WO2019234913A1 - 支援装置、学習装置、及びプラント運転条件設定支援システム - Google Patents

支援装置、学習装置、及びプラント運転条件設定支援システム Download PDF

Info

Publication number
WO2019234913A1
WO2019234913A1 PCT/JP2018/022018 JP2018022018W WO2019234913A1 WO 2019234913 A1 WO2019234913 A1 WO 2019234913A1 JP 2018022018 W JP2018022018 W JP 2018022018W WO 2019234913 A1 WO2019234913 A1 WO 2019234913A1
Authority
WO
WIPO (PCT)
Prior art keywords
state
unit
value
control target
learning
Prior art date
Application number
PCT/JP2018/022018
Other languages
English (en)
French (fr)
Inventor
古市和也
大木英介
井川玄
Original Assignee
千代田化工建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 千代田化工建設株式会社 filed Critical 千代田化工建設株式会社
Priority to PCT/JP2018/022018 priority Critical patent/WO2019234913A1/ja
Priority to JP2018558257A priority patent/JP6529690B1/ja
Priority to AU2018426458A priority patent/AU2018426458B2/en
Priority to TW108110188A priority patent/TWI710873B/zh
Publication of WO2019234913A1 publication Critical patent/WO2019234913A1/ja
Priority to US17/113,400 priority patent/US20210088986A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0265Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/048Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators using a predictor
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/27Design optimisation, verification or simulation using machine learning, e.g. artificial intelligence, neural networks, support vector machines [SVM] or training a model
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning

Definitions

  • the present invention relates to a support apparatus for supporting setting of plant operating conditions, a plant operating condition setting support system, and a learning apparatus usable in a plant operating condition setting support system.
  • a series of processes are executed by a large number of devices such as reactors and heating furnaces, and a large amount of operation is required to control each of the large numbers of devices. Operating conditions are set.
  • a plant where a multi-stage process is executed many manipulated variables can interact in a complex manner, so it is not easy to predict the effects of changes in manipulated variables. The plant is in operation.
  • Patent Documents 1 and 2 the conventional risk evaluation technology is mainly used in the stage of designing a plant, the stage of reviewing the operation conditions of the plant, and the like.
  • the recent decrease in the number of skilled operators has progressed, and the present inventors need technology that supports the safe and stable operation of the plant by applying the results of risk assessment even during operation of the plant. It was recognized as a problem and the present invention was conceived.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a technology that supports setting of operating conditions capable of realizing a suitable operation of a plant.
  • a support device includes a state value acquisition unit that acquires a plurality of state values indicating states of a plurality of control target devices during operation of the plurality of control target devices; Based on each of a plurality of state values acquired by the state value acquisition unit, a prediction unit that estimates a predicted value of each state value at a predetermined future time point, and a predetermined time point acquired by the state value acquisition unit The index calculated based on the difference between the respective state values at and the predicted values estimated by the prediction unit at a predetermined time point or a time point after the predetermined time or the change rate of the difference is predetermined. And a notification unit for notifying that when the above condition is met.
  • the prediction unit may estimate the predicted value by an estimation algorithm acquired by machine learning based on each past actual value of the plurality of state values. According to this aspect, it is possible to improve the accuracy of estimating the predicted value of the state value at a predetermined time in the future, and therefore it is possible to more accurately detect a behavior different from the past driving performance.
  • the index calculation algorithm may be learned based on the history of the difference value or the actual value of the change rate of the difference calculated for each state value and the evaluation of the driving behavior of the specific control target device. According to this aspect, the influence on the operation behavior of the specific control target device can be more accurately indexed and presented to the operator, so that the setting of suitable operation conditions of the plant similar to the skilled operator can be more accurately set in real time. Can help.
  • a learning unit that machine-learns the calculation algorithm may be further provided based on the history of the difference value calculated for each state value or the history value of the change rate of the difference and the evaluation of the driving behavior of the specific control target device. .
  • the influence on the operation behavior of the specific control target device can be more accurately indexed and presented to the operator, so that the setting of suitable operation conditions of the plant similar to the skilled operator can be more accurately set in real time. Can help.
  • the index may include an importance level indicating the magnitude of the influence on the specific control target device and an urgency level indicating the urgency of the influence on the specific control target device.
  • the influence on the operation behavior of a specific control target device can be divided into importance and urgency and can be indexed and presented to the operator. Can be supported more accurately.
  • a display unit for displaying the importance level and the urgency level on the display device may be further provided.
  • the display unit may display a matrix in which importance and urgency are plotted on the vertical axis and the horizontal axis. According to this aspect, the importance and urgency of the influence on the operation behavior of the specific control target device can be presented to the operator in a manner that is easy to visually understand. It is possible to more accurately support setting of operating conditions.
  • the display unit may display the difference calculated for each of the plurality of state values or the change rate of the difference on the display device. According to this aspect, since it is possible to present to the operator a state value that can affect the operation behavior of a specific control target device, it is possible to more accurately support the setting of suitable operation conditions in the same plant as a skilled operator in real time. can do.
  • This device includes an evaluation acquisition unit that acquires a history of predicted values and actual values of a plurality of state values indicating states of a plurality of control target devices, and an evaluation of driving behavior of a specific control target device, and a plurality of control targets.
  • a learning unit that performs machine learning on the calculation algorithm based on the history and the evaluation.
  • the learning device includes an evaluation acquisition unit that acquires a history of predicted values and actual values of a plurality of state values indicating states of a plurality of control target devices, and an evaluation of driving behavior of a specific control target device, and a history and evaluation A learning unit that learns an index calculation algorithm based on the learning unit.
  • FIG. 1 shows an overall configuration of a plant operation condition setting support system according to an embodiment.
  • the plant operating condition setting support system 1 includes a plant 3 for producing chemical products, industrial products, and the like, and a learning device 4 for learning an algorithm used to support setting of operating conditions in the plant 3.
  • the plant 3 and the learning device 4 are connected by an arbitrary communication network 2 such as the Internet or an in-house connection system, and are operated in an arbitrary operation mode such as on-premises or edge computing.
  • the plant 3 is learned by the learning device 4, the control target device 10 such as a reactor or a heating furnace installed in the plant 3, the control device 20 for setting the operation amount for controlling the operation condition of the control target device 10, and the learning device 4. And an operation condition setting support device 30 that supports the setting of the operation conditions of the plant 3 using the generated algorithm.
  • the control target device 10 such as a reactor or a heating furnace installed in the plant 3
  • the control device 20 for setting the operation amount for controlling the operation condition of the control target device 10
  • the learning device 4 for setting the operation amount for controlling the operation condition of the control target device 10
  • an operation condition setting support device 30 that supports the setting of the operation conditions of the plant 3 using the generated algorithm.
  • the plant operation condition setting support system 1 incorporates the experience of such a skilled operator and appropriately supports the setting of operation conditions for operating the plant 3 safely and stably.
  • an index indicating the importance and urgency of the abnormality is calculated and presented to the operator in real time.
  • a state quantity to be monitored among a plurality of control target devices 10 operated in the plant 3, it has been stopped or has failed due to some factor.
  • a fault tree analysis in which the identified important factor is an upper event is performed, and the cause, the occurrence route, and the occurrence probability of the lower event that causes the upper event are grasped.
  • An index calculation algorithm is created in which the difference between the state quantity of the past and the change rate of the difference is weighted.
  • the index calculation algorithm calculates an index indicating the degree of importance and urgency of the influence on the important device from the difference between the past behavior and the current behavior of each state quantity or the change rate of the difference.
  • the estimated value of each state quantity in is estimated, and the difference between the predicted value of each state quantity and the current value at a predetermined time point or a time point after the predetermined time point is calculated.
  • the value of the state quantity changes due to the change of the type of the control target device 10 constituting the plant 3, the type of process, the rate of change of the state quantity, and the value of the controlled quantity It may be determined depending on the speed to be performed, but may be after several seconds to several minutes, for example.
  • an estimation algorithm acquired by machine learning based on each past actual value of a plurality of state values is used.
  • the predicted value may be calculated using a mathematical formula, a database, or the like set based on the past actual value.
  • this embodiment uses artificial intelligence that systematically learns the personal experience of a skilled operator through machine learning to quickly and accurately detect behaviors that differ from past driving performance. Indices indicating the importance and urgency of the influence of the behavior on the important device can be presented to the operator in real time. Thereby, it is possible to provide accurate support so that conditions for operating the plant 3 safely and stably can be appropriately set regardless of the skill and experience of the operator.
  • FIG. 2 shows the configuration of the learning device according to the embodiment.
  • the learning device 4 includes a performance value acquisition unit 41, an estimation algorithm learning unit 50, an index evaluation acquisition unit 44, an index calculation algorithm learning unit 51, and a provision unit 49.
  • these configurations are realized by a CPU of a computer, a memory, a program loaded in the memory, and the like, but here, functional blocks realized by their cooperation are illustrated. Accordingly, those skilled in the art will understand that these functional blocks can be realized in various forms by hardware only, software only, or a combination thereof.
  • the estimation algorithm learning unit 50 includes a plurality of estimation algorithms 43a, 43b,... For calculating respective predicted values of a plurality of state quantities that can cause a stop or failure of an important device, and a plurality of estimation algorithms 43a, 43b,... (Hereinafter collectively referred to as “estimation algorithm 43”), a plurality of estimation algorithm learning units 42a, 42b,... (Hereinafter collectively referred to as “estimation algorithm learning unit 42”). Including.
  • the estimation algorithm 43 is used to estimate a predicted value of each state value at a predetermined future time point based on each of a plurality of state values indicating the state of the plant 3.
  • the actual value acquisition unit 41 acquires the past actual values of the plurality of state values and the set values of the plurality of control amounts from the plant 3.
  • the estimation algorithm learning unit 42 learns the estimation algorithm 43 by machine learning based on the past actual values of the plurality of state values acquired by the actual value acquisition unit 41 and the set values of the plurality of control amounts.
  • the estimation algorithm learning unit 42 inputs a plurality of state values at a certain point of time and actual values of a plurality of manipulated variable setting values to the estimation algorithm 43, the estimation algorithm learning unit 42
  • the estimation algorithm 43 is learned so that a value close to the actual value is calculated.
  • the estimation algorithm learning unit 42 may learn the estimation algorithm 43 by supervised learning using the past actual value acquired by the actual value acquisition unit 41 as teacher data, or by any other known machine learning technique.
  • the estimation algorithm 43 may be learned.
  • the accuracy of the estimation algorithm 43 can be improved by learning the estimation algorithm 43 using a large number of actual values, it is possible to calculate the predicted value of the state value indicating the state of the plant 3 more accurately.
  • An estimation algorithm 43 can be generated. Further, since it is not necessary to develop an advanced simulator for reproducing a complicated process, the time and load required to generate the estimation algorithm 43 can be greatly reduced. In addition, since elements that cannot be reproduced by the simulator can be taken into account, the predicted output value can be calculated more accurately.
  • the index calculation algorithm is based on the difference between the predicted value of each state value at a predetermined time point or a time point after the predetermined time point and the actual state value at the predetermined time point, or the change rate of the difference. It is used to calculate an index representing the magnitude and urgency of the influence on the driving behavior of the vehicle.
  • the index includes an importance indicating the magnitude of the influence on the important device, and an urgency indicating the urgency of the influence on the important device.
  • the importance mainly reflects the difference between the predicted value of each state value and the actual state value and the magnitude of the rate of change of the difference.
  • the urgency level mainly reflects each state value. The magnitude of the rate of change of the difference between the current predicted value and the current actual state value, and the difference between the future predicted value of each state value and the current actual state value or the rate of change of the difference are reflected.
  • the index evaluation acquisition unit 44 acquires the predicted value calculated for each state value, the history of the actual state value, and the evaluation of the operation behavior of the important device.
  • the evaluation of the driving behavior of the important device may be calculated from a history of state values or may be input by an operator.
  • the index evaluation acquisition unit 44 acquires a prediction value calculated for each state value, a history of actual value of the actual state value, and an evaluation for the index calculated by the importance calculation algorithm 46 and the urgency calculation algorithm 48. May be.
  • the evaluation with respect to the index may be a result of evaluation by the operator.
  • the index calculation algorithm learning unit 51 includes an importance calculation algorithm 46 for calculating the importance indicating the magnitude of the influence on the important device, an importance calculation algorithm learning unit 45 for learning the importance calculation algorithm 46, and an important device.
  • An urgency calculation algorithm 48 for calculating the urgency indicating the urgency of the influence to be given, and an urgency calculation algorithm learning unit 47 for learning the urgency calculation algorithm 48 are included.
  • the importance calculation algorithm learning unit 45 and the urgency calculation algorithm learning unit 47 are based on the prediction value and the history value of the state value acquired by the index evaluation acquisition unit 44 and the evaluation of the driving behavior of the important device. Each of the degree calculation algorithm 46 and the urgency degree calculation algorithm 48 is learned.
  • the importance level calculation algorithm learning unit 45 and the urgency level calculation algorithm learning unit 47 are based on the prediction value and actual value history acquired by the index evaluation acquisition unit 44 and the evaluation of the driving behavior of the important device at a certain time or thereafter.
  • the index calculated by substituting the difference between the predicted value and the state value at the point of time or the rate of change of the difference into the importance calculation algorithm 46 and the urgency calculation algorithm 48 affects the operation behavior of the important device.
  • the importance calculation algorithm learning unit 45 and the urgency calculation algorithm learning unit 47 calculate the importance so that an index with a worse value is calculated when the subsequent driving behavior of the important device is worse than a predetermined evaluation.
  • the algorithm 46 and the urgency calculation algorithm 48 are learned, and the subsequent operation behavior of the important device is better than a predetermined evaluation, the importance calculation algorithm 46 and the urgency level are calculated so that a better index is calculated.
  • the calculation algorithm 48 is learned.
  • the importance calculation algorithm learning unit 45 and the urgency calculation algorithm learning unit 47 include an importance calculation algorithm by supervised learning using the evaluation of the driving behavior of the important device acquired by the index evaluation acquisition unit 44 as teacher data. 46 and the urgency calculation algorithm 48 may be learned, or the importance calculation algorithm 46 and the urgency calculation algorithm 48 may be learned by any other known machine learning technique.
  • the index evaluation acquisition unit 44 may acquire the index value calculated or evaluated by the operator himself / herself as teacher data without using the importance calculation algorithm 46 and the urgency calculation algorithm 48.
  • the importance calculation algorithm learning unit 45 and the urgency calculation algorithm learning unit 47 calculate the difference between the predicted value and the state value at a certain time point or a subsequent time point, or the change rate of the difference, and the importance calculation algorithm 46 and the emergency value.
  • the importance calculation algorithm 46 and the urgency calculation algorithm 48 are learned so that the value of the index acquired by the index evaluation acquisition unit 44 when being input to the degree calculation algorithm 48 is calculated.
  • the learning device 4 is shown as a single device, but the learning device 4 is realized by a plurality of servers using cloud computing technology, distributed processing technology, or the like. May be.
  • the estimation algorithm 43, the importance calculation algorithm 46 , and the urgency calculation algorithm 48 can be greatly reduced.
  • FIG. 3 shows the configuration of the operating condition setting support device and the control device according to the embodiment.
  • the control device 20 includes a control unit 21, an operation panel 22, and a result value storage unit 29.
  • the operation panel 22 displays various state values indicating the operation state of the plant 3, various operation amount set values set by the control device 20, output values indicating the operation results of the plant 3, and the like on the display device. At the same time, input of set values of various manipulated variables is accepted from the operator.
  • the control unit 21 includes an operation amount setting unit 23, a state value acquisition unit 24, a state value transmission unit 25, an actual value transmission unit 26, an index evaluation acquisition unit 27, and an index evaluation transmission unit 28.
  • These functional blocks can also be realized in various forms by hardware only, software only, or a combination thereof.
  • the operation amount setting unit 23 sets various operation amount setting values received from the operator through the operation panel 22, controls the control target device 10, and displays it on the display device of the operation panel 22.
  • the state value acquisition unit 24 acquires various state values indicating the operation state and operation result of the plant 3 from various sensors and measuring devices provided in the control target device 10 and the like, and displays them on the display device of the operation panel 22. While being displayed, it is recorded in the result value storage unit 29.
  • the state value transmission unit 25 transmits the state value acquired by the state value acquisition unit 24 to the driving condition setting support device 30.
  • the actual value transmission unit 26 transmits the operation amount value set by the operation amount setting unit 23 and the state value stored in the actual value storage unit 29 to the learning device 4.
  • the index evaluation acquisition unit 27 acquires an evaluation for the index displayed on the operation panel 22 from the operator.
  • the index evaluation acquisition unit 27 may acquire an evaluation indicating that the index displayed on the operation panel 22 is too large or too small from the operator, or obtain a correction value of the index displayed on the operation panel 22 from the operator. You may get it.
  • the index evaluation transmission unit 28 transmits the evaluation for the index acquired by the index evaluation acquisition unit 27 from the operator to the learning device 4.
  • the evaluation for the index is used for learning the importance calculation algorithm 46 and the urgency calculation algorithm 48 in the learning device 4 as described above.
  • the driving condition setting support device 30 includes a control unit 31, an estimation algorithm 43, an importance calculation algorithm 46, and an urgency calculation algorithm 48.
  • the control unit 31 includes a state value acquisition unit 32, prediction units 33a, 33b,... (Hereinafter collectively referred to as “prediction unit 33”), an index calculation unit 34, a notification unit 37, a display unit 38, and a learning unit 39. Is provided. These functional blocks can also be realized in various forms by hardware only, software only, or a combination thereof.
  • the estimation algorithm 43, the importance calculation algorithm 46, and the urgency calculation algorithm 48 are acquired from the learning device 4 and stored in the storage device.
  • the state value acquisition unit 32 acquires a plurality of state values from the state value transmission unit 25 of the control device 20.
  • the prediction unit 33 uses the estimation algorithm 43 to calculate a predicted value of each state quantity at a predetermined future time point from the plurality of state values acquired by the state value acquisition unit 32, and stores it in the storage device.
  • the index calculator 34 includes an importance calculator 35 and an emergency calculator 36.
  • the importance level calculation unit 35 and the urgency level calculation unit 36 are the difference or difference between the state value acquired by the state value acquisition unit 32 and the predicted value of the state value calculated by the prediction unit 33 and stored in the storage device.
  • the change rate is calculated, and using the importance calculation algorithm 46 and the urgency calculation algorithm 48, an index indicating the importance and the urgency is calculated.
  • the notification unit 37 When the index calculated by the index calculation unit 34 meets a predetermined condition, the notification unit 37 notifies that fact.
  • the notification unit 37 may display an indicator calculated constantly during operation of the plant 3 on the operation panel 22 to notify the operator, or when the indicator is a value worse than a predetermined value, that fact. May be displayed on the operation panel 22 to notify the operator. Thereby, it is possible to notify the operator that a state that may affect the important device has occurred.
  • the display unit 38 displays on the operation panel 22 a matrix in which the importance level and the urgency level calculated by the index calculation unit 34 are plotted on the vertical axis and the horizontal axis. Thereby, the importance and urgency of the influence of the current state on the important device can be presented to the operator in an easily understandable manner.
  • the display unit 38 displays the difference between the predicted value and the state value calculated for each of the plurality of state values or the change rate of the difference on the operation panel 22.
  • which state value indicates an abnormality and the degree of abnormality of the state value can be presented to the operator.
  • Information to be referred to in order to change the set value of the operation amount can be appropriately provided.
  • the learning unit 39 learns the estimation algorithm 43, the importance calculation algorithm 46, or the urgency calculation algorithm 48.
  • the learning unit 39 uses the estimation algorithm 43, the importance calculation algorithm learning unit 45, or the emergency algorithm in the same manner as the estimation algorithm learning unit 42, the importance calculation algorithm learning unit 45, or the urgency calculation algorithm learning unit 47 of the learning device 4.
  • the degree calculation algorithm learning unit 47 may be relearned.
  • the learning device 4 re-learns the estimation algorithm 43, the importance calculation algorithm 46, or the urgency calculation algorithm 48, the learning unit 39 may not be provided.
  • FIG. 4 shows an example of a display screen displayed on the display device of the operation panel.
  • the display screen displays a process flow diagram of the plant 3, a plurality of state values, predicted values after a predetermined time of those state values, a matrix in which importance and urgency are plotted, and state value transitions. ing.
  • the operator determines the set value of the operation amount with reference to the presented information and inputs it to the operation panel 22.
  • the operation amount setting unit 23 controls the control target device 10 based on the input set value.
  • the index calculation unit 34 calculates the index at a predetermined interval, and the display unit 38 plots the importance and urgency of the index calculated at the predetermined interval in a matrix. That is, the importance and urgency matrix is updated in real time and indicates the state of the plant 3 at that time.
  • Patent Documents 1 and 2 also disclose a matrix display. In either case, one axis has importance or influence, and the other axis has an occurrence frequency, and is displayed on the operation panel 22 of the plant 3. It is not updated in real time. Since the matrix display of the present embodiment and the transition of the state value and the predicted value are always displayed on the operation panel 22, even if an abnormality occurs, the operator can change the matrix display and the state value by the change. And while confirming the change of the predicted value in real time, the operation value of the plant 3 can be adjusted by changing the set value of the manipulated variable.
  • the technology of the present invention can be applied to both a continuous process plant and a batch process plant.
  • 1 plant operation condition setting support system 3 plant, 4 learning device, 10 control target device, 20 control device, 21 control unit, 22 operation panel, 23 operation amount setting unit, 24 status value acquisition unit, 25 status value transmission unit, 26 actual value transmission unit, 27 index evaluation acquisition unit, 28 index evaluation transmission unit, 29 actual value storage unit, 30 operating condition setting support device, 31 control unit, 32 state value acquisition unit, 33 prediction unit, 34 index calculation unit, 37 notification section, 38 display section, 39 learning section, 41 actual value acquisition section, 42 estimation algorithm learning section, 43 estimation algorithm, 44 index evaluation acquisition section, 45 importance calculation algorithm learning section, 46 importance calculation algorithm, 47 emergency Degree calculation algorithm learning unit, 48 Urgency calculation algorithm, 49 Providing unit, 50 Algorithm learning unit, 51 index calculation algorithm learning unit.
  • the present invention can be used for a support device for supporting the setting of operation conditions of a plant.

Landscapes

  • Engineering & Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Software Systems (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Medical Informatics (AREA)
  • Automation & Control Theory (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Computing Systems (AREA)
  • Computer Hardware Design (AREA)
  • Geometry (AREA)
  • Data Mining & Analysis (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

プラント3の運転条件の設定を支援するための運転条件設定支援装置30は、複数の制御対象装置10の運転中に、複数の制御対象装置10の状態を示す複数の状態値を取得する状態値取得部と、状態値取得部により取得された複数の状態値のそれぞれに基づいて、将来の所定の時点におけるそれぞれの状態値の予測値を推定する予測部と、状態値取得部により取得された、所定の時点におけるそれぞれの状態値と、予測部により推定された、所定の時点又は所定の時点よりも後の時点におけるそれぞれの予測値との間の差又は差の変化率に基づいて算出される指標が所定の条件に合致した場合に、その旨を報知する報知部とを備える。

Description

支援装置、学習装置、及びプラント運転条件設定支援システム
 本発明は、プラントの運転条件の設定を支援するための支援装置、プラント運転条件設定支援システム、及びプラント運転条件設定支援システムにおいて利用可能な学習装置に関する。
 化学製品や工業製品などを生産するためのプラントにおいては、反応器や加熱炉などの多数の装置により一連のプロセスが実行されており、多数の装置のそれぞれを制御するための多数の操作量により運転条件が設定される。多段階のプロセスが実行されるプラントにおいては、多数の操作量が複雑に相互作用しうるため、操作量の変更による影響を予測することは容易ではなく、熟練したオペレータにより操作量が設定されてプラントが運転されている。
 このようなプラントを安全かつ安定的に運転するためには、プラントの危険性を正しく評価することが不可欠であり、HAZOP(Hazard and Operability Studies)などの手法を用いたリスク評価技術が提案されている(例えば、特許文献1及び2参照)。
特開2012-98820号公報 国際公開第2015/152317号
 特許文献1及び2にも開示されているように、従来のリスク評価技術は、主に、プラントを設計する段階や、プラントの運転条件を見直す段階などに利用されていた。また、昨今の熟練したオペレータの高齢化による減少が進み、本発明者らは、プラントの運転中にも、リスク評価の結果を適用して安全かつ安定的なプラントの運転を支援する技術が必要であることを課題として認識し、本発明に想到した。
 本発明は、こうした状況を鑑みてなされたものであり、その目的は、プラントの好適な運転を実現することが可能な運転条件の設定を支援する技術を提供することにある。
 上記課題を解決するために、本発明のある態様の支援装置は、複数の制御対象装置の運転中に、複数の制御対象装置の状態を示す複数の状態値を取得する状態値取得部と、状態値取得部により取得された複数の状態値のそれぞれに基づいて、将来の所定の時点におけるそれぞれの状態値の予測値を推定する予測部と、状態値取得部により取得された、所定の時点におけるそれぞれの状態値と、予測部により推定された、所定の時点又は所定の時点よりも後の時点におけるそれぞれの予測値との間の差又は差の変化率に基づいて算出される指標が所定の条件に合致した場合に、その旨を報知する報知部と、を備える。
 この態様によると、過去の運転実績から推定される所定の時点における状態値の予測値とは異なる状態値が観測された場合に、その旨をオペレータに報知して適切な対処を促すことができるので、リアルタイムで熟練オペレータと同様なプラントの好適な運転条件の設定を的確に支援することができる。
 予測部は、複数の状態値のそれぞれの過去の実績値に基づく機械学習により獲得された推定アルゴリズムにより予測値を推定してもよい。この態様によると、将来の所定の時点における状態値の予測値を推定する精度を向上させることができるので、過去の運転実績とは異なる挙動をより精確に検出することができる。
 それぞれの状態値について算出された差又は差の変化率が特定の制御対象装置の運転挙動に与える影響の大きさに基づいてそれぞれの差又は差の変化率に重みが付された所定の指標算出アルゴリズムにより指標を算出する算出部を更に備えてもよい。この態様によると、特定の制御対象装置の運転挙動に与える影響を指標化してオペレータに提示することができるので、リアルタイムで熟練オペレータと同様なプラントの好適な運転条件の設定を的確に支援することができる。
 指標算出アルゴリズムは、それぞれの状態値について算出された差又は差の変化率の実績値の履歴と、特定の制御対象装置の運転挙動の評価とに基づいて学習されたものであってもよい。この態様によると、特定の制御対象装置の運転挙動に与える影響をより精確に指標化してオペレータに提示することができるので、リアルタイムで熟練オペレータと同様なプラントの好適な運転条件の設定をより的確に支援することができる。
 それぞれの状態値について算出された差又は差の変化率の実績値の履歴と、特定の制御対象装置の運転挙動の評価とに基づいて、算出アルゴリズムを機械学習する学習部を更に備えてもよい。この態様によると、特定の制御対象装置の運転挙動に与える影響をより精確に指標化してオペレータに提示することができるので、リアルタイムで熟練オペレータと同様なプラントの好適な運転条件の設定をより的確に支援することができる。
 指標は、特定の制御対象装置に与える影響の大きさを示す重要度と、特定の制御対象装置に与える影響の緊急性を示す緊急度とを含んでもよい。この態様によると、特定の制御対象装置の運転挙動に与える影響を重要度と緊急度に分けて指標化してオペレータに提示することができるので、リアルタイムで熟練オペレータと同様なプラントの好適な運転条件の設定をより的確に支援することができる。
 重要度と緊急度を表示装置に表示する表示部を更に備えてもよい。表示部は、重要度と緊急度を縦軸及び横軸に取ってプロットしたマトリクスを表示してもよい。この態様によると、特定の制御対象装置の運転挙動に対する影響の重要度と緊急度を視覚的に理解しやすい態様でオペレータに提示することができるので、リアルタイムで熟練オペレータと同様なプラントの好適な運転条件の設定をより的確に支援することができる。
 表示部は、複数の状態値のそれぞれについて算出された差又は差の変化率をそれぞれ表示装置に表示してもよい。この態様によると、特定の制御対象装置の運転挙動に影響を与えうる状態値をオペレータに提示することができるので、リアルタイムで熟練オペレータと同様なプラントの好適な運転条件の設定をより的確に支援することができる。
 本発明の別の態様は、学習装置である。この装置は、複数の制御対象装置の状態を示す複数の状態値の予測値及び実績値の履歴と、特定の制御対象装置の運転挙動の評価とを取得する評価取得部と、複数の制御対象装置の運転中に、複数の状態値の予測値と実績値との間の差又は差の変化率が特定の制御対象装置の運転挙動に与える影響の大きさを表す指標を算出するための指標算出アルゴリズムを、履歴及び評価に基づいて機械学習する学習部と、を備える。
 この態様によると、過去の運転実績から推定される所定の時点における状態値の予測値とは異なる状態値が観測された場合に、その旨をオペレータに報知して適切な対処を促すことができるので、リアルタイムで熟練オペレータと同様なプラントの好適な運転条件の設定を的確に支援することができる。
 本発明のさらに別の態様は、プラント運転条件設定支援システムである。このプラント運転条件設定支援システムは、プラントの運転条件の設定を支援する支援装置と、支援装置において使用される指標算出アルゴリズムを学習する学習装置と、を備える。支援装置は、プラントに含まれる複数の制御対象装置の運転中に、複数の制御対象装置の状態を示す複数の状態値を取得する状態値取得部と、状態値取得部により取得された複数の状態値のそれぞれに基づいて、将来の所定の時点におけるそれぞれの状態値の予測値を推定する予測部と、状態値取得部により取得された、所定の時点におけるそれぞれの状態値と、予測部により推定された、所定の時点又は所定の時点よりも後の時点におけるそれぞれの予測値との間の差又は差の変化率に基づいて、指標算出アルゴリズムにより算出される指標が所定の条件に合致した場合に、その旨を報知する報知部と、を備える。学習装置は、複数の制御対象装置の状態を示す複数の状態値の予測値及び実績値の履歴と、特定の制御対象装置の運転挙動の評価とを取得する評価取得部と、履歴及び評価に基づいて指標算出アルゴリズムを学習する学習部と、を備える。
 この態様によると、過去に熟練オペレータが対処していた運転実績から推定される所定の時点における状態値の予測値とは異なる状態値が観測された場合に、その旨をオペレータに報知して適切な対処を促すことができるので、リアルタイムで熟練オペレータと同様なプラントの好適な運転条件の設定を的確に支援することができる。
 なお、以上の構成要素の任意の組合せ、本発明の表現を方法、装置、システム、記録媒体、コンピュータプログラムなどの間で変換したものもまた、本発明の態様として有効である。
 本発明によれば、プラントの好適な運転を実現することが可能な運転条件の設定を支援する技術を提供することができる。
実施の形態に係るプラント運転条件設定支援システムの全体構成を示す図である。 実施の形態に係る学習装置の構成を示す図である。 実施の形態に係る運転条件設定支援装置及び制御装置の構成を示す図である。 操作パネルの表示装置に表示される表示画面の例を示す図である。
 図1は、実施の形態に係るプラント運転条件設定支援システムの全体構成を示す。プラント運転条件設定支援システム1は、化学製品や工業製品などを生産するためのプラント3と、プラント3において運転条件の設定を支援するために使用されるアルゴリズムを学習するための学習装置4とを備える。プラント3と学習装置4とは、インターネットや社内接続系統などの任意の通信網2により接続され、オンプレミス、エッジコンピューティングなどの任意の運用形態で運用される。
 プラント3は、プラント3に設置された反応器や加熱炉などの制御対象装置10と、制御対象装置10の運転条件を制御するための操作量を設定する制御装置20と、学習装置4により学習されたアルゴリズムを使用してプラント3の運転条件の設定を支援する運転条件設定支援装置30とを備える。
 上述したように、複数の制御対象装置10により構成されるプロセスが複雑に干渉しうるプラント3を安全かつ安定的に運転するのは容易ではない。とくに、プラント3を起動するときと停止させるときには、通常の運転中とは異なる状態を経ることになるので、更に困難を伴う。熟練したオペレータは、プラント3の状態を表す複数の状態量のうち、プラント3の挙動が不安定になりうるときに優先的に監視すべき状態量の種類や重要度を経験的に把握しており、これらの状態量が過去の運転とは異なる異常な挙動を示した場合には、変化した状態量の種類、重要度、変化量、変化率などに応じて、正常な運転に戻すための制御量の変更を試みる。そして、制御量を変更した後の状態量の変化を注視しつつ、複数の制御量の変更を試行錯誤して、正常な挙動に戻していく。このような異常に対する対処の経験も、次回以降に同様の異常が発生ときの対処に役立てられる。
 本実施の形態のプラント運転条件設定支援システム1は、このような熟練したオペレータの経験を取り入れて、安全かつ安定的にプラント3を運転するための運転条件の設定を適切に支援するために、監視すべき状態量の値が過去の運転とは異なる異常な挙動を示したときに、その異常の重要度及び緊急度を示す指標を算出し、リアルタイムでオペレータに提示する。これにより、プラント3の挙動が不安定になりうるような異常が生じた場合であっても、その異常の重要度及び緊急度を客観的な指標としてリアルタイムでオペレータに提示することができるので、オペレータによる適切な対処を的確に支援することができる。
 本実施の形態のプラント運転条件設定支援システム1では、監視すべき状態量として、プラント3において運転される複数の制御対象装置10のうち、何らかの要因により停止したり故障したりしてしまった場合に重大な損害又は危険が発生しうるような特定の制御対象装置(以下、「重要装置」という)の停止又は故障の要因となりうる複数の状態量を設定する。
 監視すべき複数の状態量を決定するために、まず、重要装置の停止又は故障の要因を網羅的に抽出し、それらの要因の中から、直接的かつ短期的に重要装置の停止や故障につながる重要因子を特定する。つづいて、特定された重要因子を上位事象とするフォルトツリー分析(FTA)を実施して、上位事象の原因となる下位事象の発生原因、発生経路、及び発生確率を把握する。このような分析により、プラント3の運転中に重要装置の停止又は故障を低減させるために監視すべき複数の状態量を決定する。
 監視すべき複数の状態量を決定すると、それらの状態量の発生確率、上位事象への発生経路、上位事象である重要因子が重要装置の運転挙動に与える影響の大きさなどに応じて、それぞれの状態量の過去の挙動との差又は差の変化率に重みが付された指標算出アルゴリズムを作成する。指標算出アルゴリズムは、それぞれの状態量の過去の挙動と現在の挙動との差又は差の変化率から、重要装置への影響の重要度及び緊急度を示す指標を算出するものである。
 監視すべき複数の状態量の過去の挙動と現在の挙動との差を数値化するために、プラント3の運転中に、複数の状態量のそれぞれの現在値に基づいて、将来の所定の時点におけるそれぞれの状態量の予測値を推定しておき、所定の時点又は所定の時点よりも後の時点におけるそれぞれの状態量の予測値と現在値との間の差又は差の変化率を算出する。予測値の算出の対象となる将来の所定の時点は、プラント3を構成する制御対象装置10の種類、プロセスの種類、状態量の変化率、制御量の値の変更により状態量の値が変化する速度などによって決定されればよいが、例えば、数秒後から数分後程度であってもよい。
 本実施の形態では、将来の所定の時点におけるそれぞれの状態量の予測値を精確に推定するために、複数の状態値のそれぞれの過去の実績値に基づく機械学習により獲得された推定アルゴリズムを使用する。別の例では、予測値は、過去の実績値に基づいて設定された数式やデータベースなどを使用して算出されてもよい。
 以上のように、本実施の形態では、熟練したオペレータの属人的な経験を機械学習により体系的に学習した人工知能を利用して、過去の運転実績と異なる挙動を迅速かつ的確に検出し、その挙動による重要装置への影響の重要度及び緊急度を示す指標をリアルタイムでオペレータに提示することができる。これにより、オペレータの技量や経験などによらず、プラント3を安全かつ安定的に運転するための条件を適切に設定することが可能となるように、的確に支援することができる。
 図2は、実施の形態に係る学習装置の構成を示す。学習装置4は、実績値取得部41、推定アルゴリズム学習ユニット50、指標評価取得部44、指標算出アルゴリズム学習ユニット51、及び提供部49を備える。これらの構成は、ハードウエアコンポーネントでいえば、任意のコンピュータのCPU、メモリ、メモリにロードされたプログラムなどによって実現されるが、ここではそれらの連携によって実現される機能ブロックを描いている。したがって、これらの機能ブロックがハードウエアのみ、ソフトウエアのみ、またはそれらの組合せによっていろいろな形で実現できることは、当業者には理解されるところである。
 推定アルゴリズム学習ユニット50は、重要装置の停止又は故障の要因となりうる複数の状態量のそれぞれの予測値を算出するための複数の推定アルゴリズム43a、43b、・・・と、複数の推定アルゴリズム43a、43b、・・・(以下、「推定アルゴリズム43」と総称する)のそれぞれを学習する複数の推定アルゴリズム学習部42a、42b、・・・(以下、「推定アルゴリズム学習部42」と総称する)を含む。
 推定アルゴリズム43は、プラント3の状態を示す複数の状態値のそれぞれに基づいて、将来の所定の時点におけるそれぞれの状態値の予測値を推定するために使用される。
 実績値取得部41は、複数の状態値と複数の制御量の設定値のそれぞれの過去の実績値をプラント3から取得する。
 推定アルゴリズム学習部42は、実績値取得部41により取得された複数の状態値と複数の制御量の設定値のそれぞれの過去の実績値に基づいて、機械学習により推定アルゴリズム43を学習する。推定アルゴリズム学習部42は、ある時点における複数の状態値及び複数の操作量の設定値の実績値を推定アルゴリズム43に入力したときに、その時点から所定時間が経過した時点における複数の状態値の実績値に近い値が算出されるように、推定アルゴリズム43を学習する。推定アルゴリズム学習部42は、実績値取得部41により取得された過去の実績値を教師データとした教師あり学習により推定アルゴリズム43を学習してもよいし、その他の既知の任意の機械学習技術により推定アルゴリズム43を学習してもよい。
 多数の実績値を用いて推定アルゴリズム43を学習させることにより、推定アルゴリズム43の精度を向上させることができるので、より精確にプラント3の状態を示す状態値の予測値を算出することが可能な推定アルゴリズム43を生成することができる。また、複雑なプロセスを再現するための高度なシミュレータを開発する必要がないので、推定アルゴリズム43を生成するのに要する時間及び負荷を大幅に低減させることができる。また、シミュレータでは再現が困難であるような要素も加味することができるので、より精確に出力の予測値を算出することができる。
 指標算出アルゴリズムは、所定の時点又は所定の時点よりも後の時点におけるそれぞれの状態値の予測値と所定の時点における実際の状態値との間の差又は差の変化率に基づいて、重要装置の運転挙動に与える影響の大きさ及び緊急性を表す指標を算出するために使用される。指標は、重要装置に与える影響の大きさを示す重要度と、重要装置に与える影響の緊急性を示す緊急度を含む。重要度には、主に、それぞれの状態値の予測値と実際の状態値との間の差及び差の変化率の大きさが反映され、緊急度には、主に、それぞれの状態値の現時点の予測値と現時点の実際の状態値との差の変化率の大きさや、それぞれの状態値の将来の予測値と現時点の実際の状態値との差又は差の変化率が反映される。
 指標評価取得部44は、それぞれの状態値について算出された予測値と実際の状態値の実績値の履歴と、重要装置の運転挙動の評価を取得する。重要装置の運転挙動の評価は、状態値の履歴などから算出されてもよいし、オペレータにより入力されてもよい。指標評価取得部44は、それぞれの状態値について算出された予測値と実際の状態値の実績値の履歴と、重要度算出アルゴリズム46及び緊急度算出アルゴリズム48により算出された指標に対する評価を取得してもよい。指標に対する評価は、オペレータが評価した結果であってもよい。
 指標算出アルゴリズム学習ユニット51は、重要装置に与える影響の大きさを示す重要度を算出するための重要度算出アルゴリズム46、重要度算出アルゴリズム46を学習する重要度算出アルゴリズム学習部45、重要装置に与える影響の緊急性を示す緊急度を算出するための緊急度算出アルゴリズム48、緊急度算出アルゴリズム48を学習する緊急度算出アルゴリズム学習部47を含む。
 重要度算出アルゴリズム学習部45及び緊急度算出アルゴリズム学習部47は、指標評価取得部44により取得された予測値と状態値の実績値の履歴と、重要装置の運転挙動の評価に基づいて、重要度算出アルゴリズム46及び緊急度算出アルゴリズム48をそれぞれ学習する。重要度算出アルゴリズム学習部45及び緊急度算出アルゴリズム学習部47は、指標評価取得部44により取得された予測値及び実績値の履歴と、重要装置の運転挙動の評価に基づいて、ある時点又はその後の時点における予測値と状態値との間の差又は差の変化率を重要度算出アルゴリズム46及び緊急度算出アルゴリズム48に代入することにより算出される指標が、重要装置の運転挙動に与える影響の重要度及び緊急度を正しく評価するものであったか否かを、その後の重要装置の運転挙動の評価から判定する。重要度算出アルゴリズム学習部45及び緊急度算出アルゴリズム学習部47は、その後の重要装置の運転挙動が所定よりも悪い評価であった場合は、より悪い値の指標が算出されるように重要度算出アルゴリズム46及び緊急度算出アルゴリズム48を学習し、その後の重要装置の運転挙動が所定よりも良い評価であった場合は、より良い値の指標が算出されるように重要度算出アルゴリズム46及び緊急度算出アルゴリズム48を学習する。このように、重要度算出アルゴリズム学習部45及び緊急度算出アルゴリズム学習部47は、指標評価取得部44により取得された重要装置の運転挙動の評価を教師データとした教師あり学習により重要度算出アルゴリズム46及び緊急度算出アルゴリズム48を学習してもよいし、その他の既知の任意の機械学習技術により重要度算出アルゴリズム46及び緊急度算出アルゴリズム48を学習してもよい。
 指標評価取得部44は、オペレータが重要度算出アルゴリズム46及び緊急度算出アルゴリズム48によらずに自ら算出又は評価した指標の値を教師データとして取得してもよい。この場合、重要度算出アルゴリズム学習部45及び緊急度算出アルゴリズム学習部47は、ある時点又はその後の時点における予測値と状態値との間の差又は差の変化率を重要度算出アルゴリズム46及び緊急度算出アルゴリズム48に入力したときに、指標評価取得部44により取得された指標の値が算出されるように、重要度算出アルゴリズム46及び緊急度算出アルゴリズム48を学習する。
 提供部49は、推定アルゴリズム学習部42により学習された推定アルゴリズム43と、重要度算出アルゴリズム学習部45及び緊急度算出アルゴリズム学習部47により学習された重要度算出アルゴリズム46及び緊急度算出アルゴリズム48を運転条件設定支援装置30に提供する。
 重要装置が停止してしまうような事象はめったに発生しないので、そのような事象の過去の実績に基づいて、そのような事象が発生したときのプラント3の挙動を学習することは困難であるが、本実施の形態では、過去の運転実績と現在の運転状態の差から重要装置の運転挙動に与える影響の大きさを指標化するので、重要装置が停止した実績がなくても、重要装置が停止しうる状態を的確に検出することが可能な人工知能を提供することができる。
 本図においては、説明の簡略化のため、学習装置4を単独の装置として示しているが、学習装置4は、クラウドコンピューティング技術や分散処理技術などを利用して、複数のサーバにより実現されてもよい。これにより、プラント3から収集した大量の情報を高速に処理して推定アルゴリズム43、重要度算出アルゴリズム46、及び緊急度算出アルゴリズム48を学習させることができるので、推定アルゴリズム43、重要度算出アルゴリズム46、及び緊急度算出アルゴリズム48の精度を向上させるために要する時間を大幅に短縮することができる。
 図3は、実施の形態に係る運転条件設定支援装置及び制御装置の構成を示す。制御装置20は、制御部21、操作パネル22、及び実績値記憶部29を備える。
 操作パネル22は、プラント3の運転状態を示す各種の状態値と、制御装置20により設定された各種の操作量の設定値と、プラント3の運転結果を示す出力の値などを表示装置に表示するとともに、各種の操作量の設定値の入力をオペレータから受け付ける。
 制御部21は、操作量設定部23、状態値取得部24、状態値送信部25、実績値送信部26、指標評価取得部27、及び指標評価送信部28を備える。これらの機能ブロックも、ハードウエアのみ、ソフトウエアのみ、またはそれらの組合せによっていろいろな形で実現できる。
 操作量設定部23は、操作パネル22によりオペレータから受け付けた各種の操作量の設定値を設定し、制御対象装置10を制御するとともに、操作パネル22の表示装置に表示する。状態値取得部24は、制御対象装置10などに設けられた各種のセンサや測定器などから、プラント3の運転状態及び運転結果を示す各種の状態値を取得し、操作パネル22の表示装置に表示するとともに、実績値記憶部29に記録する。状態値送信部25は、状態値取得部24により取得された状態値を運転条件設定支援装置30に送信する。実績値送信部26は、操作量設定部23により設定された操作量の値と、実績値記憶部29に記憶された状態値を、学習装置4に送信する。
 指標評価取得部27は、操作パネル22に表示された指標に対する評価をオペレータから取得する。指標評価取得部27は、操作パネル22に表示された指標が大き過ぎる、又は小さ過ぎることを示す評価をオペレータから取得してもよいし、操作パネル22に表示された指標の修正値をオペレータから取得してもよい。指標評価送信部28は、指標評価取得部27がオペレータから取得した指標に対する評価を学習装置4に送信する。指標に対する評価は、前述したように、学習装置4において重要度算出アルゴリズム46及び緊急度算出アルゴリズム48を学習するために使用される。
 運転条件設定支援装置30は、制御部31、推定アルゴリズム43、重要度算出アルゴリズム46、及び緊急度算出アルゴリズム48を備える。
 制御部31は、状態値取得部32、予測部33a、33b、・・・(以下、「予測部33」と総称する)、指標算出部34、報知部37、表示部38、及び学習部39を備える。これらの機能ブロックも、ハードウエアのみ、ソフトウエアのみ、またはそれらの組合せによっていろいろな形で実現できる。
 推定アルゴリズム43、重要度算出アルゴリズム46、及び緊急度算出アルゴリズム48は、学習装置4から取得され、記憶装置に格納される。
 状態値取得部32は、制御装置20の状態値送信部25から、複数の状態値を取得する。予測部33は、推定アルゴリズム43を使用して、状態値取得部32により取得された複数の状態値から将来の所定の時点におけるそれぞれの状態量の予測値を算出し、記憶装置に格納する。
 指標算出部34は、重要度算出部35及び緊急度算出部36を含む。重要度算出部35及び緊急度算出部36は、状態値取得部32により取得された状態値と、予測部33により算出されて記憶装置に格納されていた状態値の予測値との差又は差の変化率を算出し、重要度算出アルゴリズム46及び緊急度算出アルゴリズム48を使用して、重要度及び緊急度を示す指標を算出する。
 報知部37は、指標算出部34により算出された指標が所定の条件に合致した場合に、その旨を報知する。報知部37は、プラント3の運転中、常時算出された指標を操作パネル22に表示してオペレータに報知してもよいし、指標が所定の値よりも悪い値であった場合に、その旨を操作パネル22に表示してオペレータに報知してもよい。これにより、重要装置に影響を及ぼしうる状態が発生していることをオペレータに報知することができる。
 表示部38は、指標算出部34により算出された重要度と緊急度を縦軸及び横軸に取ってプロットしたマトリクスを操作パネル22に表示する。これにより、現在の状態が重要装置に与える影響の重要度と緊急度を視覚的に理解しやすい態様でオペレータに提示することができる。表示部38は、複数の状態値のそれぞれについて算出された予測値と状態値との間の差又は差の変化率をそれぞれ操作パネル22に表示する。これにより、重要装置に影響を与えうる複数の状態値のうち、いずれの状態値が異常を示しているのか、及び、その状態値の異常の程度をオペレータに提示することができるので、オペレータが操作量の設定値を変更するために参照すべき情報を適切に提供することができる。
 学習部39は、推定アルゴリズム43、重要度算出アルゴリズム46、又は緊急度算出アルゴリズム48を学習する。学習部39は、学習装置4の推定アルゴリズム学習部42、重要度算出アルゴリズム学習部45、又は緊急度算出アルゴリズム学習部47と同様の方法により推定アルゴリズム43、重要度算出アルゴリズム学習部45、又は緊急度算出アルゴリズム学習部47を再学習してもよい。学習装置4において推定アルゴリズム43、重要度算出アルゴリズム46、又は緊急度算出アルゴリズム48を再学習する場合には、学習部39は設けられなくてもよい。
 図4は、操作パネルの表示装置に表示される表示画面の例を示す。表示画面には、プラント3のプロセスフロー図と、複数の状態値と、それらの状態値の所定時間後の予測値と、重要度及び緊急度をプロットしたマトリクスと、状態値の推移が表示されている。オペレータは、提示された情報を参考にして、操作量の設定値を決定し、操作パネル22に入力する。操作量設定部23は、入力された設定値に基づいて制御対象装置10を制御する。
 指標算出部34は、所定の間隔で指標を算出し、表示部38は、所定の間隔で算出された指標の重要度と緊急度をマトリクスにプロットする。すなわち、重要度と緊急度のマトリクスは、リアルタイムに更新され、その時点でのプラント3の状態を示す。特許文献1及び2にも、マトリクス表示が開示されているが、いずれも、一方の軸を重要度又は影響度、他方の軸を発生頻度とするものであり、プラント3の操作パネル22に表示されてリアルタイムに更新されるものではない。本実施の形態のマトリクス表示と、状態値及び予測値の推移は、操作パネル22に常時表示されるので、オペレータは、異常が発生した場合であっても、その変更によるマトリクス表示と、状態値及び予測値の推移の変化をリアルタイムに確認しながら、操作量の設定値を変更してプラント3の運転状態を調整することができる。
 以上、本発明を実施例にもとづいて説明した。この実施例は例示であり、それらの各構成要素や各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
 本発明の技術は、連続工程のプラントにも、バッチ工程のプラントにも適用可能である。
 1 プラント運転条件設定支援システム、3 プラント、4 学習装置、10 制御対象装置、20 制御装置、21 制御部、22 操作パネル、23 操作量設定部、24 状態値取得部、25 状態値送信部、26 実績値送信部、27 指標評価取得部、28 指標評価送信部、29 実績値記憶部、30 運転条件設定支援装置、31 制御部、32 状態値取得部、33 予測部、34 指標算出部、37 報知部、38 表示部、39 学習部、41 実績値取得部、42 推定アルゴリズム学習部、43 推定アルゴリズム、44 指標評価取得部、45 重要度算出アルゴリズム学習部、46 重要度算出アルゴリズム、47 緊急度算出アルゴリズム学習部、48 緊急度算出アルゴリズム、49 提供部、50 推定アルゴリズム学習ユニット、51 指標算出アルゴリズム学習ユニット。
 本発明は、プラントの運転条件の設定を支援するための支援装置に利用可能である。

Claims (11)

  1.  複数の制御対象装置の運転中に、前記複数の制御対象装置の状態を示す複数の状態値を取得する状態値取得部と、
     前記状態値取得部により取得された複数の状態値のそれぞれに基づいて、将来の所定の時点におけるそれぞれの状態値の予測値を推定する予測部と、
     前記状態値取得部により取得された、前記所定の時点におけるそれぞれの状態値と、前記予測部により推定された、前記所定の時点又は前記所定の時点よりも後の時点におけるそれぞれの予測値との間の差又は差の変化率に基づいて算出される指標が所定の条件に合致した場合に、その旨を報知する報知部と、
    を備えることを特徴とする支援装置。
  2.  前記予測部は、前記複数の状態値のそれぞれの過去の実績値に基づく機械学習により獲得された推定アルゴリズムにより前記予測値を推定することを特徴とする請求項1に記載の支援装置。
  3.  それぞれの状態値について算出された前記差又は差の変化率が特定の制御対象装置の運転挙動に与える影響の大きさに基づいてそれぞれの差又は差の変化率に重みが付された所定の指標算出アルゴリズムにより前記指標を算出する算出部を更に備えることを特徴とする請求項1又は2に記載の支援装置。
  4.  前記指標算出アルゴリズムは、それぞれの状態値について算出された前記予測値及び実績値の履歴と、前記特定の制御対象装置の運転挙動の評価とに基づいて学習されたものであることを特徴とする請求項3に記載の支援装置。
  5.  それぞれの状態値について算出された前記予測値及び実績値の履歴と、前記特定の制御対象装置の運転挙動の評価とに基づいて、前記算出アルゴリズムを機械学習する学習部を更に備えることを特徴とする請求項4に記載の支援装置。
  6.  前記指標は、前記特定の制御対象装置に与える影響の大きさを示す重要度と、前記特定の制御対象装置に与える影響の緊急性を示す緊急度とを含むことを特徴とする請求項3から5のいずれかに記載の支援装置。
  7.  前記重要度と前記緊急度を表示装置に表示する表示部を更に備えることを特徴とする請求項6に記載の支援装置。
  8.  前記表示部は、前記重要度と前記緊急度を縦軸及び横軸に取ってプロットしたマトリクスを表示することを特徴とする請求項7に記載の支援装置。
  9.  前記表示部は、前記複数の状態値のそれぞれについて算出された前記差又は差の変化率をそれぞれ前記表示装置に表示することを特徴とする請求項7又は8に記載の支援装置。
  10.  複数の制御対象装置の状態を示す複数の状態値の予測値及び実績値の履歴と、特定の制御対象装置の運転挙動の評価とを取得する評価取得部と、
     前記複数の制御対象装置の運転中に、前記複数の状態値の予測値と実績値との間の差又は差の変化率が前記特定の制御対象装置の運転挙動に与える影響の大きさを表す指標を算出するための指標算出アルゴリズムを、前記履歴及び前記評価に基づいて機械学習する学習部と、
    を備えることを特徴とする学習装置。
  11.  プラントの運転条件の設定を支援する支援装置と、
     前記支援装置において使用される指標算出アルゴリズムを学習する学習装置と、
    を備え、
     前記支援装置は、
     前記プラントに含まれる複数の制御対象装置の運転中に、前記複数の制御対象装置の状態を示す複数の状態値を取得する状態値取得部と、
     前記状態値取得部により取得された複数の状態値のそれぞれに基づいて、将来の所定の時点におけるそれぞれの状態値の予測値を推定する予測部と、
     前記状態値取得部により取得された、前記所定の時点におけるそれぞれの状態値と、前記予測部により推定された、前記所定の時点又は前記所定の時点よりも後の時点におけるそれぞれの予測値との間の差又は差の変化率に基づいて、前記指標算出アルゴリズムにより算出される指標が所定の条件に合致した場合に、その旨を報知する報知部と、
    を備え、
     前記学習装置は、
     複数の制御対象装置の状態を示す複数の状態値の予測値及び実績値の履歴と、特定の制御対象装置の運転挙動の評価とを取得する評価取得部と、
     前記履歴及び前記評価に基づいて前記指標算出アルゴリズムを学習する学習部と、
    を備えることを特徴とするプラント運転条件設定支援システム。
PCT/JP2018/022018 2018-06-08 2018-06-08 支援装置、学習装置、及びプラント運転条件設定支援システム WO2019234913A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2018/022018 WO2019234913A1 (ja) 2018-06-08 2018-06-08 支援装置、学習装置、及びプラント運転条件設定支援システム
JP2018558257A JP6529690B1 (ja) 2018-06-08 2018-06-08 支援装置、学習装置、及びプラント運転条件設定支援システム
AU2018426458A AU2018426458B2 (en) 2018-06-08 2018-06-08 Assistance device, learning device, and plant operation condition setting assistance system
TW108110188A TWI710873B (zh) 2018-06-08 2019-03-25 支援裝置、學習裝置以及廠房運轉條件設定支援系統
US17/113,400 US20210088986A1 (en) 2018-06-08 2020-12-07 Assistance device, learning device, and plant operation condition setting assistance system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/022018 WO2019234913A1 (ja) 2018-06-08 2018-06-08 支援装置、学習装置、及びプラント運転条件設定支援システム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/113,400 Continuation US20210088986A1 (en) 2018-06-08 2020-12-07 Assistance device, learning device, and plant operation condition setting assistance system

Publications (1)

Publication Number Publication Date
WO2019234913A1 true WO2019234913A1 (ja) 2019-12-12

Family

ID=66821623

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/022018 WO2019234913A1 (ja) 2018-06-08 2018-06-08 支援装置、学習装置、及びプラント運転条件設定支援システム

Country Status (5)

Country Link
US (1) US20210088986A1 (ja)
JP (1) JP6529690B1 (ja)
AU (1) AU2018426458B2 (ja)
TW (1) TWI710873B (ja)
WO (1) WO2019234913A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4030251A4 (en) * 2020-08-05 2023-06-14 Chiyoda Corporation FACILITY MANAGEMENT METHOD, FACILITY DESIGN DEVICE AND FACILITY MANAGEMENT DEVICE
JP7524569B2 (ja) 2020-03-23 2024-07-30 横河電機株式会社 アラーム発生システム及びアラーム発生方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI20195892A1 (en) * 2019-10-16 2021-04-17 Kemira Oyj Diagnostic arrangement
WO2021157670A1 (ja) * 2020-02-04 2021-08-12 株式会社ダイセル 予測装置、予測方法及びプログラム
KR102594827B1 (ko) * 2021-01-20 2023-10-26 한국수력원자력 주식회사 복수의 장치에 대한 작동예측시스템

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06347379A (ja) * 1993-06-04 1994-12-22 Hitachi Ltd プラント監視診断システム及び非破壊検査診断システム
JP2013145548A (ja) * 2011-12-13 2013-07-25 Yokogawa Electric Corp アラーム表示装置およびアラーム表示方法
JP2016128973A (ja) * 2015-01-09 2016-07-14 株式会社日立パワーソリューションズ 予兆診断システム及び予兆診断方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5864503A (ja) * 1981-10-14 1983-04-16 Hitachi Ltd 装置の異常状態に対する原因推定方法
US5581459A (en) * 1990-09-26 1996-12-03 Hitachi, Ltd. Plant operation support system
US5764509A (en) * 1996-06-19 1998-06-09 The University Of Chicago Industrial process surveillance system
JP2007536634A (ja) * 2004-05-04 2007-12-13 フィッシャー−ローズマウント・システムズ・インコーポレーテッド プロセス制御システムのためのサービス指向型アーキテクチャ
US7248979B2 (en) * 2005-05-09 2007-07-24 International Business Machines Corporation Apparatus employing predictive failure analysis based on in-circuit FET on-resistance characteristics
US8396582B2 (en) * 2008-03-08 2013-03-12 Tokyo Electron Limited Method and apparatus for self-learning and self-improving a semiconductor manufacturing tool
TWI385492B (zh) * 2008-12-16 2013-02-11 Ind Tech Res Inst 機台設備的維護分析系統及其方法
JP5874836B2 (ja) * 2012-08-29 2016-03-02 トヨタ自動車株式会社 プラント制御装置
US9465387B2 (en) * 2015-01-09 2016-10-11 Hitachi Power Solutions Co., Ltd. Anomaly diagnosis system and anomaly diagnosis method
WO2016151744A1 (ja) * 2015-03-24 2016-09-29 三菱電機株式会社 プラント監視制御装置
CN107667220B (zh) * 2015-05-27 2020-06-16 维斯塔斯风力系统集团公司 考虑疲劳量度的风力涡轮机控制
JP6332154B2 (ja) * 2015-06-11 2018-05-30 横河電機株式会社 プラント運転支援装置、プラント運転支援方法、及びプログラム
JP6682411B2 (ja) * 2016-09-16 2020-04-15 横河電機株式会社 プラント状態表示装置、プラント状態表示システム、及びプラント状態表示方法
US20200333777A1 (en) * 2016-09-27 2020-10-22 Tokyo Electron Limited Abnormality detection method and abnormality detection apparatus
JP6791261B2 (ja) * 2016-11-28 2020-11-25 東芝三菱電機産業システム株式会社 圧延設備の異常診断の方法及び装置
JP6933899B2 (ja) * 2017-01-12 2021-09-08 横河電機株式会社 プラント運転支援装置、プラント運転支援方法、及びプラント運転支援プログラム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06347379A (ja) * 1993-06-04 1994-12-22 Hitachi Ltd プラント監視診断システム及び非破壊検査診断システム
JP2013145548A (ja) * 2011-12-13 2013-07-25 Yokogawa Electric Corp アラーム表示装置およびアラーム表示方法
JP2016128973A (ja) * 2015-01-09 2016-07-14 株式会社日立パワーソリューションズ 予兆診断システム及び予兆診断方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7524569B2 (ja) 2020-03-23 2024-07-30 横河電機株式会社 アラーム発生システム及びアラーム発生方法
EP4030251A4 (en) * 2020-08-05 2023-06-14 Chiyoda Corporation FACILITY MANAGEMENT METHOD, FACILITY DESIGN DEVICE AND FACILITY MANAGEMENT DEVICE

Also Published As

Publication number Publication date
TWI710873B (zh) 2020-11-21
AU2018426458B2 (en) 2023-12-21
JP6529690B1 (ja) 2019-06-12
JPWO2019234913A1 (ja) 2020-06-18
TW202013110A (zh) 2020-04-01
AU2018426458A1 (en) 2020-11-19
US20210088986A1 (en) 2021-03-25

Similar Documents

Publication Publication Date Title
WO2019234913A1 (ja) 支援装置、学習装置、及びプラント運転条件設定支援システム
JP6933899B2 (ja) プラント運転支援装置、プラント運転支援方法、及びプラント運転支援プログラム
US10809704B2 (en) Process performance issues and alarm notification using data analytics
JP7504163B2 (ja) 異常予知装置、異常予知システム、異常予知方法及び異常予知プログラム
JP5778087B2 (ja) プロセス監視システム及び方法
JP6702297B2 (ja) プロセスの異常状態診断方法および異常状態診断装置
JP4046309B2 (ja) プラント監視装置
EP2816431A2 (en) Information platform for industrial automation stream-based data processing
JP2014167706A (ja) 監視装置および制御システム
JP6711323B2 (ja) プロセスの異常状態診断方法および異常状態診断装置
WO2021127646A1 (en) Device and method for monitoring a system
CN116997867A (zh) 用于预测技术设施的运行的方法和系统
JP2022182620A (ja) 情報処理装置、予測方法および予測プログラム
JP2010276339A (ja) センサ診断方法およびセンサ診断装置
JP6662222B2 (ja) 製造プロセスの異常状態診断方法及び異常状態診断装置
JP6579163B2 (ja) プロセスの状態診断方法及び状態診断装置
CN115409059A (zh) 高压电子开关设备在线故障预警方法、终端设备
CN116235121A (zh) 识别用于执行生产过程的工业设施中的异常的装置和方法
EP3674828A1 (en) System and method of generating data for monitoring of a cyber-physical system for early determination of anomalies
CN115427907A (zh) 用于工业过程中的智能报警管理方法
JPH04366742A (ja) プラント監視装置および方法
JP7416015B2 (ja) 情報処理装置、アラーム予測方法およびアラーム予測プログラム
JP7309548B2 (ja) 異常予兆検知装置、方法及びプログラム
RU2773864C1 (ru) Устройство поддержки, устройство обучения и система поддержки настройки условий эксплуатации установки
JP7232028B2 (ja) 運転監視装置および方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018558257

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18921650

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018426458

Country of ref document: AU

Date of ref document: 20180608

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18921650

Country of ref document: EP

Kind code of ref document: A1