WO2019235072A1 - Composition, hard coat film, article provided with hard coat film, and image display device - Google Patents

Composition, hard coat film, article provided with hard coat film, and image display device Download PDF

Info

Publication number
WO2019235072A1
WO2019235072A1 PCT/JP2019/016175 JP2019016175W WO2019235072A1 WO 2019235072 A1 WO2019235072 A1 WO 2019235072A1 JP 2019016175 W JP2019016175 W JP 2019016175W WO 2019235072 A1 WO2019235072 A1 WO 2019235072A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
hard coat
polymer
composition
compound
Prior art date
Application number
PCT/JP2019/016175
Other languages
French (fr)
Japanese (ja)
Inventor
悠太 福島
彩子 松本
北村 哲
顕夫 田村
啓吾 植木
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2020523553A priority Critical patent/JP6999808B2/en
Publication of WO2019235072A1 publication Critical patent/WO2019235072A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/22Esters containing halogen
    • C08F220/24Esters containing halogen containing perhaloalkyl radicals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L57/00Compositions of unspecified polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes

Definitions

  • the present invention relates to a composition, a hard coat film, an article provided with the hard coat film, and an image display device.
  • Display devices using a cathode ray tube (CRT), plasma display (PDP), electroluminescence display (ELD), fluorescent display (VFD), field emission display (FED), and image display device such as liquid crystal display (LCD) In order to prevent the display surface from being damaged, it is preferable to provide an optical film (hard coat film) having a hard coat layer on the substrate.
  • CTR cathode ray tube
  • PDP plasma display
  • ELD electroluminescence display
  • VFD fluorescent display
  • FED field emission display
  • LCD liquid crystal display
  • Patent Document 1 discloses a thermosetting resin containing a self-condensate of a silicon compound having an epoxy group and / or a co-condensate of a silicon compound having an epoxy group and an alkoxysilicon compound, a carboxylic acid anhydride, and a solvent.
  • a composition is described.
  • Patent Document 2 describes a thermosetting resin composition containing a polyorganosiloxane compound and a photoacid generator.
  • Patent Document 3 discloses a hydrolyzable silane co-hydrolysis condensate or a resin obtained by modifying the co-hydrolysis condensate and having a weight-average molecular weight of 500 or more and a specific amount of crosslinking.
  • a sacrificial film-forming composition comprising an agent, a specific amount of an acid generator, a specific amount of an extender or an organic resin component that is easily decomposed and volatilized by heating, and an organic solvent is described.
  • hydrocarbon-based, silicone-based, fluorine-based leveling agents are used to improve the wettability of the coating composition and the surface condition of the coating film surface. May be added to the coating composition.
  • a leveling agent the surface tension of the coating film is reduced, the wettability of the coating composition to the base material during coating (homogeneous coating property), and the surface state of the coating film surface is improved.
  • the leveling agent is unevenly distributed on the surface of the coating, thereby increasing the water and oil repellency of the coating surface.
  • optical films flexible hard coat films
  • examples of the matrix resin forming component suitably used for the hard coat layer of such an optical film include polyorganosilsesxane.
  • Patent Documents 1 to 3 each describe that the composition may contain a fluorosurfactant. However, the specific structure of the fluorosurfactant is described. Not listed. Patent Documents 1 to 3 do not describe recoatability.
  • An object of the present invention is to provide a composition suitable for forming a coating film having a good surface shape and excellent recoatability, a hard coat film, an article provided with the hard coat film, and an image display device. It is in.
  • a composition comprising a polymer obtained by polymerizing a monomer having two or more groups having a radical polymerizable double bond, and a polyorganosilsesquioxane (A) having a polymerizable group, A composition in which the polymer has a weight average molecular weight of 1,000 to 50,000, and the polymer has at least one selected from a fluorine atom, a silicon atom, and a linear or branched alkyl group having 3 or more carbon atoms. Stuff.
  • R 1s represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms
  • R 2s has an alkyl group having 1 to 20 carbon atoms having at least one fluorine atom or at least one fluorine atom.
  • An alkenyl group having 1 to 20 carbon atoms is represented. * Represents a bond.
  • composition according to any one of [1] to [3], wherein the group having a radical polymerizable double bond is a group represented by any one of the following general formulas (Z1) to (Z6).
  • R m1 in the general formula (Z3) and R m2 in the general formula (Z4) each independently represent a hydrogen atom or an alkyl group having 1 to 20 carbon atoms.
  • L 11 , L 12 and L 13 each independently represent a divalent or trivalent linking group
  • R 11 , R 12 and R 13 each independently represent a hydrogen atom or a methyl group
  • n11 to n13 each independently represents 1 or 2.
  • n11 represents 2
  • two R 11 may be the same or different.
  • n12 represents 2
  • two R 12 may be the same or different.
  • n13 represents 2
  • two R 13 may be the same or different.
  • R 21 and R 22 each independently represent a hydrogen atom or a methyl group.
  • L 21 represents a divalent to hexavalent linking group.
  • n21 represents an integer of 1 to 5. If n21 represents an integer of 2 or more, it may be different even multiple R 22 are each identical.
  • L 31 and L 32 each independently represent a divalent to tetravalent linking group
  • L 33 represents a divalent linking group
  • R 31 and R 32 each independently represent a hydrogen atom or methyl
  • n31 and n32 each independently represents an integer of 1 to 3.
  • n31 represents an integer of 2 or more
  • the plurality of R 31 may be the same or different.
  • n32 represents an integer of 2 or more
  • the plurality of R 32 may be the same or different.
  • Y 41 represents a divalent to hexavalent linking group
  • R 41 represents a hydrogen atom or a methyl group
  • R 42 and R 43 each independently represent a hydrogen atom, a hydroxyl group, or a carbon number of 1 Represents an alkyl group of ⁇ 10.
  • n41 represents an integer of 2 to 6.
  • the plurality of R 41 may be the same or different
  • the plurality of R 42 may be the same or different
  • the plurality of R 43 are each They may be the same or different.
  • Y 51 represents a divalent to hexavalent linking group
  • R 51 represents a hydrogen atom or a methyl group
  • R 52 , R 53 and R 54 each independently represent a hydrogen atom, a hydroxyl group or
  • An alkyl group having 1 to 10 carbon atoms is represented.
  • n51 represents an integer of 2 to 6.
  • the plurality of R 51 may be the same or different
  • the plurality of R 52 may be the same or different
  • the plurality of R 53 are each They may be the same or different
  • the plurality of R 54 may be the same or different.
  • a composition according to 1. [10] The composition according to any one of [1] to [9], wherein the polymerizable group of the polyorganosilsesquioxane (A) having a polymerizable group is an epoxy group.
  • a hard coat film comprising a substrate and a hard coat layer, A hard coat film, wherein the hard coat layer comprises a cured product of the composition according to any one of [1] to [10].
  • the hard coat film according to [11] which has at least one functional layer on the side opposite to the base of the hard coat layer of the hard coat film.
  • the functional layer it has a mixed layer,
  • the mixed layer is a cured product of the compound (b1) having an epoxy group and two or more in one molecule.
  • As the functional layer it has the mixed layer and scratch-resistant layer, The substrate, the hard coat layer, the mixed layer, and the scratch-resistant layer in this order,
  • the said abrasion-resistant layer is a hard coat film as described in [13] containing the hardened
  • composition suitable for forming a coating film having a good surface shape and excellent recoatability, a hard coat film, an article provided with the hard coat film, and an image display device can do.
  • the composition of the present invention is a composition comprising a polymer obtained by polymerizing a monomer having two or more groups having a radical polymerizable double bond and a polyorganosilsesquioxane (A) having a polymerizable group.
  • a monomer having two or more groups having a radical polymerizable double bond is also referred to as “monomer (K1)”.
  • a monomer (K1) having two or more groups having a radical polymerizable double bond is polymerized, and has a weight average molecular weight of 1,000 to 50,000, a fluorine atom, a silicon atom, and a straight chain having 3 or more carbon atoms.
  • a polymer having at least one selected from a chain or a branched alkyl group is also referred to as a “polymer of the present invention”.
  • the composition of the present invention is not clear about the mechanism suitable for forming a coating film having a good surface shape and excellent recoatability, the present inventors speculate as follows. . Since the monomer (K1) has two or more groups having a radical polymerizable double bond, the polymer obtained by polymerizing the monomer (K1) has a branched structure. In the composition of the present invention, typically, the polyorganosilsesquioxane having a polymerizable group as a matrix resin forming component (curing component) is prepolymerized, so that the molecular weight is increased. In particular, the entanglement with the leveling agent is likely to occur.
  • the polymer in the present invention since the polymer in the present invention has a branched structure, the entanglement with the polyorganosilsesquioxane having a polymerizable group is suppressed. Furthermore, by setting the molecular weight to 50,000 or less, compatibility with the polyorganosilsesquioxane having various polymerizable groups in the composition of the present invention and various additives, and solubility in organic solvents are improved. Aggregation of the polymer in the composition of the present invention is less likely to occur. This entanglement is suppressed due to the branched structure of the polymer, and the migration of the polymer to the coating film surface is improved.
  • the polymer in the present invention has at least one selected from a fluorine atom, a silicon atom, and a linear or branched alkyl group having 3 or more carbon atoms. For this reason, it is considered that the surface tension of the coating film when the composition is applied is further lowered, the transferability of the polymer to the coating film surface is further improved, and the surface state of the coating film surface is also improved.
  • the polymer when the composition for forming the upper layer is applied to the surface of the coating film, the polymer is separated from the surface of the coating film due to the good compatibility between the polymer and the solvent in the composition for forming the upper layer.
  • solvent extraction The property of being extracted from the coating film surface to the upper layer is also referred to as “solvent extraction”) and it is difficult to remain on the coating film surface, so that the upper layer forming composition is not repelled on the coating film surface. It is presumed that the recoatability is improved.
  • composition of the present invention comprises the polymer of the present invention.
  • monomer (K1) will be described.
  • the monomer (K1) contains two or more groups having a radical polymerizable double bond. As described above, the monomer (K1) contains two or more groups having a radical polymerizable double bond, so that the polymer of the present invention has a branched structure and is contained in the composition containing the polymer. Compatibility with a functional component (polyorganosilsesquioxane having a polymerizable group) or the like is improved.
  • the group having a radical polymerizable double bond that the monomer (K1) has is not particularly limited. Moreover, the group which has 2 or more radically polymerizable double bonds which a monomer (K1) has may be the same, or may differ.
  • the number of groups having a radical polymerizable double bond in the monomer (K1) is preferably 3 or more, more preferably 3 or more and 9 or less, and more preferably 3 or more and 6 or less. Is more preferable.
  • the branched structure of the polymer becomes a highly branched structure, there is little entanglement between the molecular chains of the polymer, compatibility with the curable component, and various The solubility in an organic solvent is improved, and the uniform coatability of the composition and the surface state of the resulting coating film are improved. Moreover, it can prevent becoming a high molecular weight by making the group which has a radical polymerizable double bond into 9 or less, and can maintain the solubility to a solvent.
  • the group having a radical polymerizable double bond is preferably any of groups represented by the following general formulas (Z1) to (Z6).
  • the groups having a plurality of radical polymerizable double bonds contained in the monomer (K1) may be the same or different.
  • R m1 in the general formula (Z3) and R m2 in the general formula (Z4) each independently represent a hydrogen atom or an alkyl group having 1 to 20 carbon atoms.
  • R m1 in the general formula (Z3) and R m2 in the general formula (Z4) are preferably a hydrogen atom or an alkyl group having 1 to 7 carbon atoms, preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. More preferably, it is a hydrogen atom, a methyl group, or an ethyl group.
  • the group having a radical polymerizable double bond is preferably a group represented by the general formula (Z1), (Z2), (Z3) or (Z4), and represented by the general formula (Z1) or (Z2). It is more preferred that
  • group represented by the said general formula (Z3) or (Z4) is a group containing a nitrogen atom simultaneously with a radically polymerizable double bond.
  • the monomer (K1) preferably contains at least one nitrogen atom.
  • the polymer also has a nitrogen atom, and the compatibility between the polymer and the curable component contained in the composition containing the polymer is improved.
  • the compatibility with the polyorganosilsesquioxane (A) having a polymerizable group is improved.
  • the nitrogen atom is preferably contained in the polymer as at least one structure selected from an isocyanuric ring, a urethane bond, an amide bond, and a urea bond, and is contained in the polymer as an isocyanuric ring, a urethane bond, or an amide bond. It is more preferable that it is contained in the polymer as an isocyanuric ring. That is, the polymer preferably has at least one selected from an isocyanuric ring, a urethane bond, an amide bond, and a urea bond, more preferably has an isocyanuric ring, a urethane bond, or an amide bond, and has an isocyanuric ring. More preferably.
  • the number of nitrogen atoms contained in the monomer (K1) is preferably 2 or more, and more preferably 3 or more, from the viewpoint of improving compatibility with the curable component and the like.
  • the monomer (K1) is preferably a compound represented by any one of the following general formulas (NI) to (NV).
  • L 11 , L 12 and L 13 each independently represent a divalent or trivalent linking group
  • R 11 , R 12 and R 13 each independently represent a hydrogen atom or a methyl group
  • n11 to n13 each independently represents 1 or 2.
  • n11 represents 2
  • two R 11 may be the same or different.
  • n12 represents 2
  • two R 12 may be the same or different.
  • n13 represents 2
  • two R 13 may be the same or different.
  • R 21 and R 22 each independently represent a hydrogen atom or a methyl group.
  • L 21 represents a divalent to hexavalent linking group.
  • n21 represents an integer of 1 to 5. If n21 represents an integer of 2 or more, it may be different even multiple R 22 are each identical.
  • L 31 and L 32 each independently represent a divalent to tetravalent linking group
  • L 33 represents a divalent linking group
  • R 31 and R 32 each independently represent a hydrogen atom or methyl
  • n31 and n32 each independently represents an integer of 1 to 3.
  • n31 represents an integer of 2 or more
  • the plurality of R 31 may be the same or different.
  • n32 represents an integer of 2 or more
  • the plurality of R 32 may be the same or different.
  • Y 41 represents a divalent to hexavalent linking group
  • R 41 represents a hydrogen atom or a methyl group
  • R 42 and R 43 each independently represent a hydrogen atom, a hydroxyl group, or a carbon number of 1 Represents an alkyl group of ⁇ 10.
  • n41 represents an integer of 2 to 6.
  • the plurality of R 41 may be the same or different
  • the plurality of R 42 may be the same or different
  • the plurality of R 43 are each They may be the same or different.
  • Y 51 represents a divalent to hexavalent linking group
  • R 51 represents a hydrogen atom or a methyl group
  • R 52 , R 53 and R 54 each independently represent a hydrogen atom, a hydroxyl group or
  • An alkyl group having 1 to 10 carbon atoms is represented.
  • n51 represents an integer of 2 to 6.
  • the plurality of R 51 may be the same or different
  • the plurality of R 52 may be the same or different
  • the plurality of R 53 are each They may be the same or different
  • the plurality of R 54 may be the same or different.
  • L 11 , L 12 and L 13 each independently represent a divalent or trivalent linking group.
  • the divalent linking group represented by L 11 , L 12 and L 13 include an alkylene group, a cycloalkylene group, an arylene group, —O—, —S—, —CO—, —COO—, —NH—, —NHCO. -, -NHCOO-, or a divalent linking group obtained by combining these groups.
  • the alkylene group is preferably an alkylene group having 1 to 20 carbon atoms, more preferably an alkylene group having 1 to 10 carbon atoms, such as an ethylene group, n-propylene group, i-propylene group, n-butylene group, n- Examples include a hexylene group.
  • the alkylene group may be linear or branched.
  • the cycloalkylene group is preferably a cycloalkylene group having 6 to 20 carbon atoms, more preferably a cycloalkylene group having 6 to 10 carbon atoms, and examples thereof include a cyclohexylene group and a cycloheptylene group.
  • the arylene group is preferably an arylene group having 6 to 20 carbon atoms, more preferably an arylene group having 6 to 10 carbon atoms, and examples thereof include a phenylene group and a naphthylene group.
  • the alkylene group, cycloalkylene group or arylene group may have a substituent. Examples of the substituent include a hydroxyl group, a carboxyl group, an amino group, a cyano group, a nitro group, a halogen atom, an alkyl group, and a cycloalkyl group. Group, aryl group, alkoxy group, acyl group and the like.
  • the divalent linking group represented by L 11 , L 12 and L 13 is an alkylene group, or an alkylene group and —O—, —S—, —CO—, —COO—, —NH—, —NHCO—, —
  • a divalent linking group in combination with at least one group selected from NHCOO— is preferable, and an alkylene group is more preferable.
  • Examples of the trivalent linking group L 11, L 12 and L 13 represent, from a divalent linking group represented by L 11, L 12 and L 13 of the above, formed by dividing one arbitrary hydrogen atom linking group Is mentioned.
  • R 11 , R 12 and R 13 each independently represent a hydrogen atom or a methyl group, and preferably represents a hydrogen atom.
  • n11 to n13 each independently represents 1 or 2. n11 to n13 preferably represent 1.
  • the compound represented by the general formula (NI) can be synthesized according to the method described in JP-A No. 2004-141732.
  • R 21 and R 22 each independently represent a hydrogen atom or a methyl group, and preferably represents a hydrogen atom.
  • L 21 represents a divalent to hexavalent linking group, and the divalent linking group is the same as the divalent linking group represented by the aforementioned L 11 , L 12 and L 13 .
  • L 21 represents a trivalent to hexavalent linking group, a linking group formed by removing one to four arbitrary hydrogen atoms from the divalent linking groups represented by the aforementioned L 11 , L 12 and L 13 , respectively.
  • Groups. n21 represents an integer of 1 to 5, and preferably represents an integer of 1 to 3.
  • the compound represented by the general formula (II) can be synthesized according to the method described in JP2012-206992.
  • R 31 and R 32 each independently represent a hydrogen atom or a methyl group, and preferably represent a hydrogen atom.
  • L 31 and L 32 each independently represent a divalent to tetravalent linking group, and the divalent linking group is the same as the divalent linking group represented by the aforementioned L 11 , L 12 and L 13 .
  • L 31 and L 32 represent a trivalent or tetravalent linking group, one or two arbitrary hydrogen atoms are selected from the divalent linking group represented by the aforementioned L 11 , L 12 and L 13 , respectively.
  • L 33 represents a divalent linking group, and is the same as the divalent linking group represented by the aforementioned L 11 , L 12 and L 13 .
  • n31 and n32 each independently represents an integer of 1 to 3, and preferably represents 1 or 2.
  • the compound represented by the general formula (NIII) can be synthesized according to the method described in JP-A-2016-65199.
  • Y 41 represents a divalent to hexavalent linking group
  • R 41 represents a hydrogen atom or a methyl group
  • R 42 and R 43 each independently represent a hydrogen atom, a hydroxyl group, or a carbon number of 1 Represents an alkyl group of ⁇ 10.
  • n41 represents an integer of 1 to 6.
  • the plurality of R 41 may be the same or different
  • the plurality of R 42 may be the same or different
  • the plurality of R 43 are each They may be the same or different.
  • Examples of the divalent linking group represented by Y 41 include an alkylene group, a cycloalkylene group, an arylene group, —CO—, or a divalent linking group obtained by combining these groups.
  • the alkylene group is preferably an alkylene group having 1 to 20 carbon atoms, more preferably an alkylene group having 1 to 10 carbon atoms, such as an ethylene group, n-propylene group, i-propylene group, n-butylene group, n- Examples include a hexylene group.
  • the alkylene group may be linear or branched.
  • the cycloalkylene group is preferably a cycloalkylene group having 6 to 20 carbon atoms, more preferably a cycloalkylene group having 6 to 10 carbon atoms, and examples thereof include a cyclohexylene group and a cycloheptylene group.
  • the arylene group is preferably an arylene group having 6 to 20 carbon atoms, more preferably an arylene group having 6 to 10 carbon atoms, and examples thereof include a phenylene group and a naphthylene group.
  • the alkylene group, cycloalkylene group or arylene group may have a substituent.
  • substituents include a hydroxyl group, a carboxyl group, an amino group, a cyano group, a nitro group, a halogen atom, an alkyl group, and a cycloalkyl group.
  • the divalent linking group represented by Y 41 is preferably an alkylene group.
  • Y 41 represents a trivalent to hexavalent linking group
  • a linking group formed by removing any one to four hydrogen atoms from the divalent linking group represented by Y 41 described above can be given.
  • R 41 represents a hydrogen atom or a methyl group.
  • R 41 is preferably a hydrogen atom.
  • R 42 and R 43 each independently represent a hydrogen atom, a hydroxyl group, or an alkyl group having 1 to 10 carbon atoms.
  • an alkyl group having 1 to 10 carbon atoms an alkyl group having 1 to 6 carbon atoms is preferable, and an alkyl group having 1 to 4 carbon atoms is more preferable.
  • R 42 and R 43 preferably represent a hydrogen atom.
  • n41 represents an integer of 1 to 6. n41 is preferably an integer of 1 to 4.
  • the monomer represented by the general formula (NIV) can be synthesized according to the method described in International Publication No. 2016/92844.
  • Y 51 represents a divalent to hexavalent linking group
  • R 51 represents a hydrogen atom or a methyl group
  • R 52 , R 53 and R 54 each independently represent a hydrogen atom, a hydroxyl group or
  • An alkyl group having 1 to 10 carbon atoms is represented.
  • n51 represents an integer of 1 to 6.
  • the plurality of R 51 may be the same or different
  • the plurality of R 52 may be the same or different
  • the plurality of R 53 are each They may be the same or different
  • the plurality of R 54 may be the same or different.
  • Examples of the divalent linking group represented by Y 51 include an alkylene group, a cycloalkylene group, an arylene group, —CO—, or a divalent linking group obtained by combining these groups.
  • the alkylene group is preferably an alkylene group having 1 to 20 carbon atoms, more preferably an alkylene group having 1 to 10 carbon atoms, such as an ethylene group, n-propylene group, i-propylene group, n-butylene group, n- Examples include a hexylene group.
  • the alkylene group may be linear or branched.
  • the cycloalkylene group is preferably a cycloalkylene group having 6 to 20 carbon atoms, more preferably a cycloalkylene group having 6 to 10 carbon atoms, and examples thereof include a cyclohexylene group and a cycloheptylene group.
  • the arylene group is preferably an arylene group having 6 to 20 carbon atoms, more preferably an arylene group having 6 to 10 carbon atoms, and examples thereof include a phenylene group and a naphthylene group.
  • the alkylene group, cycloalkylene group or arylene group may have a substituent.
  • substituents include a hydroxyl group, a carboxyl group, an amino group, a cyano group, a nitro group, a halogen atom, an alkyl group, and a cycloalkyl group.
  • the divalent linking group represented by Y 51 is preferably an alkylene group.
  • Y 51 represents a trivalent to hexavalent linking group
  • a linking group formed by removing any one to four hydrogen atoms from the divalent linking group represented by Y 51 described above can be given.
  • R 51 represents a hydrogen atom or a methyl group.
  • R 51 is preferably a hydrogen atom.
  • R 52 , R 53 and R 54 each independently represents a hydrogen atom, a hydroxyl group or an alkyl group having 1 to 10 carbon atoms.
  • the alkyl group having 1 to 10 carbon atoms an alkyl group having 1 to 6 carbon atoms is preferable, and an alkyl group having 1 to 4 carbon atoms is more preferable.
  • R 52 , R 53 and R 54 are preferably a hydrogen atom.
  • n51 represents an integer of 1 to 6. n51 is preferably an integer of 1 to 4.
  • the monomer represented by the general formula (NV) can be synthesized according to the method described in International Publication No. 2016/92844.
  • the monomer (K1) is more preferably a monomer represented by the general formula (NI).
  • the monomer (K1) a commercially available product may be used.
  • the monomer (K1) containing a nitrogen atom as a urethane bond UA-306H, UA-306I, UA-306T, UA-510H, and UF manufactured by Kyoeisha Chemical Co., Ltd.
  • UV-1400B UV-1700B, UV-6300B, UV-6550B, UV-7550B, UV -7600B, UV-7605B, UV-7610B, UV-7620EA, UV-7630B, UV-76 0B, UV-6630B, UV-7000B, UV-7510B, UV-7461TE, UV-3000B, UV-3200B, UV-3210EA, UV-3210EA, UV-3310EA, UV-3310B, UV-3310B 3500BA, UV-3520TL, UV-3700B, UV-6100B, UV-6640B, UV-2000B, UV-2010B, UV-2250EA.
  • purple light UV-2750B manufactured by Nippon Synthetic Chemical Industry Co., Ltd.
  • UL-503LN manufactured by Kyoeisha Chemical Co., Ltd.
  • Unidic 17-806 manufactured by Dainippon Ink and Chemicals, Inc., 17-813, V-4030, V-4000BA, and Daicel.
  • Examples include EB-1290K manufactured by UCB, Hicorp AU-2010 and AU-2020 manufactured by Tokushi.
  • the polymer of the present invention has at least one selected from a fluorine atom, a silicon atom, and a linear or branched alkyl group having 3 or more carbon atoms.
  • a fluorine atom, a silicon atom, or a linear or branched alkyl group having 3 or more carbon atoms in the polymer, the surface tension of the coating film when the composition containing the polymer is applied is further reduced, and the polymer is homogeneous. The coatability becomes better. Moreover, the transferability of the polymer to the coating film surface is further improved, and the surface state of the coating film surface is also improved.
  • the linear or branched alkyl group having 3 or more carbon atoms is preferably a linear or branched alkyl group having 3 to 30 carbon atoms, and more preferably a linear or branched alkyl group having 4 to 20 carbon atoms.
  • the polymer of the present invention more preferably contains a fluorine atom.
  • a fluorine atom is contained in the monomer (K1).
  • a silicon atom, and at least one selected from linear or branched alkyl groups having 3 or more carbon atoms may be introduced to polymerize the monomer (K1).
  • a raw material monomer other than the monomer (K1) (referred to as monomer (K2)) is introduced with at least one selected from a fluorine atom, a silicon atom, and a linear or branched alkyl group having 3 or more carbon atoms.
  • the monomer (K1) and the monomer (K2) are copolymerized to introduce at least one selected from a fluorine atom, a silicon atom, and a linear or branched alkyl group having 3 or more carbon atoms into the polymer. May be.
  • the polymer of the present invention comprises at least one selected from a fluorine atom, a silicon atom, and a linear or branched alkyl group having 3 or more carbon atoms by copolymerizing the monomer (K1) and the monomer (K2). It is preferable to introduce from the viewpoint of improving the surface condition of the coating film surface.
  • the monomer (K2) preferably has at least one selected from a fluorine atom, a silicon atom, and a linear or branched alkyl group having 3 or more carbon atoms.
  • the fluorine atom is preferably contained in the monomer (K2) as an alkyl group having 1 to 20 carbon atoms having at least one fluorine atom or an alkenyl group having 2 to 20 carbon atoms having at least one fluorine atom.
  • the silicon atom is preferably contained in the monomer (K2) as a siloxane bond, and more preferably contained in the monomer (K2) as a polysiloxane structure.
  • the monomer (K2) is preferably a compound having a (meth) acryloyl group, and more preferably any compound represented by the following general formulas (s1) to (s3).
  • R 1s represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms
  • R 2s has an alkyl group having 1 to 20 carbon atoms having at least one fluorine atom or at least one fluorine atom.
  • An alkenyl group having 2 to 20 carbon atoms is represented.
  • R 1s preferably represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, more preferably a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, a hydrogen atom, a methyl group, an ethyl group, or n- More preferably, it represents a propyl group, and particularly preferably represents a hydrogen atom or a methyl group.
  • the alkyl group or alkenyl group represented by R 2a preferably has 1 to 15 carbon atoms, and more preferably 1 to 10 carbon atoms.
  • the number of fluorine atoms contained in the alkyl group or alkenyl group represented by R 2a is preferably 1 to 20, and more preferably 3 to 17.
  • R 2s contains at least one fluorine atom from the viewpoint of reducing the surface energy of the composition containing the polymer of the present invention, improving the homogenous coating property, and improving the surface shape.
  • an alkyl group having 1 to 10 carbon atoms or an alkenyl group having 2 to 10 carbon atoms having at least one fluorine atom more preferably an alkyl group having 1 to 10 carbon atoms having at least one fluorine atom, It is particularly preferable that at least half of the carbon atoms contained in R 2s have a fluorine atom as a substituent.
  • the compound represented by the general formula (s1) is more preferably a compound represented by the following general formula (s11).
  • R 1s represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms
  • ma and na each independently represents an integer of 0 or more
  • X 1 represents a hydrogen atom or a fluorine atom.
  • R 1s in the general formula (s11), the general formula (s1) in the same meaning as R 1s of, and preferred examples are also the same.
  • ma and na each independently represents an integer of 0 or more.
  • ma is preferably an integer of 1 to 10, and more preferably an integer of 1 to 5.
  • na is preferably an integer of 4 to 12, and more preferably an integer of 4 to 10.
  • X represents a hydrogen atom or a fluorine atom, and is preferably a fluorine atom.
  • Examples of the monomer represented by the general formula (s1) include 2,2,2-trifluoroethyl (meth) acrylate, 2,2,3,3,3-pentafluoropropyl (meth) acrylate, and 2- (par Fluorobutyl) ethyl (meth) acrylate, 2- (perfluorohexyl) ethyl (meth) acrylate, 2- (perfluorooctyl) ethyl (meth) acrylate, 2- (perfluorodecyl) ethyl (meth) acrylate, 2- (Perfluoro-3-methylbutyl) ethyl (meth) acrylate, 2- (perfluoro-5-methylhexyl) ethyl (meth) acrylate, 2- (perfluoro-7-methyloctyl) ethyl (meth) acrylate, 1H, 1H, 3H-tetrafluoropropyl (me
  • R 1s represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms
  • R 3s , R 4s , R 6s and R 7s each independently represents an alkyl group having 1 to 20 carbon atoms
  • R 5s represents an alkyl group having 1 to 20 carbon atoms
  • mm represents an integer of 1 to 10
  • nn represents an integer of 1 or more Represents.
  • the plurality of R 3s and R 4s may be the same or different.
  • Examples of the alkyl group having 1 to 20 carbon atoms represented by R 3s , R 4s , R 6s and R 7s include a methyl group, an ethyl group and a hexyl group.
  • the alkyl group represented by R 3s , R 4s , R 6s and R 7s is preferably an alkyl group having 1 to 10 carbon atoms.
  • Examples of the haloalkyl group having 1 to 20 carbon atoms represented by R 3s , R 4s , R 6s and R 7s include a trifluoromethyl group and a pentafluoroethyl group.
  • the haloalkyl group represented by R 3s , R 4s , R 6s and R 7s is preferably a fluorinated alkyl group having 1 to 10 carbon atoms.
  • Examples of the aryl group having 6 to 20 carbon atoms represented by R 3s , R 4s , R 6s and R 7s include a phenyl group and a naphthyl group.
  • the aryl group represented by R 3s , R 4s , R 6s and R 7s is preferably an aryl group having 6 to 20 carbon atoms.
  • R 3s , R 4s , R 6s and R 7s are preferably a methyl group, a trifluoromethyl group or a phenyl group, and more preferably a methyl group.
  • Examples of the alkyl group having 1 to 20 carbon atoms represented by R 5s include a methyl group, an ethyl group, and a hexyl group.
  • the alkyl group represented by R 5s is preferably an alkyl group having 1 to 12 carbon atoms, and more preferably an alkyl group having 1 to 8 carbon atoms.
  • mm represents an integer of 1 to 10.
  • mm is preferably an integer of 1 to 6.
  • nn is preferably an integer of 1 to 1000, more preferably an integer of 20 to 500, and still more preferably an integer of 30 to 200.
  • One-terminal (meth) acryloyl group-containing polysiloxane macromer for example, Silaplane FM-0721, 0725, 0711 (above, products) Name, manufactured by JNC Corporation), AK-5, AK-30, AK-32 (above, trade name, manufactured by Toagosei Co., Ltd.), KF-100T, X-22-169AS, KF-102, X- 22-3701IE, X-22-164B, X-22-164C, X-22-5002, X-22-173B, X-22-174D, X-22-167B, X-22-161AS , Manufactured by Shin-Etsu Chemical Co., Ltd.).
  • R 1s represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms
  • R 8s represents a linear or branched alkyl group having 3 or more carbon atoms.
  • R 1s in the general formula (s3) of the general formula (s1) in the same meaning as R 1s of, and preferred examples are also the same.
  • the linear or branched alkyl group having 3 or more carbon atoms represented by R 8s is preferably a linear or branched alkyl group having 3 to 30 carbon atoms, more preferably a linear or branched alkyl group having 6 to 20 carbon atoms. preferable.
  • the monomer (K2) is preferably a monomer represented by the general formula (s1). That is, the polymer of the present invention preferably has a structure represented by the following general formula (s).
  • R 1s represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms
  • R 2s has an alkyl group having 1 to 20 carbon atoms having at least one fluorine atom or at least one fluorine atom.
  • An alkenyl group having 1 to 20 carbon atoms is represented. * Represents a bond.
  • R 1s and R 2s are the same as R 1s and R 2s in the general formula (s1), and preferred examples are also the same. * Represents a bond.
  • the content of the structure selected from a fluorine atom, a silicon atom, and a linear or branched alkyl group having 3 or more carbon atoms can be appropriately adjusted depending on the structure used. 1 to 99 mol% is preferable, and 10 to 90 mol% is more preferable.
  • the polymer of the present invention may be a homopolymer of the monomer (K1) or a copolymer of the monomer (K1) and the monomer (K2).
  • the ratio of the two can be adjusted as appropriate depending on the monomer type used.
  • the content of the monomer (K2) with respect to the total monomer amount is preferably 20 to 90 mol%, more preferably 40 to 80 mol%.
  • the polymer of the present invention may be a polymer obtained by polymerizing raw materials other than the monomer (K1) and the monomer (K2).
  • the weight average molecular weight of the polymer of the present invention is 1,000 to 50,000.
  • the composition becomes soluble in a general-purpose organic solvent. Therefore, a composition for forming a hard coat layer can be prepared as a solution in which a polymer is dissolved in an organic solvent.
  • various general-purpose substrates such as cellulose (TAC), polyethylene terephthalate (PET), polycarbonate (PC), polymethyl methacrylate resin (PMMA), etc. with a uniform coated surface.
  • TAC cellulose
  • PET polyethylene terephthalate
  • PC polycarbonate
  • PMMA polymethyl methacrylate resin
  • the polymer is soluble in the organic solvent after being mixed so that the polymer / organic solvent (25 ° C.) becomes 1/4 (mass ratio) and left to stand for 5 minutes. It shows that the turbidity of the solution is 1.0 ppm (parts per million) or less.
  • the weight average molecular weight of the polymer of the present invention is more preferably 1000 to 30000, still more preferably 1000 to 8000, and particularly preferably 1000 to 5000.
  • the molecular weight distribution (Mw / Mn) of the polymer of the present invention is preferably 1.00 to 5.00, more preferably 1.00 to 3.00.
  • the weight average molecular weight (Mw), number average molecular weight (Mn), and molecular weight distribution of the polymer of the present invention are values measured by gel permeation chromatography (GPC) under the following conditions.
  • GPC gel permeation chromatography
  • the hydroxyl group content in the polymer As the hydroxyl group content in the polymer, the hydroxyl group content in the polymer with respect to the addition amount of the polyorganosilsesquioxane (A) having a polymerizable group in the composition, which is derived from the following formula: (Also referred to as OH content) is preferably 0% by mass to 10% by mass.
  • the OH content in the polymer is as follows: Derived from the formula.
  • the OH content derived from the above formula is preferably 0 to 0.006% by mass, more preferably 0 to 0.002% by mass, and still more preferably 0 to 0.0001% by mass.
  • the amount of OH is small, the interaction with the OH group in the polyorganosilsesquioxane (A) having a polymerizable group is reduced, and the solvent extractability of the polymer is improved.
  • radical polymerization such as solution, suspension, and emulsification is preferable from the viewpoint of molecular weight control, and solution polymerization is particularly preferable.
  • organic solvents can be suitably used.
  • organic solvents include dibutyl ether, dimethoxyethane, diethoxyethane, propylene oxide, 1,4-dioxane, 1,3-dioxolane, 1,3,5-trioxane, tetrahydrofuran, anisole, phenetole, dimethyl carbonate, carbonate Methyl ethyl, diethyl carbonate, acetone, methyl ethyl ketone (MEK), diethyl ketone, dipropyl ketone, diisobutyl ketone, cyclopentanone, cyclohexanone, methylcyclohexanone, ethyl formate, propyl formate, pentyl formate, methyl acetate, ethyl acetate, propyl acetate, Methyl propionate, ethyl propionate
  • radical polymerization initiator a known radical polymerization initiator can be used without any limitation.
  • the number average molecular weight (Mn) of the obtained polymer is represented by the following formula (1).
  • Factors affecting the molecular weight of a polymer synthesized by solution radical polymerization include a monomer / initiator concentration ratio [M] / [I] and a monomer / solvent concentration ratio [M] / [S]. That is, the molecular weight of the polymer can be controlled by lowering the monomer concentration and / or adjusting the initiator concentration.
  • the polymer of the present invention can be solubilized in a general-purpose organic solvent (for example, MEK) by adjusting the concentration of the compound (M) and / or the initiator concentration in the polymerization reaction.
  • a general-purpose organic solvent for example, MEK
  • the radical polymerization concentration (monomer concentration with respect to the solvent during radical solution polymerization) is preferably 3 to 40% by mass, and more preferably 5 to 35% by mass.
  • the amount of the radical polymerization initiator is preferably 250 mol% or more in terms of the ratio of 2 (poly) functional monomers.
  • composition of the present invention comprises the above-described polymer of the present invention and a polyorganosilsesquioxane (A) having a polymerizable group.
  • the composition of this invention can be used suitably for formation of the members produced by lamination
  • the composition of this invention can contain a sclerosing
  • composition of the present invention can be suitably used as a composition for forming a hard coat layer for forming a hard coat layer in a hard coat film.
  • the composition for forming a hard coat layer containing the polymer of the present invention is excellent in wettability (homogeneous coatability) with respect to the base material during coating, and the surface state of the hard coat layer surface can be made favorable. Moreover, it is excellent also in the recoat property at the time of apply
  • the composition of the present invention may further contain a curable component different from the polyorganosilsesquioxane (A) having a polymerizable group.
  • the curable component include a compound (a2) having two or more (meth) acryloyl groups in one molecule.
  • Examples of the compound (a2) having two or more (meth) acryloyl groups in one molecule include the same compounds as the compound (b2) having two or more (meth) acryloyl groups in one molecule described later. .
  • composition of the present invention containing the polyorganosilsesquioxane (A) having a polymerizable group is preferably used as a composition for forming a hard coat layer in a flexible hard coat film.
  • the composition for forming a hard coat layer usually takes the form of a liquid.
  • the composition for forming a hard coat layer may be prepared by dissolving or dispersing the modifier of the present invention, the curable component, and if necessary, various additives and a polymerization initiator in an appropriate solvent. preferable.
  • the hard coat film of the present invention is A hard coat film comprising a substrate and a hard coat layer,
  • the hard coat layer is a hard coat film containing a cured product of the composition of the present invention.
  • the hard coat layer contains a cured product of a polymer and a polyorganosilsesquioxane (A) having a polymerizable group.
  • the hard coat film of the present invention has at least one functional layer on the side of the hard coat film opposite to the base material of the hard coat layer.
  • the functional layer is not particularly limited.
  • a hard coat layer a low refractive index layer, a high refractive index layer, a mixed layer, a scratch-resistant layer, a low reflectance layer, an antifouling layer, an inorganic oxide layer ( AR layer), a barrier layer, and a combination thereof.
  • the hard coat film of the present invention has a mixed layer as a functional layer, Having the base material, the hard coat layer, and the mixed layer in this order,
  • the mixed layer is a hard coat film containing a cured product (b1) of a compound having an epoxy group and a cured product of a compound (b2) having two or more (meth) acryloyl groups in one molecule. Is preferred.
  • the polyorganosilsesquioxane which has a polymeric group contained in the composition of this invention in the said hardened
  • the hard coat film of the present invention has the mixed layer and the scratch-resistant layer as a functional layer, The substrate, the hard coat layer, the mixed layer, and the scratch-resistant layer in this order,
  • the scratch-resistant layer is preferably a hard coat film containing a cured product of the compound (c1) having two or more (meth) acryloyl groups in one molecule.
  • the base material of the hard coat film of the present invention will be described.
  • the substrate preferably has a visible light region transmittance of 70% or more, more preferably 80% or more, and still more preferably 90% or more.
  • the substrate preferably includes a polymer.
  • polymer As the polymer, a polymer excellent in optical transparency, mechanical strength, thermal stability and the like is preferable.
  • polystyrene polymers examples include polycarbonate polymers, polyester polymers such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), and styrene polymers such as polystyrene and acrylonitrile / styrene copolymer (AS resin).
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • AS resin acrylonitrile / styrene copolymer
  • Polyolefins such as polyethylene and polypropylene, polyolefin polymers such as norbornene resins, ethylene / propylene copolymers, (meth) acrylic polymers such as polymethyl methacrylate, vinyl chloride polymers, amides such as nylon and aromatic polyamides Polymer, imide polymer, sulfone polymer, polyether sulfone polymer, polyether ether ketone polymer, polyphenylene sulfide polymer, vinylidene chloride polymer, vinyl alcohol polymer, vinyl butyral polymer, arylate polymer, polyoxy A methylene polymer, an epoxy polymer, a cellulose polymer represented by triacetyl cellulose, a copolymer of the above polymers, or a mixture of the above polymers. The polymer may also be mentioned.
  • amide-based polymers and imide-based polymers such as aromatic polyamides have a large number of breaks and folds measured by an MIT tester according to JIS (Japanese Industrial Standards) P8115 (2001), and have a relatively high hardness. It can be preferably used.
  • an aromatic polyamide as in Example 1 of Japanese Patent No. 5699454, a polyimide described in JP-T-2015-508345, JP-T-2016-521216, and WO2017 / 014287 is preferably used as a base material. Can be used.
  • the substrate can also be formed as a cured layer of an acrylic, urethane, acrylurethane, epoxy, silicone or other ultraviolet curable or thermosetting resin.
  • the substrate may contain a material that further softens the polymer.
  • the softening material refers to a compound that improves the number of breaks and folds.
  • a rubber elastic body, a brittleness improving agent, a plasticizer, a slide ring polymer, or the like can be used as the softening material.
  • the softening materials described in paragraph numbers ⁇ 0051> to ⁇ 0114> in JP-A-2016-170443 can be suitably used as the softening material.
  • the softening material may be mixed with the polymer alone, or may be used in combination with a plurality as appropriate, or may be used alone or in combination with a plurality of softening materials without mixing with the polymer. It is good also as a base material.
  • the amount of these softening materials to be mixed is not particularly limited, and a single polymer having a sufficient number of times of bending at breaks may be used alone as a film base material, or a softening material may be mixed. As a softening material (100%), a sufficient number of times of breaking and bending may be provided.
  • additives for example, an ultraviolet absorber, a matting agent, an antioxidant, a peeling accelerator, a retardation (optical anisotropy) adjusting agent, etc.
  • additives for example, an ultraviolet absorber, a matting agent, an antioxidant, a peeling accelerator, a retardation (optical anisotropy) adjusting agent, etc.
  • They may be solid or oily. That is, the melting point or boiling point is not particularly limited.
  • the timing of adding the additive may be added at any time in the step of producing the base material, or may be performed by adding the step of adding the additive to the material preparation step.
  • the amount of each material added is not particularly limited as long as the function is manifested.
  • the additives described in Paragraph Nos. [0117] to ⁇ 0122> in JP-A No. 2016-167043 can be suitably used.
  • the above additives may be used alone or in combination of two or more.
  • UV absorber examples of the ultraviolet absorber include benzotriazole compounds, triazine compounds, and benzoxazine compounds.
  • the benzotriazole compound is a compound having a benzotriazole ring, and specific examples include various benzotriazole ultraviolet absorbers described in paragraph 0033 of JP2013-111835A.
  • the triazine compound is a compound having a triazine ring, and specific examples thereof include various triazine-based UV absorbers described in paragraph 0033 of JP2013-111835A.
  • benzoxazine compound for example, those described in paragraph 0031 of JP 2014-209162 A can be used.
  • the content of the ultraviolet absorber in the substrate is, for example, about 0.1 to 10 parts by mass with respect to 100 parts by mass of the polymer contained in the substrate, but is not particularly limited.
  • the UV absorber reference can also be made to paragraph 0032 of JP2013-111835A.
  • an ultraviolet absorber having high heat resistance and low volatility is preferable.
  • examples of such ultraviolet absorbers include UVSORB101 (manufactured by Fujifilm Fine Chemicals Co., Ltd.), TINUVIN 360, TINUVIN 460, TINUVIN 1577 (manufactured by BASF), LA-F70, LA-31, LA-46 (manufactured by ADEKA), and the like. Is mentioned.
  • the base material preferably has a small difference in refractive index between the flexible material and various additives used for the base material and the polymer.
  • the imide polymer means a polymer containing at least one or more repeating structural units represented by the formula (PI), the formula (a), the formula (a ′) and the formula (b).
  • the repeating structural unit represented by a formula (PI) is a main structural unit of an imide type polymer.
  • the repeating structural unit represented by the formula (PI) is preferably 40 mol% or more, more preferably 50 mol% or more, further preferably 70 mol% or more, based on all repeating structural units of the imide-based polymer. More preferably, it is 90 mol% or more, and still more preferably 98 mol%.
  • G in the formula (PI) represents a tetravalent organic group, and A represents a divalent organic group.
  • G 2 in the formula (a) represents a trivalent organic group, and A 2 represents a divalent organic group.
  • G 3 in the formula (a ′) represents a tetravalent organic group, and A 3 represents a divalent organic group.
  • G 4 and A 4 in the formula (b) each represent a divalent organic group.
  • the organic group of the tetravalent organic group represented by G includes an acyclic aliphatic group, a cyclic aliphatic group, and an aromatic group. And a group selected from the group consisting of:
  • the organic group of G is preferably a tetravalent cyclic aliphatic group or a tetravalent aromatic group from the viewpoints of transparency and flexibility of the substrate containing the imide-based polymer.
  • the aromatic group include a monocyclic aromatic group, a condensed polycyclic aromatic group, and a non-condensed polycyclic aromatic group having two or more aromatic rings and connected to each other directly or by a bonding group. Etc.
  • the organic group of G is a cyclic aliphatic group, a cyclic aliphatic group having a fluorine-based substituent, a monocyclic aromatic group having a fluorine-based substituent, A condensed polycyclic aromatic group having a fluorine-based substituent or a non-condensed polycyclic aromatic group having a fluorine-based substituent is preferable.
  • the fluorine-based substituent means a group containing a fluorine atom.
  • the fluorine-based substituent is preferably a fluoro group (fluorine atom, -F) and a perfluoroalkyl group, more preferably a fluoro group and a trifluoromethyl group.
  • the organic group of G is, for example, a saturated or unsaturated cycloalkyl group, a saturated or unsaturated heterocycloalkyl group, an aryl group, a heteroaryl group, an arylalkyl group, an alkylaryl group, a heteroalkylaryl.
  • Examples of the bonding group include —O—, an alkylene group having 1 to 10 carbon atoms, —SO 2 —, —CO— or —CO—NR— (where R represents a methyl group, an ethyl group, a propyl group, etc. 3 represents an alkyl group or a hydrogen atom).
  • the carbon number of the tetravalent organic group represented by G is usually 2 to 32, preferably 4 to 15, more preferably 5 to 10, and further preferably 6 to 8.
  • the organic group of G is a cycloaliphatic group or an aromatic group, at least one of carbon atoms constituting these groups may be replaced with a heteroatom.
  • Heteroatoms include O, N, or S.
  • G examples include groups represented by the following formula (20), formula (21), formula (22), formula (23), formula (24), formula (25), or formula (26). It is done. * In the formula indicates a bond.
  • Z in the formula (26) represents a single bond, —O—, —CH 2 —, —C (CH 3 ) 2 —, —Ar—O—Ar—, —Ar—CH 2 —Ar—, —Ar—.
  • C (CH 3 ) 2 —Ar— or —Ar—SO 2 —Ar— is represented.
  • Ar represents an aryl group having 6 to 20 carbon atoms, and may be, for example, a phenylene group. At least one of the hydrogen atoms of these groups may be substituted with a fluorine-based substituent.
  • the organic group of the divalent organic group represented by A includes an acyclic aliphatic group, a cyclic aliphatic group, and an aromatic group.
  • the divalent organic group represented by A is preferably selected from a divalent cycloaliphatic group and a divalent aromatic group.
  • the aromatic group include a monocyclic aromatic group, a condensed polycyclic aromatic group, and a non-condensed polycyclic aromatic group having two or more aromatic rings and connected to each other directly or by a bonding group. Groups. From the viewpoint of transparency of the resin film and suppression of coloring, it is preferable that a fluorine-based substituent is introduced into the organic group of A.
  • the organic group of A is, for example, a saturated or unsaturated cycloalkyl group, a saturated or unsaturated heterocycloalkyl group, an aryl group, a heteroaryl group, an arylalkyl group, an alkylaryl group, a heteroalkylaryl.
  • the hetero atom include O, N, or S.
  • Examples of the bonding group include —O—, an alkylene group having 1 to 10 carbon atoms, —SO 2 —, —CO—, or —CO—NR— (R represents methyl Group, an alkyl group having 1 to 3 carbon atoms such as an ethyl group or a propyl group, or a hydrogen atom).
  • the carbon number of the divalent organic group represented by A is usually 2 to 40, preferably 5 to 32, more preferably 12 to 28, and further preferably 24 to 27.
  • A include groups represented by the following formula (30), formula (31), formula (32), formula (33), or formula (34).
  • * In the formula indicates a bond.
  • Z 1 to Z 3 are each independently a single bond, —O—, —CH 2 —, —C (CH 3 ) 2 —, —SO 2 —, —CO— or —CO—NR— (R is Represents a C 1-3 alkyl group such as a methyl group, an ethyl group, or a propyl group, or a hydrogen atom.
  • Z 1 and Z 2 , and Z 2 and Z 3 are each preferably in the meta position or the para position with respect to each ring.
  • Z 1 and the single bond at the terminal, Z 2 and the single bond at the terminal, and Z 3 and the single bond at the terminal are in the meta position or the para position, respectively.
  • Z 1 and Z 3 are —O— and Z 2 is —CH 2 —, —C (CH 3 ) 2 — or —SO 2 —.
  • One or two or more hydrogen atoms of these groups may be substituted with a fluorine-based substituent.
  • At least one of the hydrogen atoms constituting at least one of A and G is at least one selected from the group consisting of a fluorine-based substituent, a hydroxyl group, a sulfone group, and an alkyl group having 1 to 10 carbon atoms. It may be substituted with a functional group.
  • the organic group of A and the organic group of G are each a cyclic aliphatic group or an aromatic group, it is preferable that at least one of A and G has a fluorine-based substituent, and both A and G are More preferably, it has a fluorine-based substituent.
  • G 2 in the formula (a) is a trivalent organic group.
  • This organic group can be selected from the same groups as the organic group of G in formula (PI) except that it is a trivalent group.
  • Examples of G 2 include groups in which any one of the four bonds of the groups represented by formulas (20) to (26) listed as specific examples of G is replaced with a hydrogen atom. Can do.
  • A2 in formula (a) can be selected from the same groups as A in formula (PI).
  • G 3 in formula (a ′) can be selected from the same groups as G in formula (PI).
  • a 3 in formula (a ′) can be selected from the same groups as A in formula (PI).
  • G 4 in the formula (b) is a divalent organic group.
  • This organic group can be selected from the same groups as the organic group of G in formula (PI) except that it is a divalent group.
  • Examples of G 4 include groups in which any two of the four bonds of the groups represented by formulas (20) to (26) listed as specific examples of G are replaced with hydrogen atoms. Can do.
  • a 4 in formula (b) can be selected from the same groups as A in formula (PI).
  • the imide polymer contained in the substrate containing the imide polymer includes a diamine and a tetracarboxylic acid compound (including an analog of a tetracarboxylic acid compound such as an acid chloride compound and a tetracarboxylic dianhydride) or a tricarboxylic acid compound ( It may be a condensed polymer obtained by polycondensation with at least one of an acid chloride compound and a tricarboxylic acid compound analog such as a tricarboxylic acid anhydride). Further, dicarboxylic acid compounds (including analogs such as acid chloride compounds) may be polycondensed.
  • the repeating structural unit represented by the formula (PI) or the formula (a ′) is usually derived from a diamine and a tetracarboxylic acid compound.
  • the repeating structural unit represented by the formula (a) is usually derived from diamines and tricarboxylic acid compounds.
  • the repeating structural unit represented by the formula (b) is usually derived from diamines and dicarboxylic acid compounds.
  • tetracarboxylic acid compound examples include aromatic tetracarboxylic acid compounds, alicyclic tetracarboxylic acid compounds, and acyclic aliphatic tetracarboxylic acid compounds. Two or more of these may be used in combination.
  • the tetracarboxylic acid compound is preferably tetracarboxylic dianhydride.
  • tetracarboxylic dianhydrides include aromatic tetracarboxylic dianhydrides, alicyclic tetracarboxylic dianhydrides, and acyclic aliphatic tetracarboxylic dianhydrides.
  • the tetracarboxylic acid compound may be an alicyclic tetracarboxylic compound or an aromatic tetracarboxylic acid compound. preferable.
  • the tetracarboxylic acid compound includes an alicyclic tetracarboxylic acid compound having a fluorine-based substituent and an aromatic tetracarboxylic acid compound having a fluorine-based substituent. And an alicyclic tetracarboxylic acid compound having a fluorine-based substituent is more preferable.
  • tricarboxylic acid compounds include aromatic tricarboxylic acids, alicyclic tricarboxylic acids, acyclic aliphatic tricarboxylic acids, and related acid chloride compounds, acid anhydrides, and the like.
  • the tricarboxylic acid compound is preferably selected from aromatic tricarboxylic acids, alicyclic tricarboxylic acids, acyclic aliphatic tricarboxylic acids, and related acid chloride compounds. Two or more tricarboxylic acid compounds may be used in combination.
  • the tricarboxylic acid compound is an alicyclic tricarboxylic acid compound or an aromatic tricarboxylic acid compound from the viewpoints of solubility of the imide-based polymer in a solvent and transparency and flexibility when a substrate containing the imide-based polymer is formed. It is preferable. From the viewpoint of transparency of a substrate containing an imide-based polymer and suppression of coloring, the tricarboxylic acid compound is an alicyclic tricarboxylic acid compound having a fluorine-based substituent or an aromatic tricarboxylic acid compound having a fluorine-based substituent. Is more preferable.
  • dicarboxylic acid compounds examples include aromatic dicarboxylic acids, alicyclic dicarboxylic acids, acyclic aliphatic dicarboxylic acids, and related acid chloride compounds, acid anhydrides, and the like.
  • the dicarboxylic acid compound is preferably selected from aromatic dicarboxylic acids, alicyclic dicarboxylic acids, acyclic aliphatic dicarboxylic acids and related acid chloride compounds. Two or more dicarboxylic acid compounds may be used in combination.
  • the dicarboxylic acid compound is an alicyclic dicarboxylic acid compound or an aromatic dicarboxylic acid compound from the viewpoints of solubility of the imide-based polymer in a solvent and transparency and flexibility when a substrate containing the imide-based polymer is formed. It is preferable. From the viewpoint of transparency of the substrate containing the imide-based polymer and suppression of coloring, the dicarboxylic acid compound is an alicyclic dicarboxylic acid compound having a fluorine-based substituent or an aromatic dicarboxylic acid compound having a fluorine-based substituent. Is more preferable.
  • diamines examples include aromatic diamines, alicyclic diamines and aliphatic diamines, and these may be used in combination of two or more.
  • the diamine is derived from an alicyclic diamine and an aromatic diamine having a fluorine-based substituent. It is preferable to be selected.
  • an imide-based polymer If such an imide-based polymer is used, it has particularly excellent flexibility, high light transmittance (for example, 85% or more, preferably 88% or more for 550 nm light), low yellowness (YI value). 5 or less, preferably 3 or less), and a resin film having a low haze (1.5% or less, preferably 1.0% or less) is easily obtained.
  • the imide polymer may be a copolymer containing a plurality of different types of repeating structural units.
  • the weight average molecular weight of the polyimide polymer is usually 10,000 to 500,000.
  • the weight average molecular weight of the imide polymer is preferably 50,000 to 500,000, and more preferably 70,000 to 400,000.
  • the weight average molecular weight is a standard polystyrene equivalent molecular weight measured by gel permeation chromatography (GPC). If the weight average molecular weight of the imide polymer is large, high flexibility tends to be obtained, but if the weight average molecular weight of the imide polymer is too large, the viscosity of the varnish tends to be high and the workability tends to be lowered.
  • the imide-based polymer may contain a halogen atom such as a fluorine atom that can be introduced by the above-described fluorine-based substituent.
  • a halogen atom such as a fluorine atom that can be introduced by the above-described fluorine-based substituent.
  • a halogen atom is preferably a fluorine atom.
  • the content of halogen atoms in the polyimide polymer is preferably 1 to 40% by mass, more preferably 1 to 30% by mass based on the mass of the polyimide polymer.
  • the base material containing an imide-based polymer may contain one or more ultraviolet absorbers.
  • the ultraviolet absorber can be appropriately selected from those usually used as an ultraviolet absorber in the field of resin materials.
  • the ultraviolet absorber may contain a compound that absorbs light having a wavelength of 400 nm or less.
  • Examples of the ultraviolet absorber that can be appropriately combined with the imide polymer include at least one compound selected from the group consisting of benzophenone compounds, salicylate compounds, benzotriazole compounds, and triazine compounds.
  • system compound refers to a derivative of a compound to which “system compound” is attached.
  • a “benzophenone compound” refers to a compound having benzophenone as a host skeleton and a substituent bonded to benzophenone.
  • the content of the ultraviolet absorber is usually 1% by mass or more, preferably 2% by mass or more, more preferably 3% by mass or more, and usually 10% by mass or less with respect to the total mass of the resin film. Yes, preferably 8% by mass or less, more preferably 6% by mass or less.
  • the base material containing the imide polymer may further contain an inorganic material such as inorganic particles.
  • the inorganic material is preferably a silicon material containing a silicon atom.
  • the tensile elastic modulus of the base material containing the imide polymer can easily be 4.0 GPa or more.
  • the method for controlling the tensile modulus of the base material containing the imide polymer is not limited to the blending of the inorganic material.
  • Examples of the silicon material containing a silicon atom include silica particles, quaternary alkoxysilanes such as tetraethyl orthosilicate (TEOS), and silicon compounds such as silsesquioxane derivatives.
  • TEOS tetraethyl orthosilicate
  • silicon compounds such as silsesquioxane derivatives.
  • silica particles are preferable from the viewpoints of transparency and flexibility of a substrate containing an imide-based polymer.
  • the average primary particle diameter of the silica particles is usually 100 nm or less. When the average primary particle diameter of the silica particles is 100 nm or less, the transparency tends to be improved.
  • the average primary particle diameter of the silica particles in the substrate containing the imide polymer can be determined by observation with a transmission electron microscope (TEM).
  • the primary particle diameter of the silica particles can be a constant direction diameter measured by a transmission electron microscope (TEM).
  • the average primary particle diameter can be obtained as an average value of ten primary particle diameters measured by TEM observation.
  • the particle distribution of the silica particles before forming the substrate containing the imide polymer can be determined by a commercially available laser diffraction particle size distribution meter.
  • the mixing ratio of the imide polymer and the inorganic material is preferably 1: 9 to 10: 0 in mass ratio, with the total of both being 10: 3 to 7 to 10. : 0 is more preferable, 3: 7 to 8: 2 is still more preferable, and 3: 7 to 7: 3 is still more preferable.
  • the ratio of the inorganic material to the total mass of the imide polymer and the inorganic material is usually 20% by mass or more, preferably 30% by mass or more, and usually 90% by mass or less, preferably 70% by mass or less.
  • the mixing ratio of the imide polymer and the inorganic material is within the above range, the transparency and mechanical strength of the substrate containing the imide polymer tend to be improved. Moreover, the tensile elasticity modulus of the base material containing an imide polymer can be easily set to 4.0 GPa or more.
  • the base material containing the imide polymer may further contain components other than the imide polymer and the inorganic material as long as the transparency and flexibility are not significantly impaired.
  • components other than the imide-based polymer and the inorganic material include colorants such as antioxidants, mold release agents, stabilizers, and bluing agents, flame retardants, lubricants, thickeners, and leveling agents.
  • the proportion of components other than the imide-based polymer and the inorganic material is preferably more than 0% and not more than 20% by mass, more preferably more than 0% and not more than 10% by mass with respect to the mass of the resin film 10. is there.
  • Si / N which is the atomic ratio of silicon atoms to nitrogen atoms, is 8 or more in at least one main surface 10a.
  • This atomic ratio Si / N is determined by evaluating the composition of a substrate containing an imide-based polymer by X-ray photoelectron spectroscopy (XPS), and the abundance of silicon atoms and nitrogen atoms obtained thereby. It is a value calculated from the abundance of.
  • Si / N in the main surface 10a of the base material containing the imide polymer is 8 or more, sufficient adhesion with the functional layer 20 described later is obtained.
  • Si / N is more preferably 9 or more, further preferably 10 or more, preferably 50 or less, and more preferably 40 or less.
  • the thickness of the substrate is more preferably 100 ⁇ m or less, further preferably 80 ⁇ m or less, and most preferably 50 ⁇ m or less. If the thickness of the base material is reduced, the difference in curvature between the front surface and the back surface at the time of bending is reduced, and cracks and the like are less likely to occur. On the other hand, from the viewpoint of easy handling of the substrate, the thickness of the substrate is preferably 3 ⁇ m or more, more preferably 5 ⁇ m or more, and most preferably 15 ⁇ m or more.
  • the base material may be formed by thermally melting a thermoplastic polymer, or may be formed by solution film formation (solvent casting method) from a solution in which the polymer is uniformly dissolved.
  • solvent casting method solution film formation
  • the above-mentioned softening material and various additives can be added at the time of hot melting.
  • the substrate is produced by a solution casting method
  • the above-described softening material and various additives can be added to the polymer solution (hereinafter also referred to as a dope) in each preparation step. Further, the addition may be performed at any time in the dope preparation process, but may be performed by adding an additive to the final preparation process of the dope preparation process.
  • the coating film may be heated for drying and / or baking the coating film.
  • the heating temperature of the coating film is usually 50 to 350 ° C.
  • the coating film may be heated under an inert atmosphere or under reduced pressure.
  • the solvent can be evaporated and removed by heating the coating film.
  • the resin film may be formed by a method including a step of drying the coating film at 50 to 150 ° C. and a step of baking the dried coating film at 180 to 350 ° C.
  • a surface treatment may be applied to at least one main surface of the substrate.
  • a protective film may be bonded to one side or both sides of the base material in order to maintain surface protection or the smoothness of the base material.
  • a protective film in which an adhesive containing an antistatic agent is laminated on one side of the support is preferable. By using such a protective film, it is possible to prevent the dust from adhering when the protective film is peeled off and the hard coat layer is formed.
  • the hard coat layer of the hard coat film of the present invention will be described.
  • the hard coat layer in the present invention is preferably composed of a cured product of the composition of the present invention. More preferably, the hard coat layer in the present invention contains a cured product of a polymer and a polyorganosilsesquioxane (A) having a polymerizable group.
  • the polymerizable group in the polyorganosilsesquioxane (A) having a polymerizable group is not particularly limited, but a polymerizable group capable of radical polymerization or cationic polymerization is preferable.
  • a radical polymerizable group a generally known radical polymerizable group can be used, and a (meth) acrylate group can be mentioned as a preferable one.
  • the cationic polymerizable group generally known cationic polymerizable groups can be used.
  • alicyclic ether group, cyclic acetal group, cyclic lactone group, cyclic thioether group, spiro orthoester group, vinyloxy group Examples include groups. Of these, alicyclic ether groups and vinyloxy groups are preferred, epoxy groups, oxetanyl groups and vinyloxy groups are particularly preferred, and epoxy groups are most preferred.
  • the polyorganosilsesquioxane (A) having a polymerizable group is preferably polyorganosilsesquioxane (a1) having an epoxy group.
  • the hard coat layer in the present invention is obtained by curing a curable composition containing the polymer of the present invention and a polyorganosilsesquioxane (a1) having an epoxy group by heating and / or irradiation with ionizing radiation. Preferably there is.
  • polyorganosilsesquioxane (a1) having an epoxy group The polyorganosilsesquioxane (a1) having an epoxy group (also referred to as “polyorganosilsesquioxane (a1)”) has at least a siloxane structural unit containing an epoxy group, and has the following general formula (1 It is preferable that it is polyorganosilsesquioxane represented by this.
  • Rb represents a group containing an epoxy group
  • Rc represents a monovalent group
  • the plurality of Rb and Rc may be the same or different.
  • the plurality of Rc may form a bond with each other.
  • [SiO 1.5 ] in the general formula (1) represents a structural portion constituted by a siloxane bond (Si—O—Si) in the polyorganosilsesquioxane.
  • Polyorganosilsesquioxane is a network-type polymer or polyhedral cluster having a siloxane structural unit derived from a hydrolyzable trifunctional silane compound, and can form a random structure, ladder structure, cage structure, etc. by a siloxane bond.
  • the structural portion represented by [SiO 1.5 ] may be any of the structures described above, but preferably contains a lot of ladder structures. By forming the ladder structure, the deformation recovery property of the hard coat film can be kept good.
  • the formation of the ladder structure is qualitatively determined by the presence or absence of absorption derived from Si—O—Si stretching characteristic of the ladder structure appearing in the vicinity of 1020-1050 cm ⁇ 1 when measuring FT-IR (Fourier Transform Infrared Spectroscopy). Can be confirmed.
  • Rb represents a group containing an epoxy group.
  • the group containing an epoxy group include known groups having an oxirane ring.
  • Rb is preferably a group represented by the following formulas (1b) to (4b).
  • ** represents a connecting part with Si in the general formula (1)
  • R 1b , R 2b , R 3b and R 4b represent a substituted or unsubstituted alkylene group.
  • the alkylene group represented by R 1b , R 2b , R 3b and R 4b is preferably a linear or branched alkylene group having 1 to 10 carbon atoms.
  • a methylene group for example, a methylene group, a methylmethylene group, a dimethylmethylene group, ethylene Group, i-propylene group, n-propylene group, n-butylene group, n-pentylene group, n-hexylene group, n-decylene group and the like.
  • the alkylene group represented by R 1b , R 2b , R 3b and R 4b has a substituent
  • examples of the substituent include a hydroxyl group, a carboxyl group, an alkoxy group, an aryl group, a heteroaryl group, a halogen atom, a nitro group, and a cyano group.
  • R 1b , R 2b , R 3b and R 4b are preferably an unsubstituted linear alkylene group having 1 to 4 carbon atoms, an unsubstituted branched alkylene group having 3 or 4 carbon atoms, and an ethylene group N-propylene group or i-propylene group is more preferable, and ethylene group or n-propylene group is more preferable.
  • the polyorganosilsesquioxane (a1) preferably has an alicyclic epoxy group (a group having a condensed ring structure of an epoxy group and an alicyclic group).
  • Rb in the general formula (1) is preferably an alicyclic epoxy group, more preferably a group having an epoxycyclohexyl group, and even more preferably a group represented by the above formula (1b). .
  • Rb in the general formula (1) is a group bonded to a silicon atom in a hydrolyzable trifunctional silane compound used as a raw material for polyorganosilsesquioxane (a group other than an alkoxy group and a halogen atom; Derived from Rb in the hydrolyzable silane compound represented by the formula (B).
  • Rb represents a connecting portion with Si in the general formula (1).
  • Rc represents a monovalent group.
  • the monovalent group represented by Rc includes a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted group.
  • a substituted aralkyl group may be mentioned.
  • Examples of the alkyl group represented by Rc include alkyl groups having 1 to 10 carbon atoms, such as methyl group, ethyl group, propyl group, n-butyl group, isopropyl group, isobutyl group, s-butyl group, t-butyl group. And a linear or branched alkyl group such as an isopentyl group.
  • Examples of the cycloalkyl group represented by Rc include cycloalkyl groups having 3 to 15 carbon atoms, such as a cyclobutyl group, a cyclopentyl group, and a cyclohexyl group.
  • Examples of the alkenyl group represented by Rc include alkenyl groups having 2 to 10 carbon atoms, and examples thereof include linear or branched alkenyl groups such as vinyl group, allyl group, and isopropenyl group.
  • Examples of the aryl group represented by Rc include aryl groups having 6 to 15 carbon atoms, such as a phenyl group, a tolyl group, and a naphthyl group.
  • Examples of the aralkyl group represented by Rc include aralkyl groups having 7 to 20 carbon atoms, and examples thereof include a benzyl group and a phenethyl group.
  • Examples of the substituted alkyl group, substituted cycloalkyl group, substituted alkenyl group, substituted aryl group, and substituted aralkyl group include a hydrogen atom or main chain bone in each of the above-described alkyl group, cycloalkyl group, alkenyl group, aryl group, and aralkyl group. At least one kind selected from the group consisting of an ether group, an ester group, a carbonyl group, a halogen atom (fluorine atom, etc.), an acrylic group, a methacryl group, a mercapto group, and a hydroxy group (hydroxyl group). And a group substituted with.
  • Rc is preferably a substituted or unsubstituted alkyl group, and more preferably an unsubstituted alkyl group having 1 to 10 carbon atoms.
  • the plurality of Rc may form a bond with each other. It is preferable that two or three Rc form a bond with each other, and it is more preferable that two Rc form a bond with each other.
  • the group (Rc 2 ) formed by bonding two Rc's to each other is preferably an alkylene group formed by bonding the substituted or unsubstituted alkyl group represented by Rc described above.
  • Examples of the alkylene group represented by Rc 2 include methylene group, ethylene group, propylene group, isopropylene group, n-butylene group, isobutylene group, s-butylene group, t-butylene group, n-pentylene group, isopentylene group, s-pentylene group, t-pentylene group, n-hexylene group, isohexylene group, s-hexylene group, t-hexylene group, n-heptylene group, isoheptylene group, s-heptylene group, t-heptylene group, n-octylene group And linear or branched alkylene groups such as isooctylene group, s-octylene group and t-octylene group.
  • the alkylene group represented by Rc 2 is preferably an unsubstituted alkylene group having 2 to 20 carbon atoms, more preferably an unsubstituted alkylene group having 2 to 20 carbon atoms, and still more preferably an unsubstituted alkylene group having 2 to 8 carbon atoms.
  • An alkylene group particularly preferably an n-butylene group, an n-pentylene group, an n-hexylene group, an n-heptylene group, or an n-octylene group.
  • the group formed by bonding three Rc to each other (Rc 3 ) is preferably a trivalent group in which any hydrogen atom in the alkylene group is reduced by one in the alkylene group represented by Rc 2 described above. .
  • Rc represents a group bonded to a silicon atom in a hydrolyzable silane compound used as a raw material for polyorganosilsesquioxane (a group other than an alkoxy group and a halogen atom; (Rc 1 to Rc 3 in the hydrolyzable silane compounds represented by (C1) to (C3)).
  • q is more than 0 and r is 0 or more.
  • q / (q + r) is preferably 0.5 to 1.0.
  • the network formed by the organic crosslinking group is sufficiently formed. Therefore, each performance of hardness and resistance to repeated bending can be kept good.
  • q / (q + r) is more preferably 0.7 to 1.0, further preferably 0.9 to 1.0, and particularly preferably 0.95 to 1.0.
  • r / (q + r) is preferably 0.005 to 0.20.
  • r / (q + r) is more preferably 0.005 to 0.10, further preferably 0.005 to 0.05, and particularly preferably 0.005 to 0.025.
  • the number average molecular weight (Mn) in terms of standard polystyrene as determined by gel permeation chromatography (GPC) of polyorganosilsesquioxane (a1) is preferably 500 to 6000, more preferably 1000 to 4500, and still more preferably. 1500 to 3000.
  • the molecular weight dispersity (Mw / Mn) in terms of standard polystyrene by GPC of the polyorganosilsesquioxane (a1) is, for example, 1.0 to 4.0, preferably 1.1 to 3.7. Preferably it is 1.2 to 3.0, more preferably 1.3 to 2.5. Mn represents the number average molecular weight.
  • the weight average molecular weight and molecular weight dispersity of the polyorganosilsesquioxane (a1) were measured by the following apparatus and conditions. Measuring device: Product name “LC-20AD” (manufactured by Shimadzu Corporation) Column: Shodex KF-801 ⁇ 2, KF-802, and KF-803 (manufactured by Showa Denko KK) Measurement temperature: 40 ° C Eluent: Tetrahydrofuran (THF), sample concentration 0.1-0.2% by mass Flow rate: 1 mL / min Detector: UV-VIS detector (trade name “SPD-20A”, manufactured by Shimadzu Corporation) Molecular weight: Standard polystyrene conversion
  • the polyorganosilsesquioxane (a1) can be produced by a known production method, and is not particularly limited, but can be produced by a method in which one or more hydrolyzable silane compounds are hydrolyzed and condensed.
  • a hydrolyzable silane compound a hydrolyzable trifunctional silane compound (compound represented by the following formula (B)) for forming a siloxane structural unit containing an epoxy group is used as the hydrolyzable silane compound. It is preferable.
  • r in general formula (1) is more than 0, it is preferable to use a compound represented by the following formula (C1), (C2) or (C3) as the hydrolyzable silane compound.
  • Rb in the formula (B) has the same meaning as Rb in the general formula (1), and preferred examples thereof are also the same.
  • X 2 in the formula (B) represents an alkoxy group or a halogen atom.
  • the alkoxy group for X 2 include an alkoxy group having 1 to 4 carbon atoms such as a methoxy group, an ethoxy group, a propoxy group, an isopropyloxy group, a butoxy group, and an isobutyloxy group.
  • the halogen atom in X 2 for example, a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • X 2 is preferably an alkoxy group, more preferably a methoxy group or an ethoxy group. Note that three X 2 can be the same, respectively, may be different.
  • the compound represented by the above formula (B) is a compound that forms a siloxane structural unit having Rb.
  • Rc 1 in the formula (C1) has the same meaning as Rc in the general formula (1), and preferred examples thereof are also the same.
  • Rc 2 in the formula (C2) has the same meaning as group (Rc 2) formed by two Rc in the general formula (1) are bonded to each other, and so are the preferable examples.
  • Rc 3 in formula (C3) is synonymous with the group (Rc 3 ) formed by bonding three Rc in general formula (1) to each other, and preferred examples are also the same.
  • X 3 in the above formulas (C1) to (C3) has the same meaning as X 2 in the above formula (B), and preferred examples are also the same.
  • the plurality of X 3 may be the same or different.
  • hydrolyzable silane compound a hydrolyzable silane compound other than the compounds represented by the above formulas (B) and (C1) to (C3) may be used in combination.
  • hydrolyzable trifunctional silane compounds other than the compounds represented by the above formulas (B) and (C1) to (C3), hydrolyzable monofunctional silane compounds, hydrolyzable bifunctional silane compounds, and the like.
  • Rc is derived from Rc 1 to Rc 3 in the hydrolyzable silane compounds represented by the above formulas (C1) to (C3)
  • the compounding ratio (molar ratio) of the compounds represented by the formulas (B) and (C1) to (C3) may be adjusted.
  • the value represented by the following (Z2) is set to 0.5 to 1.0, and these compounds are hydrolyzed. And may be produced by a condensation method.
  • the usage-amount and composition of the said hydrolysable silane compound can be suitably adjusted according to the structure of the desired polyorgano silsesquioxane (a1).
  • the hydrolysis and condensation reaction of the hydrolyzable silane compound can be performed simultaneously or sequentially.
  • the order which performs reaction is not specifically limited.
  • the hydrolysis and condensation reaction of the hydrolyzable silane compound can be performed in the presence or absence of a solvent, and is preferably performed in the presence of a solvent.
  • a solvent include aromatic hydrocarbons such as benzene, toluene, xylene and ethylbenzene; ethers such as diethyl ether, dimethoxyethane, tetrahydrofuran and dioxane; ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone; methyl acetate and ethyl acetate.
  • Esters such as isopropyl acetate and butyl acetate; amides such as N, N-dimethylformamide and N, N-dimethylacetamide; nitriles such as acetonitrile, propionitrile and benzonitrile; alcohols such as methanol, ethanol, isopropyl alcohol and butanol Etc.
  • a ketone or ether is preferable.
  • a solvent can be used individually by 1 type and can also be used in combination of 2 or more type.
  • the amount of the solvent used is not particularly limited, and can be appropriately adjusted in the range of 0 to 2000 parts by mass with respect to 100 parts by mass of the total amount of the hydrolyzable silane compound depending on the desired reaction time. .
  • the hydrolysis and condensation reaction of the hydrolyzable silane compound is preferably allowed to proceed in the presence of a catalyst and water.
  • the catalyst may be an acid catalyst or an alkali catalyst.
  • the acid catalyst include mineral acids such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid and boric acid; phosphoric acid esters; carboxylic acids such as acetic acid, formic acid and trifluoroacetic acid; methanesulfonic acid, trifluoromethanesulfonic acid, p -Sulfonic acids such as toluenesulfonic acid; solid acids such as activated clay; Lewis acids such as iron chloride.
  • alkali catalyst examples include alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, potassium hydroxide, and cesium hydroxide; alkaline earth metals such as magnesium hydroxide, calcium hydroxide, and barium hydroxide. Hydroxides; carbonates of alkali metals such as lithium carbonate, sodium carbonate, potassium carbonate, cesium carbonate; carbonates of alkaline earth metals such as magnesium carbonate; lithium hydrogen carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, cesium hydrogen carbonate Alkali metal bicarbonates such as lithium acetate, sodium acetate, potassium acetate, cesium acetate, etc.
  • alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, potassium hydroxide, and cesium hydroxide
  • alkaline earth metals such as magnesium hydroxide, calcium hydroxide, and barium hydroxide.
  • Hydroxides carbonates of alkali metals such as lithium carbonate, sodium carbonate, potassium carbonate, cesium carbonate
  • a catalyst can also be used individually by 1 type and can also be used in combination of 2 or more type. Further, the catalyst can be used in a state dissolved or dispersed in water or
  • the amount of the catalyst used is not particularly limited, and can be appropriately adjusted within a range of 0.002 to 0.200 mol with respect to 1 mol of the total amount of the hydrolyzable silane compound.
  • the amount of water used in the hydrolysis and condensation reaction is not particularly limited, and can be appropriately adjusted within a range of 0.5 to 20 mol with respect to 1 mol of the total amount of the hydrolyzable silane compound.
  • the method for adding water is not particularly limited, and the total amount of water to be used (total amount used) may be added all at once or sequentially. When adding sequentially, you may add continuously or intermittently.
  • reaction conditions for performing the hydrolysis and condensation reaction of the hydrolyzable silane compound it is particularly possible to select reaction conditions such that the condensation rate of the polyorganosilsesquioxane (a1) is 80% or more. is important.
  • the reaction temperature for the hydrolysis and condensation reaction is, for example, 40 to 100 ° C., preferably 45 to 80 ° C. By controlling the reaction temperature within the above range, the condensation rate tends to be controlled to 80% or more.
  • the reaction time for the hydrolysis and condensation reaction is, for example, 0.1 to 10 hours, preferably 1.5 to 8 hours.
  • the hydrolysis and condensation reaction can be performed under normal pressure, or can be performed under pressure or under reduced pressure.
  • the atmosphere for performing the hydrolysis and condensation reaction may be, for example, an inert gas atmosphere such as a nitrogen atmosphere or an argon atmosphere, or in the presence of oxygen such as air. An atmosphere is preferred.
  • a polyorganosilsesquioxane (a1) is obtained by hydrolysis and condensation reaction of the hydrolyzable silane compound. After completion of the hydrolysis and condensation reaction, it is preferable to neutralize the catalyst in order to suppress the ring opening of the epoxy group.
  • polyorganosilsesquioxane (a1) can be combined with, for example, separation means such as water washing, acid washing, alkali washing, filtration, concentration, distillation, extraction, crystallization, recrystallization, column chromatography, and the like. Separation and purification may be performed by separation means or the like.
  • the condensation ratio of the polyorganosilsesquioxane (a1) is preferably 80% or more from the viewpoint of the hardness of the film.
  • the condensation rate is more preferably 90% or more, and further preferably 95% or more.
  • the condensation rate is calculated using a 29 Si NMR (nuclear magnetic resonance) spectrum measurement on a hard coat film sample having a hard coat layer containing a cured product of polyorganosilsesquioxane (a1) and using the measurement result. It is possible.
  • the epoxy group is preferably ring-opened by a polymerization reaction.
  • the ring opening rate of the epoxy group of the cured product of polyorganosilsesquioxane (a1) is preferably 40% or more from the viewpoint of the hardness of the film.
  • the ring opening rate is more preferably 50% or more, and further preferably 60% or more.
  • the ring-opening rate is determined by FT-IR (Fourier Transformed Spectroscopy) single reflection ATR (Attenuated Total) for samples before and after fully curing and heat-treating the composition for forming a hard coat layer containing polyorganosilsesquioxane (a1). It is possible to calculate from the change in peak height derived from the epoxy group.
  • Polyorganosilsesquioxane (a1) may be used alone or in combination of two or more having different structures.
  • the content of the cured product of polyorganosilsesquioxane (a1) is preferably 50% by mass or more, more preferably 70% by mass or more, and further preferably 80% by mass or more with respect to the total mass of the hard coat layer. preferable.
  • composition for forming a hard coat layer only one type of the polymer of the present invention may be used, or two or more types having different structures may be used in combination.
  • the content of the polymer of the present invention in the composition for forming a hard coat layer can be adjusted as appropriate depending on the effect of improving the coating amount and the surface state of the polymer, but the content of the polymer is 0.00.
  • the content is preferably from 001 mass% to 20 mass%, more preferably from 0.005 mass% to 10 mass%, and still more preferably from 0.01 mass% to 1 mass%.
  • Solid content means components other than a solvent.
  • the hard coat layer may contain components other than those described above.
  • the hard coat layer may contain a dispersant, an antifouling agent, an antistatic agent, an ultraviolet absorber, an antioxidant, and the like.
  • the hard coat layer may or may not contain a cured product of a compound having a (meth) acryloyl group.
  • the hard coat layer does not contain a cured product of a compound having a (meth) acryloyl group, or the content of a cured product of a compound having a (meth) acryloyl group is a polyorganosilsesquioxane having a polymerizable group ( It is preferable that it is less than 10 mass% with respect to the total amount of the hardened
  • cured material of the (meth) acrylate compound in a hard-coat layer less than 10 mass%, the deformation
  • the kind of the antistatic agent is not particularly limited, and an ion conductive or electron conductive antistatic agent can be preferably used.
  • an ion conductive or electron conductive antistatic agent can be preferably used.
  • an electron conductive antistatic agent Sepulzida (manufactured by Shin-Etsu Polymer Co., Ltd.) using a polythiophene conductive polymer can be preferably used.
  • the thickness of the hard coat layer is not particularly limited, but is preferably 1 to 100 ⁇ m, more preferably 5 to 50 ⁇ m, and still more preferably 10 to 20 ⁇ m.
  • the thickness of the hard coat layer is calculated by observing the cross section of the hard coat film with an optical microscope.
  • the cross-section sample can be created by a microtome method using a cross-section cutting apparatus ultramicrotome, a cross-section processing method using a focused ion beam (FIB) apparatus, or the like.
  • a preferred embodiment of the hard coat film of the present invention is to have a mixed layer on the surface of the hard coat layer opposite to the substrate side.
  • the mixed layer preferably contains a cured product of the compound (b1) having an epoxy group and a cured product of the compound (b2) having two or more (meth) acryloyl groups in one molecule.
  • the cured product of the compound (b1) having an epoxy group and the cured product of the compound (b2) having two or more (meth) acryloyl groups in one molecule are the compound (b1) having an epoxy group and 2 in one molecule. It is preferable that the curable composition containing the compound (b2) having at least one (meth) acryloyl group is cured by heating and / or irradiation with ionizing radiation.
  • Compound having an epoxy group (b1) As the compound (b1) having an epoxy group (also referred to as “epoxy compound (b1)”), a compound having one or more epoxy groups (oxirane ring) in the molecule can be used, and is not particularly limited. Examples thereof include an epoxy compound containing a ring, an aromatic epoxy compound, an aliphatic epoxy compound, and a polyorganosilsesquioxane (a1) having an epoxy group used for forming the hard coat layer.
  • Examples of the epoxy compound containing an alicyclic ring include known compounds having one or more alicyclic rings and one or more epoxy groups in the molecule, and are not particularly limited. (1) a compound having an alicyclic epoxy group; (2) A compound in which an epoxy group is directly bonded to the alicyclic ring with a single bond; (3) The compound (glycidyl ether type epoxy compound) etc. which have an alicyclic ring and a glycidyl ether group in a molecule
  • numerator are mentioned.
  • Examples of the compound (1) having an alicyclic epoxy group include compounds represented by the following formula (i).
  • Y represents a single bond or a linking group (a divalent group having one or more atoms).
  • the linking group include a divalent hydrocarbon group, an alkenylene group in which part or all of a carbon-carbon double bond is epoxidized, a carbonyl group, an ether bond, an ester bond, a carbonate group, an amide group, and Examples include a group in which a plurality of these are linked.
  • Examples of the divalent hydrocarbon group include a substituted or unsubstituted linear or branched alkylene group having 1 to 18 carbon atoms, a divalent substituted or unsubstituted alicyclic hydrocarbon group, and the like.
  • Examples of the alkylene group having 1 to 18 carbon atoms include methylene group, methylmethylene group, dimethylmethylene group, ethylene group, i-propylene group, and n-propylene group.
  • divalent alicyclic hydrocarbon group examples include 1,2-cyclopentylene group, 1,3-cyclopentylene group, cyclopentylidene group, 1,2-cyclohexylene group, 1,3-cyclopentylene group, And divalent cycloalkylene groups (including cycloalkylidene groups) such as cyclohexylene group, 1,4-cyclohexylene group and cyclohexylidene group.
  • alkenylene group in the alkenylene group in which part or all of the carbon-carbon double bond is epoxidized include, for example, vinylene group, propenylene group, 1-butenylene group And straight-chain or branched alkenylene groups having 2 to 8 carbon atoms such as 2-butenylene group, butadienylene group, pentenylene group, hexenylene group, heptenylene group, octenylene group and the like.
  • the epoxidized alkenylene group is preferably an alkenylene group in which all of the carbon-carbon double bonds are epoxidized, more preferably 2 to 4 carbon atoms in which all of the carbon-carbon double bonds are epoxidized. Alkenylene group.
  • alicyclic epoxy compound represented by the above formula (i) include 3,4,3 ′, 4′-diepoxybicyclohexane, and the following formulas (i-1) to (i-10): The compound etc. which are represented by these are mentioned.
  • l and m each represents an integer of 1 to 30.
  • R ′ in the following formula (i-5) is an alkylene group having 1 to 8 carbon atoms, and in particular, a straight chain having 1 to 3 carbon atoms such as methylene group, ethylene group, n-propylene group, i-propylene group, etc. A chain or branched alkylene group is preferred.
  • n1 to n6 each represents an integer of 1 to 30.
  • Other examples of the alicyclic epoxy compound represented by the above formula (i) include 2,2-bis (3,4-epoxycyclohexyl) propane and 1,2-bis (3,4-epoxycyclohexyl). ) Ethane, 2,3-bis (3,4-epoxycyclohexyl) oxirane, bis (3,4-epoxycyclohexylmethyl) ether and the like.
  • Examples of the compound (2) in which the epoxy group is directly bonded to the alicyclic ring with a single bond include compounds represented by the following formula (ii).
  • R ′′ is a group obtained by removing p hydroxyl groups (—OH) from the structural formula of p-valent alcohol (p-valent organic group), and p and n each represent a natural number.
  • the divalent alcohol [R ′′ (OH) p] include polyhydric alcohols (such as alcohols having 1 to 15 carbon atoms) such as 2,2-bis (hydroxymethyl) -1-butanol.
  • p is preferably 1 to 6
  • n is preferably 1 to 30.
  • n in each group in () (inside the outer parenthesis) may be the same or different.
  • Examples of the compound (3) having an alicyclic ring and a glycidyl ether group in the molecule include glycidyl ethers of alicyclic alcohols (particularly alicyclic polyhydric alcohols). More specifically, for example, 2,2-bis [4- (2,3-epoxypropoxy) cyclohexyl] propane, 2,2-bis [3,5-dimethyl-4- (2,3-epoxypropoxy) Compound obtained by hydrogenating bisphenol A type epoxy compound such as cyclohexyl] propane (hydrogenated bisphenol A type epoxy compound); bis [o, o- (2,3-epoxypropoxy) cyclohexyl] methane, bis [o , P- (2,3-epoxypropoxy) cyclohexyl] methane, bis [p, p- (2,3-epoxypropoxy) cyclohexyl] methane, bis [3,5-dimethyl-4- (2, 3-Epoxypropoxy) cycl
  • aromatic epoxy compound examples include epibis type glycidyl ether type epoxy resins obtained by condensation reaction of bisphenols [for example, bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol and the like] and epihalohydrin; High molecular weight epibis type glycidyl ether type epoxy resin obtained by addition reaction of bis type glycidyl ether type epoxy resin with the above bisphenols; phenols [eg, phenol, cresol, xylenol, resorcin, catechol, bisphenol A, bisphenol F, bisphenol S, etc.] and aldehyde [eg, formaldehyde, acetaldehyde, benzaldehyde, hydroxybenzaldehyde, salicy A novolak alkyl type glycidyl ether type epoxy resin obtained by further condensing a polyhydric alcohol obtained by a condensation reaction with an aldehyde etc.
  • bisphenols for example, bisphenol A, bis
  • an epoxy compound in which a glycidyl group is bonded to an oxygen atom obtained by removing a hydrogen atom from the hydroxy group of the phenol skeleton, either directly or via an alkyleneoxy group is bonded to an epoxy compound in which a glycidyl group is bonded to an oxygen atom obtained by removing a hydrogen atom from the hydroxy group of the phenol skeleton, either directly or via an alkyleneoxy group.
  • aliphatic epoxy compound examples include glycidyl ethers of alcohols (s is a natural number) having no s-valent cyclic structure; monovalent or polyvalent carboxylic acids [for example, acetic acid, propionic acid, butyric acid, stearic acid, Adipic acid, sebacic acid, maleic acid, itaconic acid, etc.] glycidyl ester; epoxidized oils and fats having double bonds such as epoxidized linseed oil, epoxidized soybean oil, epoxidized castor oil; Epoxidized product of alkadiene).
  • glycidyl ethers of alcohols s is a natural number
  • monovalent or polyvalent carboxylic acids for example, acetic acid, propionic acid, butyric acid, stearic acid, Adipic acid, sebacic acid, maleic acid, itaconic acid, etc.
  • glycidyl ester examples include epoxidized oils
  • Examples of the alcohol having no s-valent cyclic structure include monohydric alcohols such as methanol, ethanol, 1-propyl alcohol, isopropyl alcohol, 1-butanol; ethylene glycol, 1,2-propanediol, 1 Divalent alcohols such as 1,3-propanediol, 1,4-butanediol, neopentyl glycol, 1,6-hexanediol, diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, polyethylene glycol, polypropylene glycol; Examples include trihydric or higher polyhydric alcohols such as glycerin, diglycerin, erythritol, trimethylolethane, trimethylolpropane, pentaerythritol, dipentaerythritol, and sorbitol. That.
  • the s-valent alcohol may be polyether polyol, polyester polyol, polycarbonate polyo
  • the epoxy compound (b1) is preferably a polyorganosilsesquioxane having an epoxy group, and the preferred range is the same as that of the polyorganosilsesquioxane (a1) having an epoxy group of the hard coat layer described above. .
  • the epoxy compound (b1) may be used alone or in combination of two or more different structures.
  • the content of the cured product of the epoxy compound (b1) is preferably 10% by mass to 90% by mass, more preferably 20% by mass to 80% by mass, and more preferably 25% by mass with respect to the total mass of the mixed layer. More preferably, it is 75 mass% or less.
  • Compound (b2) having two or more (meth) acryloyl groups in one molecule Compound (b2) having two or more (meth) acryloyl groups in one molecule (also referred to as “polyfunctional (meth) acrylate compound (b2)”) has three or more (meth) acryloyl groups in one molecule. It is preferable that it is a compound which has this.
  • the polyfunctional (meth) acrylate compound (b2) may be a crosslinkable monomer, a crosslinkable oligomer, or a crosslinkable polymer.
  • Examples of the polyfunctional (meth) acrylate compound (b2) include esters of polyhydric alcohols and (meth) acrylic acid. Specifically, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylolethane tri (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, dipenta Examples include erythritol tetra (meth) acrylate, dipentaerythritol pentaacrylate, dipentaerythritol hexaacrylate, pentaerythritol hexa (meth) acrylate, etc., but in terms of high crosslinking, pentaerythritol triacrylate, pentaerythritol tetraacrylate, or dipentaerythritol Pen
  • the content of the cured product of the polyfunctional (meth) acrylate compound (b2) in the mixed layer is 10 mass relative to the total amount of the cured product of the epoxy compound (b1) and the cured product of the polyfunctional (meth) acrylate compound (b2). % Or more is preferable.
  • the content of the cured product of the polyfunctional (meth) acrylate compound (b2) in the mixed layer is 10 with respect to the total amount of the cured product of the epoxy compound (b1) and the cured product of the polyfunctional (meth) acrylate compound (b2). % By mass to 90% by mass is preferable, and 20% by mass to 80% by mass is more preferable.
  • the mixed layer may contain components other than those described above, for example, a dispersant, a leveling agent, an antifouling agent, an antistatic agent, an ultraviolet absorber, an antioxidant, a cured product of another polymerizable compound, and the like. You may contain.
  • the kind of the antistatic agent is not particularly limited, and an ion conductive or electron conductive antistatic agent can be preferably used.
  • an ion conductive or electron conductive antistatic agent can be preferably used.
  • As a specific example of the electron conductive antistatic agent Sepulzida (manufactured by Shin-Etsu Polymer Co., Ltd.) using a polythiophene conductive polymer can be preferably used.
  • a general-purpose leveling agent can be used as the leveling agent, but it is also preferable to use the modifier of the present invention.
  • cured products of other polymerizable compounds include cured products of compounds having an epoxy group and a (meth) acryloyl group in one molecule.
  • Specific examples of the compound include Daicel Cyclomer M100, Kyoeisha Chemical Co., Ltd. trade name Light Ester G, Nippon Kasei Chemical Co., Ltd. 4HBAGE, Showa Polymers trade name SP series, such as SP-1506, 500, SP-1507. 480, VR series such as VR-77, trade names EA-1010 / ECA, EA-1120, EA-1025, EA-6310 / ECA manufactured by Shin-Nakamura Chemical Co., Ltd.
  • the thickness of the mixed layer is preferably 0.05 ⁇ m to 10 ⁇ m. When the thickness is 0.05 ⁇ m or more, the scratch resistance of the film is improved, and when the thickness is 10 ⁇ m or less, the hardness and the repeated bending resistance are improved.
  • the thickness of the mixed layer is more preferably from 0.1 ⁇ m to 5 ⁇ m, still more preferably from 0.1 ⁇ m to 3 ⁇ m.
  • the total thickness of the mixed layer and the scratch-resistant layer is preferably within the above range.
  • the hard coat layer and the mixed layer are preferably bonded by a covalent bond.
  • the epoxy group of the polyorganosilsesquioxane (a1) in the hard coat layer and the epoxy group of the epoxy compound (b1) in the mixed layer form a bond at the interface of both layers.
  • the hard coat film of the present invention may further have other layers in addition to the hard coat layer and the mixed layer.
  • an embodiment having a hard coat layer on both sides of a substrate, an embodiment having an easy-adhesion layer for improving adhesion between the substrate and the hard coat layer, an antistatic layer for imparting antistatic properties Preferred examples include an aspect having an antifouling layer for imparting antifouling property and an aspect having an abrasion resistant layer for imparting scratch resistance on the mixed layer, and a plurality of these may be provided.
  • the hard coat film of the present invention preferably has a scratch-resistant layer on the surface of the mixed layer opposite to the hard coat layer, whereby the scratch resistance can be further improved.
  • the scratch-resistant layer preferably contains a cured product of the compound (c1) having two or more (meth) acryloyl groups in one molecule (also referred to as “polyfunctional (meth) acrylate compound (c1)”).
  • the polyfunctional (meth) acrylate compound (c1) is the same as the above-mentioned polyfunctional (meth) acrylate compound (b2), and the preferred range is also the same.
  • Only one type of polyfunctional (meth) acrylate compound (c1) may be used, or two or more types having different structures may be used in combination.
  • the content of the cured product of the polyfunctional (meth) acrylate compound (c1) is preferably 80% by mass or more, more preferably 85% by mass or more, and more preferably 90% by mass or more with respect to the total mass of the scratch-resistant layer. Further preferred.
  • the scratch-resistant layer may contain components other than those described above, and may contain, for example, inorganic particles, leveling agents, antifouling agents, antistatic agents, slip agents, antioxidants, and the like. In particular, it is preferable to contain the following fluorine-containing compound as a slipping agent.
  • the kind of the antistatic agent is not particularly limited, and an ion conductive or electron conductive antistatic agent can be preferably used.
  • As a specific example of the electron conductive antistatic agent Sepulzida (manufactured by Shin-Etsu Polymer Co., Ltd.) using a polythiophene conductive polymer can be preferably used.
  • the fluorine-containing compound may be a monomer, oligomer, or polymer.
  • the fluorine-containing compound preferably has a substituent that contributes to bond formation or compatibility with the polyfunctional (meth) acrylate compound (c1) in the scratch-resistant layer. These substituents may be the same or different, and a plurality of substituents are preferable.
  • This substituent is preferably a polymerizable group, and may be any polymerizable reactive group exhibiting any one of radical polymerizable, cationic polymerizable, anionic polymerizable, polycondensable and addition polymerizable.
  • Examples of preferable substituents Includes acryloyl group, methacryloyl group, vinyl group, allyl group, cinnamoyl group, epoxy group, oxetanyl group, hydroxyl group, polyoxyalkylene group, carboxyl group, and amino group. Of these, a radical polymerizable group is preferable, and an acryloyl group and a methacryloyl group are particularly preferable.
  • the fluorine-containing compound may be a polymer or an oligomer with a compound containing no fluorine atom.
  • the fluorine-containing compound is preferably a fluorine-based compound represented by the following general formula (F).
  • R A represents a polymerizable unsaturated group.
  • the polymerizable unsaturated group is preferably a group having an unsaturated bond that can cause a radical polymerization reaction by irradiation with an active energy ray such as an ultraviolet ray or an electron beam (that is, a radical polymerizable group).
  • an active energy ray such as an ultraviolet ray or an electron beam
  • examples include acryloyl group, (meth) acryloyloxy group, vinyl group, allyl group, (meth) acryloyl group, (meth) acryloyloxy group, and groups in which any hydrogen atom in these groups is substituted with a fluorine atom Is preferably used.
  • Rf represents a (per) fluoroalkyl group or a (per) fluoropolyether group.
  • the (per) fluoroalkyl group represents at least one of a fluoroalkyl group and a perfluoroalkyl group
  • the (per) fluoropolyether group is at least one of a fluoropolyether group and a perfluoropolyether group.
  • the (per) fluoroalkyl group is preferably a group having 1 to 20 carbon atoms, more preferably a group having 1 to 10 carbon atoms.
  • the (per) fluoroalkyl group has a linear structure (for example, —CF 2 CF 3 , —CH 2 (CF 2 ) 4 H, —CH 2 (CF 2 ) 8 CF 3 , —CH 2 CH 2 (CF 2 ) 4 H) even in branched structures (eg —CH (CF 3 ) 2 , —CH 2 CF (CF 3 ) 2 , —CH (CH 3 ) CF 2 CF 3 , —CH (CH 3 ) (CF 2 ) 5 CF 2 H) even in an alicyclic structure (preferably a 5- or 6-membered ring, such as a perfluorocyclohexyl group and a perfluorocyclopentyl group and an alkyl group substituted with these groups) There may be.
  • the (per) fluoropolyether group refers to a case where the (per) fluoroalkyl group has an ether bond, and may be a monovalent or divalent group.
  • the fluoropolyether group include —CH 2 OCH 2 CF 2 CF 3 , —CH 2 CH 2 OCH 2 C 4 F 8 H, —CH 2 CH 2 OCH 2 CH 2 C 8 F 17 , —CH 2 CH 2 OCF 2 CF 2 OCF 2 CF 2 H, C 4-20 fluorocycloalkyl group having 4 or more fluorine atoms, and the like can be given.
  • perfluoropolyether group for example, — (CF 2 O) pf — (CF 2 CF 2 O) qf —, — [CF (CF 3 ) CF 2 O] pf — [CF (CF 3 )] qf -,-(CF 2 CF 2 CF 2 O) pf -,-(CF 2 CF 2 O) pf- and the like.
  • the above pf and qf each independently represents an integer of 0 to 20. However, pf + qf is an integer of 1 or more.
  • the total of pf and qf is preferably 1 to 83, more preferably 1 to 43, and still more preferably 5 to 23.
  • the fluorine-containing compound preferably has a perfluoropolyether group represented by — (CF 2 O) pf — (CF 2 CF 2 O) qf — from the viewpoint of excellent scratch resistance.
  • the fluorine-containing compound preferably has a perfluoropolyether group and a plurality of polymerizable unsaturated groups in one molecule.
  • W represents a linking group.
  • W include an alkylene group, an arylene group, a heteroalkylene group, and a linking group obtained by combining these groups. These linking groups may further have an oxy group, a carbonyl group, a carbonyloxy group, a carbonylimino group, a sulfonamide group, and the like, and a functional group in which these groups are combined.
  • W is preferably an ethylene group, more preferably an ethylene group bonded to a carbonylimino group.
  • the fluorine atom content of the fluorine-containing compound is not particularly limited, but is preferably 20% by mass or more, more preferably 30 to 70% by mass, and further preferably 40 to 70% by mass.
  • fluorine-containing compounds examples include R-2020, M-2020, R-3833, M-3833, Optool DAC (trade name) manufactured by Daikin Chemical Industries, Ltd., and MegaFac F-171 manufactured by DIC. , F-172, F-179A, RS-78, RS-90, defender MCF-300 and MCF-323 (named above), but are not limited thereto.
  • the product of nf and mf (nf ⁇ mf) is preferably 2 or more, and more preferably 4 or more.
  • the weight average molecular weight (Mw) of the fluorine-containing compound having a polymerizable unsaturated group can be measured using molecular exclusion chromatography, for example, gel permeation chromatography (GPC).
  • Mw of the fluorine-containing compound used in the present invention is preferably 400 or more and less than 50000, more preferably 400 or more and less than 30000, and still more preferably 400 or more and less than 25000.
  • the addition amount of the fluorine-containing compound is preferably 0.01 to 5% by mass, more preferably 0.1 to 5% by mass, still more preferably 0.5 to 5% by mass, based on the total mass of the scratch-resistant layer. 0.5 to 2% by mass is particularly preferable.
  • the film thickness of the scratch-resistant layer is preferably 0.1 ⁇ m to 4 ⁇ m, more preferably 0.1 ⁇ m to 2 ⁇ m, and particularly preferably 0.1 ⁇ m to 1 ⁇ m. Further, the total thickness of the mixed layer and the scratch-resistant layer is preferably 0.1 ⁇ m to 10 ⁇ m.
  • the method for producing the hard coat film of the present invention is not particularly limited.
  • the hard coat film is a hard coat film having a hard coat layer on the substrate
  • a method of completely curing the hard coat layer after applying the composition for forming a hard coat layer on the substrate may be mentioned.
  • the hard coat film is a hard coat film having a substrate, a hard coat layer, and a mixed layer in this order
  • a hard coat layer forming composition is applied and semi-cured on the substrate
  • a method (Aspect A) in which each layer is fully cured after the composition for forming a mixed layer is applied onto the semi-cured hard coat layer.
  • the composition for forming a mixed layer is applied and then semi-cured, and the composition for forming the scratch-resistant layer is applied onto the semi-cured mixed layer. Thereafter, it is preferable to completely cure each layer.
  • a means for forming a mixed layer in the hard coat film an uncured or semi-cured hard coat layer and an abrasion-resistant layer are laminated on a substrate, and an interface at the interface between the two is obtained. After the formation of the mixed layer by mixing, an embodiment in which a method of fully curing each layer is employed.
  • a laminate in which an uncured hard coat layer is formed on a substrate and an uncured scratch resistant layer is separately formed on a temporary support is prepared, and the scratch resistant layer side of the laminate is the hard scratch layer side.
  • compositions for forming a hard coat layer a composition containing the polymer of the present invention and a polyorganosilsesquioxane (a1) containing an epoxy group
  • an epoxy compound (b1) and Example A will be described in detail by using a specific example of each of the compositions containing the polyfunctional (meth) acrylate compound (b2).
  • Aspect A is specifically a production method including the following steps (I) to (IV).
  • Step (I) is a step of providing a coating film by applying a composition for forming a hard coat layer containing the above-mentioned polyorganosilsesquioxane (a1) containing an epoxy group on a substrate.
  • the substrate is as described above.
  • the composition for forming a hard coat layer is a composition for forming the aforementioned hard coat layer.
  • the composition for forming a hard coat layer usually takes the form of a liquid.
  • the composition for forming a hard coat layer is obtained by dissolving or dispersing a polymer, a polyorganosilsesquioxane (a1) containing an epoxy group, and various additives and a polymerization initiator as required. It is preferable to be prepared.
  • the concentration of the solid content is generally about 10 to 90% by mass, preferably 20 to 80% by mass, and particularly preferably about 40 to 70% by mass.
  • the polyorganosilsesquioxane (a1) contains a cationic polymerizable group (epoxy group).
  • the composition for forming a hard coat layer preferably contains a cationic photopolymerization initiator in order to initiate and advance the polymerization reaction of the polyorganosilsesquioxane (a1) by light irradiation. Only one cationic photopolymerization initiator may be used, or two or more cationic photopolymerization initiators having different structures may be used in combination. Hereinafter, the cationic photopolymerization initiator will be described.
  • cationic photopolymerization initiator Any cationic photopolymerization initiator may be used as long as it can generate a cation as an active species by light irradiation, and any known cationic photopolymerization initiator can be used without any limitation. Specific examples include known sulfonium salts, ammonium salts, iodonium salts (for example, diaryl iodonium salts), triaryl sulfonium salts, diazonium salts, iminium salts, and the like.
  • cationic photopolymerization initiators represented by formulas (25) to (28) shown in paragraphs 0050 to 0053 of JP-A-8-143806, paragraphs of JP-A-8-283320
  • the cationic photopolymerization initiator can be synthesized by a known method, and is also available as a commercial product. Examples of commercially available products include CI-1370, CI-2064, CI-2397, CI-2624, CI-2939, CI-2734, CI-2758, CI-2823, CI-2855 and CI-5102 manufactured by Nippon Soda Co., Ltd.
  • a diazonium salt, an iodonium salt, a sulfonium salt, and an iminium salt are preferable from the viewpoint of the sensitivity of the photopolymerization initiator to light and the stability of the compound. In terms of weather resistance, iodonium salts are most preferred.
  • iodonium salt cationic photopolymerization initiators include, for example, B2380 manufactured by Tokyo Chemical Industry Co., Ltd., BBI-102 manufactured by Midori Chemical Co., Ltd., WPI-113 manufactured by Wako Pure Chemical Industries, Ltd. Examples include WPI-124, WPI-169 manufactured by Wako Pure Chemical Industries, WPI-170 manufactured by Wako Pure Chemical Industries, and DTBPI-PFBS manufactured by Toyo Gosei Chemical.
  • the content of the polymerization initiator in the hard coat layer forming composition may be appropriately adjusted within a range in which the polymerization reaction (cationic polymerization) of the polyorganosilsesquioxane (a1) proceeds well, and is particularly limited. It is not something.
  • the amount is, for example, in the range of 0.1 to 200 parts by weight, preferably 1 to 20 parts by weight, more preferably 1 to 5 parts by weight with respect to 100 parts by weight of the polyorganosilsesquioxane (a1). .
  • the composition for forming a hard coat layer may further contain one or more optional components in addition to the polymer, polyorganosilsesquioxane (a1), and polymerization initiator.
  • the optional component include a solvent and various additives.
  • the solvent that can be included as an optional component is preferably an organic solvent, and one or two or more organic solvents can be mixed and used in an arbitrary ratio.
  • organic solvent include alcohols such as methanol, ethanol, propanol, n-butanol and i-butanol; ketones such as acetone, methyl isobutyl ketone, methyl ethyl ketone and cyclohexanone; cellosolves such as ethyl cellosolve; toluene And aromatics such as xylene; glycol ethers such as propylene glycol monomethyl ether; acetates such as methyl acetate, ethyl acetate and butyl acetate; diacetone alcohol and the like.
  • the amount of the solvent in the composition can be appropriately adjusted within a range that can ensure the coating suitability of the composition.
  • the amount can be 50 to 500 parts by mass, preferably 80 to 200 parts by mass with respect to 100 parts by mass of the total amount of the modifier, polyorganosilsesquioxane (a1) and the polymerization initiator. be able to.
  • the composition can optionally contain one or more known additives as required.
  • additives include dispersants, antifouling agents, antistatic agents, ultraviolet absorbers, and antioxidants.
  • dispersants include dispersants, antifouling agents, antistatic agents, ultraviolet absorbers, and antioxidants.
  • dispersants include dispersants, antifouling agents, antistatic agents, ultraviolet absorbers, and antioxidants.
  • antifouling agents include dispersants, antifouling agents, antistatic agents, ultraviolet absorbers, and antioxidants.
  • antioxidants for details thereof, reference can be made to, for example, paragraphs 0032 to 0034 of JP2012-229212A.
  • the present invention is not limited to these, and various additives that can be generally used in the polymerizable composition can be used.
  • what is necessary is just to adjust the addition amount of the additive to a composition suitably, and is not specifically limited.
  • composition for forming a hard coat layer used in the present invention can be prepared by mixing the various components described above simultaneously or sequentially in an arbitrary order.
  • the preparation method is not particularly limited, and a known stirrer or the like can be used for the preparation.
  • a method for applying the composition for forming a hard coat layer is not particularly limited, and a known method can be used. Examples include dip coating, air knife coating, curtain coating, roller coating, wire bar coating, gravure coating, and die coating.
  • Step (II) is a step of semi-curing the coating film (i).
  • an X-ray, an electron beam, an ultraviolet-ray, visible light, infrared rays etc. are mentioned, an ultraviolet-ray is used preferably.
  • the coating film is UV curable, it is to cure the curable compound by irradiation with irradiation dose of ultraviolet rays 2mJ / cm 2 ⁇ 1000mJ / cm 2 by an ultraviolet lamp preferred. More preferably 2mJ / cm 2 ⁇ 100mJ / cm 2, and further preferably from 5mJ / cm 2 ⁇ 50mJ / cm 2.
  • the ultraviolet lamp type a metal halide lamp, a high-pressure mercury lamp, or the like is preferably used.
  • the oxygen concentration at the time of curing is not particularly limited, but when it contains a component that easily undergoes curing inhibition (a compound having a (meth) acryloyl group), the oxygen concentration should be adjusted to 0.1 to 2.0% by volume. It is preferable because a semi-cured state in which the surface functionality remains can be formed. In addition, when it does not contain components that are susceptible to curing inhibition (compounds having a (meth) acryloyl group), the atmosphere at the time of curing is replaced with dry nitrogen, so that the epoxy group reacts with water vapor in the air. This is preferable because it can be removed.
  • a drying treatment may be performed after step (I), before step (II), after step (II), before step (III), or both.
  • the drying process can be performed by blowing warm air, disposing in a heating furnace, conveying in the heating furnace, or the like.
  • the heating temperature may be set to a temperature at which the solvent can be removed by drying, and is not particularly limited.
  • the heating temperature refers to the temperature of warm air or the atmospheric temperature in the heating furnace.
  • the hard coat film of the present invention has a laminated structure with high adhesion, and can exhibit higher scratch resistance.
  • the mixed layer forming composition containing the epoxy compound (b1) and the polyfunctional (meth) acrylate compound (b2) is applied onto the semi-cured coating film (i).
  • the composition for forming a mixed layer is a composition for forming the aforementioned mixed layer.
  • the composition for forming a mixed layer usually takes the form of a liquid.
  • the mixed layer forming composition is prepared by dissolving or dispersing the epoxy compound (b1), the polyfunctional (meth) acrylate compound (b2), and various additives and a polymerization initiator in an appropriate solvent as necessary. It is preferable to be prepared.
  • the concentration of the solid content is generally about 2 to 90% by mass, preferably 2 to 80% by mass, and particularly preferably about 2 to 70% by mass.
  • the composition for mixed layer formation contains an epoxy compound (b1) (cationic polymerizable compound) and a polyfunctional (meth) acrylate compound (b2) (radical polymerizable compound).
  • the mixed layer forming composition preferably contains a radical photopolymerization initiator and a cationic photopolymerization initiator. Only one radical photopolymerization initiator may be used, or two or more radical photopolymerization initiators having different structures may be used in combination. The same applies to the cationic photopolymerization initiator.
  • each photoinitiator is demonstrated one by one.
  • radical photopolymerization initiator Any radical photopolymerization initiator may be used as long as it can generate radicals as active species by light irradiation, and any known radical photopolymerization initiator can be used without any limitation. Specific examples include, for example, diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, benzyldimethyl ketal, 4- (2-hydroxyethoxy) phenyl- (2-hydroxy-2-propyl) ) Ketone, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-2-morpholino (4-thiomethylphenyl) propan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) butanone, 2 -Hydroxy-2-methyl-1- [4- (1-methylvinyl) phenyl] propanone oligomer, 2-hydroxy-1- ⁇ 4- [4- (2-hydroxy-2-methyl-propionyl)
  • Ruphosphine oxides and the like.
  • the above radical photopolymerization initiators and auxiliaries can be synthesized by known methods and can also be obtained as commercial products.
  • the content of the radical photopolymerization initiator in the mixed layer forming composition is not particularly limited as long as the polymerization reaction (radical polymerization) of the radical polymerizable compound proceeds favorably. .
  • the content of the radical photopolymerization initiator in the mixed layer forming composition is not particularly limited as long as the polymerization reaction (radical polymerization) of the radical polymerizable compound proceeds favorably.
  • the range of 0.1 to 20 parts by mass preferably in the range of 0.5 to 10 parts by mass, and more preferably in the range of 1 to 10 parts by mass with respect to 100 parts by mass of the radically polymerizable compound contained in the composition. It is.
  • the cationic photoinitiator which can be included in the above-mentioned composition for hard-coat layer formation is mentioned.
  • the content of the cationic photopolymerization initiator in the mixed layer forming composition is not particularly limited as long as the polymerization reaction (cationic polymerization) of the cationic polymerizable compound proceeds favorably. .
  • the amount is, for example, in the range of 0.1 to 200 parts by weight, preferably 1 to 150 parts by weight, more preferably 1 to 100 parts by weight with respect to 100 parts by weight of the cationic polymerizable compound.
  • the composition for forming a mixed layer may further contain one or more optional components in addition to the epoxy compound (b1), the polyfunctional (meth) acrylate compound (b2), and the polymerization initiator.
  • the optional component include solvents and various additives that can be used in the hard coat layer forming composition.
  • composition for forming a mixed layer used in the present invention can be prepared by mixing the various components described above simultaneously or sequentially in an arbitrary order.
  • the preparation method is not particularly limited, and a known stirrer or the like can be used for the preparation.
  • composition for mixed layer formation it does not specifically limit as a coating method of the composition for mixed layer formation, A well-known method can be used.
  • Step (IV) is a step in which the coating film (i) and the coating film (ii) are fully cured.
  • the coating film is preferably cured by irradiating ionizing radiation from the coating film side.
  • the ionizing radiation for hardening the coating film (i) can be used suitably in the said process (II).
  • the irradiation dose of ionizing radiation for example when the coating film is ultraviolet-curable, preferably to cure the curable compound by irradiation with irradiation dose of ultraviolet rays of 10mJ / cm 2 ⁇ 6000mJ / cm 2 by an ultraviolet lamp. More preferably 50mJ / cm 2 ⁇ 6000mJ / cm 2, further preferably 100mJ / cm 2 ⁇ 6000mJ / cm 2. It is also preferable to combine heating during irradiation with ionizing radiation in order to accelerate the curing of the coating film.
  • the heating temperature is preferably 40 ° C. or higher and 140 ° C. or lower, and preferably 60 ° C. or higher and 140 ° C. or lower. It is also preferable to irradiate ionizing radiation multiple times.
  • the oxygen concentration at the time of curing is preferably 0 to 1.0% by volume, more preferably 0 to 0.1% by volume, and most preferably 0 to 0.05% by volume.
  • step (IV ′) A step of semi-curing the coating film (ii) formed in the step (III).
  • Step (IV ′) is a step of semi-curing the coating film (ii) formed in the step (III).
  • the coating film is preferably cured by irradiating ionizing radiation from the coating film side.
  • the ionizing radiation and irradiation amount for semi-hardening the coating film (i) can be used suitably.
  • a drying treatment may be performed after step (III), before step (IV ′), after step (IV ′), before step (V), or both.
  • the (meth) acryloyl group in the polyfunctional (meth) acrylate compound (c1) contained in the composition for forming a scratch-resistant layer forms a bond in the step (VI) described later.
  • the hard coat film of the present invention has a laminated structure with high adhesion, and can exhibit higher scratch resistance.
  • the oxygen concentration during curing is not particularly limited, but it is preferable to adjust the oxygen concentration to 0.1 to 2.0% by volume.
  • the semi-curing can be adjusted by setting the oxygen concentration in the above range.
  • the scratch-resistant layer-forming composition containing the polyfunctional (meth) acrylate compound (c1) is applied onto the semi-cured coating film (ii) to form a coating film (iii). It is a process.
  • the composition for forming a scratch-resistant layer is a composition for forming the aforementioned scratch-resistant layer.
  • the composition for forming a scratch-resistant layer usually takes the form of a liquid.
  • the composition for forming a scratch-resistant layer may be prepared by dissolving or dispersing the polyfunctional (meth) acrylate compound (c1) and, if necessary, various additives and a polymerization initiator in an appropriate solvent. preferable.
  • the concentration of the solid content is generally about 2 to 90% by mass, preferably 2 to 80% by mass, and particularly preferably about 2 to 70% by mass.
  • the composition for forming a scratch-resistant layer contains a polyfunctional (meth) acrylate compound (c1) (radical polymerizable compound).
  • the scratch-resistant layer-forming composition preferably contains a radical photopolymerization initiator. Only one radical photopolymerization initiator may be used, or two or more radical photopolymerization initiators having different structures may be used in combination.
  • a radical photoinitiator the radical photoinitiator which can be contained in the above-mentioned composition for mixed layer formation is mentioned.
  • the content of the radical photopolymerization initiator in the composition for forming a scratch-resistant layer is not particularly limited as long as the polymerization reaction (radical polymerization) of the radical polymerizable compound proceeds favorably. .
  • the polymerization reaction (radical polymerization) of the radical polymerizable compound proceeds favorably.
  • the range of 0.1 to 20 parts by mass preferably in the range of 0.5 to 10 parts by mass, and more preferably in the range of 1 to 10 parts by mass with respect to 100 parts by mass of the radically polymerizable compound contained in the composition. It is.
  • the mixed layer forming composition may further contain one or more optional components in addition to the polyfunctional (meth) acrylate compound (c1) and the polymerization initiator.
  • the optional component include the solvent and various additives that can be used in the hard coat layer forming composition in addition to the fluorine-containing compound.
  • composition for forming a scratch-resistant layer used in the present invention can be prepared by mixing the various components described above simultaneously or sequentially in any order.
  • the preparation method is not particularly limited, and a known stirrer or the like can be used for the preparation.
  • a method for applying the composition for forming a scratch-resistant layer is not particularly limited, and a known method can be used.
  • Step (VI) is a step in which the coating film (i), coating film (ii), and coating film (iii) are fully cured.
  • the coating film is preferably cured by irradiating ionizing radiation from the coating film side.
  • the ionizing radiation and irradiation amount for hardening a coating film (i) and a coating film (ii) can be used suitably in the said process (IV).
  • a drying treatment may be performed as necessary.
  • the embodiment D is specifically a production method including the following steps (I) to (IV ′′).
  • step (I) a hard coat layer-forming composition containing the above-described polymer and an epoxy group-containing polyorganosilsesquioxane (a1) is applied on a substrate to form a coating film (i). It is a process.
  • the details of the step (I) are as described in the step (I) of the embodiment A.
  • Step (II) is a step of semi-curing the coating film (i).
  • the curing conditions and drying treatment in step (II) are as described above in step (II) of aspect A.
  • the coating (i) in step (II) is semi-cured.
  • the composition for forming a scratch-resistant layer containing the polyfunctional (meth) acrylate compound (c1) can easily penetrate and form a mixed layer. It becomes easy to do.
  • the hard coat film of the present invention has a laminated structure with high interlayer adhesion, and can exhibit higher scratch resistance.
  • the composition for forming a scratch-resistant layer containing the polyfunctional (meth) acrylate compound (c1) is applied onto the semi-cured coating film (i), and the mixed layer ( This is a step of forming ii) and a coating film (iii).
  • the composition for forming a scratch-resistant layer is a composition for forming the aforementioned scratch-resistant layer. Since the polyfunctional (meth) acrylate compound (c1), the solvent, and the solid content in the composition for forming a scratch-resistant layer in the step (III ′) are different from those in the aspect A, the details will be described later.
  • the method for adjusting the polymerization initiator, optional components, and composition is as described in the step (V) of aspect A.
  • the polyfunctional (meth) acrylate compound (c1) in the embodiment D preferably contains 20% or more of a polyfunctional (meth) acrylate compound having a molecular weight of 400 or less. By containing 20% or more of a compound having a molecular weight of 400 or less, the composition for forming an abrasion-resistant layer is likely to penetrate and a mixed layer is easily formed.
  • the polyfunctional (meth) acrylate compound having a molecular weight of 400 or less is not particularly limited.
  • KAYARAD PET-30 manufactured by Nippon Kayaku Co., Ltd.
  • KAYARAD TMPTA manufactured by Nippon Kayaku Co., Ltd.
  • pentaerythritol examples include tetraacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd.).
  • solvent As the solvent in the embodiment D, it is preferable to use a solvent having a high affinity with the hard coat layer from the viewpoint of allowing the polyfunctional (meth) acrylate compound (c1) to be soaked and forming a mixed layer easily.
  • the affinity between the solvent and the hard coat layer can be determined from the haze increase value of the hard coat layer when the hard coat layer is immersed in various solvents. That is, it can be determined that the higher the haze increase value, the higher the affinity of the solvent for the hard coat layer.
  • the hard coat layer is an alicyclic epoxy group-containing polyorganosilsesquioxane
  • Methyl and toluene are more preferred.
  • the solid content of the composition for forming a scratch-resistant layer in aspect D can be appropriately adjusted by the composition for forming a hard coat layer or the polyfunctional (meth) acrylate compound (c1), but is preferably 40% or less. 20% or less is more preferable.
  • the composition for forming an abrasion-resistant layer can easily penetrate into the hard coat layer, and the mixed layer (ii) can be easily formed.
  • the hard coat film of the present invention tends to have a laminated structure with high interlayer adhesion, and higher scratch resistance is easily obtained.
  • Step (IV ′′) is a step of subjecting the coating film (i), the mixed layer (ii) formed by soaking, and the coating film (iii) to a total curing treatment.
  • the curing conditions and the drying treatment in the step (IV ′′) are as described in the step (IV) of the aspect A.
  • a drying treatment may be performed as necessary.
  • the present invention also relates to an article provided with the above-described hard coat film of the present invention and an image display device including the hard coat film of the present invention as a surface protective film.
  • the hard coat film of the present invention is particularly preferably applied to a flexible display in a smartphone or the like.
  • a 200 ml three-necked flask equipped with a stirrer, a thermometer, a reflux condenser, and a nitrogen gas inlet tube was charged with 25.0 g of t-amyl alcohol and heated to 120 ° C.
  • the structure and weight average molecular weight (Mw) of the polymer are as shown in Table 1 below.
  • the composition ratio in Table 1 represents the charge ratio of each raw material monomer used for polymer synthesis in terms of mass ratio.
  • Table 1 below also describes the type and amount of polymerization initiator used in the synthesis (molar ratio relative to monomer (K1)).
  • the monomer (K2) represented by the abbreviations in Table 1 is as follows.
  • FM-0711 Silaplane FM-0711 (manufactured by JNC Corporation, reactive silicone)
  • each polymer is as follows. In each of the following structures, in order from the left, the structure is derived from the monomer (K2) and the structure is derived from the monomer (K1).
  • ⁇ Preparation of base material> (Manufacture of polyimide powder) Under a nitrogen stream, 832 g of N, N-dimethylacetamide (DMAc) was added to a 1 L reactor equipped with a stirrer, a nitrogen injection device, a dropping funnel, a temperature controller and a condenser, and then the temperature of the reactor was adjusted to 25. C. To this, 64.046 g (0.2 mol) of bistrifluoromethylbenzidine (TFDB) was added and dissolved.
  • DMAc N, N-dimethylacetamide
  • a nitrogen-substituted polymerization tank was charged with a compound represented by formula (1), a compound represented by formula (2), a compound represented by formula (3), a catalyst and a solvent ( ⁇ -butyrolactone and dimethylacetamide). .
  • the amount charged is 75.0 g of the compound represented by formula (1), 36.5 g of the compound represented by formula (2), 76.4 g of the compound represented by formula (3), 1.5 g of catalyst, and ⁇ -butyrolactone. 438.4 g and dimethylacetamide 313.1 g.
  • the molar ratio of the compound represented by Formula (2) and the compound represented by Formula (3) is 3: 7, and the total of the compound represented by Formula (2) and the compound represented by Formula (3) is The molar ratio with the compound represented by Formula (1) was 1.00: 1.02.
  • the temperature of the mixture was raised to 100 ° C., and then the temperature was raised to 200 ° C. and kept warm for 4 hours to polymerize the polyimide. During this heating, water in the liquid was removed. Then, the polyimide was obtained by refinement
  • the mass ratio of silica particles to polyimide is 60:40
  • the amount of alkoxysilane having an amino group is 1.67 parts by mass with respect to a total of 100 parts by mass of silica particles and polyimide
  • the amount of water is silica particles and polyimide. 10 parts by mass with respect to 100 parts by mass in total.
  • the mixed solution was applied to a glass substrate and dried by heating at 50 ° C. for 30 minutes and at 140 ° C. for 10 minutes. Thereafter, the film was peeled from the glass substrate, a metal frame was attached, and the film was heated at 210 ° C. for 1 hour to obtain a substrate S-2 having a thickness of 80 ⁇ m.
  • the content of silica particles in this resin film is 60% by mass.
  • the yellowness (YI value) of the obtained resin film was 2.3.
  • the number average molecular weight (Mn) of the obtained compound (A) was 2310, and dispersity (Mw / Mn) was 2.1. Note that 1 mmHg is about 133.322 Pa.
  • Example 1 ⁇ Preparation of composition for forming hard coat layer> (Hardcoat layer forming composition HC-1) CPI-100P, polymer (1-1) and MIBK (methyl isobutyl ketone) are added to the MIBK solution containing the above compound (A), and the concentration of each component is adjusted to the following concentration. The mixture was added to the mixing tank and stirred. The obtained composition was filtered through a polypropylene filter having a pore size of 0.4 ⁇ m to obtain a hard coat layer forming composition HC-1.
  • Hardcoat layer forming composition HC-1 CPI-100P
  • polymer (1-1) and MIBK methyl isobutyl ketone
  • Compound (A) 98.6 parts by mass CPI-100P 1.3 parts by mass Polymer (1-1) 0.1 part by mass Methyl isobutyl ketone 100.0 parts by mass
  • the compound used in the composition for hard-coat layer formation is as follows.
  • CPI-100P Cationic photopolymerization initiator, manufactured by San Apro Co., Ltd.
  • Compound (A) 42.85 parts by mass DPHA 42.85 parts by mass CPI-100P 1.3 parts by mass Irgacure 127 5.0 parts by mass Leveling agent-1 8.0 parts by mass Methyl ethyl ketone 500.0 parts by mass
  • the compound used in the composition for mixed layer formation is as follows.
  • DPHA A mixture of dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate, manufactured by Nippon Kayaku Co., Ltd.
  • Irgacure 127 radical photopolymerization initiator, manufactured by BASF
  • composition SR-1 for scratch-resistant layer formation ⁇ Preparation of composition for forming scratch-resistant layer> (Composition SR-1 for scratch-resistant layer formation) Each component having the composition described below was charged into a mixing tank, stirred, and filtered through a polypropylene filter having a pore size of 0.4 ⁇ m to obtain a scratch-resistant layer forming composition SR-1.
  • composition SR-2 for scratch-resistant layer formation
  • Irgacure 127 2.8 parts by mass RS-90 1.0 part by mass Methyl ethyl ketone 300.0 parts by mass
  • composition SR-3 for scratch-resistant layer formation
  • composition SR-4 for scratch-resistant layer formation
  • Irgacure 127 2.8 parts by mass RS-90 1.0 part by mass Methyl ethyl ketone 300.0 parts by mass Each component having the composition described below was charged into a mixing tank, stirred, and filtered through a polypropylene filter having a pore diameter of 0.4 ⁇ m to obtain a scratch-resistant composition SR-4.
  • the compounds used in the composition for forming a scratch-resistant layer are as follows.
  • RS-90 slip agent, manufactured by DIC Corporation PET-30: A mixture of pentaerythritol triacrylate and pentaerythritol tetraacrylate, manufactured by Nippon Kayaku Co., Ltd.
  • the hard coat layer forming composition HC-1 was applied on the substrate S-1 using a die coater. After drying at 120 ° C. for 1 minute, the hard coat layer was semi-cured by irradiating ultraviolet rays with an illuminance of 18 mW / cm 2 and an irradiation amount of 10 mJ / cm 2 using an air-cooled mercury lamp at 25 ° C. Prepare a mixed layer forming composition by adding MEK to the mixed layer forming composition M-1 and diluting the solid content concentration to 1/10, and apply it to the semi-cured hard coat layer using a die coater. did. After drying at 120 ° C. for 1 minute, using an air-cooled mercury lamp at 25 ° C.
  • the mixed layer is semi-cured by irradiating ultraviolet rays with an illuminance of 18 mW / cm 2 and an irradiation amount of 10 mJ / cm 2.
  • the mixed layer was provided on the hard coat layer.
  • the scratch-resistant layer forming composition SR-1 was applied using a die coater. After drying at 120 ° C. for 1 minute, using an air-cooled mercury lamp under the conditions of 25 ° C.
  • the hard coat layer, the mixed layer, and the scratch-resistant layer were completely cured by irradiating with an ultraviolet ray having an illuminance of 60 mW / cm 2 and an irradiation amount of 800 mJ / cm 2 using an air-cooled mercury lamp under a concentration of 100 ppm. Thereafter, the obtained film was heat-treated at 120 ° C.
  • the thickness of the hard coat layer, the mixed layer, and the scratch-resistant layer was calculated by preparing a cross-section sample of the hard coat film using a cross-section cutting apparatus ultramicrotome and observing the cross section using an SEM.
  • Hard coat films 2 to 12 were obtained in the same manner as in Example 1 except that the type of polymer in the hard coat layer forming composition HC-1 and the film thickness of the mixed layer were changed as shown in Table 2. .
  • Example 13 A hard coat film 13 was obtained in the same manner as in Example 1 except that the type of base material and the film thickness of the mixed layer were changed as shown in Table 2.
  • Example 14 ⁇ Preparation of hard coat film>
  • the hard coat layer forming composition HC-1 was applied on the substrate S-1 using a die coater. After drying at 120 ° C. for 1 minute, the hard coat layer was semi-cured by irradiating ultraviolet rays with an illuminance of 18 mW / cm 2 and an irradiation amount of 10 mJ / cm 2 using an air-cooled mercury lamp at 25 ° C.
  • the scratch-resistant layer forming composition SR-2 was applied onto the semi-cured hard coat layer using a die coater. After drying for 1 minute at 120 ° C., 25 ° C., using an air-cooled mercury lamp at an oxygen concentration 100ppm conditions, illuminance 60 mW / cm 2, after an irradiation dose of 600 mJ / cm 2, further 80 ° C., oxygen Completely cure hard coat layer, mixed layer formed by soaking, and scratch-resistant layer by irradiating ultraviolet ray with illuminance of 60 mW / cm 2 and irradiation amount of 600 mJ / cm 2 using air-cooled mercury lamp under the condition of concentration of 100 ppm I let you. Thereafter, the obtained film was heat-treated at 120 ° C. for 1 hour to obtain a hard coat film 14 having a scratch-resistant layer having a thickness of 1.0 ⁇ m.
  • Hard coat films 15 to 17 were obtained in the same manner as in Example 14 except that the composition for forming an abrasion-resistant layer was changed to the composition shown in Table 2.
  • the polymers 1C to 3C are as follows.
  • Comparative Example 5 A comparative hard coat film 5 was obtained in the same manner as in Example 1 except that the polymer in the hard coat layer forming composition HC-1 was not added.
  • the thickness of the mixed layer of the hard coat films obtained in Examples 14 to 17 was determined using a mass spectrometer “TRIFT V Nano TOF (primary ion Bi 3 ++ , acceleration voltage 30 kV)” manufactured by Ulvac-PHI. It was determined by analyzing fragment ions while etching with an Ar-GCIB gun (15 kV, 2.5 nA, 500 ⁇ m square) from the scratch-resistant layer side of the coated film.
  • the mixed layer was an area where both fragments derived from the scratch-resistant layer component and fragment ions derived from the hard coat layer component were detected.
  • the thickness of the mixed layer was calculated from the time when the mixed layer was detected and the etching depth per unit time of the scratch-resistant layer obtained in advance.
  • the thicknesses of the mixed layers of the hard coat films obtained in Examples 14 to 17 were 0.15 ⁇ m, 0.08 ⁇ m, 0.12 ⁇ m, and 0.10 ⁇ m, respectively.
  • the element extractability was measured, and the solvent extractability was calculated by the following formula. [ ⁇ (Element derived from copolymer before MEK cleaning [%])-(Element derived from copolymer after MEK cleaning [%]) ⁇ / (Element derived from copolymer after MEK cleaning [%])) ] ⁇ 100 [%]
  • the copolymer-derived element [%] represents the content [%] of the element only in the copolymer with respect to all the detected elements. Examples 1 to 10, 13 and Comparative Examples 1 to 4 are F, In Examples 11 to 12, the content [%] was calculated by using N as an element only in the copolymer.
  • the dried and semi-cured hard coat film was applied by changing the thickness of the mixed layer forming composition M-1 and drying. Then, the repellency of the cured hard coat film was evaluated according to the following criteria.
  • a mixed layer forming composition is prepared by adding MEK to the mixed layer forming composition M-1 and diluting the solid content concentration to 1/10.
  • the thickness was 3.0 ⁇ m, the mixed layer forming composition M-1 was used without being diluted.
  • the thickness of the mixed layer is 0.1 ⁇ m
  • the thickness of the mixed layer is 3.0 ⁇ m
  • the thickness of the mixed layer is 6.0 ⁇ m.
  • the film was evaluated.
  • D Repelling is observed at a mixed layer thickness of 3 ⁇ m
  • Pencil hardness It was measured according to JIS K 5600-5-4 (1999) and evaluated in the following three stages. A: Pencil hardness is 6H or more. B: Pencil hardness is 5H. C: Pencil hardness is 4H or less.
  • the evaluation results are shown in Table 2 below.
  • the OH content of the polymer in the hard coat layer forming composition is also shown.
  • the compounding quantity of a polymer represents the content ratio with respect to the total mass of solid content of a hard-coat layer.
  • the composition for forming a hard coat layer containing the polymer of the present invention can be applied on the substrate without any problem, and as shown in Table 2, the surface condition of the hard coat layer was good. Moreover, the recoatability when another layer was formed on the hard coat layer was excellent.
  • the polymer (leveling agent) used in the composition for forming the hard coat layer was excellent in solvent extractability, and the hard coat film provided with the mixed layer and the scratch-resistant layer had good scratch resistance. .
  • the surface of the hard coat layer is poor, or repelling occurs when the mixed layer forming composition is applied on the hard coat layer to form a mixed layer. The result was that it was not possible. Furthermore, it turned out that an Example is excellent in pencil hardness, scratch resistance, and repeated bending resistance, and is excellent also in the performance as a flexible hard coat film.

Abstract

The present invention provides: a composition which is suitable for the formation of a coating film that has excellent surface properties, while exhibiting excellent re-coatability; and the like. This composition contains: a polymer which is obtained by polymerizing a monomer that has two or more groups having a radically polymerizable double bond; and a polyorganosilsesquioxane (A) which has a polymerizable group. This composition is configured such that: the polymer has a weight average molecular weight of from 1,000 to 50,000; and the polymer contains at least one moiety that is selected from among a fluorine atom, a silicon atom, and a linear or branched alkyl group having 3 or more carbon atoms. The present invention also provides: a hard coat film; an article which is provided with the hard coat film; and an image display device.

Description

組成物、ハードコートフィルム、ハードコートフィルムを備えた物品、及び画像表示装置Composition, hard coat film, article provided with hard coat film, and image display device

 本発明は、組成物、ハードコートフィルム、ハードコートフィルムを備えた物品、及び画像表示装置に関する。

The present invention relates to a composition, a hard coat film, an article provided with the hard coat film, and an image display device.

 陰極管(CRT)を利用した表示装置、プラズマディスプレイ(PDP)、エレクトロルミネッセンスディスプレイ(ELD)、蛍光表示ディスプレイ(VFD)、フィールドエミッションディスプレイ(FED)、及び液晶ディスプレイ(LCD)のような画像表示装置では、表示面への傷付きを防止するために、基材上にハードコート層を有する光学フィルム(ハードコートフィルム)を設けることが好適である。

Display devices using a cathode ray tube (CRT), plasma display (PDP), electroluminescence display (ELD), fluorescent display (VFD), field emission display (FED), and image display device such as liquid crystal display (LCD) Then, in order to prevent the display surface from being damaged, it is preferable to provide an optical film (hard coat film) having a hard coat layer on the substrate.

 特許文献1には、エポキシ基を有するケイ素化合物の自己縮合物、及び/又はエポキシ基を有するケイ素化合物とアルコキシケイ素化合物との共縮合物、カルボン酸無水物、及び溶剤を含有する熱硬化性樹脂組成物が記載されている。

 特許文献2には、ポリオルガノシロキサン化合物、光酸発生剤を含有する熱硬化性樹脂組成物が記載されている。

 特許文献3には、加水分解性シランの共加水分解縮合物、あるいは該共加水分解縮合物を変性した樹脂であって、重量平均分子量が500以上である有機官能性シリコーン樹脂と特定量の架橋剤、特定量の酸発生剤、特定量の増量剤又は加熱により容易に分解揮発する有機樹脂成分、及び有機溶剤を含有してなる犠牲膜形成用組成物が記載されている。

Patent Document 1 discloses a thermosetting resin containing a self-condensate of a silicon compound having an epoxy group and / or a co-condensate of a silicon compound having an epoxy group and an alkoxysilicon compound, a carboxylic acid anhydride, and a solvent. A composition is described.

Patent Document 2 describes a thermosetting resin composition containing a polyorganosiloxane compound and a photoacid generator.

Patent Document 3 discloses a hydrolyzable silane co-hydrolysis condensate or a resin obtained by modifying the co-hydrolysis condensate and having a weight-average molecular weight of 500 or more and a specific amount of crosslinking. A sacrificial film-forming composition comprising an agent, a specific amount of an acid generator, a specific amount of an extender or an organic resin component that is easily decomposed and volatilized by heating, and an organic solvent is described.

特開2009-209260号公報JP 2009-209260 A 特開2009-263522号公報JP 2009-263522 A 特開2005-352110号公報JP-A-2005-352110

 光学フィルムをはじめ、塗膜の積層によって作製される部材においては、塗布組成物のぬれ性、及び塗膜表面の面状を改善するために、炭化水素系、シリコーン系、フッ素系等のレベリング剤と称される界面活性剤を塗布組成物中に添加する場合がある。

 しかし、レベリング剤を使用することにより、塗膜の表面張力を低下させ、塗工時における塗布組成物の基材に対するぬれ性(均質塗工性)、塗膜表面の面状が良好となる一方で、さらにその塗膜表面に上層の塗布組成物を塗布成膜して積層フィルムを作製しようとすると、レベリング剤が塗膜表面に偏在化することによって塗膜表面の撥水撥油性が高くなるため、塗膜表面で上層の塗布組成物がはじかれて塗布できない、いわゆるリコート性の悪化が問題となる場合があった。そのため、均質塗工性に優れ、良好な表面面状を与えると共に、リコート性に優れたレベリング剤が望まれている。

In members made by laminating coating films, including optical films, hydrocarbon-based, silicone-based, fluorine-based leveling agents are used to improve the wettability of the coating composition and the surface condition of the coating film surface. May be added to the coating composition.

However, by using a leveling agent, the surface tension of the coating film is reduced, the wettability of the coating composition to the base material during coating (homogeneous coating property), and the surface state of the coating film surface is improved. Further, when an upper layer coating composition is applied to the surface of the coating to form a laminated film, the leveling agent is unevenly distributed on the surface of the coating, thereby increasing the water and oil repellency of the coating surface. For this reason, the so-called deterioration in recoatability, in which the upper coating composition is repelled on the coating film surface and cannot be applied, may be a problem. Therefore, there is a demand for a leveling agent that is excellent in uniform coatability, gives a good surface shape, and is excellent in recoatability.

 また近年、たとえばスマートフォンなどにおいて、フレキシブルなディスプレイに対するニーズが高まってきており、これに伴って、繰り返し折り曲げても破断しにくい(繰り返し折り曲げ耐性に優れる)光学フィルム(フレキシブルハードコートフィルム)が求められており、このような光学フィルムのハードコート層に好適に用いられるマトリクス樹脂形成成分として、例えばポリオルガノシルセスキサンが挙げられる。

In recent years, for example, in smartphones, there has been an increasing need for flexible displays, and accordingly, there has been a demand for optical films (flexible hard coat films) that are not easily broken even after repeated bending (excellent resistance to repeated bending). In addition, examples of the matrix resin forming component suitably used for the hard coat layer of such an optical film include polyorganosilsesxane.

 本発明者らが検討したところ、特許文献1~3では、それぞれ、組成物はフッ素系界面活性剤を含有しても良い旨記載されているが、フッ素系界面活性剤の具体的な構造について記載されていない。

 また、特許文献1~3ではリコート性について記載されていない。

 本発明の課題は、表面の面状が良好で、リコート性にも優れた塗膜の形成に適した組成物、ハードコートフィルム、上記ハードコートフィルムを備えた物品及び画像表示装置を提供することにある。

As a result of investigations by the present inventors, Patent Documents 1 to 3 each describe that the composition may contain a fluorosurfactant. However, the specific structure of the fluorosurfactant is described. Not listed.

Patent Documents 1 to 3 do not describe recoatability.

An object of the present invention is to provide a composition suitable for forming a coating film having a good surface shape and excellent recoatability, a hard coat film, an article provided with the hard coat film, and an image display device. It is in.

 本発明者らは鋭意検討し、下記手段により上記課題が解消できることを見出した。

The present inventors diligently studied and found that the above problems can be solved by the following means.

[1]

 ラジカル重合性二重結合を有する基を2つ以上有するモノマーを重合させてなる重合体と重合性基を有するポリオルガノシルセスキオキサン(A)とを含む組成物であって、

 上記重合体の重量平均分子量が1000~50000であり、上記重合体が、フッ素原子、ケイ素原子、及び炭素数が3以上の直鎖又は分岐アルキル基から選ばれる少なくともいずれか1つを有する、組成物。

[2]

 上記重合体が、フッ素原子を有する[1]に記載の組成物。

[3]

 上記重合体が、下記一般式(s)で表される構造を有する[2]に記載の組成物。

[1]

A composition comprising a polymer obtained by polymerizing a monomer having two or more groups having a radical polymerizable double bond, and a polyorganosilsesquioxane (A) having a polymerizable group,

A composition in which the polymer has a weight average molecular weight of 1,000 to 50,000, and the polymer has at least one selected from a fluorine atom, a silicon atom, and a linear or branched alkyl group having 3 or more carbon atoms. Stuff.

[2]

The composition according to [1], wherein the polymer has a fluorine atom.

[3]

The composition according to [2], wherein the polymer has a structure represented by the following general formula (s).

Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008

 一般式(s)中、R1sは水素原子又は炭素数1~20のアルキル基を表し、R2sは少なくとも1つのフッ素原子を有する炭素数1~20のアルキル基又は少なくとも1つのフッ素原子を有する炭素数1~20のアルケニル基を表す。*は結合手を表す。

In general formula (s), R 1s represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, and R 2s has an alkyl group having 1 to 20 carbon atoms having at least one fluorine atom or at least one fluorine atom. An alkenyl group having 1 to 20 carbon atoms is represented. * Represents a bond.

[4]

 上記ラジカル重合性二重結合を有する基が、下記一般式(Z1)~(Z6)のいずれかで表される基である[1]~[3]のいずれか1項に記載の組成物。

[4]

The composition according to any one of [1] to [3], wherein the group having a radical polymerizable double bond is a group represented by any one of the following general formulas (Z1) to (Z6).

Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009

 一般式(Z3)中のRm1及び一般式(Z4)中のRm2は、各々独立に、水素原子又は炭素数1~20のアルキル基を表す。

[5]

 上記重合体が、イソシアヌル環、ウレタン結合、アミド結合、及びウレア結合から選ばれる少なくとも1つを有する[1]~[4]のいずれか1項に記載の組成物。

[6]

 上記モノマーが、上記ラジカル重合性二重結合を有する基を3つ以上有する[1]~[5]のいずれか1項に記載の組成物。

[7]

 上記モノマーが下記一般式(NI)~(NV)のいずれかで表される化合物である[1]~[6]のいずれか1項に記載の組成物。

R m1 in the general formula (Z3) and R m2 in the general formula (Z4) each independently represent a hydrogen atom or an alkyl group having 1 to 20 carbon atoms.

[5]

The composition according to any one of [1] to [4], wherein the polymer has at least one selected from an isocyanuric ring, a urethane bond, an amide bond, and a urea bond.

[6]

The composition according to any one of [1] to [5], wherein the monomer has three or more groups having the radical polymerizable double bond.

[7]

The composition according to any one of [1] to [6], wherein the monomer is a compound represented by any one of the following general formulas (NI) to (NV).

Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010

 一般式(NI)中、L11、L12及びL13はそれぞれ独立に2価又は3価の連結基を表し、R11、R12及びR13はそれぞれ独立に水素原子又はメチル基を表し、n11~n13はそれぞれ独立に1又は2を表す。n11が2を表す場合、2つのR11は同一でも異なっていてもよい。n12が2を表す場合、2つのR12は同一でも異なっていてもよい。n13が2を表す場合、2つのR13は同一でも異なっていてもよい。

In General Formula (NI), L 11 , L 12 and L 13 each independently represent a divalent or trivalent linking group, R 11 , R 12 and R 13 each independently represent a hydrogen atom or a methyl group, n11 to n13 each independently represents 1 or 2. When n11 represents 2, two R 11 may be the same or different. If n12 represents 2, two R 12 may be the same or different. If n13 represents 2, two R 13 may be the same or different.

Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011

 一般式(NII)中、R21及びR22はそれぞれ独立に水素原子又はメチル基を表す。L21は2~6価の連結基を表す。n21は1~5の整数を表す。n21が2以上の整数を表す場合、複数のR22はそれぞれ同一であっても異なっていてもよい。

In general formula (NII), R 21 and R 22 each independently represent a hydrogen atom or a methyl group. L 21 represents a divalent to hexavalent linking group. n21 represents an integer of 1 to 5. If n21 represents an integer of 2 or more, it may be different even multiple R 22 are each identical.

Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012

 一般式(NIII)中、L31及びL32はそれぞれ独立に2~4価の連結基を表し、L33は2価の連結基を表し、R31及びR32はそれぞれ独立に水素原子又はメチル基を表し、n31及びn32はそれぞれ独立に1~3の整数を表す。n31が2以上の整数を表す場合、複数のR31はそれぞれ同一であっても異なっていてもよい。n32が2以上の整数を表す場合、複数のR32はそれぞれ同一であっても異なっていてもよい。

In the general formula (NIII), L 31 and L 32 each independently represent a divalent to tetravalent linking group, L 33 represents a divalent linking group, and R 31 and R 32 each independently represent a hydrogen atom or methyl And n31 and n32 each independently represents an integer of 1 to 3. When n31 represents an integer of 2 or more, the plurality of R 31 may be the same or different. When n32 represents an integer of 2 or more, the plurality of R 32 may be the same or different.

Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013

 一般式(NIV)中、Y41は2~6価の連結基を表し、R41は水素原子又はメチル基を表し、R42及びR43はそれぞれ独立に水素原子、ヒドロキシル基又は、炭素数1~10のアルキル基を表す。

 n41に2~6の整数を表す。n41が2以上の整数を表す場合、複数のR41はそれぞれ同一であっても異なっていてもよく、複数のR42はそれぞれ同一であっても異なっていてもよく、複数のR43はそれぞれ同一であっても異なっていてもよい。

In the general formula (NIV), Y 41 represents a divalent to hexavalent linking group, R 41 represents a hydrogen atom or a methyl group, R 42 and R 43 each independently represent a hydrogen atom, a hydroxyl group, or a carbon number of 1 Represents an alkyl group of ˜10.

n41 represents an integer of 2 to 6. When n41 represents an integer of 2 or more, the plurality of R 41 may be the same or different, the plurality of R 42 may be the same or different, and the plurality of R 43 are each They may be the same or different.

Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014

 一般式(NV)中、Y51は2~6価の連結基を表し、R51は水素原子又はメチル基を表し、R52、R53及びR54はそれぞれ独立に水素原子、ヒドロキシル基又は、炭素数1~10のアルキル基を表す。

 n51は2~6の整数を表す。n51が2以上の整数を表す場合、複数のR51はそれぞれ同一であっても異なっていてもよく、複数のR52はそれぞれ同一であっても異なっていてもよく、複数のR53はそれぞれ同一であっても異なっていてもよく、複数のR54はそれぞれ同一であっても異なっていてもよい。

In the general formula (NV), Y 51 represents a divalent to hexavalent linking group, R 51 represents a hydrogen atom or a methyl group, R 52 , R 53 and R 54 each independently represent a hydrogen atom, a hydroxyl group or An alkyl group having 1 to 10 carbon atoms is represented.

n51 represents an integer of 2 to 6. When n51 represents an integer of 2 or more, the plurality of R 51 may be the same or different, the plurality of R 52 may be the same or different, and the plurality of R 53 are each They may be the same or different, and the plurality of R 54 may be the same or different.

[8]

 組成物中の上記重合体の含有率が、全固形分に対して、0.001質量%以上20.0質量%以下である請求項1~7のいずれか1項に記載の組成物。

[9]

 上記重合体のOH含有量が、上記重合性基を有するポリオルガノシルセスキオキサン(A)に対して0質量%~10.0質量%である[1]~[8]のいずれか1項に記載の組成物。

[10]

 上記重合性基を有するポリオルガノシルセスキオキサン(A)の重合性基がエポキシ基である[1]~[9]のいずれか1項に記載の組成物。

[8]

The composition according to any one of claims 1 to 7, wherein the content of the polymer in the composition is 0.001% by mass or more and 20.0% by mass or less based on the total solid content.

[9]

Any one of [1] to [8], wherein the OH content of the polymer is 0% by mass to 10.0% by mass with respect to the polyorganosilsesquioxane (A) having the polymerizable group. A composition according to 1.

[10]

The composition according to any one of [1] to [9], wherein the polymerizable group of the polyorganosilsesquioxane (A) having a polymerizable group is an epoxy group.

[11]

 基材及びハードコート層を含む、ハードコートフィルムであって、

 上記ハードコート層が、[1]~[10]のいずれか1項に記載の組成物の硬化物を含む、ハードコートフィルム。

[12]

 上記ハードコートフィルムのハードコート層の基材とは反対側に少なくとも1層の機能層を有する[11]に記載のハードコートフィルム。

[11]

A hard coat film comprising a substrate and a hard coat layer,

A hard coat film, wherein the hard coat layer comprises a cured product of the composition according to any one of [1] to [10].

[12]

The hard coat film according to [11], which has at least one functional layer on the side opposite to the base of the hard coat layer of the hard coat film.

[13]

 上記機能層として、混合層を有し、

 上記混合層が、エポキシ基を有する化合物(b1)の硬化物と、1分子中に2個以上の

(メタ)アクリロイル基を有する化合物(b2)の硬化物とを含む、[12]に記載のハードコートフィルム。

[14]

 上記機能層として、上記混合層と耐擦傷層を有し、

 上記基材、上記ハードコート層、及び上記混合層、及び上記耐擦傷層をこの順に有し、

 上記耐擦傷層は、1分子中に2個以上の(メタ)アクリロイル基を有する化合物(c1)の硬化物を含む、[13]に記載のハードコートフィルム。

[13]

As the functional layer, it has a mixed layer,

The mixed layer is a cured product of the compound (b1) having an epoxy group and two or more in one molecule.

The hard coat film according to [12], comprising a cured product of the compound (b2) having a (meth) acryloyl group.

[14]

As the functional layer, it has the mixed layer and scratch-resistant layer,

The substrate, the hard coat layer, the mixed layer, and the scratch-resistant layer in this order,

The said abrasion-resistant layer is a hard coat film as described in [13] containing the hardened | cured material of the compound (c1) which has a 2 or more (meth) acryloyl group in 1 molecule.

[15]

 [11]~[14]のいずれか1項に記載のハードコートフィルムを備えた物品。

[16]

 [11]~[14]のいずれか1項に記載のハードコートフィルムを表面保護フィルムとして備えた画像表示装置。

[15]

[11] An article comprising the hard coat film according to any one of [14].

[16]

[11] An image display device comprising the hard coat film according to any one of [14] as a surface protective film.

 本発明によれば、表面の面状が良好で、リコート性にも優れた塗膜の形成に適した組成物、ハードコートフィルム、上記ハードコートフィルムを備えた物品及び画像表示装置を提供することができる。

According to the present invention, there are provided a composition suitable for forming a coating film having a good surface shape and excellent recoatability, a hard coat film, an article provided with the hard coat film, and an image display device. Can do.

 以下、本発明を実施するための形態について詳細に説明するが、本発明はこれらに限定されるものではない。なお、本明細書において、数値が物性値、特性値等を表す場合に、「(数値1)~(数値2)」という記載は「(数値1)以上(数値2)以下」の意味を表す。また、本明細書において、「(メタ)アクリレート」との記載は、「アクリレート及びメタクリレートの少なくともいずれか」の意味を表す。「(メタ)アクリル酸」、「(メタ)アクリロイル」等も同様である。

Hereinafter, although the form for implementing this invention is demonstrated in detail, this invention is not limited to these. In this specification, when a numerical value represents a physical property value, a characteristic value, or the like, the description “(numerical value 1) to (numerical value 2)” means “(numerical value 1) or more (numerical value 2) or less”. . In the present specification, the description “(meth) acrylate” means “at least one of acrylate and methacrylate”. The same applies to “(meth) acrylic acid”, “(meth) acryloyl” and the like.

 本発明の組成物は、ラジカル重合性二重結合を有する基を2つ以上有するモノマーを重合させてなる重合体と重合性基を有するポリオルガノシルセスキオキサン(A)とを含む組成物であって、

 上記重合体の重量平均分子量が1000~50000であり、上記重合体が、フッ素原子、ケイ素原子、及び炭素数が3以上の直鎖又は分岐アルキル基から選ばれる少なくともいずれか1つを有する、組成物である。

 以下、ラジカル重合性二重結合を有する基を2つ以上有するモノマーを「モノマー(K1)」とも呼ぶ。

 また、ラジカル重合性二重結合を有する基を2つ以上有するモノマー(K1)を重合させてなり、重量平均分子量が1000~50000であり、フッ素原子、ケイ素原子、及び炭素数が3以上の直鎖又は分岐アルキル基から選ばれる少なくともいずれか1つを有する重合体を「本発明の重合体」とも呼ぶ。

The composition of the present invention is a composition comprising a polymer obtained by polymerizing a monomer having two or more groups having a radical polymerizable double bond and a polyorganosilsesquioxane (A) having a polymerizable group. There,

A composition in which the polymer has a weight average molecular weight of 1,000 to 50,000, and the polymer has at least one selected from a fluorine atom, a silicon atom, and a linear or branched alkyl group having 3 or more carbon atoms. It is a thing.

Hereinafter, a monomer having two or more groups having a radical polymerizable double bond is also referred to as “monomer (K1)”.

Further, a monomer (K1) having two or more groups having a radical polymerizable double bond is polymerized, and has a weight average molecular weight of 1,000 to 50,000, a fluorine atom, a silicon atom, and a straight chain having 3 or more carbon atoms. A polymer having at least one selected from a chain or a branched alkyl group is also referred to as a “polymer of the present invention”.

 本発明の組成物が、表面の面状が良好で、リコート性にも優れた塗膜の形成に適しているメカニズムについては定かではないが、本発明者らは以下のように推察している。

 モノマー(K1)がラジカル重合性二重結合を有する基を2つ以上有しているため、モノマー(K1)を重合して成る重合体は、分岐構造を有するものとなる。本発明の組成物中の、典型的には、マトリクス樹脂形成成分(硬化性成分)としての重合性基を有するポリオルガノシルセスキオキサンは、プレポリマー化しているため、分子量が大きくなり、一般的にはレベリング剤との絡み合いが起きやすくなる。しかし、上述の通り、本発明における重合体が分岐構造を有することで、重合性基を有するポリオルガノシルセスキオキサンとの絡み合いが抑えられる。

 さらに分子量を50,000以下とすることによって、本発明の組成物中の重合性基を有するポリオルガノシルセスキオキサンや各種添加剤との相溶性、有機溶剤への溶解性が向上するため、本発明の組成物中での上記重合体の凝集が生じにくくなる。

 重合体の分岐構造に由来して、このような絡み合いが抑えられるとともに、重合体の塗膜表面への移行性が向上する。このような重合体を組成物中に添加することで、塗膜の表面張力を低下させ、塗工時における組成物の基材に対するぬれ性(均質塗工性)、塗膜表面の面状を良好なものとできると考えている。

 本発明における重合体は、フッ素原子、ケイ素原子、及び炭素数が3以上の直鎖又は分岐アルキル基から選ばれる少なくともいずれか1つを有する。このため、組成物を塗布した際の塗膜の表面張力がより低下し、重合体の塗膜表面への移行性がより向上し、塗膜表面の面状もより良好となると考えている。

 また、塗膜表面に上層形成用組成物を塗布した際に、重合体と上層形成用組成物中の溶剤との相溶性が良好であることに起因して、重合体が塗膜表面から上層に抽出されやすく(塗膜表面から上層に抽出される性質を、「溶剤抽出性」とも呼ぶ。)、塗膜表面に残存しにくくなるため、塗膜表面で上層形成用組成物をはじくことなく、リコート性が良好となるものと推察している。

Although the composition of the present invention is not clear about the mechanism suitable for forming a coating film having a good surface shape and excellent recoatability, the present inventors speculate as follows. .

Since the monomer (K1) has two or more groups having a radical polymerizable double bond, the polymer obtained by polymerizing the monomer (K1) has a branched structure. In the composition of the present invention, typically, the polyorganosilsesquioxane having a polymerizable group as a matrix resin forming component (curing component) is prepolymerized, so that the molecular weight is increased. In particular, the entanglement with the leveling agent is likely to occur. However, as described above, since the polymer in the present invention has a branched structure, the entanglement with the polyorganosilsesquioxane having a polymerizable group is suppressed.

Furthermore, by setting the molecular weight to 50,000 or less, compatibility with the polyorganosilsesquioxane having various polymerizable groups in the composition of the present invention and various additives, and solubility in organic solvents are improved. Aggregation of the polymer in the composition of the present invention is less likely to occur.

This entanglement is suppressed due to the branched structure of the polymer, and the migration of the polymer to the coating film surface is improved. By adding such a polymer to the composition, the surface tension of the coating film is lowered, the wettability (homogeneous coating property) of the composition to the substrate during coating, and the surface state of the coating film surface I think it can be good.

The polymer in the present invention has at least one selected from a fluorine atom, a silicon atom, and a linear or branched alkyl group having 3 or more carbon atoms. For this reason, it is considered that the surface tension of the coating film when the composition is applied is further lowered, the transferability of the polymer to the coating film surface is further improved, and the surface state of the coating film surface is also improved.

In addition, when the composition for forming the upper layer is applied to the surface of the coating film, the polymer is separated from the surface of the coating film due to the good compatibility between the polymer and the solvent in the composition for forming the upper layer. (The property of being extracted from the coating film surface to the upper layer is also referred to as “solvent extraction”) and it is difficult to remain on the coating film surface, so that the upper layer forming composition is not repelled on the coating film surface. It is presumed that the recoatability is improved.

[重合体]

 本発明の組成物は、本発明の重合体を含む。以下、モノマー(K1)について述べる。

[Polymer]

The composition of the present invention comprises the polymer of the present invention. Hereinafter, the monomer (K1) will be described.

<モノマー(K1)>

-ラジカル重合性二重結合を有する基-

 モノマー(K1)はラジカル重合性二重結合を有する基を2つ以上含有する。前述のように、モノマー(K1)がラジカル重合性二重結合を有する基を2つ以上含有することにより、本発明の重合体が分岐構造をとり、重合体を含む組成物中に含まれる硬化性成分(重合性基を有するポリオルガノシルセスキオキサン)等との相溶性が向上する。

<Monomer (K1)>

-Groups having radically polymerizable double bonds-

The monomer (K1) contains two or more groups having a radical polymerizable double bond. As described above, the monomer (K1) contains two or more groups having a radical polymerizable double bond, so that the polymer of the present invention has a branched structure and is contained in the composition containing the polymer. Compatibility with a functional component (polyorganosilsesquioxane having a polymerizable group) or the like is improved.

 モノマー(K1)が有するラジカル重合性二重結合を有する基は特に限定されない。また、モノマー(K1)が有する2つ以上のラジカル重合性二重結合を有する基は同一であっても異なっても良い。

The group having a radical polymerizable double bond that the monomer (K1) has is not particularly limited. Moreover, the group which has 2 or more radically polymerizable double bonds which a monomer (K1) has may be the same, or may differ.

 モノマー(K1)が有するラジカル重合性二重結合を有する基の数は、3つ以上であることが好ましく、3つ以上9つ以下であることがより好ましく、3つ以上6つ以下であることが更に好ましい。ラジカル重合性二重結合を有する基を3つ以上とすることで、重合体が有する分岐構造が高分岐構造となり、重合体の分子鎖間の絡み合いが少なく、硬化性成分との相溶性や各種有機溶剤への溶解性が向上し、組成物の均質塗工性や得られる塗膜の表面面状が向上する。また、ラジカル重合性二重結合を有する基を9つ以下とすることで高分子量となりすぎることを防ぎ、溶剤への溶解性を保つことができる。

The number of groups having a radical polymerizable double bond in the monomer (K1) is preferably 3 or more, more preferably 3 or more and 9 or less, and more preferably 3 or more and 6 or less. Is more preferable. By having three or more groups having a radically polymerizable double bond, the branched structure of the polymer becomes a highly branched structure, there is little entanglement between the molecular chains of the polymer, compatibility with the curable component, and various The solubility in an organic solvent is improved, and the uniform coatability of the composition and the surface state of the resulting coating film are improved. Moreover, it can prevent becoming a high molecular weight by making the group which has a radical polymerizable double bond into 9 or less, and can maintain the solubility to a solvent.

 ラジカル重合性二重結合を有する基としては、下記一般式(Z1)~(Z6)で表される基のいずれかであることが好ましい。なお、モノマー(K1)中に含まれる複数のラジカル重合性二重結合を有する基は、それぞれ同じでも異なっていてもよい。

The group having a radical polymerizable double bond is preferably any of groups represented by the following general formulas (Z1) to (Z6). The groups having a plurality of radical polymerizable double bonds contained in the monomer (K1) may be the same or different.

Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015

 一般式(Z3)中のRm1及び一般式(Z4)中のRm2は、各々独立に、水素原子又は炭素数1~20のアルキル基を表す。

R m1 in the general formula (Z3) and R m2 in the general formula (Z4) each independently represent a hydrogen atom or an alkyl group having 1 to 20 carbon atoms.

 一般式(Z3)中のRm1及び一般式(Z4)中のRm2は、水素原子又は炭素数1~7のアルキル基であることが好ましく、水素原子又は炭素数1~4のアルキル基であることがより好ましく、水素原子、メチル基、又はエチル基であることが更に好ましい。

R m1 in the general formula (Z3) and R m2 in the general formula (Z4) are preferably a hydrogen atom or an alkyl group having 1 to 7 carbon atoms, preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. More preferably, it is a hydrogen atom, a methyl group, or an ethyl group.

 ラジカル重合性二重結合を有する基は、一般式(Z1)、(Z2)、(Z3)又は(Z4)で表される基であることが好ましく、一般式(Z1)又は(Z2)で表される基であることがより好ましい。

The group having a radical polymerizable double bond is preferably a group represented by the general formula (Z1), (Z2), (Z3) or (Z4), and represented by the general formula (Z1) or (Z2). It is more preferred that

 なお、上記一般式(Z3)又は(Z4)で表される基は、ラジカル重合性二重結合を含むと同時に、窒素原子を含む基である。

In addition, group represented by the said general formula (Z3) or (Z4) is a group containing a nitrogen atom simultaneously with a radically polymerizable double bond.

-窒素原子-

-Nitrogen atom-

 モノマー(K1)は窒素原子を少なくとも1つ含有することが好ましい。モノマー(K1)が窒素原子を含有することにより、重合体も窒素原子を有するものとなり、重合体と、重合体を含む組成物中に含まれる硬化性成分等との相溶性が向上する。特に、重合体が窒素原子を有することで、重合性基を有するポリオルガノシルセスキオキサン(A)との相溶性が向上する。

The monomer (K1) preferably contains at least one nitrogen atom. When the monomer (K1) contains a nitrogen atom, the polymer also has a nitrogen atom, and the compatibility between the polymer and the curable component contained in the composition containing the polymer is improved. In particular, when the polymer has a nitrogen atom, the compatibility with the polyorganosilsesquioxane (A) having a polymerizable group is improved.

 窒素原子は、イソシアヌル環、ウレタン結合、アミド結合、及びウレア結合から選ばれる少なくとも1つの構造として重合体中に含まれることが好ましく、イソシアヌル環、ウレタン結合、又はアミド結合として重合体中に含まれることがより好ましく、イソシアヌル環として重合体中に含まれることが更に好ましい。

 すなわち、重合体は、イソシアヌル環、ウレタン結合、アミド結合、及びウレア結合から選ばれる少なくとも1つを有することが好ましく、イソシアヌル環、ウレタン結合、又はアミド結合を有することがより好ましく、イソシアヌル環を有することが更に好ましい。

The nitrogen atom is preferably contained in the polymer as at least one structure selected from an isocyanuric ring, a urethane bond, an amide bond, and a urea bond, and is contained in the polymer as an isocyanuric ring, a urethane bond, or an amide bond. It is more preferable that it is contained in the polymer as an isocyanuric ring.

That is, the polymer preferably has at least one selected from an isocyanuric ring, a urethane bond, an amide bond, and a urea bond, more preferably has an isocyanuric ring, a urethane bond, or an amide bond, and has an isocyanuric ring. More preferably.

 モノマー(K1)中に含まれる窒素原子の数としては、硬化性成分等との相溶性向上の観点から2以上であることが好ましく、3以上であることがさらに好ましい。

The number of nitrogen atoms contained in the monomer (K1) is preferably 2 or more, and more preferably 3 or more, from the viewpoint of improving compatibility with the curable component and the like.

 モノマー(K1)は、下記一般式(NI)~(NV)のいずれかで表される化合物であることが好ましい。

The monomer (K1) is preferably a compound represented by any one of the following general formulas (NI) to (NV).

Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016

 一般式(NI)中、L11、L12及びL13はそれぞれ独立に2価又は3価の連結基を表し、R11、R12及びR13はそれぞれ独立に水素原子又はメチル基を表し、n11~n13はそれぞれ独立に1又は2を表す。n11が2を表す場合、2つのR11は同一でも異なっていてもよい。n12が2を表す場合、2つのR12は同一でも異なっていてもよい。n13が2を表す場合、2つのR13は同一でも異なっていてもよい。

In General Formula (NI), L 11 , L 12 and L 13 each independently represent a divalent or trivalent linking group, R 11 , R 12 and R 13 each independently represent a hydrogen atom or a methyl group, n11 to n13 each independently represents 1 or 2. When n11 represents 2, two R 11 may be the same or different. If n12 represents 2, two R 12 may be the same or different. If n13 represents 2, two R 13 may be the same or different.

Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017

 一般式(NII)中、R21及びR22はそれぞれ独立に水素原子又はメチル基を表す。L21は2~6価の連結基を表す。n21は1~5の整数を表す。n21が2以上の整数を表す場合、複数のR22はそれぞれ同一であっても異なっていてもよい。

In general formula (NII), R 21 and R 22 each independently represent a hydrogen atom or a methyl group. L 21 represents a divalent to hexavalent linking group. n21 represents an integer of 1 to 5. If n21 represents an integer of 2 or more, it may be different even multiple R 22 are each identical.

Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018

 一般式(NIII)中、L31及びL32はそれぞれ独立に2~4価の連結基を表し、L33は2価の連結基を表し、R31及びR32はそれぞれ独立に水素原子又はメチル基を表し、n31及びn32はそれぞれ独立に1~3の整数を表す。n31が2以上の整数を表す場合、複数のR31はそれぞれ同一であっても異なっていてもよい。n32が2以上の整数を表す場合、複数のR32はそれぞれ同一であっても異なっていてもよい。

In the general formula (NIII), L 31 and L 32 each independently represent a divalent to tetravalent linking group, L 33 represents a divalent linking group, and R 31 and R 32 each independently represent a hydrogen atom or methyl And n31 and n32 each independently represents an integer of 1 to 3. When n31 represents an integer of 2 or more, the plurality of R 31 may be the same or different. When n32 represents an integer of 2 or more, the plurality of R 32 may be the same or different.

Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019

 一般式(NIV)中、Y41は2~6価の連結基を表し、R41は水素原子又はメチル基を表し、R42及びR43はそれぞれ独立に水素原子、ヒドロキシル基又は、炭素数1~10のアルキル基を表す。

 n41に2~6の整数を表す。n41が2以上の整数を表す場合、複数のR41はそれぞれ同一であっても異なっていてもよく、複数のR42はそれぞれ同一であっても異なっていてもよく、複数のR43はそれぞれ同一であっても異なっていてもよい。

In the general formula (NIV), Y 41 represents a divalent to hexavalent linking group, R 41 represents a hydrogen atom or a methyl group, R 42 and R 43 each independently represent a hydrogen atom, a hydroxyl group, or a carbon number of 1 Represents an alkyl group of ˜10.

n41 represents an integer of 2 to 6. When n41 represents an integer of 2 or more, the plurality of R 41 may be the same or different, the plurality of R 42 may be the same or different, and the plurality of R 43 are each They may be the same or different.

Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020

 一般式(NV)中、Y51は2~6価の連結基を表し、R51は水素原子又はメチル基を表し、R52、R53及びR54はそれぞれ独立に水素原子、ヒドロキシル基又は、炭素数1~10のアルキル基を表す。

 n51は2~6の整数を表す。n51が2以上の整数を表す場合、複数のR51はそれぞれ同一であっても異なっていてもよく、複数のR52はそれぞれ同一であっても異なっていてもよく、複数のR53はそれぞれ同一であっても異なっていてもよく、複数のR54はそれぞれ同一であっても異なっていてもよい。

In the general formula (NV), Y 51 represents a divalent to hexavalent linking group, R 51 represents a hydrogen atom or a methyl group, R 52 , R 53 and R 54 each independently represent a hydrogen atom, a hydroxyl group or An alkyl group having 1 to 10 carbon atoms is represented.

n51 represents an integer of 2 to 6. When n51 represents an integer of 2 or more, the plurality of R 51 may be the same or different, the plurality of R 52 may be the same or different, and the plurality of R 53 are each They may be the same or different, and the plurality of R 54 may be the same or different.

 一般式(NI)中、L11、L12及びL13はそれぞれ独立に2価又は3価の連結基を表す。

 L11、L12及びL13が表す2価の連結基としては、アルキレン基、シクロアルキレン基、アリーレン基、-O-、-S-、-CO-、-COO-、-NH-、-NHCO-、-NHCOO-又はこれらの基を組み合わせた2価の連結基が挙げられる。

 アルキレン基としては、炭素数1~20のアルキレン基が好ましく、炭素数1~10のアルキレン基がより好ましく、例えば、エチレン基、n-プロピレン基、i-プロピレン基、n-ブチレン基、n-ヘキシレン基等が挙げられる。アルキレン基は直鎖状でも分岐状でも良い。

 シクロアルキレン基としては、炭素数6~20のシクロアルキレン基が好ましく、炭素数6~10のシクロアルキレン基がより好ましく、例えば、シクロへキシレン基、シクロへプチレン基等が挙げられる。

 アリーレン基としては、炭素数6~20のアリーレン基が好ましく、炭素数6~10のアリーレン基がより好ましく、例えば、フェニレン基、ナフチレン基等が挙げられる。

 上記アルキレン基、シクロアルキレン基又はアリーレン基は置換基を有していても良く、置換基としては、例えばヒドロキシル基、カルボキシル基、アミノ基、シアノ基、ニトロ基、ハロゲン原子、アルキル基、シクロアルキル基、アリール基、アルコキシ基、アシル基等が挙げられる。

In the general formula (NI), L 11 , L 12 and L 13 each independently represent a divalent or trivalent linking group.

Examples of the divalent linking group represented by L 11 , L 12 and L 13 include an alkylene group, a cycloalkylene group, an arylene group, —O—, —S—, —CO—, —COO—, —NH—, —NHCO. -, -NHCOO-, or a divalent linking group obtained by combining these groups.

The alkylene group is preferably an alkylene group having 1 to 20 carbon atoms, more preferably an alkylene group having 1 to 10 carbon atoms, such as an ethylene group, n-propylene group, i-propylene group, n-butylene group, n- Examples include a hexylene group. The alkylene group may be linear or branched.

The cycloalkylene group is preferably a cycloalkylene group having 6 to 20 carbon atoms, more preferably a cycloalkylene group having 6 to 10 carbon atoms, and examples thereof include a cyclohexylene group and a cycloheptylene group.

The arylene group is preferably an arylene group having 6 to 20 carbon atoms, more preferably an arylene group having 6 to 10 carbon atoms, and examples thereof include a phenylene group and a naphthylene group.

The alkylene group, cycloalkylene group or arylene group may have a substituent. Examples of the substituent include a hydroxyl group, a carboxyl group, an amino group, a cyano group, a nitro group, a halogen atom, an alkyl group, and a cycloalkyl group. Group, aryl group, alkoxy group, acyl group and the like.

 L11、L12及びL13が表す2価の連結基は、アルキレン基、又は、アルキレン基と-O-、-S-、-CO-、-COO-、-NH-、-NHCO-、-NHCOO-から選ばれる少なくとも1つの基とを組み合わせた2価の連結基であることが好ましく、アルキレン基であることがより好ましい。

The divalent linking group represented by L 11 , L 12 and L 13 is an alkylene group, or an alkylene group and —O—, —S—, —CO—, —COO—, —NH—, —NHCO—, — A divalent linking group in combination with at least one group selected from NHCOO— is preferable, and an alkylene group is more preferable.

 L11、L12及びL13が表す3価の連結基としては、上述のL11、L12及びL13が表す2価の連結基から、任意の水素原子を1つ除してなる連結基が挙げられる。

Examples of the trivalent linking group L 11, L 12 and L 13 represent, from a divalent linking group represented by L 11, L 12 and L 13 of the above, formed by dividing one arbitrary hydrogen atom linking group Is mentioned.

 一般式(NI)中、R11、R12及びR13はそれぞれ独立に水素原子又はメチル基を表し、水素原子を表すことが好ましい。

In General Formula (NI), R 11 , R 12 and R 13 each independently represent a hydrogen atom or a methyl group, and preferably represents a hydrogen atom.

 一般式(NI)中、n11~n13はそれぞれ独立に1又は2を表す。n11~n13は1を表すことが好ましい。

In general formula (NI), n11 to n13 each independently represents 1 or 2. n11 to n13 preferably represent 1.

 一般式(NI)で表される化合物は、特開2004-141732号公報に記載の方法に従って合成することができる。

The compound represented by the general formula (NI) can be synthesized according to the method described in JP-A No. 2004-141732.

 次に、上記一般式(NII)で表される化合物について説明する。

Next, the compound represented by the general formula (NII) will be described.

 一般式(NII)中、R21及びR22はそれぞれ独立に水素原子又はメチル基を表し、水素原子を表すことが好ましい。

 L21は2~6価の連結基を表し、2価の連結基としては、前述のL11、L12及びL13が表す2価の連結基と同様である。また、L21が3~6価の連結基を表す場合は、それぞれ前述のL11、L12及びL13が表す2価の連結基から任意の水素原子を1~4つ除してなる連結基が挙げられる。

 n21は1~5の整数を表し、1~3の整数を表すことが好ましい。

In general formula (NII), R 21 and R 22 each independently represent a hydrogen atom or a methyl group, and preferably represents a hydrogen atom.

L 21 represents a divalent to hexavalent linking group, and the divalent linking group is the same as the divalent linking group represented by the aforementioned L 11 , L 12 and L 13 . In addition, when L 21 represents a trivalent to hexavalent linking group, a linking group formed by removing one to four arbitrary hydrogen atoms from the divalent linking groups represented by the aforementioned L 11 , L 12 and L 13 , respectively. Groups.

n21 represents an integer of 1 to 5, and preferably represents an integer of 1 to 3.

 上記一般式(II)で表される化合物は、特開2012-206992号公報に記載の方法に従って合成することができる。

The compound represented by the general formula (II) can be synthesized according to the method described in JP2012-206992.

 次に、上記一般式(NIII)で表される化合物について説明する。

Next, the compound represented by the general formula (NIII) will be described.

 一般式(NIII)中、R31及びR32はそれぞれ独立に水素原子又はメチル基を表し、水素原子を表すことが好ましい。

 L31及びL32はそれぞれ独立に2~4価の連結基を表し、2価の連結基としては、前述のL11、L12及びL13が表す2価の連結基と同様である。また、L31及びL32が3価又は4価の連結基を表す場合は、それぞれ前述のL11、L12及びL13が表す2価の連結基から任意の水素原子を1つ又は2つ除してなる連結基が挙げられる。

 L33は2価の連結基を表し、前述のL11、L12及びL13が表す2価の連結基と同様である。

 n31及びn32はそれぞれ独立に1~3の整数を表し、1又は2を表すことが好ましい。

In General Formula (NIII), R 31 and R 32 each independently represent a hydrogen atom or a methyl group, and preferably represent a hydrogen atom.

L 31 and L 32 each independently represent a divalent to tetravalent linking group, and the divalent linking group is the same as the divalent linking group represented by the aforementioned L 11 , L 12 and L 13 . When L 31 and L 32 represent a trivalent or tetravalent linking group, one or two arbitrary hydrogen atoms are selected from the divalent linking group represented by the aforementioned L 11 , L 12 and L 13 , respectively. And a linking group formed by removal.

L 33 represents a divalent linking group, and is the same as the divalent linking group represented by the aforementioned L 11 , L 12 and L 13 .

n31 and n32 each independently represents an integer of 1 to 3, and preferably represents 1 or 2.

 上記一般式(NIII)で表される化合物は、特開2016-65199号公報に記載の方法に従って合成することができる。

The compound represented by the general formula (NIII) can be synthesized according to the method described in JP-A-2016-65199.

Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021

 一般式(NIV)中、Y41に2~6価の連結基を表し、R41は水素原子又はメチル基を表し、R42及びR43はそれぞれ独立に水素原子、ヒドロキシル基又は、炭素数1~10のアルキル基を表す。

 n41は1~6の整数を表す。n41が2以上の整数を表す場合、複数のR41はそれぞれ同一であっても異なっていてもよく、複数のR42はそれぞれ同一であっても異なっていてもよく、複数のR43はそれぞれ同一であっても異なっていてもよい。

In the general formula (NIV), Y 41 represents a divalent to hexavalent linking group, R 41 represents a hydrogen atom or a methyl group, R 42 and R 43 each independently represent a hydrogen atom, a hydroxyl group, or a carbon number of 1 Represents an alkyl group of ˜10.

n41 represents an integer of 1 to 6. When n41 represents an integer of 2 or more, the plurality of R 41 may be the same or different, the plurality of R 42 may be the same or different, and the plurality of R 43 are each They may be the same or different.

 Y41が表す2価の連結基としては、アルキレン基、シクロアルキレン基、アリーレン基、-CO-、又はこれらの基を組み合わせた2価の連結基が挙げられる。

Examples of the divalent linking group represented by Y 41 include an alkylene group, a cycloalkylene group, an arylene group, —CO—, or a divalent linking group obtained by combining these groups.

 アルキレン基としては、炭素数1~20のアルキレン基が好ましく、炭素数1~10のアルキレン基がより好ましく、例えば、エチレン基、n-プロピレン基、i-プロピレン基、n-ブチレン基、n-ヘキシレン基等が挙げられる。アルキレン基は直鎖状でも分岐状でも良い。

 シクロアルキレン基としては、炭素数6~20のシクロアルキレン基が好ましく、炭素数6~10のシクロアルキレン基がより好ましく、例えば、シクロへキシレン基、シクロへプチレン基等が挙げられる。

 アリーレン基としては、炭素数6~20のアリーレン基が好ましく、炭素数6~10のアリーレン基がより好ましく、例えば、フェニレン基、ナフチレン基等が挙げられる。

The alkylene group is preferably an alkylene group having 1 to 20 carbon atoms, more preferably an alkylene group having 1 to 10 carbon atoms, such as an ethylene group, n-propylene group, i-propylene group, n-butylene group, n- Examples include a hexylene group. The alkylene group may be linear or branched.

The cycloalkylene group is preferably a cycloalkylene group having 6 to 20 carbon atoms, more preferably a cycloalkylene group having 6 to 10 carbon atoms, and examples thereof include a cyclohexylene group and a cycloheptylene group.

The arylene group is preferably an arylene group having 6 to 20 carbon atoms, more preferably an arylene group having 6 to 10 carbon atoms, and examples thereof include a phenylene group and a naphthylene group.

 上記アルキレン基、シクロアルキレン基又はアリーレン基は置換基を有していても良く、置換基としては、例えばヒドロキシル基、カルボキシル基、アミノ基、シアノ基、ニトロ基、ハロゲン原子、アルキル基、シクロアルキル基、アリール基、アルコキシ基、アシル基等が挙げられる。

The alkylene group, cycloalkylene group or arylene group may have a substituent. Examples of the substituent include a hydroxyl group, a carboxyl group, an amino group, a cyano group, a nitro group, a halogen atom, an alkyl group, and a cycloalkyl group. Group, aryl group, alkoxy group, acyl group and the like.

 Y41が表す2価の連結基は、アルキレン基であることが好ましい。

The divalent linking group represented by Y 41 is preferably an alkylene group.

 また、Y41が3~6価の連結基を表す場合は、それぞれ前述のY41が表す2価の連結基から任意の水素原子を1~4つ除してなる連結基が挙げられる。

Further, when Y 41 represents a trivalent to hexavalent linking group, a linking group formed by removing any one to four hydrogen atoms from the divalent linking group represented by Y 41 described above can be given.

 R41は、水素原子またはメチル基を表す。R41は水素原子であることが好ましい。

R 41 represents a hydrogen atom or a methyl group. R 41 is preferably a hydrogen atom.

 R42及びR43はそれぞれ独立に水素原子、ヒドロキシル基又は、炭素数1~10のアルキル基を表す。

 炭素数1~10のアルキル基としては、炭素数1~6のアルキル基が好ましく、炭素数1~4のアルキル基がより好ましい。

 R42及びR43は水素原子を表すことが好ましい。

R 42 and R 43 each independently represent a hydrogen atom, a hydroxyl group, or an alkyl group having 1 to 10 carbon atoms.

As the alkyl group having 1 to 10 carbon atoms, an alkyl group having 1 to 6 carbon atoms is preferable, and an alkyl group having 1 to 4 carbon atoms is more preferable.

R 42 and R 43 preferably represent a hydrogen atom.

 n41は1~6の整数を表す。n41は、1~4の整数であることが好ましい。

n41 represents an integer of 1 to 6. n41 is preferably an integer of 1 to 4.

 上記一般式(NIV)で表されるモノマーは、国際公開2016/92844号公報に記載の方法に従って合成することができる。

The monomer represented by the general formula (NIV) can be synthesized according to the method described in International Publication No. 2016/92844.

Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022

 一般式(NV)中、Y51に2~6価の連結基を表し、R51は水素原子又はメチル基を表し、R52、R53及びR54はそれぞれ独立に水素原子、ヒドロキシル基又は、炭素数1~10のアルキル基を表す。

 n51に1~6の整数を表す。n51が2以上の整数を表す場合、複数のR51はそれぞれ同一であっても異なっていてもよく、複数のR52はそれぞれ同一であっても異なっていてもよく、複数のR53はそれぞれ同一であっても異なっていてもよく、複数のR54はそれぞれ同一であっても異なっていてもよい。

In the general formula (NV), Y 51 represents a divalent to hexavalent linking group, R 51 represents a hydrogen atom or a methyl group, R 52 , R 53 and R 54 each independently represent a hydrogen atom, a hydroxyl group or An alkyl group having 1 to 10 carbon atoms is represented.

n51 represents an integer of 1 to 6. When n51 represents an integer of 2 or more, the plurality of R 51 may be the same or different, the plurality of R 52 may be the same or different, and the plurality of R 53 are each They may be the same or different, and the plurality of R 54 may be the same or different.

 Y51が表す2価の連結基としては、アルキレン基、シクロアルキレン基、アリーレン基、-CO-、又はこれらの基を組み合わせた2価の連結基が挙げられる。

Examples of the divalent linking group represented by Y 51 include an alkylene group, a cycloalkylene group, an arylene group, —CO—, or a divalent linking group obtained by combining these groups.

 アルキレン基としては、炭素数1~20のアルキレン基が好ましく、炭素数1~10のアルキレン基がより好ましく、例えば、エチレン基、n-プロピレン基、i-プロピレン基、n-ブチレン基、n-ヘキシレン基等が挙げられる。アルキレン基は直鎖状でも分岐状でも良い。

 シクロアルキレン基としては、炭素数6~20のシクロアルキレン基が好ましく、炭素数6~10のシクロアルキレン基がより好ましく、例えば、シクロへキシレン基、シクロへプチレン基等が挙げられる。

 アリーレン基としては、炭素数6~20のアリーレン基が好ましく、炭素数6~10のアリーレン基がより好ましく、例えば、フェニレン基、ナフチレン基等が挙げられる。

The alkylene group is preferably an alkylene group having 1 to 20 carbon atoms, more preferably an alkylene group having 1 to 10 carbon atoms, such as an ethylene group, n-propylene group, i-propylene group, n-butylene group, n- Examples include a hexylene group. The alkylene group may be linear or branched.

The cycloalkylene group is preferably a cycloalkylene group having 6 to 20 carbon atoms, more preferably a cycloalkylene group having 6 to 10 carbon atoms, and examples thereof include a cyclohexylene group and a cycloheptylene group.

The arylene group is preferably an arylene group having 6 to 20 carbon atoms, more preferably an arylene group having 6 to 10 carbon atoms, and examples thereof include a phenylene group and a naphthylene group.

 上記アルキレン基、シクロアルキレン基又はアリーレン基は置換基を有していても良く、置換基としては、例えばヒドロキシル基、カルボキシル基、アミノ基、シアノ基、ニトロ基、ハロゲン原子、アルキル基、シクロアルキル基、アリール基、アルコキシ基、アシル基等が挙げられる。

The alkylene group, cycloalkylene group or arylene group may have a substituent. Examples of the substituent include a hydroxyl group, a carboxyl group, an amino group, a cyano group, a nitro group, a halogen atom, an alkyl group, and a cycloalkyl group. Group, aryl group, alkoxy group, acyl group and the like.

 Y51が表す2価の連結基は、アルキレン基であることが好ましい。

The divalent linking group represented by Y 51 is preferably an alkylene group.

 また、Y51が3~6価の連結基を表す場合は、それぞれ前述のY51が表す2価の連結基から任意の水素原子を1~4つ除してなる連結基が挙げられる。

Further, when Y 51 represents a trivalent to hexavalent linking group, a linking group formed by removing any one to four hydrogen atoms from the divalent linking group represented by Y 51 described above can be given.

 R51は、水素原子またはメチル基を表す。R51は水素原子であることが好ましい。

R 51 represents a hydrogen atom or a methyl group. R 51 is preferably a hydrogen atom.

 R52、R53及びR54はそれぞれ独立に水素原子、ヒドロキシル基又は、炭素数1~10のアルキル基を表す。

 炭素数1~10のアルキル基としては、炭素数1~6のアルキル基が好ましく、炭素数1~4のアルキル基がより好ましい。

 R52、R53及びR54は好ましくは、水素原子である。

R 52 , R 53 and R 54 each independently represents a hydrogen atom, a hydroxyl group or an alkyl group having 1 to 10 carbon atoms.

As the alkyl group having 1 to 10 carbon atoms, an alkyl group having 1 to 6 carbon atoms is preferable, and an alkyl group having 1 to 4 carbon atoms is more preferable.

R 52 , R 53 and R 54 are preferably a hydrogen atom.

 n51は1~6の整数を表す。n51は、1~4の整数であることが好ましい。

n51 represents an integer of 1 to 6. n51 is preferably an integer of 1 to 4.

 上記一般式(NV)で表されるモノマーは、国際公開2016/92844号公報に記載の方法に従って合成することができる。

The monomer represented by the general formula (NV) can be synthesized according to the method described in International Publication No. 2016/92844.

 上記モノマー(K1)は、上記一般式(NI)で表されるモノマーであることがより好ましい。

The monomer (K1) is more preferably a monomer represented by the general formula (NI).

 モノマー(K1)としては市販品を用いてもよく、例えば窒素原子をウレタン結合として含むモノマー(K1)としては、共栄社化学社製UA-306H、UA-306I、UA-306T、UA-510H、UF-8001G、UA-101I、UA-101T、AT-600、AH-600、AI-600、新中村化学社製U-4HA、U-6HA、U-6LPA、UA-32P、U-15HA、UA-1100H、A-9300、A-9200、A-9300-1CL、A-9300-3CL、日本合成化学工業社製紫光UV-1400B、同UV-1700B、同UV-6300B、同UV-7550B、同UV-7600B、同UV-7605B、同UV-7610B、同UV-7620EA、同UV-7630B、同UV-7640B、同UV-6630B、同UV-7000B、同UV-7510B、同UV-7461TE、同UV-3000B、同UV-3200B、同UV-3210EA、同UV-3310EA、同UV-3310B、同UV-3500BA、同UV-3520TL、同UV-3700B、同UV-6100B、同UV-6640B、同UV-2000B、同UV-2010B、同UV-2250EAを挙げることができる。また、日本合成化学工業社製紫光UV-2750B、共栄社化学社製UL-503LN、大日本インキ化学工業社製ユニディック17-806、同17-813、同V-4030、同V-4000BA、ダイセルUCB社製EB-1290K、トクシキ製ハイコープAU-2010、同AU-2020等も挙げられる。

As the monomer (K1), a commercially available product may be used. For example, as the monomer (K1) containing a nitrogen atom as a urethane bond, UA-306H, UA-306I, UA-306T, UA-510H, and UF manufactured by Kyoeisha Chemical Co., Ltd. -8001G, UA-101I, UA-101T, AT-600, AH-600, AI-600, Shin-Nakamura Chemical U-4HA, U-6HA, U-6LPA, UA-32P, U-15HA, UA- 1100H, A-9300, A-9200, A-9300-1CL, A-9300-3CL, Purple Light UV-1400B, UV-1700B, UV-6300B, UV-6550B, UV-7550B, UV -7600B, UV-7605B, UV-7610B, UV-7620EA, UV-7630B, UV-76 0B, UV-6630B, UV-7000B, UV-7510B, UV-7461TE, UV-3000B, UV-3200B, UV-3210EA, UV-3210EA, UV-3310EA, UV-3310B, UV-3310B 3500BA, UV-3520TL, UV-3700B, UV-6100B, UV-6640B, UV-2000B, UV-2010B, UV-2250EA. In addition, purple light UV-2750B manufactured by Nippon Synthetic Chemical Industry Co., Ltd., UL-503LN manufactured by Kyoeisha Chemical Co., Ltd., Unidic 17-806 manufactured by Dainippon Ink and Chemicals, Inc., 17-813, V-4030, V-4000BA, and Daicel. Examples include EB-1290K manufactured by UCB, Hicorp AU-2010 and AU-2020 manufactured by Tokushi.

 以下にモノマー(K1)の具体例を示すが、本発明はこれらに限定されるものではない。

Specific examples of the monomer (K1) are shown below, but the present invention is not limited thereto.

Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023

Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024

Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025

Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026

Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027

Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028

Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029

Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030

Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031

Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032

 本発明の重合体は、フッ素原子、ケイ素原子、及び炭素数が3以上の直鎖又は分岐アルキル基から選ばれる少なくともいずれか1つを有する。

 重合体中にフッ素原子、ケイ素原子、又は炭素数が3以上の直鎖若しくは分岐アルキル基を含むことにより、重合体を含む組成物を塗布した際の塗膜の表面張力がより低下し、均質塗工性がより良好となる。また、重合体の塗膜表面への移行性がより向上し、塗膜表面の面状も良好となる。

The polymer of the present invention has at least one selected from a fluorine atom, a silicon atom, and a linear or branched alkyl group having 3 or more carbon atoms.

By containing a fluorine atom, a silicon atom, or a linear or branched alkyl group having 3 or more carbon atoms in the polymer, the surface tension of the coating film when the composition containing the polymer is applied is further reduced, and the polymer is homogeneous. The coatability becomes better. Moreover, the transferability of the polymer to the coating film surface is further improved, and the surface state of the coating film surface is also improved.

 炭素数が3以上の直鎖又は分岐アルキル基としては、炭素数3以上30以下の直鎖又は分岐アルキル基が好ましく、炭素数4以上20以下の直鎖又は分岐アルキル基がより好ましい。

The linear or branched alkyl group having 3 or more carbon atoms is preferably a linear or branched alkyl group having 3 to 30 carbon atoms, and more preferably a linear or branched alkyl group having 4 to 20 carbon atoms.

 本発明の重合体は、フッ素原子を含有することがより好ましい。

The polymer of the present invention more preferably contains a fluorine atom.

 本発明の重合体中にフッ素原子、ケイ素原子、及び炭素数が3以上の直鎖又は分岐アルキル基から選ばれる少なくともいずれか1つを導入するには、上述のモノマー(K1)中にフッ素原子、ケイ素原子、及び炭素数が3以上の直鎖又は分岐アルキル基から選ばれる少なくともいずれか1つを導入してモノマー(K1)を重合することで導入してもよい。

 また、モノマー(K1)以外の原料モノマー(モノマー(K2)と呼ぶ。)にフッ素原子、ケイ素原子、及び炭素数が3以上の直鎖又は分岐アルキル基から選ばれる少なくともいずれか1つを導入し、モノマー(K1)とモノマー(K2)を共重合することで、重合体中にフッ素原子、ケイ素原子、及び炭素数が3以上の直鎖又は分岐アルキル基から選ばれる少なくともいずれか1つを導入してもよい。

 本発明の重合体は、モノマー(K1)とモノマー(K2)を共重合することでフッ素原子、ケイ素原子、及び炭素数が3以上の直鎖又は分岐アルキル基から選ばれる少なくともいずれか1つを導入することが塗膜表面の面状良化の観点から好ましい。

In order to introduce at least one selected from a fluorine atom, a silicon atom, and a linear or branched alkyl group having 3 or more carbon atoms into the polymer of the present invention, a fluorine atom is contained in the monomer (K1). , A silicon atom, and at least one selected from linear or branched alkyl groups having 3 or more carbon atoms may be introduced to polymerize the monomer (K1).

In addition, a raw material monomer other than the monomer (K1) (referred to as monomer (K2)) is introduced with at least one selected from a fluorine atom, a silicon atom, and a linear or branched alkyl group having 3 or more carbon atoms. The monomer (K1) and the monomer (K2) are copolymerized to introduce at least one selected from a fluorine atom, a silicon atom, and a linear or branched alkyl group having 3 or more carbon atoms into the polymer. May be.

The polymer of the present invention comprises at least one selected from a fluorine atom, a silicon atom, and a linear or branched alkyl group having 3 or more carbon atoms by copolymerizing the monomer (K1) and the monomer (K2). It is preferable to introduce from the viewpoint of improving the surface condition of the coating film surface.

<モノマー(K2)>

 モノマー(K2)は、フッ素原子、ケイ素原子、及び炭素数が3以上の直鎖又は分岐アルキル基から選ばれる少なくとも1つを有することが好ましい。

 フッ素原子は、少なくとも1つのフッ素原子を有する炭素数1~20のアルキル基又は少なくとも1つのフッ素原子を有する炭素数2~20のアルケニル基として、モノマー(K2)中に含まれることが好ましい。

 ケイ素原子は、シロキサン結合としてモノマー(K2)中に含まれることが好ましく、ポリシロキサン構造としてモノマー(K2)中に含まれることがより好ましい。

<Monomer (K2)>

The monomer (K2) preferably has at least one selected from a fluorine atom, a silicon atom, and a linear or branched alkyl group having 3 or more carbon atoms.

The fluorine atom is preferably contained in the monomer (K2) as an alkyl group having 1 to 20 carbon atoms having at least one fluorine atom or an alkenyl group having 2 to 20 carbon atoms having at least one fluorine atom.

The silicon atom is preferably contained in the monomer (K2) as a siloxane bond, and more preferably contained in the monomer (K2) as a polysiloxane structure.

 モノマー(K2)は(メタ)アクリロイル基を有する化合物であることが好ましく、下記一般式(s1)~(s3)で表されるいずれかの化合物であることがより好ましい。

The monomer (K2) is preferably a compound having a (meth) acryloyl group, and more preferably any compound represented by the following general formulas (s1) to (s3).

Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033

 一般式(s1)中、R1sは水素原子又は炭素数1~20のアルキル基を表し、R2sは少なくとも1つのフッ素原子を有する炭素数1~20のアルキル基又は少なくとも1つのフッ素原子を有する炭素数2~20のアルケニル基を表す。

In general formula (s1), R 1s represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, and R 2s has an alkyl group having 1 to 20 carbon atoms having at least one fluorine atom or at least one fluorine atom. An alkenyl group having 2 to 20 carbon atoms is represented.

 R1sは水素原子又は炭素数1~10のアルキル基を表すことが好ましく、水素原子又は炭素数1~6のアルキル基を表すことがより好ましく、水素原子、メチル基、エチル基、又はn-プロピル基を表すことが更に好ましく、水素原子又はメチル基を表すことが特に好ましい。

R 1s preferably represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, more preferably a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, a hydrogen atom, a methyl group, an ethyl group, or n- More preferably, it represents a propyl group, and particularly preferably represents a hydrogen atom or a methyl group.

 R2aが表すアルキル基又はアルケニル基の炭素数は、1~15が好ましく、1~10がより好ましい。

 R2aが表すアルキル基又はアルケニル基が有するフッ素原子の数は、1~20が好ましく、3~17がより好ましい。

The alkyl group or alkenyl group represented by R 2a preferably has 1 to 15 carbon atoms, and more preferably 1 to 10 carbon atoms.

The number of fluorine atoms contained in the alkyl group or alkenyl group represented by R 2a is preferably 1 to 20, and more preferably 3 to 17.

 本発明の重合体を含む組成物の表面エネルギーを低下させ、均質塗工性を高め、表面面状を良化するという観点から、一般式(s1)において、R2sは少なくとも1つのフッ素原子を有する炭素数1~10のアルキル基又は少なくとも1つのフッ素原子を有する炭素数2~10のアルケニル基が好ましく、少なくとも1つのフッ素原子を有する炭素数1~10のアルキル基であることがより好ましく、R2sに含まれる半数以上の炭素原子がフッ素原子を置換基として有することが特に好ましい。

In the general formula (s1), R 2s contains at least one fluorine atom from the viewpoint of reducing the surface energy of the composition containing the polymer of the present invention, improving the homogenous coating property, and improving the surface shape. Preferably an alkyl group having 1 to 10 carbon atoms or an alkenyl group having 2 to 10 carbon atoms having at least one fluorine atom, more preferably an alkyl group having 1 to 10 carbon atoms having at least one fluorine atom, It is particularly preferable that at least half of the carbon atoms contained in R 2s have a fluorine atom as a substituent.

 一般式(s1)で表される化合物は、下記一般式(s11)で表される化合物であることがより好ましい。

The compound represented by the general formula (s1) is more preferably a compound represented by the following general formula (s11).

Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034

 一般式(s11)中、R1sは水素原子又は炭素数1~20のアルキル基を表し、ma及びnaはそれぞれ独立に0以上の整数を表し、Xは水素原子又はフッ素原子を表す。

In general formula (s11), R 1s represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, ma and na each independently represents an integer of 0 or more, and X 1 represents a hydrogen atom or a fluorine atom.

 一般式(s11)中のR1sは、一般式(s1)中のR1sと同義であり、好ましい例も同様である。

 ma及びnaはそれぞれ独立に0以上の整数を表す。

 maは1~10の整数であることが好ましく、1~5の整数であることがより好ましい。

 naは4~12の整数であることが好ましく、4~10の整数であることがより好ましい。

 Xは水素原子又はフッ素原子を表し、フッ素原子であることが好ましい。

R 1s in the general formula (s11), the general formula (s1) in the same meaning as R 1s of, and preferred examples are also the same.

ma and na each independently represents an integer of 0 or more.

ma is preferably an integer of 1 to 10, and more preferably an integer of 1 to 5.

na is preferably an integer of 4 to 12, and more preferably an integer of 4 to 10.

X represents a hydrogen atom or a fluorine atom, and is preferably a fluorine atom.

 一般式(s1)で表されるモノマーとしては、例えば2,2,2-トリフルオロエチル(メタ)アクリレート、2,2,3,3,3-ペンタフルオロプロピル(メタ)アクリレート、2-(パーフルオロブチル)エチル(メタ)アクリレート、2-(パーフルオロヘキシル)エチル(メタ)アクリレート、2-(パーフルオロオクチル)エチル(メタ)アクリレート、2-(パーフルオロデシル)エチル(メタ)アクリレート、2-(パーフルオロ-3-メチルブチル)エチル(メタ)アクリレート、2-(パーフルオロ-5-メチルヘキシル)エチル(メタ)アクリレート、2-(パーフルオロ-7-メチルオクチル)エチル(メタ)アクリレート、1H,1H,3H-テトラフルオロプロピル(メタ)アクリレート、1H,1H,5H-オクタフルオロペンチル(メタ)アクリレート、1H,1H,7H-ドデカフルオロヘプチル(メタ)アクリレート、1H,1H,9H-ヘキサデカフルオロノニル(メタ)アクリレート、1H-1-(トリフオロメチル)トリフルオロエチル(メタ)アクリレート、1H,1H,3H-ヘキサフルオロブチル(メタ)アクリレート、3-パーフルオロブチル-2-ヒドロキシプロピル(メタ)アクリレート、3-パーフルオロヘキシル-2-ヒドロキシプロピル(メタ)アクリレート、3-パーフルオロオクチル-2-ヒドロキシプロピル(メタ)アクリレート、3-(パーフルオロ-3-メチルブチル)-2-ヒドロキシプロピル(メタ)アクリレート、3-(パーフルオロ-5-メチルヘキシル)-2-ヒドロキシプロピル(メタ)アクリレート、3-(パーフルオロ-7-メチルオクチル)-2-ヒドロキシプロピル(メタ)アクリレート等が挙げられる。

Examples of the monomer represented by the general formula (s1) include 2,2,2-trifluoroethyl (meth) acrylate, 2,2,3,3,3-pentafluoropropyl (meth) acrylate, and 2- (par Fluorobutyl) ethyl (meth) acrylate, 2- (perfluorohexyl) ethyl (meth) acrylate, 2- (perfluorooctyl) ethyl (meth) acrylate, 2- (perfluorodecyl) ethyl (meth) acrylate, 2- (Perfluoro-3-methylbutyl) ethyl (meth) acrylate, 2- (perfluoro-5-methylhexyl) ethyl (meth) acrylate, 2- (perfluoro-7-methyloctyl) ethyl (meth) acrylate, 1H, 1H, 3H-tetrafluoropropyl (meth) acrylate, 1H, 1H, 5H- Kutafluoropentyl (meth) acrylate, 1H, 1H, 7H-dodecafluoroheptyl (meth) acrylate, 1H, 1H, 9H-hexadecafluorononyl (meth) acrylate, 1H-1- (trifluoromethyl) trifluoroethyl ( (Meth) acrylate, 1H, 1H, 3H-hexafluorobutyl (meth) acrylate, 3-perfluorobutyl-2-hydroxypropyl (meth) acrylate, 3-perfluorohexyl-2-hydroxypropyl (meth) acrylate, 3- Perfluorooctyl-2-hydroxypropyl (meth) acrylate, 3- (perfluoro-3-methylbutyl) -2-hydroxypropyl (meth) acrylate, 3- (perfluoro-5-methylhexyl) -2-hydroxypropyl ( Meta) Relate, 3- (perfluoro-7-methyl-octyl) -2-hydroxypropyl (meth) acrylate.

Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035

 一般式(s2)中、R1sは水素原子又は炭素数1~20のアルキル基を表し、R3s、R4s、R6s及びR7sはそれぞれ独立に、炭素数1~20のアルキル基、炭素数1~20のハロアルキル基、又は炭素数6~20のアリール基を表し、R5sは炭素数1~20のアルキル基を表し、mmは1~10の整数を表し、nnは1以上の整数を表す。複数のR3s及びR4sはそれぞれ同じでも異なっていてもよい。

In general formula (s2), R 1s represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, and R 3s , R 4s , R 6s and R 7s each independently represents an alkyl group having 1 to 20 carbon atoms, carbon Represents a haloalkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 20 carbon atoms, R 5s represents an alkyl group having 1 to 20 carbon atoms, mm represents an integer of 1 to 10, and nn represents an integer of 1 or more Represents. The plurality of R 3s and R 4s may be the same or different.

 一般式(s2)中のR1sは、一般式(s1)中のR1sと同義であり、好ましい例も同様である。

 R3s、R4s、R6s及びR7sが表す炭素数1~20のアルキル基としては、例えば、メチル基、エチル基、ヘキシル基等を挙げることができる。R3s、R4s、R6s及びR7sが表すアルキル基としては、炭素数1~10のアルキル基が好ましい。

 R3s、R4s、R6s及びR7sが表す炭素数1~20のハロアルキル基としては、例えば、トリフルオロメチル基、ペンタフルオロエチル基を挙げることができる。R3s、R4s、R6s及びR7sが表すハロアルキル基としては、炭素数1~10のフッ素化アルキル基が好ましい。

 R3s、R4s、R6s及びR7sが表す炭素数6~20のアリール基としては、例えばフェニル基、ナフチル基を挙げることができる。R3s、R4s、R6s及びR7sが表すアリール基としては、炭素数6~20のアリール基が好ましい。

 R3s、R4s、R6s及びR7sは、メチル基、トリフルオロメチル基、又はフェニル基が好ましく、メチル基がより好ましい。

 R5sが表す炭素数1~20のアルキル基としては、例えば、メチル基、エチル基、ヘキシル基等を挙げることができる。R5sが表すアルキル基としては、炭素数1~12のアルキル基が好ましく、炭素数1~8のアルキル基がより好ましい。

R 1s in the general formula (s2) of the general formula (s1) in the same meaning as R 1s of, and preferred examples are also the same.

Examples of the alkyl group having 1 to 20 carbon atoms represented by R 3s , R 4s , R 6s and R 7s include a methyl group, an ethyl group and a hexyl group. The alkyl group represented by R 3s , R 4s , R 6s and R 7s is preferably an alkyl group having 1 to 10 carbon atoms.

Examples of the haloalkyl group having 1 to 20 carbon atoms represented by R 3s , R 4s , R 6s and R 7s include a trifluoromethyl group and a pentafluoroethyl group. The haloalkyl group represented by R 3s , R 4s , R 6s and R 7s is preferably a fluorinated alkyl group having 1 to 10 carbon atoms.

Examples of the aryl group having 6 to 20 carbon atoms represented by R 3s , R 4s , R 6s and R 7s include a phenyl group and a naphthyl group. The aryl group represented by R 3s , R 4s , R 6s and R 7s is preferably an aryl group having 6 to 20 carbon atoms.

R 3s , R 4s , R 6s and R 7s are preferably a methyl group, a trifluoromethyl group or a phenyl group, and more preferably a methyl group.

Examples of the alkyl group having 1 to 20 carbon atoms represented by R 5s include a methyl group, an ethyl group, and a hexyl group. The alkyl group represented by R 5s is preferably an alkyl group having 1 to 12 carbon atoms, and more preferably an alkyl group having 1 to 8 carbon atoms.

 mmは1~10の整数を表す。mmは1~6の整数が好ましい。

 nnは1~1000の整数が好ましく、20~500の整数がより好ましく、30~200の整数がさらに好ましい。

mm represents an integer of 1 to 10. mm is preferably an integer of 1 to 6.

nn is preferably an integer of 1 to 1000, more preferably an integer of 20 to 500, and still more preferably an integer of 30 to 200.

 一般式(s2)で表されるモノマーとしては、市販品を用いてもよく、片末端(メタ)アクリロイル基含有ポリシロキサンマクロマー(例えば、サイラプレーンFM-0721、同0725、同0711(以上、商品名、JNC(株)製)、AK-5、AK-30、AK-32(以上、商品名、東亜合成(株)製)、KF-100T、X-22-169AS、KF-102、X-22-3701IE、X-22-164B、X-22-164C、X-22―5002、X-22-173B、X-22-174D、X-22-167B、X-22-161AS(以上、商品名、信越化学工業(株)製)等を挙げることができる。

As the monomer represented by the general formula (s2), a commercially available product may be used. One-terminal (meth) acryloyl group-containing polysiloxane macromer (for example, Silaplane FM-0721, 0725, 0711 (above, products) Name, manufactured by JNC Corporation), AK-5, AK-30, AK-32 (above, trade name, manufactured by Toagosei Co., Ltd.), KF-100T, X-22-169AS, KF-102, X- 22-3701IE, X-22-164B, X-22-164C, X-22-5002, X-22-173B, X-22-174D, X-22-167B, X-22-161AS , Manufactured by Shin-Etsu Chemical Co., Ltd.).

Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036

 一般式(s3)中、R1sは水素原子又は炭素数1~20のアルキル基を表し、R8sは炭素数が3以上の直鎖又は分岐アルキル基を表す。

In general formula (s3), R 1s represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, and R 8s represents a linear or branched alkyl group having 3 or more carbon atoms.

 一般式(s3)中のR1sは、一般式(s1)中のR1sと同義であり、好ましい例も同様である。

 R8sが表す炭素数が3以上の直鎖又は分岐アルキル基としては、炭素数3以上30以下の直鎖又は分岐アルキル基が好ましく、炭素数6以上20以下の直鎖又は分岐アルキル基がより好ましい。

R 1s in the general formula (s3) of the general formula (s1) in the same meaning as R 1s of, and preferred examples are also the same.

The linear or branched alkyl group having 3 or more carbon atoms represented by R 8s is preferably a linear or branched alkyl group having 3 to 30 carbon atoms, more preferably a linear or branched alkyl group having 6 to 20 carbon atoms. preferable.

 モノマー(K2)は、上記一般式(s1)で表されるモノマーであることが好ましい。

すなわち、本発明の重合体は、下記一般式(s)で表される構造を有することが好ましい。

The monomer (K2) is preferably a monomer represented by the general formula (s1).

That is, the polymer of the present invention preferably has a structure represented by the following general formula (s).

Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037

 一般式(s)中、R1sは水素原子又は炭素数1~20のアルキル基を表し、R2sは少なくとも1つのフッ素原子を有する炭素数1~20のアルキル基又は少なくとも1つのフッ素原子を有する炭素数1~20のアルケニル基を表す。*は結合手を表す。

In general formula (s), R 1s represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, and R 2s has an alkyl group having 1 to 20 carbon atoms having at least one fluorine atom or at least one fluorine atom. An alkenyl group having 1 to 20 carbon atoms is represented. * Represents a bond.

 一般式(s)中、R1s及びR2sは、上記一般式(s1)中のR1s及びR2sと同義であり、好ましい例も同様である。*は結合手を表す。

In the general formula (s), R 1s and R 2s are the same as R 1s and R 2s in the general formula (s1), and preferred examples are also the same. * Represents a bond.

 本発明の重合体中の、フッ素原子、ケイ素原子、及び炭素数が3以上の直鎖又は分岐アルキル基から選ばれる構造の含有量としては、用いる構造により適宜調整することが可能であるが、1~99モル%が好ましく、10~90モル%がより好ましい。

In the polymer of the present invention, the content of the structure selected from a fluorine atom, a silicon atom, and a linear or branched alkyl group having 3 or more carbon atoms can be appropriately adjusted depending on the structure used. 1 to 99 mol% is preferable, and 10 to 90 mol% is more preferable.

 本発明の重合体は、上述のように、モノマー(K1)の単独重合体であってもよく、モノマー(K1)とモノマー(K2)の共重合体であってもよい。

 本発明の重合体がモノマー(K1)とモノマー(K2)の共重合体である場合、両者の比率は使用するモノマー種によって適宜調整することが可能であるが、表面面状の良化と溶剤抽出性の観点から、全モノマー量に対するモノマー(K2)の含有量としては、20~90モル%が好ましく、40~80モル%がより好ましい。20モル%以上とすることで表面面状を良好に保つことが可能となり、90モル%以下とすることで溶剤抽出性を良好に保つことができる。40~80モル%とすることで重合体の表面面状良化と溶剤抽出性とのバランスを良好に保つことができる。

As described above, the polymer of the present invention may be a homopolymer of the monomer (K1) or a copolymer of the monomer (K1) and the monomer (K2).

In the case where the polymer of the present invention is a copolymer of the monomer (K1) and the monomer (K2), the ratio of the two can be adjusted as appropriate depending on the monomer type used. From the viewpoint of extractability, the content of the monomer (K2) with respect to the total monomer amount is preferably 20 to 90 mol%, more preferably 40 to 80 mol%. By making it 20 mol% or more, it becomes possible to keep the surface shape favorable, and by making it 90 mol% or less, the solvent extractability can be kept good. By adjusting the amount to 40 to 80 mol%, a good balance between the improvement of the surface state of the polymer and the solvent extractability can be maintained.

 また、本発明の重合体は、モノマー(K1)及びモノマー(K2)以外の原料モノマーを併用して重合した重合体であってもよい。

The polymer of the present invention may be a polymer obtained by polymerizing raw materials other than the monomer (K1) and the monomer (K2).

<重量平均分子量(Mw)>

 本発明の重合体の重量平均分子量は、1000~50000である。重量平均分子量を50000以下とすることで、汎用の有機溶剤に対して可溶となるため、有機溶剤に重合体が溶解した溶液としてハードコート層形成用組成物を調製することができ、トリアセチルセルロース(TAC)、ポリエチレンテレフタレート(PET)、ポリカーボネート(PC)、ポリメタクリル酸メチル樹脂(PMMA)等、種々の汎用基材へ均一な塗布面状でコーティングすることが可能となる。また、Mwを1000以上とすることで、表面面状を良化させる効果が大きくなる。

 なお、本発明において、重合体が有機溶剤に可溶であるとは、重合体/有機溶剤(25°C)が1/4(質量比)となるように混和して5分間静置した後の溶液濁度が1.0ppm(parts per million)以下であることを示す。

<Weight average molecular weight (Mw)>

The weight average molecular weight of the polymer of the present invention is 1,000 to 50,000. By setting the weight average molecular weight to 50000 or less, the composition becomes soluble in a general-purpose organic solvent. Therefore, a composition for forming a hard coat layer can be prepared as a solution in which a polymer is dissolved in an organic solvent. It becomes possible to coat various general-purpose substrates such as cellulose (TAC), polyethylene terephthalate (PET), polycarbonate (PC), polymethyl methacrylate resin (PMMA), etc. with a uniform coated surface. Moreover, the effect which improves surface-surface shape becomes large because Mw shall be 1000 or more.

In the present invention, the polymer is soluble in the organic solvent after being mixed so that the polymer / organic solvent (25 ° C.) becomes 1/4 (mass ratio) and left to stand for 5 minutes. It shows that the turbidity of the solution is 1.0 ppm (parts per million) or less.

 本発明の重合体の重量平均分子量は、1000~30000であることがより好ましく、1000~8000であることが更に好ましく、1000~5000であることが特に好ましい。

The weight average molecular weight of the polymer of the present invention is more preferably 1000 to 30000, still more preferably 1000 to 8000, and particularly preferably 1000 to 5000.

 本発明の重合体の分子量分布(Mw/Mn)は、1.00~5.00であることが好ましく、1.00~3.00であることがより好ましい。

The molecular weight distribution (Mw / Mn) of the polymer of the present invention is preferably 1.00 to 5.00, more preferably 1.00 to 3.00.

 本発明の重合体の重量平均分子量(Mw)、数平均分子量(Mn)及び分子量分布は、ゲルパーミエーションクロマトグラフィ(GPC)によって下記の条件で測定された値である。

 [溶離液]:テトラヒドロフラン(THF)

 [装置名]:Ecosec HLC-8220GPC(東ソー株式会社製)

 [カラム]:TSKgel SuperHZM-H、TSKgel SuperHZ4000、TSKgel SuperHZM200(東ソー株式会社製)

 [カラム温度]:40℃

 [流速]:50ml/min

 [分子量]:標準ポリスチレン換算

The weight average molecular weight (Mw), number average molecular weight (Mn), and molecular weight distribution of the polymer of the present invention are values measured by gel permeation chromatography (GPC) under the following conditions.

[Eluent]: Tetrahydrofuran (THF)

[Device Name]: Ecosec HLC-8220GPC (manufactured by Tosoh Corporation)

[Column]: TSKgel SuperHZM-H, TSKgel SuperHZ4000, TSKgel SuperHZM200 (manufactured by Tosoh Corporation)

[Column temperature]: 40 ° C

[Flow rate]: 50 ml / min

[Molecular weight]: Standard polystyrene conversion

 重合体中のヒドロキシル基の含有量としては、下記式から導かれる、組成物中の重合性基を有するポリオルガノシルセスキオキサン(A)の添加量に対する、重合体中のヒドロキシル基の含有量(OH含有量ともいう)が、0質量%~10質量%であることが好ましい。

As the hydroxyl group content in the polymer, the hydroxyl group content in the polymer with respect to the addition amount of the polyorganosilsesquioxane (A) having a polymerizable group in the composition, which is derived from the following formula: (Also referred to as OH content) is preferably 0% by mass to 10% by mass.

(重合体添加量/重合性基を有するポリオルガノシルセスキオキサン添加量)×(重合体中のOH含有率)×100 (%)

(Polymer addition amount / Polyorganosilsesquioxane addition amount having a polymerizable group) × (OH content in polymer) × 100 (%)

 例えば、本発明の重合体が、モノマー(K1)と、モノマー(K2)とを重合させてなり、モノマー(K1)にヒドロキシル基が含まれる場合の、重合体中のOH含有量は、下記の式から導かれる。

For example, when the polymer of the present invention is obtained by polymerizing the monomer (K1) and the monomer (K2) and the monomer (K1) contains a hydroxyl group, the OH content in the polymer is as follows: Derived from the formula.

[重合体の含有量(g)/重合性基を有するポリオルガノシルセスキオキサンの含有量(g)]×(モノマー(K1)の重合体中の含有比(質量比))×[(OHの分子量)×(モノマー(K1)中のOHの個数)/(モノマー(K1)の分子量)]

[Polymer content (g) / Polyorganosilsesquioxane content (g) having a polymerizable group] × (content ratio of monomer (K1) in polymer (mass ratio)) × [(OH Molecular weight) × (number of OH in monomer (K1)) / (molecular weight of monomer (K1))]

 上記式から導かれるOH含有量は、0~0.006質量%であることが好ましく、0~0.002質量%がより好ましく、0~0.0001質量%がさらに好ましい。OH量が少ないことで重合性基を有するポリオルガノシルセスキオキサン(A)中のOH基との相互作用が小さくなり、重合体の溶剤抽出性が良好となる。

The OH content derived from the above formula is preferably 0 to 0.006% by mass, more preferably 0 to 0.002% by mass, and still more preferably 0 to 0.0001% by mass. When the amount of OH is small, the interaction with the OH group in the polyorganosilsesquioxane (A) having a polymerizable group is reduced, and the solvent extractability of the polymer is improved.

<合成方法>

 本発明の重合体の合成手法としては、溶液、懸濁、乳化などのラジカル重合が分子量の制御の観点で好ましく、溶液重合が特に好ましい。

<Synthesis method>

As a method for synthesizing the polymer of the present invention, radical polymerization such as solution, suspension, and emulsification is preferable from the viewpoint of molecular weight control, and solution polymerization is particularly preferable.

 反応に用いる重合溶媒に関しては、種々の有機溶剤を好適に用いることができる。係る有機溶剤としては、例えばジブチルエーテル、ジメトキシエタン、ジエトキシエタン、プロピレンオキシド、1,4-ジオキサン、1,3-ジオキソラン、1,3,5-トリオキサン、テトラヒドロフラン、アニソール、フェネトール、炭酸ジメチル、炭酸メチルエチル、炭酸ジエチル、アセトン、メチルエチルケトン(MEK)、ジエチルケトン、ジプロピルケトン、ジイソブチルケトン、シクロペンタノン、シクロヘキサノン、メチルシクロヘキサノン、蟻酸エチル、蟻酸プロピル、蟻酸ペンチル、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル、プロピオン酸エチル、γ-プチロラクトン、2-メトキシ酢酸メチル、2-エトキシ酢酸メチル、2-エトキシ酢酸エチル、2-エトキシプロピオン酸エチル、2-メトキシエタノール、2-プロポキシエタノール、2-ブトキシエタノール、1,2-ジアセトキシアセトン、アセチルアセトン、ジアセトンアルコール、アセト酢酸メチル、アセト酢酸エチル、メチルアルコール、エチルアルコール、イソプロピルアルコール、n-ブチルアルコール、t-アミルアルコール、シクロヘキシルアルコール、酢酸イソブチル、メチルイソブチルケトン(MIBK)、2-オクタノン、2-ペンタノン、2-ヘキサノン、エチレングリコールエチルエーテル、エチレングリコールイソプロピルエーテル、エチレングリコールブチルエーテル、プロピレングリコールメチルエーテル、エチルカルビトール、ブチルカルビトール、ヘキサン、ヘプタン、オクタン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン、ベンゼン、トルエン、キシレン等が挙げられ、1種単独であるいは2種以上を組み合わせて用いることができる。

Regarding the polymerization solvent used in the reaction, various organic solvents can be suitably used. Examples of such organic solvents include dibutyl ether, dimethoxyethane, diethoxyethane, propylene oxide, 1,4-dioxane, 1,3-dioxolane, 1,3,5-trioxane, tetrahydrofuran, anisole, phenetole, dimethyl carbonate, carbonate Methyl ethyl, diethyl carbonate, acetone, methyl ethyl ketone (MEK), diethyl ketone, dipropyl ketone, diisobutyl ketone, cyclopentanone, cyclohexanone, methylcyclohexanone, ethyl formate, propyl formate, pentyl formate, methyl acetate, ethyl acetate, propyl acetate, Methyl propionate, ethyl propionate, γ-ptyrolactone, methyl 2-methoxyacetate, methyl 2-ethoxyacetate, ethyl 2-ethoxyacetate, ethyl 2-ethoxypropionate, 2-metho Siethanol, 2-propoxyethanol, 2-butoxyethanol, 1,2-diacetoxyacetone, acetylacetone, diacetone alcohol, methyl acetoacetate, ethyl acetoacetate, methyl alcohol, ethyl alcohol, isopropyl alcohol, n-butyl alcohol, t -Amyl alcohol, cyclohexyl alcohol, isobutyl acetate, methyl isobutyl ketone (MIBK), 2-octanone, 2-pentanone, 2-hexanone, ethylene glycol ethyl ether, ethylene glycol isopropyl ether, ethylene glycol butyl ether, propylene glycol methyl ether, ethyl carb Tolu, butyl carbitol, hexane, heptane, octane, cyclohexane, methylcyclohexane, ethylcyclohexane Xan, benzene, toluene, xylene and the like can be mentioned, and these can be used alone or in combination of two or more.

 ラジカル重合開始剤としては、公知のラジカル重合開始剤を、何ら制限なく用いることができる。

As the radical polymerization initiator, a known radical polymerization initiator can be used without any limitation.

 ここで、ラジカル溶液重合において、得られる重合体の数平均分子量(Mn)は以下の式(1)で表される。

Here, in radical solution polymerization, the number average molecular weight (Mn) of the obtained polymer is represented by the following formula (1).

Figure JPOXMLDOC01-appb-M000038
Figure JPOXMLDOC01-appb-M000038

 上記式(1)中の各パラメーターは以下のとおりである。

 [I]、[M]、[S]:それぞれ開始剤、モノマー、溶媒の濃度(mol/L)、

 k:開始剤分解速度定数、

 k:停止反応速度定数、

 k:生長反応速度定数、

 Cs(=ktrs/k):溶媒の連鎖移動定数(ktrs:溶媒への連鎖移動反応速度定数)、

 C(=ktrM/k):モノマーの連鎖移動定数(ktrM:モノマーへの連鎖移動反応速度定数)、

 f:開始剤効率、

 M:モノマーの分子量

Each parameter in the above formula (1) is as follows.

[I], [M], [S]: concentration of initiator, monomer, solvent (mol / L),

k d : initiator decomposition rate constant,

k t : stop reaction rate constant,

k p : Growth rate constant,

Cs (= k trs / k p ): chain transfer constant of solvent (k trs : chain transfer reaction rate constant to solvent),

C M (= k trM / k p ): monomer chain transfer constant (k trM : chain transfer reaction rate constant to monomer),

f: initiator efficiency,

M I : Molecular weight of monomer

 溶液ラジカル重合によって合成される重合体の分子量に影響を与える因子として、モノマー/開始剤濃度比[M]/[I]とモノマー/溶媒濃度比[M]/[S]がある。すなわち、モノマー濃度を下げる、及び/または、開始剤濃度の調整により、重合体分子量が制御できる。

Factors affecting the molecular weight of a polymer synthesized by solution radical polymerization include a monomer / initiator concentration ratio [M] / [I] and a monomer / solvent concentration ratio [M] / [S]. That is, the molecular weight of the polymer can be controlled by lowering the monomer concentration and / or adjusting the initiator concentration.

 本発明の重合体は、重合反応における化合物(M)の濃度、及び/または開始剤濃度の調整で汎用有機溶剤(例えばMEKなど)へ可溶化できる。

The polymer of the present invention can be solubilized in a general-purpose organic solvent (for example, MEK) by adjusting the concentration of the compound (M) and / or the initiator concentration in the polymerization reaction.

 ラジカル重合濃度(ラジカル溶液重合時の溶媒に対するモノマー濃度)としては、3~40質量%が好ましく、5~35質量%が更に好ましい。

The radical polymerization concentration (monomer concentration with respect to the solvent during radical solution polymerization) is preferably 3 to 40% by mass, and more preferably 5 to 35% by mass.

 また、有機溶剤に対する溶解性の観点から、ラジカル重合開始剤の量は対2(多)官能モノマー比で250モル%以上が好ましい。

Further, from the viewpoint of solubility in an organic solvent, the amount of the radical polymerization initiator is preferably 250 mol% or more in terms of the ratio of 2 (poly) functional monomers.

 以下に本発明の重合体の具体例を示すが、本発明はこれらに限定されるものではない。

Specific examples of the polymer of the present invention are shown below, but the present invention is not limited thereto.

Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039

Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040

Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041

[重合性基を有するポリオルガノシルセスキオキサン(A)]

 重合性基を有するポリオルガノシルセスキオキサン(A)については後述する。

[Polyorganosilsesquioxane (A) Having Polymerizable Group]

The polyorganosilsesquioxane (A) having a polymerizable group will be described later.

[組成物]

 本発明の組成物は上述の本発明の重合体及び重合性基を有するポリオルガノシルセスキオキサン(A)を含む。

 本発明の組成物は、半導体部品、光学部材、液晶関連部材等、塗膜の積層によって作製される部材の形成に好適に用いることができる。

 本発明の組成物は、その用途に応じ、硬化性成分、溶剤、及び各種添加剤等を含むことができる。

[Composition]

The composition of the present invention comprises the above-described polymer of the present invention and a polyorganosilsesquioxane (A) having a polymerizable group.

The composition of this invention can be used suitably for formation of the members produced by lamination | stacking of a coating film, such as a semiconductor component, an optical member, and a liquid crystal related member.

The composition of this invention can contain a sclerosing | hardenable component, a solvent, various additives, etc. according to the use.

 本発明の組成物は、ハードコートフィルムにおけるハードコート層を形成するための、ハードコート層形成用組成物として好適に用いることができる。

The composition of the present invention can be suitably used as a composition for forming a hard coat layer for forming a hard coat layer in a hard coat film.

 本発明の重合体を含むハードコート層形成用組成物は、塗工時の基材に対するぬれ性(均質塗工性)に優れ、ハードコート層表面の面状を良好なものとできる。また、ハードコート層表面に上層形成用組成物を塗布した際のリコート性にも優れる。

The composition for forming a hard coat layer containing the polymer of the present invention is excellent in wettability (homogeneous coatability) with respect to the base material during coating, and the surface state of the hard coat layer surface can be made favorable. Moreover, it is excellent also in the recoat property at the time of apply | coating the composition for upper layer formation to the hard-coat layer surface.

 本発明の組成物をハードコート層形成用組成物として用いる場合、組成物中に、重合性基を有するポリオルガノシルセスキオキサン(A)とは異なる硬化性成分をさらに含んでいても良い。硬化性成分としては、1分子中に2個以上の(メタ)アクリロイル基を有する化合物(a2)等が挙げられる。

When the composition of the present invention is used as a composition for forming a hard coat layer, the composition may further contain a curable component different from the polyorganosilsesquioxane (A) having a polymerizable group. Examples of the curable component include a compound (a2) having two or more (meth) acryloyl groups in one molecule.

 1分子中に2個以上の(メタ)アクリロイル基を有する化合物(a2)としては、後述する1分子中に2個以上の(メタ)アクリロイル基を有する化合物(b2)と同様の化合物が挙げられる。

Examples of the compound (a2) having two or more (meth) acryloyl groups in one molecule include the same compounds as the compound (b2) having two or more (meth) acryloyl groups in one molecule described later. .

 重合性基を有するポリオルガノシルセスキオキサン(A)を含む本発明の組成物は、フレキシブルハードコートフィルム中のハードコート層を形成するための組成物として好ましく用いられる。

The composition of the present invention containing the polyorganosilsesquioxane (A) having a polymerizable group is preferably used as a composition for forming a hard coat layer in a flexible hard coat film.

 ハードコート層形成用組成物は、通常、液の形態をとる。また、ハードコート層形成用組成物は、本発明の改質剤、硬化性成分、並びに、必要に応じて各種添加剤及び重合開始剤を適当な溶剤に溶解又は分散して調製されることが好ましい。

The composition for forming a hard coat layer usually takes the form of a liquid. The composition for forming a hard coat layer may be prepared by dissolving or dispersing the modifier of the present invention, the curable component, and if necessary, various additives and a polymerization initiator in an appropriate solvent. preferable.

 ハードコート層形成用組成物中に含みうる本発明の改質剤以外の成分の詳細、及び各成分の含有量については、後述するものとする。

Details of components other than the modifier of the present invention that can be included in the composition for forming a hard coat layer, and the contents of each component will be described later.

[ハードコートフィルム]

 本発明のハードコートフィルムは、

 基材及びハードコート層を含む、ハードコートフィルムであって、

 上記ハードコート層は、本発明の組成物の硬化物を含む、ハードコートフィルムである。

 また、上記ハードコート層は、重合体と重合性基を有するポリオルガノシルセスキオキサン(A)の硬化物を含む。

[Hard coat film]

The hard coat film of the present invention is

A hard coat film comprising a substrate and a hard coat layer,

The hard coat layer is a hard coat film containing a cured product of the composition of the present invention.

The hard coat layer contains a cured product of a polymer and a polyorganosilsesquioxane (A) having a polymerizable group.

 さらに、本発明のハードコートフィルムは、上記ハードコートフィルムのハードコート層の基材とは反対側に少なくとも1層の機能層を有することが好ましい。

Furthermore, it is preferable that the hard coat film of the present invention has at least one functional layer on the side of the hard coat film opposite to the base material of the hard coat layer.

 機能層としては、特に限定されるものではなく、例えば、ハードコート層、低屈折率層、高屈折率層、混合層、耐擦傷層、低反射率層、防汚層、無機酸化物層(AR層)、バリア層及びこれらの組み合わせなどが挙げられる。

The functional layer is not particularly limited. For example, a hard coat layer, a low refractive index layer, a high refractive index layer, a mixed layer, a scratch-resistant layer, a low reflectance layer, an antifouling layer, an inorganic oxide layer ( AR layer), a barrier layer, and a combination thereof.

 本発明のハードコートフィルムは、機能層として、混合層を有し、

 上記基材、上記ハードコート層、及び上記混合層をこの順に有し、

 上記混合層が、エポキシ基を有する化合物の硬化物(b1)と、1分子中に2個以上の(メタ)アクリロイル基を有する化合物(b2)の硬化物とを含む、ハードコートフィルムであることが好ましい。

The hard coat film of the present invention has a mixed layer as a functional layer,

Having the base material, the hard coat layer, and the mixed layer in this order,

The mixed layer is a hard coat film containing a cured product (b1) of a compound having an epoxy group and a cured product of a compound (b2) having two or more (meth) acryloyl groups in one molecule. Is preferred.

 なお、本発明のハードコートフィルムが機能層として、混合層を有する場合は、上記ハードコート層における、上記硬化物における本発明の組成物に含まれる重合性基を有するポリオルガノシルセスキオキサン(A)の重合性基はエポキシ基であることが好ましい。

In addition, when the hard coat film of this invention has a mixed layer as a functional layer, in the said hard coat layer, the polyorganosilsesquioxane (which has a polymeric group contained in the composition of this invention in the said hardened | cured material ( The polymerizable group of A) is preferably an epoxy group.

 また、本発明のハードコートフィルムは、機能層として、上記混合層と耐擦傷層を有し、

 上記基材、上記ハードコート層、上記混合層、及び上記耐擦傷層をこの順に有し、

 上記耐擦傷層は、1分子中に2個以上の(メタ)アクリロイル基を有する化合物(c1)の硬化物を含む、ハードコートフィルムであることが好ましい。

Moreover, the hard coat film of the present invention has the mixed layer and the scratch-resistant layer as a functional layer,

The substrate, the hard coat layer, the mixed layer, and the scratch-resistant layer in this order,

The scratch-resistant layer is preferably a hard coat film containing a cured product of the compound (c1) having two or more (meth) acryloyl groups in one molecule.

<基材>

 本発明のハードコートフィルムの基材について説明する。

 基材は、可視光領域の透過率が70%以上であることが好ましく、80%以上であることがより好ましく、90%以上であることが更に好ましい。基材はポリマーを含むことが好ましい。

<Base material>

The base material of the hard coat film of the present invention will be described.

The substrate preferably has a visible light region transmittance of 70% or more, more preferably 80% or more, and still more preferably 90% or more. The substrate preferably includes a polymer.

(ポリマー)

 ポリマーとしては、光学的な透明性、機械的強度、熱安定性などに優れるポリマーが好ましい。

(polymer)

As the polymer, a polymer excellent in optical transparency, mechanical strength, thermal stability and the like is preferable.

 ポリマーとしては、例えば、ポリカーボネート系ポリマー、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル系ポリマー、ポリスチレン、アクリロニトリル・スチレン共重合体(AS樹脂)等のスチレン系ポリマーなどが挙げられる。また、ポリエチレン、ポリプロピレン等のポリオレフィン、ノルボルネン系樹脂、エチレン・プロピレン共重合体などのポリオレフィン系ポリマー、ポリメチルメタクリレート等の(メタ)アクリル系ポリマー、塩化ビニル系ポリマー、ナイロン、芳香族ポリアミド等のアミド系ポリマー、イミド系ポリマー、スルホン系ポリマー、ポリエーテルスルホン系ポリマー、ポリエーテルエーテルケトン系ポリマー、ポリフェニレンスルフィド系ポリマー、塩化ビニリデン系ポリマー、ビニルアルコール系ポリマー、ビニルブチラール系ポリマー、アリレート系ポリマー、ポリオキシメチレン系ポリマー、エポキシ系ポリマー、トリアセチルセルロースに代表されるセルロース系ポリマー、又は上記ポリマー同士の共重合体、上記ポリマー同士を混合したポリマーも挙げられる。

Examples of the polymer include polycarbonate polymers, polyester polymers such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), and styrene polymers such as polystyrene and acrylonitrile / styrene copolymer (AS resin). Polyolefins such as polyethylene and polypropylene, polyolefin polymers such as norbornene resins, ethylene / propylene copolymers, (meth) acrylic polymers such as polymethyl methacrylate, vinyl chloride polymers, amides such as nylon and aromatic polyamides Polymer, imide polymer, sulfone polymer, polyether sulfone polymer, polyether ether ketone polymer, polyphenylene sulfide polymer, vinylidene chloride polymer, vinyl alcohol polymer, vinyl butyral polymer, arylate polymer, polyoxy A methylene polymer, an epoxy polymer, a cellulose polymer represented by triacetyl cellulose, a copolymer of the above polymers, or a mixture of the above polymers. The polymer may also be mentioned.

 特に、芳香族ポリアミド等のアミド系ポリマー及びイミド系ポリマーは、JIS(日本工業規格) P8115(2001)に従いMIT試験機によって測定した破断折り曲げ回数が大きく、硬度も比較的高いことから、基材として好ましく用いることができる。例えば、特許第5699454号公報の実施例1にあるような芳香族ポリアミド、特表2015-508345号公報、特表2016-521216号公報、及びWO2017/014287号公報に記載のポリイミドを基材として好ましく用いることができる。

In particular, amide-based polymers and imide-based polymers such as aromatic polyamides have a large number of breaks and folds measured by an MIT tester according to JIS (Japanese Industrial Standards) P8115 (2001), and have a relatively high hardness. It can be preferably used. For example, an aromatic polyamide as in Example 1 of Japanese Patent No. 5699454, a polyimide described in JP-T-2015-508345, JP-T-2016-521216, and WO2017 / 014287 is preferably used as a base material. Can be used.

 また、基材は、アクリル系、ウレタン系、アクリルウレタン系、エポキシ系、シリコーン系等の紫外線硬化型、熱硬化型の樹脂の硬化層として形成することもできる。

The substrate can also be formed as a cured layer of an acrylic, urethane, acrylurethane, epoxy, silicone or other ultraviolet curable or thermosetting resin.

(柔軟化素材)

 基材は、上記のポリマーを更に柔軟化する素材を含有しても良い。柔軟化素材とは、破断折り曲げ回数を向上させる化合物を指し、柔軟化素材としては、ゴム質弾性体、脆性改良剤、可塑剤、スライドリングポリマー等を用いることが出来る。

 柔軟化素材として具体的には、特開2016-167043号公報における段落番号<0051>~<0114>に記載の柔軟化素材を好適に用いることができる。

(Flexible material)

The substrate may contain a material that further softens the polymer. The softening material refers to a compound that improves the number of breaks and folds. As the softening material, a rubber elastic body, a brittleness improving agent, a plasticizer, a slide ring polymer, or the like can be used.

Specifically, the softening materials described in paragraph numbers <0051> to <0114> in JP-A-2016-170443 can be suitably used as the softening material.

 柔軟化素材は、ポリマーに単独で混合しても良いし、複数を適宜併用して混合しても良いし、また、ポリマーと混合せずに、柔軟化素材のみを単独又は複数併用で用いて基材としても良い。

The softening material may be mixed with the polymer alone, or may be used in combination with a plurality as appropriate, or may be used alone or in combination with a plurality of softening materials without mixing with the polymer. It is good also as a base material.

 これらの柔軟化素材を混合する量は、とくに制限はなく、単独で十分な破断折り曲げ回数を持つポリマーを単独でフィルムの基材としても良いし、柔軟化素材を混合しても良いし、すべてを柔軟化素材(100%)として十分な破断折り曲げ回数を持たせても良い。

The amount of these softening materials to be mixed is not particularly limited, and a single polymer having a sufficient number of times of bending at breaks may be used alone as a film base material, or a softening material may be mixed. As a softening material (100%), a sufficient number of times of breaking and bending may be provided.

(その他の添加剤)

 基材には、用途に応じた種々の添加剤(例えば、紫外線吸収剤、マット剤、酸化防止剤、剥離促進剤、レターデーション(光学異方性)調節剤、など)を添加できる。それらは固体でもよく油状物でもよい。すなわち、その融点又は沸点において特に限定されるものではない。また添加剤を添加する時期は基材を作製する工程において何れの時点で添加しても良く、素材調製工程に添加剤を添加し調製する工程を加えて行ってもよい。更にまた、各素材の添加量は機能が発現する限りにおいて特に限定されない。

 その他の添加剤としては、特開2016-167043号公報における段落番号[0117]~<0122>に記載の添加剤を好適に用いることができる。

(Other additives)

Various additives (for example, an ultraviolet absorber, a matting agent, an antioxidant, a peeling accelerator, a retardation (optical anisotropy) adjusting agent, etc.) depending on applications can be added to the substrate. They may be solid or oily. That is, the melting point or boiling point is not particularly limited. The timing of adding the additive may be added at any time in the step of producing the base material, or may be performed by adding the step of adding the additive to the material preparation step. Furthermore, the amount of each material added is not particularly limited as long as the function is manifested.

As other additives, the additives described in Paragraph Nos. [0117] to <0122> in JP-A No. 2016-167043 can be suitably used.

 以上の添加剤は、1種類を単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。

The above additives may be used alone or in combination of two or more.

(紫外線吸収剤)

 紫外線吸収剤としては、例えば、ベンゾトリアゾール化合物、トリアジン化合物、ベンゾオキサジン化合物を挙げることができる。ここでベンゾトリアゾール化合物とは、ベンゾトリアゾール環を有する化合物であり、具体例としては、例えば特開2013-111835号公報段落0033に記載されている各種ベンゾトリアゾール系紫外線吸収剤を挙げることができる。トリアジン化合物とは、トリアジン環を有する化合物であり、具体例としては、例えば特開2013-111835号公報段落0033に記載されている各種トリアジン系紫外線吸収剤を挙げることができる。ベンゾオキサジン化合物としては、例えば特開2014-209162号公報段落0031に記載されているものを用いることができる。基材中の紫外線吸収剤の含有量は、例えば基材に含まれるポリマー100質量部に対して0.1~10質量部程度であるが、特に限定されるものではない。また、紫外線吸収剤については、特開2013-111835号公報段落0032も参照できる。なお、本発明においては、耐熱性が高く揮散性の低い紫外線吸収剤が好ましい。かかる紫外線吸収剤としては、例えば、UVSORB101(富士フイルムファインケミカルズ株式会社製)、TINUVIN 360、TINUVIN 460、TINUVIN 1577(BASF社製)、LA-F70、LA-31、LA-46(ADEKA社製)などが挙げられる。

(UV absorber)

Examples of the ultraviolet absorber include benzotriazole compounds, triazine compounds, and benzoxazine compounds. Here, the benzotriazole compound is a compound having a benzotriazole ring, and specific examples include various benzotriazole ultraviolet absorbers described in paragraph 0033 of JP2013-111835A. The triazine compound is a compound having a triazine ring, and specific examples thereof include various triazine-based UV absorbers described in paragraph 0033 of JP2013-111835A. As the benzoxazine compound, for example, those described in paragraph 0031 of JP 2014-209162 A can be used. The content of the ultraviolet absorber in the substrate is, for example, about 0.1 to 10 parts by mass with respect to 100 parts by mass of the polymer contained in the substrate, but is not particularly limited. Regarding the UV absorber, reference can also be made to paragraph 0032 of JP2013-111835A. In the present invention, an ultraviolet absorber having high heat resistance and low volatility is preferable. Examples of such ultraviolet absorbers include UVSORB101 (manufactured by Fujifilm Fine Chemicals Co., Ltd.), TINUVIN 360, TINUVIN 460, TINUVIN 1577 (manufactured by BASF), LA-F70, LA-31, LA-46 (manufactured by ADEKA), and the like. Is mentioned.

 基材は、透明性の観点から、基材に用いる柔軟性素材及び各種添加剤と、ポリマーとの屈折率の差が小さいことが好ましい。

From the viewpoint of transparency, the base material preferably has a small difference in refractive index between the flexible material and various additives used for the base material and the polymer.

(イミド系ポリマーを含む基材)

 基材として、イミド系ポリマーを含む基材を好ましく用いることができる。本明細書において、イミド系ポリマーとは、式(PI)、式(a)、式(a’)及び式(b)で表される繰り返し構造単位を少なくとも1種以上含む重合体を意味する。なかでも、式(PI)で表される繰り返し構造単位が、イミド系ポリマーの主な構造単位であると、フィルムの強度及び透明性の観点で好ましい。式(PI)で表される繰り返し構造単位は、イミド系ポリマーの全繰り返し構造単位に対し、好ましくは40モル%以上であり、より好ましくは50モル%以上であり、さらに好ましくは70モル%以上であり、殊更好ましくは90モル%以上であり、殊更さらに好ましくは98モル%である。

(Substrate containing imide polymer)

A substrate containing an imide polymer can be preferably used as the substrate. In the present specification, the imide polymer means a polymer containing at least one or more repeating structural units represented by the formula (PI), the formula (a), the formula (a ′) and the formula (b). Especially, it is preferable from a viewpoint of the intensity | strength and transparency of a film that the repeating structural unit represented by a formula (PI) is a main structural unit of an imide type polymer. The repeating structural unit represented by the formula (PI) is preferably 40 mol% or more, more preferably 50 mol% or more, further preferably 70 mol% or more, based on all repeating structural units of the imide-based polymer. More preferably, it is 90 mol% or more, and still more preferably 98 mol%.

Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042

 式(PI)中のGは4価の有機基を表し、Aは2価の有機基を表す。式(a)中のGは3価の有機基を表し、Aは2価の有機基を表す。式(a’)中のGは4価の有機基を表し、Aは2価の有機基を表す。式(b)中のG及びAは、それぞれ2価の有機基を表す。

G in the formula (PI) represents a tetravalent organic group, and A represents a divalent organic group. G 2 in the formula (a) represents a trivalent organic group, and A 2 represents a divalent organic group. G 3 in the formula (a ′) represents a tetravalent organic group, and A 3 represents a divalent organic group. G 4 and A 4 in the formula (b) each represent a divalent organic group.

 式(PI)中、Gで表される4価の有機基の有機基(以下、Gの有機基ということがある)としては、非環式脂肪族基、環式脂肪族基及び芳香族基からなる群から選ばれる基が挙げられる。Gの有機基は、イミド系ポリマーを含む基材の透明性及び屈曲性の観点から、4価の環式脂肪族基又は4価の芳香族基であることが好ましい。芳香族基としては、単環式芳香族基、縮合多環式芳香族基及び2以上の芳香族環を有しそれらが直接または結合基により相互に連結された非縮合多環式芳香族基等が挙げられる。樹脂フィルムの透明性及び着色の抑制の観点から、Gの有機基は、環式脂肪族基、フッ素系置換基を有する環式脂肪族基、フッ素系置換基を有する単環式芳香族基、フッ素系置換基を有する縮合多環式芳香族基又はフッ素系置換基を有する非縮合多環式芳香族基であることが好ましい。本明細書においてフッ素系置換基とは、フッ素原子を含む基を意味する。フッ素系置換基は、好ましくはフルオロ基(フッ素原子,-F)及びパーフルオロアルキル基であり、さらに好ましくはフルオロ基及びトリフルオロメチル基である。

In formula (PI), the organic group of the tetravalent organic group represented by G (hereinafter sometimes referred to as G organic group) includes an acyclic aliphatic group, a cyclic aliphatic group, and an aromatic group. And a group selected from the group consisting of: The organic group of G is preferably a tetravalent cyclic aliphatic group or a tetravalent aromatic group from the viewpoints of transparency and flexibility of the substrate containing the imide-based polymer. Examples of the aromatic group include a monocyclic aromatic group, a condensed polycyclic aromatic group, and a non-condensed polycyclic aromatic group having two or more aromatic rings and connected to each other directly or by a bonding group. Etc. From the viewpoint of transparency of the resin film and suppression of coloring, the organic group of G is a cyclic aliphatic group, a cyclic aliphatic group having a fluorine-based substituent, a monocyclic aromatic group having a fluorine-based substituent, A condensed polycyclic aromatic group having a fluorine-based substituent or a non-condensed polycyclic aromatic group having a fluorine-based substituent is preferable. In this specification, the fluorine-based substituent means a group containing a fluorine atom. The fluorine-based substituent is preferably a fluoro group (fluorine atom, -F) and a perfluoroalkyl group, more preferably a fluoro group and a trifluoromethyl group.

 より具体的には、Gの有機基は、例えば、飽和又は不飽和シクロアルキル基、飽和又は不飽和へテロシクロアルキル基、アリール基、ヘテロアリール基、アリールアルキル基、アルキルアリール基、ヘテロアルキルアリール基、及び、これらのうちの任意の2つの基(同一でもよい)を有しこれらが直接又は結合基により相互に連結された基から選ばれる。結合基としては、-O-、炭素数1~10のアルキレン基、-SO-、-CO-又は-CO-NR-(Rは、メチル基、エチル基、プロピル基等の炭素数1~3のアルキル基又は水素原子を表す)が挙げられる。

More specifically, the organic group of G is, for example, a saturated or unsaturated cycloalkyl group, a saturated or unsaturated heterocycloalkyl group, an aryl group, a heteroaryl group, an arylalkyl group, an alkylaryl group, a heteroalkylaryl. A group, and any two of these groups (which may be the same), which are connected to each other directly or by a linking group. Examples of the bonding group include —O—, an alkylene group having 1 to 10 carbon atoms, —SO 2 —, —CO— or —CO—NR— (where R represents a methyl group, an ethyl group, a propyl group, etc. 3 represents an alkyl group or a hydrogen atom).

 Gで表される4価の有機基の炭素数は通常2~32であり、好ましくは4~15であり、より好ましくは5~10であり、さらに好ましくは6~8である。Gの有機基が環式脂肪族基又は芳香族基である場合、これらの基を構成する炭素原子のうちの少なくとも1つがヘテロ原子で置き換えられていてもよい。ヘテロ原子としては、O、N又はSが挙げられる。

The carbon number of the tetravalent organic group represented by G is usually 2 to 32, preferably 4 to 15, more preferably 5 to 10, and further preferably 6 to 8. When the organic group of G is a cycloaliphatic group or an aromatic group, at least one of carbon atoms constituting these groups may be replaced with a heteroatom. Heteroatoms include O, N, or S.

 Gの具体例としては、以下の式(20)、式(21)、式(22)、式(23)、式(24)、式(25)又は式(26)で表される基が挙げられる。式中の*は結合手を示す。式(26)中のZは、単結合、-O-、-CH-、-C(CH-、-Ar-O-Ar-、-Ar-CH-Ar-、-Ar-C(CH-Ar-又は-Ar-SO-Ar-を表す。Arは炭素数6~20のアリール基を表し、例えば、フェニレン基であってもよい。これらの基の水素原子のうち少なくとも1つが、フッ素系置換基で置換されていてもよい。

Specific examples of G include groups represented by the following formula (20), formula (21), formula (22), formula (23), formula (24), formula (25), or formula (26). It is done. * In the formula indicates a bond. Z in the formula (26) represents a single bond, —O—, —CH 2 —, —C (CH 3 ) 2 —, —Ar—O—Ar—, —Ar—CH 2 —Ar—, —Ar—. C (CH 3 ) 2 —Ar— or —Ar—SO 2 —Ar— is represented. Ar represents an aryl group having 6 to 20 carbon atoms, and may be, for example, a phenylene group. At least one of the hydrogen atoms of these groups may be substituted with a fluorine-based substituent.

Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043

 式(PI)中、Aで表される2価の有機基の有機基(以下、Aの有機基ということがある)としては、非環式脂肪族基、環式脂肪族基及び芳香族基からなる群から選択される基が挙げられる。Aで表される2価の有機基は、2価の環式脂肪族基及び2価の芳香族基から選ばれることが好ましい。芳香族基としては、単環式芳香族基、縮合多環式芳香族基、及び2以上の芳香族環を有しそれらが直接または結合基により相互に連結された非縮合多環式芳香族基が挙げられる。樹脂フィルムの透明性、及び着色の抑制の観点から、Aの有機基には、フッ素系置換基が導入されていることが好ましい。

In the formula (PI), the organic group of the divalent organic group represented by A (hereinafter sometimes referred to as the organic group of A) includes an acyclic aliphatic group, a cyclic aliphatic group, and an aromatic group. A group selected from the group consisting of: The divalent organic group represented by A is preferably selected from a divalent cycloaliphatic group and a divalent aromatic group. Examples of the aromatic group include a monocyclic aromatic group, a condensed polycyclic aromatic group, and a non-condensed polycyclic aromatic group having two or more aromatic rings and connected to each other directly or by a bonding group. Groups. From the viewpoint of transparency of the resin film and suppression of coloring, it is preferable that a fluorine-based substituent is introduced into the organic group of A.

 より具体的には、Aの有機基は、例えば、飽和又は不飽和シクロアルキル基、飽和又は不飽和へテロシクロアルキル基、アリール基、ヘテロアリール基、アリールアルキル基、アルキルアリール基、ヘテロアルキルアリール基、及びこれらの内の任意の2つの基(同一でもよい)を有しそれらが直接又は結合基により相互に連結された基から選ばれる。ヘテロ原子としては、O、N又はSが挙げられ、結合基としては、-O-、炭素数1~10のアルキレン基、-SO-、-CO-又は-CO-NR-(Rはメチル基、エチル基、プロピル基等の炭素数1~3のアルキル基又は水素原子を含む)が挙げられる。

More specifically, the organic group of A is, for example, a saturated or unsaturated cycloalkyl group, a saturated or unsaturated heterocycloalkyl group, an aryl group, a heteroaryl group, an arylalkyl group, an alkylaryl group, a heteroalkylaryl. A group, and any two of these groups (which may be the same) and are connected to each other directly or by a linking group. Examples of the hetero atom include O, N, or S. Examples of the bonding group include —O—, an alkylene group having 1 to 10 carbon atoms, —SO 2 —, —CO—, or —CO—NR— (R represents methyl Group, an alkyl group having 1 to 3 carbon atoms such as an ethyl group or a propyl group, or a hydrogen atom).

 Aで表される2価の有機基の炭素数は、通常2~40であり、好ましくは5~32であり、より好ましくは12~28であり、さらに好ましくは24~27である。

The carbon number of the divalent organic group represented by A is usually 2 to 40, preferably 5 to 32, more preferably 12 to 28, and further preferably 24 to 27.

 Aの具体例としては、以下の式(30)、式(31)、式(32)、式(33)又は式(34)で表される基が挙げられる。式中の*は結合手を示す。Z~Zは、それぞれ独立して、単結合、-O-、-CH-、-C(CH-、-SO-、-CO-又は―CO―NR-(Rはメチル基、エチル基、プロピル基等の炭素数1~3のアルキル基又は水素原子を表す)を表す。下記の基において、ZとZ、及び、ZとZは、それぞれ、各環に対してメタ位又はパラ位にあることが好ましい。また、Zと末端の単結合、Zと末端の単結合、及び、Zと末端の単結合とは、それぞれメタ位又はパラ位にあることが好ましい。Aの1つの例において、Z及びZが-O-であり、かつ、Zが-CH-、-C(CH-又は-SO-である。これらの基の水素原子の1つ又は2つ以上が、フッ素系置換基で置換されていてもよい。

Specific examples of A include groups represented by the following formula (30), formula (31), formula (32), formula (33), or formula (34). * In the formula indicates a bond. Z 1 to Z 3 are each independently a single bond, —O—, —CH 2 —, —C (CH 3 ) 2 —, —SO 2 —, —CO— or —CO—NR— (R is Represents a C 1-3 alkyl group such as a methyl group, an ethyl group, or a propyl group, or a hydrogen atom. In the following groups, Z 1 and Z 2 , and Z 2 and Z 3 are each preferably in the meta position or the para position with respect to each ring. Further, it is preferable that Z 1 and the single bond at the terminal, Z 2 and the single bond at the terminal, and Z 3 and the single bond at the terminal are in the meta position or the para position, respectively. In one example of A, Z 1 and Z 3 are —O— and Z 2 is —CH 2 —, —C (CH 3 ) 2 — or —SO 2 —. One or two or more hydrogen atoms of these groups may be substituted with a fluorine-based substituent.

Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044

 A及びGの少なくとも一方を構成する水素原子のうちの少なくとも1つの水素原子が、フッ素系置換基、水酸基、スルホン基及び炭素数1~10のアルキル基等からなる群から選ばれる少なくとも1種の官能基で置換されていてもよい。また、Aの有機基及びGの有機基がそれぞれ環式脂肪族基又は芳香族基である場合に、A及びGの少なくとも一方がフッ素系置換基を有することが好ましく、A及びGの両方がフッ素系置換基を有することがより好ましい。

At least one of the hydrogen atoms constituting at least one of A and G is at least one selected from the group consisting of a fluorine-based substituent, a hydroxyl group, a sulfone group, and an alkyl group having 1 to 10 carbon atoms. It may be substituted with a functional group. Further, when the organic group of A and the organic group of G are each a cyclic aliphatic group or an aromatic group, it is preferable that at least one of A and G has a fluorine-based substituent, and both A and G are More preferably, it has a fluorine-based substituent.

 式(a)中のGは、3価の有機基である。この有機基は、3価の基である点以外は、式(PI)中のGの有機基と同様の基から選択することができる。Gの例としては、Gの具体例として挙げられた式(20)~式(26)で表される基の4つの結合手のうち、いずれか1つが水素原子に置き換わった基を挙げることができる。式(a)中のA2は式(PI)中のAと同様の基から選択することができる。

G 2 in the formula (a) is a trivalent organic group. This organic group can be selected from the same groups as the organic group of G in formula (PI) except that it is a trivalent group. Examples of G 2 include groups in which any one of the four bonds of the groups represented by formulas (20) to (26) listed as specific examples of G is replaced with a hydrogen atom. Can do. A2 in formula (a) can be selected from the same groups as A in formula (PI).

 式(a’)中のGは、式(PI)中のGと同様の基から選択することができる。式(a’)中のAは、式(PI)中のAと同様の基から選択することができる。

G 3 in formula (a ′) can be selected from the same groups as G in formula (PI). A 3 in formula (a ′) can be selected from the same groups as A in formula (PI).

 式(b)中のGは、2価の有機基である。この有機基は、2価の基である点以外は、式(PI)中のGの有機基と同様の基から選択することができる。Gの例としては、Gの具体例として挙げられた式(20)~式(26)で表される基の4つの結合手のうち、いずれか2つが水素原子に置き換わった基を挙げることができる。式(b)中のAは、式(PI)中のAと同様の基から選択することができる。

G 4 in the formula (b) is a divalent organic group. This organic group can be selected from the same groups as the organic group of G in formula (PI) except that it is a divalent group. Examples of G 4 include groups in which any two of the four bonds of the groups represented by formulas (20) to (26) listed as specific examples of G are replaced with hydrogen atoms. Can do. A 4 in formula (b) can be selected from the same groups as A in formula (PI).

 イミド系ポリマーを含む基材に含まれるイミド系ポリマーは、ジアミン類と、テトラカルボン酸化合物(酸クロライド化合物およびテトラカルボン酸二無水物などのテトラカルボン酸化合物類縁体を含む)又はトリカルボン酸化合物(酸クロライド化合物及びトリカルボン酸無水物などのトリカルボン酸化合物類縁体を含む)の少なくとも1種類とを重縮合することによって得られる縮合型高分子であってもよい。さらにジカルボン酸化合物(酸クロライド化合物などの類縁体を含む)を重縮合させてもよい。式(PI)又は式(a’)で表される繰り返し構造単位は、通常、ジアミン類及びテトラカルボン酸化合物から誘導される。式(a)で表される繰り返し構造単位は、通常、ジアミン類及びトリカルボン酸化合物から誘導される。式(b)で表される繰り返し構造単位は、通常、ジアミン類及びジカルボン酸化合物から誘導される。

The imide polymer contained in the substrate containing the imide polymer includes a diamine and a tetracarboxylic acid compound (including an analog of a tetracarboxylic acid compound such as an acid chloride compound and a tetracarboxylic dianhydride) or a tricarboxylic acid compound ( It may be a condensed polymer obtained by polycondensation with at least one of an acid chloride compound and a tricarboxylic acid compound analog such as a tricarboxylic acid anhydride). Further, dicarboxylic acid compounds (including analogs such as acid chloride compounds) may be polycondensed. The repeating structural unit represented by the formula (PI) or the formula (a ′) is usually derived from a diamine and a tetracarboxylic acid compound. The repeating structural unit represented by the formula (a) is usually derived from diamines and tricarboxylic acid compounds. The repeating structural unit represented by the formula (b) is usually derived from diamines and dicarboxylic acid compounds.

 テトラカルボン酸化合物としては、芳香族テトラカルボン酸化合物、脂環式テトラカルボン酸化合物及び非環式脂肪族テトラカルボン酸化合物等が挙げられる。これらは、2種以上を併用してもよい。テトラカルボン酸化合物は、好ましくはテトラカルボン酸二無水物である。テトラカルボン酸二無水物としては、芳香族テトラカルボン酸二無水物、脂環式テトラカルボン酸二無水物、非環式脂肪族テトラカルボン酸二無水物が挙げられる。

Examples of the tetracarboxylic acid compound include aromatic tetracarboxylic acid compounds, alicyclic tetracarboxylic acid compounds, and acyclic aliphatic tetracarboxylic acid compounds. Two or more of these may be used in combination. The tetracarboxylic acid compound is preferably tetracarboxylic dianhydride. Examples of tetracarboxylic dianhydrides include aromatic tetracarboxylic dianhydrides, alicyclic tetracarboxylic dianhydrides, and acyclic aliphatic tetracarboxylic dianhydrides.

 イミド系ポリマーの溶媒に対する溶解性、並びに基材を形成した場合の透明性及び屈曲性の観点から、テトラカルボン酸化合物は、脂環式テトラカルボン化合物又は芳香族テトラカルボン酸化合物等であることが好ましい。イミド系ポリマーを含む基材の透明性及び着色の抑制の観点から、テトラカルボン酸化合物は、フッ素系置換基を有する脂環式テトラカルボン酸化合物及びフッ素系置換基を有する芳香族テトラカルボン酸化合物から選ばれることが好ましく、フッ素系置換基を有する脂環式テトラカルボン酸化合物であることがさらに好ましい。

From the viewpoint of the solubility of the imide-based polymer in the solvent and the transparency and flexibility when the substrate is formed, the tetracarboxylic acid compound may be an alicyclic tetracarboxylic compound or an aromatic tetracarboxylic acid compound. preferable. From the viewpoint of transparency of a substrate containing an imide-based polymer and suppression of coloring, the tetracarboxylic acid compound includes an alicyclic tetracarboxylic acid compound having a fluorine-based substituent and an aromatic tetracarboxylic acid compound having a fluorine-based substituent. And an alicyclic tetracarboxylic acid compound having a fluorine-based substituent is more preferable.

 トリカルボン酸化合物としては、芳香族トリカルボン酸、脂環式トリカルボン酸、非環式脂肪族トリカルボン酸及びそれらの類縁の酸クロライド化合物、酸無水物等が挙げられる。トリカルボン酸化合物は、好ましくは芳香族トリカルボン酸、脂環式トリカルボン酸、非環式脂肪族トリカルボン酸及びそれらの類縁の酸クロライド化合物から選ばれる。トリカルボン酸化合物は、2種以上を併用してもよい。

Examples of tricarboxylic acid compounds include aromatic tricarboxylic acids, alicyclic tricarboxylic acids, acyclic aliphatic tricarboxylic acids, and related acid chloride compounds, acid anhydrides, and the like. The tricarboxylic acid compound is preferably selected from aromatic tricarboxylic acids, alicyclic tricarboxylic acids, acyclic aliphatic tricarboxylic acids, and related acid chloride compounds. Two or more tricarboxylic acid compounds may be used in combination.

 イミド系ポリマーの溶媒に対する溶解性、並びにイミド系ポリマーを含む基材を形成した場合の透明性及び屈曲性の観点から、トリカルボン酸化合物は、脂環式トリカルボン酸化合物又は芳香族トリカルボン酸化合物であることが好ましい。イミド系ポリマーを含む基材の透明性及び着色の抑制の観点から、トリカルボン酸化合物は、フッ素系置換基を有する脂環式トリカルボン酸化合物又はフッ素系置換基を有する芳香族トリカルボン酸化合物であることがより好ましい。

The tricarboxylic acid compound is an alicyclic tricarboxylic acid compound or an aromatic tricarboxylic acid compound from the viewpoints of solubility of the imide-based polymer in a solvent and transparency and flexibility when a substrate containing the imide-based polymer is formed. It is preferable. From the viewpoint of transparency of a substrate containing an imide-based polymer and suppression of coloring, the tricarboxylic acid compound is an alicyclic tricarboxylic acid compound having a fluorine-based substituent or an aromatic tricarboxylic acid compound having a fluorine-based substituent. Is more preferable.

 ジカルボン酸化合物としては、芳香族ジカルボン酸、脂環式ジカルボン酸、非環式脂肪族ジカルボン酸及びそれらの類縁の酸クロライド化合物、酸無水物等が挙げられる。ジカルボン酸化合物は、好ましくは芳香族ジカルボン酸、脂環式ジカルボン酸、非環式脂肪族ジカルボン酸及びそれらの類縁の酸クロライド化合物から選ばれる。ジカルボン酸化合物は、2種以上併用してもよい。

Examples of the dicarboxylic acid compounds include aromatic dicarboxylic acids, alicyclic dicarboxylic acids, acyclic aliphatic dicarboxylic acids, and related acid chloride compounds, acid anhydrides, and the like. The dicarboxylic acid compound is preferably selected from aromatic dicarboxylic acids, alicyclic dicarboxylic acids, acyclic aliphatic dicarboxylic acids and related acid chloride compounds. Two or more dicarboxylic acid compounds may be used in combination.

 イミド系ポリマーの溶媒に対する溶解性、並びにイミド系ポリマーを含む基材を形成した場合の透明性及び屈曲性の観点から、ジカルボン酸化合物は、脂環式ジカルボン酸化合物又は芳香族ジカルボン酸化合物であることが好ましい。イミド系ポリマーを含む基材の透明性及び着色の抑制の観点から、ジカルボン酸化合物は、フッ素系置換基を有する脂環式ジカルボン酸化合物又はフッ素系置換基を有する芳香族ジカルボン酸化合物であることがさらに好ましい。

The dicarboxylic acid compound is an alicyclic dicarboxylic acid compound or an aromatic dicarboxylic acid compound from the viewpoints of solubility of the imide-based polymer in a solvent and transparency and flexibility when a substrate containing the imide-based polymer is formed. It is preferable. From the viewpoint of transparency of the substrate containing the imide-based polymer and suppression of coloring, the dicarboxylic acid compound is an alicyclic dicarboxylic acid compound having a fluorine-based substituent or an aromatic dicarboxylic acid compound having a fluorine-based substituent. Is more preferable.

 ジアミン類としては、芳香族ジアミン、脂環式ジアミン及び脂肪族ジアミンが挙げられ、これらは2種以上併用してもよい。イミド系ポリマーの溶媒に対する溶解性、並びにイミド系ポリマーを含む基材を形成した場合の透明性及び屈曲性の観点から、ジアミン類は、脂環式ジアミン及びフッ素系置換基を有する芳香族ジアミンから選ばれることが好ましい。

Examples of diamines include aromatic diamines, alicyclic diamines and aliphatic diamines, and these may be used in combination of two or more. From the viewpoint of the solubility of the imide-based polymer in a solvent, and the transparency and flexibility when a substrate containing the imide-based polymer is formed, the diamine is derived from an alicyclic diamine and an aromatic diamine having a fluorine-based substituent. It is preferable to be selected.

 このようなイミド系ポリマーを使用すれば、特に優れた屈曲性を有し、高い光透過率(例えば、550nmの光に対して85%以上、好ましくは88%以上)、低い黄色度(YI値、5以下、好ましくは3以下)、及び低いヘイズ(1.5%以下、好ましくは1.0%以下)を有する樹脂フィルムが得られ易い。

If such an imide-based polymer is used, it has particularly excellent flexibility, high light transmittance (for example, 85% or more, preferably 88% or more for 550 nm light), low yellowness (YI value). 5 or less, preferably 3 or less), and a resin film having a low haze (1.5% or less, preferably 1.0% or less) is easily obtained.

 イミド系ポリマーは、異なる複数の種類の上記の繰り返し構造単位を含む共重合体でもよい。ポリイミド系高分子の重量平均分子量は、通常10,000~500,000である。イミド系ポリマーの重量平均分子量は、好ましくは、50,000~500,000であり、さらに好ましくは70,000~400,000である。重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)で測定した標準ポリスチレン換算分子量である。イミド系ポリマーの重量平均分子量が大きいと高い屈曲性を得られやすい傾向があるが、イミド系ポリマーの重量平均分子量が大きすぎると、ワニスの粘度が高くなり、加工性が低下する傾向がある。

The imide polymer may be a copolymer containing a plurality of different types of repeating structural units. The weight average molecular weight of the polyimide polymer is usually 10,000 to 500,000. The weight average molecular weight of the imide polymer is preferably 50,000 to 500,000, and more preferably 70,000 to 400,000. The weight average molecular weight is a standard polystyrene equivalent molecular weight measured by gel permeation chromatography (GPC). If the weight average molecular weight of the imide polymer is large, high flexibility tends to be obtained, but if the weight average molecular weight of the imide polymer is too large, the viscosity of the varnish tends to be high and the workability tends to be lowered.

 イミド系ポリマーは、上述のフッ素系置換基等によって導入できるフッ素原子等のハロゲン原子を含んでいてもよい。ポリイミド系高分子がハロゲン原子を含むことにより、イミド系ポリマーを含む基材の弾性率を向上させ且つ黄色度を低減させることができる。これにより、樹脂フィルムに発生するキズ及びシワ等が抑制され、且つ、イミド系ポリマーを含む基材の透明性を向上させることができる。ハロゲン原子として好ましくは、フッ素原子である。ポリイミド系高分子におけるハロゲン原子の含有量は、ポリイミド系高分子の質量を基準として、1~40質量%であることが好ましく、1~30質量%であることがより好ましい。

The imide-based polymer may contain a halogen atom such as a fluorine atom that can be introduced by the above-described fluorine-based substituent. When the polyimide polymer contains a halogen atom, the elastic modulus of the substrate containing the imide polymer can be improved and the yellowness can be reduced. Thereby, the crack | wound, wrinkles, etc. which generate | occur | produce in a resin film are suppressed, and the transparency of the base material containing an imide type polymer can be improved. A halogen atom is preferably a fluorine atom. The content of halogen atoms in the polyimide polymer is preferably 1 to 40% by mass, more preferably 1 to 30% by mass based on the mass of the polyimide polymer.

 イミド系ポリマーを含む基材は、1種又は2種以上の紫外線吸収剤を含有していてもよい。紫外線吸収剤は、樹脂材料の分野で紫外線吸収剤として通常用いられているものから、適宜選択することができる。紫外線吸収剤は、400nm以下の波長の光を吸収する化合物を含んでいてもよい。イミド系ポリマーと適切に組み合わせることのできる紫外線吸収剤は、例えば、ベンゾフェノン系化合物、サリシレート系化合物、ベンゾトリアゾール系化合物及びトリアジン系化合物からなる群より選ばれる少なくとも1種の化合物が挙げられる。

 本明細書において、「系化合物」とは、「系化合物」が付される化合物の誘導体を指す。例えば、「ベンゾフェノン系化合物」とは、母体骨格としてのベンゾフェノンと、ベンゾフェノンに結合している置換基とを有する化合物を指す。

The base material containing an imide-based polymer may contain one or more ultraviolet absorbers. The ultraviolet absorber can be appropriately selected from those usually used as an ultraviolet absorber in the field of resin materials. The ultraviolet absorber may contain a compound that absorbs light having a wavelength of 400 nm or less. Examples of the ultraviolet absorber that can be appropriately combined with the imide polymer include at least one compound selected from the group consisting of benzophenone compounds, salicylate compounds, benzotriazole compounds, and triazine compounds.

In the present specification, “system compound” refers to a derivative of a compound to which “system compound” is attached. For example, a “benzophenone compound” refers to a compound having benzophenone as a host skeleton and a substituent bonded to benzophenone.

 紫外線吸収剤の含有量は、樹脂フィルムの全体質量に対して、通常1質量%以上であり、好ましくは2質量%以上であり、より好ましくは3質量%以上であり、通常10質量%以下であり、好ましくは8質量%以下であり、より好ましくは6質量%以下である。紫外線吸収剤がこれらの量で含まれることで、樹脂フィルム10の耐候性を高めることができる。

The content of the ultraviolet absorber is usually 1% by mass or more, preferably 2% by mass or more, more preferably 3% by mass or more, and usually 10% by mass or less with respect to the total mass of the resin film. Yes, preferably 8% by mass or less, more preferably 6% by mass or less. By including the ultraviolet absorber in these amounts, the weather resistance of the resin film 10 can be enhanced.

 イミド系ポリマーを含む基材は、無機粒子等の無機材料を更に含有していてもよい。無機材料は、ケイ素原子を含むケイ素材料が好ましい。イミド系ポリマーを含む基材がケイ素材料等の無機材料を含有することで、イミド系ポリマーを含む基材の引張弾性率を容易に4.0GPa以上とすることができる。ただし、イミド系ポリマーを含む基材の引張弾性率を制御する方法は、無機材料の配合に限られない。

The base material containing the imide polymer may further contain an inorganic material such as inorganic particles. The inorganic material is preferably a silicon material containing a silicon atom. When the base material containing the imide polymer contains an inorganic material such as a silicon material, the tensile elastic modulus of the base material containing the imide polymer can easily be 4.0 GPa or more. However, the method for controlling the tensile modulus of the base material containing the imide polymer is not limited to the blending of the inorganic material.

 ケイ素原子を含むケイ素材料としては、シリカ粒子、オルトケイ酸テトラエチル(TEOS)等の4級アルコキシシラン、シルセスキオキサン誘導体等のケイ素化合物が挙げられる。これらのケイ素材料の中でも、イミド系ポリマーを含む基材の透明性及び屈曲性の観点から、シリカ粒子が好ましい。

Examples of the silicon material containing a silicon atom include silica particles, quaternary alkoxysilanes such as tetraethyl orthosilicate (TEOS), and silicon compounds such as silsesquioxane derivatives. Among these silicon materials, silica particles are preferable from the viewpoints of transparency and flexibility of a substrate containing an imide-based polymer.

 シリカ粒子の平均一次粒子径は、通常、100nm以下である。シリカ粒子の平均一次粒子径が100nm以下であると透明性が向上する傾向がある。

The average primary particle diameter of the silica particles is usually 100 nm or less. When the average primary particle diameter of the silica particles is 100 nm or less, the transparency tends to be improved.

 イミド系ポリマーを含む基材中のシリカ粒子の平均一次粒子径は、透過型電子顕微鏡(TEM)による観察で求めることができる。シリカ粒子の一次粒子径は、透過型電子顕微鏡(TEM)による定方向径とすることができる。平均一次粒子径は、TEM観察により一次粒子径を10点測定し、それらの平均値として求めることができる。イミド系ポリマーを含む基材を形成する前のシリカ粒子の粒子分布は、市販のレーザー回折式粒度分布計により求めることができる。

The average primary particle diameter of the silica particles in the substrate containing the imide polymer can be determined by observation with a transmission electron microscope (TEM). The primary particle diameter of the silica particles can be a constant direction diameter measured by a transmission electron microscope (TEM). The average primary particle diameter can be obtained as an average value of ten primary particle diameters measured by TEM observation. The particle distribution of the silica particles before forming the substrate containing the imide polymer can be determined by a commercially available laser diffraction particle size distribution meter.

 イミド系ポリマーを含む基材において、イミド系ポリマーと無機材料との配合比は、両者の合計を10として、質量比で、1:9~10:0であることが好ましく、3:7~10:0であることがより好ましく、3:7~8:2であることがさらに好ましく、3:7~7:3であることがよりさらに好ましい。イミド系ポリマー及び無機材料の合計質量に対する無機材料の割合は、通常20質量%以上であり、好ましくは30質量%以上であり、通常90質量%以下であり、好ましくは70質量%以下である。イミド系ポリマーと無機材料(ケイ素材料)との配合比が上記の範囲内であると、イミド系ポリマーを含む基材の透明性及び機械的強度が向上する傾向がある。また、イミド系ポリマーを含む基材の引張弾性率を容易に4.0GPa以上とすることができる。

In the substrate containing the imide polymer, the mixing ratio of the imide polymer and the inorganic material is preferably 1: 9 to 10: 0 in mass ratio, with the total of both being 10: 3 to 7 to 10. : 0 is more preferable, 3: 7 to 8: 2 is still more preferable, and 3: 7 to 7: 3 is still more preferable. The ratio of the inorganic material to the total mass of the imide polymer and the inorganic material is usually 20% by mass or more, preferably 30% by mass or more, and usually 90% by mass or less, preferably 70% by mass or less. When the mixing ratio of the imide polymer and the inorganic material (silicon material) is within the above range, the transparency and mechanical strength of the substrate containing the imide polymer tend to be improved. Moreover, the tensile elasticity modulus of the base material containing an imide polymer can be easily set to 4.0 GPa or more.

 イミド系ポリマーを含む基材は、透明性及び屈曲性を著しく損なわない範囲で、イミド系ポリマー及び無機材料以外の成分を更に含有していてもよい。イミド系ポリマー及び無機材料以外の成分としては、例えば、酸化防止剤、離型剤、安定剤、ブルーイング剤等の着色剤、難燃剤、滑剤、増粘剤及びレベリング剤が挙げられる。イミド系ポリマー及び無機材料以外の成分の割合は、樹脂フィルム10の質量に対して、0%を超えて20質量%以下であることが好ましく、さらに好ましくは0%を超えて10質量%以下である。

The base material containing the imide polymer may further contain components other than the imide polymer and the inorganic material as long as the transparency and flexibility are not significantly impaired. Examples of components other than the imide-based polymer and the inorganic material include colorants such as antioxidants, mold release agents, stabilizers, and bluing agents, flame retardants, lubricants, thickeners, and leveling agents. The proportion of components other than the imide-based polymer and the inorganic material is preferably more than 0% and not more than 20% by mass, more preferably more than 0% and not more than 10% by mass with respect to the mass of the resin film 10. is there.

 イミド系ポリマーを含む基材がイミド系ポリマー及びケイ素材料を含有するとき、少なくとも一方の主面10aにおける、窒素原子に対するケイ素原子の原子数比であるSi/Nが8以上であることが好ましい。この原子数比Si/Nは、X線光電子分光(X-ray Photoelectron Spectroscopy、XPS)によって、イミド系ポリマーを含む基材の組成を評価し、これによって得られたケイ素原子の存在量と窒素原子の存在量から算出される値である。

When the base material containing an imide polymer contains an imide polymer and a silicon material, it is preferable that Si / N, which is the atomic ratio of silicon atoms to nitrogen atoms, is 8 or more in at least one main surface 10a. This atomic ratio Si / N is determined by evaluating the composition of a substrate containing an imide-based polymer by X-ray photoelectron spectroscopy (XPS), and the abundance of silicon atoms and nitrogen atoms obtained thereby. It is a value calculated from the abundance of.

 イミド系ポリマーを含む基材の主面10aにおけるSi/Nが8以上であることにより、後述する機能層20との充分な密着性が得られる。密着性の観点から、Si/Nは、9以上であることがより好ましく、10以上であることがさらに好ましく、50以下であることが好ましく、40以下であることがより好ましい。

When Si / N in the main surface 10a of the base material containing the imide polymer is 8 or more, sufficient adhesion with the functional layer 20 described later is obtained. From the viewpoint of adhesion, Si / N is more preferably 9 or more, further preferably 10 or more, preferably 50 or less, and more preferably 40 or less.

(基材の厚み)

 基材の厚みは、100μm以下であることがより好ましく、80μm以下であることが更に好ましく、50μm以下が最も好ましい。基材の厚みが薄くなれば、折れ曲げ時の表面と裏面の曲率差が小さくなり、クラック等が発生し難くなり、複数回の折れ曲げでも、基材の破断が生じなくなる。一方、基材取り扱いの容易さの観点から基材の厚みは3μm以上であることが好ましく、5μm以上であることがより好ましく、15μm以上が最も好ましい。

(Thickness of base material)

The thickness of the substrate is more preferably 100 μm or less, further preferably 80 μm or less, and most preferably 50 μm or less. If the thickness of the base material is reduced, the difference in curvature between the front surface and the back surface at the time of bending is reduced, and cracks and the like are less likely to occur. On the other hand, from the viewpoint of easy handling of the substrate, the thickness of the substrate is preferably 3 μm or more, more preferably 5 μm or more, and most preferably 15 μm or more.

(基材の作製方法)

 基材は、熱可塑性のポリマーを熱溶融して製膜しても良いし、ポリマーを均一に溶解した溶液から溶液製膜(ソルベントキャスト法)によって製膜しても良い。熱溶融製膜の場合は、上述の柔軟化素材及び種々の添加剤を、熱溶融時に加えることができる。一方、基材を溶液製膜法で作製する場合は、ポリマー溶液(以下、ドープともいう)には、各調製工程において上述の柔軟化素材及び種々の添加剤を加えることができる。またその添加する時期はドープ作製工程において何れでも添加しても良いが、ドープ調製工程の最後の調製工程に添加剤を添加し調製する工程を加えて行ってもよい。

(Method for producing substrate)

The base material may be formed by thermally melting a thermoplastic polymer, or may be formed by solution film formation (solvent casting method) from a solution in which the polymer is uniformly dissolved. In the case of hot melt film formation, the above-mentioned softening material and various additives can be added at the time of hot melting. On the other hand, when the substrate is produced by a solution casting method, the above-described softening material and various additives can be added to the polymer solution (hereinafter also referred to as a dope) in each preparation step. Further, the addition may be performed at any time in the dope preparation process, but may be performed by adding an additive to the final preparation process of the dope preparation process.

 塗膜の乾燥、及び/又はベーキングのために、塗膜を加熱してもよい。塗膜の加熱温度は、通常50~350℃である。塗膜の加熱は、不活性雰囲気下又は減圧下で行ってもよい。塗膜を加熱することにより溶媒を蒸発させ、除去することができる。樹脂フィルムは、塗膜を50~150℃で乾燥する工程と、乾燥後の塗膜を180~350℃でベーキングする工程とを含む方法により、形成されてもよい。

The coating film may be heated for drying and / or baking the coating film. The heating temperature of the coating film is usually 50 to 350 ° C. The coating film may be heated under an inert atmosphere or under reduced pressure. The solvent can be evaporated and removed by heating the coating film. The resin film may be formed by a method including a step of drying the coating film at 50 to 150 ° C. and a step of baking the dried coating film at 180 to 350 ° C.

 基材の少なくとも一方の主面には、表面処理を施してもよい。

A surface treatment may be applied to at least one main surface of the substrate.

 基材の片面または両面には、表面保護または基材の平滑性を維持するために保護フィルムを貼合しても良い。保護フィルムとしては、帯電防止剤を含有する粘着剤が支持体の片面に積層された保護フィルムが好ましい。このような保護フィルムを用いることで、保護フィルムを剥離し、ハードコート層を形成する際に塵埃の付着を防止することができる。

A protective film may be bonded to one side or both sides of the base material in order to maintain surface protection or the smoothness of the base material. As the protective film, a protective film in which an adhesive containing an antistatic agent is laminated on one side of the support is preferable. By using such a protective film, it is possible to prevent the dust from adhering when the protective film is peeled off and the hard coat layer is formed.

<ハードコート層>

 本発明のハードコートフィルムのハードコート層について説明する。

 本発明におけるハードコート層は、本発明の組成物の硬化物からなることが好ましい。

 本発明におけるハードコート層は、重合体と重合性基を有するポリオルガノシルセスキオキサン(A)の硬化物を含むことがより好ましい。

<Hard coat layer>

The hard coat layer of the hard coat film of the present invention will be described.

The hard coat layer in the present invention is preferably composed of a cured product of the composition of the present invention.

More preferably, the hard coat layer in the present invention contains a cured product of a polymer and a polyorganosilsesquioxane (A) having a polymerizable group.

 重合性基を有するポリオルガノシルセスキオキサン(A)における重合性基としては、特に限定されないが、ラジカル重合又はカチオン重合可能な重合性基が好ましい。ラジカル重合性基としては、一般に知られているラジカル重合性基を用いることができ、好適なものとして、(メタ)アクリレート基を挙げることができる。カチオン重合性基としては、一般に知られているカチオン重合性を用いることができ、具体的には、脂環式エーテル基、環状アセタール基、環状ラクトン基、環状チオエーテル基、スピロオルソエステル基、ビニルオキシ基などを挙げることができる。中でも、脂環式エーテル基、ビニルオキシ基が好適であり、エポキシ基、オキセタニル基、ビニルオキシ基が特に好ましく、エポキシ基を用いることが最も好ましい。

The polymerizable group in the polyorganosilsesquioxane (A) having a polymerizable group is not particularly limited, but a polymerizable group capable of radical polymerization or cationic polymerization is preferable. As the radical polymerizable group, a generally known radical polymerizable group can be used, and a (meth) acrylate group can be mentioned as a preferable one. As the cationic polymerizable group, generally known cationic polymerizable groups can be used. Specifically, alicyclic ether group, cyclic acetal group, cyclic lactone group, cyclic thioether group, spiro orthoester group, vinyloxy group Examples include groups. Of these, alicyclic ether groups and vinyloxy groups are preferred, epoxy groups, oxetanyl groups and vinyloxy groups are particularly preferred, and epoxy groups are most preferred.

 重合性基を有するポリオルガノシルセスキオキサン(A)は、エポキシ基を有するポリオルガノシルセスキオキサン(a1)であることが好ましい。

The polyorganosilsesquioxane (A) having a polymerizable group is preferably polyorganosilsesquioxane (a1) having an epoxy group.

 本発明におけるハードコート層は、本発明の重合体及びエポキシ基を有するポリオルガノシルセスキオキサン(a1)を含有する硬化性組成物を加熱及び/又は電離放射線の照射により硬化させてなるものであることが好ましい。

The hard coat layer in the present invention is obtained by curing a curable composition containing the polymer of the present invention and a polyorganosilsesquioxane (a1) having an epoxy group by heating and / or irradiation with ionizing radiation. Preferably there is.

(エポキシ基を有するポリオルガノシルセスキオキサン(a1))

 エポキシ基を有するポリオルガノシルセスキオキサン(a1)(「ポリオルガノシルセスキオキサン(a1)」ともいう。)は、少なくとも、エポキシ基を含有するシロキサン構成単位を有し、下記一般式(1)で表されるポリオルガノシルセスキオキサンであることが好ましい。

(Polyorganosilsesquioxane (a1) having an epoxy group)

The polyorganosilsesquioxane (a1) having an epoxy group (also referred to as “polyorganosilsesquioxane (a1)”) has at least a siloxane structural unit containing an epoxy group, and has the following general formula (1 It is preferable that it is polyorganosilsesquioxane represented by this.

Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045

 一般式(1)中、Rbは、エポキシ基を含有する基を表し、Rcは1価の基を表す。q及びrは、一般式(1)中のRbおよびRcの比率を表し、q+r=100であり、qは0超、rは0以上である。一般式(1)中に複数のRb及びRcがある場合、複数のRb及びRcはそれぞれ同一であっても異なっていてもよい。一般式(1)中に複数のRcがある場合、複数のRcは、互いに結合を形成してもよい。

In general formula (1), Rb represents a group containing an epoxy group, and Rc represents a monovalent group. q and r represent the ratio of Rb and Rc in the general formula (1), q + r = 100, q is greater than 0, and r is 0 or more. When there are a plurality of Rb and Rc in the general formula (1), the plurality of Rb and Rc may be the same or different. When there are a plurality of Rc in the general formula (1), the plurality of Rc may form a bond with each other.

 一般式(1)中の[SiO1.5]は、ポリオルガノシルセスキオキサン中、シロキサン結合(Si-O-Si)により構成される構造部分を表す。

 ポリオルガノシルセスキオキサンとは、加水分解性三官能シラン化合物に由来するシロキサン構成単位を有するネットワーク型ポリマー又は多面体クラスターであり、シロキサン結合によって、ランダム構造、ラダー構造、ケージ構造などを形成し得る。本発明において、[SiO1.5]が表す構造部分は、上記のいずれの構造であってもよいが、ラダー構造を多く含有していることが好ましい。ラダー構造を形成していることにより、ハードコートフィルムの変形回復性を良好に保つことができる。ラダー構造の形成は、FT-IR(Fourier Transform Infrared Spectroscopy)を測定した際、1020-1050cm-1付近に現れるラダー構造に特徴的なSi-O-Si伸縮に由来する吸収の有無によって定性的に確認することができる。

[SiO 1.5 ] in the general formula (1) represents a structural portion constituted by a siloxane bond (Si—O—Si) in the polyorganosilsesquioxane.

Polyorganosilsesquioxane is a network-type polymer or polyhedral cluster having a siloxane structural unit derived from a hydrolyzable trifunctional silane compound, and can form a random structure, ladder structure, cage structure, etc. by a siloxane bond. . In the present invention, the structural portion represented by [SiO 1.5 ] may be any of the structures described above, but preferably contains a lot of ladder structures. By forming the ladder structure, the deformation recovery property of the hard coat film can be kept good. The formation of the ladder structure is qualitatively determined by the presence or absence of absorption derived from Si—O—Si stretching characteristic of the ladder structure appearing in the vicinity of 1020-1050 cm −1 when measuring FT-IR (Fourier Transform Infrared Spectroscopy). Can be confirmed.

 一般式(1)中、Rbは、エポキシ基を含有する基を表す。

 エポキシ基を含有する基としては、オキシラン環を有する公知の基が挙げられる。

 Rbは、下記式(1b)~(4b)で表される基であることが好ましい。

In general formula (1), Rb represents a group containing an epoxy group.

Examples of the group containing an epoxy group include known groups having an oxirane ring.

Rb is preferably a group represented by the following formulas (1b) to (4b).

Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046

 上記式(1b)~(4b)中、**は一般式(1)中のSiとの連結部分を表し、R1b、R2b、R3b及びR4bは、置換又は無置換のアルキレン基を表す。

 R1b、R2b、R3b及びR4bが表すアルキレン基としては、炭素数1~10の直鎖又は分岐鎖状のアルキレン基が好ましく、例えば、メチレン基、メチルメチレン基、ジメチルメチレン基、エチレン基、i-プロピレン基、n-プロピレン基、n-ブチレン基、n-ペンチレン基、n-ヘキシレン基、n-デシレン基等が挙げられる。

 R1b、R2b、R3b及びR4bが表すアルキレン基が置換基を有する場合の置換基としては、ヒドロキシル基、カルボキシル基、アルコキシ基、アリール基、ヘテロアリール基、ハロゲン原子、ニトロ基、シアノ基、シリル基等が挙げられる。

 R1b、R2b、R3b及びR4bとしては、無置換の炭素数1~4の直鎖状のアルキレン基、無置換の炭素数3又は4の分岐鎖状のアルキレン基が好ましく、エチレン基、n-プロピレン基、又はi-プロピレン基がより好ましく、さらに好ましくはエチレン基、又はn-プロピレン基である。

In the above formulas (1b) to (4b), ** represents a connecting part with Si in the general formula (1), and R 1b , R 2b , R 3b and R 4b represent a substituted or unsubstituted alkylene group. Represent.

The alkylene group represented by R 1b , R 2b , R 3b and R 4b is preferably a linear or branched alkylene group having 1 to 10 carbon atoms. For example, a methylene group, a methylmethylene group, a dimethylmethylene group, ethylene Group, i-propylene group, n-propylene group, n-butylene group, n-pentylene group, n-hexylene group, n-decylene group and the like.

When the alkylene group represented by R 1b , R 2b , R 3b and R 4b has a substituent, examples of the substituent include a hydroxyl group, a carboxyl group, an alkoxy group, an aryl group, a heteroaryl group, a halogen atom, a nitro group, and a cyano group. Group, silyl group and the like.

R 1b , R 2b , R 3b and R 4b are preferably an unsubstituted linear alkylene group having 1 to 4 carbon atoms, an unsubstituted branched alkylene group having 3 or 4 carbon atoms, and an ethylene group N-propylene group or i-propylene group is more preferable, and ethylene group or n-propylene group is more preferable.

 ポリオルガノシルセスキオキサン(a1)は、脂環式エポキシ基(エポキシ基と脂環基の縮環構造を有する基)を有することが好ましい。一般式(1)中のRbは、脂環式エポキシ基であることが好ましく、エポキシシクロヘキシル基を有する基であることがより好ましく、上記式(1b)で表される基であることがさらに好ましい。

The polyorganosilsesquioxane (a1) preferably has an alicyclic epoxy group (a group having a condensed ring structure of an epoxy group and an alicyclic group). Rb in the general formula (1) is preferably an alicyclic epoxy group, more preferably a group having an epoxycyclohexyl group, and even more preferably a group represented by the above formula (1b). .

 なお、一般式(1)中のRbは、ポリオルガノシルセスキオキサンの原料として使用する加水分解性三官能シラン化合物におけるケイ素原子に結合した基(アルコキシ基及びハロゲン原子以外の基;例えば、後述の式(B)で表される加水分解性シラン化合物におけるRb等)に由来する。

Rb in the general formula (1) is a group bonded to a silicon atom in a hydrolyzable trifunctional silane compound used as a raw material for polyorganosilsesquioxane (a group other than an alkoxy group and a halogen atom; Derived from Rb in the hydrolyzable silane compound represented by the formula (B).

 以下にRbの具体例を示すが、本発明はこれらに限定されるものではない。下記具体例において、**は一般式(1)中のSiとの連結部分を表す。

Specific examples of Rb are shown below, but the present invention is not limited thereto. In the following specific examples, ** represents a connecting portion with Si in the general formula (1).

Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047

 一般式(1)中、Rcは1価の基を表す。

 Rcが表す1価の基としては、水素原子、置換若しくは無置換のアルキル基、置換若しくは無置換のシクロアルキル基、置換若しくは無置換のアルケニル基、置換若しくは無置換のアリール基、又は置換若しくは無置換のアラルキル基が挙げられる。

In general formula (1), Rc represents a monovalent group.

The monovalent group represented by Rc includes a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted group. A substituted aralkyl group may be mentioned.

 Rcが表すアルキル基としては、炭素数1~10のアルキル基が挙げられ、例えば、メチル基、エチル基、プロピル基、n-ブチル基、イソプロピル基、イソブチル基、s-ブチル基、t-ブチル基、イソペンチル基等の直鎖又は分岐鎖状のアルキル基が挙げられる。

 Rcが表すシクロアルキル基としては、炭素数3~15のシクロアルキル基が挙げられ、例えば、シクロブチル基、シクロペンチル基、シクロヘキシル基等が挙げられる。

 Rcが表すアルケニル基としては、炭素数2~10のアルケニル基が挙げられ、例えば、ビニル基、アリル基、イソプロペニル基等の直鎖又は分岐鎖状のアルケニル基が挙げられる。

 Rcが表すアリール基としては、炭素数6~15のアリール基が挙げられ、例えば、フェニル基、トリル基、ナフチル基等が挙げられる。

 Rcが表すアラルキル基としては、炭素数7~20のアラルキル基が挙げられ、例えば、ベンジル基、フェネチル基等が挙げられる。

Examples of the alkyl group represented by Rc include alkyl groups having 1 to 10 carbon atoms, such as methyl group, ethyl group, propyl group, n-butyl group, isopropyl group, isobutyl group, s-butyl group, t-butyl group. And a linear or branched alkyl group such as an isopentyl group.

Examples of the cycloalkyl group represented by Rc include cycloalkyl groups having 3 to 15 carbon atoms, such as a cyclobutyl group, a cyclopentyl group, and a cyclohexyl group.

Examples of the alkenyl group represented by Rc include alkenyl groups having 2 to 10 carbon atoms, and examples thereof include linear or branched alkenyl groups such as vinyl group, allyl group, and isopropenyl group.

Examples of the aryl group represented by Rc include aryl groups having 6 to 15 carbon atoms, such as a phenyl group, a tolyl group, and a naphthyl group.

Examples of the aralkyl group represented by Rc include aralkyl groups having 7 to 20 carbon atoms, and examples thereof include a benzyl group and a phenethyl group.

 上述の置換アルキル基、置換シクロアルキル基、置換アルケニル基、置換アリール基、置換アラルキル基としては、上述のアルキル基、シクロアルキル基、アルケニル基、アリール基、アラルキル基のそれぞれにおける水素原子又は主鎖骨格の一部若しくは全部が、エーテル基、エステル基、カルボニル基、ハロゲン原子(フッ素原子等)、アクリル基、メタクリル基、メルカプト基、及びヒドロキシ基(水酸基)からなる群より選択された少なくとも1種で置換された基等が挙げられる。

Examples of the substituted alkyl group, substituted cycloalkyl group, substituted alkenyl group, substituted aryl group, and substituted aralkyl group include a hydrogen atom or main chain bone in each of the above-described alkyl group, cycloalkyl group, alkenyl group, aryl group, and aralkyl group. At least one kind selected from the group consisting of an ether group, an ester group, a carbonyl group, a halogen atom (fluorine atom, etc.), an acrylic group, a methacryl group, a mercapto group, and a hydroxy group (hydroxyl group). And a group substituted with.

 Rcは、置換又は無置換のアルキル基が好ましく、無置換の炭素数1~10のアルキル基であることがより好ましい。

Rc is preferably a substituted or unsubstituted alkyl group, and more preferably an unsubstituted alkyl group having 1 to 10 carbon atoms.

 一般式(1)中に複数のRcがある場合、複数のRcは互いに結合を形成していてもよい。2つ又は3つのRcが互いに結合を形成していることが好ましく、2つのRcが互いに結合を形成していることがより好ましい。

When there are a plurality of Rc in the general formula (1), the plurality of Rc may form a bond with each other. It is preferable that two or three Rc form a bond with each other, and it is more preferable that two Rc form a bond with each other.

 2つのRcが互いに結合して形成される基(Rc)としては、上述のRcが表す置換又は無置換のアルキル基が結合して形成されるアルキレン基であることが好ましい。

The group (Rc 2 ) formed by bonding two Rc's to each other is preferably an alkylene group formed by bonding the substituted or unsubstituted alkyl group represented by Rc described above.

 Rcが表すアルキレン基としては、例えば、メチレン基、エチレン基、プロピレン基、イソプロピレン基、n-ブチレン基、イソブチレン基、s-ブチレン基、t-ブチレン基、n-ペンチレン基、イソペンチレン基、s-ペンチレン基、t-ペンチレン基、n-ヘキシレン基、イソヘキシレン基、s-ヘキシレン基、t-ヘキシレン基、n-ヘプチレン基、イソヘプチレン基、s-ヘプチレン基、t-ヘプチレン基、n-オクチレン基、イソオクチレン基、s-オクチレン基、t-オクチレン基等の直鎖又は分岐鎖状のアルキレン基が挙げられる。

Examples of the alkylene group represented by Rc 2 include methylene group, ethylene group, propylene group, isopropylene group, n-butylene group, isobutylene group, s-butylene group, t-butylene group, n-pentylene group, isopentylene group, s-pentylene group, t-pentylene group, n-hexylene group, isohexylene group, s-hexylene group, t-hexylene group, n-heptylene group, isoheptylene group, s-heptylene group, t-heptylene group, n-octylene group And linear or branched alkylene groups such as isooctylene group, s-octylene group and t-octylene group.

 Rcが表すアルキレン基としては、無置換の炭素数2~20のアルキレン基が好ましく、より好ましくは無置換の炭素数2~20のアルキレン基、さらに好ましくは無置換の炭素数2~8のアルキレン基であり、特に好ましくはn-ブチレン基、n-ペンチレン基、n-ヘキシレン基、n-ヘプチレン基、n-オクチレン基である。

The alkylene group represented by Rc 2 is preferably an unsubstituted alkylene group having 2 to 20 carbon atoms, more preferably an unsubstituted alkylene group having 2 to 20 carbon atoms, and still more preferably an unsubstituted alkylene group having 2 to 8 carbon atoms. An alkylene group, particularly preferably an n-butylene group, an n-pentylene group, an n-hexylene group, an n-heptylene group, or an n-octylene group.

 3つのRcが互いに結合して形成される基(Rc)としては、上述のRcが表すアルキレン基において、アルキレン基中の任意の水素原子をひとつ減らした3価の基であることが好ましい。

The group formed by bonding three Rc to each other (Rc 3 ) is preferably a trivalent group in which any hydrogen atom in the alkylene group is reduced by one in the alkylene group represented by Rc 2 described above. .

 なお、一般式(1)中のRcは、ポリオルガノシルセスキオキサンの原料として使用する加水分解性シラン化合物におけるケイ素原子に結合した基(アルコキシ基及びハロゲン原子以外の基;例えば、後述の式(C1)~(C3)で表される加水分解性シラン化合物におけるRc~Rc等)に由来する。

In the general formula (1), Rc represents a group bonded to a silicon atom in a hydrolyzable silane compound used as a raw material for polyorganosilsesquioxane (a group other than an alkoxy group and a halogen atom; (Rc 1 to Rc 3 in the hydrolyzable silane compounds represented by (C1) to (C3)).

 一般式(1)中、qは0超であり、rは0以上である。

 q/(q+r)は0.5~1.0であることが好ましい。ポリオルガノシルセスキオキサン(a1)に含まれるRb又はRcで表される基全量に対して、Rbで表される基を半数以上とすることで、有機架橋基が作るネットワークが十分に形成されるため、硬度、繰り返し折り曲げ耐性の各性能を良好に保つことができる。

 q/(q+r)は0.7~1.0であることがより好ましく、0.9~1.0がさらに好ましく、0.95~1.0であることが特に好ましい。

In general formula (1), q is more than 0 and r is 0 or more.

q / (q + r) is preferably 0.5 to 1.0. By making the group represented by Rb more than half of the total group represented by Rb or Rc contained in polyorganosilsesquioxane (a1), the network formed by the organic crosslinking group is sufficiently formed. Therefore, each performance of hardness and resistance to repeated bending can be kept good.

q / (q + r) is more preferably 0.7 to 1.0, further preferably 0.9 to 1.0, and particularly preferably 0.95 to 1.0.

 一般式(1)中、複数のRcがあり、複数のRcが互いに結合を形成していることも好ましい。この場合、r/(q+r)が0.005~0.20であることが好ましい。

 r/(q+r)は0.005~0.10がより好ましく、0.005~0.05がさらに好ましく、0.005~0.025であることが特に好ましい。

In general formula (1), there are a plurality of Rc, and it is also preferable that a plurality of Rc form a bond with each other. In this case, r / (q + r) is preferably 0.005 to 0.20.

r / (q + r) is more preferably 0.005 to 0.10, further preferably 0.005 to 0.05, and particularly preferably 0.005 to 0.025.

 ポリオルガノシルセスキオキサン(a1)のゲル浸透クロマトグラフィー(GPC)による標準ポリスチレン換算の数平均分子量(Mn)は、好ましくは500~6000であり、より好ましくは1000~4500であり、更に好ましくは1500~3000である。

The number average molecular weight (Mn) in terms of standard polystyrene as determined by gel permeation chromatography (GPC) of polyorganosilsesquioxane (a1) is preferably 500 to 6000, more preferably 1000 to 4500, and still more preferably. 1500 to 3000.

 ポリオルガノシルセスキオキサン(a1)のGPCによる標準ポリスチレン換算の分子量分散度(Mw/Mn)は、例えば1.0~4.0であり、好ましくは1.1~3.7であり、より好ましくは1.2~3.0であり、さらに好ましくは1.3~2.5である。なお、Mnは数平均分子量を表す。

The molecular weight dispersity (Mw / Mn) in terms of standard polystyrene by GPC of the polyorganosilsesquioxane (a1) is, for example, 1.0 to 4.0, preferably 1.1 to 3.7. Preferably it is 1.2 to 3.0, more preferably 1.3 to 2.5. Mn represents the number average molecular weight.

 ポリオルガノシルセスキオキサン(a1)の重量平均分子量、分子量分散度は、下記の装置及び条件により測定した。

 測定装置:商品名「LC-20AD」((株)島津製作所製)

 カラム:Shodex KF-801×2本、KF-802、及びKF-803(昭和電工(株)製)

 測定温度:40℃

 溶離液:テトラヒドロフラン(THF)、試料濃度0.1~0.2質量%

 流量:1mL/分

 検出器:UV-VIS検出器(商品名「SPD-20A」、(株)島津製作所製)

 分子量:標準ポリスチレン換算

The weight average molecular weight and molecular weight dispersity of the polyorganosilsesquioxane (a1) were measured by the following apparatus and conditions.

Measuring device: Product name “LC-20AD” (manufactured by Shimadzu Corporation)

Column: Shodex KF-801 × 2, KF-802, and KF-803 (manufactured by Showa Denko KK)

Measurement temperature: 40 ° C

Eluent: Tetrahydrofuran (THF), sample concentration 0.1-0.2% by mass

Flow rate: 1 mL / min

Detector: UV-VIS detector (trade name “SPD-20A”, manufactured by Shimadzu Corporation)

Molecular weight: Standard polystyrene conversion

<ポリオルガノシルセスキオキサン(a1)の製造方法>

 ポリオルガノシルセスキオキサン(a1)は、公知の製造方法により製造することができ、特に限定されないが、1種又は2種以上の加水分解性シラン化合物を加水分解及び縮合させる方法により製造できる。上記加水分解性シラン化合物としては、エポキシ基を含有するシロキサン構成単位を形成するための加水分解性三官能シラン化合物(下記式(B)で表される化合物)を加水分解性シラン化合物として使用することが好ましい。

 一般式(1)中のrが0超である場合には、加水分解性シラン化合物として、下記式(C1)、(C2)又は(C3)で表される化合物を併用することが好ましい。

<Method for producing polyorganosilsesquioxane (a1)>

The polyorganosilsesquioxane (a1) can be produced by a known production method, and is not particularly limited, but can be produced by a method in which one or more hydrolyzable silane compounds are hydrolyzed and condensed. As the hydrolyzable silane compound, a hydrolyzable trifunctional silane compound (compound represented by the following formula (B)) for forming a siloxane structural unit containing an epoxy group is used as the hydrolyzable silane compound. It is preferable.

When r in general formula (1) is more than 0, it is preferable to use a compound represented by the following formula (C1), (C2) or (C3) as the hydrolyzable silane compound.

Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048

 式(B)中のRbは、上記一般式(1)中のRbと同義であり、好ましい例も同様である。

Rb in the formula (B) has the same meaning as Rb in the general formula (1), and preferred examples thereof are also the same.

 式(B)中のXは、アルコキシ基又はハロゲン原子を示す。

 Xにおけるアルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロピルオキシ基、ブトキシ基、イソブチルオキシ基等の炭素数1~4のアルコキシ基等が挙げられる。

 Xにおけるハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。

 Xとしては、アルコキシ基が好ましく、メトキシ基、エトキシ基がより好ましい。なお、3つのXは、それぞれ同一であっても、異なっていてもよい。

X 2 in the formula (B) represents an alkoxy group or a halogen atom.

Examples of the alkoxy group for X 2 include an alkoxy group having 1 to 4 carbon atoms such as a methoxy group, an ethoxy group, a propoxy group, an isopropyloxy group, a butoxy group, and an isobutyloxy group.

The halogen atom in X 2, for example, a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.

X 2 is preferably an alkoxy group, more preferably a methoxy group or an ethoxy group. Note that three X 2 can be the same, respectively, may be different.

 上記式(B)で表される化合物は、Rbを有するシロキサン構成単位を形成する化合物である。

The compound represented by the above formula (B) is a compound that forms a siloxane structural unit having Rb.

Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049

Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050

Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051

 式(C1)中のRcは、上記一般式(1)中のRcと同義であり、好ましい例も同様である。

 式(C2)中のRcは、上記一般式(1)中の2つのRcが互いに結合することにより形成される基(Rc)と同義であり、好ましい例も同様である。

 式(C3)中のRcは、上記一般式(1)中の3つのRcが互いに結合することにより形成される基(Rc)と同義であり、好ましい例も同様である。

Rc 1 in the formula (C1) has the same meaning as Rc in the general formula (1), and preferred examples thereof are also the same.

Rc 2 in the formula (C2) has the same meaning as group (Rc 2) formed by two Rc in the general formula (1) are bonded to each other, and so are the preferable examples.

Rc 3 in formula (C3) is synonymous with the group (Rc 3 ) formed by bonding three Rc in general formula (1) to each other, and preferred examples are also the same.

 上記式(C1)~(C3)中のXは、上記式(B)中のXと同義であり、好ましい例も同様である。複数のXは、それぞれ同一であっても、異なっていてもよい。

X 3 in the above formulas (C1) to (C3) has the same meaning as X 2 in the above formula (B), and preferred examples are also the same. The plurality of X 3 may be the same or different.

 上記加水分解性シラン化合物としては、上記式(B)、(C1)~(C3)で表される化合物以外の加水分解性シラン化合物を併用してもよい。例えば、上記式(B)、(C1)~(C3)で表される化合物以外の加水分解性三官能シラン化合物、加水分解性単官能シラン化合物、加水分解性二官能シラン化合物等が挙げられる。

As the hydrolyzable silane compound, a hydrolyzable silane compound other than the compounds represented by the above formulas (B) and (C1) to (C3) may be used in combination. Examples thereof include hydrolyzable trifunctional silane compounds other than the compounds represented by the above formulas (B) and (C1) to (C3), hydrolyzable monofunctional silane compounds, hydrolyzable bifunctional silane compounds, and the like.

 Rcが上記式(C1)~(C3)で表される加水分解性シラン化合物におけるRc~Rcに由来する場合、一般式(1)中のq/(q+r)を調整するには、上記式(B)、(C1)~(C3)で表される化合物の配合比(モル比)を調整すれはよい。

 具体的には、例えば、q/(q+r)を0.5~1.0とするには、下記(Z2)で表される値を0.5~1.0とし、これらの化合物を加水分解及び縮合させる方法により製造すればよい。

 (Z2)=式(B)で表される化合物(モル量)/{式(B)で表される化合物(モル量)+式(C1)で表される化合物(モル量)+式(C2)で表される化合物(モル量)×2+式(C3)で表される化合物(モル量)×3}

When Rc is derived from Rc 1 to Rc 3 in the hydrolyzable silane compounds represented by the above formulas (C1) to (C3), in order to adjust q / (q + r) in the general formula (1), The compounding ratio (molar ratio) of the compounds represented by the formulas (B) and (C1) to (C3) may be adjusted.

Specifically, for example, in order to set q / (q + r) to 0.5 to 1.0, the value represented by the following (Z2) is set to 0.5 to 1.0, and these compounds are hydrolyzed. And may be produced by a condensation method.

(Z2) = compound represented by formula (B) (molar amount) / {compound represented by formula (B) (molar amount) + compound represented by formula (C1) (molar amount) + formula (C2 ) Compound represented by formula (molar amount) × 2 + compound represented by formula (C3) (molar amount) × 3}

 上記加水分解性シラン化合物の使用量及び組成は、所望するポリオルガノシルセスキオキサン(a1)の構造に応じて適宜調整できる。

The usage-amount and composition of the said hydrolysable silane compound can be suitably adjusted according to the structure of the desired polyorgano silsesquioxane (a1).

 また、上記加水分解性シラン化合物の加水分解及び縮合反応は、同時に行うことも、逐次行うこともできる。上記反応を逐次行う場合、反応を行う順序は特に限定されない。

The hydrolysis and condensation reaction of the hydrolyzable silane compound can be performed simultaneously or sequentially. When performing the said reaction sequentially, the order which performs reaction is not specifically limited.

 上記加水分解性シラン化合物の加水分解及び縮合反応は、溶媒の存在下で行うことも、非存在下で行うこともでき、溶媒の存在下で行うことが好ましい。

 上記溶媒としては、例えば、ベンゼン、トルエン、キシレン、エチルベンゼン等の芳香族炭化水素;ジエチルエーテル、ジメトキシエタン、テトラヒドロフラン、ジオキサン等のエーテル;アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン;酢酸メチル、酢酸エチル、酢酸イソプロピル、酢酸ブチル等のエステル;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド;アセトニトリル、プロピオニトリル、ベンゾニトリル等のニトリル;メタノール、エタノール、イソプロピルアルコール、ブタノール等のアルコール等が挙げられる。

 上記溶媒としては、ケトン又はエーテルが好ましい。なお、溶媒は1種を単独で使用することも、2種以上を組み合わせて使用することもできる。

The hydrolysis and condensation reaction of the hydrolyzable silane compound can be performed in the presence or absence of a solvent, and is preferably performed in the presence of a solvent.

Examples of the solvent include aromatic hydrocarbons such as benzene, toluene, xylene and ethylbenzene; ethers such as diethyl ether, dimethoxyethane, tetrahydrofuran and dioxane; ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone; methyl acetate and ethyl acetate. , Esters such as isopropyl acetate and butyl acetate; amides such as N, N-dimethylformamide and N, N-dimethylacetamide; nitriles such as acetonitrile, propionitrile and benzonitrile; alcohols such as methanol, ethanol, isopropyl alcohol and butanol Etc.

As said solvent, a ketone or ether is preferable. In addition, a solvent can be used individually by 1 type and can also be used in combination of 2 or more type.

 溶媒の使用量は、特に限定されず、加水分解性シラン化合物の全量100質量部に対して、0~2000質量部の範囲内で、所望の反応時間等に応じて、適宜調整することができる。

The amount of the solvent used is not particularly limited, and can be appropriately adjusted in the range of 0 to 2000 parts by mass with respect to 100 parts by mass of the total amount of the hydrolyzable silane compound depending on the desired reaction time. .

 上記加水分解性シラン化合物の加水分解及び縮合反応は、触媒及び水の存在下で進行させることが好ましい。上記触媒は、酸触媒であってもアルカリ触媒であってもよい。

 上記酸触媒としては、例えば、塩酸、硫酸、硝酸、リン酸、ホウ酸等の鉱酸;リン酸エステル;酢酸、蟻酸、トリフルオロ酢酸等のカルボン酸;メタンスルホン酸、トリフルオロメタンスルホン酸、p-トルエンスルホン酸等のスルホン酸;活性白土等の固体酸;塩化鉄等のルイス酸等が挙げられる。

 上記アルカリ触媒としては、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化セシウム等のアルカリ金属の水酸化物;水酸化マグネシウム、水酸化カルシウム、水酸化バリウム等のアルカリ土類金属の水酸化物;炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸セシウム等のアルカリ金属の炭酸塩;炭酸マグネシウム等のアルカリ土類金属の炭酸塩;炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素セシウム等のアルカリ金属の炭酸水素塩;酢酸リチウム、酢酸ナトリウム、酢酸カリウム、酢酸セシウム等のアルカリ金属の有機酸塩(例えば、酢酸塩);酢酸マグネシウム等のアルカリ土類金属の有機酸塩(例えば、酢酸塩);リチウムメトキシド、ナトリウムメトキシド、ナトリウムエトキシド、ナトリウムイソプロポキシド、カリウムエトキシド、カリウムt-ブトキシド等のアルカリ金属のアルコキシド;ナトリウムフェノキシド等のアルカリ金属のフェノキシド;トリエチルアミン、N-メチルピペリジン、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン、1,5-ジアザビシクロ[4.3.0]ノナ-5-エン等のアミン類(第3級アミン等);ピリジン、2,2'-ビピリジル、1,10-フェナントロリン等の含窒素芳香族複素環化合物等が挙げられる。

 なお、触媒は1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。また、触媒は、水又は溶媒等に溶解又は分散させた状態で使用することもできる。

The hydrolysis and condensation reaction of the hydrolyzable silane compound is preferably allowed to proceed in the presence of a catalyst and water. The catalyst may be an acid catalyst or an alkali catalyst.

Examples of the acid catalyst include mineral acids such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid and boric acid; phosphoric acid esters; carboxylic acids such as acetic acid, formic acid and trifluoroacetic acid; methanesulfonic acid, trifluoromethanesulfonic acid, p -Sulfonic acids such as toluenesulfonic acid; solid acids such as activated clay; Lewis acids such as iron chloride.

Examples of the alkali catalyst include alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, potassium hydroxide, and cesium hydroxide; alkaline earth metals such as magnesium hydroxide, calcium hydroxide, and barium hydroxide. Hydroxides; carbonates of alkali metals such as lithium carbonate, sodium carbonate, potassium carbonate, cesium carbonate; carbonates of alkaline earth metals such as magnesium carbonate; lithium hydrogen carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, cesium hydrogen carbonate Alkali metal bicarbonates such as lithium acetate, sodium acetate, potassium acetate, cesium acetate, etc. (for example, acetate); alkaline earth metal organic acid salts, such as magnesium acetate (for example, Acetate); lithium methoxide, sodium methoxide, sodium ethoxide Alkali metal alkoxides such as sodium phenoxide, sodium isopropoxide, potassium ethoxide, potassium t-butoxide; alkali metal phenoxides such as sodium phenoxide; triethylamine, N-methylpiperidine, 1,8-diazabicyclo [5.4.0] Amines such as undec-7-ene and 1,5-diazabicyclo [4.3.0] non-5-ene (tertiary amine, etc.); pyridine, 2,2′-bipyridyl, 1,10-phenanthroline, etc. And nitrogen-containing aromatic heterocyclic compounds.

In addition, a catalyst can also be used individually by 1 type and can also be used in combination of 2 or more type. Further, the catalyst can be used in a state dissolved or dispersed in water or a solvent.

 上記触媒の使用量は、特に限定されず、加水分解性シラン化合物の全量1モルに対して、0.002~0.200モルの範囲内で、適宜調整することができる。

The amount of the catalyst used is not particularly limited, and can be appropriately adjusted within a range of 0.002 to 0.200 mol with respect to 1 mol of the total amount of the hydrolyzable silane compound.

 上記加水分解及び縮合反応に際しての水の使用量は、特に限定されず、加水分解性シラン化合物の全量1モルに対して、0.5~20モルの範囲内で、適宜調整することができる。

The amount of water used in the hydrolysis and condensation reaction is not particularly limited, and can be appropriately adjusted within a range of 0.5 to 20 mol with respect to 1 mol of the total amount of the hydrolyzable silane compound.

 上記水の添加方法は、特に限定されず、使用する水の全量(全使用量)を一括で添加しても、逐次的に添加してもよい。逐次的に添加する際には、連続的に添加しても、間欠的に添加してもよい。

The method for adding water is not particularly limited, and the total amount of water to be used (total amount used) may be added all at once or sequentially. When adding sequentially, you may add continuously or intermittently.

 上記加水分解性シラン化合物の加水分解及び縮合反応を行う際の反応条件としては、特に、ポリオルガノシルセスキオキサン(a1)の縮合率が80%以上となるような反応条件を選択することが重要である。上記加水分解及び縮合反応の反応温度は、例えば40~100℃であり、好ましくは45~80℃である。反応温度を上記範囲に制御することにより、上記縮合率を80%以上に制御できる傾向がある。また、上記加水分解及び縮合反応の反応時間は、例えば0.1~10時間であり、好ましくは1.5~8時間である。また、上記加水分解及び縮合反応は、常圧下で行うこともできるし、加圧下又は減圧下で行うこともできる。なお、上記加水分解及び縮合反応を行う際の雰囲気は、例えば、窒素雰囲気、アルゴン雰囲気等の不活性ガス雰囲気下、空気下等の酸素存在下等のいずれであってもよいが、不活性ガス雰囲気下が好ましい。

As the reaction conditions for performing the hydrolysis and condensation reaction of the hydrolyzable silane compound, it is particularly possible to select reaction conditions such that the condensation rate of the polyorganosilsesquioxane (a1) is 80% or more. is important. The reaction temperature for the hydrolysis and condensation reaction is, for example, 40 to 100 ° C., preferably 45 to 80 ° C. By controlling the reaction temperature within the above range, the condensation rate tends to be controlled to 80% or more. The reaction time for the hydrolysis and condensation reaction is, for example, 0.1 to 10 hours, preferably 1.5 to 8 hours. The hydrolysis and condensation reaction can be performed under normal pressure, or can be performed under pressure or under reduced pressure. The atmosphere for performing the hydrolysis and condensation reaction may be, for example, an inert gas atmosphere such as a nitrogen atmosphere or an argon atmosphere, or in the presence of oxygen such as air. An atmosphere is preferred.

 上記加水分解性シラン化合物の加水分解及び縮合反応により、ポリオルガノシルセスキオキサン(a1)が得られる。上記加水分解及び縮合反応の終了後には、エポキシ基の開環を抑制するために触媒を中和することが好ましい。また、ポリオルガノシルセスキオキサン(a1)を、例えば、水洗、酸洗浄、アルカリ洗浄、濾過、濃縮、蒸留、抽出、晶析、再結晶、カラムクロマトグラフィー等の分離手段や、これらを組み合わせた分離手段等により分離精製してもよい。

A polyorganosilsesquioxane (a1) is obtained by hydrolysis and condensation reaction of the hydrolyzable silane compound. After completion of the hydrolysis and condensation reaction, it is preferable to neutralize the catalyst in order to suppress the ring opening of the epoxy group. In addition, polyorganosilsesquioxane (a1) can be combined with, for example, separation means such as water washing, acid washing, alkali washing, filtration, concentration, distillation, extraction, crystallization, recrystallization, column chromatography, and the like. Separation and purification may be performed by separation means or the like.

 本発明のハードコートフィルムのハードコート層において、ポリオルガノシルセスキオキサン(a1)の縮合率としては、80%以上であることがフィルムの硬度の観点から好ましい。縮合率は、90%以上がより好ましく、95%以上であることがさらに好ましい。

 上記縮合率は、ポリオルガノシルセスキオキサン(a1)の硬化物を含むハードコート層を有するハードコートフィルム試料について29Si NMR(nuclear magnetic resonance)スペクトル測定を行い、その測定結果を用いて算出することが可能である。

In the hard coat layer of the hard coat film of the present invention, the condensation ratio of the polyorganosilsesquioxane (a1) is preferably 80% or more from the viewpoint of the hardness of the film. The condensation rate is more preferably 90% or more, and further preferably 95% or more.

The condensation rate is calculated using a 29 Si NMR (nuclear magnetic resonance) spectrum measurement on a hard coat film sample having a hard coat layer containing a cured product of polyorganosilsesquioxane (a1) and using the measurement result. It is possible.

 エポキシ基を有するポリオルガノシルセスキオキサン(a1)の硬化物は、エポキシ基が重合反応により開環していることが好ましい。

 本発明のハードコートフィルムのハードコート層において、ポリオルガノシルセスキオキサン(a1)の硬化物のエポキシ基の開環率としては、40%以上であることがフィルムの硬度の観点から好ましい。開環率は、50%以上がより好ましく、60%以上であることがさらに好ましい。

 上記開環率は、ポリオルガノシルセスキオキサン(a1)を含むハードコート層形成用組成物を完全硬化及び熱処理する前後の試料についてFT-IR(Fourier Transform Infrared Spectroscopy)一回反射ATR(Attenuated Total Reflection)測定を行い、エポキシ基に由来するピーク高さの変化から、算出することが可能である。

In the cured product of polyorganosilsesquioxane (a1) having an epoxy group, the epoxy group is preferably ring-opened by a polymerization reaction.

In the hard coat layer of the hard coat film of the present invention, the ring opening rate of the epoxy group of the cured product of polyorganosilsesquioxane (a1) is preferably 40% or more from the viewpoint of the hardness of the film. The ring opening rate is more preferably 50% or more, and further preferably 60% or more.

The ring-opening rate is determined by FT-IR (Fourier Transformed Spectroscopy) single reflection ATR (Attenuated Total) for samples before and after fully curing and heat-treating the composition for forming a hard coat layer containing polyorganosilsesquioxane (a1). It is possible to calculate from the change in peak height derived from the epoxy group.

 ポリオルガノシルセスキオキサン(a1)は一種のみ用いてもよく、構造の異なる二種以上を併用してもよい。

Polyorganosilsesquioxane (a1) may be used alone or in combination of two or more having different structures.

 ポリオルガノシルセスキオキサン(a1)の硬化物の含有率は、ハードコート層の全質量に対して50質量%以上であることが好ましく、70質量%以上がより好ましく、80質量%以上が更に好ましい。

The content of the cured product of polyorganosilsesquioxane (a1) is preferably 50% by mass or more, more preferably 70% by mass or more, and further preferably 80% by mass or more with respect to the total mass of the hard coat layer. preferable.

 ハードコート層形成用組成物中、本発明の重合体は一種のみ用いてもよく、構造の異なる二種以上を併用してもよい。

In the composition for forming a hard coat layer, only one type of the polymer of the present invention may be used, or two or more types having different structures may be used in combination.

 ハードコート層形成用組成物中の本発明の重合体の含有率は、塗布量や重合体の表面面状を良化させる効果によって適宜調整することができるが、全固形分に対して0.001質量%以上20質量%以下であることが好ましく、0.005質量%以上10質量%以下がより好ましく、0.01質量%以上1質量%以下が更に好ましい。固形分とは、溶剤以外の成分をいう。

The content of the polymer of the present invention in the composition for forming a hard coat layer can be adjusted as appropriate depending on the effect of improving the coating amount and the surface state of the polymer, but the content of the polymer is 0.00. The content is preferably from 001 mass% to 20 mass%, more preferably from 0.005 mass% to 10 mass%, and still more preferably from 0.01 mass% to 1 mass%. Solid content means components other than a solvent.

(その他添加剤)

 ハードコート層は、上記以外の成分を含有していてもよく、たとえば、分散剤、防汚剤、帯電防止剤、紫外線吸収剤、酸化防止剤等を含有していてもよい。

 なお、ハードコート層は、(メタ)アクリロイル基を有する化合物の硬化物を含有してもよいし、含有しなくてもよい。ハードコート層は、(メタ)アクリロイル基を有する化合物の硬化物を含有しないか、又は(メタ)アクリロイル基を有する化合物の硬化物の含有率が、重合性基を有するポリオルガノシルセスキオキサン(A)と(メタ)アクリレート化合物の硬化物の総量に対して、10質量%未満であることが好ましい。ハードコート層中の(メタ)アクリレート化合物の硬化物の含有率を10質量%未満にすることで、ハードコートフィルムの変形回復性が向上し、その結果、硬度が高くなる。

 また、帯電防止剤の種類は特に限定されず、イオン伝導性または電子伝導性の帯電防止剤を好ましく用いることができる。電子伝導性の帯電防止剤の具体例としては、ポリチオフェン導電性高分子を用いたセプルジーダ(信越ポリマー(株)製)等を好ましく用いることができる。

(Other additives)

The hard coat layer may contain components other than those described above. For example, the hard coat layer may contain a dispersant, an antifouling agent, an antistatic agent, an ultraviolet absorber, an antioxidant, and the like.

The hard coat layer may or may not contain a cured product of a compound having a (meth) acryloyl group. The hard coat layer does not contain a cured product of a compound having a (meth) acryloyl group, or the content of a cured product of a compound having a (meth) acryloyl group is a polyorganosilsesquioxane having a polymerizable group ( It is preferable that it is less than 10 mass% with respect to the total amount of the hardened | cured material of A) and a (meth) acrylate compound. By making the content rate of the hardened | cured material of the (meth) acrylate compound in a hard-coat layer less than 10 mass%, the deformation | transformation recoverability of a hard-coat film improves, As a result, hardness becomes high.

The kind of the antistatic agent is not particularly limited, and an ion conductive or electron conductive antistatic agent can be preferably used. As a specific example of the electron conductive antistatic agent, Sepulzida (manufactured by Shin-Etsu Polymer Co., Ltd.) using a polythiophene conductive polymer can be preferably used.

(膜厚)

 ハードコート層の膜厚は特に限定されないが、1~100μmであることが好ましく、5~50μmであることがより好ましく、10~20μmであることが更に好ましい。

 ハードコート層の厚みは、ハードコートフィルムの断面を光学顕微鏡で観察して算出する。断面試料は、断面切削装置ウルトラミクロトームを用いたミクロトーム法や、集束イオンビーム(FIB)装置を用いた断面加工法などにより作成できる。

(Film thickness)

The thickness of the hard coat layer is not particularly limited, but is preferably 1 to 100 μm, more preferably 5 to 50 μm, and still more preferably 10 to 20 μm.

The thickness of the hard coat layer is calculated by observing the cross section of the hard coat film with an optical microscope. The cross-section sample can be created by a microtome method using a cross-section cutting apparatus ultramicrotome, a cross-section processing method using a focused ion beam (FIB) apparatus, or the like.

<混合層>

 本発明のハードコートフィルムは、ハードコート層の基材側とは反対側の面に、混合層を有することが好ましい態様として挙げられる。混合層は、エポキシ基を有する化合物(b1)の硬化物と、1分子中に2個以上の(メタ)アクリロイル基を有する化合物(b2)の硬化物とを含有することが好ましい。

 エポキシ基を有する化合物(b1)の硬化物及び1分子中に2個以上の(メタ)アクリロイル基を有する化合物(b2)の硬化物は、エポキシ基を有する化合物(b1)及び1分子中に2個以上の(メタ)アクリロイル基を有する化合物(b2)を含有する硬化性組成物を加熱及び/又は電離放射線の照射により硬化させてなるものであることが好ましい。

<Mixed layer>

A preferred embodiment of the hard coat film of the present invention is to have a mixed layer on the surface of the hard coat layer opposite to the substrate side. The mixed layer preferably contains a cured product of the compound (b1) having an epoxy group and a cured product of the compound (b2) having two or more (meth) acryloyl groups in one molecule.

The cured product of the compound (b1) having an epoxy group and the cured product of the compound (b2) having two or more (meth) acryloyl groups in one molecule are the compound (b1) having an epoxy group and 2 in one molecule. It is preferable that the curable composition containing the compound (b2) having at least one (meth) acryloyl group is cured by heating and / or irradiation with ionizing radiation.

(エポキシ基を有する化合物(b1))

 エポキシ基を有する化合物(b1)(「エポキシ化合物(b1)」ともいう)としては、分子内に1以上のエポキシ基(オキシラン環)を有する化合物を使用することができ、特に限定されないが、脂環を含むエポキシ化合物、芳香族エポキシ化合物、脂肪族エポキシ化合物、上述のハードコート層の形成に用いるエポキシ基を有するポリオルガノシルセスキオキサン(a1)等が挙げられる。

(Compound having an epoxy group (b1))

As the compound (b1) having an epoxy group (also referred to as “epoxy compound (b1)”), a compound having one or more epoxy groups (oxirane ring) in the molecule can be used, and is not particularly limited. Examples thereof include an epoxy compound containing a ring, an aromatic epoxy compound, an aliphatic epoxy compound, and a polyorganosilsesquioxane (a1) having an epoxy group used for forming the hard coat layer.

 脂環を含むエポキシ化合物としては、分子内に1個以上の脂環と1個以上のエポキシ基とを有する公知の化合物が挙げられ、特に限定されないが、

 (1)脂環式エポキシ基を有する化合物;

 (2)脂環にエポキシ基が直接単結合で結合している化合物;

 (3)分子内に脂環及びグリシジルエーテル基を有する化合物(グリシジルエーテル型エポキシ化合物)等が挙げられる。

Examples of the epoxy compound containing an alicyclic ring include known compounds having one or more alicyclic rings and one or more epoxy groups in the molecule, and are not particularly limited.

(1) a compound having an alicyclic epoxy group;

(2) A compound in which an epoxy group is directly bonded to the alicyclic ring with a single bond;

(3) The compound (glycidyl ether type epoxy compound) etc. which have an alicyclic ring and a glycidyl ether group in a molecule | numerator are mentioned.

 上記(1)脂環式エポキシ基を有する化合物としては、下記式(i)で表される化合物が挙げられる。

Examples of the compound (1) having an alicyclic epoxy group include compounds represented by the following formula (i).

Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052

 上記式(i)中、Yは単結合又は連結基(1以上の原子を有する二価の基)を示す。上記連結基としては、例えば、二価の炭化水素基、炭素-炭素二重結合の一部又は全部がエポキシ化されたアルケニレン基、カルボニル基、エーテル結合、エステル結合、カーボネート基、アミド基、及びこれらが複数個連結した基等が挙げられる。

In the above formula (i), Y represents a single bond or a linking group (a divalent group having one or more atoms). Examples of the linking group include a divalent hydrocarbon group, an alkenylene group in which part or all of a carbon-carbon double bond is epoxidized, a carbonyl group, an ether bond, an ester bond, a carbonate group, an amide group, and Examples include a group in which a plurality of these are linked.

 上記二価の炭化水素基としては、置換又は無置換の炭素数が1~18の直鎖又は分岐鎖状のアルキレン基、二価の置換又は無置換の脂環式炭化水素基等が挙げられる。炭素数が1~18のアルキレン基としては、例えば、メチレン基、メチルメチレン基、ジメチルメチレン基、エチレン基、i-プロピレン基、n-プロピレン基等が挙げられる。上記二価の脂環式炭化水素基としては、例えば、1,2-シクロペンチレン基、1,3-シクロペンチレン基、シクロペンチリデン基、1,2-シクロヘキシレン基、1,3-シクロヘキシレン基、1,4-シクロヘキシレン基、シクロヘキシリデン基等の二価のシクロアルキレン基(シクロアルキリデン基を含む)等が挙げられる。

Examples of the divalent hydrocarbon group include a substituted or unsubstituted linear or branched alkylene group having 1 to 18 carbon atoms, a divalent substituted or unsubstituted alicyclic hydrocarbon group, and the like. . Examples of the alkylene group having 1 to 18 carbon atoms include methylene group, methylmethylene group, dimethylmethylene group, ethylene group, i-propylene group, and n-propylene group. Examples of the divalent alicyclic hydrocarbon group include 1,2-cyclopentylene group, 1,3-cyclopentylene group, cyclopentylidene group, 1,2-cyclohexylene group, 1,3-cyclopentylene group, And divalent cycloalkylene groups (including cycloalkylidene groups) such as cyclohexylene group, 1,4-cyclohexylene group and cyclohexylidene group.

 上記炭素-炭素二重結合の一部又は全部がエポキシ化されたアルケニレン基(「エポキシ化アルケニレン基」と称する場合がある)におけるアルケニレン基としては、例えば、ビニレン基、プロペニレン基、1-ブテニレン基、2-ブテニレン基、ブタジエニレン基、ペンテニレン基、ヘキセニレン基、ヘプテニレン基、オクテニレン基等の炭素数2~8の直鎖又は分岐鎖状のアルケニレン基等が挙げられる。特に、上記エポキシ化アルケニレン基としては、炭素-炭素二重結合の全部がエポキシ化されたアルケニレン基が好ましく、より好ましくは炭素-炭素二重結合の全部がエポキシ化された炭素数2~4のアルケニレン基である。

Examples of the alkenylene group in the alkenylene group in which part or all of the carbon-carbon double bond is epoxidized (sometimes referred to as “epoxidized alkenylene group”) include, for example, vinylene group, propenylene group, 1-butenylene group And straight-chain or branched alkenylene groups having 2 to 8 carbon atoms such as 2-butenylene group, butadienylene group, pentenylene group, hexenylene group, heptenylene group, octenylene group and the like. In particular, the epoxidized alkenylene group is preferably an alkenylene group in which all of the carbon-carbon double bonds are epoxidized, more preferably 2 to 4 carbon atoms in which all of the carbon-carbon double bonds are epoxidized. Alkenylene group.

 上記式(i)で表される脂環式エポキシ化合物の代表的な例としては、3,4,3’,4’-ジエポキシビシクロヘキサン、下記式(i-1)~(i-10)で表される化合物等が挙げられる。なお、下記式(i-5)、(i-7)中のl、mは、それぞれ1~30の整数を表す。下記式(i-5)中のR’は炭素数1~8のアルキレン基であり、なかでも、メチレン基、エチレン基、n-プロピレン基、i-プロピレン基等の炭素数1~3の直鎖又は分岐鎖状のアルキレン基が好ましい。下記式(i-9)、(i-10)中のn1~n6は、それぞれ1~30の整数を示す。また、上記式(i)で表される脂環式エポキシ化合物としては、その他、例えば、2,2-ビス(3,4-エポキシシクロヘキシル)プロパン、1,2-ビス(3,4-エポキシシクロヘキシル)エタン、2,3-ビス(3,4-エポキシシクロヘキシル)オキシラン、ビス(3,4-エポキシシクロヘキシルメチル)エーテル等が挙げられる。

Representative examples of the alicyclic epoxy compound represented by the above formula (i) include 3,4,3 ′, 4′-diepoxybicyclohexane, and the following formulas (i-1) to (i-10): The compound etc. which are represented by these are mentioned. In the following formulas (i-5) and (i-7), l and m each represents an integer of 1 to 30. R ′ in the following formula (i-5) is an alkylene group having 1 to 8 carbon atoms, and in particular, a straight chain having 1 to 3 carbon atoms such as methylene group, ethylene group, n-propylene group, i-propylene group, etc. A chain or branched alkylene group is preferred. In the following formulas (i-9) and (i-10), n1 to n6 each represents an integer of 1 to 30. Other examples of the alicyclic epoxy compound represented by the above formula (i) include 2,2-bis (3,4-epoxycyclohexyl) propane and 1,2-bis (3,4-epoxycyclohexyl). ) Ethane, 2,3-bis (3,4-epoxycyclohexyl) oxirane, bis (3,4-epoxycyclohexylmethyl) ether and the like.

Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053

Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054

 上述の(2)脂環にエポキシ基が直接単結合で結合している化合物としては、例えば、下記式(ii)で表される化合物等が挙げられる。

Examples of the compound (2) in which the epoxy group is directly bonded to the alicyclic ring with a single bond include compounds represented by the following formula (ii).

Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000055

 式(ii)中、R”は、p価のアルコールの構造式からp個の水酸基(-OH)を除いた基(p価の有機基)であり、p、nはそれぞれ自然数を表す。p価のアルコール[R”(OH)p]としては、2,2-ビス(ヒドロキシメチル)-1-ブタノール等の多価アルコール(炭素数1~15のアルコール等)等が挙げられる。pは1~6が好ましく、nは1~30が好ましい。pが2以上の場合、それぞれの( )内(外側の括弧内)の基におけるnは同一でもよく異なっていてもよい。上記式(ii)で表される化合物としては、具体的には、2,2-ビス(ヒドロキシメチル)-1-ブタノールの1,2-エポキシ-4-(2-オキシラニル)シクロヘキサン付加物[例えば、商品名「EHPE3150」((株)ダイセル製)等]等が挙げられる。

In formula (ii), R ″ is a group obtained by removing p hydroxyl groups (—OH) from the structural formula of p-valent alcohol (p-valent organic group), and p and n each represent a natural number. Examples of the divalent alcohol [R ″ (OH) p] include polyhydric alcohols (such as alcohols having 1 to 15 carbon atoms) such as 2,2-bis (hydroxymethyl) -1-butanol. p is preferably 1 to 6, and n is preferably 1 to 30. When p is 2 or more, n in each group in () (inside the outer parenthesis) may be the same or different. Specific examples of the compound represented by the above formula (ii) include 1,2-epoxy-4- (2-oxiranyl) cyclohexane adduct of 2,2-bis (hydroxymethyl) -1-butanol [for example, , Trade name “EHPE3150” (manufactured by Daicel Corporation), etc.].

 上述の(3)分子内に脂環及びグリシジルエーテル基を有する化合物としては、例えば、脂環式アルコール(特に、脂環式多価アルコール)のグリシジルエーテルが挙げられる。より詳しくは、例えば、2,2-ビス[4-(2,3-エポキシプロポキシ)シクロへキシル]プロパン、2,2-ビス[3,5-ジメチル-4-(2,3-エポキシプロポキシ)シクロへキシル]プロパンなどのビスフェノールA型エポキシ化合物を水素化した化合物(水素化ビスフェノールA型エポキシ化合物);ビス[o,o-(2,3-エポキシプロポキシ)シクロへキシル]メタン、ビス[o,p-(2,3-エポキシプロポキシ)シクロへキシル]メタン、ビス[p,p-(2,3-エポキシプロポキシ)シクロへキシル]メタン、ビス[3,5-ジメチル-4-(2,3-エポキシプロポキシ)シクロへキシル]メタンなどのビスフェノールF型エポキシ化合物を水素化した化合物(水素化ビスフェノールF型エポキシ化合物);水素化ビフェノール型エポキシ化合物;水素化フェノールノボラック型エポキシ化合物;水素化クレゾールノボラック型エポキシ化合物;ビスフェノールAの水素化クレゾールノボラック型エポキシ化合物;水素化ナフタレン型エポキシ化合物;トリスフェノールメタンから得られるエポキシ化合物の水素化エポキシ化合物;下記芳香族エポキシ化合物の水素化エポキシ化合物等が挙げられる。

Examples of the compound (3) having an alicyclic ring and a glycidyl ether group in the molecule include glycidyl ethers of alicyclic alcohols (particularly alicyclic polyhydric alcohols). More specifically, for example, 2,2-bis [4- (2,3-epoxypropoxy) cyclohexyl] propane, 2,2-bis [3,5-dimethyl-4- (2,3-epoxypropoxy) Compound obtained by hydrogenating bisphenol A type epoxy compound such as cyclohexyl] propane (hydrogenated bisphenol A type epoxy compound); bis [o, o- (2,3-epoxypropoxy) cyclohexyl] methane, bis [o , P- (2,3-epoxypropoxy) cyclohexyl] methane, bis [p, p- (2,3-epoxypropoxy) cyclohexyl] methane, bis [3,5-dimethyl-4- (2, 3-Epoxypropoxy) cyclohexyl] methane hydrogenated bisphenol F type epoxy compound (hydrogenated bisphenol F type epoxy compound) Hydrogenated biphenol type epoxy compound; hydrogenated phenol novolak type epoxy compound; hydrogenated cresol novolak type epoxy compound; hydrogenated cresol novolak type epoxy compound of bisphenol A; hydrogenated naphthalene type epoxy compound; epoxy compound obtained from trisphenolmethane And hydrogenated epoxy compounds of the following aromatic epoxy compounds.

 上記芳香族エポキシ化合物としては、例えば、ビスフェノール類[例えば、ビスフェノールA、ビスフェノールF、ビスフェノールS、フルオレンビスフェノール等]と、エピハロヒドリンとの縮合反応により得られるエピビスタイプグリシジルエーテル型エポキシ樹脂;これらのエピビスタイプグリシジルエーテル型エポキシ樹脂を上記ビスフェノール類とさらに付加反応させることにより得られる高分子量エピビスタイプグリシジルエーテル型エポキシ樹脂;フェノール類[例えば、フェノール、クレゾール、キシレノール、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF、ビスフェノールS等]とアルデヒド[例えば、ホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、ヒドロキシベンズアルデヒド、サリチルアルデヒド等]とを縮合反応させて得られる多価アルコール類を、さらにエピハロヒドリンと縮合反応させることにより得られるノボラック・アルキルタイプグリシジルエーテル型エポキシ樹脂;フルオレン環の9位に2つのフェノール骨格が結合し、かつこれらフェノール骨格のヒドロキシ基から水素原子を除いた酸素原子に、それぞれ、直接又はアルキレンオキシ基を介してグリシジル基が結合しているエポキシ化合物等が挙げられる。

Examples of the aromatic epoxy compound include epibis type glycidyl ether type epoxy resins obtained by condensation reaction of bisphenols [for example, bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol and the like] and epihalohydrin; High molecular weight epibis type glycidyl ether type epoxy resin obtained by addition reaction of bis type glycidyl ether type epoxy resin with the above bisphenols; phenols [eg, phenol, cresol, xylenol, resorcin, catechol, bisphenol A, bisphenol F, bisphenol S, etc.] and aldehyde [eg, formaldehyde, acetaldehyde, benzaldehyde, hydroxybenzaldehyde, salicy A novolak alkyl type glycidyl ether type epoxy resin obtained by further condensing a polyhydric alcohol obtained by a condensation reaction with an aldehyde etc. with an epihalohydrin; two phenol skeletons are bonded to the 9-position of the fluorene ring. In addition, an epoxy compound in which a glycidyl group is bonded to an oxygen atom obtained by removing a hydrogen atom from the hydroxy group of the phenol skeleton, either directly or via an alkyleneoxy group.

 上記脂肪族エポキシ化合物としては、例えば、s価の環状構造を有しないアルコール(sは自然数である)のグリシジルエーテル;一価又は多価カルボン酸[例えば、酢酸、プロピオン酸、酪酸、ステアリン酸、アジピン酸、セバシン酸、マレイン酸、イタコン酸等]のグリシジルエステル;エポキシ化亜麻仁油、エポキシ化大豆油、エポキシ化ひまし油等の二重結合を有する油脂のエポキシ化物;エポキシ化ポリブタジエン等のポリオレフィン(ポリアルカジエンを含む)のエポキシ化物等が挙げられる。なお、上記s価の環状構造を有しないアルコールとしては、例えば、メタノール、エタノール、1-プロピルアルコール、イソプロピルアルコール、1-ブタノール等の一価のアルコール;エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,4-ブタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール等の二価のアルコール;グリセリン、ジグリセリン、エリスリトール、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール、ソルビトール等の三価以上の多価アルコール等が挙げられる。また、s価のアルコールは、ポリエーテルポリオール、ポリエステルポリオール、ポリカーボネートポリオール、ポリオレフィンポリオール等であってもよい。

Examples of the aliphatic epoxy compound include glycidyl ethers of alcohols (s is a natural number) having no s-valent cyclic structure; monovalent or polyvalent carboxylic acids [for example, acetic acid, propionic acid, butyric acid, stearic acid, Adipic acid, sebacic acid, maleic acid, itaconic acid, etc.] glycidyl ester; epoxidized oils and fats having double bonds such as epoxidized linseed oil, epoxidized soybean oil, epoxidized castor oil; Epoxidized product of alkadiene). Examples of the alcohol having no s-valent cyclic structure include monohydric alcohols such as methanol, ethanol, 1-propyl alcohol, isopropyl alcohol, 1-butanol; ethylene glycol, 1,2-propanediol, 1 Divalent alcohols such as 1,3-propanediol, 1,4-butanediol, neopentyl glycol, 1,6-hexanediol, diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, polyethylene glycol, polypropylene glycol; Examples include trihydric or higher polyhydric alcohols such as glycerin, diglycerin, erythritol, trimethylolethane, trimethylolpropane, pentaerythritol, dipentaerythritol, and sorbitol. That. The s-valent alcohol may be polyether polyol, polyester polyol, polycarbonate polyol, polyolefin polyol, or the like.

 エポキシ化合物(b1)は、エポキシ基を有するポリオルガノシルセスキオキサンであることが好ましく、好ましい範囲としては前述のハードコート層のエポキシ基を有するポリオルガノシルセスキオキサン(a1)と同様である。

The epoxy compound (b1) is preferably a polyorganosilsesquioxane having an epoxy group, and the preferred range is the same as that of the polyorganosilsesquioxane (a1) having an epoxy group of the hard coat layer described above. .

 エポキシ化合物(b1)は一種のみ用いてもよく、構造の異なる二種以上を併用してもよい。

The epoxy compound (b1) may be used alone or in combination of two or more different structures.

 エポキシ化合物(b1)の硬化物の含有率は、混合層の全質量に対して10質量%以上90質量%以下であることが好ましく、20質量%以上80質量%以下がより好ましく、25質量%以上75質量%以下が更に好ましい。

The content of the cured product of the epoxy compound (b1) is preferably 10% by mass to 90% by mass, more preferably 20% by mass to 80% by mass, and more preferably 25% by mass with respect to the total mass of the mixed layer. More preferably, it is 75 mass% or less.

(1分子中に2個以上の(メタ)アクリロイル基を有する化合物(b2))

 1分子中に2個以上の(メタ)アクリロイル基を有する化合物(b2)(「多官能(メタ)アクリレート化合物(b2)」ともいう)は、1分子中に3個以上の(メタ)アクリロイル基を有する化合物であることが好ましい。

 多官能(メタ)アクリレート化合物(b2)は、架橋性モノマーであっても、架橋性オリゴマーであっても、架橋性ポリマーであってもよい。

(Compound (b2) having two or more (meth) acryloyl groups in one molecule)

Compound (b2) having two or more (meth) acryloyl groups in one molecule (also referred to as “polyfunctional (meth) acrylate compound (b2)”) has three or more (meth) acryloyl groups in one molecule. It is preferable that it is a compound which has this.

The polyfunctional (meth) acrylate compound (b2) may be a crosslinkable monomer, a crosslinkable oligomer, or a crosslinkable polymer.

 多官能(メタ)アクリレート化合物(b2)としては、多価アルコールと(メタ)アクリル酸とのエステルが挙げられる。具体的には、ペンタエリスリトールトリ(メタ)アクリレート,ペンタエリスリトールテトラ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート,ペンタエリスリトールヘキサ(メタ)アクリレートなどが挙げられるが、高架橋という点ではペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、もしくはジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート、又はこれらの混合物が好ましい。

Examples of the polyfunctional (meth) acrylate compound (b2) include esters of polyhydric alcohols and (meth) acrylic acid. Specifically, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylolethane tri (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, dipenta Examples include erythritol tetra (meth) acrylate, dipentaerythritol pentaacrylate, dipentaerythritol hexaacrylate, pentaerythritol hexa (meth) acrylate, etc., but in terms of high crosslinking, pentaerythritol triacrylate, pentaerythritol tetraacrylate, or dipentaerythritol Pentaacrylate, dipentaerythritol hexaacrylate, or mixtures thereof are preferred. .

 多官能(メタ)アクリレート化合物(b2)は一種のみ用いてもよく、構造の異なる二種以上を併用してもよい。

Only one type of polyfunctional (meth) acrylate compound (b2) may be used, or two or more types having different structures may be used in combination.

 混合層における多官能(メタ)アクリレート化合物(b2)の硬化物の含有率は、エポキシ化合物(b1)の硬化物と多官能(メタ)アクリレート化合物(b2)の硬化物の総量に対して10質量%以上であることが好ましい。混合層における多官能(メタ)アクリレート化合物(b2)の硬化物の含有率を上記範囲とすることで、ハードコートフィルムの耐擦傷性を向上させることができる。

 混合層における多官能(メタ)アクリレート化合物(b2)の硬化物の含有率は、エポキシ化合物(b1)の硬化物と多官能(メタ)アクリレート化合物(b2)の硬化物の総量に対して、10質量%~90質量%が好ましく、20質量%~80質量%がより好ましい。

The content of the cured product of the polyfunctional (meth) acrylate compound (b2) in the mixed layer is 10 mass relative to the total amount of the cured product of the epoxy compound (b1) and the cured product of the polyfunctional (meth) acrylate compound (b2). % Or more is preferable. By setting the content of the cured product of the polyfunctional (meth) acrylate compound (b2) in the mixed layer within the above range, the scratch resistance of the hard coat film can be improved.

The content of the cured product of the polyfunctional (meth) acrylate compound (b2) in the mixed layer is 10 with respect to the total amount of the cured product of the epoxy compound (b1) and the cured product of the polyfunctional (meth) acrylate compound (b2). % By mass to 90% by mass is preferable, and 20% by mass to 80% by mass is more preferable.

(その他添加剤)

 混合層は、上記以外の成分を含有していてもよく、たとえば、分散剤、レベリング剤、防汚剤、帯電防止剤、紫外線吸収剤、酸化防止剤、他の重合性化合物の硬化物等を含有していてもよい。

 帯電防止剤の種類は特に限定されず、イオン伝導性または電子伝導性の帯電防止剤を好ましく用いることができる。電子伝導性の帯電防止剤の具体例としては、ポリチオフェン導電性高分子を用いたセプルジーダ(信越ポリマー(株)製)等を好ましく用いることができる。

 レベリング剤としては、汎用のレベリング剤が使用できるが、本発明の改質剤を用いることも好ましい。

 他の重合性化合物の硬化物としては、例えば1分子中にエポキシ基と(メタ)アクリロイル基とを有する化合物の硬化物などが挙げられる。具体的な化合物としては、ダイセル製サイクロマーM100、共栄社化学社製の商品名ライトエステルG、日本化成製の4HBAGE、昭和高分子製の商品名SPシリーズ、例えばSP-1506、500、SP-1507、480、VRシリーズ、例えばVR-77、新中村化学工業製の商品名EA-1010/ECA、EA-11020、EA-1025、EA-6310/ECA等の硬化物が挙げられる。

(Other additives)

The mixed layer may contain components other than those described above, for example, a dispersant, a leveling agent, an antifouling agent, an antistatic agent, an ultraviolet absorber, an antioxidant, a cured product of another polymerizable compound, and the like. You may contain.

The kind of the antistatic agent is not particularly limited, and an ion conductive or electron conductive antistatic agent can be preferably used. As a specific example of the electron conductive antistatic agent, Sepulzida (manufactured by Shin-Etsu Polymer Co., Ltd.) using a polythiophene conductive polymer can be preferably used.

A general-purpose leveling agent can be used as the leveling agent, but it is also preferable to use the modifier of the present invention.

Examples of cured products of other polymerizable compounds include cured products of compounds having an epoxy group and a (meth) acryloyl group in one molecule. Specific examples of the compound include Daicel Cyclomer M100, Kyoeisha Chemical Co., Ltd. trade name Light Ester G, Nippon Kasei Chemical Co., Ltd. 4HBAGE, Showa Polymers trade name SP series, such as SP-1506, 500, SP-1507. 480, VR series such as VR-77, trade names EA-1010 / ECA, EA-1120, EA-1025, EA-6310 / ECA manufactured by Shin-Nakamura Chemical Co., Ltd.

(膜厚)

 混合層の膜厚は0.05μm~10μmであることが好ましい。0.05μm以上とすることによって、フィルムの耐擦傷性が良化し、10μm以下とすることで、硬度及び繰り返し折り曲げ耐性が良好となる。

 混合層の膜厚は0.1μm~5μmがより好ましく、0.1μm~3μmがさらに好ましい。

 本発明のハードコートフィルムが後述の耐擦傷層をさらに有する場合においては、混合層と耐擦傷層の合計の厚みが上記範囲となることが好ましい。

(Film thickness)

The thickness of the mixed layer is preferably 0.05 μm to 10 μm. When the thickness is 0.05 μm or more, the scratch resistance of the film is improved, and when the thickness is 10 μm or less, the hardness and the repeated bending resistance are improved.

The thickness of the mixed layer is more preferably from 0.1 μm to 5 μm, still more preferably from 0.1 μm to 3 μm.

When the hard coat film of the present invention further has a scratch-resistant layer described later, the total thickness of the mixed layer and the scratch-resistant layer is preferably within the above range.

 本発明のハードコートフィルムにおいて、ハードコート層と混合層とは、共有結合で結合されていることが好ましい。特に好ましい態様としては、ハードコート層中のポリオルガノシルセスキオキサン(a1)のエポキシ基と、混合層中のエポキシ化合物(b1)のエポキシ基とが両層の界面において結合を形成することで、密着性の高い積層構造となり、より高い耐擦傷性を発揮することが可能となる。

In the hard coat film of the present invention, the hard coat layer and the mixed layer are preferably bonded by a covalent bond. As a particularly preferred embodiment, the epoxy group of the polyorganosilsesquioxane (a1) in the hard coat layer and the epoxy group of the epoxy compound (b1) in the mixed layer form a bond at the interface of both layers. Thus, a laminated structure with high adhesion can be obtained, and higher scratch resistance can be exhibited.

<その他の層>

 本発明のハードコートフィルムは、ハードコート層及び混合層に加えて、更にその他の層を有してもよい。例えば、基材の両面にハードコート層を有する態様、基材とハードコート層との間に密着性を向上させるための易接着層を有する態様、帯電防止性を付与するための帯電防止層を有する態様、混合層の上に、防汚性を付与するための防汚層や耐擦傷性を付与するための耐擦傷層を有する態様などが好ましく挙げられ、これらを複数備えていても良い。

 本発明のハードコートフィルムは、混合層のハードコート層とは反対側の面に、耐擦傷層を有することが好ましく、これにより耐擦傷性をより向上することができる。

<Other layers>

The hard coat film of the present invention may further have other layers in addition to the hard coat layer and the mixed layer. For example, an embodiment having a hard coat layer on both sides of a substrate, an embodiment having an easy-adhesion layer for improving adhesion between the substrate and the hard coat layer, an antistatic layer for imparting antistatic properties Preferred examples include an aspect having an antifouling layer for imparting antifouling property and an aspect having an abrasion resistant layer for imparting scratch resistance on the mixed layer, and a plurality of these may be provided.

The hard coat film of the present invention preferably has a scratch-resistant layer on the surface of the mixed layer opposite to the hard coat layer, whereby the scratch resistance can be further improved.

(耐擦傷層)

 耐擦傷層は、1分子中に2個以上の(メタ)アクリロイル基を有する化合物(c1)(「多官能(メタ)アクリレート化合物(c1)」ともいう)の硬化物を含むことが好ましい。

 多官能(メタ)アクリレート化合物(c1)は、前述の多官能(メタ)アクリレート化合物(b2)と同様であり、好ましい範囲も同様である。

(Abrasion resistant layer)

The scratch-resistant layer preferably contains a cured product of the compound (c1) having two or more (meth) acryloyl groups in one molecule (also referred to as “polyfunctional (meth) acrylate compound (c1)”).

The polyfunctional (meth) acrylate compound (c1) is the same as the above-mentioned polyfunctional (meth) acrylate compound (b2), and the preferred range is also the same.

 多官能(メタ)アクリレート化合物(c1)は一種のみ用いてもよく、構造の異なる二種以上を併用してもよい。

Only one type of polyfunctional (meth) acrylate compound (c1) may be used, or two or more types having different structures may be used in combination.

 多官能(メタ)アクリレート化合物(c1)の硬化物の含有率は、耐擦傷層の全質量に対して80質量%以上であることが好ましく、85質量%以上がより好ましく、90質量%以上が更に好ましい。

The content of the cured product of the polyfunctional (meth) acrylate compound (c1) is preferably 80% by mass or more, more preferably 85% by mass or more, and more preferably 90% by mass or more with respect to the total mass of the scratch-resistant layer. Further preferred.

(その他添加剤)

 耐擦傷層は、上記以外の成分を含有していてもよく、たとえば、無機粒子、レベリング剤、防汚剤、帯電防止剤、滑り剤、酸化防止剤等を含有していてもよい。

 特に、滑り剤として下記の含フッ素化合物を含有することが好ましい。

 また、帯電防止剤の種類は特に限定されず、イオン伝導性または電子伝導性の帯電防止剤を好ましく用いることができる。電子伝導性の帯電防止剤の具体例としては、ポリチオフェン導電性高分子を用いたセプルジーダ(信越ポリマー(株)製)等を好ましく用いることができる。

(Other additives)

The scratch-resistant layer may contain components other than those described above, and may contain, for example, inorganic particles, leveling agents, antifouling agents, antistatic agents, slip agents, antioxidants, and the like.

In particular, it is preferable to contain the following fluorine-containing compound as a slipping agent.

The kind of the antistatic agent is not particularly limited, and an ion conductive or electron conductive antistatic agent can be preferably used. As a specific example of the electron conductive antistatic agent, Sepulzida (manufactured by Shin-Etsu Polymer Co., Ltd.) using a polythiophene conductive polymer can be preferably used.

[含フッ素化合物]

 含フッ素化合物は、モノマー、オリゴマー、ポリマーいずれでもよい。含フッ素化合物は、耐擦傷層中で多官能(メタ)アクリレート化合物(c1)との結合形成あるいは相溶性に寄与する置換基を有していることが好ましい。この置換基は同一であっても異なっていてもよく、複数個あることが好ましい。

 この置換基は重合性基が好ましく、ラジカル重合性、カチオン重合性、アニオン重合性、縮重合性及び付加重合性のうちいずれかを示す重合性反応基であればよく、好ましい置換基の例としては、アクリロイル基、メタクリロイル基、ビニル基、アリル基、シンナモイル基、エポキシ基、オキセタニル基、水酸基、ポリオキシアルキレン基、カルボキシル基、アミノ基が挙げられる。その中でもラジカル重合性基が好ましく、中でもアクリロイル基、メタクリロイル基が特に好ましい。

 含フッ素化合物はフッ素原子を含まない化合物とのポリマーであってもオリゴマーであってもよい。

[Fluorine-containing compounds]

The fluorine-containing compound may be a monomer, oligomer, or polymer. The fluorine-containing compound preferably has a substituent that contributes to bond formation or compatibility with the polyfunctional (meth) acrylate compound (c1) in the scratch-resistant layer. These substituents may be the same or different, and a plurality of substituents are preferable.

This substituent is preferably a polymerizable group, and may be any polymerizable reactive group exhibiting any one of radical polymerizable, cationic polymerizable, anionic polymerizable, polycondensable and addition polymerizable. Examples of preferable substituents Includes acryloyl group, methacryloyl group, vinyl group, allyl group, cinnamoyl group, epoxy group, oxetanyl group, hydroxyl group, polyoxyalkylene group, carboxyl group, and amino group. Of these, a radical polymerizable group is preferable, and an acryloyl group and a methacryloyl group are particularly preferable.

The fluorine-containing compound may be a polymer or an oligomer with a compound containing no fluorine atom.

 上記含フッ素化合物は、下記一般式(F)で表されるフッ素系化合物が好ましい。

 一般式(F): (R)-[(W)-(Rnfmf

 (式中、Rは(パー)フルオロアルキル基又は(パー)フルオロポリエーテル基、Wは単結合又は連結基、Rは重合性不飽和基を表す。nfは1~3の整数を表す。mfは1~3の整数を表す。)

The fluorine-containing compound is preferably a fluorine-based compound represented by the following general formula (F).

Formula (F): (R f )-[(W)-(R A ) nf ] mf

(In the formula, R f represents a (per) fluoroalkyl group or a (per) fluoropolyether group, W represents a single bond or a linking group, R A represents a polymerizable unsaturated group, and nf represents an integer of 1 to 3. Mf represents an integer of 1 to 3.)

 一般式(F)において、Rは重合性不飽和基を表す。重合性不飽和基は、紫外線や電子線などの活性エネルギー線を照射することによりラジカル重合反応を起こしうる不飽和結合を有する基(すなわち、ラジカル重合性基)であることが好ましく、(メタ)アクリロイル基、(メタ)アクリロイルオキシ基、ビニル基、アリル基などが挙げられ、(メタ)アクリロイル基、(メタ)アクリロイルオキシ基、及びこれらの基における任意の水素原子がフッ素原子に置換された基が好ましく用いられる。

In the general formula (F), R A represents a polymerizable unsaturated group. The polymerizable unsaturated group is preferably a group having an unsaturated bond that can cause a radical polymerization reaction by irradiation with an active energy ray such as an ultraviolet ray or an electron beam (that is, a radical polymerizable group). Examples include acryloyl group, (meth) acryloyloxy group, vinyl group, allyl group, (meth) acryloyl group, (meth) acryloyloxy group, and groups in which any hydrogen atom in these groups is substituted with a fluorine atom Is preferably used.

 一般式(F)において、Rは(パー)フルオロアルキル基又は(パー)フルオロポリエーテル基を表す。

 ここで、(パー)フルオロアルキル基は、フルオロアルキル基及びパーフルオロアルキル基のうち少なくとも1種を表し、(パー)フルオロポリエーテル基は、フルオロポリエーテル基及びパーフルオロポリエーテル基のうち少なくとも1種を表す。耐擦傷性の観点では、R中のフッ素含有率は高いほうが好ましい。

In general formula (F), Rf represents a (per) fluoroalkyl group or a (per) fluoropolyether group.

Here, the (per) fluoroalkyl group represents at least one of a fluoroalkyl group and a perfluoroalkyl group, and the (per) fluoropolyether group is at least one of a fluoropolyether group and a perfluoropolyether group. Represents a species. From the viewpoint of scratch resistance, the fluorine content in R f is preferably higher.

 (パー)フルオロアルキル基は、炭素数1~20の基が好ましく、より好ましくは炭素数1~10の基である。

 (パー)フルオロアルキル基は、直鎖構造(例えば-CFCF、-CH(CFH、-CH(CFCF、-CHCH(CFH)であっても、分岐構造(例えば-CH(CF、-CHCF(CF、-CH(CH)CFCF、-CH(CH)(CFCFH)であっても、脂環式構造(好ましくは5員環又は6員環で、例えばパーフルオロシクロへキシル基及びパーフルオロシクロペンチル基並びにこれらの基で置換されたアルキル基)であってもよい。

The (per) fluoroalkyl group is preferably a group having 1 to 20 carbon atoms, more preferably a group having 1 to 10 carbon atoms.

The (per) fluoroalkyl group has a linear structure (for example, —CF 2 CF 3 , —CH 2 (CF 2 ) 4 H, —CH 2 (CF 2 ) 8 CF 3 , —CH 2 CH 2 (CF 2 ) 4 H) even in branched structures (eg —CH (CF 3 ) 2 , —CH 2 CF (CF 3 ) 2 , —CH (CH 3 ) CF 2 CF 3 , —CH (CH 3 ) (CF 2 ) 5 CF 2 H) even in an alicyclic structure (preferably a 5- or 6-membered ring, such as a perfluorocyclohexyl group and a perfluorocyclopentyl group and an alkyl group substituted with these groups) There may be.

 (パー)フルオロポリエーテル基は、(パー)フルオロアルキル基がエーテル結合を有している場合を指し、1価でも2価以上の基であってもよい。フルオロポリエーテル基としては、例えば-CHOCHCFCF、-CHCHOCHH、-CHCHOCHCH17、-CHCHOCFCFOCFCFH、フッ素原子を4個以上有する炭素数4~20のフルオロシクロアルキル基等が挙げられる。また、パーフルオロポリエーテル基としては、例えば、-(CFO)pf-(CFCFO)qf-、-[CF(CF)CFO]pf―[CF(CF)]qf-、-(CFCFCFO)pf-、-(CFCFO)pf-などが挙げられる。

 上記pf及びqfはそれぞれ独立に0~20の整数を表す。ただしpf+qfは1以上の整数である。

 pf及びqfの総計は1~83が好ましく、1~43がより好ましく、5~23がさらに好ましい。

 上記含フッ素化合物は、耐擦傷性に優れるという観点から-(CFO)pf-(CFCFO)qf-で表されるパーフルオロポリエーテル基を有することが特に好ましい。

The (per) fluoropolyether group refers to a case where the (per) fluoroalkyl group has an ether bond, and may be a monovalent or divalent group. Examples of the fluoropolyether group include —CH 2 OCH 2 CF 2 CF 3 , —CH 2 CH 2 OCH 2 C 4 F 8 H, —CH 2 CH 2 OCH 2 CH 2 C 8 F 17 , —CH 2 CH 2 OCF 2 CF 2 OCF 2 CF 2 H, C 4-20 fluorocycloalkyl group having 4 or more fluorine atoms, and the like can be given. As the perfluoropolyether group, for example, — (CF 2 O) pf — (CF 2 CF 2 O) qf —, — [CF (CF 3 ) CF 2 O] pf — [CF (CF 3 )] qf -,-(CF 2 CF 2 CF 2 O) pf -,-(CF 2 CF 2 O) pf- and the like.

The above pf and qf each independently represents an integer of 0 to 20. However, pf + qf is an integer of 1 or more.

The total of pf and qf is preferably 1 to 83, more preferably 1 to 43, and still more preferably 5 to 23.

The fluorine-containing compound preferably has a perfluoropolyether group represented by — (CF 2 O) pf — (CF 2 CF 2 O) qf — from the viewpoint of excellent scratch resistance.

 本発明においては、含フッ素化合物は、パーフルオロポリエーテル基を有し、かつ重合性不飽和基を一分子中に複数有することが好ましい。

In the present invention, the fluorine-containing compound preferably has a perfluoropolyether group and a plurality of polymerizable unsaturated groups in one molecule.

 一般式(F)において、Wは連結基を表す。Wとしては、例えばアルキレン基、アリーレン基及びヘテロアルキレン基、並びにこれらの基が組み合わさった連結基が挙げられる。これらの連結基は、更に、オキシ基、カルボニル基、カルボニルオキシ基、カルボニルイミノ基及びスルホンアミド基等、並びにこれらの基が組み合わさった官能基を有してもよい。

 Wとして、好ましくは、エチレン基、より好ましくは、カルボニルイミノ基と結合したエチレン基である。

In general formula (F), W represents a linking group. Examples of W include an alkylene group, an arylene group, a heteroalkylene group, and a linking group obtained by combining these groups. These linking groups may further have an oxy group, a carbonyl group, a carbonyloxy group, a carbonylimino group, a sulfonamide group, and the like, and a functional group in which these groups are combined.

W is preferably an ethylene group, more preferably an ethylene group bonded to a carbonylimino group.

 含フッ素化合物のフッ素原子含有量には特に制限は無いが、20質量%以上が好ましく、30~70質量%がより好ましく、40~70質量%がさらに好ましい。

The fluorine atom content of the fluorine-containing compound is not particularly limited, but is preferably 20% by mass or more, more preferably 30 to 70% by mass, and further preferably 40 to 70% by mass.

 好ましい含フッ素化合物の例としては、ダイキン化学工業(株)製のR-2020、M-2020、R-3833、M-3833及びオプツールDAC(以上商品名)、DIC社製のメガファックF-171、F-172、F-179A、RS-78、RS-90、ディフェンサMCF-300及びMCF-323(以上商品名)が挙げられるがこれらに限定されるものではない。

Examples of preferred fluorine-containing compounds include R-2020, M-2020, R-3833, M-3833, Optool DAC (trade name) manufactured by Daikin Chemical Industries, Ltd., and MegaFac F-171 manufactured by DIC. , F-172, F-179A, RS-78, RS-90, defender MCF-300 and MCF-323 (named above), but are not limited thereto.

 耐擦傷性の観点から、一般式(F)において、nfとmfの積(nf×mf)は2以上が好ましく、4以上がより好ましい。

From the viewpoint of scratch resistance, in the general formula (F), the product of nf and mf (nf × mf) is preferably 2 or more, and more preferably 4 or more.

(含フッ素化合物の分子量)

 重合性不飽和基を有する含フッ素化合物の重量平均分子量(Mw)は、分子排斥クロマトグラフィー、例えばゲル浸透クロマトグラフィー(GPC)を用いて測定できる。

 本発明で用いられる含フッ素化合物のMwは400以上50000未満が好ましく、400以上30000未満がより好ましく、400以上25000未満が更に好ましい。

(Molecular weight of fluorine-containing compounds)

The weight average molecular weight (Mw) of the fluorine-containing compound having a polymerizable unsaturated group can be measured using molecular exclusion chromatography, for example, gel permeation chromatography (GPC).

The Mw of the fluorine-containing compound used in the present invention is preferably 400 or more and less than 50000, more preferably 400 or more and less than 30000, and still more preferably 400 or more and less than 25000.

(含フッ素化合物の添加量)

 含フッ素化合物の添加量は、耐擦傷層の全質量に対して、0.01~5質量%が好ましく、0.1~5質量%がより好ましく、0.5~5質量%が更に好ましく、0.5~2質量%が特に好ましい。

(Addition amount of fluorine-containing compound)

The addition amount of the fluorine-containing compound is preferably 0.01 to 5% by mass, more preferably 0.1 to 5% by mass, still more preferably 0.5 to 5% by mass, based on the total mass of the scratch-resistant layer. 0.5 to 2% by mass is particularly preferable.

 耐擦傷層の膜厚は、0.1μm~4μmが好ましく、0.1μm~2μmがさらに好ましく、0.1μm~1μmが特に好ましい。

 また、上述の混合層と耐擦傷層の合計の厚みが0.1μm~10μmであることが好ましい。

The film thickness of the scratch-resistant layer is preferably 0.1 μm to 4 μm, more preferably 0.1 μm to 2 μm, and particularly preferably 0.1 μm to 1 μm.

Further, the total thickness of the mixed layer and the scratch-resistant layer is preferably 0.1 μm to 10 μm.

〔ハードコートフィルムの製造方法〕

 本発明のハードコートフィルムの製造方法は、特に制限されるものではない。

 例えば、ハードコートフィルムが基材上にハードコート層を有するハードコートフィルムである場合には、基材上にハードコート層形成用組成物を塗布後、ハードコート層を全硬化する方法が挙げられる。

 ハードコートフィルムが基材、ハードコート層、及び混合層をこの順に有するハードコートフィルムである場合の好ましい態様の一つとして、基材上にハードコート層形成用組成物を塗布及び半硬化し、半硬化したハードコート層上に混合層形成用組成物を塗布後、各層を全硬化する方法(態様A)が挙げられる。態様Aにおいて、本発明のハードコートフィルムがさらに耐擦傷層を有する場合は、混合層形成用組成物を塗布後、半硬化し、半硬化した混合層上に耐擦傷層形成用組成物を塗布後、各層を全硬化することが好ましい。

 別の好ましい態様としては、ハードコートフィルム中の混合層を形成するための手段として、基材上に未硬化または半硬化状態のハードコート層と耐擦傷層とを積層させ、両者の界面における界面混合により混合層を形成した後、各層を全硬化する方法を取り入れた態様が挙げられる。例えば、基材上に未硬化状態のハードコート層を形成し、別途、仮支持体上に未硬化状態の耐擦傷層を形成した積層物を作製し、上記積層物の耐擦傷層側が上記ハードコート層に接するように貼合わせることで、貼合わせ面において界面混合による混合層形成を行い、各層を全硬化した後に上記仮支持体を取り除く方法(態様B)が挙げられる。また、基材上にハードコート形成用組成物と耐擦傷層形成用組成物を重層塗布し、両者の界面において混合層形成を行った後、各層を全硬化する方法(態様C)なども挙げられる。さらに、基材上にハードコート層形成用組成物を塗布及び半硬化し、半硬化したハードコート層上に耐擦傷層形成用組成物を塗布して染み込ませることで、混合層を形成した後、各層を全硬化する方法(態様D)なども挙げられる。

[Method for producing hard coat film]

The method for producing the hard coat film of the present invention is not particularly limited.

For example, when the hard coat film is a hard coat film having a hard coat layer on the substrate, a method of completely curing the hard coat layer after applying the composition for forming a hard coat layer on the substrate may be mentioned. .

As one of preferred embodiments when the hard coat film is a hard coat film having a substrate, a hard coat layer, and a mixed layer in this order, a hard coat layer forming composition is applied and semi-cured on the substrate, A method (Aspect A) in which each layer is fully cured after the composition for forming a mixed layer is applied onto the semi-cured hard coat layer. In aspect A, when the hard coat film of the present invention further has a scratch-resistant layer, the composition for forming a mixed layer is applied and then semi-cured, and the composition for forming the scratch-resistant layer is applied onto the semi-cured mixed layer. Thereafter, it is preferable to completely cure each layer.

In another preferred embodiment, as a means for forming a mixed layer in the hard coat film, an uncured or semi-cured hard coat layer and an abrasion-resistant layer are laminated on a substrate, and an interface at the interface between the two is obtained. After the formation of the mixed layer by mixing, an embodiment in which a method of fully curing each layer is employed. For example, a laminate in which an uncured hard coat layer is formed on a substrate and an uncured scratch resistant layer is separately formed on a temporary support is prepared, and the scratch resistant layer side of the laminate is the hard scratch layer side. A method (Aspect B) of removing the temporary support after forming a mixed layer by interfacial mixing on the bonding surface by bonding so as to be in contact with the coat layer and completely curing each layer. In addition, a method (Aspect C) for completely curing each layer after applying a hard coat forming composition and a scratch-resistant layer forming composition on a base material, forming a mixed layer at the interface between the two, and the like. It is done. Furthermore, after forming the mixed layer by applying and semi-curing the hard coat layer-forming composition on the base material, and applying and impregnating the scratch-resistant layer-forming composition onto the semi-cured hard coat layer A method of completely curing each layer (Aspect D) and the like are also included.

 以下、上記態様Aと態様Dについて詳述する。

Hereinafter, the aspect A and the aspect D will be described in detail.

 (態様A)

(Aspect A)

 以下、ハードコート層形成用組成物として、本発明の重合体、及びエポキシ基を含むポリオルガノシルセスキオキサン(a1)を含む組成物、混合層形成用組成物として、エポキシ化合物(b1)との多官能(メタ)アクリレート化合物(b2)を含む組成物、をそれぞれ用いた場合を具体例に挙げ、上記態様Aについて詳述する。態様Aは具体的には、下記工程(I)~(IV)を含む製造方法である。

 (I)基材上に、前述の重合体及びエポキシ基を含むポリオルガノシルセスキオキサン

(a1)を含むハードコート層形成用組成物を塗布して塗膜(i)を形成する工程

 (II)上記塗膜(i)を半硬化処理する工程

 (III)上記半硬化した塗膜(i)上に、前述のエポキシ化合物(b1)と前述の多官能(メタ)アクリレート化合物(b2)を含む混合層形成用組成物を塗布して塗膜(ii)を形成する工程

 (IV)上記塗膜(i)及び塗膜(ii)を全硬化処理する工程

Hereinafter, as a composition for forming a hard coat layer, a composition containing the polymer of the present invention and a polyorganosilsesquioxane (a1) containing an epoxy group, and as a composition for forming a mixed layer, an epoxy compound (b1) and Example A will be described in detail by using a specific example of each of the compositions containing the polyfunctional (meth) acrylate compound (b2). Aspect A is specifically a production method including the following steps (I) to (IV).

(I) Polyorganosilsesquioxane containing the above polymer and epoxy group on a substrate

The process of apply | coating the composition for hard-coat layer formation containing (a1) and forming coating-film (i)

(II) A step of semi-curing the coating film (i)

(III) On the semi-cured coating film (i), a mixed layer forming composition containing the above-mentioned epoxy compound (b1) and the above-mentioned polyfunctional (meth) acrylate compound (b2) is applied to form a coating film ( forming step ii)

(IV) A step of fully curing the coating film (i) and the coating film (ii)

<工程(I)>

 工程(I)は、基材上に前述のエポキシ基を含むポリオルガノシルセスキオキサン(a1)を含むハードコート層形成用組成物を塗布して塗膜を設ける工程である。

 基材については前述したとおりである。

 ハードコート層形成用組成物は、前述のハードコート層を形成するための組成物である。

 ハードコート層形成用組成物は、通常、液の形態をとる。また、ハードコート層形成用組成物は、重合体、エポキシ基を含むポリオルガノシルセスキオキサン(a1)、並びに、必要に応じて各種添加剤および重合開始剤を適当な溶剤に溶解又は分散して調製されることが好ましい。この際固形分の濃度は、一般的には10~90質量%程度であり、好ましくは20~80質量%、特に好ましくは40~70質量%程度である。

<Process (I)>

Step (I) is a step of providing a coating film by applying a composition for forming a hard coat layer containing the above-mentioned polyorganosilsesquioxane (a1) containing an epoxy group on a substrate.

The substrate is as described above.

The composition for forming a hard coat layer is a composition for forming the aforementioned hard coat layer.

The composition for forming a hard coat layer usually takes the form of a liquid. The composition for forming a hard coat layer is obtained by dissolving or dispersing a polymer, a polyorganosilsesquioxane (a1) containing an epoxy group, and various additives and a polymerization initiator as required. It is preferable to be prepared. In this case, the concentration of the solid content is generally about 10 to 90% by mass, preferably 20 to 80% by mass, and particularly preferably about 40 to 70% by mass.

<重合開始剤>

 上記ポリオルガノシルセスキオキサン(a1)は、カチオン重合性基(エポキシ基)を含む。ハードコート層形成用組成物は、上記ポリオルガノシルセスキオキサン(a1)の重合反応を光照射により開始し進行させるために、カチオン光重合開始剤を含むことが好ましい。なおカチオン光重合開始剤は一種のみ用いてもよく、構造の異なる二種以上を併用してもよい。

 以下、カチオン光重合開始剤について、説明する。

<Polymerization initiator>

The polyorganosilsesquioxane (a1) contains a cationic polymerizable group (epoxy group). The composition for forming a hard coat layer preferably contains a cationic photopolymerization initiator in order to initiate and advance the polymerization reaction of the polyorganosilsesquioxane (a1) by light irradiation. Only one cationic photopolymerization initiator may be used, or two or more cationic photopolymerization initiators having different structures may be used in combination.

Hereinafter, the cationic photopolymerization initiator will be described.

(カチオン光重合開始剤)

 カチオン光重合開始剤としては、光照射により活性種としてカチオンを発生することができるものであればよく、公知のカチオン光重合開始剤を、何ら制限なく用いることができる。具体例としては、公知のスルホニウム塩、アンモニウム塩、ヨードニウム塩(例えばジアリールヨードニウム塩)、トリアリールスルホニウム塩、ジアゾニウム塩、イミニウム塩などが挙げられる。より具体的には、例えば、特開平8-143806号公報段落0050~0053に示されている式(25)~(28)で表されるカチオン光重合開始剤、特開平8-283320号公報段落0020にカチオン重合触媒として例示されているもの等を挙げることができる。また、カチオン光重合開始剤は、公知の方法で合成可能であり、市販品としても入手可能である。市販品としては、例えば、日本曹達社製CI-1370、CI-2064、CI-2397、CI-2624、CI-2639、CI-2734、CI-2758、CI-2823、CI-2855およびCI-5102等、ローディア社製PHOTOINITIATOR2047等、ユニオンカーバイド社製UVI-6974、UVI-6990、サンアプロ社製CPI-10P等を挙げることができる。

(Cationic photopolymerization initiator)

Any cationic photopolymerization initiator may be used as long as it can generate a cation as an active species by light irradiation, and any known cationic photopolymerization initiator can be used without any limitation. Specific examples include known sulfonium salts, ammonium salts, iodonium salts (for example, diaryl iodonium salts), triaryl sulfonium salts, diazonium salts, iminium salts, and the like. More specifically, for example, cationic photopolymerization initiators represented by formulas (25) to (28) shown in paragraphs 0050 to 0053 of JP-A-8-143806, paragraphs of JP-A-8-283320 Examples of the cationic polymerization catalyst shown in FIG. The cationic photopolymerization initiator can be synthesized by a known method, and is also available as a commercial product. Examples of commercially available products include CI-1370, CI-2064, CI-2397, CI-2624, CI-2939, CI-2734, CI-2758, CI-2823, CI-2855 and CI-5102 manufactured by Nippon Soda Co., Ltd. PHOTOINITIATOR 2047 manufactured by Rhodia, UVI-6974 and UVI-6990 manufactured by Union Carbide, and CPI-10P manufactured by San Apro.

 カチオン光重合開始剤としては、光重合開始剤の光に対する感度、化合物の安定性等の点からは、ジアゾニウム塩、ヨードニウム塩、スルホニウム塩、イミニウム塩が好ましい。また、耐候性の点からは、ヨードニウム塩が最も好ましい。

As the cationic photopolymerization initiator, a diazonium salt, an iodonium salt, a sulfonium salt, and an iminium salt are preferable from the viewpoint of the sensitivity of the photopolymerization initiator to light and the stability of the compound. In terms of weather resistance, iodonium salts are most preferred.

 ヨードニウム塩系のカチオン光重合開始剤の具体的な市販品としては、例えば、東京化成社製B2380、みどり化学社製BBI-102、和光純薬工業社製WPI-113、和光純薬工業社製WPI-124、和光純薬工業社製WPI-169、和光純薬工業社製WPI-170、東洋合成化学社製DTBPI-PFBSを挙げることができる。

Specific examples of commercially available iodonium salt cationic photopolymerization initiators include, for example, B2380 manufactured by Tokyo Chemical Industry Co., Ltd., BBI-102 manufactured by Midori Chemical Co., Ltd., WPI-113 manufactured by Wako Pure Chemical Industries, Ltd. Examples include WPI-124, WPI-169 manufactured by Wako Pure Chemical Industries, WPI-170 manufactured by Wako Pure Chemical Industries, and DTBPI-PFBS manufactured by Toyo Gosei Chemical.

 また、カチオン光重合開始剤として使用可能なヨードニウム塩化合物の具体例としては、下記化合物FK-1、FK-2を挙げることもできる。

Specific examples of the iodonium salt compound that can be used as the cationic photopolymerization initiator include the following compounds FK-1 and FK-2.

Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000056

Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000057

 ハードコート層形成用組成物中の重合開始剤の含有量は、上記ポリオルガノシルセスキオキサン(a1)の重合反応(カチオン重合)を良好に進行させる範囲で適宜調整すればよく、特に限定されるものではない。上記ポリオルガノシルセスキオキサン(a1)100質量部に対して、例えば0.1~200質量部の範囲であり、好ましくは1~20質量部、より好ましくは1~5質量部の範囲である。

The content of the polymerization initiator in the hard coat layer forming composition may be appropriately adjusted within a range in which the polymerization reaction (cationic polymerization) of the polyorganosilsesquioxane (a1) proceeds well, and is particularly limited. It is not something. The amount is, for example, in the range of 0.1 to 200 parts by weight, preferably 1 to 20 parts by weight, more preferably 1 to 5 parts by weight with respect to 100 parts by weight of the polyorganosilsesquioxane (a1). .

<任意成分>

 ハードコート層形成用組成物は、上記重合体、ポリオルガノシルセスキオキサン(a1)、重合開始剤以外に、一種以上の任意成分を更に含むこともできる。任意成分の具体例としては、溶媒および各種添加剤を挙げることができる。

<Optional component>

The composition for forming a hard coat layer may further contain one or more optional components in addition to the polymer, polyorganosilsesquioxane (a1), and polymerization initiator. Specific examples of the optional component include a solvent and various additives.

(溶媒)

 任意成分として含まれ得る溶媒としては、有機溶媒が好ましく、有機溶媒の一種または二種以上を任意の割合で混合して用いることができる。有機溶媒の具体例としては、例えば、メタノール、エタノール、プロパノール、n-ブタノール、i-ブタノール等のアルコール類;アセトン、メチルイソブチルケトン、メチルエチルケトン、シクロヘキサノン等のケトン類;エチルセロソルブ等のセロソルブ類;トルエン、キシレン等の芳香族類;プロピレングリコールモノメチルエーテル等のグリコールエーテル類;酢酸メチル、酢酸エチル、酢酸ブチル等の酢酸エステル類;ジアセトンアルコール等が挙げられる。上記組成物中の溶媒量は、組成物の塗布適性を確保できる範囲で適宜調整することができる。例えば、上記改質剤、ポリオルガノシルセスキオキサン(a1)および重合開始剤の合計量100質量部に対して、50~500質量部とすることができ、好ましくは80~200質量部とすることができる。

(solvent)

The solvent that can be included as an optional component is preferably an organic solvent, and one or two or more organic solvents can be mixed and used in an arbitrary ratio. Specific examples of the organic solvent include alcohols such as methanol, ethanol, propanol, n-butanol and i-butanol; ketones such as acetone, methyl isobutyl ketone, methyl ethyl ketone and cyclohexanone; cellosolves such as ethyl cellosolve; toluene And aromatics such as xylene; glycol ethers such as propylene glycol monomethyl ether; acetates such as methyl acetate, ethyl acetate and butyl acetate; diacetone alcohol and the like. The amount of the solvent in the composition can be appropriately adjusted within a range that can ensure the coating suitability of the composition. For example, the amount can be 50 to 500 parts by mass, preferably 80 to 200 parts by mass with respect to 100 parts by mass of the total amount of the modifier, polyorganosilsesquioxane (a1) and the polymerization initiator. be able to.

(添加剤)

 上記組成物は、更に必要に応じて、公知の添加剤の一種以上を任意に含むことができる。そのような添加剤としては、分散剤、防汚剤、帯電防止剤、紫外線吸収剤、酸化防止剤等を挙げることができる。それらの詳細については、例えば特開2012-229412号公報段落0032~0034を参照できる。ただしこれらに限らず、重合性組成物に一般に使用され得る各種添加剤を用いることができる。また、組成物への添加剤の添加量は適宜調整すればよく、特に限定されるものではない。

(Additive)

The composition can optionally contain one or more known additives as required. Examples of such additives include dispersants, antifouling agents, antistatic agents, ultraviolet absorbers, and antioxidants. For details thereof, reference can be made to, for example, paragraphs 0032 to 0034 of JP2012-229212A. However, the present invention is not limited to these, and various additives that can be generally used in the polymerizable composition can be used. Moreover, what is necessary is just to adjust the addition amount of the additive to a composition suitably, and is not specifically limited.

<組成物の調製方法>

 本発明に用いるハードコート層形成用組成物は、以上説明した各種成分を同時に、または任意の順序で順次混合することにより調製することができる。調製方法は特に限定されるものではなく、調製には公知の攪拌機等を用いることができる。

<Method for preparing composition>

The composition for forming a hard coat layer used in the present invention can be prepared by mixing the various components described above simultaneously or sequentially in an arbitrary order. The preparation method is not particularly limited, and a known stirrer or the like can be used for the preparation.

 ハードコート層形成用組成物の塗布方法としては、特に限定されず公知の方法を用いることができる。例えば、ディップコート法、エアーナイフコート法、カーテンコート法、ローラーコート法、ワイヤーバーコート法、グラビアコート法、ダイコート法等が挙げられる。

A method for applying the composition for forming a hard coat layer is not particularly limited, and a known method can be used. Examples include dip coating, air knife coating, curtain coating, roller coating, wire bar coating, gravure coating, and die coating.

<工程(II)>

 工程(II)は、上記塗膜(i)を半硬化処理する工程である。

 電離放射線の種類については、特に制限はなく、X線、電子線、紫外線、可視光、赤外線などが挙げられるが、紫外線が好ましく用いられる。例えば塗膜が紫外線硬化性であれば、紫外線ランプにより2mJ/cm~1000mJ/cmの照射量の紫外線を照射して硬化性化合物を硬化するのが好ましい。2mJ/cm~100mJ/cmであることがより好ましく、5mJ/cm~50mJ/cmであることが更に好ましい。紫外線ランプ種としては、メタルハライドランプや高圧水銀ランプ等が好適に用いられる。

<Process (II)>

Step (II) is a step of semi-curing the coating film (i).

There is no restriction | limiting in particular about the kind of ionizing radiation, Although an X-ray, an electron beam, an ultraviolet-ray, visible light, infrared rays etc. are mentioned, an ultraviolet-ray is used preferably. For example, if the coating film is UV curable, it is to cure the curable compound by irradiation with irradiation dose of ultraviolet rays 2mJ / cm 2 ~ 1000mJ / cm 2 by an ultraviolet lamp preferred. More preferably 2mJ / cm 2 ~ 100mJ / cm 2, and further preferably from 5mJ / cm 2 ~ 50mJ / cm 2. As the ultraviolet lamp type, a metal halide lamp, a high-pressure mercury lamp, or the like is preferably used.

 硬化時の酸素濃度は特に制限されないが、硬化阻害を受けやすい成分((メタ)アクリロイル基を有する化合物)を含有する場合には、酸素濃度を0.1~2.0体積%に調整することで表面官能を残存させた半硬化状態を形成することができるため好ましい。また、硬化阻害を受けやすい成分((メタ)アクリロイル基を有する化合物)を含有しない場合には、硬化時の雰囲気を乾燥窒素で置換することで、エポキシ基が空気中の水蒸気と反応する影響を取り除くことができるため好ましい。

The oxygen concentration at the time of curing is not particularly limited, but when it contains a component that easily undergoes curing inhibition (a compound having a (meth) acryloyl group), the oxygen concentration should be adjusted to 0.1 to 2.0% by volume. It is preferable because a semi-cured state in which the surface functionality remains can be formed. In addition, when it does not contain components that are susceptible to curing inhibition (compounds having a (meth) acryloyl group), the atmosphere at the time of curing is replaced with dry nitrogen, so that the epoxy group reacts with water vapor in the air. This is preferable because it can be removed.

 工程(I)後、工程(II)の前に、若しくは工程(II)後、工程(III)の前に、又はその両方において、必要に応じて乾燥処理を行ってもよい。乾燥処理は、温風の吹き付け、加熱炉内への配置、加熱炉内での搬送等により行うことができる。加熱温度は、溶媒を乾燥除去できる温度に設定すればよく、特に限定されるものではない。ここで加熱温度とは、温風の温度または加熱炉内の雰囲気温度をいうものとする。

If necessary, a drying treatment may be performed after step (I), before step (II), after step (II), before step (III), or both. The drying process can be performed by blowing warm air, disposing in a heating furnace, conveying in the heating furnace, or the like. The heating temperature may be set to a temperature at which the solvent can be removed by drying, and is not particularly limited. Here, the heating temperature refers to the temperature of warm air or the atmospheric temperature in the heating furnace.

 工程(II)における塗膜(i)の硬化を半硬化とすることにより、ハードコート層形成用組成物に含まれるポリオルガノシルセスキオキサン(a1)中の未反応エポキシ基と、混合層形成用組成物に含まれるエポキシ化合物(b1)とが後述の工程(IV)において結合を形成する。上記結合形成により、本発明のハードコートフィルムは密着性の高い積層構造となり、より高い耐擦傷性を発揮することが可能となる。

Unreacted epoxy groups in the polyorganosilsesquioxane (a1) contained in the composition for forming a hard coat layer and mixed layer formation by setting the curing of the coating film (i) in the step (II) as semi-curing The epoxy compound (b1) contained in the composition for use forms a bond in the step (IV) described later. By the above bond formation, the hard coat film of the present invention has a laminated structure with high adhesion, and can exhibit higher scratch resistance.

<工程(III)>

 工程(III)は、上記半硬化した塗膜(i)上に、上記エポキシ化合物(b1)と上記多官能(メタ)アクリレート化合物(b2)を含む混合層形成用組成物を塗布して塗膜(ii)を形成する工程である。

 混合層形成用組成物は、前述の混合層を形成するための組成物である。

 混合層形成用組成物は、通常、液の形態をとる。また、混合層形成用組成物は、上記エポキシ化合物(b1)と上記多官能(メタ)アクリレート化合物(b2)と、必要に応じて各種添加剤および重合開始剤を適当な溶剤に溶解又は分散して調製されることが好ましい。この際固形分の濃度は、一般的には2~90質量%程度であり、好ましくは2~80質量%、特に好ましくは2~70質量%程度である。

<Step (III)>

In the step (III), the mixed layer forming composition containing the epoxy compound (b1) and the polyfunctional (meth) acrylate compound (b2) is applied onto the semi-cured coating film (i). This is a step of forming (ii).

The composition for forming a mixed layer is a composition for forming the aforementioned mixed layer.

The composition for forming a mixed layer usually takes the form of a liquid. The mixed layer forming composition is prepared by dissolving or dispersing the epoxy compound (b1), the polyfunctional (meth) acrylate compound (b2), and various additives and a polymerization initiator in an appropriate solvent as necessary. It is preferable to be prepared. In this case, the concentration of the solid content is generally about 2 to 90% by mass, preferably 2 to 80% by mass, and particularly preferably about 2 to 70% by mass.

(重合開始剤)

 混合層形成用組成物は、エポキシ化合物(b1)(カチオン重合性化合物)及び多官能(メタ)アクリレート化合物(b2)(ラジカル重合性化合物)を含む。重合形式の異なるこれらの重合性化合物の重合反応をそれぞれ光照射により開始し進行させるために、混合層形成用組成物は、ラジカル光重合開始剤およびカチオン光重合開始剤を含むことが好ましい。なおラジカル光重合開始剤は一種のみ用いてもよく、構造の異なる二種以上を併用してもよい。この点は、カチオン光重合開始剤についても同様である。

 以下、各光重合開始剤について、順次説明する。

(Polymerization initiator)

The composition for mixed layer formation contains an epoxy compound (b1) (cationic polymerizable compound) and a polyfunctional (meth) acrylate compound (b2) (radical polymerizable compound). In order to initiate and advance the polymerization reaction of these polymerizable compounds having different polymerization modes by light irradiation, the mixed layer forming composition preferably contains a radical photopolymerization initiator and a cationic photopolymerization initiator. Only one radical photopolymerization initiator may be used, or two or more radical photopolymerization initiators having different structures may be used in combination. The same applies to the cationic photopolymerization initiator.

Hereafter, each photoinitiator is demonstrated one by one.

(ラジカル光重合開始剤)

 ラジカル光重合開始剤としては、光照射により活性種としてラジカルを発生することができるものであればよく、公知のラジカル光重合開始剤を、何ら制限なく用いることができる。具体例としては、例えば、ジエトキシアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、ベンジルジメチルケタール、4-(2-ヒドロキシエトキシ)フェニル-(2-ヒドロキシ-2-プロピル)ケトン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-2-モルホリノ(4-チオメチルフェニル)プロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)ブタノン、2-ヒドロキシ-2-メチル-1-[4-(1-メチルビニル)フェニル]プロパノンオリゴマー、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]フェニル}-2-メチル-プロパン-1-オン等のアセトフェノン類;1,2-オクタンジオン、1-[4-(フェニルチオ)-,2-(O-ベンゾイルオキシム)]、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(0-アセチルオキシム)等のオキシムエステル類;ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル等のベンゾイン類;ベンゾフェノン、o-ベンゾイル安息香酸メチル、4-フェニルベンゾフェノン、4-ベンゾイル-4′-メチル-ジフェニルサルファイド、3,3′,4,4′-テトラ(t-ブチルパーオキシカルボニル)ベンゾフェノン、2,4,6-トリメチルベンゾフェノン、4-ベンゾイル-N,N-ジメチル-N-[2-(1-オキソ-2-プロペニルオキシ)エチル]ベンゼンメタナミニウムブロミド、(4-ベンゾイルベンジル)トリメチルアンモニウムクロリド等のベンゾフェノン類;2-イソプロピルチオキサントン、4-イソプロピルチオキサントン、2,4-ジエチルチオキサントン、2,4-ジクロロチオキサントン、1-クロロ-4-プロポキシチオキサントン、2-(3-ジメチルアミノ-2-ヒドロキシ)-3,4-ジメチル-9H-チオキサントン-9-オンメソクロリド等のチオキサントン類;2,4,6-トリメチルベンゾイル-ジフェニルフォスフィンオキサイド、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチル-ペンチルフォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド等のアシルフォスフィンオキサイド類;等が挙げられる。また、ラジカル光重合開始剤の助剤として、トリエタノールアミン、トリイソプロパノールアミン、4,4′-ジメチルアミノベンゾフェノン(ミヒラーケトン)、4,4′-ジエチルアミノベンゾフェノン、2-ジメチルアミノエチル安息香酸、4-ジメチルアミノ安息香酸エチル、4-ジメチルアミノ安息香酸(n-ブトキシ)エチル、4-ジメチルアミノ安息香酸イソアミル、4-ジメチルアミノ安息香酸2-エチルヘキシル、2,4-ジエチルチオキサントン、2,4-ジイソプロピルチオキサンソンチオキサントン等を併用してもよい。

 以上のラジカル光重合開始剤および助剤は、公知の方法で合成可能であり、市販品として入手も可能である。

(Radical photopolymerization initiator)

Any radical photopolymerization initiator may be used as long as it can generate radicals as active species by light irradiation, and any known radical photopolymerization initiator can be used without any limitation. Specific examples include, for example, diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, benzyldimethyl ketal, 4- (2-hydroxyethoxy) phenyl- (2-hydroxy-2-propyl) ) Ketone, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-2-morpholino (4-thiomethylphenyl) propan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) butanone, 2 -Hydroxy-2-methyl-1- [4- (1-methylvinyl) phenyl] propanone oligomer, 2-hydroxy-1- {4- [4- (2-hydroxy-2-methyl-propionyl) -benzyl] Acetophenones such as phenyl} -2-methyl-propan-1-one; 1,2-octanedi 1- [4- (phenylthio)-, 2- (O-benzoyloxime)], ethanone, 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl]-, Oxime esters such as 1- (0-acetyloxime); benzoins such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether; benzophenone, methyl o-benzoylbenzoate, 4-phenylbenzophenone, 4-benzoyl-4'-methyl-diphenyl sulfide, 3,3 ', 4,4'-tetra (t-butylperoxycarbonyl) benzophenone, 2,4,6-trimethylbenzophenone, 4-benzoyl-N, N- Dimethyl-N- [2- (1-oxo-2-prope Benzophenones such as (ruoxy) ethyl] benzenemethananium bromide, (4-benzoylbenzyl) trimethylammonium chloride; 2-isopropylthioxanthone, 4-isopropylthioxanthone, 2,4-diethylthioxanthone, 2,4-dichlorothioxanthone, 1- Thioxanthones such as chloro-4-propoxythioxanthone, 2- (3-dimethylamino-2-hydroxy) -3,4-dimethyl-9H-thioxanthone-9-one mesochloride; 2,4,6-trimethylbenzoyl-diphenyl Phosphine oxide, bis (2,6-dimethoxybenzoyl) -2,4,4-trimethyl-pentylphosphine oxide, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, etc. Ruphosphine oxides; and the like. Further, as an auxiliary for the radical photopolymerization initiator, triethanolamine, triisopropanolamine, 4,4′-dimethylaminobenzophenone (Michler ketone), 4,4′-diethylaminobenzophenone, 2-dimethylaminoethylbenzoic acid, 4- Ethyl dimethylaminobenzoate, ethyl 4-dimethylaminobenzoate (n-butoxy), isoamyl 4-dimethylaminobenzoate, 2-ethylhexyl 4-dimethylaminobenzoate, 2,4-diethylthioxanthone, 2,4-diisopropylthio Xanthone thioxanthone or the like may be used in combination.

The above radical photopolymerization initiators and auxiliaries can be synthesized by known methods and can also be obtained as commercial products.

 上記混合層形成用組成物中のラジカル光重合開始剤の含有量は、ラジカル重合性化合物の重合反応(ラジカル重合)を良好に進行させる範囲で適宜調整すればよく、特に限定されるものではない。上記組成物に含まれるラジカル重合性化合物100質量部に対して、例えば0.1~20質量部の範囲であり、好ましくは0.5~10質量部、より好ましくは1~10質量部の範囲である。

The content of the radical photopolymerization initiator in the mixed layer forming composition is not particularly limited as long as the polymerization reaction (radical polymerization) of the radical polymerizable compound proceeds favorably. . For example, in the range of 0.1 to 20 parts by mass, preferably in the range of 0.5 to 10 parts by mass, and more preferably in the range of 1 to 10 parts by mass with respect to 100 parts by mass of the radically polymerizable compound contained in the composition. It is.

 カチオン光重合開始剤としては、上述のハードコート層形成用組成物中に含みうるカチオン光重合開始剤が挙げられる。

 上記混合層形成用組成物中のカチオン光重合開始剤の含有量は、カチオン重合性化合物の重合反応(カチオン重合)を良好に進行させる範囲で適宜調整すればよく、特に限定されるものではない。カチオン重合性化合物100質量部に対して、例えば0.1~200質量部の範囲であり、好ましくは1~150質量部、より好ましくは1~100質量部の範囲である。

As a cationic photoinitiator, the cationic photoinitiator which can be included in the above-mentioned composition for hard-coat layer formation is mentioned.

The content of the cationic photopolymerization initiator in the mixed layer forming composition is not particularly limited as long as the polymerization reaction (cationic polymerization) of the cationic polymerizable compound proceeds favorably. . The amount is, for example, in the range of 0.1 to 200 parts by weight, preferably 1 to 150 parts by weight, more preferably 1 to 100 parts by weight with respect to 100 parts by weight of the cationic polymerizable compound.

<任意成分>

 上記混合層形成用組成物は、上記のエポキシ化合物(b1)、多官能(メタ)アクリレート化合物(b2)、重合開始剤以外に、一種以上の任意成分を更に含むこともできる。任意成分の具体例としては、上記ハードコート層形成用組成物中に用い得る溶媒および各種添加剤を挙げることができる。

<Optional component>

The composition for forming a mixed layer may further contain one or more optional components in addition to the epoxy compound (b1), the polyfunctional (meth) acrylate compound (b2), and the polymerization initiator. Specific examples of the optional component include solvents and various additives that can be used in the hard coat layer forming composition.

<組成物の調製方法>

 本発明に用いる混合層形成用組成物は、以上説明した各種成分を同時に、または任意の順序で順次混合することにより調製することができる。調製方法は特に限定されるものではなく、調製には公知の攪拌機等を用いることができる。

<Method for preparing composition>

The composition for forming a mixed layer used in the present invention can be prepared by mixing the various components described above simultaneously or sequentially in an arbitrary order. The preparation method is not particularly limited, and a known stirrer or the like can be used for the preparation.

 混合層形成用組成物の塗布方法としては、特に限定されず公知の方法を用いることができる。

It does not specifically limit as a coating method of the composition for mixed layer formation, A well-known method can be used.

<工程(IV)>

 工程(IV)は、上記塗膜(i)及び塗膜(ii)を全硬化処理する工程である。

<Step (IV)>

Step (IV) is a step in which the coating film (i) and the coating film (ii) are fully cured.

 塗膜の硬化は、電離放射線を塗膜側から照射して硬化させることが好ましい。

The coating film is preferably cured by irradiating ionizing radiation from the coating film side.

 電離放射線の種類については、上記工程(II)において、塗膜(i)を硬化させるための電離放射線を好適に用いることができる。

 電離放射線の照射量としては、例えば塗膜が紫外線硬化性であれば、紫外線ランプにより10mJ/cm~6000mJ/cmの照射量の紫外線を照射して硬化性化合物を硬化するのが好ましい。50mJ/cm~6000mJ/cmであることがより好ましく、100mJ/cm~6000mJ/cmであることが更に好ましい。また、塗膜の硬化を促進するために電離放射線照射時に加熱を組み合わせることも好ましい。加熱の温度としては40℃以上140℃以下が好ましく、60℃以上140℃以下が好ましい。また電離放射線は複数回照射することも好ましい。

About the kind of ionizing radiation, the ionizing radiation for hardening the coating film (i) can be used suitably in the said process (II).

The irradiation dose of ionizing radiation, for example when the coating film is ultraviolet-curable, preferably to cure the curable compound by irradiation with irradiation dose of ultraviolet rays of 10mJ / cm 2 ~ 6000mJ / cm 2 by an ultraviolet lamp. More preferably 50mJ / cm 2 ~ 6000mJ / cm 2, further preferably 100mJ / cm 2 ~ 6000mJ / cm 2. It is also preferable to combine heating during irradiation with ionizing radiation in order to accelerate the curing of the coating film. The heating temperature is preferably 40 ° C. or higher and 140 ° C. or lower, and preferably 60 ° C. or higher and 140 ° C. or lower. It is also preferable to irradiate ionizing radiation multiple times.

 硬化時の酸素濃度は0~1.0体積%であることが好ましく、0~0.1体積%であることが更に好ましく、0~0.05体積%であることが最も好ましい。硬化時の酸素濃度を1.0体積%よりも小さくすることで、酸素による硬化阻害の影響を受けにくくなり、強固な膜となる。

The oxygen concentration at the time of curing is preferably 0 to 1.0% by volume, more preferably 0 to 0.1% by volume, and most preferably 0 to 0.05% by volume. By making the oxygen concentration at the time of curing smaller than 1.0% by volume, it becomes difficult to be affected by the inhibition of curing by oxygen and becomes a strong film.

 工程(III)後、工程(IV)の前に、若しくは工程(IV)の後に、又はその両方において、必要に応じて乾燥処理を行ってもよい。

You may perform a drying process as needed after process (III), before process (IV), after process (IV), or both.

 上記ハードコートフィルムの製造方法においては、ハードコート層、混合層以外の層、例えば耐擦傷層を設ける工程を含むことも好ましい。

 耐擦傷層を設ける場合は、上記工程(I)~(III)の後、下記の工程(IV’)~

(VI)を含むことが好ましい。

 (IV’)上記工程(III)で形成した塗膜(ii)を半硬化処理する工程

 (V)上記半硬化した塗膜(ii)上に、多官能(メタ)アクリレート化合物(c1)

を含む耐擦傷層形成用組成物を塗布して塗膜(iii)を形成する工程

 (VI)上記塗膜(i)、塗膜(ii)、及び塗膜(iii)を全硬化処理する工程

In the manufacturing method of the said hard coat film, it is also preferable to include the process of providing layers other than a hard-coat layer and a mixed layer, for example, an abrasion-resistant layer.

When the scratch-resistant layer is provided, the following step (IV ′) to step (I) to (III) are followed.

Preferably it contains (VI).

(IV ′) A step of semi-curing the coating film (ii) formed in the step (III).

(V) Polyfunctional (meth) acrylate compound (c1) on the semi-cured coating film (ii)

Forming a coating film (iii) by applying a composition for forming an abrasion-resistant layer comprising

(VI) A step of fully curing the coating film (i), the coating film (ii), and the coating film (iii)

<工程(IV’)>

 工程(IV’)は、上記工程(III)で形成した塗膜(ii)を半硬化処理する工程である。

<Process (IV ')>

Step (IV ′) is a step of semi-curing the coating film (ii) formed in the step (III).

 塗膜の硬化は、電離放射線を塗膜側から照射して硬化させることが好ましい。

The coating film is preferably cured by irradiating ionizing radiation from the coating film side.

 電離放射線の種類及び照射量については、上記工程(II)において、塗膜(i)を半硬化させるための電離放射線及び照射量を好適に用いることができる。

About the kind and irradiation amount of ionizing radiation, in the said process (II), the ionizing radiation and irradiation amount for semi-hardening the coating film (i) can be used suitably.

 工程(III)後、工程(IV’)の前に、若しくは工程(IV’)後、工程(V)の前に、又はその両方において、必要に応じて乾燥処理を行ってもよい。

If necessary, a drying treatment may be performed after step (III), before step (IV ′), after step (IV ′), before step (V), or both.

 工程(IV’)における塗膜(ii)の硬化を半硬化とすることにより、混合層形成用組成物に含まれる多官能(メタ)アクリレート化合物(b2)中の未反応(メタ)アクリロイル基と、耐擦傷層形成用組成物に含まれる多官能(メタ)アクリレート化合物(c1)中の(メタ)アクリロイル基とが後述の工程(VI)において結合を形成する。上記結合形成により、本発明のハードコートフィルムは密着性の高い積層構造となり、より高い耐擦傷性を発揮することが可能となる。

 硬化時の酸素濃度は特に制限されないが、酸素濃度を0.1~2.0体積%に調整することが好ましい。酸素濃度を上記範囲に設定することにより、上記半硬化を調整することができる。

Unreacted (meth) acryloyl group in the polyfunctional (meth) acrylate compound (b2) contained in the mixed layer forming composition by setting the curing of the coating film (ii) in the step (IV ′) as semi-curing The (meth) acryloyl group in the polyfunctional (meth) acrylate compound (c1) contained in the composition for forming a scratch-resistant layer forms a bond in the step (VI) described later. By the above bond formation, the hard coat film of the present invention has a laminated structure with high adhesion, and can exhibit higher scratch resistance.

The oxygen concentration during curing is not particularly limited, but it is preferable to adjust the oxygen concentration to 0.1 to 2.0% by volume. The semi-curing can be adjusted by setting the oxygen concentration in the above range.

<工程(V)>

 工程(V)は、上記半硬化した塗膜(ii)上に、上記多官能(メタ)アクリレート化合物(c1)を含む耐擦傷層形成用組成物を塗布して塗膜(iii)を形成する工程である。

 耐擦傷層形成用組成物は、前述の耐擦傷層を形成するための組成物である。

 耐擦傷層形成用組成物は、通常、液の形態をとる。また、耐擦傷層形成用組成物は、上記多官能(メタ)アクリレート化合物(c1)と、必要に応じて各種添加剤および重合開始剤を適当な溶剤に溶解又は分散して調製されることが好ましい。この際固形分の濃度は、一般的には2~90質量%程度であり、好ましくは2~80質量%、特に好ましくは2~70質量%程度である。

<Process (V)>

In the step (V), the scratch-resistant layer-forming composition containing the polyfunctional (meth) acrylate compound (c1) is applied onto the semi-cured coating film (ii) to form a coating film (iii). It is a process.

The composition for forming a scratch-resistant layer is a composition for forming the aforementioned scratch-resistant layer.

The composition for forming a scratch-resistant layer usually takes the form of a liquid. The composition for forming a scratch-resistant layer may be prepared by dissolving or dispersing the polyfunctional (meth) acrylate compound (c1) and, if necessary, various additives and a polymerization initiator in an appropriate solvent. preferable. In this case, the concentration of the solid content is generally about 2 to 90% by mass, preferably 2 to 80% by mass, and particularly preferably about 2 to 70% by mass.

(重合開始剤)

 耐擦傷層形成用組成物は、多官能(メタ)アクリレート化合物(c1)(ラジカル重合性化合物)を含む。多官能アクリレート化合物の重合反応を光照射により開始し進行させるために、耐擦傷層形成用組成物は、ラジカル光重合開始剤を含むことが好ましい。なおラジカル光重合開始剤は一種のみ用いてもよく、構造の異なる二種以上を併用してもよい。ラジカル光重合開始剤としては、上述の混合層形成用組成物中に含みうるラジカル光重合開始剤が挙げられる。

(Polymerization initiator)

The composition for forming a scratch-resistant layer contains a polyfunctional (meth) acrylate compound (c1) (radical polymerizable compound). In order to initiate and advance the polymerization reaction of the polyfunctional acrylate compound by light irradiation, the scratch-resistant layer-forming composition preferably contains a radical photopolymerization initiator. Only one radical photopolymerization initiator may be used, or two or more radical photopolymerization initiators having different structures may be used in combination. As a radical photoinitiator, the radical photoinitiator which can be contained in the above-mentioned composition for mixed layer formation is mentioned.

 耐擦傷層形成用組成物中のラジカル光重合開始剤の含有量は、ラジカル重合性化合物の重合反応(ラジカル重合)を良好に進行させる範囲で適宜調整すればよく、特に限定されるものではない。上記組成物に含まれるラジカル重合性化合物100質量部に対して、例えば0.1~20質量部の範囲であり、好ましくは0.5~10質量部、より好ましくは1~10質量部の範囲である。

The content of the radical photopolymerization initiator in the composition for forming a scratch-resistant layer is not particularly limited as long as the polymerization reaction (radical polymerization) of the radical polymerizable compound proceeds favorably. . For example, in the range of 0.1 to 20 parts by mass, preferably in the range of 0.5 to 10 parts by mass, and more preferably in the range of 1 to 10 parts by mass with respect to 100 parts by mass of the radically polymerizable compound contained in the composition. It is.

<任意成分>

 上記混合層形成用組成物は、上記多官能(メタ)アクリレート化合物(c1)、重合開始剤以外に、一種以上の任意成分を更に含むこともできる。任意成分の具体例としては、上記含フッ素化合物の他、上記ハードコート層形成用組成物中に用い得る溶媒および各種添加剤を挙げることができる。

<Optional component>

The mixed layer forming composition may further contain one or more optional components in addition to the polyfunctional (meth) acrylate compound (c1) and the polymerization initiator. Specific examples of the optional component include the solvent and various additives that can be used in the hard coat layer forming composition in addition to the fluorine-containing compound.

<組成物の調製方法>

 本発明に用いる耐擦傷層形成用組成物は、以上説明した各種成分を同時に、または任意の順序で順次混合することにより調製することができる。調製方法は特に限定されるものではなく、調製には公知の攪拌機等を用いることができる。

<Method for preparing composition>

The composition for forming a scratch-resistant layer used in the present invention can be prepared by mixing the various components described above simultaneously or sequentially in any order. The preparation method is not particularly limited, and a known stirrer or the like can be used for the preparation.

 耐擦傷層形成用組成物の塗布方法としては、特に限定されず公知の方法を用いることができる。

A method for applying the composition for forming a scratch-resistant layer is not particularly limited, and a known method can be used.

<工程(VI)>

 工程(VI)は、上記塗膜(i)、塗膜(ii)、及び塗膜(iii)を全硬化処理する工程である。

<Process (VI)>

Step (VI) is a step in which the coating film (i), coating film (ii), and coating film (iii) are fully cured.

 塗膜の硬化は、電離放射線を塗膜側から照射して硬化させることが好ましい。

The coating film is preferably cured by irradiating ionizing radiation from the coating film side.

 電離放射線の種類及び照射量については、上記工程(IV)において、塗膜(i)及び塗膜(ii)を硬化させるための電離放射線及び照射量を好適に用いることができる。

About the kind and irradiation amount of ionizing radiation, the ionizing radiation and irradiation amount for hardening a coating film (i) and a coating film (ii) can be used suitably in the said process (IV).

 工程(V)後、工程(VI)の前に、若しくは工程(VI)の後に、又はその両方において、必要に応じて乾燥処理を行ってもよい。

After the step (V), before the step (VI), after the step (VI), or both, a drying treatment may be performed as necessary.

(態様D)

 態様Dは具体的には、下記工程(I)~(IV’’)を含む製造方法である。

 (I)基材上に、前述の重合体及びエポキシ基を含むポリオルガノシルセスキオキサン(a1)を含むハードコート層形成用組成物を塗布して塗膜(i)を形成する工程

 (II)上記塗膜(i)を半硬化処理する工程

 (III’)上記半硬化した塗膜(i)上に、多官能(メタ)アクリレート化合物(c1)を含む耐擦傷層形成用組成物を塗布して染み込ませることにより、混合層(ii)と塗膜(iii)を形成する工程

 (IV’’)上記塗膜(i)、染み込みにより形成した混合層(ii)、及び塗膜(iii)を全硬化処理する工程

(Aspect D)

The embodiment D is specifically a production method including the following steps (I) to (IV ″).

(I) The process of apply | coating the composition for hard-coat layer formation containing the polyorgano silsesquioxane (a1) containing the above-mentioned polymer and an epoxy group on a base material, and forming a coating film (i)

(II) A step of semi-curing the coating film (i)

(III ′) On the semi-cured coating film (i), a composition for forming an abrasion-resistant layer containing a polyfunctional (meth) acrylate compound (c1) is applied and soaked, whereby the mixed layer (ii) and Forming the coating film (iii)

(IV ″) Step of fully curing the coating film (i), the mixed layer (ii) formed by soaking, and the coating film (iii)

<工程(I)>

 工程(I)は、基材上に、前述の重合体及びエポキシ基を含むポリオルガノシルセスキオキサン(a1)を含むハードコート層形成用組成物を塗布して塗膜(i)を形成する工程である。工程(I)の詳細は、態様Aの工程(I)にて前述したとおりである。

<Process (I)>

In step (I), a hard coat layer-forming composition containing the above-described polymer and an epoxy group-containing polyorganosilsesquioxane (a1) is applied on a substrate to form a coating film (i). It is a process. The details of the step (I) are as described in the step (I) of the embodiment A.

<工程(II)>

 工程(II)は、上記塗膜(i)を半硬化処理する工程である。工程(II)の硬化条件や乾燥処理については、態様Aの工程(II)にて前述したとおりである。

<Process (II)>

Step (II) is a step of semi-curing the coating film (i). The curing conditions and drying treatment in step (II) are as described above in step (II) of aspect A.

 態様Dにおいても、態様Aと同様に工程(II)における塗膜(i)の硬化を半硬化とすることが好ましい。塗膜(i)の硬化を半硬化とすることで、工程(III’)において、多官能(メタ)アクリレート化合物(c1)を含む耐擦傷層形成用組成物が染み込みやすくなり、混合層を形成しやすくなる。上記染み込みによる混合層形成により、本発明のハードコートフィルムは層間密着性の高い積層構造となり、より高い耐擦傷性を発揮することが可能となる。

In aspect D as well, as in aspect A, it is preferable that the coating (i) in step (II) is semi-cured. By making the curing of the coating film (i) semi-curing, in the step (III ′), the composition for forming a scratch-resistant layer containing the polyfunctional (meth) acrylate compound (c1) can easily penetrate and form a mixed layer. It becomes easy to do. By forming the mixed layer by the soaking, the hard coat film of the present invention has a laminated structure with high interlayer adhesion, and can exhibit higher scratch resistance.

<工程(III’)>

 工程(III’)は、上記半硬化した塗膜(i)上に、多官能(メタ)アクリレート化合物(c1)を含む耐擦傷層形成用組成物を塗布して染み込ませることにより、混合層(ii)と塗膜(iii)を形成する工程である。耐擦傷層形成用組成物は、前述の耐擦傷層を形成するための組成物である。

 工程(III’)の耐擦傷層形成用組成物における多官能(メタ)アクリレート化合物(c1)、溶剤、固形分については態様Aとは異なるため詳細を後述する。重合開始剤や任意成分、組成物の調整方法については、態様Aの工程(V)にて前述したとおりである。

<Process (III ')>

In the step (III ′), the composition for forming a scratch-resistant layer containing the polyfunctional (meth) acrylate compound (c1) is applied onto the semi-cured coating film (i), and the mixed layer ( This is a step of forming ii) and a coating film (iii). The composition for forming a scratch-resistant layer is a composition for forming the aforementioned scratch-resistant layer.

Since the polyfunctional (meth) acrylate compound (c1), the solvent, and the solid content in the composition for forming a scratch-resistant layer in the step (III ′) are different from those in the aspect A, the details will be described later. The method for adjusting the polymerization initiator, optional components, and composition is as described in the step (V) of aspect A.

(多官能(メタ)アクリレート化合物(c1))

 態様Dにおける多官能(メタ)アクリレート化合物(c1)は、分子量400以下の多官能(メタ)アクリレート化合物を20%以上含有することが好ましい。分子量400以下の化合物を20%以上含有することで、耐擦傷層形成用組成物が染み込みやすくなり混合層を形成しやすい。分子量400以下の多官能(メタ)アクリレート化合物は特に限定されないが、具体例としては、KAYARAD PET-30(日本化薬(株)製)、KAYARAD TMPTA(日本化薬(株)製)、ペンタエリスリトールテトラアクリレート(新中村化学工業(株)製)等が挙げられる。

(Polyfunctional (meth) acrylate compound (c1))

The polyfunctional (meth) acrylate compound (c1) in the embodiment D preferably contains 20% or more of a polyfunctional (meth) acrylate compound having a molecular weight of 400 or less. By containing 20% or more of a compound having a molecular weight of 400 or less, the composition for forming an abrasion-resistant layer is likely to penetrate and a mixed layer is easily formed. The polyfunctional (meth) acrylate compound having a molecular weight of 400 or less is not particularly limited. Specific examples include KAYARAD PET-30 (manufactured by Nippon Kayaku Co., Ltd.), KAYARAD TMPTA (manufactured by Nippon Kayaku Co., Ltd.), pentaerythritol. Examples include tetraacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd.).

(溶剤)

 態様Dにおける溶剤は、多官能(メタ)アクリレート化合物(c1)を染み込ませて混合層を形成しやすくする観点から、ハードコート層と親和性の高い溶剤を使用することが好ましい。溶剤とハードコート層との親和性は、ハードコート層を各種溶剤に浸漬した際のハードコート層のヘイズ上昇値から判断することができる。すなわち、ヘイズの上昇値が大きいほど、溶剤のハードコート層への親和性が高いと判断することができる。特に、ハードコート層が、脂環式エポキシ基含有ポリオルガノシルセスキオキサンである場合には、上記ハードコート層との親和性が高い溶剤として酢酸メチル、トルエン、メチルエチルケトンを用いることが好ましく、酢酸メチル、トルエンがより好ましい。

(solvent)

As the solvent in the embodiment D, it is preferable to use a solvent having a high affinity with the hard coat layer from the viewpoint of allowing the polyfunctional (meth) acrylate compound (c1) to be soaked and forming a mixed layer easily. The affinity between the solvent and the hard coat layer can be determined from the haze increase value of the hard coat layer when the hard coat layer is immersed in various solvents. That is, it can be determined that the higher the haze increase value, the higher the affinity of the solvent for the hard coat layer. In particular, when the hard coat layer is an alicyclic epoxy group-containing polyorganosilsesquioxane, it is preferable to use methyl acetate, toluene, or methyl ethyl ketone as a solvent having high affinity with the hard coat layer. Methyl and toluene are more preferred.

(固形分濃度)

 態様Dにおける耐擦傷層形成用組成物の固形分は、ハードコート層形成用組成物や多官能(メタ)アクリレート化合物(c1)により適宜調整することができるが、40%以下であることが好ましく、20%以下であることがより好ましい。固形分濃度を40%以下とすることで耐擦傷層形成用組成物がハードコート層中に染み込みやすくなり、混合層(ii)が形成しやすくなる。また、固形分濃度を20%以下とすることで本発明のハードコートフィルムは層間密着性の高い積層構造となりやすく、より高い耐擦傷性が得られやすくなる。

(Solid content concentration)

The solid content of the composition for forming a scratch-resistant layer in aspect D can be appropriately adjusted by the composition for forming a hard coat layer or the polyfunctional (meth) acrylate compound (c1), but is preferably 40% or less. 20% or less is more preferable. By setting the solid content concentration to 40% or less, the composition for forming an abrasion-resistant layer can easily penetrate into the hard coat layer, and the mixed layer (ii) can be easily formed. Moreover, by setting the solid content concentration to 20% or less, the hard coat film of the present invention tends to have a laminated structure with high interlayer adhesion, and higher scratch resistance is easily obtained.

<工程(IV’’>

 工程(IV’’)は、上記塗膜(i)、染み込みにより形成した混合層(ii)、及び塗膜(iii)を全硬化処理する工程である。工程(IV’’)の硬化条件や乾燥処理については、態様Aの工程(IV)にて前述したとおりである。

<Process (IV '')

Step (IV ″) is a step of subjecting the coating film (i), the mixed layer (ii) formed by soaking, and the coating film (iii) to a total curing treatment. The curing conditions and the drying treatment in the step (IV ″) are as described in the step (IV) of the aspect A.

 態様Aと同様に態様Dにおいても、工程(III’)後、工程(IV‘)の前に、若しくは工程(IV)の後に、又はその両方において、必要に応じて乾燥処理を行ってもよい。

Similarly to the aspect A, also in the aspect D, after the step (III ′), before the step (IV ′), after the step (IV), or both, a drying treatment may be performed as necessary. .

 本発明は、上記の本発明のハードコートフィルムを備えた物品、上記の本発明のハードコートフィルムを表面保護フィルムとして備えた画像表示装置にも関する。本発明のハードコートフィルムは、特に、スマートフォンなどにおけるフレキシブルディスプレイに好ましく適用される。

The present invention also relates to an article provided with the above-described hard coat film of the present invention and an image display device including the hard coat film of the present invention as a surface protective film. The hard coat film of the present invention is particularly preferably applied to a flexible display in a smartphone or the like.

 以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、試薬、物質量とその割合、操作等は本発明の趣旨から逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下の実施例に限定されるものではない。

The present invention will be described more specifically with reference to the following examples. The materials, reagents, amounts and ratios of substances, operations, and the like shown in the following examples can be appropriately changed without departing from the gist of the present invention. Therefore, the scope of the present invention is not limited to the following examples.

<合成例1>

(重合体(1-1)の合成)

<Synthesis Example 1>

(Synthesis of polymer (1-1))

 攪拌機、温度計、還流冷却管、及び窒素ガス導入管を備えた200ミリリットル三口フラスコに、t-アミルアルコール25.0gを仕込んで、120℃まで昇温した。次いで、2-(パーフルオロヘキシル)エチルアクリレート{モノマー(K2)に相当}3.25g(7.8ミリモル)、下記構造を有する化合物(I-1){モノマー(K1)に相当}2.26g(4.7ミリモル)、シクロヘキサノン25.0g及び「V-601」(和光純薬(株)製)4.7gからなる混合溶液を120分で滴下が完了するように等速で滴下した。滴下完了後、さらに3.5時間攪拌を続け、重合体(1-1)5.5g(固形分換算値)を得た。この重合体の重量平均分子量(Mw)は1,600であった。

A 200 ml three-necked flask equipped with a stirrer, a thermometer, a reflux condenser, and a nitrogen gas inlet tube was charged with 25.0 g of t-amyl alcohol and heated to 120 ° C. Subsequently, 2- (perfluorohexyl) ethyl acrylate {corresponding to monomer (K2)} 3.25 g (7.8 mmol), compound (I-1) having the following structure {corresponding to monomer (K1)} 2.26 g (4.7 mmol), a mixed solution consisting of 25.0 g of cyclohexanone and 4.7 g of “V-601” (manufactured by Wako Pure Chemical Industries, Ltd.) was added dropwise at a constant speed so that the addition was completed in 120 minutes. After completion of the dropwise addition, the mixture was further stirred for 3.5 hours to obtain 5.5 g of polymer (1-1) (in terms of solid content). The weight average molecular weight (Mw) of this polymer was 1,600.

Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000058

<合成例2~12>

 原料モノマーの種類及び配合比率、並びに重合開始剤の使用量を表1に示すように変更したこと以外は、合成例1と同様にして重合体2~12を合成した。

<Synthesis Examples 2 to 12>

Polymers 2 to 12 were synthesized in the same manner as in Synthesis Example 1 except that the types and blending ratios of the raw material monomers and the amount of the polymerization initiator used were changed as shown in Table 1.

 合成例2~12において使用したモノマー(K1)の構造を以下に示す。

The structure of the monomer (K1) used in Synthesis Examples 2 to 12 is shown below.

Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000059

 重合体の構造及び重量平均分子量(Mw)は下記表1のとおりである。表1中の組成比は、重合体の合成に用いた各原料モノマーの仕込み比を質量比で表したものである。下記表1には、合成に用いた重合開始剤の種類及び使用量(モノマー(K1)に対するモル比率)についても記載する。

The structure and weight average molecular weight (Mw) of the polymer are as shown in Table 1 below. The composition ratio in Table 1 represents the charge ratio of each raw material monomer used for polymer synthesis in terms of mass ratio. Table 1 below also describes the type and amount of polymerization initiator used in the synthesis (molar ratio relative to monomer (K1)).

Figure JPOXMLDOC01-appb-T000060
Figure JPOXMLDOC01-appb-T000060

 なお、表1中の略記号が表すモノマー(K2)は、以下のとおりである。

 C6F13:2-(パーフルオロヘキシル)エチルアクリレート

 FM-0711:サイラプレーンFM-0711(JNC(株)製、反応性シリコーン)

 C12H25:n-ドデシルアクリレート

The monomer (K2) represented by the abbreviations in Table 1 is as follows.

C6F13: 2- (Perfluorohexyl) ethyl acrylate

FM-0711: Silaplane FM-0711 (manufactured by JNC Corporation, reactive silicone)

C12H25: n-dodecyl acrylate

 各重合体の構造1~6は以下のとおりである。なお、下記各構造において、左より順に、モノマー(K2)に由来する構造、モノマー(K1)に由来する構造となる。

The structures 1 to 6 of each polymer are as follows. In each of the following structures, in order from the left, the structure is derived from the monomer (K2) and the structure is derived from the monomer (K1).

Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000061

<基材の作製>

(ポリイミド粉末の製造)

 攪拌器、窒素注入装置、滴下漏斗、温度調節器及び冷却器を取り付けた1Lの反応器に、窒素気流下、N,N-ジメチルアセトアミド(DMAc)832gを加えた後、反応器の温度を25℃にした。ここに、ビストリフルオロメチルベンジジン(TFDB)64.046g(0.2mol)を加えて溶解した。得られた溶液を25℃に維持しながら、2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン二無水物(6FDA)31.09g(0.07mol)とビフェニルテトラカルボン酸二無水物(BPDA)8.83g(0.03mol)を投入し、一定時間撹拌して反応させた。その後、塩化テレフタロイル(TPC)20.302g(0.1mol)を添加して、固形分濃度13質量%のポリアミック酸溶液を得た。次いで、このポリアミック酸溶液にピリジン25.6g、無水酢酸33.1gを投入して30分撹拌し、さらに70℃で1時間撹拌した後、常温に冷却した。ここにメタノール20Lを加え、沈澱した固形分を濾過して粉砕した。その後、100℃下、真空で6時間乾燥させて、111gのポリイミド粉末を得た。

<Preparation of base material>

(Manufacture of polyimide powder)

Under a nitrogen stream, 832 g of N, N-dimethylacetamide (DMAc) was added to a 1 L reactor equipped with a stirrer, a nitrogen injection device, a dropping funnel, a temperature controller and a condenser, and then the temperature of the reactor was adjusted to 25. C. To this, 64.046 g (0.2 mol) of bistrifluoromethylbenzidine (TFDB) was added and dissolved. While maintaining the resulting solution at 25 ° C., 31.09 g (0.07 mol) of 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride (6FDA) and biphenyltetracarboxylic dianhydride The product (BPDA) 8.83 g (0.03 mol) was added, and the mixture was stirred for a certain time to be reacted. Thereafter, 20.302 g (0.1 mol) of terephthaloyl chloride (TPC) was added to obtain a polyamic acid solution having a solid concentration of 13% by mass. Next, 25.6 g of pyridine and 33.1 g of acetic anhydride were added to this polyamic acid solution, stirred for 30 minutes, further stirred at 70 ° C. for 1 hour, and then cooled to room temperature. 20 L of methanol was added thereto, and the precipitated solid was filtered and pulverized. Then, it was made to dry in vacuum at 100 degreeC for 6 hours, and 111 g of polyimide powder was obtained.

(基材S-1の作製)

 100gのポリイミド粉末を670gのN,N-ジメチルアセトアミド(DMAc)に溶かして13質量%の溶液を得た。得られた溶液をステンレス板に流延し、130℃の熱風で30分乾燥させた。その後フィルムをステンレス板から剥離して、フレームにピンで固定し、フィルムが固定されたフレームを真空オーブンに入れ、100℃から300℃まで加熱温度を徐々に上げながら2時間加熱し、その後、徐々に冷却した。冷却後のフィルムをフレームから分離した後、最終熱処理工程として、さらに300℃で30分間熱処理して、ポリイミドフィルムからなる、厚み30μmの基材S-1を得た。

(Preparation of substrate S-1)

100 g of polyimide powder was dissolved in 670 g of N, N-dimethylacetamide (DMAc) to obtain a 13% by mass solution. The obtained solution was cast on a stainless steel plate and dried with hot air at 130 ° C. for 30 minutes. After that, the film is peeled off from the stainless steel plate and fixed to the frame with a pin. The frame on which the film is fixed is put into a vacuum oven and heated for 2 hours while gradually increasing the heating temperature from 100 ° C to 300 ° C. Cooled to. After the cooled film was separated from the frame, as a final heat treatment step, it was further heat treated at 300 ° C. for 30 minutes to obtain a substrate S-1 made of polyimide film and having a thickness of 30 μm.

(基材S-2の作製)

 窒素置換した重合槽に、式(1)で表される化合物、式(2)で表される化合物、式(3)で表される化合物、触媒及び溶媒(γブチロラクトン及びジメチルアセトアミド)を仕込んだ。仕込み量は、式(1)で表される化合物75.0g、式(2)で表される化合物36.5g、式(3)で表される化合物76.4g、触媒1.5g、γブチロラクトン438.4g、ジメチルアセトアミド313.1gとした。式(2)で表される化合物と式(3)で表される化合物とのモル比は3:7、式(2)で表される化合物及び式(3)で表される化合物の合計と式(1)で表される化合物とのモル比は、1.00:1.02であった。

(Preparation of substrate S-2)

A nitrogen-substituted polymerization tank was charged with a compound represented by formula (1), a compound represented by formula (2), a compound represented by formula (3), a catalyst and a solvent (γ-butyrolactone and dimethylacetamide). . The amount charged is 75.0 g of the compound represented by formula (1), 36.5 g of the compound represented by formula (2), 76.4 g of the compound represented by formula (3), 1.5 g of catalyst, and γ-butyrolactone. 438.4 g and dimethylacetamide 313.1 g. The molar ratio of the compound represented by Formula (2) and the compound represented by Formula (3) is 3: 7, and the total of the compound represented by Formula (2) and the compound represented by Formula (3) is The molar ratio with the compound represented by Formula (1) was 1.00: 1.02.

Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000062

 重合槽内の混合物を攪拌して原料を溶媒に溶解させた後、混合物を100℃まで昇温し、その後、200℃まで昇温し、4時間保温して、ポリイミドを重合した。この加熱中に、液中の水を除去した。その後、精製及び乾燥により、ポリイミドを得た。

After stirring the mixture in the polymerization tank and dissolving the raw materials in the solvent, the temperature of the mixture was raised to 100 ° C., and then the temperature was raised to 200 ° C. and kept warm for 4 hours to polymerize the polyimide. During this heating, water in the liquid was removed. Then, the polyimide was obtained by refinement | purification and drying.

 次に、濃度20質量%に調整したポリイミドのγブチロラクトン溶液、γブチロラクトンに固形分濃度30質量%のシリカ粒子を分散した分散液、アミノ基を有するアルコキシシランのジメチルアセトアミド溶液、及び、水を混合し、30分間攪拌した。これらの攪拌は、米国特許番号US8,207,256B2に記載の方法に準拠して行った。

Next, a polyimide γ-butyrolactone solution adjusted to a concentration of 20% by mass, a dispersion in which silica particles having a solid content concentration of 30% by mass are dispersed in γ-butyrolactone, a dimethylacetamide solution of an alkoxysilane having an amino group, and water are mixed. And stirred for 30 minutes. These stirrings were performed according to the method described in US Patent No. US8,207,256B2.

 ここで、シリカ粒子とポリイミドの質量比を60:40、アミノ基を有するアルコキシシランの量をシリカ粒子及びポリイミドの合計100質量部に対して1.67質量部、水の量をシリカ粒子及びポリイミドの合計100質量部に対して10質量部とした。

Here, the mass ratio of silica particles to polyimide is 60:40, the amount of alkoxysilane having an amino group is 1.67 parts by mass with respect to a total of 100 parts by mass of silica particles and polyimide, and the amount of water is silica particles and polyimide. 10 parts by mass with respect to 100 parts by mass in total.

 混合溶液を、ガラス基板に塗布し、50℃で30分、140℃で10分加熱して乾燥した。その後、フィルムをガラス基板から剥離し、金枠を取り付けて210℃で1時間加熱し、厚み80μmの基材S-2を得た。この樹脂フィルムにおけるシリカ粒子の含有量は60質量%である。得られた樹脂フィルムの黄色度(YI値)は、2.3であった。

The mixed solution was applied to a glass substrate and dried by heating at 50 ° C. for 30 minutes and at 140 ° C. for 10 minutes. Thereafter, the film was peeled from the glass substrate, a metal frame was attached, and the film was heated at 210 ° C. for 1 hour to obtain a substrate S-2 having a thickness of 80 μm. The content of silica particles in this resin film is 60% by mass. The yellowness (YI value) of the obtained resin film was 2.3.

<重合性を有するポリオルガノシルセスキオキサンの合成>

(化合物(A)の合成)

 温度計、攪拌装置、還流冷却器、及び窒素導入管を取り付けた1000ミリリットルのフラスコ(反応容器)に、窒素気流下で2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン297ミリモル(73.2g)およびメチルトリメトキシシラン3ミリモル(409mg)、トリエチルアミン7.39g、及びMIBK(メチルイソブチルケトン)370gを混合し、純水73.9gを、滴下ロートを使用して30分かけて滴下した。この反応液を80℃に加熱し、重縮合反応を窒素気流下で10時間行った。

 その後、反応溶液を冷却し、5質量%食塩水300gを添加し、有機層を抽出した。有機層を5質量%食塩水300g、純水300gで2回、順次洗浄した後、1mmHg、50℃の条件で濃縮し、固形分濃度59.8質量%のMIBK溶液として無色透明の液状の生成物{脂環式エポキシ基を有するポリオルガノシルセスキオキサンである化合物(A)(一般式(1)中のRb:2-(3,4-エポキシシクロヘキシル)エチル基、Rc:メチル基、q=99、r=1である化合物)を固形分濃度として59.0質量%含有するメチルイソブチルケトン(MIBK)溶液を得た。

 得られた化合物(A)の数平均分子量(Mn)は2310、分散度(Mw/Mn)は2.1であった。

 なお、1mmHgは約133.322Paである。

<Synthesis of Polymerizable Polyorganosilsesquioxane>

(Synthesis of Compound (A))

A 1000 ml flask (reaction vessel) equipped with a thermometer, a stirrer, a reflux condenser, and a nitrogen inlet tube was charged with 297 mmol (73.73) of 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane under a nitrogen stream. 2 g), 3 mmol (409 mg) of methyltrimethoxysilane, 7.39 g of triethylamine, and 370 g of MIBK (methyl isobutyl ketone) were mixed, and 73.9 g of pure water was added dropwise using a dropping funnel over 30 minutes. This reaction solution was heated to 80 ° C., and a polycondensation reaction was performed for 10 hours under a nitrogen stream.

Thereafter, the reaction solution was cooled, 300 g of 5% by mass saline was added, and the organic layer was extracted. The organic layer was washed with 300 g of 5% by mass saline solution and 300 g of pure water successively and then concentrated under the conditions of 1 mmHg and 50 ° C. to produce a colorless and transparent liquid as a MIBK solution having a solid content concentration of 59.8% by mass. Compound {Compound (A) which is a polyorganosilsesquioxane having an alicyclic epoxy group (Rb in the general formula (1): 2- (3,4-epoxycyclohexyl) ethyl group, Rc: methyl group, q = 99, r = 1)), and a methyl isobutyl ketone (MIBK) solution containing 59.0% by mass as a solid content concentration was obtained.

The number average molecular weight (Mn) of the obtained compound (A) was 2310, and dispersity (Mw / Mn) was 2.1.

Note that 1 mmHg is about 133.322 Pa.

[実施例1]

<ハードコート層形成用組成物の調製>

(ハードコート層形成用組成物HC-1)

 上記化合物(A)を含有するMIBK溶液に、CPI-100P、重合体(1-1)及びMIBK(メチルイソブチルケトン)を添加し、各含有成分の濃度が下記の濃度となるように調整し、ミキシングタンクに投入、攪拌した。得られた組成物を孔径0.4μmのポリプロピレン製フィルターで濾過し、ハードコート層形成用組成物HC-1とした。

[Example 1]

<Preparation of composition for forming hard coat layer>

(Hardcoat layer forming composition HC-1)

CPI-100P, polymer (1-1) and MIBK (methyl isobutyl ketone) are added to the MIBK solution containing the above compound (A), and the concentration of each component is adjusted to the following concentration. The mixture was added to the mixing tank and stirred. The obtained composition was filtered through a polypropylene filter having a pore size of 0.4 μm to obtain a hard coat layer forming composition HC-1.

 化合物(A)          98.6質量部

 CPI-100P        1.3質量部

 重合体(1-1)        0.1質量部

 メチルイソブチルケトン   100.0質量部

Compound (A) 98.6 parts by mass

CPI-100P 1.3 parts by mass

Polymer (1-1) 0.1 part by mass

Methyl isobutyl ketone 100.0 parts by mass

 なお、ハードコート層形成用組成物中に用いた化合物は以下のとおりである。

 CPI-100P:カチオン光重合開始剤、サンアプロ(株)製

In addition, the compound used in the composition for hard-coat layer formation is as follows.

CPI-100P: Cationic photopolymerization initiator, manufactured by San Apro Co., Ltd.

<混合層形成用組成物の調製>

(混合層形成用組成物M-1)

 上記化合物(A)を含有するMIBK溶液をMEK(メチルエチルケトン)溶液に溶剤置換し、DPHA、CPI-100P、イルガキュア127、レベリング剤-1及びMEKを添加し、各含有成分の濃度が下記の濃度となるように調整し、ミキシングタンクに投入、攪拌した。得られた組成物を孔径0.4μmのポリプロピレン製フィルターで濾過し、混合層形成用組成物M-1とした。混合層形成用組成物M-1中、化合物(A)とDPHAの混合比は、化合物(A)/DPHA=50質量%/50質量%である。

<Preparation of mixed layer forming composition>

(Mixed layer forming composition M-1)

The MIBK solution containing the above compound (A) is solvent-substituted with a MEK (methyl ethyl ketone) solution, DPHA, CPI-100P, Irgacure 127, Leveling Agent-1 and MEK are added, and the concentrations of the respective components are as follows: It adjusted so that it might become, It put into the mixing tank and stirred. The obtained composition was filtered through a polypropylene filter having a pore size of 0.4 μm to obtain a mixed layer forming composition M-1. In the mixed layer forming composition M-1, the mixing ratio of the compound (A) and DPHA is compound (A) / DPHA = 50 mass% / 50 mass%.

 化合物(A)         42.85質量部

 DPHA          42.85質量部

 CPI-100P        1.3質量部

 イルガキュア127       5.0質量部

 レベリング剤-1        8.0質量部

 メチルエチルケトン     500.0質量部

Compound (A) 42.85 parts by mass

DPHA 42.85 parts by mass

CPI-100P 1.3 parts by mass

Irgacure 127 5.0 parts by mass

Leveling agent-1 8.0 parts by mass

Methyl ethyl ketone 500.0 parts by mass

 なお、混合層形成用組成物中に用いた化合物は以下のとおりである。

 DPHA:ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの混合物、日本化薬(株)製

 イルガキュア127:ラジカル光重合開始剤、BASF社製

 レベリング剤-1:下記構造のポリマー(Mw=20000、下記繰り返し単位の組成比は質量比)

In addition, the compound used in the composition for mixed layer formation is as follows.

DPHA: A mixture of dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate, manufactured by Nippon Kayaku Co., Ltd.

Irgacure 127: radical photopolymerization initiator, manufactured by BASF

Leveling agent-1: polymer having the following structure (Mw = 20000, composition ratio of the following repeating unit is mass ratio)

Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000063

<耐擦傷層形成用組成物の調製>

(耐擦傷層形成用組成物SR-1)

 下記に記載の組成で各成分をミキシングタンクに投入、攪拌し、孔径0.4μmのポリプロピレン製フィルターで濾過して耐擦傷層形成用組成物SR-1とした。

<Preparation of composition for forming scratch-resistant layer>

(Composition SR-1 for scratch-resistant layer formation)

Each component having the composition described below was charged into a mixing tank, stirred, and filtered through a polypropylene filter having a pore size of 0.4 μm to obtain a scratch-resistant layer forming composition SR-1.

 DPHA           96.2質量部

 イルガキュア127       2.8質量部

 RS-90           1.0質量部

 メチルエチルケトン     300.0質量部

(耐擦傷層形成用組成物SR-2)

 下記に記載の組成で各成分をミキシングタンクに投入、攪拌し、孔径0.4μmのポリプロピレン製フィルターで濾過して耐擦傷層形成用組成物SR-2とした。

DPHA 96.2 parts by mass

Irgacure 127 2.8 parts by mass

RS-90 1.0 part by mass

Methyl ethyl ketone 300.0 parts by mass

(Composition SR-2 for scratch-resistant layer formation)

Each component having the composition described below was charged into a mixing tank, stirred, and filtered through a polypropylene filter having a pore size of 0.4 μm to obtain a scratch-resistant composition SR-2.

 DPHA           50.0質量部

 PET30          46.2質量部

 イルガキュア127       2.8質量部

 RS-90           1.0質量部

 酢酸メチル         300.0質量部

(耐擦傷層形成用組成物SR-3)

 下記に記載の組成で各成分をミキシングタンクに投入、攪拌し、孔径0.4μmのポリプロピレン製フィルターで濾過して耐擦傷層形成用組成物SR-3とした。

DPHA 50.0 parts by mass

46.2 parts by mass of PET30

Irgacure 127 2.8 parts by mass

RS-90 1.0 part by mass

300.0 parts by mass of methyl acetate

(Composition SR-3 for scratch-resistant layer formation)

Each component having the composition described below was charged into a mixing tank, stirred, and filtered through a polypropylene filter having a pore size of 0.4 μm to obtain a scratch-resistant composition SR-3.

 DPHA           50.0質量部

 PET30          46.2質量部

 イルガキュア127       2.8質量部

 RS-90           1.0質量部

 メチルエチルケトン     300.0質量部

(耐擦傷層形成用組成物SR-4)

 下記に記載の組成で各成分をミキシングタンクに投入、攪拌し、孔径0.4μmのポリプロピレン製フィルターで濾過して耐擦傷層形成用組成物SR-4とした。

DPHA 50.0 parts by mass

46.2 parts by mass of PET30

Irgacure 127 2.8 parts by mass

RS-90 1.0 part by mass

Methyl ethyl ketone 300.0 parts by mass

(Composition SR-4 for scratch-resistant layer formation)

Each component having the composition described below was charged into a mixing tank, stirred, and filtered through a polypropylene filter having a pore diameter of 0.4 μm to obtain a scratch-resistant composition SR-4.

 DPHA           50.0質量部

 PET30          46.2質量部

 イルガキュア127       2.8質量部

 RS-90           1.0質量部

 メチルエチルケトン     900.0質量部

(耐擦傷層形成用組成物SR-5)

 下記に記載の組成で各成分をミキシングタンクに投入、攪拌し、孔径0.4μmのポリプロピレン製フィルターで濾過して耐擦傷層形成用組成物SR-5とした。

DPHA 50.0 parts by mass

46.2 parts by mass of PET30

Irgacure 127 2.8 parts by mass

RS-90 1.0 part by mass

900.0 parts by mass of methyl ethyl ketone

(Scratch-resistant layer forming composition SR-5)

Each component having the composition described below was charged into a mixing tank, stirred, and filtered through a polypropylene filter having a pore size of 0.4 μm to obtain a scratch-resistant composition SR-5.

 DPHA           96.2質量部

 イルガキュア127       2.8質量部

 RS-90           1.0質量部

 メチルエチルケトン     900.0質量部

DPHA 96.2 parts by mass

Irgacure 127 2.8 parts by mass

RS-90 1.0 part by mass

900.0 parts by mass of methyl ethyl ketone

 なお、耐擦傷層形成用組成物中に用いた化合物は以下のとおりである。

 RS-90:滑り剤、DIC(株)製

 PET-30:ペンタエリスリトールトリアクリレートとペンタエリスリトールテトラアクリレートの混合物、日本化薬(株)製

The compounds used in the composition for forming a scratch-resistant layer are as follows.

RS-90: slip agent, manufactured by DIC Corporation

PET-30: A mixture of pentaerythritol triacrylate and pentaerythritol tetraacrylate, manufactured by Nippon Kayaku Co., Ltd.

<ハードコートフィルムの作製>

 基材S-1上にハードコート層形成用組成物HC-1をダイコーターを用いて塗布した。120℃で1分間乾燥した後、25℃の条件にて空冷水銀ランプを用いて、照度18mW/cm、照射量10mJ/cmの紫外線を照射してハードコート層を半硬化させた。

 混合層形成用組成物M-1にMEKを添加して固形分濃度を1/10に希釈した混合層形成用組成物を準備し、半硬化させたハードコート層上にダイコーターを用いて塗布した。120℃で1分間乾燥した後、25℃、酸素濃度1%の条件にて空冷水銀ランプを用いて、照度18mW/cm、照射量10mJ/cmの紫外線を照射して混合層を半硬化させ、ハードコート層上に混合層を設けた。

 半硬化させた混合層上に、耐擦傷層形成用組成物SR-1をダイコーターを用いて塗布した。120℃で1分間乾燥した後、25℃、酸素濃度100ppmの条件にて空冷水銀ランプを用いて、照度60mW/cm、照射量800mJ/cmの紫外線を照射した後、さらに80℃、酸素濃度100ppmの条件にて空冷水銀ランプを用いて、照度60mW/cm、照射量800mJ/cmの紫外線を照射することでハードコート層、混合層、耐擦傷層を完全硬化させた。その後得られたフィルムを120℃1時間熱処理することで、厚さ11.0μmのハードコート層上に、厚さ0.1μmの混合層、及び、厚さ1.0μmの耐擦傷層を有するハードコートフィルム1を得た。なお、ハードコート層、混合層、耐擦傷層の厚みは、断面切削装置ウルトラミクロトームを用いてハードコートフィルムの断面試料を作製し、SEMを用いて断面観察することにより算出した。

<Preparation of hard coat film>

The hard coat layer forming composition HC-1 was applied on the substrate S-1 using a die coater. After drying at 120 ° C. for 1 minute, the hard coat layer was semi-cured by irradiating ultraviolet rays with an illuminance of 18 mW / cm 2 and an irradiation amount of 10 mJ / cm 2 using an air-cooled mercury lamp at 25 ° C.

Prepare a mixed layer forming composition by adding MEK to the mixed layer forming composition M-1 and diluting the solid content concentration to 1/10, and apply it to the semi-cured hard coat layer using a die coater. did. After drying at 120 ° C. for 1 minute, using an air-cooled mercury lamp at 25 ° C. and an oxygen concentration of 1%, the mixed layer is semi-cured by irradiating ultraviolet rays with an illuminance of 18 mW / cm 2 and an irradiation amount of 10 mJ / cm 2. The mixed layer was provided on the hard coat layer.

On the semi-cured mixed layer, the scratch-resistant layer forming composition SR-1 was applied using a die coater. After drying at 120 ° C. for 1 minute, using an air-cooled mercury lamp under the conditions of 25 ° C. and an oxygen concentration of 100 ppm, after irradiating ultraviolet rays with an illuminance of 60 mW / cm 2 and an irradiation amount of 800 mJ / cm 2 , further 80 ° C., oxygen The hard coat layer, the mixed layer, and the scratch-resistant layer were completely cured by irradiating with an ultraviolet ray having an illuminance of 60 mW / cm 2 and an irradiation amount of 800 mJ / cm 2 using an air-cooled mercury lamp under a concentration of 100 ppm. Thereafter, the obtained film was heat-treated at 120 ° C. for 1 hour, so that a hard layer having a 0.1 μm thick mixed layer and a 1.0 μm thick scratch-resistant layer was formed on a 11.0 μm thick hard coat layer. Coat film 1 was obtained. In addition, the thickness of the hard coat layer, the mixed layer, and the scratch-resistant layer was calculated by preparing a cross-section sample of the hard coat film using a cross-section cutting apparatus ultramicrotome and observing the cross section using an SEM.

[実施例2~12]

 ハードコート層形成用組成物HC-1中の重合体の種類及び混合層の膜厚を表2に示すように変更した以外は、実施例1と同様にしてハードコートフィルム2~12を得た。

[Examples 2 to 12]

Hard coat films 2 to 12 were obtained in the same manner as in Example 1 except that the type of polymer in the hard coat layer forming composition HC-1 and the film thickness of the mixed layer were changed as shown in Table 2. .

[実施例13]

 基材の種類、及び混合層の膜厚を表2に示すように変更した以外は、実施例1と同様にしてハードコートフィルム13を得た。

[Example 13]

A hard coat film 13 was obtained in the same manner as in Example 1 except that the type of base material and the film thickness of the mixed layer were changed as shown in Table 2.

[実施例14]

<ハードコートフィルムの作製>

 基材S-1上にハードコート層形成用組成物HC-1をダイコーターを用いて塗布した。120℃で1分間乾燥した後、25℃の条件にて空冷水銀ランプを用いて、照度18mW/cm、照射量10mJ/cmの紫外線を照射してハードコート層を半硬化させた。

[Example 14]

<Preparation of hard coat film>

The hard coat layer forming composition HC-1 was applied on the substrate S-1 using a die coater. After drying at 120 ° C. for 1 minute, the hard coat layer was semi-cured by irradiating ultraviolet rays with an illuminance of 18 mW / cm 2 and an irradiation amount of 10 mJ / cm 2 using an air-cooled mercury lamp at 25 ° C.

 半硬化させたハードコート層上に耐擦傷層形成用組成物SR-2をダイコーターを用いて塗布した。120℃で1分間乾燥した後、25℃、酸素濃度100ppmの条件にて空冷水銀ランプを用いて、照度60mW/cm、照射量600mJ/cmの紫外線を照射した後、さらに80℃、酸素濃度100ppmの条件にて空冷水銀ランプを用いて、照度60mW/cm、照射量600mJ/cmの紫外線を照射することでハードコート層、染み込みにより形成した混合層、及び耐擦傷層を完全硬化させた。その後得られたフィルムを120℃1時間熱処理することで、厚さ1.0μmの耐擦傷層を有するハードコートフィルム14を得た。

The scratch-resistant layer forming composition SR-2 was applied onto the semi-cured hard coat layer using a die coater. After drying for 1 minute at 120 ° C., 25 ° C., using an air-cooled mercury lamp at an oxygen concentration 100ppm conditions, illuminance 60 mW / cm 2, after an irradiation dose of 600 mJ / cm 2, further 80 ° C., oxygen Completely cure hard coat layer, mixed layer formed by soaking, and scratch-resistant layer by irradiating ultraviolet ray with illuminance of 60 mW / cm 2 and irradiation amount of 600 mJ / cm 2 using air-cooled mercury lamp under the condition of concentration of 100 ppm I let you. Thereafter, the obtained film was heat-treated at 120 ° C. for 1 hour to obtain a hard coat film 14 having a scratch-resistant layer having a thickness of 1.0 μm.

[実施例15~17]

 耐擦傷層形成用組成物を表2に記載の組成物に変更した以外は、実施例14と同様にしてハードコートフィルム15~17を得た。

[Examples 15 to 17]

Hard coat films 15 to 17 were obtained in the same manner as in Example 14 except that the composition for forming an abrasion-resistant layer was changed to the composition shown in Table 2.

[比較例1~4]

 ハードコート層形成用組成物HC-1中の重合体を重合体1C~3Cに変更し、混合層の膜厚を表2に示す膜厚に変更した以外は、実施例1と同様にして比較ハードコートフィルム1~4を得た。

[Comparative Examples 1 to 4]

Comparison was made in the same manner as in Example 1 except that the polymer in the hard coat layer-forming composition HC-1 was changed to polymers 1C to 3C and the thickness of the mixed layer was changed to the thickness shown in Table 2. Hard coat films 1 to 4 were obtained.

 なお、重合体1C~3Cは以下のとおりである。

The polymers 1C to 3C are as follows.

重合体1C-1:(下記構造のポリマー、下記繰り返し単位の組成比は質量比、重量平均分子量(Mw)=21000)

Polymer 1C-1: (polymer having the following structure, composition ratio of the following repeating unit is a mass ratio, weight average molecular weight (Mw) = 21000)

Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000064

重合体1C-2:(下記構造のポリマー、下記繰り返し単位の組成比は質量比、重量平均分子量(Mw)=3000)

Polymer 1C-2: (polymer having the following structure, composition ratio of the following repeating unit is mass ratio, weight average molecular weight (Mw) = 3000)

Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000065

重合体2C:(下記構造のポリマー、下記繰り返し単位の組成比は質量比、重量平均分子量(Mw)=3000)

Polymer 2C: (polymer having the following structure, composition ratio of the following repeating unit is a mass ratio, weight average molecular weight (Mw) = 3000)

Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000066

重合体3C:(下記構造のポリマー、下記繰り返し単位の組成比は質量比、重量平均分子量(Mw)=3000)

Polymer 3C: (polymer having the following structure, composition ratio of the following repeating unit is a mass ratio, weight average molecular weight (Mw) = 3000)

Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000067

[比較例5]

 ハードコート層形成用組成物HC-1中の重合体を添加しなかったこと以外は、実施例1と同様にして比較ハードコートフィルム5を得た。

[Comparative Example 5]

A comparative hard coat film 5 was obtained in the same manner as in Example 1 except that the polymer in the hard coat layer forming composition HC-1 was not added.

<染み込みにより形成した混合層の厚みの解析>

 上記実施例14~17で得られたハードコートフィルムの混合層の厚みは、Ulvac-PHI社製質量分析装置「TRIFT V Nano TOF(一次イオンBi ++、加速電圧30kV)」を用いて、ハードコートフィルムの耐擦傷層側からAr-GCIB銃(15kV、2.5nA、500 μm四方)でエッチングしながらフラグメントイオンを解析することで求めた。混合層は、耐擦傷層成分由来のフラグメントとハードコート層成分由来のフラグメントイオンの両方が検出される領域とした。混合層が検出された時間と、事前に求めた耐擦傷層の単位時間あたりのエッチング深さから混合層の厚みを算出した。実施例14~17で得られたハードコートフィルムの混合層の厚みは、それぞれ0.15μm、0.08μm、0.12μm、0.10μmであった。

<Analysis of thickness of mixed layer formed by soaking>

The thickness of the mixed layer of the hard coat films obtained in Examples 14 to 17 was determined using a mass spectrometer “TRIFT V Nano TOF (primary ion Bi 3 ++ , acceleration voltage 30 kV)” manufactured by Ulvac-PHI. It was determined by analyzing fragment ions while etching with an Ar-GCIB gun (15 kV, 2.5 nA, 500 μm square) from the scratch-resistant layer side of the coated film. The mixed layer was an area where both fragments derived from the scratch-resistant layer component and fragment ions derived from the hard coat layer component were detected. The thickness of the mixed layer was calculated from the time when the mixed layer was detected and the etching depth per unit time of the scratch-resistant layer obtained in advance. The thicknesses of the mixed layers of the hard coat films obtained in Examples 14 to 17 were 0.15 μm, 0.08 μm, 0.12 μm, and 0.10 μm, respectively.

[評価]

(ハードコート層表面面状)

 上記ハードコートフィルムの作製において、ハードコート層形成用組成物を塗布した後、乾燥、半硬化させたハードコート層について、層の面状を目視にて確認し、以下の基準にて評価した。

 A:乾燥ムラやシワの無い面状である

 B:乾燥ムラがわずかに見られるが問題なく使用できる

 C:乾燥ムラや凹凸がBに比べ多いが問題なく使用できる

 D:乾燥ムラに起因する明らかな凹凸が見られ、使用に適さない

[Evaluation]

(Hard coat layer surface)

In the production of the hard coat film, after applying the composition for forming a hard coat layer, the dried and semi-cured hard coat layer was visually checked for the surface state of the layer and evaluated according to the following criteria.

A: Surface shape without drying unevenness and wrinkles

B: Slight unevenness of drying is observed, but can be used without problems

C: Drying unevenness and irregularities are larger than B, but can be used without problems

D: Obvious unevenness due to drying unevenness is seen and not suitable for use

(溶剤抽出性)

 上記ハードコートフィルムの作製において、ハードコート層形成用組成物を塗布した後、乾燥、半硬化させたハードコートフィルム(A)を用いて溶剤抽出性の評価を行った。

 ハードコートフィルム(A)と、ハードコートフィルム(A)のハードコート層表面をMEKで洗い流したハードコートフィルム(B)(MEK洗浄後)の2種類のフィルムを準備した。

 Ulvac-PHI社製、Quantera SXM型ESCA(Electron Spectroscopy for Chemical Analysis)を用いて、光電子取出角度45°、測定範囲:300μm角の条件でハードコートフィルム(A)及び(B)のハードコート層表面の元素量を測定し、下記式により溶剤抽出性を算出した。

[{(MEK洗浄前の共重合体由来の元素[%])-(MEK洗浄後の共重合体由来の元素[%])}/(MEK洗浄後の共重合体由来の元素[%])]×100[%]

 なお、共重合体由来の元素[%]とは全検出元素に対する共重合体のみが有する元素の含有率[%]を表し、実施例1~10、13、及び比較例1~4はF、実施例11~12はNを共重合体のみが有する元素として含有率[%]を算出した。

(Solvent extractability)

In the production of the hard coat film, the solvent extractability was evaluated using the hard coat film (A) dried and semi-cured after applying the composition for forming a hard coat layer.

Two types of films were prepared: a hard coat film (A) and a hard coat film (B) obtained by washing the surface of the hard coat layer of the hard coat film (A) with MEK (after washing with MEK).

The surface of the hard coat layer of the hard coat films (A) and (B) using a Quantara SXM type ESCA (Electron Spectroscopic for Chemical Analysis) manufactured by Ulvac-PHI under the conditions of a photoelectron extraction angle of 45 ° and a measurement range of 300 μm square. The element extractability was measured, and the solvent extractability was calculated by the following formula.

[{(Element derived from copolymer before MEK cleaning [%])-(Element derived from copolymer after MEK cleaning [%])} / (Element derived from copolymer after MEK cleaning [%])) ] × 100 [%]

The copolymer-derived element [%] represents the content [%] of the element only in the copolymer with respect to all the detected elements. Examples 1 to 10, 13 and Comparative Examples 1 to 4 are F, In Examples 11 to 12, the content [%] was calculated by using N as an element only in the copolymer.

(リコート性)

 上記ハードコートフィルムの作製において、ハードコート層形成用組成物を塗布した後、乾燥、半硬化させたハードコートフィルムに対し、混合層形成用組成物M-1の厚みを変更して塗布、乾燥した後、硬化させたハードコートフィルムのハジキを下記基準で評価した。なお、厚みが0.1、0.5μmのときは混合層形成用組成物M-1にMEKを添加して固形分濃度を1/10に希釈した混合層形成用組成物を準備して使用し、厚みが3.0μmのときは混合層形成用組成物M-1を希釈せずに用いた。なお、本評価においてAの場合は混合層の厚みを0.1μmとし、BとCの場合は混合層の厚みを3.0μmとし、Dの場合は混合層の厚みを6.0μmとしてハードコーティングフィルムの評価を行った。

 A:混合層厚み0.1μmでハジキがない

 B:混合層厚み0.1μmでハジキが認められるが、0.5μmでハジキがない

 C:混合層厚み0.5μmでハジキが認められるが、3μmでハジキがない

 D:混合層厚み3μmでハジキが認められる

(Recoat property)

In the preparation of the hard coat film, after applying the hard coat layer forming composition, the dried and semi-cured hard coat film was applied by changing the thickness of the mixed layer forming composition M-1 and drying. Then, the repellency of the cured hard coat film was evaluated according to the following criteria. When the thickness is 0.1 or 0.5 μm, a mixed layer forming composition is prepared by adding MEK to the mixed layer forming composition M-1 and diluting the solid content concentration to 1/10. When the thickness was 3.0 μm, the mixed layer forming composition M-1 was used without being diluted. In this evaluation, in the case of A, the thickness of the mixed layer is 0.1 μm, in the case of B and C, the thickness of the mixed layer is 3.0 μm, and in the case of D, the thickness of the mixed layer is 6.0 μm. The film was evaluated.

A: There is no repellency when the mixed layer thickness is 0.1 μm.

B: Repelling is observed at a mixed layer thickness of 0.1 μm, but there is no repelling at 0.5 μm.

C: Repelling is observed when the mixed layer thickness is 0.5 μm, but there is no repelling at 3 μm.

D: Repelling is observed at a mixed layer thickness of 3 μm

 作製したハードコートフィルムに対して、以下の性能評価を行った。

The following performance evaluation was performed with respect to the produced hard coat film.

(鉛筆硬度)

 JIS K 5600-5-4(1999)に準拠して測定し、以下の3段階で評価した。

 A:鉛筆硬度が6H以上である。

 B:鉛筆硬度が5Hである。

 C:鉛筆硬度が4H以下である。

(Pencil hardness)

It was measured according to JIS K 5600-5-4 (1999) and evaluated in the following three stages.

A: Pencil hardness is 6H or more.

B: Pencil hardness is 5H.

C: Pencil hardness is 4H or less.

(繰り返し折り曲げ耐性)

 各実施例及び比較例により製造されたハードコートフィルムから幅15mm、長さ150mmの試料フィルムを切り出し、温度25℃、相対湿度65%の状態に1時間以上静置させた。その後、耐折度試験機((株)井元製作所製、IMC-0755型、折り曲げ曲率半径1.0mm)を用いて、基材が外側になるようにして繰り返しの耐屈曲性試験を行った。試料フィルムに割れまたは破断が生じるまでの回数により、以下の基準で評価した。

  A:50万回以上

  B:10万回以上、50万回未満

  C:10万回未満

(Repeated bending resistance)

A sample film having a width of 15 mm and a length of 150 mm was cut out from the hard coat film produced in each example and comparative example, and allowed to stand at a temperature of 25 ° C. and a relative humidity of 65% for 1 hour or more. Thereafter, a repeated bending resistance test was performed using a folding resistance tester (manufactured by Imoto Seisakusho Co., Ltd., model IMC-0755, bending radius of curvature 1.0 mm) with the substrate facing outward. The number of times until the sample film was cracked or broken was evaluated according to the following criteria.

A: More than 500,000 times

B: 100,000 times or more, less than 500,000 times

C: Less than 100,000 times

(耐擦傷性)

 各実施例及び比較例により製造されたハードコートフィルムの基材とは反対側の表面を、ラビングテスターを用いて、以下の条件で擦りテストを行うことで、耐擦傷性の指標とした。

 評価環境条件:25℃、相対湿度60%

 こすり材:スチールウール(日本スチールウール(株)製、グレードNo.0000)

 試料と接触するテスターのこすり先端部(1cm×1cm)に巻いて、バンド固定

 移動距離(片道):13cm、

 こすり速度:13cm/秒、

 荷重:1000g/cm

 先端部接触面積:1cm×1cm、

 こすり回数:1000往復、2000往復、5000往復、10000往復

 試験後の各実施例および比較例のハードコートフィルムのこすった面とは逆側の面に油性黒インキを塗り、反射光で目視観察して、スチールウールと接触していた部分に傷が入ったときの擦り回数を計測し、以下の5段階で評価した。

 A:10000回擦っても傷が付かない。

 B:5000回擦っても傷が付かないが、10000回擦るまでに傷が付く。

 C:2000回擦っても傷が付かないが、5000回擦るまでに傷が付く。

 D:1000回擦っても傷が付かないが、2000回擦るまでに傷が付く。

 E:1000回擦るまでに傷が付く。

(Abrasion resistance)

The surface of the hard coat film manufactured in each example and comparative example on the opposite side to the base material was subjected to a rubbing test under the following conditions using a rubbing tester, and used as an index of scratch resistance.

Evaluation environmental conditions: 25 ° C., relative humidity 60%

Rubbing material: Steel wool (manufactured by Nippon Steel Wool Co., Ltd., Grade No. 0000)

Wrap around the tip (1cm x 1cm) of the scraper of the tester that comes into contact with the sample, and fix the band

Travel distance (one way): 13cm

Rubbing speed: 13 cm / second,

Load: 1000 g / cm 2 ,

Tip contact area: 1 cm × 1 cm,

Number of rubs: 1000 round trips, 2000 round trips, 5000 round trips, 10,000 round trips

Apply oil-based black ink to the surface opposite to the rubbed surface of each Example and Comparative Example after the test, and visually observe with reflected light. The number of rubbing was measured and evaluated according to the following five levels.

A: No damage even after rubbing 10,000 times.

B: No scratches even after rubbing 5000 times, but scratches by rubbing 10,000 times.

C: No scratches even after rubbing 2000 times, but scratches by rubbing 5000 times.

D: No scratches even after rubbing 1000 times, but scratches by 2000 times.

E: Scratches occur after rubbing 1000 times.

 評価結果を下記表2に示す。ハードコート層形成用組成物における重合体のOH含有量も示す。なお、重合体の配合量は、ハードコート層の固形分の全質量に対する含有比率を表す。

The evaluation results are shown in Table 2 below. The OH content of the polymer in the hard coat layer forming composition is also shown. In addition, the compounding quantity of a polymer represents the content ratio with respect to the total mass of solid content of a hard-coat layer.

Figure JPOXMLDOC01-appb-T000068

 

Figure JPOXMLDOC01-appb-T000068

 

 本発明の重合体を含むハードコート層形成用組成物は、基材上に問題なく塗布が可能であり、表2に示したように、ハードコート層表面面状が良好であった。また、ハードコート層上に更に別の層を形成した際のリコート性に優れていた。

 なお、ハードコート層形成用組成物に用いた重合体(レベリング剤)は、溶剤抽出性にも優れており、混合層と耐擦層を設けたハードコートフィルムの耐擦傷性が良好であった。

 一方、分岐構造を有するレベリング剤を含まない比較例においては、ハードコート層表面面状が悪い、又はハードコート層上に混合層形成用組成物を塗布した際にハジキが生じ、混合層を形成できないという結果となった。

 さらに、実施例は、鉛筆硬度、耐擦傷性、及び繰り返し折り曲げ耐性に優れ、フレキシブルハードコートフィルムとしての性能にも優れることが分かった。

The composition for forming a hard coat layer containing the polymer of the present invention can be applied on the substrate without any problem, and as shown in Table 2, the surface condition of the hard coat layer was good. Moreover, the recoatability when another layer was formed on the hard coat layer was excellent.

The polymer (leveling agent) used in the composition for forming the hard coat layer was excellent in solvent extractability, and the hard coat film provided with the mixed layer and the scratch-resistant layer had good scratch resistance. .

On the other hand, in the comparative example that does not include a leveling agent having a branched structure, the surface of the hard coat layer is poor, or repelling occurs when the mixed layer forming composition is applied on the hard coat layer to form a mixed layer. The result was that it was not possible.

Furthermore, it turned out that an Example is excellent in pencil hardness, scratch resistance, and repeated bending resistance, and is excellent also in the performance as a flexible hard coat film.

Claims (16)


  1.  ラジカル重合性二重結合を有する基を2つ以上有するモノマーを重合させてなる重合体と重合性基を有するポリオルガノシルセスキオキサン(A)とを含む組成物であって、

     前記重合体の重量平均分子量が1000~50000であり、

     前記重合体が、フッ素原子、ケイ素原子、及び炭素数が3以上の直鎖又は分岐アルキル基から選ばれる少なくともいずれか1つを有する、組成物。

    A composition comprising a polymer obtained by polymerizing a monomer having two or more groups having a radical polymerizable double bond, and a polyorganosilsesquioxane (A) having a polymerizable group,

    The polymer has a weight average molecular weight of 1,000 to 50,000,

    The composition wherein the polymer has at least one selected from a fluorine atom, a silicon atom, and a linear or branched alkyl group having 3 or more carbon atoms.

  2.  前記重合体が、フッ素原子を有する請求項1に記載の組成物。

    The composition according to claim 1, wherein the polymer has a fluorine atom.

  3.  前記重合体が、下記一般式(s)で表される構造を有する請求項2に記載の組成物。

    Figure JPOXMLDOC01-appb-C000001

     一般式(s)中、R1sは水素原子又は炭素数1~20のアルキル基を表し、R2sは少なくとも1つのフッ素原子を有する炭素数1~20のアルキル基又は少なくとも1つのフッ素原子を有する炭素数1~20のアルケニル基を表す。*は結合手を表す。

    The composition according to claim 2, wherein the polymer has a structure represented by the following general formula (s).

    Figure JPOXMLDOC01-appb-C000001

    In general formula (s), R 1s represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, and R 2s has an alkyl group having 1 to 20 carbon atoms having at least one fluorine atom or at least one fluorine atom. An alkenyl group having 1 to 20 carbon atoms is represented. * Represents a bond.

  4.  前記ラジカル重合性二重結合を有する基が、下記一般式(Z1)~(Z6)のいずれかで表される基である請求項1~3のいずれか1項に記載の組成物。

    Figure JPOXMLDOC01-appb-C000002

     一般式(Z3)中のRm1及び一般式(Z4)中のRm2は、各々独立に、水素原子又は炭素数1~20のアルキル基を表す。

    The composition according to any one of claims 1 to 3, wherein the group having a radical polymerizable double bond is a group represented by any one of the following general formulas (Z1) to (Z6).

    Figure JPOXMLDOC01-appb-C000002

    R m1 in the general formula (Z3) and R m2 in the general formula (Z4) each independently represent a hydrogen atom or an alkyl group having 1 to 20 carbon atoms.

  5.  前記重合体が、イソシアヌル環、ウレタン結合、アミド結合、及びウレア結合から選ばれる少なくとも1つを有する請求項1~4のいずれか1項に記載の組成物。

    The composition according to any one of claims 1 to 4, wherein the polymer has at least one selected from an isocyanuric ring, a urethane bond, an amide bond, and a urea bond.

  6.  前記モノマーが、前記ラジカル重合性二重結合を有する基を3つ以上有する請求項1~5のいずれか1項に記載の組成物。

    The composition according to any one of claims 1 to 5, wherein the monomer has three or more groups having the radical polymerizable double bond.

  7.  前記モノマーが下記一般式(NI)~(NV)のいずれかで表される化合物である請求項1~6のいずれか1項に記載の組成物。

    Figure JPOXMLDOC01-appb-C000003

     一般式(NI)中、L11、L12及びL13はそれぞれ独立に2価又は3価の連結基を表し、R11、R12及びR13はそれぞれ独立に水素原子又はメチル基を表し、n11~n13はそれぞれ独立に1又は2を表す。n11が2を表す場合、2つのR11は同一でも異なっていてもよい。n12が2を表す場合、2つのR12は同一でも異なっていてもよい。n13が2を表す場合、2つのR13は同一でも異なっていてもよい。

    Figure JPOXMLDOC01-appb-C000004

     一般式(NII)中、R21及びR22はそれぞれ独立に水素原子又はメチル基を表す。L21は2~6価の連結基を表す。n21は1~5の整数を表す。n21が2以上の整数を表す場合、複数のR22はそれぞれ同一であっても異なっていてもよい。

    Figure JPOXMLDOC01-appb-C000005

     一般式(NIII)中、L31及びL32はそれぞれ独立に2~4価の連結基を表し、L33は2価の連結基を表し、R31及びR32はそれぞれ独立に水素原子又はメチル基を表し、n31及びn32はそれぞれ独立に1~3の整数を表す。n31が2以上の整数

    を表す場合、複数のR31はそれぞれ同一であっても異なっていてもよい。n32が2以上の整数を表す場合、複数のR32はそれぞれ同一であっても異なっていてもよい。

    Figure JPOXMLDOC01-appb-C000006

     一般式(NIV)中、Y41は2~6価の連結基を表し、R41は水素原子又はメチル基を表し、R42及びR43はそれぞれ独立に水素原子、ヒドロキシル基又は、炭素数1~10のアルキル基を表す。

     n41は2~6の整数を表す。n41が2以上の整数を表す場合、複数のR41はそれぞれ同一であっても異なっていてもよく、複数のR42はそれぞれ同一であっても異なっていてもよく、複数のR43はそれぞれ同一であっても異なっていてもよい。

    Figure JPOXMLDOC01-appb-C000007

     一般式(NV)中、Y51は2~6価の連結基を表し、R51は水素原子又はメチル基を表し、R52、R53及びR54はそれぞれ独立に水素原子、ヒドロキシル基又は、炭素数1~10のアルキル基を表す。

     n51は2~6の整数を表す。n51が2以上の整数を表す場合、複数のR51はそれぞれ同一であっても異なっていてもよく、複数のR52はそれぞれ同一であっても異なっていてもよく、複数のR53はそれぞれ同一であっても異なっていてもよく、複数のR54はそれぞれ同一であっても異なっていてもよい。

    The composition according to any one of claims 1 to 6, wherein the monomer is a compound represented by any one of the following general formulas (NI) to (NV).

    Figure JPOXMLDOC01-appb-C000003

    In General Formula (NI), L 11 , L 12 and L 13 each independently represent a divalent or trivalent linking group, R 11 , R 12 and R 13 each independently represent a hydrogen atom or a methyl group, n11 to n13 each independently represents 1 or 2. When n11 represents 2, two R 11 may be the same or different. If n12 represents 2, two R 12 may be the same or different. If n13 represents 2, two R 13 may be the same or different.

    Figure JPOXMLDOC01-appb-C000004

    In general formula (NII), R 21 and R 22 each independently represent a hydrogen atom or a methyl group. L 21 represents a divalent to hexavalent linking group. n21 represents an integer of 1 to 5. If n21 represents an integer of 2 or more, it may be different even multiple R 22 are each identical.

    Figure JPOXMLDOC01-appb-C000005

    In the general formula (NIII), L 31 and L 32 each independently represent a divalent to tetravalent linking group, L 33 represents a divalent linking group, and R 31 and R 32 each independently represent a hydrogen atom or methyl And n31 and n32 each independently represents an integer of 1 to 3. n31 is an integer of 2 or more

    , A plurality of R 31 may be the same or different. When n32 represents an integer of 2 or more, the plurality of R 32 may be the same or different.

    Figure JPOXMLDOC01-appb-C000006

    In the general formula (NIV), Y 41 represents a divalent to hexavalent linking group, R 41 represents a hydrogen atom or a methyl group, R 42 and R 43 each independently represent a hydrogen atom, a hydroxyl group, or a carbon number of 1 Represents an alkyl group of ˜10.

    n41 represents an integer of 2 to 6. When n41 represents an integer of 2 or more, the plurality of R 41 may be the same or different, the plurality of R 42 may be the same or different, and the plurality of R 43 are each They may be the same or different.

    Figure JPOXMLDOC01-appb-C000007

    In the general formula (NV), Y 51 represents a divalent to hexavalent linking group, R 51 represents a hydrogen atom or a methyl group, R 52 , R 53 and R 54 each independently represent a hydrogen atom, a hydroxyl group or An alkyl group having 1 to 10 carbon atoms is represented.

    n51 represents an integer of 2 to 6. When n51 represents an integer of 2 or more, the plurality of R 51 may be the same or different, the plurality of R 52 may be the same or different, and the plurality of R 53 are each They may be the same or different, and the plurality of R 54 may be the same or different.

  8.  組成物中の前記重合体の含有率が、全固形分に対して、0.001質量%以上20.0質量%以下である請求項1~7のいずれか1項に記載の組成物。

    The composition according to any one of claims 1 to 7, wherein the content of the polymer in the composition is 0.001% by mass or more and 20.0% by mass or less based on the total solid content.

  9.  前記重合体のOH含有量が、前記重合性基を有するポリオルガノシルセスキオキサン(A)に対して0質量%~10.0質量%である請求項1~8のいずれか1項に記載の組成物。

    The OH content of the polymer is 0% by mass to 10.0% by mass with respect to the polyorganosilsesquioxane (A) having the polymerizable group. Composition.

  10.  前記重合性基を有するポリオルガノシルセスキオキサン(A)の前記重合性基がエポキシ基である請求項1~9のいずれか1項に記載の組成物。

    The composition according to any one of claims 1 to 9, wherein the polymerizable group of the polyorganosilsesquioxane (A) having the polymerizable group is an epoxy group.

  11.  基材及びハードコート層を含む、ハードコートフィルムであって、

     前記ハードコート層が、請求項1~10のいずれか1項に記載の組成物の硬化物を含む、ハードコートフィルム。

    A hard coat film comprising a substrate and a hard coat layer,

    A hard coat film, wherein the hard coat layer comprises a cured product of the composition according to any one of claims 1 to 10.

  12.  前記ハードコートフィルムのハードコート層の基材とは反対側に少なくとも1層の機能層を有する請求項11に記載のハードコートフィルム。

    The hard coat film according to claim 11, wherein the hard coat film has at least one functional layer on the side opposite to the base of the hard coat layer of the hard coat film.

  13.  前記機能層として、混合層を有し、

     前記混合層が、エポキシ基を有する化合物(b1)の硬化物と、1分子中に2個以上の(メタ)アクリロイル基を有する化合物(b2)の硬化物とを含む、請求項12に記載のハードコートフィルム。

    As the functional layer, it has a mixed layer,

    The said mixed layer contains the hardened | cured material of the compound (b1) which has an epoxy group, and the hardened | cured material of the compound (b2) which has a 2 or more (meth) acryloyl group in 1 molecule. Hard coat film.

  14.  前記機能層として、前記混合層と耐擦傷層を有し、

     前記基材、前記ハードコート層、前記混合層、及び前記耐擦傷層をこの順に有し、

     前記耐擦傷層は、1分子中に2個以上の(メタ)アクリロイル基を有する化合物(c1)の硬化物を含む、請求項13に記載のハードコートフィルム。

    As the functional layer, the mixed layer and the scratch-resistant layer,

    The substrate, the hard coat layer, the mixed layer, and the scratch-resistant layer in this order,

    The hard-coated film according to claim 13, wherein the scratch-resistant layer contains a cured product of the compound (c1) having two or more (meth) acryloyl groups in one molecule.

  15.  請求項11~14のいずれか1項に記載のハードコートフィルムを備えた物品。

    An article provided with the hard coat film according to any one of claims 11 to 14.

  16.  請求項11~14のいずれか1項に記載のハードコートフィルムを表面保護フィルムとして備えた画像表示装置。

    An image display device comprising the hard coat film according to any one of claims 11 to 14 as a surface protective film.
PCT/JP2019/016175 2018-06-06 2019-04-15 Composition, hard coat film, article provided with hard coat film, and image display device WO2019235072A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020523553A JP6999808B2 (en) 2018-06-06 2019-04-15 Compositions, hardcourt films, articles with hardcourt films, and image display devices.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018109085 2018-06-06
JP2018-109085 2018-06-06
JP2018221739 2018-11-27
JP2018-221739 2018-11-27

Publications (1)

Publication Number Publication Date
WO2019235072A1 true WO2019235072A1 (en) 2019-12-12

Family

ID=68770002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/016175 WO2019235072A1 (en) 2018-06-06 2019-04-15 Composition, hard coat film, article provided with hard coat film, and image display device

Country Status (2)

Country Link
JP (1) JP6999808B2 (en)
WO (1) WO2019235072A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021193478A1 (en) * 2020-03-25 2021-09-30 富士フイルム株式会社 Composition for hard coating layer formation, hard coating film, article with hard coating film, image display device, and method for manufacturing hard coating film
JPWO2022004746A1 (en) * 2020-06-29 2022-01-06
CN115298275A (en) * 2020-03-27 2022-11-04 富士胶片株式会社 Composition for forming hard coat layer, hard coat film, method for producing hard coat film, and article provided with hard coat film

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04178411A (en) * 1990-11-09 1992-06-25 Showa Denko Kk Ultraviolet curing adhesive composition
JP2008038117A (en) * 2006-08-10 2008-02-21 Denki Kagaku Kogyo Kk Resin composition and photocurable casting method
JP2011510133A (en) * 2008-01-15 2011-03-31 ダウ・コーニング・コーポレイション Silsesquioxane resin
JP2014198818A (en) * 2012-11-13 2014-10-23 ダイキン工業株式会社 Surface treatment composition
WO2015129818A1 (en) * 2014-02-28 2015-09-03 日産化学工業株式会社 Polymerizable composition containing reactive silsesquioxane compound
WO2019003860A1 (en) * 2017-06-30 2019-01-03 富士フイルム株式会社 Composition, optical film, polarizing plate, display device, and method for producing composition

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05209031A (en) * 1992-01-29 1993-08-20 Showa Denko Kk Resin composition
JPH10316932A (en) * 1997-05-16 1998-12-02 Showa Denko Kk Coating composition
JP2000334881A (en) * 1999-05-28 2000-12-05 Konica Corp Cage-shaped silsesquioxane-containing film
JP4178411B2 (en) 2004-10-01 2008-11-12 住友電気工業株式会社 Branch tool and branch method for optical fiber ribbon
US7917561B2 (en) 2005-09-16 2011-03-29 Coding Technologies Ab Partially complex modulated filter bank
JP5622277B2 (en) * 2010-08-25 2014-11-12 関西ペイント株式会社 MULTILAYER COATING FORMATION METHOD AND COATED ARTICLE
JP6057320B2 (en) * 2011-07-13 2017-01-11 関西ペイント株式会社 Laminate and method for producing laminate
JP6317978B2 (en) * 2014-03-31 2018-04-25 株式会社ダイセル Curable composition and molded body

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04178411A (en) * 1990-11-09 1992-06-25 Showa Denko Kk Ultraviolet curing adhesive composition
JP2008038117A (en) * 2006-08-10 2008-02-21 Denki Kagaku Kogyo Kk Resin composition and photocurable casting method
JP2011510133A (en) * 2008-01-15 2011-03-31 ダウ・コーニング・コーポレイション Silsesquioxane resin
JP2014198818A (en) * 2012-11-13 2014-10-23 ダイキン工業株式会社 Surface treatment composition
WO2015129818A1 (en) * 2014-02-28 2015-09-03 日産化学工業株式会社 Polymerizable composition containing reactive silsesquioxane compound
WO2019003860A1 (en) * 2017-06-30 2019-01-03 富士フイルム株式会社 Composition, optical film, polarizing plate, display device, and method for producing composition

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021193478A1 (en) * 2020-03-25 2021-09-30 富士フイルム株式会社 Composition for hard coating layer formation, hard coating film, article with hard coating film, image display device, and method for manufacturing hard coating film
JPWO2021193478A1 (en) * 2020-03-25 2021-09-30
CN115136033A (en) * 2020-03-25 2022-09-30 富士胶片株式会社 Composition for forming hard coat layer, hard coat film, article having hard coat film, image display device, and method for producing hard coat film
JP7296008B2 (en) 2020-03-25 2023-06-21 富士フイルム株式会社 Composition for forming hard coat layer, hard coat film, article having hard coat film, image display device, and method for producing hard coat film
CN115136033B (en) * 2020-03-25 2024-03-15 富士胶片株式会社 Composition for forming hard coat layer, hard coat film, article having hard coat film, image display device, and method for producing hard coat film
CN115298275A (en) * 2020-03-27 2022-11-04 富士胶片株式会社 Composition for forming hard coat layer, hard coat film, method for producing hard coat film, and article provided with hard coat film
CN115298275B (en) * 2020-03-27 2024-03-15 富士胶片株式会社 Composition for forming hard coating, hard coating film, method for producing hard coating film, and article provided with hard coating film
JPWO2022004746A1 (en) * 2020-06-29 2022-01-06
WO2022004746A1 (en) * 2020-06-29 2022-01-06 富士フイルム株式会社 Laminate, production method for laminate, laminate-containing surface protective film for image display device, and article and image display device provided with laminate

Also Published As

Publication number Publication date
JP6999808B2 (en) 2022-02-10
JPWO2019235072A1 (en) 2021-04-08

Similar Documents

Publication Publication Date Title
JP6979517B2 (en) Hardcourt film, articles with hardcourt film, and image display devices
JP7263356B2 (en) HARD COAT FILM, ARTICLE INCLUDED WITH HARD COAT FILM, AND IMAGE DISPLAY DEVICE
JP7064650B2 (en) Laminates, articles with laminates, and image display devices
CN111918769B (en) Hard coat film, article having hard coat film, image display device, and method for producing hard coat film
JP6999808B2 (en) Compositions, hardcourt films, articles with hardcourt films, and image display devices.
CN112004838B (en) Modifier, composition, hard coat film, article provided with hard coat film, and image display device
JP2017228238A (en) Touch panel, multilayer film, and method of manufacturing multilayer film
CN113167929B (en) Hard coat film, article provided with hard coat film, and image display device
CN113678029B (en) Hard coating film, method for producing same, article provided with hard coating film, and image display device
JP7280963B2 (en) Composition for forming hard coat layer, hard coat film, method for producing hard coat film, and article containing hard coat film
CN113853302B (en) Hard coat film, article provided with hard coat film, and image display device
CN113840854A (en) Resin composition, hard coating film and polyorganosilsesquioxane
WO2019188441A1 (en) Composition for forming hard coat layer, hard coat film, article having hard coat film, image display device, and method for manufacturing hard coat film
US20230058907A1 (en) Antiglare film and manufacturing method of antiglare film
JP7358624B2 (en) Composition for forming hard coat layer, hard coat film, method for producing hard coat film, and article provided with hard coat film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19815928

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020523553

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19815928

Country of ref document: EP

Kind code of ref document: A1