652A1
Authority
WO
WIPO (PCT)
Prior art keywords
seawater
heat
water
combustion
sea
Prior art date
Application number
PCT/KR2018/006333
Other languages
English (en)
French (fr)
Inventor
최동민
Original Assignee
Choi Dongmin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Choi Dongmin filed Critical Choi Dongmin
Priority to PCT/KR2018/006333 priority Critical patent/WO2019235652A1/ko
Publication of WO2019235652A1 publication Critical patent/WO2019235652A1/ko

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D35/00Filtering devices having features not specifically covered by groups B01D24/00 - B01D33/00, or for applications not specifically covered by groups B01D24/00 - B01D33/00; Auxiliary devices for filtration; Filter housing constructions
    • B01D35/02Filters adapted for location in special places, e.g. pipe-lines, pumps, stop-cocks
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/24Treatment of water, waste water, or sewage by flotation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/34Treatment of water, waste water, or sewage with mechanical oscillations
    • C02F1/36Treatment of water, waste water, or sewage with mechanical oscillations ultrasonic vibrations
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/40Devices for separating or removing fatty or oily substances or similar floating material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/48Treatment of water, waste water, or sewage with magnetic or electric fields
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage

Definitions

  • the present invention relates to a water treatment system in the sea, and in particular, a portion of the seawater purified by separating the organic matter, pollutants and microorganisms contained in the seawater while undergoing water purification process for the incoming seawater is self-cleaning water purification
  • the discharged seawater is discharged back to the sea, and the organic matter, pollutants and microorganisms separated from the seawater are used as solid fuel materials, while the rest of the purified seawater is subjected to heat exchange and thermal dilution. While heating, ultrasonic waves and microwaves are applied to make use of ion exchange, so that the seawater is converted to pure water using less energy.
  • Pumice, elvan, and zeolite as needed.
  • the present invention relates to a water treatment system at sea that allows drinking water to be drinkable while passing through tourmaline and loess-depleted desalination.
  • seawater is being polluted day by day due to pollutants and rivers thrown away from rivers and lakes.
  • seawater desalination removes dissolved substances, including salts, from seawater, which is difficult to use directly for domestic or industrial water. 2019/235652? (: 1/10 ⁇ 018/006333 A series of water treatment processes to obtain the seawater, also known as seawater desalination, is a device used to produce seawater as freshwater. .
  • the seawater desalination system is a device that removes salt in an economic way to make fresh water, which makes up 98% of sea water or brackish water useful for human life.
  • the seawater desalination method is largely based on the principle of heating the seawater using a heat source and condensing the generated steam to obtain fresh water by reverse evaporation and osmosis.
  • the seawater passes through the semi-permeable membrane.
  • Reverse Osmosis (R0) is the representative method of seawater desalination.
  • evaporation method using a heat source is a multi-stage evaporation (also denoted la Multi-Stage Flash ' ⁇ below MSF) and multiple effect method according to the flow pattern of the fluid.
  • the membrane separation method can be divided into reverse osmosis and forward osmosis.
  • Reverse osmosis is a method of separating ionic substances and pure water from the seawater using a reverse osmosis membrane.
  • the above high pressure is required and the pressure at this time is called reverse osmosis.
  • a high-pressure pump that consumes most of the power as the seawater supply means as described above, there is a disadvantage in that considerable energy is consumed in desalination of seawater.
  • the large-scale desalination treatment by the membrane separation method is composed of a plurality of stages 111, as shown in Figure 1, divided into a heat recovery section (110a) and a heat shield section (11)] evaporator (110) ),
  • the stage 111 is composed of a condenser 112, a water separator 113 and a flashing chamber (114).
  • the evaporator 110 that is, a brine heater (Brine Heater) that heats the preheated circulating brine (Recycling Brine) by circulating the evaporator to the operating temperature using the heat energy of the low-pressure steam supplied through the steam supply pipe ( 120 is provided, the other side of the evaporator 110 is provided with a deaerator (130) for removing carbon dioxide and oxygen contained in the feed-up (Make-up) introduced into the last stage of the evaporator.
  • a brine heater that heats the preheated circulating brine (Recycling Brine) by circulating the evaporator to the operating temperature using the heat energy of the low-pressure steam supplied through the steam supply pipe ( 120
  • the other side of the evaporator 110 is provided with a deaerator (130) for removing carbon dioxide and oxygen contained in the feed-up (Make-up) introduced into the last stage of the evaporator.
  • the condensate recovery pump 140 is connected to the brine heater 120 so that the condensate inside the brine heater 120 to be reused by sending to the power generation facility, the concentrated brine so that the circulating brine can circulate inside the evaporator Brine Recirculation Pump (150) 7> is equipped with fresh water pump 160 which sends the fresh water condensed by the evaporator to the post-treatment process and concentrated brine which discharges the brine reaching the last stage of the evaporator. Discharge pump 170 is provided.
  • the vacuum system 180 is provided as a means for removing non-condensable gases such as carbon dioxide and air that are not condensed in the evaporator 110, and the vacuum system 180 is provided through a steam supply pipe 181.
  • a first pre-ejector (Preeject or) 182 and a second pre-ejector (183) which ejects the supplied middle pressure steam to the internal nozzle to drastically reduce the pressure are provided.
  • First, second and third condensers (184) (185) (186) for condensing the non-condensable gas sucked from the cold heat brine introduced through the brine inlet pipe (189) and condensing it are provided.
  • the condensed water inside the third condenser 186 is discharged to the atmospheric phase through the concentrated brine pipe 187, and the non-condensable gas inside the third condenser 186 is discharged to the atmospheric phase through the gas discharge pipe 188. It was configured to be discharged.
  • a large-scale desalination treatment using the conventional membrane separation method as described above requires a separate large-capacity transfer pump 303 and temporary piping for circulation of the acidic liquid, and thus requires manpower and equipment for washing. Not only is it excessively necessary, it takes a long time to connect the temporary piping, which causes a problem that the overall downtime of the desalination plant is long.
  • the present invention is to solve the conventional problems as described above, and the organic and pollutants contained in the seawater while undergoing water purification process for the incoming seawater Part of the seawater purified while separating the microorganisms is magnetized to discharge the seawater with self-cleaning ability to the sea, and organic matter, pollutants and microorganisms separated from the seawater are used as a solid fuel material.
  • the rest of the seawater is heated by using heat exchange method and thermal dilution method, while applying ultrasonic wave and microwave while ionizing the seawater while heating the seawater, and converting the seawater to pure water using less energy.
  • the aim is to provide a water treatment system at sea.
  • the seawater through the seawater supply pipe is separated and removed by removing the organic and pollutants and microorganisms contained in the seawater through the water purification device installed on the vessel, etc.
  • the salt water is removed through the heating device to discharge the pure water, and if necessary, the pure water to discharge the drinking water containing mineral components through the desalination layer,
  • Ultrasonic wave generators are installed in the sea water supply pipe at predetermined intervals to receive wavelength energy by ultrasonic waves,
  • the coupling force of the sea water is weakened by the light energy and the wavelength energy and the microwave to facilitate the next water purification treatment, It is fed to the separator and from the ultrasonic generator .
  • the organic matter and pollutants that are lighter than seawater are separated and collected by the generated ultrasonic waves and vibrations generated by the vibration generator and the anion oxygen generated by the anion oxygen generator.
  • the seawater passing through the floating separation tank is supplied to the decomposition tank so that the floating of seawater can be actively progressed by the ultrasonic wave generated by the ultrasonic generator and the vibration generated by the vibration generator and the anion oxygen generated by the negative ion oxygen generator.
  • the sea water is supplied to the coagulation reaction tank to make the organic and contaminants that are heavier than the sea water stable while vortexing by the fan,
  • the organic and contaminants of the seawater and heavier than seawater are supplied to the settling tank to collect and discharge the organic and contaminants heavier than the seawater that has settled on the inclined bottom surface through the strainer.
  • Seawater passing through the settling tank is allowed to filter the dead microorganisms while passing through a filter equipped with a filter therein,
  • the organic and contaminants and dead microorganisms are to be provided as raw materials for the production of a separate solid fuel
  • the remainder of the seawater removed by separating the organic and pollutants and dead microorganisms is to be concentrated into the seawater heating chamber of the heating apparatus through a supply pipe having a check valve for preventing backflow.
  • the seawater heating chamber formed by the heat exchanger of the small grains of alumina, molybdenum, ceramic, tourmaline, and elvan are formed in the interior side.
  • the seawater is heated to produce and discharge steam through a discharge pipe having a check valve for preventing the backflow, and a plurality of first heat exchanger tubes and a second heat exchanger tube at an upper end thereof are installed in the upper portion of the combustion chamber to heat the seawater.
  • a recombustion unit and a focus combustion unit are installed at an upper end of the first heat exchange tube of the combustion chamber to recombust the combustion gas in an incomplete combustion state ascending,
  • Light in the form of an electromagnetic spectrum generated when burning the fuel is transmitted to the light collecting plates installed on the outer surfaces of the first and second heat exchange tubes to transmit heat by radiant heat to the surface.
  • a plurality of magnetization contact pieces are formed to protrude in the lower portion of the first and second heat exchange tubes to generate thermal energy by kinetic energy such as rising combustion gas, and a plurality of ultrasonic generators are provided on the outer wall of the seawater heating chamber.
  • a high frequency generator By installing a high frequency generator, the ultrasonic wave and the high frequency are applied to the seawater heated so that the molecular motion becomes active so that the vaporization of water is promoted, so that the salt-free steam is discharged from the seawater, 2019/235652 1 »(: 1/10 ⁇ 018/006333 The above desalted steam is allowed to discharge the pure water through the ion exchange chamber.
  • the above pure water is pumice or elvan. It is characterized in that it is configured to obtain a potable drinking water by containing minerals while passing through the desalination layer laminated zeolite, tourmaline and ocher.
  • the binding force of seawater is weakened by light energy, wavelength energy, and microwave while killing microorganisms by the high frequency generator of the seawater supply pipe against the incoming seawater.
  • the seawater supplied through the seawater supply pipe separates organic substances, pollutants, and microorganisms contained in the seawater through the water purification process of the flotation tank, the decomposition tank, the flocculation tank, the settling tank, and the filter to facilitate the separation of salts. and ,
  • the above seawater treated seawater is supplied to the seawater heating chamber of the heating apparatus, the first heat exchanger tube and the second heat exchanger tube, and is provided with a heat exchanger, a reburner, a focal burner, a light collecting plate, a magnetization contact piece, an ultrasonic generator and a high frequency generator.
  • the sea water is heated by heat exchange method and thermal dilution method to promote vaporization to discharge salt-free steam, and then use ion exchange method to convert sea water to pure water using less energy. If necessary, there is an effect of obtaining drinking water available for drinking while passing through a desalination layer of pumice, McVin-stone, zeolite, tourmaline, and ocher.
  • FIG. 1 is a schematic diagram showing a large scale desalination apparatus of a conventional membrane separation method.
  • FIG. 2 is a schematic diagram showing a schematic configuration of the present invention.
  • FIG. 3 is a schematic diagram showing the configuration of the present invention.
  • Figure 4 is a schematic diagram showing the configuration of the present invention heating apparatus.
  • 113 ⁇ 4 of typical seawater contains 01 ⁇ 2 sodium chloride in water (96.5%), 27.213%, for magnesium chloride (: 12) 8.807%, magnesium sulfate 3 ⁇ 4 ⁇ 3 ⁇ 4) 4) 1.658%, calcium sulfate 0 3 ⁇ 4) 4) 1.260% Potassium sulfate 0 ⁇ 4) 0.863%, calcium carbonate ⁇ 30) 3) 0. 123% and magnesium bromide and -2) 0.076% of salts are known.
  • the seawater contains a large amount of organic matter, pollutants and microorganisms in addition to salts, and the salts can be removed by evaporation or membrane separation. Organics, contaminants and microorganisms are not removed and must be treated separately.
  • the water treatment system in the sea separates organic matter, pollutants and microorganisms contained in the seawater while the seawater is supplied through the seawater (via the water purification device installed in a ship (city, etc.) on the sea.
  • Part of the seawater is self-purified in the seawater drainage pipe (I) and drained back to the sea, while the rest of the seawater is removed through salting and heating to remove the pure water.
  • Drinking water containing mineral components while the above pure water passes through desalination 2019/235652 1 »(: 1 ⁇ 1 ⁇ 2018/006333
  • a plurality of light emitting heating elements (3) are installed in the transparent layer (2) of the sea water supply pipe at regular intervals to receive light energy by radiant heat in the form of electromagnetic spectrum, and the ultrasonic generator (4) is defined in the sea water supply pipe ( Installed a number of times to receive the wavelength energy by the ultrasonic waves,
  • Microwave generators 5 are installed in the seawater supply pipe 8 at regular intervals to generate and supply microwaves so that the binding force of the seawater is weakened by the wavelength energy and the microwaves of the light energy.
  • the seawater through the seawater supply pipe 03 is supplied to the purified water-level (0 floating separation tank 10)
  • the combined state of the molecular structure of the seawater is generated by the ultrasonic waves generated by the ultrasonic generator 11 installed on the inner wall. Cut it off.
  • Vibration generator (12) attached to the permanent magnet (15) to the magnetization plate (14) coupled to the four sides of the alternating magnet (13) repeatedly having an N polarity and a depolarity inside the floating separation tank (10) Install a number of vibrations in the sea water,
  • Anion oxygen generated in the anion oxygen generator 16 installed in the outside is mixed into the seawater circulating in the circulation pipe 18 by the pump 17 and aerated through the aeration mechanism 19 so that ultrasonic waves and vibrations are caused inside.
  • the seawater, where the separation of molecular bonds proceeds, is separated and collected by organic matter and pollutants that are lighter than seawater by flotation. 2019/235652 1 » ⁇ the 1/1012018/006333 lock,
  • the seawater passing through the floating separation tank 10 is supplied to the decomposition tank 20 so as to break the bonding state of the molecular structure of the seawater again by ultrasonic waves generated by the ultrasonic generator 21 on one inner wall.
  • Anion oxygen generated in the anion oxygen generator 26 installed in the outside is mixed in the sea water circulated by the pump 27 to be aerated through the aeration mechanism 28 so that the rise of sea water is actively progressed inside,
  • Electromagnetic wave generator (29) provided at the upper end, and is sent to the ultrasound electronics, negative oxygen ions coming out of the water back to the water by the magnetic field and before and Jaffa keep the decomposition efficiency,
  • the seawater from which the organic matter and the contaminant contained in the decomposition tank 20 are separated is supplied to the flocculation chamber air tank 30 and coupled to the shafts 32 and 323 of the reduction motors 31 and 313 to gradually rotate. (33, 84) (333, 343) to stabilize the organic and pollutants that are heavier than seawater separated from seawater during vortexing,
  • Seawater and organic matter and heavier components than the seawater to maintain a stable state in the flocculation reaction tank 30 is supplied to the settling tank 40 is coupled to the shaft 42 of the reduction motor 41, the strainer 43 is slowly rotated Through time)-to collect organic and pollutants that are heavier than seawater that has sunk on the bottom and discharge them to the outside, 2019/235652 1 »(: 1 ⁇ 1 ⁇ 2018/006333
  • the seawater passing through the above settling tank 40 allows the microorganisms that are dead while passing through the filter 50 having the filter 51 housed therein to be filtered out,
  • the seawater removed by separating the organic and contaminants and microorganisms above is supplied to the seawater heating chamber 60 of the heating device (£ :) through a supply pipe 62 having a backflow prevention valve 61.
  • Alumina on the inner four sides of the combustion chamber 70.
  • a heat exchanger 71 is formed in which molybdenum, ceramics, tourmaline, and elvan granules are mixed, and the seawater heating chamber 60 is formed therein to heat the seawater to provide a backflow check valve 63.
  • a plurality of first heat exchange tubes 65 are installed in the upper portion of the combustion chamber 70 so that a portion of the seawater supplied to the seawater heating chamber 60 is heated.
  • the reburn unit 72 located at the upper end of the first heat exchange tube 65 of the combustion chamber 70 is formed of a plurality of reburn networks 73 rolled iron mesh made of iron chromium into a cochlear shape to regenerate iron cron material. Desired (73) fires while temporarily regenerating the heat of combustion above 6001: 2019/235652 1 »(: 1 ⁇ 1 ⁇ 2018/006333 To burn the combustion gas in the state of complete combustion,
  • the combustion gas passing through the space inside the small cylinder 76 made of a plurality of iron chromium is semispherical (77).
  • the combustion gas in the incomplete combustion state is burned again while being collected in the inside of the gas pipe and ascending through the upper discharge pipe 78.
  • a plurality of second heat exchange tubes 66 are installed on the upper portion of the focus combustion unit 75 of the combustion chamber 70 so that a part of the seawater supplied to the seawater heating chamber 60 is heated.
  • a plurality of magnetization contact pieces 80 are formed to protrude from the lower portions of the first and low twelfth heat exchange tubes 65 and 66 to collide with the kinetic energy of the combustion gas, which rises during combustion, to generate thermal energy due to resistance. To occur,
  • the magnetization connecting piece 80 is composed of a metal piece 81 coated on the outer surface of the tourmaline powder 82 having magnetic properties when the heat is received by receiving the kinetic energy, which is a movement by the rising combustion gas, etc.
  • a plurality of ultrasonic generators 83 and high frequency generators 84 are provided to the seawater where the ultrasonic waves from the ultrasonic generator 83 and the high frequency from the high frequency generator 84 are heated.
  • the first and second heat exchange tubes 65 and 66 have direct combustion heat, heat storage of the heat exchanger 71 and radiant heat through the light collecting plate 22.
  • the salt is removed from the steam is to discharge the pure water through the ion exchange chamber (85),
  • the above pure water is pumice, elvan, zeolite, tourmaline and loess desalination (depositing minerals while passing through £) so that drinking water is available for drinking.
  • the salts are removed by heating the heating chamber (£) to discharge the pure water, and if necessary, the pure water contains minerals via desalination.
  • a plurality of high frequency generators (1) are installed at regular intervals to generate high frequency to kill microorganisms causing green algae or red tide.
  • a plurality of ultrasonic generators 4 are installed at predetermined intervals so as to receive the wavelength energy by ultrasonic waves.
  • the microwave generator 5 is installed in the sea water supply pipe 8 at regular intervals to generate and supply microwaves so that the binding force of the sea water is weakened by the light energy, the wavelength energy, and the microwaves. Make it easy.
  • a plurality of vibration generators 12 each having permanent magnets 15 attached to the magnetizing plate 14 coupled to all four sides of the alternating magnets 13 repeatedly having polarity and polarity inside the floating separation tank 10. Install to allow vibrations in seawater.
  • Anion oxygen generated in the anion oxygen generator 16 installed in the outside is mixed into the seawater circulating through the circulation pipe 18 by the pump 17 and aerated through the aeration mechanism 19 so that ultrasonic waves and vibrations are caused inside.
  • Seawater in which separation of molecular bonds proceeds is allowed to be collected separately from organic matter and pollutants that are lighter than seawater by flotation in the flotation tank (10).
  • the seawater passing through the floating separation tank 10 is supplied to the decomposition tank 20 so as to break again the bonding state of the molecular structure of the seawater by ultrasonic waves generated by the ultrasonic generator 21 on one inner wall.
  • Vibration generator with permanent magnets 25 attached to magnet plates 24 coupled to alternating magnets 23 having polarity and polarity repeatedly ( 22) is installed so that vibration occurs in seawater.
  • Anion oxygen generated in the anion oxygen generator 26 installed in the outside is mixed into the sea water circulated by the pump 27 to be aerated through the aeration mechanism 28 so that the floating of the sea water is actively progressed inside.
  • the electromagnetic wave generator 29 installed at the top sends ultrasonic electrons and negative ions oxygen from the sea water back to the water by the magnetic field and the electromagnetic waves to maintain the decomposition efficiency.
  • the seawater from which the organic and pollutant components contained in the decomposition tank 20 are separated is supplied to the coagulation chamber coagulation 30 and is coupled to the shafts 32 and 32 of the reduction motors 31 and 313 and slowly rotated. During the vortexing by fans (33, 34) (333, 343), organic and contaminants that are heavier than seawater separated from the seawater are stabilized.
  • Seawater and organic matter and heavier components than the seawater to maintain a stable state in the flocculation reaction tank 30 is supplied to the settling tank 40 is coupled to the shaft 42 of the reduction motor 41, the strainer 43 is slowly rotated ) To collect organic and pollutants that are heavier than seawater that has sunk on the bottom of the slope.
  • the seawater passing through the settling tank 40 allows the microorganisms that are dead while passing through the filter 50 having the filter 51 therein to be filtered.
  • the organic and pollutants and dead microorganisms are to be provided as a raw material for producing a separate solid fuel.
  • Part of the seawater removed by separating the above organic and pollutants and dead microorganisms is magnetized and purified by a magnet (6) attached to the outer surface of the seawater discharge pipe 0)). Have the midnight seawater back to the sea.
  • the seawater removed by separating the organic and contaminants and microorganisms is concentrated to the seawater heating chamber 60 of the heating apparatus through a supply pipe 62 having a backflow prevention valve 61.
  • the fuel supplied internally is combusted in the combustion chamber 70 of the heating jig-chi (to be ignited by a separate ignition means).
  • the seawater heating chamber 60 is formed inside the combustion chamber 70 to form a heat exchanger 71 in which small grains of alumina, molybdenum, ceramic, tourmaline, and elvan are formed.
  • the steam is produced and discharged through the discharge pipe 64 having the check valve 63 for preventing the backflow.
  • a plurality of first heat exchange tubes 65 are installed in the upper portion of the combustion chamber 70 so that a portion of the seawater supplied to the seawater heating chamber 60 is heated.
  • the reburn unit 72 located at the upper end of the first heat exchange tube 65 of the combustion chamber 70 is formed of a plurality of reburn networks 73 rolled iron mesh made of iron chromium into a cochlear shape to regenerate iron cron material.
  • the desired 73 causes the combustion gas in an incomplete combustion state to be burned while temporarily storing heat of combustion higher than 600 X :.
  • the combustion gas passing through the space inside the small cylinder 76 made of a plurality of iron chromium is semispherical (77). Collected inside the ascending and ascending through the upper discharge pipe 78 2019/235652 1 »(: 1 ⁇ 1 ⁇ 2018/006333 Let the combustion gas of incomplete combustion state burn again.
  • a plurality of second heat exchange tubes 66 are installed in the upper portion of the focus combustion unit 75 of the combustion chamber 70 so that a portion of the seawater supplied to the seawater heating chamber 60 is heated.
  • the magnetization connecting piece 80 is composed of a metal piece 81 coated on the outer surface of the tourmaline powder 82 having magnetic properties when the heat is received by receiving the kinetic energy, which is a movement by the rising combustion gas, etc. Heat is transferred to the first and second heat exchange tubes (65) (66).
  • a plurality of ultrasonic generators 83 and high frequency generators 84 are provided to the seawater where the ultrasonic waves from the ultrasonic generator 83 and the high frequency from the high frequency generator 84 are heated.
  • the first and second heat exchange tubes 65 and 66 are directly connected to the heat of combustion and the heat storage of the heat exchanger 71 and the radiant heat and magnetization connection through the light collecting plate 22.
  • the heat energy due to the resistance by the piece 23 is added, and the second heat exchange tube 66 has a reburn section 72 and a focus combustion section. 2019/235652 1 »(: 1/10 ⁇ 018/006333
  • the flue gas heat of (75) is added so that the heat inside the combustion chamber (70) is applied completely to vaporize the water and to exhaust the salt-free steam through the toil pipe (64) having the check valve (63) for preventing the backflow. do.
  • the above-mentioned salt-free steam allows the pure water to be drained through the ion exchange chamber 85.
  • the pure water contains minerals while passing through pumice, elvan, zeolite, tourmaline and loess, so that mineral water can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Physical Water Treatments (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Abstract

본 발명은 해상에서의 수처리 시스템에 관한 것으로, 유입되는 해수에 대해 해수 공급관에서 미생물을 죽이면서 빛에너지외 파장에너지 및 마이크로웨이브에 의해 해수의 결합력이 약해지도록 하고, 상기의 해수 공급관을 통하여 공급되는 해수는 바다 위에서 선박 (A) 등에 설치한 정수장치를 경유하는 중에 해수에 포함된 유기질과 오염불질 및 미생물을 분리하겨 제거한 후 자정능력을 갖춘 해수의 일부를 바다로 배출하도록 하고, 해수의 나머지는 부상분리조, 분해조, 응집반응조, 침전조 및 여과기의 정수과정을 거치면서 해수에 포함된 유기질과 오염물질 및 미생물올 분리시키도록 하여 염류의 분리가 용이하도록 하고, 상기의 장수처리한 해수는 해수가열실괴 제1 열교환관 및 제2 열교환관으로 공급되어 열교환부, 재연소부, 초점 연소부, 집광판, 자화접촉편, 초음파발생기 및 고주파발생기가 설치된 열교환방식과 열희석방식을 이용하면서 해수를 가열하여 염류가 제거된 증기를 배출하도록 한 후 이온교환의 방식을 이용하도록 하여 적은 에너지를 사용하여 해수를 순수수로 바꾸도록 하고, 필요에 따라 경석, 맥반석, 제올라이트, 전기석 및 황토를 적층한 담수화층을 통과하는 중에 음용이 가능한 음용수를 얻을 수 있도톡 구성한 것이다.

Description

【명세서】
【발명의 명칭】
해상에서의 수처리 시스템 {Processing system for clean water on the sea} 【기술분야】
본 발명은 해상에서의 수처리 시스템에 관한 것으로, 상세하게는 유입되는 해수에 대해 정수 과정을 거치면서 해수에 포함된 유기질과 오염물질 및 미생물을 분리시키면서 정수시킨 해수의 일부는 자화정수하여 자정능력을 가진 해수를 다시 바다로 배출하도록 하고, 해수에서 분리한 유기질과 오염물질 및 미생물은 고형연 료의 재료로 사용하도록 하는 한편, 상기 정수시킨 해수의 나머지는 열교환방식과 열희석방식을 이용하여 해수를 가열하는 중에 초음파와 초단파을 인가하면서 이온 교환의 방식을 이용하도록 하여 적은 에너지를 사용하여 해수를 순수수로 바꾸고 필요에 따라 경석, 맥반석, 제올라이트. 전기석 및 황토를 적증한 담수화증을 통과 하는 중에 음용이 가능한 음용수를 얻을 수 있도록 한 해상에서의 수처리 시스템에 관한 것이다.
【배경기술】
일반적으로 강이나 호수로부터 밀려 드는 오염물질과 버려지는 수많은 쓰레 기로 인하여 바닷물은 나날이 오염되어 가고 있는 실정이다.
그럼에도 바닷물을 직접 정화하기 위한 노력은 거의 없고 단지, 해수를 담수 화하는 방법을통하여 일부만식용수나사용수로 이용하고자 하는 실정이다.
그리고 해수 담수화는 생활용수나 공업용수로 직접 사용하기 힘든 바닷물로 부터 염분을 포함한 용해물질을 제거하여 순도 높은 음용수 및 생활용수, 공업용수 2019/235652 ?(:1/10公018/006333 등을 얻어내는 일련의 수처리 과정을 하는 것으로, 해수탈염 (海水脫鹽)이라고도 하 며, 해수를 담수로 생산하는데 사용되는 장치를 해수담수화 장치라 한다.
해수담수화 장치는 지구 상의 물 중 98%나 되는 해수나 기수를 인류의 생활 에 유용하게 쓸 수 있도록 경제적인 방법으로 염분을 제거하여 담수로 만드는 장치 이다.
비가 땅 위에 떨어지면 여러 경로를 통해 바다로 흘러 가게 되는데, 물이 땅 위와 땅속으로 고르는 동안 무기염류 (Mineral )와 다른 물질 등이 용해되어 점점 염 도가증가한다.
바다나 저지대에 도착한 물은 태양에너지에 의해 증발하게 되며, 이 증발 과 정에서 염을 남기며 순수한 물만이 구름을 형성하고 비가 되는 순환을 한다.
이것은 물리적인 분리가 이루어지는 증발과정 및 수증기가 찬 공기를 만나서 빗물로 변하는 응축과정을 잘 나타내고 있는데, 이러한 과정이 자연현상에서 볼 수 있는 대표적인 담수화 (Desalinatmn)라할수 있다.
해수 담수화의 방식은 크게 기본원리에 따라, 열원을 이용하여 해수를 가열 하고 발생한 증기를 응축시켜 담수를 얻는 증발법과 삼투현상 (Osmosis)을 역으로 이용하여 해수를 반투막 (Semi-permeable Membrane)을 통과시켜 담수를 생산하는 막 분리법의 역삼투법 (Reverse Osmosis: 이하 R0라 표기힘 0이 해수담수화의 대표적인 방식이다.
열원을 이용하는 증발법은 유체의 흐름 양상에 따라 다단증발법 (Multi-Stage Flash'· 이하 MSF라 표기함)과 다중효용법 (Mult i-Ef feet Distillation: 이하 MED라 표기함)으로구분된다. 상기의 막분리법에는 역삼투법과 정삼투법으로 나눌 수 있다.
상기의 역삼투 공정 (reverse osmosis , R0)은 해수에 함유되어 있는 성분을 역삼투막을 이용하여 이온성 물질과 순수한 물을 분리시키는 방법이며, 이와 같이 해수로부터 이온성 물질과 순수한 물을 분리시키기 위해서는 삼투압 이상의 높은 압력을 필요로 하는데 이때의 압력을 역삼투압이라 한다. 일반적으로 상기와 같은 해수 공급수단으로서 대부분 전력을 소모하는 고압펌프를 사용하기 때문에 해수의 담수화에 상당한 에너지가소모되는 단점이 있다.
또한, 막 분리방법으로 대규모 담수화 처리하는 방법은 도 1에 도시된 것과 같이 여러개의 스테이지 (111)로 이루어지고, 열회복구간 (110a)과 열차단구간 (11이〕) 으로 나뉘어진 증발기 (110)가 구비되고, 상기 스테이지 (111)는 응축기 (112)와 기수 분리기 (113) 및 증발실 (Flashing Chamber)(114)로 구성되어져 있다.
또한, 상기 증발기 (110)의 일즉에는 증발기를 순환하여 예열된 순환농염수 (Recycling Brine)를 스팀 공급관을 통하여 공급된 저압 스팀의 열에너지를 이용하 여 운전온도로 가열하는 농염수 가열기 (Brine Heater)(120)가 구비되고, 증발기 (110)의 타측에는 증발기의 마지막 스테이지로 유입되는 공급수 (Make-up)어ᅵ 포함된 이산화탄소 및 산소를 제거하는 탈기기 (Deaerator )(130)가구비된다.
그리고, 농염수 가열기 (120) 내부의 응축수를 발전설비로 보내어 재사용할 수 있도록 응축수 회수펌프 (140)가 농염수 가열기 (120)에 연결되고, 순환농염수가 증발기의 내부를 순환할 수 있도록 농염수 순환펌프 (Brine Recirculation Pump )( 150 )7> 구비되며, 증발기에 의해서 응축된 담수를 후처리 공정으로 보내는 담수펌프 (160)와 증발기의 마지막 스테이지에 도달한 농염수를 배출시키는 농염수 배출펌프 (170)가 구비된다.
이와 함께 증발기 (110)에 응축되지 않은 이산화탄소 및 공기와 같은 비응축 성 가스를 제거하기 위한 수단으로 진공시스템 (180)이 구비되는 것으로서, 상기 진 공시스템 (180)은 스팀공급관 (181)을 통해 공급된 중압스팀 (Middle Pressure Steam) 을 내부의 노즐로 분출시켜 압력을 급격히 떨어뜨리는 제 1 프리이젝터 (Preeject or )(182) 및 제 2프리이젝터 (183)가 구비되고, 이 압력의 차이로 증발기로 부터 흡입된 비응축성 가스를 농염수 유입관 (189)을 통해 유입된 차가운 농염수와 열교환시켜 응축시키는 제 1,2,3 웅축기 (Condensor )(184 )(185 )(186)가 구비되며, 제 3응죽기 (186) 내부의 응죽수는 농염수 배줄관 (187)을 통하여 대기상으로 배줄되고, 제 3응축기 (186) 내부의 비응축성 가스는 가스 배출관 (188)을 통하여 대기상으로 배 출되도록 구성하였다.
그러나 상기와 같은 종래의 막 분리방법으로 대규모 담수화 처리하는 방법은 산성액이 순환되도록 하기 위한 별도의 대용량의 이송펌프 (303)와 임시배관 등이 소요됨에 따라, 세척 작업에 소요되는 인력 및 장비가 과도하게 필요할 뿐만 아니 라, 임시배관을 연결하기 위한 시간이 많이 소요되어 담수화 설비의 전체적인 운전 정지 시간이 길어지는 문제점이 있었다.
뿐만 아니라, 담수화 설비의 시설 용량이 증가되는 경우에는 이동식 산 세척 장치의 규모 또한 함께 증가되어야 함에 따라, 별도의 이동식 산 세척 장치를 다시 제작해야만 하는 문제점도 있었다.
[발명의 상세한 설명】
【기술적 과·제】 2019/235652 1»(:1^1{2018/006333 이에 본 발명은 상기한 바와 같은 종래의 문제점을 해소하기 위한 것으로, 유입되는 해수에 대해 정수 과정을 거치면서 해수에 포함된 유기질과 오염물질 및 미생물을 분리시키면서 정수시킨 해수의 일부는 자화정수하여 자정능력을 가진 해 수를 다시 바다로 배출하도록 하고, 해수에서 분리한 유기질과 오염물질 및 미생물 은 고형연료의 재료로 사용하도록 하는 한편, 상기 정수시킨 해수의 나머지는 열교 환방식과 열희석방식을 이용하여 해수를 가열하는 중에 초음파와 초단파을 인가하 면서 이온교환의 방식을 이용하도록 하여 적은 에너지를 사용하여 해수를 순수수로 바꾸고 필요에 따라 경석, 맥반석, 제올라이트, 전기석 및 황토를 적층한 담수화층 을 통과하는 중에 음용이 가능한 음용수를 얻을 수 있도록 한 해상에서의 수처리 시스템를 제공하는 것을 그목적으로 한다.
【기술적 해결방법】
상기 목적을 달성하기 위한본 발명의 해상에서의 수처리 시스템는, 해수 공급관을 통하여 해수는 바다 위에서 선박 등에 설치한 정수장치를 경 유하는 중에 해수에 포함된 유기질과 오염불질 및 미생물을 분리하겨 제거한 후 가 열장치를 거치면서 염류가 제거되도록 하여 순수수를 배출하도록 하고, 필요에 따 라 상기의 순수수가 담수화층을 경유하면서 미네랄 성분을 함유한 음용수를 배출하 도록 하되,
해수 공급관의 외면에 고주파발생기를 일정한 간격으로 다수 설치하여 고주 파를 발생시켜 녹조나 적조의 원인이 되는 미생물을죽이도록 하고,
상기 해수공급관의 투명층에 발광발열체를 일정한 간격으로 다수 설치하여 전자기 스펙트럼의 형태의 복사열에 의한 빛에너지를 전달받도록 하고, 2019/235652 1»(:1^1{2018/006333 상기 해수 공급관에 초음파발생기를 정한 간격으로 다수 설치하여 초음파에 의한 파장에너지를 전달받도록 하고,
상기 해수공급관에 마이크로웨이브 발생기를 일정한 간격으로 다수 설치하여 마이크로웨이브를 발생하여 공급하도록 하여 상기 빛에너지외- 파장에너지 및 마이 크로웨이브에 의해 해수의 결합력이 약해져 다음의 정수처리가 용이하도록 하고, 부상분리조로 공급되어 초음파 발생기에서. 발생되는 초음파와 진동발생기에 서 발생하는 진동과, 음이온 산소발생기에서 생성된 음이온 산소에 의해 해수보다 가벼운 유기질과 오염성분이 분리되어 수거되도록 하고,
상기의 부상분리조를 경유한 해수는 분해조로 공급되어 초음파 발생기에서 발생되는 초음파와 진동발생기에서 발생하는 진동과 음이온 산소발생기에서 생성된 음이온 산소에 의해 내부에서 해수의 부상이 활발히 진행되도록 하고,
상기의 해수는 응집반응조로 공급되어 팬에 의해 와류하는 중에 해수보다 무 거운 유기질과 오염성분이 안정된 상태가 되도록 하고,
상기의 해수와 해수보다 무거운 유기질과 오염성분은 침전조로 공급되어 스 트레나를 통해 내부의 경사 바닥면에 가라앉은 해수보다 무거운 유기질과 오염성분 을 수거하여 외부로 토출시키도록 하고,
상기의 침전조를 경유한 해수는 내부에.필터가 구비된 여과기를 경유하는 중 에 죽은 미생물이 여과되도록 하고,
상기의 유기질과 오염성분 및 죽은 미생물은 별도의 고형연료를 제조하기 위 한 원료로 제공하도록 하고,
상기의 유기질과 오염성분 및 죽은 미생물을 분리시켜 제거한 해수의 일부는 2019/235652 1»(:1^1{2018/006333 해수배출관의 외면에 부착한 자석에 의해 자화정수하여 자정능력을 가진 해수를 다 시 바다로 배출하도록 하고,
상기의 유기질과오염성분 및 죽은 미생물을 분리시켜 제거한 해수의 나머지 는 역류방지용 첵밸브를 구비한 공급관을 통해 가열장치의 해수가열실로 골급되도 록 하고,
착화 수단에 의하여 착화하는 가열장치의 연소실에서 내부로 공급되는 연료 를 연소시키면 내부 측면에 형성한 알루미나, 몰리브덴, 세라믹, 전기석, 맥반석의 작은 알갱이의 열교환부에 의해 그 내부에 형성한 해수가열실의 해수를 가열시켜 역류방지용 책밸브를 구비한토출관을 통하여 증기를 생산하여 배출하도록 하고, 상기 연소실의 내부 상부에는 다수의 제 1 열교환관과 그 상단의 제 2 열교환 관을 설치하여 상기의 해수가열실로 공급된 해수의 일부가 가열되도록 하고,
상기 연소실의 제 1 열교환관의 상단에 재연소부와 초점 연소부를 설치하여 상승하는 불완전 연소상태의 연소가스를 재차연소시키도록 하고,
상기의 연료를 연소할 때 발생하는 전자기 스펙트럼의 형태의 빛은 제 1 및 제 2 열교환관의 외면에 설치한 집광판에 전달되어 표면에 복사열에 의한 열을 전달 하도록 하고,
상기 제 1 및 제 2 열교환관의 하부에 다수의 자화접촉편을 다수 돌출 형성하 여 상승하는 연소가스등의 운동 에너지에 의한 열 에너지를 발생하도록 하고, 상기 해수가열실의 외벽에는 다수의 초음파발생기와 고주파발생기를 설치하 여 초음파와 고주파가 가열되는 해수에 가해져서 분자 운동이 활발해지도록 하여 물의 기화가촉진되도록 하여 해수에서 염류가 제거된 증기를 배출하도록 하고, 2019/235652 1»(:1/10公018/006333 상기의 염류가 제거된 증기는 이온교환실을 경유하는 중에 순수수를 배출하 도록 하고,
필요에 따라 상기의 순수수가 경석, 맥반석. 제올라이트, 전기석 및 황토를 적층한 담수화층을 통과하는 중에 미네랄이 함유되도록 하여 음용이 가능한 음용수 를 얻을수 있도록 구성됨을 특징으로 한다.
[발명의 효과]
상기의 본 발명에 따른 해상에서의 수처리 시스템에 의하여서는 유입되는 해 수에 대해 해수공급관의 고주파발생기에 의하여 미생물을 죽이도록 하면서 빛에너 지와 파장에너지 및 마이크로웨이브에 의해 해수의 결합력이 약해져 다음의 정수처 리가용이하도록 하고,
상기 해수공급관을 통해 공급되는 해수는 부상분리조, 분해조, 응집반응조, 침전조 및 여과기의 정수 과정을 거치면서 해수에 포함된 유기질과 오염물질 및 미 생물을 분리시키도록 하여 염류의 분리가 용이하도록 하고 ,
상기의 장수처리한 해수는 가열장치의 해수가열실과 제 1 열교환관 및 제 2 열 교환관으로 공급되어 열교환부, 재연소부, 초점 연소부, 집광판, 자화접촉편, 초음 파발생기 및 고주파발생기가 설치된 열교환방식과 열희석방식을 이용하여 해수를 가열하여 기화가 촉진되어 염류가 제거된 증기를 배출하도록 한 후 이온교환의 방 식을 이용하도록 하여 적은 에너지를사용하여 해수를 순수수로 바꾸도록 하고, 필요에 따라 경석, 맥빈-석, 제올라이트, 전기석 및 황토를 적층한 담수화층 을통과하는 중에 음용이 가능한 음용수를 얻을 수 있도록 하는 효과가 있다.
【도면의 간단한 설명] 2019/235652 1»(:1^1{2018/006333 도 1은종래 막분리방법의 대규모담수화 처리장치를 도시한 개략도.
도 2는본 발명의 개략적인 구성을 도시한 계통도
도 3은본 발명 정수장치의 구성을 도시한 개략도.
도 4는본 발명 가열장치의 구성을 도시한 개략도.
【발명의 실시를 위한 최선의 형태】
.이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 설명하면 다음 과 같다.
일반적인 해수 11¾에는 물 (96.5%)에 염화 나트륨 0½이) 27.213%, 염화 마 그네슘 용(:12) 8.807%, 황산 마그네슘 ¾§¾)4) 1.658%,황산 칼슘 0 ¾)4) 1.260% 황 산 칼륨 0 於4) 0.863%, 탄산 칼슘 ^30)3) 0. 123% 그리고 브롬화 마그네슘여요&-2) 0.076%의 염류가 함유되어 있는 것으로 알려져 있다.
그러나 오염된 하천의 유입이나 폐기물의 투척 등의 환경 오염으로 인하여 상기의 해수에는 염류 외에도 유기질과 오염물질 및 미생물이 다량 포함되어 있으 며, 상기의 염류는 증발법이나 막분리법에 의해 제거할 수 있지만, 유기질과 오염 물질 및 미생물은 제거되지 않아 별도의 정수 과정을 거쳐야 한다.
그러므로 본 발명에 따른 해상에서의 수처리 시스템은 해수 공급된· ( 을 통 하여 해수가 바다 위에서 선박 (시 등에 설치한 정수장치 ( 를 경유하는 중에 해수 에 포함된 유기질과 오염불질 및 미생물을 '분리하겨 제거하여 해수의 일부는 해수 배줄관 (I))에서 자화정수하여 다시 바다로 배줄하도록 하는 한편, 해수의 나머지는 가열징·치 ( 를 거치면서 염류가 제거되도록 하여 순수수를 배출하도록 하고, 필요 에 따라 상기의 순수수가 담수화증 ( )을 경유하면서 미네랄 성분을 함유한 음용수 2019/235652 1»(:1^1{2018/006333 를 배출하도록 한 것으로서,
해수 공급관 03)의 외면에 고주파발생기 ( 1)를 일정한 간격으로 다수 설치하여 고주파를 발생시켜 녹조나 적조의 원인이 되는 미생물을 죽이도록 하고,
상기 해수공급관 ( 의 투명층 (2)에 발광발열체 (3)를 일정한 간격으로 다수 설치하여 전자기 스펙트럼의 형태의 복사열에 의한 빛에너지를 전달받도록 하고, 상기 해수 공급관 ( 에 초음파발생기 (4)를 정한 간격으로 다수 설치하여 초 음파에 의한 파장에너지를 전달받도록 하고,
상기 해수공급관 (8)에 마이크로웨이브 발생기 (5)를 일정한 간격으로 다수 설 치하여 마이크로웨이브를 발생하여 공급하도록 하여 상기 빛에너지의- 파장에너지 및 마이크로웨이브에 의해 해수의 결합력이 약해져 다음의 정수처리가 용이하도록 하고,
상기의 해수 공급관 03)을 통한 해수는 정수징-치 (0의 부상분리조 ( 10)로 공급 되면 내벽에 다수 설치한 초음파 발생기 ( 11)에서 발생되는 초음파에 의해 해수의 분자구조의 결합상태를끊어주도록 하고.
상기 부상분리조 ( 10)의 내부에 N극성과 드극성을 반복적으로 띠는 교번자석 (13)의 사방에 결합된 자화판 ( 14)에 영구자석 ( 15)을 각각 부착한 진동발생기 ( 12)를 다수설치하여 해수에 진동이 발생하도록 하고,
외부에 설치된 음이온 산소발생기 ( 16)에서 생성된 음이온 산소를 펌프 ( 17)에 의해 순환관 ( 18)을 순환하는 해수에 혼입되어 폭기구 ( 19)를 통해 폭기되도록 하여 내부에서 초음파와 진동에 의해 분자 결합의 분리가 진행되는 해수가 부상분리조 ( 10)에서 부상력에 의해 해수보다 가벼운 유기질과 오염성분이 분리되어 수거되도 2019/235652 1»<그1/1012018/006333 록 하고,
상기의 부상분리조 (10)를 경유한 해수는 분해조 (20)로 공급되어 일측 내벽의 초음파 발생기 (21)에서 발생되는 초음파에 의해 해수의 분자 구조의 결합상태를 다 시 끊어주도록 하고.
극성과 £극성을 반복적으로 띠는 교번자석 (23)의 사방에 결합된 자화판 (24) 에 영구자석 (25)을 각각 부착한 진동발생기 (22)를 다수 설치하여 해수에 진동이 발 생하도록 하고,
외부에 설치된 음이온 산소발생기 (26)에서 생성된 음이온 산소를 펌프 (27)에 의해 순환하는 해수에 혼입되어 폭기구 (28)를 통해 폭기되도록 하여 내부에서 해수 의 부상이 활발히 진행되도록 하고,
상단에 설치된 전자파 발생기 (29)는 해수로부터 빠져 나오는 초음파전자, 음 이온산소를 자기장 및 전·자파에 의해 다시 물속으로 보내어 분해 효율을 계속 유지 하도록 하고,
상기의 분해조 (20)에서 포함된 유기질과 오염성분이 분리되는 해수는 응집반 웅조 (30)로 공급되어 감속모터 (31) (313)의 축 (32) (323)에 결합되어 서서히 회전하 는 팬 (33 , 84) (333 , 343)에 의해 와류하는 중에 해수에서 분리된 해수보다 무거운 유기질과오염성분이 안정된 상태가 되도록 하고,
상기의 응집반응조 (30)에서 안정된 상태를 유지하게 되는 해수와 해수보다 무거운 유기질과 오염성분은 침전조 (40)로 공급되어 감속모터 (41)의 축 (42)에 결합 되어 서서히 회전하는 스트레나 (43)를 통해 내부의 경시- 바닥면에 가라앉은 해수보 다무거운 유기질과오염성분을수거하여 외부로토출시키도록 하고, 2019/235652 1»(:1^1{2018/006333 상기의 침전조 (40)를 경유한 해수는 내부에 필터 (51)가구비된 여과기 (50)를 경유하는중에 죽은 미생물이 여과되도록 하고,
상기의 유기질과 오염성분 및 죽은 미생물은 별도의 고형연료를 제조하기 위 한원료로 제공하도록 하고,
상기의 유기질과오염성분 및 죽은 미생물을 분리시켜 제거한 해수의 일부는 해수배줄관 (I))의 외면에 부착한 자석 (6)에 의해 자화정수하여 자정능력을 가진 해 수를다시 바다로 배출하도록 하고,
상기의 유기질과 오염성분 및 미생물을 분리시켜 제거한 해수는 역류방지용 책밸브 (61)를 구비한 공급관 (62)을 통해 가열장치 (£:)의 해수가열실 (60)로 골급되도 록 하고,
별도의 착화수단에 의하여 착화하도록 한가열징-치犯)의 연소실 (70)에서 내 부로 공급되는 연료를 연소시키도록 하고,
상기 연소실 (70)의 내부 네 측면에는 알루미나. 몰리브덴, 세라믹, 전기석, 맥반석의 작은 알갱이를 혼합한 열교환부 (71)를 형성하면서 그 내부에 상기의 해수 가열실 (60)을 형성하여 해수를 가열시켜 역류방지용 책밸브 (63)를 구비한 토줄관 (64)을통하여 증기를 생산하여 배줄하도록 하고,
상기 연소실 (70)의 내부 상부에는 다수의 제 1 열교환관 (65)을 설치하여 상기 의 해수가열실 (60)로 공급된 해수의 일부가가열되도록 하고,
상기 연소실 (70)의 제 1 열교환관 (65)의 상단에 위치하는 재연소부 (72)는 철 크롬 재질의 철망을 달팽이관 형상으로 말은 다수의 재연소망 (73)으로 형성하여 철 크론 재질의 재연소망 (73)이 6001: 이상의 연소열을 일시적으로 축열하는 중에 불 2019/235652 1»(:1^1{2018/006333 완전 연소상태의 연소가스를 연소시키도록 하고,
상기 재연소부 (72)의 재연소망 (73)의 상부에 하나씩 형성된 초점 연소부 (75) 에서는 다수의 철크롬 재질의 작은 원통 (76) 내부의 공간을 통과한 연소가스가 반 구형체 (77)의 내부에 모아졌다가 상단 중앙의 배출관 (78)을 통하여 상승하는 중에 불완전 연소 상태의 연소가스를 재차 연소시키도록 하고,
상기 연소실 (70)의 초점 연소부 (75)의 상부에는 다수의 제 2 열교환관 (66)을 설치하여 상기의 해수가열실 (60)로 공급된 해수의 일부가 가열되도록 하고,
상기의 연료를 연소할 때 발생하는 전자기 스펙트럼의 형태의 빛은 제 1 및 제 2 열교환관 (65) (66)의 외면에 설치한 집광판 (79)에 전달되어 표면에 복사열에 의 한 열을 전달하도록 함으로써 상기의 직접 연소열과 제 1 열교환실 ( 10)의 축열에 복 사열을 더하도록 하고,
상기 제 1 및 저 12 열교환관 (65) (66)의 하부에 다수의 자화접촉편 (80)을 다수 돌출 형성하여 연소시 상승하는 연소가스 등의 운동 에너지와 충돌하는 중에 저항 에 의한 열 에너지를 발생하도록 하고,
상기의 자화접속편 (80)은 열을 받으면 자성을 띠는 전기석의 분말 (82)을 외 면에 코팅한 금속편 (81)으로 구성함으로써 상승하는 연소가스 등에 의한 움직임인 운동에너지를 전달받아 그에 따른 열을 제 1 및 제 2 열교환관 (65) (66)에 열을 전달 하도록 하고,
상기 해수가열실 (60)의 외벽에는 다수의 초음파발생기 (83)와 고주파발생기 (84)를 설치하여 초음파발생기 (83)로부터의 초음파와 고주파발생기 (84)로부터의 고 주파가 가열되는 해수에 가해져서 분자 운동이 활발해지도록 하여 물의 기화가 촉 2019/235652 1»(:1^1{2018/006333 진되도록 하는 동시에 제 1 및 제 2 열교환관 (65) (66)에는 직접 연소열과 열교환부 (71)의 축열과 집광판 (22)을 통한 복사열 및 자화접속편 (23)에 의한 저항에 의한 열에너지를 더하게 되며 상기 제 2 열교환관 (66)에는 재연소부 (72)와 초점 연소부 (75)의 배연소열이 더해지게 되어 연소실 (70) 내부의 열이 온전히 가해지면서 물을 기화하여 역류방지용 책밸브 (63)를 구비한 토출관 (64)을 통하여 염류가 제거된 증 기를 배출하도록 하고,
상기의 염류가 제거된 증기는 이온교환실 (85)을 경유하는 중에 순수수를 배 출하도록 하고,
필요에 따라 상기의 순수수가 경석, 맥반석, 제올라이트, 전기석 및 황토를 적증한 담수화증 (£을 통과하는 중에 미네랄이 함유되도록 하여 음용이 가능한 음용 수를 얻을수 있도록 구성한 것이다.
【발명의 실시를 위한 형태】
상기와 같이 구성한 본 발명에 실시예에 따른 해상에서의 수처리 시스템은, 해수 공급관어)을 통하여 해수가 바다 위에서 선박 (요) 등에 설치한 정수징-치 (0를 경유하는 중에 해수에 포함된 유기질과 오염불질 및 미생물을 분리하겨 제거한 후 가열징-치 (£)를 거치면서 염류가 제거되도록 하여 순수수를 배출하도록 하고, 필요 에 따라 상기의 순수수가 담수화증 )을 경유하면서 미네랄 성분을 함유한 음용수 를 배줄하도록 한 것으로서,
해수 공급관 03)의 외면에 고주파발생기 ( 1 )를 일정한 간격으로 다수 설치하여 고주파를 발생시켜 녹조나 적조의 원인이 되는 미생물을죽이도록 한다.
상기 해수공급관 03)의 투명층 (2)에 발광발열체 (3)를 일정한 간격으로 다수 2019/235652 1»(그1^1{2018/006333 설치하여 전자기 스펙트럼의 형태의 복사열에 의한 빛에너지를 전달받도록 한다. 상기 해수 공급관 03)에 초음파발생기 (4)를 정한 간격으로 다수 설치하여 초 음파에 의한파장에너지를 전달받도록 한다. 상기 해수공급관 (8)에 마이크로웨이브 발생기 (5)를 일정한 간격으로 다수 설 치하여 마이크로웨이브를 발생하여 공급하도록 하여 상기 빛에너지와 파장에너지 및 마이크로웨이브에 의해 해수의 결합력이 약해져 다음의 정수처리가 용이하도록 한다.
상기의 해수 공급관 (¾을 통한 해수가 정수징-치 (0의 부상분리조 (10)로 공급 되면 내벽에 다수 설치한 초음파 발생기 (11)에서 발생되는 초음파에 의해 해수의 분자구조의 결합상태를 끊어주도록 한다.
상기 부상분리조 (10)의 내부에 극성과 극성을 반복적으로 띠는 교번자석 (13)의 사방에 결합된 자화판 (14)에 영구자석 ( 15)을 각각 부착한 진동발생기 (12)를 다수 설치하여 해수에 진동이 발생하도록 한다.
외부에 설치된 음이온 산소발생기 ( 16)에서 생성된 음이온 산소를 펌프 (17)에 의해 순환관 ( 18)을 순환하는 해수에 혼입되어 폭기구 (19)를 통해 폭기되도록 하여 내부에서 초음파와 진동에 의해 분자 결합의 분리가 진행되는 해수가 부상분리조 (10)에서 부상력에 의해 해수보다 가벼운 유기질과 오염성분이 분리되어 수거되도 록 한다.
상기의 부상분리조 (10)를 경유한 해수는 분해조 (20)로 공급되어 일측 내벽의 초음파 발생기 (21)에서 발생되는 초음파에 의해 해수의 분자 구조의 결합상태를 다 시 끊어주도록 한다. 2019/235652 1»(:1^1{2018/006333 극성과 극성을 반복적으로 띠는 교번자석 (23)의 사방에 결합된 자화판 (24) 에 영구자석 (25)을 각각 부착한 진동발생기 (22)를 다수 설치하여 해수에 진동이 발 생하도록 한다.
외부에 설치된 음이온 산소발생기 (26)에서 생성된 음이온 산소를 펌프 (27)에 의해 순환하는 해수에 혼입되어 폭기구 (28)를 통해 폭기되도록 하여 내부에서 해수 의 부상이 활발히 진행되도록 한다. *
상단에 설치된 전자파 발생기 (29)는 해수로부터 빠져 나오는 초음파전자, 음 이온산소를 자기장 및 전자파에 의해 다시 물속으로 보내어 분해 효율을 계속 유지 하도록 하고,
상기의 분해조 (20 )에서 포함된 유기질과오염성분이 분리되는 해수는 응집반 응조 (30)로 공급되어 감속모터 (31) (313)의 축 (32) (32크)에 결합되어 서서히 회전하 는 팬 (33, 34) (333 , 343 )에 의해 와류하는 중에 해수에서 분리된 해수보다 무거운 유기질과 오염성분이 안정된 상태가되도록 한다.
상기의 응집반응조 (30)에서 안정된 상태를 유지하게 되는 해수와 해수보다 무거운 유기질과 오염성분은 침전조 (40)로 공급되어 감속모터 (41)의 축 (42)에 결합 되어 서서히 회전하는 스트레나 (43)를 통해 내부의 경사 바닥면에 가라앉은 해수보 다무거운 유기질과오염성분을수거하여 외부로토출시키도록 한다.
상기의 침전조 (40)를 경유한 해수는 내부에 필터 (51 )가 구비된 여과기 (50)를 경유하는중에 죽은 미생물이 여과되도록 한다.
상기의 유기질과 오염성분 및 죽은 미생물은 별도의 고형연료를 제조하기 위 한원료로 제공하도록 한다. 2019/235652 1»(:1^1{2018/006333 상기의 유기질과오염성분 및 죽은 미생물을 분리시켜 제거한 해수의 일부는 해수배출관 0))의 외면에 부착한 자석 (6)에 의해 자화정수하여 자정능력을 가진 해 수를 다시 바다로 배줄하도록 한다.
상기의 유기질과 오염성분 및 미생물을 분리시켜 제거한 해수는 역류방지용 책밸브 (61)를 구비한 공급관 (62)을 통해 가열장치 )의 해수가열실 (60)로 골급되도 록 한다.
별도의 착화수단에 의하여 착화하도록 한 가열징-치 ( 의 연소실 (70)에서 내 부로 공급되는 연료를 연소시키도록 한다.
상기 연소실 (70)의 내부 네 측면에는 알루미나, 몰리브덴, 세라믹, 전기석, 맥반석의 작은 알갱이를 혼합한 열교환부 (71)를 형성하면서 그 내부에 상기의 해수 가열실 (60)을 형성하여 해수를 가열시켜 역류방지용 책밸브 (63)를 구비한 토출관 (64)을통하여 증기를 생산하여 배출하도록 한다.
상기 연소실 (70)의 내부 상부에는 다수의 제 1 열교환관 (65)을 설치하여 상기 의 해수가열실 (60)로공급된 해수의 일부가가열되도록 한다.
상기 연소실 (70)의 제 1 열교환관 (65)의 상단에 위치하는 재연소부 (72)는 철 크롬 재질의 철망을 달팽이관 형상으로 말은 다수의 재연소망 (73)으로 형성하여 철 크론 재질의 재연소망 (73)이 600 X: 이상의 연소열을 일시적으로 축열하는 중에 불 완전 연소상태의 연소가스를 연소시키도록 한다.
상기 재연소부 (72)의 재연소망 (73)의 상부에 하나씩 형성된 초점 연소부 (75) 에서는 다수의 철크롬 재질의 작은 원통 (76) 내부의 공간을 통과한 연소가스가 반 구형체 (77)의 내부에 모아졌다가 상단 중앙의 배출관 (78)을 통하여 상승하는 중에 2019/235652 1»(:1^1{2018/006333 불완전 연소 상태의 연소가스를 재차 연소시키도록 한다.
상기 연소실 (70)의 초점 연소부 (75)의 상부에는 다수의 제 2 열교환관 (66)을 설치하여 상기의 해수가열실 (60)로 공급된 해수의 일부가 가열되도록 한다.
상기의 연료를 연소할 때 발생하는 전자기 스펙트럼의 형태의 빛은 제 1 및 제 2 열교환관 (65) (66)의 외면에 설치한 집광판 (79)에 전달되어 표면에 복사열에 의 한 열을 전달하도록 함으로써 상기의 직접 연소열과 제 1 열교환실 ( 10)의 축열에 복 사열을 더하도록 한다.
*상기 제 1 및 제 2 열교환관 (65) (66)의 하부에 다수의 자화접촉편 (80)을 다수 돌출 형성하여 연소시 .상승하는 연소가스 등의 운동 에너지와 충돌하는 중에 저항 에 의한 열 에너지를 발생하도록 한다.
상기의 자화접속편 (80)은 열을 받으면 자성을 띠는 전기석의 분말 (82)을 외 면에 코팅한 금속편 (81)으로 구성함으로써 상승하는 연소가스 등에 의한 움직임인 운동에너지를 전달받아 그에 따른 열을 제 1 및 제 2 열교환관 (65) (66)에 열을 전달 하도록 한다.
상기 해수가열실 (60)의 외벽에는 다수의 초음파발생기 (83)와 고주파발생기 (84)를 설치하여 초음파발생기 (83)로부터의 초음파와 고주파발생기 (84)로부터의 고 주파가 가열되는 해수에 가해져서 분자 운동이 활발해지도록 하여 물의 기화가 촉 진되도록 하는 동시에 제 1 및 제 2 열교환관 (65) (66)에는 직접 연소열과 열교환부 (71 )의 축열과 집광판 (22)을 통한 복사열 및 자화접속편 (23)에 의한 저항에 의한 열에너지를 더하게 되며 상기 제 2 열교환관 (66)에는 재연소부 (72)와 초점 연소부 2019/235652 1»(:1/10公018/006333
(75)의 배연소열이 더해자게 되어 연소실 (70) 내부의 열이 온전히 가해지면서 물을 기화하여 역류방지용 책밸브 (63)를 구비한 토줄관 (64)을 통하여 염류가 제거된 증 기를 배줄하도록 한다.
상기의 염류가 제거된 증기는 이온교환실 (85)을 경유하는 중에 순수수를 배 줄하도록 한다.
필요에 따라 상기의 순수수가 경석, 맥반석, 제올라이트, 전기석 및 황토를 적증한 담수화증 ( 을 통과하는 중에 미네랄이 함유되도록 하여 음용이 가능한 음 용수를 얻을 수 있도록 한다,

Claims

2019/235652 1»(:1^1{2018/006333
【청구의 범위】
【청구항 1]
해수 공급관 -( 을 통하여 공급되는 해수의 미생물을 죽이면서 결합력을 약화시키도록 하고 ,
상기 해수 공급관犯)을 통하여 해수는 바다 위에서 선박(시에 설치한 정수징-치( 를 경유하는 중에 해수에 포함된 유기질과 오염불질 및 미생물을 분리하여 제거하도록 하여 일부를 바다로 배출하도록 하고,
상기 유기질과 오염불질 및 미생물을 분리한 해수의 나머지는 선박(시에 설 치한 가열장치( 를 거치면서 염류가 제거되도록 하여 순수수를 배출하도록 하고, 상기 순수수의 일부는 선박(쇼)에 설치한 담수화증( 을 경유하면서 미네랄 성분을 함유한 음용수를 배줄하도록 하고,
상기 순수수의 나머지는 선박(요)에 설치한 자정자화증(4)을 경유하면서 미네랄 성분을 함유한 음용수를 배줄하도록 구성한 것을 특징으로 하는 해상에서의 수처리 시스템.
【청구항 2]
청구항 1에 있어서,
상기 해수 공급관( 의 외면에 고주파발생기(1)를 일정한 간격으로 다수 설 치하여 고주파를 발생시켜 녹조나 적조의 원인이 되는 미생물을 죽이도록 하고, 상기 해수공급관 03)의 투명층(2)에 발광발열체(3)를 일정한 간격으로 다수 설치하여 전자기 스펙트럼의 형태의 복사열에 의한 빛에너지를 전달받도록 하고, 상기 해수 공급관(8)에 초음파발생기(4)를 정한 간격으로 다수 설치하여 초 2019/235652 1»(그1^1{2018/006333 음파에 의한 파장에너지를 전달받도록 하고,
상기 해수공급관 (비에 마이크로웨이브 발생기 (5)를 일정한 간격으로 다수 설 치하여 마이크로웨이브를 발생하여 공급하도록 하여 상기 빛에너지와 파장에너지 및 마이크로웨이브에 의해 해수의 결합력이 약해져 다음의 정수처리가 용이하도록 구성한 것을특징으로 하는 해상에서의 수처리 시스템.
【청구항 31
청구항 1에 있어서,
상기의 정수장치 (0는,
상기의 해수 공급관 (8)을 통하여 해수가 부상분리조 ( 10)로 공급되면 내벽에 다수 설치한 조음파 발생기 (11)에서 발생되는 초음파에 의해 해수의 분자 구조의 결합상태를 끊어주도록 하고.
상기 부상분리조 (10)의 내부에 극성과 3극성을 반복적으로 띠는 교번자석 (13)의 사방에 결합된 자화판 ( 14)에 영구자석 ( 15)을 각각 부착한 진동발생기 (12)를 다수 설치하여 해수에 진동이 발생하도록 하고,
외부에 설치된 음이온 산소발생기 ( 16)에서 생성된 음이온 산소를 펌프 (17)에 의해 순환관 (18)을 순환하는 해수에 혼입되어 폭기구 ( 19)를 통해 폭기되도록 하여 내부에서 초음파와 진동에 의해 분자 결합의 분리가 진행되는 해수가 부상분리조 (1())에서 부상력에 의해 해수보다 가벼운 유기질과 오염성분이 분리되어 수거되도 록 하고,
상기의 부상분리조 (10)를 경유한 해수는 분해조 (20)로 공급되어 일측 내벽의 초음파 발생기 (21)에서 발생되는 초음파에 의해 해수의 분자 구조의 결합상태를 다 2019/235652 1»(:1^1{2018/006333 시 끊어주도록 하고.
극성과 3극성을 반복적으로 띠는 교번자석 (23)의 사방에 결합된 자화판 (24) 에 영구자석 (25)을 각각 부착한 진동발생기 (22)를 다수 설치하여 해수에 진동이 발 생하도록 하고.
외부에 설치된 음이온 산소발생기 (26)에서 생성된 음이온 산소를 펌프 (27)에 의해 순환하는 해수에 혼입되어 폭기구 (28)를 통해 폭기되도록 하여 내부에서 해수 의 부상이 활발히 진행되도록 하고,
상단에 설치된 전자파 발생기 (29)는 해수로부터 빠져 나오는 초음파전자, 음 이온산소를 자기장 및 전자파에 의해 다시 물속으로 보내어 분해 효율을 계속 유지 하도록 하고,
상기의 분해조 (20)에서 포함된 유기질과 오염성분이 분리되는 해수는 응집반 응조 (30)로 공급되어 감속모터 (31) (31¾)의 축 (32) (32¾)에 결합되어 서서히 회전하 는 팬 (33 , 34) (333 , 34å0에 의해 와류하는 중에 해수에서 분리된 해수보다 무거운 유기질과 오염성분이 안정된 상태가 되도록 하고,
상기의 응집반응조 (30)에서 안정된 상태를 유지하게 되는 해수와 해수보다 무거운 유기질과 오염성분은 침전조 (40)로 공급되어 감속모터 (41)의 축 (42)에 결합 되어 서서히 회전하는 스트레나 (43)를 통해 내부의 경사 바닥면에 가라앉은 해수보 다무거운 유기질과오염성분을수거하여 외부로토출시키도록 하고,
상기의 침전조 (40)를 경유한 해수는 내부에 필터 (51)가 구비된 여과기 (50)를 경유하는 중에 죽은 미생물이 여과되도록 하고,
상기의 유기질과오염성분 및 죽은 미생물은 별도의 고형연료를 제조하기 위 2019/235652 1»(:1^1{2018/006333 한 원료로 제공하도록 하고,
상기의 유기질과 오염성분 및 죽은 미생물을 분리시켜 제거한 해수의 일부는 해수배출관 (I))의 외면에 부착한 자석 (6 )에 의해 자화정수하여 다시 바다로 배출하 도록 구성한 것을 특징으로 하는 해상에서의 수처리 시스템 .
【청구항 4】
청구항 1에 있어서,
상기의 가열장치 ( 는,
상기의 유기질과 오염성분 및 미생물을 분리시켜 제거한 해수는 역류방지용 책밸브 (61)를 구비한 공급관 (62)을 통해 해수가열실 (60)로 골급되도록 하고,
별도의 착화 수단에 의하여 착화하도록 한 가열징-치犯)의 연소실 (70)에서 내 부로 공급되는 연료를 연소시키도록 하고,
상기 연소실 (70)의 내부 네 측면에는 알루미나. 몰리브덴, 세라믹, 전기석, 맥반석의 작은 알갱이를 혼합한 열교환부 (71)를 형성하면서 그 내부에 상기의 해수 가열실 (60)을 형성하여 해수를 가열시켜 역류방지용 책밸브 (63 )를 구비한 토출관 (64)을 통하여 증기를 생산하여 배출하도록 하고,
상기 연소실 (70)의 내부 상부에는 다수의 제 1 열교환관 (65)을 설치하여 상기 의 해수가열실 (60)로 공급된 해수의 일부가 가열되도록 하고,
상기 연소실 (70)의 제 1 열교환관 (65)의 상단에 위치하는 재연소부 ( 72)는 철 크롬 재질의 철망을 달팽이관 형상으로 말은 다수의 재연소망 (73)으로 형성하여 철 크론 재질의 재연소망 (73)이 600 이상의 연소열을 일시적으로 축열하는 중에 불 완전 연소 상태의 연소가스를 연소시키도록 하고, 2019/235652 1»(:1^1{2018/006333 상기 재연소부 (72)의 재연소망 (73)의 상부에 하나씩 형성된 초점 연소부 (75) 에서는 다수의 철크롬 재질의 작은 원통 (76) 내부의 공간을 통과한 연소가스가 반 구형체 (77)의 내부에 모아졌다가 상단 중앙의 배출관 ( 78)을 통하여 상승하는 중에 불완전 연소 상태의 연소가스를 재차 연소시키도록 하고,
상기 연소실 (70)의 초점 연소부 (75)의 상부에는 다수의 제 2 열교환관 (66)을 설치하여 상기의 해수가열실 (60)로 공급된 해수의 일부가 가열되도록 하고,
상기의 연료를 연소할 때 발생하는 전자기 스펙트럼의 형태의 빛은 제 1 및 제 2 열교환관 (65) (66)_의 외면에 설치한 집광판 (79)에 전달되어 표면에 복사열에 의 한 열을 전달하도록 함으로써 상기의 직접 연소열과 제 1 열교환실 ( 10)의 축열에 복 사열을 더하도록 하고,
상기 제 1 및 저 12 열교환관 (65) (66)의 하부에 다수의 자화접촉편 (80)을 다수 돌출 형성하여 연소시 상승하는 연소가스 등의 운동 에너지와 충돌하는 중에 저항 에 의한 열 에너지를 발생하도록 하고,
상기의 자화접속편 (80)은 열을 받으면 자성을 띠는 전기석의 분말 (82)을 외 면에 코팅한 금속편 (81)으로 구성함으로써 상승하는 연소가스 등에 의한 움직임인 운동에너지를 전달받아 그에 따른 열을 제 1 및 제 2 열교환관 (65) (66)에 열을 전달 하도록 하고,
상기 해수가열실 (60)의 외벽에는 다수의 초음파발생기 (83)와 고주파발생기 (84)를 설치하여 초음파발생기 (83)로부터의 초음파와 고주파발생기 (84)로부터의 고 주파가 가열되는 해수에 가해져서 분자 운동이 활발해지도록 하여 물의 기화가 족 진되도록 하는 동시에 제 1 및 제 2 열교환관 (65 ) (66)에는 직접 연소열과 열교환부 2019/235652 1»(:1^1{2018/006333
(71)의 축열과 집광판 (22)을 통한 복사열 및 자화접속편 (23)에 의한 저항에 의한 열에너지를 더하게 되며 상기 제 2 열교환관 (66)에는 재연소부 (72)와 초점 연소부 (75)의 배연소열이 더해지게 되어 연소실 (70) 내부의 열이 온전히 가해지면서 물을 기화하여 역류방지용 책밸브 (63)를 구비한 토출관 (64)을 통하여 염류가 제거된 증 기를 배줄하도록 하고 ,
상기의 염류가 제거된 증기는 이온교환실 (85)을 경유하는 중에 순수수를 배 출하도록구성한 것을 특징으로 하는 해상에서의 수처리 시스템.
【청구항 5】
청구항 4에 있어서 ,
상기의 순수수를 경석, 맥반석, 제올라이트, 전기석 및 황토를 적층한 담수 화층 00을 통과하는 중에 미네랄이 함유되도록 하여 음용이 가능한 음용수를 얻을 수 있도록 구성한 것을특징으로 하는 해상에서의 수처리 시스템 .
PCT/KR2018/006333 2018-06-04 2018-06-04 해상에서의 수처리 시스템 WO2019235652A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2018/006333 WO2019235652A1 (ko) 2018-06-04 2018-06-04 해상에서의 수처리 시스템

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2018/006333 WO2019235652A1 (ko) 2018-06-04 2018-06-04 해상에서의 수처리 시스템

Publications (1)

Publication Number Publication Date
WO2019235652A1 true WO2019235652A1 (ko) 2019-12-12

Family

ID=68770374

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/006333 WO2019235652A1 (ko) 2018-06-04 2018-06-04 해상에서의 수처리 시스템

Country Status (1)

Country Link
WO (1) WO2019235652A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116239272A (zh) * 2023-05-11 2023-06-09 广州唯友斯工程机械配件有限公司 船用大功率海水淡化设备
CN116984070A (zh) * 2023-09-26 2023-11-03 云南云陶文化产业有限公司 一种附带颗粒筛选功能的陶器原料研磨装置
CN117208998A (zh) * 2023-11-09 2023-12-12 福建浩达智能科技股份有限公司 一种用于对海水进行淡化的装置、方法以及设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200219783Y1 (ko) * 2000-11-27 2001-04-02 신영길 폐수의 물리적 처리장치
JP3578742B2 (ja) * 2001-10-02 2004-10-20 株式会社プラウド 物質処理システム
KR100939610B1 (ko) * 2007-03-14 2010-02-01 오므론 가부시키가이샤 열교환 장치
KR20120081321A (ko) * 2011-01-11 2012-07-19 최동민 고형연료용 증기보일러
JP2014511269A (ja) * 2011-03-02 2014-05-15 イー−エー−エス エー.カー.,インハーバー ドクトア オリヴァー ヤーコプス 脱塩装置からの粗塩水の調製
KR101558335B1 (ko) * 2014-06-10 2015-10-12 김현용 담수화 장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200219783Y1 (ko) * 2000-11-27 2001-04-02 신영길 폐수의 물리적 처리장치
JP3578742B2 (ja) * 2001-10-02 2004-10-20 株式会社プラウド 物質処理システム
KR100939610B1 (ko) * 2007-03-14 2010-02-01 오므론 가부시키가이샤 열교환 장치
KR20120081321A (ko) * 2011-01-11 2012-07-19 최동민 고형연료용 증기보일러
JP2014511269A (ja) * 2011-03-02 2014-05-15 イー−エー−エス エー.カー.,インハーバー ドクトア オリヴァー ヤーコプス 脱塩装置からの粗塩水の調製
KR101558335B1 (ko) * 2014-06-10 2015-10-12 김현용 담수화 장치

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116239272A (zh) * 2023-05-11 2023-06-09 广州唯友斯工程机械配件有限公司 船用大功率海水淡化设备
CN116239272B (zh) * 2023-05-11 2023-07-21 广州唯友斯工程机械配件有限公司 船用大功率海水淡化设备
CN116984070A (zh) * 2023-09-26 2023-11-03 云南云陶文化产业有限公司 一种附带颗粒筛选功能的陶器原料研磨装置
CN116984070B (zh) * 2023-09-26 2023-12-08 云南云陶文化产业有限公司 一种附带颗粒筛选功能的陶器原料研磨装置
CN117208998A (zh) * 2023-11-09 2023-12-12 福建浩达智能科技股份有限公司 一种用于对海水进行淡化的装置、方法以及设备
CN117208998B (zh) * 2023-11-09 2024-03-19 福建浩达智能科技股份有限公司 一种用于对海水进行淡化的装置、方法以及设备

Similar Documents

Publication Publication Date Title
Subramani et al. Treatment technologies for reverse osmosis concentrate volume minimization: A review
CN101792191B (zh) 内燃机辅助海水淡化/劣质水净化方法及设备
JP6154023B2 (ja) 太陽エネルギ連続熱供給を利用する海水淡水化装置および方法
WO2019235652A1 (ko) 해상에서의 수처리 시스템
JP5157279B2 (ja) 油濁水再利用システム
WO2018045708A1 (zh) 一种间接空冷机组热回收及水处理装置与方法
JP2014237118A (ja) 太陽エネルギ−を有効利用した海水の淡水化装置
CN109354292A (zh) 一种垃圾渗滤液膜滤浓缩液的减量化处理工艺
CN102139982A (zh) 一种旋转喷雾蒸发的水质净化再生装置及其应用
JP2018518367A (ja) 膜加熱による液体浄化
CN110818000B (zh) 一种垃圾渗滤液膜浓缩液减量化及资源化处理系统和方法
KR102063773B1 (ko) 해상에서의 수처리 시스템
US11618691B1 (en) Waste water treatment to reduce BOD/COD
KR102009600B1 (ko) 해수 담수화 장치
CN209778559U (zh) 一种含盐废水处理系统
JPH0932513A (ja) 洗煙排水発電システム
CN113105052B (zh) 一种高盐废水浓缩结晶系统和方法
CN114751572B (zh) 一种水泥窑余热发电排污水零排放系统及工艺
CN111517547A (zh) 一种换流阀冷却塔废水处理系统及处理工艺
TW200821266A (en) Desalting or purifying apparatus for sea water
CN215756877U (zh) 一种市政污水无污泥一体化处置设备
CN102976421A (zh) 一种海水淡化系统
RU2157347C2 (ru) Способ получения тампонажных рассолов из природных минерализованных вод и установка для его осуществления
RU2499769C2 (ru) Устройство для термодистилляционной очистки воды
KR20220160220A (ko) 담수ㆍ폐수 처리 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18921419

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18921419

Country of ref document: EP

Kind code of ref document: A1