WO2019234841A1 - Flexible circuit with cable, manufacturing method therefor, and intermediate for flexible circuit with cable - Google Patents

Flexible circuit with cable, manufacturing method therefor, and intermediate for flexible circuit with cable Download PDF

Info

Publication number
WO2019234841A1
WO2019234841A1 PCT/JP2018/021627 JP2018021627W WO2019234841A1 WO 2019234841 A1 WO2019234841 A1 WO 2019234841A1 JP 2018021627 W JP2018021627 W JP 2018021627W WO 2019234841 A1 WO2019234841 A1 WO 2019234841A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
wiring
cable
conductor
flexible
Prior art date
Application number
PCT/JP2018/021627
Other languages
French (fr)
Japanese (ja)
Inventor
大屋 秀信
直人 新妻
一歩 浦山
小俣 猛憲
星野 秀樹
亮 青山
牛久 正幸
正好 山内
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to PCT/JP2018/021627 priority Critical patent/WO2019234841A1/en
Priority to JP2020523899A priority patent/JPWO2019234841A1/en
Publication of WO2019234841A1 publication Critical patent/WO2019234841A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details

Definitions

  • the present invention relates to a flexible circuit with a cable and a method for manufacturing the same, and a flexible circuit intermediate with a cable. More specifically, the flexible circuit with a cable having excellent productivity and excellent reliability of electrical connection, and a method for manufacturing the same. And a flexible circuit intermediate with a cable.
  • Patent Documents 1 and 2 Technology for providing a touch sensor circuit on a substrate is known (Patent Documents 1 and 2).
  • FFC flat flexible cable
  • FPC flexible printed circuit
  • the present inventor has provided a circuit part and a cable part that can substitute for FFC and FPC on a flexible substrate, and tried to connect to an external circuit using the cable part.
  • a circuit part and a cable part that can substitute for FFC and FPC on a flexible substrate, and tried to connect to an external circuit using the cable part.
  • it is required to be excellent in productivity and reliability of electrical connection.
  • Patent Documents 1 to 7 do not solve such problems.
  • an object of the present invention is to provide a flexible circuit with a cable, a method for manufacturing the same, and a flexible circuit intermediate with a cable, which are excellent in productivity and excellent in the reliability of electrical connection.
  • a circuit portion provided with a circuit constituted by a conductor on at least one surface of the flexible base material, and a wiring having one end connected to the circuit and the other end connected to the external circuit constituted by the conductor.
  • the cable part provided is printed,
  • the conductor constituting the circuit and the conductor constituting the wiring include at least one metal in common,
  • the thickness of the conductor constituting the wiring is larger than the thickness of the conductor constituting the circuit,
  • the flexible base material includes a base material main body, and a belt-shaped portion extending in a belt shape from the base material main body,
  • the circuit part is provided on the base body, and the cable part is provided on the belt-like part.
  • a flexible circuit with a cable wherein the other end of the wiring constituting the cable portion is provided at a tip of the strip-shaped portion.
  • 2. The flexible circuit with a cable according to 1, wherein the conductor constituting the circuit and the conductor constituting the wiring are each an alloy.
  • 3. The flexible circuit with a cable according to 2, wherein the alloy constituting the circuit and the alloy constituting the wiring commonly include at least one selected from nickel, chromium, molybdenum, manganese, and cobalt. 4).
  • the thickness of the conductor constituting the circuit is 0.05 ⁇ m to 10 ⁇ m, 4.
  • a plurality of units configured by a cable portion provided with wiring having a length of the flexible base material are printed along the longitudinal direction of the flexible base material,
  • the conductor constituting the circuit and the conductor constituting the wiring include at least one metal in common,
  • the present invention it is possible to provide a flexible circuit with a cable that is excellent in productivity and excellent in the reliability of electrical connection, a manufacturing method thereof, and a flexible circuit intermediate with a cable.
  • the figure explaining an example of a flexible circuit with a cable The figure explaining an example of a protective material The figure explaining the other example of the flexible circuit with a cable
  • the figure explaining an example of the formation method of an electroconductive thin wire The figure explaining the 1st aspect of mesh pattern formation
  • the figure explaining the 2nd aspect of mesh pattern formation The figure explaining an example of the flexible circuit intermediate body with a cable
  • FIG. 1 is a diagram illustrating an example of a flexible circuit with a cable according to the present invention.
  • a circuit portion 2 and a cable portion 3 are printed on one surface of the flexible substrate 1.
  • the material of the flexible substrate (hereinafter also simply referred to as a substrate) 1 is not particularly limited, and examples thereof include a resin.
  • the resin include polyethylene terephthalate (PET) resin, polyethylene naphthalate (PEN) resin, polybutylene terephthalate resin, cellulose resin (polyacetyl cellulose, cellulose diacetate, cellulose triacetate, etc.), polyethylene resin, polypropylene resin, Methacrylic resin, cyclic polyolefin resin, polystyrene resin, acrylonitrile- (poly) styrene copolymer (AS resin), acrylonitrile-butadiene-styrene copolymer (ABS resin), polyvinyl chloride resin, poly (meth)
  • the substrate 1 made of resin can be, for example, a film.
  • the substrate 1 made of resin may be stretched or unstretched.
  • the thickness of the substrate 1 is not particularly limited, and can be, for example, about 1 ⁇ m to 10 cm, and further about 20 ⁇ m to 300 ⁇ m.
  • the substrate 1 may be subjected to a surface treatment for changing the surface energy.
  • the base material 1 may be a laminate, and may have a hard coat layer, an antireflection layer, or the like.
  • the base material 1 includes a rectangular base material body 11 and a belt-like portion 12 extending from the base material body 11 in a belt shape.
  • the belt-like portion 12 is provided in a convex shape from the side surface of the substrate body 11 in the surface direction of the substrate 1 (direction perpendicular to the thickness direction).
  • the base body 11 and the belt-like portion 12 are integral with each other, and are formed by cutting the outer shape of one base material.
  • the circuit body 2 is provided in the base material body 11, and the cable part 3 is provided in the belt-like part 12.
  • circuit part As shown in FIG. 1, a circuit 21 made of a conductor is printed on the base material 1 constituting the circuit unit 2.
  • a touch sensor circuit is shown as an example of the circuit 21.
  • the touch sensor circuit is constituted by a plurality of sensor channels 22 printed on the substrate 1.
  • the plurality of sensor channels 22 constituting the touch sensor circuit can be used for detection of a touch position.
  • Each sensor channel 22 is formed in a strip shape.
  • a plurality of belt-like sensor channels 22 are arranged in parallel at a predetermined interval in the width direction of the belt.
  • the circuit 21 constituting the circuit unit 2 further includes a plurality of lead wires 23 printed on the substrate 1.
  • One end of the lead wiring 23 is connected to the sensor channel 22.
  • the lead-out wiring 23 and the sensor channel 22 are electrically connected.
  • the term “electrical connection” as used herein means that conduction is possible.
  • the other ends of the plurality of lead-out wires 23 are aggregated in the aggregation portion 24 at the base end of the cable portion 3 (the base end of the belt-like portion of the base material 1).
  • being aggregated in the aggregation unit 24 means that the line spacing (also referred to as Line &Space; L / S) of the plurality of lead-out wirings 23 is greater than that on one end side connected to the plurality of sensor channels 22. It may be narrower at the other end side arranged at 24.
  • the plurality of wirings 31 extend from the proximal end to the distal end of the cable part 3.
  • the plurality of wirings 31 extend in parallel to each other along the longitudinal direction of the cable portion.
  • One end of the wiring 31 is electrically connected to the circuit 21 of the circuit unit 2. That is, one end of the wiring 31 is disposed in the aggregation portion 24 at the base end of the cable portion 3, and is electrically connected to the other end of the lead-out wiring 23 aggregated in the aggregation portion 24.
  • the other end of the wiring 31 is arranged at the tip of the cable part 3 (tip of the belt-like part of the base material 1) and forms a connection part for electrically connecting the wiring 31 to an external circuit (not shown).
  • the front end edge of the cable part 3 is formed linearly, and the other end of the plurality of wirings 31 is arranged in parallel at the front end edge to constitute a connection part.
  • the external circuit can be a circuit mounted on an external component (external board) (not shown), for example. More specifically, for example, when the circuit unit 2 is configured by a touch sensor circuit, the external circuit may be configured by an integrated circuit (IC) that performs an operation for position detection.
  • IC integrated circuit
  • the circuit 21 of the circuit unit 2 is connected.
  • a connector for example, an FFC connector or an FPC connector
  • the circuit 21 of the circuit unit 2 is connected.
  • the other end of the wiring 31 arranged at the tip of the cable portion 3 is connected to the outside using, for example, a conductive adhesive or ACF (anisotropic conductive film).
  • ACF anisotropic conductive film
  • the tip of the cable portion 3 can be directly joined to an external component, and there is no need to separately provide an external connection component such as FFC or FPC. .
  • the cable portion 3 is formed integrally with the circuit portion 2, for example, a step of connecting an external connection component such as FFC or FPC to the circuit portion 2. Can be omitted.
  • the base material constituting the FFC or FPC is generally made of a high heat-resistant resin such as polyimide so that it can withstand high temperatures when the FFC or FPC is soldered to a substrate or the like. Therefore, FFC and FPC have a low degree of freedom in selecting a base material and are expensive.
  • the circuit part 2 and the cable part 3 are integrated in the base material 1, and the conductor is continuously printed from the circuit 21 of the circuit part 2 to the wiring 31 of the cable part 3. Therefore, soldering between the circuit unit 2 and the cable unit 3 is not necessary. Therefore, the degree of freedom in selecting the base material is high and the cost can be reduced.
  • the base material 1 can be made of a material having lower heat resistance than polyimide (for example, a material having a lower melting point than polyimide).
  • a material having a lower melting point than polyimide for example, if PET or the like is used, good flexibility can be imparted to the base material 1. At the same time, the cost can be reduced.
  • the conductor constituting the circuit 21 of the circuit part 2 and the conductor constituting the wiring 31 of the cable part 3 are each configured to include at least a metal.
  • the metal constituting these conductors is not particularly limited. For example, Au, Pt, Ag, Cu, Ni, Cr, Rh, Pd, Zn, Co, Mo, Ru, W, Os, Ir, Fe, Mn, Ge , Sn, Ga, In and the like.
  • one or both of the conductor constituting the circuit 21 and the conductor constituting the wiring 31 may be made of an alloy.
  • both the conductor constituting the circuit 21 and the conductor constituting the wiring 31 are alloys.
  • the alloy may be composed of a plurality of types of metals selected from the metals described above.
  • the alloy here can be, for example, that the conductor is composed of a plurality of types of metals (metal elements) as a whole.
  • the alloy may be, for example, a solid solution in which plural kinds of metals are completely dissolved at an atomic level, or may be a eutectic in which plural kinds of metals are independent at a crystal level, or a kind of metal.
  • Another type of metal may be laminated in layers.
  • the conductor made of an alloy one formed by providing one or more plating layers made of another kind of metal on one kind of metal can be mentioned.
  • the conductor constituting the circuit 21 and the conductor constituting the wiring 31 contain at least one, preferably two or more, more preferably three or more metals in common.
  • a common metal for the conductors constituting the circuit 21 and the conductors constituting the wiring 31, for example it is possible to use a common ink when printing them.
  • the circuit 21 and the wiring 31 are formed by performing plating in addition to the printing method, it is possible to use a common plating bath for the plating. As a result, the number of processes (such as the number of printings and the number of platings) for manufacturing a flexible circuit with a cable can be reduced, and productivity can be improved.
  • the conductor constituting the circuit 21 is made of n (n is an integer of 1 or more) type metal, and the conductor constituting the wiring 31 also constitutes the circuit 21. It consists of n kinds of metals which are the same kind as the conductor.
  • the mass ratio of each of the n kinds of metals may be the same as or different from each other in the conductor constituting the circuit 21 and the conductor constituting the wiring 31.
  • the metal species that are commonly included in the conductor constituting the circuit 21 and the conductor constituting the wiring 31 are not particularly limited, and can be selected from those exemplified as the metal constituting the conductor, for example, Ni, Cr, A metal selected from Mo, Mn and Co is preferred.
  • the conductor constituting the circuit 21 and the conductor constituting the wiring 31 are alloys, these alloys share one or more metals selected from Ni, Cr, Mo, Mn and Co. It is preferable to include. Since these metals are excellent in durability, the circuit 2 and the wiring 3 can be provided with excellent durability. Thereby, when the cable portion 3 is bent for connection to an external circuit or the other end of the wiring 31 is physically joined to the external circuit, disconnection of the wiring 31 is prevented and electrical Connection reliability can be improved. Further, when the circuit unit 2 is bent and used, the circuit 21 is prevented from being disconnected, and the function of the circuit 21 (the function of detecting the touch position in the present embodiment) is exhibited well.
  • the upper limit of the number of metal species that are commonly included in the conductor constituting the circuit 21 and the conductor constituting the wiring 31 is not particularly limited, but may be, for example, 5 or less.
  • the conductor included in the circuit 21 and the conductor included in the wiring 31 have the same metal contained as a main component.
  • the main component referred to here is the one kind of metal when the conductor is composed of one kind of metal, and the metal occupying the largest mass ratio in the alloy when the conductor is an alloy.
  • the thickness of the conductor constituting the wiring 31 is larger than the thickness of the conductor constituting the circuit 21.
  • the thickness of the conductor constituting the circuit 21 is preferably 0.05 ⁇ m to 10 ⁇ m, and the thickness of the conductor constituting the wiring 31 is 1.5 to 10 times the thickness of the conductor constituting the circuit 21. It is preferable. Thereby, particularly excellent durability can be imparted to the wiring 3. Therefore, when the cable portion 3 is bent for connection to an external circuit or the other end of the wiring 31 is physically joined to the external circuit, disconnection of the wiring 31 is prevented and electrical connection is made. Reliability can be improved. Further, even if the other end of the wiring 31 is worn by repeating physical joining and detachment between the other end of the wiring 31 and the external circuit, an effect of stably maintaining the electrical connection can be obtained.
  • the protective material 4 is preferably laminated on the circuit 21 and the wiring 31 so that the other end of the wiring 31 is exposed.
  • the exposed other end 32 of the wiring 31 can be suitably used for joining to an external component (not shown), and the circuit 31 and the wiring 31 excluding the other end 32 are suitably protected by the protective material 4. it can.
  • the protective material 4 is provided as a protective layer laminated on the substrate 1.
  • the circuit 21 of the circuit unit 2 and the wiring 31 of the cable unit 3 are arranged between the base material 1 and the protective layer.
  • the protective layer can constitute the surface of the flexible circuit with cable.
  • the protective material 4 for example, a resin or the like can be used.
  • resin is not specifically limited,
  • the active energy ray hardening resin etc. which were hardened by irradiating active energy rays, such as an ultraviolet-ray and an electron beam, etc. are mentioned.
  • the active energy ray curable resin include a cationic curable active energy ray curable resin.
  • the cation curable active energy ray-curable resin is formed by irradiating a cationic curable compound (also referred to as a cation curable monomer) with active energy rays and curing it.
  • a cationic curable monomer also referred to as a cation curable monomer
  • examples thereof include an epoxy compound, a compound having an oxetane ring, and a compound having a vinyl ether structure.
  • the protective layer made of the protective material 4 may be formed directly on the circuit 21 and the wiring 31, but may be formed on the circuit 21 and the wiring 31 via an intermediate layer (not shown). By providing the intermediate layer, corrosion of the circuit 21 and the wiring 31 due to components from the protective layer can be reliably prevented. A component from the protective layer that can cause corrosion includes acid.
  • the intermediate layer is preferably, for example, a layer that neutralizes or captures acid, or a layer that barriers acid.
  • the neutralization of acid means, for example, that an acid reacts with a base to form a salt such as a metal salt.
  • the capture of the acid means, for example, that the acid is electrically adsorbed by a substance having an opposite charge, or the acid compound is physically adsorbed by a compound having a structure that takes in the acid compound.
  • the intermediate layer for neutralizing or capturing the acid can contain a basic compound or an acid scavenger.
  • the intermediate layer that barriers acid is preferably a layer that transmits very little acid within the practical range.
  • the oxygen permeability coefficient is 1 [cc / (m 2 ⁇ day ⁇ atm)] or less, or water vapor permeability
  • the layer has a coefficient of 1 [g / (m 2 ⁇ day)] or less. These coefficients are values measured at 25 ° C.
  • the acid barrier layer can be formed, for example, by a film of an inorganic or metal oxide. Specifically, for example, a layer obtained by subjecting a polysilazane layer to a silica conversion treatment is preferably used.
  • circuit portion and the cable portion are provided on one surface of the base material, but the present invention is not limited to this.
  • a cable part can be provided in the one surface or both surfaces of a base material. This will be described with reference to FIG.
  • the flexible circuit with a cable includes circuit portions 2 on both surfaces of the base material 1.
  • the circuit portion 2 on one surface also referred to as the front surface
  • the circuit portion 2 on the other surface also referred to as the back surface
  • the plurality of sensor channels 22 constituting the circuit 21 of the circuit section 2 on the front surface extend in the vertical direction in FIG.
  • the plurality of sensor channels 22 constituting the circuit 21 of the circuit unit 2 on the back surface extend in the left-right direction in FIG.
  • the touch position in the XY coordinate system can be detected by intersecting the sensor channel 22 between the front and back surfaces of the substrate 1.
  • the cable portion 3 corresponding to the circuit portion 2 on the front surface is provided on the front surface
  • the cable portion 3 corresponding to the circuit portion 2 on the back surface is provided on the back surface.
  • the cable part 3 is provided on both surfaces of the base material 1.
  • the cable portion 3 corresponding to the circuit portion 2 on the front surface may be provided on the front surface
  • the cable portion 3 corresponding to the circuit portion 2 on the back surface may be provided on the front surface.
  • a through hole (not shown) is provided in the base material 1 and the lead-out wiring 23 corresponding to the circuit part 2 on the back surface is drawn out to the front surface through the through-hole and connected to the wiring 31 of the cable part provided on the front surface can do.
  • the two cable portions 3 are provided on different sides (upper side and right side in FIG. 3) of the rectangular base body 11, but a plurality of cable portions 3 are provided on the same side. You may provide with the strip
  • one cable portion 3 may be provided corresponding to both the front surface circuit portion 2 and the back surface circuit portion 2.
  • the cable portion 3 can be provided at any desired position by arranging the lead wiring 23.
  • the cable part 3 is not limited to the case where it extends from the side of the rectangular base body 11, and may be extended from the corner of the base body 11, for example.
  • the case where a plurality of wirings 31 are provided in the cable portion 3 is mainly shown, but the present invention is not limited to this.
  • the wiring 31 provided in the cable part 3 may be one.
  • the above-described aggregation unit 24 can be omitted.
  • the circuit 21 provided in the circuit unit 2 is a touch sensor circuit is mainly shown, but the present invention is not limited to this.
  • the circuit preferably exhibits any function by being electrically connected to an external circuit. Examples of the function exhibited by the circuit include a function of inputting and / or outputting a signal, a function of inputting and outputting energy, and the like. Specific examples of such a circuit include a heating element circuit that generates heat when energized, an antenna circuit that receives a signal such as an electromagnetic wave, and the like.
  • the manufacturing method of the flexible circuit with a cable which concerns on this invention can be used in order to manufacture the flexible circuit with a cable which was demonstrated above.
  • the description about the flexible circuit with a cable is used suitably.
  • the thickness of the conductor constituting the wiring 31 forms the circuit 21. At least one of the printing condition and the plating condition is made different between the circuit 21 and the wiring 31 so as to be larger than the thickness of the conductor.
  • the productivity of the flexible circuit with cable is excellent, and the effect of excellent reliability of electrical connection can be obtained.
  • the ink application amount used in the printing method can be varied. Specifically, in the printing method when forming the circuit 21 and the wiring 31, it is preferable that the amount of ink applied per unit area to the wiring 31 is larger than the amount of ink applied per unit area to the circuit 21. .
  • the plating time in electrolytic plating or electroless plating can be changed, and the amount of plating current in electrolytic plating can be changed.
  • the plating time for the wiring 31 is longer than the plating time for the circuit 21.
  • electrolytic plating is used, and the plating current amount per unit area for the wiring 31 is larger than the plating current amount per unit area for the circuit 21. It is preferable to do.
  • the ink application amount, the plating time, and the plating current amount described above it is preferable to perform one or more adjustments, thereby efficiently configuring the circuit 21 with the thickness of the conductor constituting the wiring 31. It can be larger than the thickness of the conductor.
  • circuit 21 and the wiring 31 are formed by a printing method and a plating process, first, a conductor for forming the circuit 21 and the wiring 31 is patterned on the base material 1 by the printing method, and then the base material 1 It is preferable to form the circuit 21 and the wiring 31 by plating the upper conductor.
  • Print method examples include a screen printing method, a relief printing method, an intaglio printing method, an offset printing method, a flexographic printing method, and an ink jet method.
  • the conductor thickness can be adjusted by adjusting the ink application amount per unit area.
  • the ink application amount per unit area to the wiring 31 larger than the ink application amount per unit area to the circuit 21, the thickness of the conductor constituting the wiring 31 is made larger than the thickness of the conductor constituting the circuit 21. can do.
  • a conductive fine wire made of a conductor can be formed by utilizing the coffee stain phenomenon when the ink applied on the substrate 1 is dried.
  • the conductive thin wire can be used to form the circuit 21 and / or the wiring 31.
  • the coffee stain phenomenon will be described with reference to FIG.
  • a line-like liquid 4 made of ink containing a conductive material (conductor) is applied on the substrate 1.
  • a conductive thin wire 5 can be formed as shown in FIG. 4B by selectively depositing a conductive material on the edge of the line liquid 4 in the process of drying the line liquid 4. .
  • a pair of conductive thin wires 5 and 5 are formed by selectively depositing a conductive material on both edges along the longitudinal direction of the line-shaped liquid 4.
  • the pair of conductive thin wires 5 and 5 can be formed in parallel to each other.
  • the line width of the conductive thin wire 5 is narrower than the line width of the line-like liquid 4, preferably 10 ⁇ m or less, more preferably 7 ⁇ m or less, and most preferably 5 ⁇ m or less.
  • the lower limit of the line width of the conductive thin wire 5 is not particularly limited, but can be set to, for example, 1 ⁇ m or more from the viewpoint of imparting stable conductivity. This preferable line width is also applied to the line width after plating, which will be described later.
  • Various patterns can be formed by the conductive thin wires 5. Examples of such a pattern include a stripe pattern and a mesh pattern (conductive thin wire mesh).
  • the sensor channel 22 may be configured by a solid conductor. However, since the sensor channel 22 is configured by a stripe pattern or a mesh pattern, translucency is obtained through a gap between the conductive thin wires. Even in the case of using the sensor channel 22, transparency can be imparted to the sensor channel 22.
  • a plurality of line-shaped liquids 4 arranged in parallel at predetermined intervals are formed on the substrate 1.
  • a pair of conductive thin wires 5 and 5 are formed from each line-shaped liquid 4 by utilizing the coffee stain phenomenon when the line-shaped liquid 4 is dried.
  • a pair of conductive thin wires 5, 5 are formed from each line-shaped liquid 4 using the coffee stain phenomenon.
  • a mesh pattern can be formed as described above.
  • the line-like liquid 4 and the conductive thin wire 5 are straight, but the present invention is not limited to this.
  • the shape of the line-like liquid 4 and the conductive thin wire 5 may be, for example, a wavy line or a broken line. Since the conductive thin wire 5 has a non-linear shape such as a wavy line or a broken line, an effect of preventing disconnection can be obtained even if the transparent conductor is curved.
  • the longitudinal direction (vertical direction in the figure) and the width direction (horizontal direction in the figure) of the base material 1 are formed on the base material 1.
  • the line-shaped liquid 4 having a plurality of quadrangles arranged in parallel at a predetermined interval is formed.
  • a thin line unit composed of a pair of conductive thin wires 5 and 5 is formed from each line-like liquid 4 by utilizing the coffee stain phenomenon when the line-like liquid 4 is dried.
  • the conductive thin wires 5 and 5 are formed concentrically, with one (outside conductive thin wire 5) including the other (inner conductive thin wire 5) inside.
  • the conductive thin wires 5 and 5 each have a quadrangular shape corresponding to the shape of both edges (inner and outer periphery) of the line-shaped liquid 4.
  • the line-shaped liquid 4 having a plurality of quadrangles arranged side by side in the longitudinal direction and the width direction of the base material 1 is formed on the base material 1.
  • the line-shaped liquid 4 that forms a plurality of quadrangles is formed at a position sandwiched between the previously formed thin line units.
  • the line-shaped liquid 4 having a quadrangular shape is arranged so as to be in contact with the outer conductive thin wire 5 of the thin wire units adjacent thereto, but not in contact with the inner conductive thin wire 5.
  • a thin line unit composed of a pair of conductive thin wires 5, 5 is formed from each line-shaped liquid 4 by utilizing the coffee stain phenomenon when the line-shaped liquid 4 is dried. Further form.
  • the outer conductive fine wires 5 are connected to the adjacent outer conductive fine wires 5.
  • the inner conductive wire 5 is not connected to the other inner conductive wires 5 and the outer conductive wires 5. That is, the inner conductive thin wires 5 are arranged so as to be isolated.
  • the pattern shown in FIG. 6D may be used as a mesh pattern as it is.
  • the inner conductive thin wires 5 in the pattern shown in FIG. 6D may be removed to form a mesh pattern (FIG. 6E) including the outer conductive thin wires 5.
  • FIG. 6E a mesh pattern including the outer conductive thin wires 5.
  • the method of removing the inner conductive thin wire 5 is not particularly limited, and for example, a method of irradiating an energy beam such as a laser beam or a method of chemically etching can be used.
  • the inner conductive thin wires 5 are disposed so as to be isolated, and can be excluded from the energization path for applying electrolytic plating to the outer conductive thin wires 5. Therefore, while the outer conductive thin wire 5 is being electroplated (while being energized), the inner conductive thin wire 5 that is not electroplated can be removed by dissolution or decomposition with a plating solution. it can.
  • a mesh pattern can be configured by combining a plurality of conductive thin wires 5 having a rectangular shape.
  • the line-like liquid 22 and the conductive thin wire 5 are rectangular, but it is not limited to this.
  • Examples of the shape of the line-like liquid 4 and the conductive thin wire 5 include a closed geometric figure.
  • Examples of the closed geometric figure include polygons such as a triangle, a quadrangle, a hexagon, and an octagon.
  • the closed geometric figure may include a curved element such as a circle or an ellipse.
  • the ink can contain metal fine particles.
  • the metal constituting the metal fine particle include Au, Pt, Ag, Cu, Ni, Cr, Rh, Pd, Zn, Co, Mo, Ru, W, Os, Ir, Fe, Mn, Ge, Sn, Ga, In etc. are mentioned.
  • Au, Ag, and Cu are preferable, and Ag is particularly preferable.
  • the average particle diameter of the metal fine particles can be, for example, 1 to 100 nm, further 3 to 50 nm.
  • the average particle diameter is a volume average particle diameter, and can be measured by “Zeta Sizer 1000HS” manufactured by Malvern.
  • the concentration of the metal fine particles in the ink can be, for example, 5% by weight or less, and further 0.01% by weight or more and 1.0% by weight or less. As a result, the coffee stain phenomenon is promoted, and effects such as further narrowing of the conductive thin wire can be obtained.
  • the solvent used in the ink is not particularly limited, and may include one or more selected from water and organic solvents.
  • the organic solvent include 1,2-hexanediol, 2-methyl-2,4-pentanediol, 1,3-butanediol, 1,4-butanediol, alcohols such as propylene glycol, diethylene glycol monomethyl ether,
  • ethers such as diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, triethylene glycol monomethyl ether, dipropylene glycol monomethyl ether, and dipropylene glycol monoethyl ether.
  • the ink can contain other components such as a surfactant.
  • the surfactant is not particularly limited, and examples thereof include a silicon surfactant.
  • the concentration of the surfactant in the ink can be, for example, 1% by weight or less.
  • the drying method of the ink (line liquid) applied on the substrate may be natural drying or forced drying.
  • the drying method used for forced drying is not particularly limited. For example, a method of heating the surface of the substrate to a predetermined temperature, a method of forming an air flow on the surface of the substrate, or the like can be used alone or in combination. .
  • the airflow can be formed by blowing or sucking using a fan or the like, for example.
  • the circuit 21 of the circuit unit 2 is configured by the conductive thin wire formed using the coffee stain phenomenon described above, and the wiring 31 of the cable unit 3 is configured by the conductor formed without using the coffee stain phenomenon. May be.
  • the concentration (% by weight) of the conductor in the ink for forming the wiring 31 is higher than the concentration (% by weight) of the conductor in the ink for forming the circuit 21.
  • the circuit 21 can be formed by accelerating the coffee stain phenomenon with a relatively low concentration of ink, and the thickness of the conductor constituting the wiring 31 can be reduced by the relatively high concentration of ink. It can be made larger than the thickness of the conductive thin wire.
  • the case where the sensor channel 22 is configured by a plurality of conductive thin wires is mainly shown, but the present invention is not limited to this.
  • the sensor channel 22 may be constituted by, for example, a solid conductor. The same applies to the case where the circuit 21 other than the sensor channel 22 is formed.
  • the conductor formed on the substrate by a printing method can be baked.
  • the firing treatment include light irradiation treatment and heat treatment.
  • the light irradiation treatment for example, gamma rays, X-rays, ultraviolet rays, visible light, infrared rays (IR), microwaves, radio waves, and the like can be used.
  • the heat treatment for example, hot air, a heating stage, a heating press, or the like can be used.
  • the plating process for example, electroless plating, electrolytic plating, or the like can be used.
  • the conductor can be selectively plated using the conductivity of the conductor (preferably having the form of a conductive fine wire) provided on the substrate in the printing process.
  • the plating process a conductor constituted by a printed layer made of a conductor formed by a printing method and a plated layer (plated film) covering the conductor is obtained.
  • the thickness of the conductor can be adjusted by adjusting the plating time. Moreover, when using electroplating, the thickness of a conductor can be adjusted by adjusting the amount of plating current per unit area.
  • the plating time can be adjusted by the immersion time in the plating solution.
  • the thickness of the conductor constituting the wiring 31 is configured.
  • the thickness of the conductor to be made can be made larger.
  • the adjustment of the plating current amount per unit area can be adjusted by the immersion time in the plating solution and / or the selection of the feeding part.
  • the plating current per unit area to the wiring 31 of the cable part 3 is set longer by immersing the wiring part 31 of the cable part 3 in the plating liquid than the immersion time of the circuit part 2 of the circuit 21 in the plating liquid.
  • the amount can be larger than the amount of plating current per unit area to the circuit 21 of the circuit unit 2.
  • the thickness of the conductor which comprises the wiring 31 can be made larger than the thickness of the conductor which comprises the circuit 21.
  • the above-described power feeding part is a part where an electrode for electroplating (usually a cathode) is brought into contact, and the closer to the power feeding part, the larger the plating current amount per unit area. Therefore, for example, by selecting the wiring 31 of the cable part 3 as a feeding part, the amount of plating current per unit area to the wiring 31 of the cable part 3 is changed to the plating current per unit area to the circuit 21 of the circuit part 2. Can be greater than the amount. Thereby, the thickness of the conductor which comprises the wiring 31 can be made larger than the thickness of the conductor which comprises the circuit 21.
  • the conductor applied on the base material may be subjected to plating several times.
  • a plurality of plating processes using different plating metals may be performed.
  • a plurality of metal layers (plating layers) can be laminated on the conductive thin wire by a plurality of plating processes.
  • the first metal layer made of Cu and the second metal layer made of Ni or Cr are sequentially laminated on the conductive thin wire made of Ag, thereby improving the conductivity by Cu.
  • the effect, the effect of improving weather resistance by Ni or Cr, and the effect of eliminating the color can be obtained.
  • the thickness of the conductor constituting the wiring 31 is changed to the thickness of the conductor constituting the circuit 21. It may be larger.
  • the flexible circuit intermediate with cable of the present invention (hereinafter also simply referred to as an intermediate) can be used as a material for producing the flexible circuit with cable described above.
  • an intermediate body the description about the flexible circuit with a cable and its manufacturing method is used.
  • the intermediate body is composed of a circuit portion 2 in which a circuit 21 composed of a conductor is provided on at least one surface of the elongated flexible base material 1, and the circuit 21.
  • a unit U configured by a cable portion 3 provided with a wiring 31 having one end electrically connected to the external circuit and the other end electrically connected to an external circuit is arranged in the longitudinal direction of the flexible substrate 1. A plurality of prints are printed along.
  • the conductor constituting the circuit 21 and the conductor constituting the wiring 31 include at least one metal in common. Further, the thickness of the conductor constituting the wiring 31 is larger than the thickness of the conductor constituting the circuit 21.
  • the productivity of the flexible circuit with cable is excellent, and the effect of excellent reliability of electrical connection can be obtained.
  • At least one wiring 31 constituting the unit U preferably all the wirings 31 extend from the circuit 21 toward the long side of the flexible substrate 1 as shown in the example of FIG. Thereby, the effect of further improving productivity can be obtained.
  • the protective layer made of the protective layer 4 is formed while the intermediate body is being rolled to roll. It can be laminated continuously.
  • the constant laminate width L can be suitably set so that the other end of the wiring 31 is out of the lamination range.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Human Computer Interaction (AREA)
  • Structure Of Printed Boards (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

The present invention addresses the problem of providing a flexible circuit with a cable exhibiting excellent production characteristics and superior electrical connection reliability, a manufacturing method therefor, and an intermediate for the same. This problem is solved by providing a flexible substrate 1 having printed on at least one surface: a circuit unit 2 provided with a circuit 21 composed of a conductor; and a cable unit 3 provided with wiring 31 composed of a conductor, the wiring 31 having one end connected to the circuit 21 and another end for connecting to an external circuit. The conductor constituting the circuit 21 and the conductor constituting the wiring 31 have at least one metal in common, and the thickness of the conductor constituting the wiring 31 is greater than the thickness of the conductor constituting the circuit 21.

Description

ケーブル付きフレキシブル回路及びその製造方法、並びにケーブル付きフレキシブル回路中間体Flexible circuit with cable, method of manufacturing the same, and flexible circuit intermediate with cable
 本発明は、ケーブル付きフレキシブル回路及びその製造方法、並びにケーブル付きフレキシブル回路中間体に関し、より詳しくは、生産性に優れ、且つ電気的な接続の信頼性に優れるケーブル付きフレキシブル回路及びその製造方法、並びにケーブル付きフレキシブル回路中間体に関する。 The present invention relates to a flexible circuit with a cable and a method for manufacturing the same, and a flexible circuit intermediate with a cable. More specifically, the flexible circuit with a cable having excellent productivity and excellent reliability of electrical connection, and a method for manufacturing the same. And a flexible circuit intermediate with a cable.
 基材上にタッチセンサー回路を設ける技術が知られている(特許文献1、2)。 Technology for providing a touch sensor circuit on a substrate is known (Patent Documents 1 and 2).
 基板上に設けられた回路を、外部部品に設けられた外部回路に接続する際には、FFC(フラットフレシキブルケーブル)やFPC(フレキシブルプリント回路)が用いられている(特許文献3~6)。 When connecting a circuit provided on a substrate to an external circuit provided in an external component, FFC (flat flexible cable) or FPC (flexible printed circuit) is used (Patent Documents 3 to 6).
特開2015-18494号公報JP 2015-18494 A 特開2017-203987号公報JP 2017-203987 A 特開2010-278067号公報JP 2010-278067 A 特開2016-189240号公報JP 2016-189240 A 特開2012-38710号公報JP 2012-38710 A 特開2006-156079号公報JP 2006-156079 A 特開2004-31858号公報JP 2004-31858 A
 本発明者は、フレキシブル基材上に、回路部と、FFCやFPCを代替し得るケーブル部とを設け、該ケーブル部を用いて外部回路への接続を行うことを試みた。このような技術を実用化するためには、生産性や、電気的な接続の信頼性に優れることが求められる。 The present inventor has provided a circuit part and a cable part that can substitute for FFC and FPC on a flexible substrate, and tried to connect to an external circuit using the cable part. In order to put such a technology into practical use, it is required to be excellent in productivity and reliability of electrical connection.
 特許文献1~7はこのような課題を解決するものではない。 Patent Documents 1 to 7 do not solve such problems.
 そこで本発明の課題は、生産性に優れ、且つ電気的な接続の信頼性に優れるケーブル付きフレキシブル回路及びその製造方法、並びにケーブル付きフレキシブル回路中間体を提供することにある。 Accordingly, an object of the present invention is to provide a flexible circuit with a cable, a method for manufacturing the same, and a flexible circuit intermediate with a cable, which are excellent in productivity and excellent in the reliability of electrical connection.
 また本発明の他の課題は、以下の記載によって明らかとなる。 Further, other problems of the present invention will become apparent from the following description.
 上記課題は、以下の各発明によって解決される。 The above problems are solved by the following inventions.
1.
 フレキシブル基材の少なくとも一方の面に、導体により構成された回路が設けられた回路部と、導体により構成され、前記回路に接続された一端及び外部回路に接続するための他端を有する配線が設けられたケーブル部とが印刷されており、
 前記回路を構成する導体と、前記配線を構成する導体とは、少なくとも1種の金属を共通に含み、
 前記配線を構成する導体の厚みが、前記回路を構成する導体の厚みより大きく、
 前記フレキシブル基材は、基材本体と、該基材本体から帯状に延設された帯状部とを備え、
 前記基材本体に前記回路部が設けられると共に、前記帯状部に前記ケーブル部が設けられ、
 前記帯状部の先端に前記ケーブル部を構成する前記配線の前記他端が設けられる、ケーブル付きフレキシブル回路。
2.
 前記回路を構成する導体と、前記配線を構成する導体とは、それぞれ合金である、前記1記載のケーブル付きフレキシブル回路。
3.
 前記回路を構成する合金と、前記配線を構成する合金とは、ニッケル、クロム、モリブデン、マンガン及びコバルトから選択される1種以上を共通に含む、前記2記載のケーブル付きフレキシブル回路。
4.
 前記回路を構成する導体の厚みが0.05μm~10μmであり、
 前記配線を構成する導体の厚みが、前記回路を構成する導体の厚みの1.5倍~10倍である、前記1~3の何れかに記載のケーブル付きフレキシブル回路。
5.
 前記配線の前記他端を露出させるように、前記回路及び前記配線上に保護材料が積層されている、前記1~4の何れかに記載のケーブル付きフレキシブル回路。
6.
 前記回路は、複数のセンサーチャネルによって構成されたタッチセンサー回路である、前記1~5の何れかに記載のケーブル付きフレキシブル回路。
7.
 前記回路は、通電によって発熱する発熱体回路である、前記1~5の何れかに記載のケーブル付きフレキシブル回路。
8.
 前記1~7の何れかに記載のケーブル付きフレキシブル回路を製造する製造方法であって、
 前記回路と前記配線とを、印刷法とめっき加工とを組み合わせて形成する際に、前記配線を構成する導体の厚みが前記回路を構成する導体の厚みより大きくなるように、前記回路と前記配線とで印刷条件及びめっき条件の少なくとも一方を異ならせる、ケーブル付きフレキシブル回路の製造方法。
9.
 前記回路と前記配線とを形成する際の印刷法において、前記配線への単位面積当たりのインク付与量を、前記回路への単位面積当たりのインク付与量より大きくする、前記8記載のケーブル付きフレキシブル回路の製造方法。
10.
 前記回路と前記配線とを形成する際のめっき加工において、前記配線へのめっき時間を、前記回路へのめっき時間より長くする、前記8又は9記載のケーブル付きフレキシブル回路の製造方法。
11.
 前記回路と前記配線とを形成する際のめっき加工において、電解めっきを用いると共に、前記配線への単位面積当たりのめっき電流量を、前記回路への単位面積当たりのめっき電流量より大きくする、前記8~10の何れかに記載のケーブル付きフレキシブル回路の製造方法。
12.
 長尺状のフレキシブル基材の少なくとも一方の面に、導体により構成された回路が設けられた回路部と、導体により構成され、前記回路に接続された一端及び外部回路に接続するための他端を有する配線が設けられたケーブル部とによって構成されたユニットが、該フレキシブル基材の長手方向に沿って、複数印刷されており、
 前記回路を構成する導体と、前記配線を構成する導体とは、少なくとも1種の金属を共通に含み、
 前記配線を構成する導体の厚みが、前記回路を構成する導体の厚みより大きい、ケーブル付きフレキシブル回路中間体。
13.
 前記ユニットを構成する少なくとも1つの前記配線は、前記回路から前記フレキシブル基材の長辺に向けて伸びる、前記12記載のケーブル付きフレキシブル回路中間体。
1.
A circuit portion provided with a circuit constituted by a conductor on at least one surface of the flexible base material, and a wiring having one end connected to the circuit and the other end connected to the external circuit constituted by the conductor. The cable part provided is printed,
The conductor constituting the circuit and the conductor constituting the wiring include at least one metal in common,
The thickness of the conductor constituting the wiring is larger than the thickness of the conductor constituting the circuit,
The flexible base material includes a base material main body, and a belt-shaped portion extending in a belt shape from the base material main body,
The circuit part is provided on the base body, and the cable part is provided on the belt-like part.
A flexible circuit with a cable, wherein the other end of the wiring constituting the cable portion is provided at a tip of the strip-shaped portion.
2.
2. The flexible circuit with a cable according to 1, wherein the conductor constituting the circuit and the conductor constituting the wiring are each an alloy.
3.
3. The flexible circuit with a cable according to 2, wherein the alloy constituting the circuit and the alloy constituting the wiring commonly include at least one selected from nickel, chromium, molybdenum, manganese, and cobalt.
4).
The thickness of the conductor constituting the circuit is 0.05 μm to 10 μm,
4. The flexible circuit with cable according to any one of 1 to 3, wherein a thickness of a conductor constituting the wiring is 1.5 to 10 times a thickness of a conductor constituting the circuit.
5).
5. The flexible circuit with a cable according to any one of 1 to 4, wherein a protective material is laminated on the circuit and the wiring so that the other end of the wiring is exposed.
6).
6. The flexible circuit with a cable according to any one of 1 to 5, wherein the circuit is a touch sensor circuit configured by a plurality of sensor channels.
7).
6. The flexible circuit with a cable according to any one of 1 to 5, wherein the circuit is a heating element circuit that generates heat when energized.
8).
A manufacturing method for manufacturing a flexible circuit with a cable according to any one of 1 to 7,
When forming the circuit and the wiring by combining printing and plating, the circuit and the wiring are arranged such that the thickness of the conductor constituting the wiring is larger than the thickness of the conductor constituting the circuit. A method for manufacturing a flexible circuit with a cable, in which at least one of a printing condition and a plating condition is different.
9.
9. The flexible with cable according to 8, wherein an ink application amount per unit area to the wiring is larger than an ink application amount per unit area to the circuit in a printing method when forming the circuit and the wiring. Circuit manufacturing method.
10.
10. The method for manufacturing a flexible circuit with a cable according to 8 or 9, wherein, in the plating process when forming the circuit and the wiring, the plating time for the wiring is made longer than the plating time for the circuit.
11.
In the plating process when forming the circuit and the wiring, while using electrolytic plating, the plating current amount per unit area to the wiring is larger than the plating current amount per unit area to the circuit, A method for producing a flexible circuit with a cable according to any one of 8 to 10.
12
A circuit part provided with a circuit composed of a conductor on at least one surface of a long flexible substrate, one end composed of a conductor and connected to the circuit, and the other end connected to an external circuit A plurality of units configured by a cable portion provided with wiring having a length of the flexible base material are printed along the longitudinal direction of the flexible base material,
The conductor constituting the circuit and the conductor constituting the wiring include at least one metal in common,
A flexible circuit intermediate with a cable, wherein a thickness of a conductor constituting the wiring is larger than a thickness of a conductor constituting the circuit.
13.
13. The flexible circuit intermediate with cable according to 12, wherein at least one of the wirings constituting the unit extends from the circuit toward a long side of the flexible substrate.
 本発明によれば、生産性に優れ、且つ電気的な接続の信頼性に優れるケーブル付きフレキシブル回路及びその製造方法、並びにケーブル付きフレキシブル回路中間体を提供することができる。 According to the present invention, it is possible to provide a flexible circuit with a cable that is excellent in productivity and excellent in the reliability of electrical connection, a manufacturing method thereof, and a flexible circuit intermediate with a cable.
ケーブル付きフレキシブル回路の一例を説明する図The figure explaining an example of a flexible circuit with a cable 保護材料の一例を説明する図The figure explaining an example of a protective material ケーブル付きフレキシブル回路の他の例を説明する図The figure explaining the other example of the flexible circuit with a cable 導電性細線の形成方法の一例を説明する図The figure explaining an example of the formation method of an electroconductive thin wire メッシュパターン形成の第一態様を説明する図The figure explaining the 1st aspect of mesh pattern formation メッシュパターン形成の第二態様を説明する図The figure explaining the 2nd aspect of mesh pattern formation ケーブル付きフレキシブル回路中間体の一例を説明する図The figure explaining an example of the flexible circuit intermediate body with a cable
 以下に、本発明を実施するための形態について詳しく説明する。 Hereinafter, embodiments for carrying out the present invention will be described in detail.
1.ケーブル付きフレキシブル回路
 図1は、本発明に係るケーブル付きフレキシブル回路の一例を説明する図である。
1. FIG. 1 is a diagram illustrating an example of a flexible circuit with a cable according to the present invention.
 図1に示すケーブル付きフレキシブル回路において、フレキシブル基材1の一方の面には、回路部2と、ケーブル部3とが印刷されている。 In the flexible circuit with cable shown in FIG. 1, a circuit portion 2 and a cable portion 3 are printed on one surface of the flexible substrate 1.
〔フレキシブル基材〕
 フレキシブル基材(以下、単に基材ともいう)1の材質は格別限定されず、例えば、樹脂等が挙げられる。樹脂としては、例えば、ポリエチレンテレフタレート(PET)樹脂、ポリエチレンナフタレート(PEN)樹脂、ポリブチレンテレフタレート樹脂、セルロース系樹脂(ポリアセチルセルロース、セルロースジアセテート、セルローストリアセテート等)、ポリエチレン樹脂、ポリプロピレン系樹脂、メタクリル系樹脂、環状ポリオレフィン系樹脂、ポリスチレン系樹脂、アクリロニトリル-(ポリ)スチレン共重合体(AS樹脂)、アクリロニトリル-ブタジエン-スチレン共重合体(ABS樹脂)、ポリ塩化ビニル系樹脂、ポリ(メタ)アクリル系樹脂、ポリカーボネート系樹脂、ポリエステル系樹脂、ポリイミド系樹脂、ポリアミド系樹脂、ポリアミドイミド系樹脂、シクロオレフィンポリマー(COP)樹脂等が挙げられる。これらの樹脂を用いれば、基材1に良好な可撓性を付与できる。また、これらの樹脂を用いれば、基材1に良好な絶縁性及び透明性を付与できる。樹脂により構成された基材1は、例えばフィルムであり得る。樹脂により構成された基材1は、延伸されていても、未延伸であってもよい。
[Flexible substrate]
The material of the flexible substrate (hereinafter also simply referred to as a substrate) 1 is not particularly limited, and examples thereof include a resin. Examples of the resin include polyethylene terephthalate (PET) resin, polyethylene naphthalate (PEN) resin, polybutylene terephthalate resin, cellulose resin (polyacetyl cellulose, cellulose diacetate, cellulose triacetate, etc.), polyethylene resin, polypropylene resin, Methacrylic resin, cyclic polyolefin resin, polystyrene resin, acrylonitrile- (poly) styrene copolymer (AS resin), acrylonitrile-butadiene-styrene copolymer (ABS resin), polyvinyl chloride resin, poly (meth) Examples include acrylic resins, polycarbonate resins, polyester resins, polyimide resins, polyamide resins, polyamideimide resins, and cycloolefin polymer (COP) resins. If these resins are used, good flexibility can be imparted to the substrate 1. Moreover, if these resins are used, good insulating properties and transparency can be imparted to the substrate 1. The substrate 1 made of resin can be, for example, a film. The substrate 1 made of resin may be stretched or unstretched.
 基材1の厚さは格別限定されず、例えば1μm~10cm程度、更には20μm~300μm程度とすることができる。 The thickness of the substrate 1 is not particularly limited, and can be, for example, about 1 μm to 10 cm, and further about 20 μm to 300 μm.
 基材1には、表面エネルギーを変化させるための表面処理を施してもよい。更に、基材1は、積層体でもよく、ハードコート層や反射防止層などを有してもよい。 The substrate 1 may be subjected to a surface treatment for changing the surface energy. Furthermore, the base material 1 may be a laminate, and may have a hard coat layer, an antireflection layer, or the like.
 基材1は、方形状の基材本体11と、該基材本体11から帯状に延設された帯状部12とを備えている。帯状部12は、基材本体11の側面から、基材1の面方向(厚さ方向と直交する方向)に凸状に設けられている。基材本体11と帯状部12とは、互いに一体であり、一枚の基材の外形を切断加工することによって形成されている。基材1において、基材本体11には回路部2が設けられ、帯状部12にはケーブル部3が設けられている。 The base material 1 includes a rectangular base material body 11 and a belt-like portion 12 extending from the base material body 11 in a belt shape. The belt-like portion 12 is provided in a convex shape from the side surface of the substrate body 11 in the surface direction of the substrate 1 (direction perpendicular to the thickness direction). The base body 11 and the belt-like portion 12 are integral with each other, and are formed by cutting the outer shape of one base material. In the base material 1, the circuit body 2 is provided in the base material body 11, and the cable part 3 is provided in the belt-like part 12.
〔回路部〕
 図1に示すように、回路部2を構成する基材1上には、導体により構成された回路21が印刷されている。ここでは、回路21の一例として、タッチセンサー回路を示している。タッチセンサー回路は、基材1上に印刷された複数のセンサーチャネル22によって構成されている。タッチセンサー回路を構成する複数のセンサーチャネル22は、タッチ位置の検出に用いることができる。
(Circuit part)
As shown in FIG. 1, a circuit 21 made of a conductor is printed on the base material 1 constituting the circuit unit 2. Here, a touch sensor circuit is shown as an example of the circuit 21. The touch sensor circuit is constituted by a plurality of sensor channels 22 printed on the substrate 1. The plurality of sensor channels 22 constituting the touch sensor circuit can be used for detection of a touch position.
 各センサーチャネル22は帯状に形成されている。帯状のセンサーチャネル22は、帯の幅方向に所定の間隔をおいて複数並設されている。 Each sensor channel 22 is formed in a strip shape. A plurality of belt-like sensor channels 22 are arranged in parallel at a predetermined interval in the width direction of the belt.
 回路部2を構成する回路21は、基材1上に印刷された複数の引出配線23を更に含んでいる。引出配線23の一端は、センサーチャネル22に接続されている。これにより引出配線23とセンサーチャネル22とが電気的に接続される。ここでいう電気的な接続とは、導通可能であることを意味する。また、複数の引出配線23の他端は、ケーブル部3の基端(基材1の帯状部の基端)の集約部24に集約されている。ここで、集約部24に集約されているというのは、複数の引出配線23の線間隔(Line&Space;L/Sともいう)が、複数のセンサーチャネル22に接続された一端側よりも、集約部24に配置された他端側においてより狭いことであり得る。 The circuit 21 constituting the circuit unit 2 further includes a plurality of lead wires 23 printed on the substrate 1. One end of the lead wiring 23 is connected to the sensor channel 22. Thereby, the lead-out wiring 23 and the sensor channel 22 are electrically connected. The term “electrical connection” as used herein means that conduction is possible. Further, the other ends of the plurality of lead-out wires 23 are aggregated in the aggregation portion 24 at the base end of the cable portion 3 (the base end of the belt-like portion of the base material 1). Here, being aggregated in the aggregation unit 24 means that the line spacing (also referred to as Line &Space; L / S) of the plurality of lead-out wirings 23 is greater than that on one end side connected to the plurality of sensor channels 22. It may be narrower at the other end side arranged at 24.
〔ケーブル部〕
 ケーブル部3を構成する基材1上には、導体により構成された複数の配線31が印刷されている。
[Cable part]
On the base material 1 constituting the cable portion 3, a plurality of wirings 31 made of a conductor are printed.
 ケーブル部3において、複数の配線31は、ケーブル部3の基端から先端まで伸びている。複数の配線31は、互いに平行に、それぞれケーブル部の長手方向に沿って伸びている。 In the cable part 3, the plurality of wirings 31 extend from the proximal end to the distal end of the cable part 3. The plurality of wirings 31 extend in parallel to each other along the longitudinal direction of the cable portion.
 配線31の一端は、回路部2の回路21に電気的に接続されている。即ち、配線31の一端は、ケーブル部3の基端の集約部24に配置され、該集約部24に集約された引出配線23の他端と電気的に接続されている。 One end of the wiring 31 is electrically connected to the circuit 21 of the circuit unit 2. That is, one end of the wiring 31 is disposed in the aggregation portion 24 at the base end of the cable portion 3, and is electrically connected to the other end of the lead-out wiring 23 aggregated in the aggregation portion 24.
 配線31の他端は、ケーブル部3の先端(基材1の帯状部の先端)に配置され、該配線31を図示しない外部回路に電気的に接続するための接続部を成している。ケーブル部3の先端縁は直線的に形成されており、この先端縁に複数の配線31の他端が並設されることによって、接続部が構成されている。 The other end of the wiring 31 is arranged at the tip of the cable part 3 (tip of the belt-like part of the base material 1) and forms a connection part for electrically connecting the wiring 31 to an external circuit (not shown). The front end edge of the cable part 3 is formed linearly, and the other end of the plurality of wirings 31 is arranged in parallel at the front end edge to constitute a connection part.
 外部回路は、例えば図示しない外部部品(外部基板)に実装された回路であり得る。より具体的には、例えば、回路部2がタッチセンサー回路によって構成される場合、外部回路は位置検出のための演算を行う集積回路(IC)等によって構成され得る。 The external circuit can be a circuit mounted on an external component (external board) (not shown), for example. More specifically, for example, when the circuit unit 2 is configured by a touch sensor circuit, the external circuit may be configured by an integrated circuit (IC) that performs an operation for position detection.
 ケーブル部3の先端に配置された配線31の他端を、上述した外部回路を有する外部部品に実装されたコネクタ(例えばFFCコネクタあるいはFPCコネクタ)に接続することによって、回路部2の回路21を外部回路に電気的に接続できる。あるいは、外部部品にコネクタが実装されていなくても、例えば導電性接着剤やACF(異方性導電フィルム)等を用いて、ケーブル部3の先端に配置された配線31の他端を、外部回路に電気的に接続できる。 By connecting the other end of the wiring 31 disposed at the tip of the cable unit 3 to a connector (for example, an FFC connector or an FPC connector) mounted on the external component having the above-described external circuit, the circuit 21 of the circuit unit 2 is connected. Can be electrically connected to an external circuit. Alternatively, even if the connector is not mounted on the external component, the other end of the wiring 31 arranged at the tip of the cable portion 3 is connected to the outside using, for example, a conductive adhesive or ACF (anisotropic conductive film). Can be electrically connected to the circuit.
 そのため、本実施形態に係るケーブル付きフレキシブル回路によれば、ケーブル部3の先端を外部部品に直接接合することができ、例えばFFCやFPC等のような外部接続部品を別途、介在させる必要がなくなる。 Therefore, according to the flexible circuit with a cable according to the present embodiment, the tip of the cable portion 3 can be directly joined to an external component, and there is no need to separately provide an external connection component such as FFC or FPC. .
 また、本実施形態に係るケーブル付きフレキシブル回路によれば、ケーブル部3が回路部2と一体に形成されているため、例えばFFCやFPC等のような外部接続部品を回路部2に接続する工程を省略できる。 In addition, according to the flexible circuit with a cable according to the present embodiment, since the cable portion 3 is formed integrally with the circuit portion 2, for example, a step of connecting an external connection component such as FFC or FPC to the circuit portion 2. Can be omitted.
 FFCやFPCを構成する基材は、該FFCやFPCを基板等に半田付けする際の高温に耐え得るように、ポリイミド等の高耐熱性の樹脂によって構成されるのが一般的である。そのため、FFCやFPCは基材材質の選択自由度が低く、且つ高コストになってしまう。 The base material constituting the FFC or FPC is generally made of a high heat-resistant resin such as polyimide so that it can withstand high temperatures when the FFC or FPC is soldered to a substrate or the like. Therefore, FFC and FPC have a low degree of freedom in selecting a base material and are expensive.
 これに対して、本実施形態では、基材1において回路部2とケーブル部3とが一体であり、且つ回路部2の回路21からケーブル部3の配線31にかけて導体が連続的に印刷されているため、回路部2とケーブル部3との間で半田付けが不要である。そのため、基材材質の選択自由度が高く、且つ低コスト化を図ることができる。 On the other hand, in this embodiment, the circuit part 2 and the cable part 3 are integrated in the base material 1, and the conductor is continuously printed from the circuit 21 of the circuit part 2 to the wiring 31 of the cable part 3. Therefore, soldering between the circuit unit 2 and the cable unit 3 is not necessary. Therefore, the degree of freedom in selecting the base material is high and the cost can be reduced.
 例えば、基材1を、ポリイミドよりも耐熱性が低い材質(例えばポリイミドよりも低融点の材質)によって構成することができ、例えばPET等を用いれば基材1に良好な可撓性を付与できると共に、低コスト化も実現できる。 For example, the base material 1 can be made of a material having lower heat resistance than polyimide (for example, a material having a lower melting point than polyimide). For example, if PET or the like is used, good flexibility can be imparted to the base material 1. At the same time, the cost can be reduced.
〔導体〕
 回路部2の回路21を構成する導体と、ケーブル部3の配線31を構成する導体とは、それぞれ、少なくとも金属を含んで構成されている。これらの導体を構成する金属は格別限定されないが、例えば、Au、Pt、Ag、Cu、Ni、Cr、Rh、Pd、Zn、Co、Mo、Ru、W、Os、Ir、Fe、Mn、Ge、Sn、Ga、In等が挙げられる。
〔conductor〕
The conductor constituting the circuit 21 of the circuit part 2 and the conductor constituting the wiring 31 of the cable part 3 are each configured to include at least a metal. The metal constituting these conductors is not particularly limited. For example, Au, Pt, Ag, Cu, Ni, Cr, Rh, Pd, Zn, Co, Mo, Ru, W, Os, Ir, Fe, Mn, Ge , Sn, Ga, In and the like.
 また、回路21を構成する導体、及び、配線31を構成する導体の一方又は両方を、合金によって構成してもよい。特に、回路21を構成する導体、及び、配線31を構成する導体の両方が、合金であることが好ましい。合金は、上述した金属から選ばれる複数種の金属によって構成され得る。 Further, one or both of the conductor constituting the circuit 21 and the conductor constituting the wiring 31 may be made of an alloy. In particular, it is preferable that both the conductor constituting the circuit 21 and the conductor constituting the wiring 31 are alloys. The alloy may be composed of a plurality of types of metals selected from the metals described above.
 ここでいう合金は、例えば、導体が全体として複数種の金属(金属元素)によって構成されていることであり得る。合金は、例えば、複数種の金属が原子レベルで完全に溶け込んでいる固溶体であってもよいし、複数種の金属が結晶レベルで独立している共晶であってもよいし、一種の金属上に他種の金属が層状に積層されたものであってもよい。合金からなる導体の好ましい一例として、一種の金属上に他種の金属からなる1層以上のめっき層を設けてなるものが挙げられる。 The alloy here can be, for example, that the conductor is composed of a plurality of types of metals (metal elements) as a whole. The alloy may be, for example, a solid solution in which plural kinds of metals are completely dissolved at an atomic level, or may be a eutectic in which plural kinds of metals are independent at a crystal level, or a kind of metal. Another type of metal may be laminated in layers. As a preferable example of the conductor made of an alloy, one formed by providing one or more plating layers made of another kind of metal on one kind of metal can be mentioned.
 回路21を構成する導体と、配線31を構成する導体とは、少なくとも1種、好ましくは2種以上、より好ましくは3種以上の金属を共通に含んでいる。回路21を構成する導体と、配線31を構成する導体とが共通の金属を含むことによって、例えば、これらを印刷する際に共通のインクを使用すること等が可能になる。また、印刷法に加えてめっき加工を施して回路21及び配線31を形成する場合は、めっき加工に共通のめっき浴を使用すること等が可能になる。その結果、ケーブル付きフレキシブル回路を製造するための工程数(印刷回数やめっき回数等)を削減でき、生産性を向上できる。 The conductor constituting the circuit 21 and the conductor constituting the wiring 31 contain at least one, preferably two or more, more preferably three or more metals in common. By including a common metal for the conductors constituting the circuit 21 and the conductors constituting the wiring 31, for example, it is possible to use a common ink when printing them. Further, when the circuit 21 and the wiring 31 are formed by performing plating in addition to the printing method, it is possible to use a common plating bath for the plating. As a result, the number of processes (such as the number of printings and the number of platings) for manufacturing a flexible circuit with a cable can be reduced, and productivity can be improved.
 上記のような効果を発揮する上で最も好ましいのは、回路21を構成する導体がn(nは1以上の整数)種の金属からなり、配線31を構成する導体も、回路21を構成する導体と同種のn種の金属からなることである。ここで、n種の金属の各々の質量割合は、回路21を構成する導体と、配線31を構成する導体とで、互いに同じでもよく、異なってもよい。 Most preferably, the conductor constituting the circuit 21 is made of n (n is an integer of 1 or more) type metal, and the conductor constituting the wiring 31 also constitutes the circuit 21. It consists of n kinds of metals which are the same kind as the conductor. Here, the mass ratio of each of the n kinds of metals may be the same as or different from each other in the conductor constituting the circuit 21 and the conductor constituting the wiring 31.
 回路21を構成する導体と、配線31を構成する導体とに共通に含まれる金属種は格別限定されず、例えば導体を構成する金属として例示したものの中から選択され得るが、特にNi、Cr、Mo、Mn及びCoから選択される金属であることが好ましい。 The metal species that are commonly included in the conductor constituting the circuit 21 and the conductor constituting the wiring 31 are not particularly limited, and can be selected from those exemplified as the metal constituting the conductor, for example, Ni, Cr, A metal selected from Mo, Mn and Co is preferred.
 特に、回路21を構成する導体と、配線31を構成する導体とが、それぞれ合金である場合、これらの合金は、Ni、Cr、Mo、Mn及びCoから選択される1種以上の金属を共通に含むことが好ましい。これらの金属は耐久性に優れるため、回路2及び配線3に優れた耐久性を付与できる。これにより、ケーブル部3を外部回路との接続等のために屈曲させたり、配線31の他端を外部回路と物理的に接合させたりする際において、配線31の断線が防止され、電気的な接続の信頼性を向上することができる。また、回路部2を屈曲させて使用する場合には、回路21の断線等が防止され、回路21の機能(本実施形態ではタッチ位置を検出する機能)が良好に発揮される。 In particular, when the conductor constituting the circuit 21 and the conductor constituting the wiring 31 are alloys, these alloys share one or more metals selected from Ni, Cr, Mo, Mn and Co. It is preferable to include. Since these metals are excellent in durability, the circuit 2 and the wiring 3 can be provided with excellent durability. Thereby, when the cable portion 3 is bent for connection to an external circuit or the other end of the wiring 31 is physically joined to the external circuit, disconnection of the wiring 31 is prevented and electrical Connection reliability can be improved. Further, when the circuit unit 2 is bent and used, the circuit 21 is prevented from being disconnected, and the function of the circuit 21 (the function of detecting the touch position in the present embodiment) is exhibited well.
 回路21を構成する導体と、配線31を構成する導体とに共通に含まれる金属種の数の上限は格別限定されないが、例えば5種以下とすることができる。 The upper limit of the number of metal species that are commonly included in the conductor constituting the circuit 21 and the conductor constituting the wiring 31 is not particularly limited, but may be, for example, 5 or less.
 回路21を構成する導体と、配線31を構成する導体とは、主成分として含まれる金属が共通していることが好ましい。ここでいう主成分とは、導体が一種の金属によって構成される場合は該一種の金属であり、導体が合金である場合は該合金中において最も大きな質量割合を占める金属である。 It is preferable that the conductor included in the circuit 21 and the conductor included in the wiring 31 have the same metal contained as a main component. The main component referred to here is the one kind of metal when the conductor is composed of one kind of metal, and the metal occupying the largest mass ratio in the alloy when the conductor is an alloy.
 配線31を構成する導体の厚みは、回路21を構成する導体の厚みより大きい。特に、回路21を構成する導体の厚みは0.05μm~10μmであることが好ましく、配線31を構成する導体の厚みは、回路21を構成する導体の厚みの1.5倍~10倍であることが好ましい。これにより、配線3に特に優れた耐久性を付与できる。そのため、ケーブル部3を外部回路との接続等のために屈曲させたり、配線31の他端を外部回路と物理的に接合させたりする際において、配線31の断線が防止され、電気的な接続の信頼性を向上することができる。また、配線31の他端と外部回路との物理的な接合及び脱着を繰返すこと等によって配線31の他端が摩耗しても、電気的な接続を安定に保持できる効果も得られる。 The thickness of the conductor constituting the wiring 31 is larger than the thickness of the conductor constituting the circuit 21. In particular, the thickness of the conductor constituting the circuit 21 is preferably 0.05 μm to 10 μm, and the thickness of the conductor constituting the wiring 31 is 1.5 to 10 times the thickness of the conductor constituting the circuit 21. It is preferable. Thereby, particularly excellent durability can be imparted to the wiring 3. Therefore, when the cable portion 3 is bent for connection to an external circuit or the other end of the wiring 31 is physically joined to the external circuit, disconnection of the wiring 31 is prevented and electrical connection is made. Reliability can be improved. Further, even if the other end of the wiring 31 is worn by repeating physical joining and detachment between the other end of the wiring 31 and the external circuit, an effect of stably maintaining the electrical connection can be obtained.
〔保護材料〕
 以上に説明した回路21及び配線31を保護材料によって保護することは好ましいことである。
[Protective material]
It is preferable to protect the circuit 21 and the wiring 31 described above with a protective material.
 例えば図2に示すように、配線31の他端を露出させるように、回路21及び配線31上に保護材料4が積層されていることが好ましい。これにより、配線31の露出された他端32を外部部品(図示省略)との接合に好適に用いることができ、且つ回路21、及び他端32を除く配線31を保護材料4によって好適に保護できる。 For example, as shown in FIG. 2, the protective material 4 is preferably laminated on the circuit 21 and the wiring 31 so that the other end of the wiring 31 is exposed. As a result, the exposed other end 32 of the wiring 31 can be suitably used for joining to an external component (not shown), and the circuit 31 and the wiring 31 excluding the other end 32 are suitably protected by the protective material 4. it can.
 図2の例では、保護材料4は、基材1上に積層された保護層として設けられている。この場合、回路部2の回路21及びケーブル部3の配線31は、基材1と保護層との間に配置される。保護層は、ケーブル付きフレキシブル回路の表面を構成することができる。 In the example of FIG. 2, the protective material 4 is provided as a protective layer laminated on the substrate 1. In this case, the circuit 21 of the circuit unit 2 and the wiring 31 of the cable unit 3 are arranged between the base material 1 and the protective layer. The protective layer can constitute the surface of the flexible circuit with cable.
 保護材料4としては、例えば、樹脂等を用いることができる。樹脂は格別限定されないが、例えば、紫外線や電子線等のような活性エネルギー線を照射して硬化させた活性エネルギー線硬化性樹脂等が挙げられる。活性エネルギー線硬化性樹脂としては、例えばカチオン硬化型活性エネルギー線硬化性樹脂等が挙げられる。 As the protective material 4, for example, a resin or the like can be used. Although resin is not specifically limited, For example, the active energy ray hardening resin etc. which were hardened by irradiating active energy rays, such as an ultraviolet-ray and an electron beam, etc. are mentioned. Examples of the active energy ray curable resin include a cationic curable active energy ray curable resin.
 カチオン硬化型活性エネルギー線硬化性樹脂とは、カチオン硬化型化合物(カチオン硬化型モノマーともいう)に活性エネルギー線を照射して硬化させて形成されたものである。カチオン硬化型モノマーとしては、自体公知のカチオン硬化型モノマーを用いることができ、例えば、エポキシ化合物、オキセタン環を有する化合物、ビニルエーテル構造を有する化合物等が挙げられる。 The cation curable active energy ray-curable resin is formed by irradiating a cationic curable compound (also referred to as a cation curable monomer) with active energy rays and curing it. As the cationic curable monomer, a known cationic curable monomer can be used, and examples thereof include an epoxy compound, a compound having an oxetane ring, and a compound having a vinyl ether structure.
 保護材料4からなる保護層は、回路21及び配線31上に直接形成されてもよいが、回路21及び配線31上に、図示しない中間層を介して形成されてもよい。中間層を設けることによって、保護層からの成分による回路21及び配線31の腐食等を確実に防止できる。腐食を生じ得る保護層からの成分として、酸が挙げられる。 The protective layer made of the protective material 4 may be formed directly on the circuit 21 and the wiring 31, but may be formed on the circuit 21 and the wiring 31 via an intermediate layer (not shown). By providing the intermediate layer, corrosion of the circuit 21 and the wiring 31 due to components from the protective layer can be reliably prevented. A component from the protective layer that can cause corrosion includes acid.
 中間層として、保護層からの酸が回路21及び配線31に移動することを防止する層を設けることは好ましいことである。この観点で、中間層は、例えば、酸を中和又は捕捉する層であるか、酸をバリアする層であることが好ましい。 It is preferable to provide a layer for preventing the acid from the protective layer from moving to the circuit 21 and the wiring 31 as the intermediate layer. In this respect, the intermediate layer is preferably, for example, a layer that neutralizes or captures acid, or a layer that barriers acid.
 酸を中和するとは、例えば、酸が塩基と反応して金属塩等の塩を生成することである。酸を捕捉するとは、例えば、反対の電荷をもつ物質によって酸を電気的に吸着すること、あるいは酸化合物を取りこむような構造を持った化合物によって酸化合物を物理的に吸着することである。酸を中和又は捕捉する中間層は、塩基性化合物や酸捕捉剤を含有することができる。 The neutralization of acid means, for example, that an acid reacts with a base to form a salt such as a metal salt. The capture of the acid means, for example, that the acid is electrically adsorbed by a substance having an opposite charge, or the acid compound is physically adsorbed by a compound having a structure that takes in the acid compound. The intermediate layer for neutralizing or capturing the acid can contain a basic compound or an acid scavenger.
 酸をバリアする中間層は、実用範囲内において酸の透過が非常に少ない層であることが好ましく、例えば、酸素透過係数が1[cc/(m・day・atm)]以下あるいは、水蒸気透過係数が1[g/(m・day)]以下である層である。これらの係数は25℃において測定される値である。 The intermediate layer that barriers acid is preferably a layer that transmits very little acid within the practical range. For example, the oxygen permeability coefficient is 1 [cc / (m 2 · day · atm)] or less, or water vapor permeability The layer has a coefficient of 1 [g / (m 2 · day)] or less. These coefficients are values measured at 25 ° C.
 酸をバリアする層は、例えば無機や金属の酸化物などの膜によって形成することができ、具体的には例えば、ポリシラザン層をシリカ転化処理してなる層等が好適に用いられる。 The acid barrier layer can be formed, for example, by a film of an inorganic or metal oxide. Specifically, for example, a layer obtained by subjecting a polysilazane layer to a silica conversion treatment is preferably used.
〔他の態様〕
 以上の説明では、基材の一方の面に回路部及びケーブル部を設ける場合について示したが、これに限定されない。例えば、基材の両面に回路部を設けてもよい。基材の両面に回路部を設ける場合は、基材の一方の面又は両面にケーブル部を設けることができる。これについて、図3を参照して説明する。
[Other aspects]
In the above description, the case where the circuit portion and the cable portion are provided on one surface of the base material has been described, but the present invention is not limited to this. For example, you may provide a circuit part on both surfaces of a base material. When providing a circuit part on both surfaces of a base material, a cable part can be provided in the one surface or both surfaces of a base material. This will be described with reference to FIG.
 図3の例において、ケーブル付きフレキシブル回路は、基材1の両面に回路部2を備えている。 In the example of FIG. 3, the flexible circuit with a cable includes circuit portions 2 on both surfaces of the base material 1.
 一方の面(表面ともいう)の回路部2と、他方の面(裏面ともいう)の回路部2とは、基材1を介して重畳するように配置されている。 The circuit portion 2 on one surface (also referred to as the front surface) and the circuit portion 2 on the other surface (also referred to as the back surface) are arranged so as to overlap with each other with the base material 1 interposed therebetween.
 表面の回路部2の回路21を構成する複数のセンサーチャネル22は、図3中、上下方向に伸びている。一方、裏面の回路部2の回路21を構成する複数のセンサーチャネル22は、図3中、左右方向に伸びている。このように、基材1の表裏面間でセンサーチャネル22を交差させることによって、X-Y座標系でのタッチ位置の検出を行うことができる。 The plurality of sensor channels 22 constituting the circuit 21 of the circuit section 2 on the front surface extend in the vertical direction in FIG. On the other hand, the plurality of sensor channels 22 constituting the circuit 21 of the circuit unit 2 on the back surface extend in the left-right direction in FIG. As described above, the touch position in the XY coordinate system can be detected by intersecting the sensor channel 22 between the front and back surfaces of the substrate 1.
 図3の例では、表面の回路部2に対応するケーブル部3を表面に設け、裏面の回路部2に対応するケーブル部3を裏面に設けている。これにより、基材1の両面にケーブル部3が設けられている。 In the example of FIG. 3, the cable portion 3 corresponding to the circuit portion 2 on the front surface is provided on the front surface, and the cable portion 3 corresponding to the circuit portion 2 on the back surface is provided on the back surface. Thereby, the cable part 3 is provided on both surfaces of the base material 1.
 図3の例に限定されず、例えば、表面の回路部2に対応するケーブル部3を表面に設け、裏面の回路部2に対応するケーブル部3も表面に設けてもよい。この場合、例えば基材1に図示しないスルーホールを設け、裏面の回路部2に対応する引出配線23を、スルーホールを介して表面に引出して、表面に設けられたケーブル部の配線31と接続することができる。 3 is not limited to the example of FIG. 3, for example, the cable portion 3 corresponding to the circuit portion 2 on the front surface may be provided on the front surface, and the cable portion 3 corresponding to the circuit portion 2 on the back surface may be provided on the front surface. In this case, for example, a through hole (not shown) is provided in the base material 1 and the lead-out wiring 23 corresponding to the circuit part 2 on the back surface is drawn out to the front surface through the through-hole and connected to the wiring 31 of the cable part provided on the front surface can do.
 図3の例では、2つのケーブル部3が、方形状の基材本体11における異なる辺(図3中、上辺及び右辺)に設けられているが、同一の辺に複数のケーブル部3を複数の帯状部12と共に設けてもよい。 In the example of FIG. 3, the two cable portions 3 are provided on different sides (upper side and right side in FIG. 3) of the rectangular base body 11, but a plurality of cable portions 3 are provided on the same side. You may provide with the strip | belt-shaped part 12 of this.
 また、一つのケーブル部3が、表面の回路部2及び裏面の回路部2の両方に対応して設けられてもよい。 Further, one cable portion 3 may be provided corresponding to both the front surface circuit portion 2 and the back surface circuit portion 2.
 引出配線23の配置によって、所望される任意の位置にケーブル部3を設けることができる。ケーブル部3は、方形状の基材本体11における辺から延設される場合に限定されず、例えば、基材本体11の角から延設されてもよい。 The cable portion 3 can be provided at any desired position by arranging the lead wiring 23. The cable part 3 is not limited to the case where it extends from the side of the rectangular base body 11, and may be extended from the corner of the base body 11, for example.
 以上の説明では、ケーブル部3に複数の配線31が設けられる場合について主に示したが、これに限定されない。ケーブル部3に設けられる配線31は1本であってもよい。配線31が1本である場合、上述した集約部24は省略することができる。 In the above description, the case where a plurality of wirings 31 are provided in the cable portion 3 is mainly shown, but the present invention is not limited to this. The wiring 31 provided in the cable part 3 may be one. When the number of wirings 31 is one, the above-described aggregation unit 24 can be omitted.
 また、以上の説明では、回路部2に設けられる回路21がタッチセンサー回路である場合について主に示したが、これに限定されない。回路は、外部回路と電気的に接続されることによって、何れかの機能を発揮するものであることが好ましい。回路によって発揮される機能として、例えば信号を入力及び又は出力する機能、あるいは、エネルギーを入力又は出力する機能等が挙げられる。このような回路の具体例として、例えば、通電によって発熱する発熱体回路、あるいは電磁波等の信号を受信するアンテナ回路等が挙げられる。 In the above description, the case where the circuit 21 provided in the circuit unit 2 is a touch sensor circuit is mainly shown, but the present invention is not limited to this. The circuit preferably exhibits any function by being electrically connected to an external circuit. Examples of the function exhibited by the circuit include a function of inputting and / or outputting a signal, a function of inputting and outputting energy, and the like. Specific examples of such a circuit include a heating element circuit that generates heat when energized, an antenna circuit that receives a signal such as an electromagnetic wave, and the like.
2.ケーブル付きフレキシブル回路の製造方法
 本発明に係るケーブル付きフレキシブル回路の製造方法は、以上に説明したようなケーブル付きフレキシブル回路を製造するために用いることができる。この製造方法については、ケーブル付きフレキシブル回路についてした説明が適宜援用される。
2. The manufacturing method of the flexible circuit with a cable which concerns on this invention can be used in order to manufacture the flexible circuit with a cable which was demonstrated above. About this manufacturing method, the description about the flexible circuit with a cable is used suitably.
 この製造方法は、回路部2の回路21と、ケーブル部3の配線31とを、印刷法とめっき加工とを組み合わせて形成する際に、配線31を構成する導体の厚みが回路21を構成する導体の厚みより大きくなるように、回路21と配線31とで印刷条件及びめっき条件の少なくとも一方を異ならせる。 In this manufacturing method, when the circuit 21 of the circuit unit 2 and the wiring 31 of the cable unit 3 are formed by a combination of printing and plating, the thickness of the conductor constituting the wiring 31 forms the circuit 21. At least one of the printing condition and the plating condition is made different between the circuit 21 and the wiring 31 so as to be larger than the thickness of the conductor.
 かかる製造方法によれば、ケーブル付きフレキシブル回路の生産性に優れ、電気的な接続の信頼性に優れる効果が得られる。 According to this manufacturing method, the productivity of the flexible circuit with cable is excellent, and the effect of excellent reliability of electrical connection can be obtained.
 回路21と配線31とで印刷条件を異ならせる場合の例として、印刷法に用いるインク付与量を異ならせることができる。具体的には、回路21と配線31とを形成する際の印刷法において、配線31への単位面積当たりのインク付与量を、回路21への単位面積当たりのインク付与量より大きくすることが好ましい。 As an example in which the printing conditions are different between the circuit 21 and the wiring 31, the ink application amount used in the printing method can be varied. Specifically, in the printing method when forming the circuit 21 and the wiring 31, it is preferable that the amount of ink applied per unit area to the wiring 31 is larger than the amount of ink applied per unit area to the circuit 21. .
 回路21と配線31とでめっき条件を異ならせる場合の例として、電解めっきあるいは無電解めっきにおけるめっき時間を異ならせることができ、また、電解めっきにおけるめっき電流量を異ならせることができる。具体的には、回路21と配線31とを形成する際のめっき加工において、配線31へのめっき時間を、回路21へのめっき時間より長くすることが好ましい。また、回路21と配線31とを形成する際のめっき加工において、電解めっき加工を用いると共に、配線31への単位面積当たりのめっき電流量を、回路21への単位面積当たりのめっき電流量より大きくすることが好ましい。 As an example of different plating conditions between the circuit 21 and the wiring 31, the plating time in electrolytic plating or electroless plating can be changed, and the amount of plating current in electrolytic plating can be changed. Specifically, in the plating process when forming the circuit 21 and the wiring 31, it is preferable that the plating time for the wiring 31 is longer than the plating time for the circuit 21. Further, in the plating process for forming the circuit 21 and the wiring 31, electrolytic plating is used, and the plating current amount per unit area for the wiring 31 is larger than the plating current amount per unit area for the circuit 21. It is preferable to do.
 上述したインク付与量、めっき時間、めっき電流量の調整のうち、1以上の調整を実行することが好ましく、これにより、効率的に、配線31を構成する導体の厚みを、回路21を構成する導体の厚みより大きくすることができる。 Among the adjustments of the ink application amount, the plating time, and the plating current amount described above, it is preferable to perform one or more adjustments, thereby efficiently configuring the circuit 21 with the thickness of the conductor constituting the wiring 31. It can be larger than the thickness of the conductor.
 回路21と配線31とを、印刷法とめっき加工とによって形成する場合、まず、基材1上に印刷法によって回路21と配線31とを構成するための導体をパターニングし、次いで、基材1上の前記導体にめっき加工を施して、回路21と配線31とを形成することが好ましい。 When the circuit 21 and the wiring 31 are formed by a printing method and a plating process, first, a conductor for forming the circuit 21 and the wiring 31 is patterned on the base material 1 by the printing method, and then the base material 1 It is preferable to form the circuit 21 and the wiring 31 by plating the upper conductor.
 以下に、印刷法とめっき加工について更に詳しく説明する。 Below, the printing method and plating process will be described in more detail.
〔印刷法〕
 印刷法としては、例えば、スクリーン印刷法、凸版印刷法、凹版印刷法、オフセット印刷法、フレキソ印刷法、インクジェット法等が挙げられる。
[Printing method]
Examples of the printing method include a screen printing method, a relief printing method, an intaglio printing method, an offset printing method, a flexographic printing method, and an ink jet method.
 印刷法においては、単位面積当たりのインク付与量を調整することによって、導体の厚みを調整することができる。配線31への単位面積当たりのインク付与量を、回路21への単位面積当たりのインク付与量より大きくすることによって、配線31を構成する導体の厚みを、回路21を構成する導体の厚みより大きくすることができる。 In the printing method, the conductor thickness can be adjusted by adjusting the ink application amount per unit area. By making the ink application amount per unit area to the wiring 31 larger than the ink application amount per unit area to the circuit 21, the thickness of the conductor constituting the wiring 31 is made larger than the thickness of the conductor constituting the circuit 21. can do.
 印刷法においては、基材1上に付与されたインクを乾燥させる際にコーヒーステイン現象を利用して、導体からなる導電性細線を形成することができる。導電性細線は、回路21及び又は配線31を構成するために用いることができる。コーヒーステイン現象について、図4を参照して説明する。 In the printing method, a conductive fine wire made of a conductor can be formed by utilizing the coffee stain phenomenon when the ink applied on the substrate 1 is dried. The conductive thin wire can be used to form the circuit 21 and / or the wiring 31. The coffee stain phenomenon will be described with reference to FIG.
 まず、図4(a)に示すように、基材1上に、導電性材料(導体)を含むインクからなるライン状液体4を付与する。 First, as shown in FIG. 4A, a line-like liquid 4 made of ink containing a conductive material (conductor) is applied on the substrate 1.
 次いで、ライン状液体4を乾燥させる過程でライン状液体4の縁に導電性材料を選択的に堆積させることによって、図4(b)に示すように、導電性細線5を形成することができる。この例では、ライン状液体4の長手方向に沿う両縁に導電性材料を選択的に堆積させることによって、一対の導電性細線5、5を形成している。ライン状液体4の線幅を均一に形成することによって、一対の導電性細線5、5を互いに平行に形成することができる。 Next, a conductive thin wire 5 can be formed as shown in FIG. 4B by selectively depositing a conductive material on the edge of the line liquid 4 in the process of drying the line liquid 4. . In this example, a pair of conductive thin wires 5 and 5 are formed by selectively depositing a conductive material on both edges along the longitudinal direction of the line-shaped liquid 4. By forming the line width of the line-like liquid 4 uniformly, the pair of conductive thin wires 5 and 5 can be formed in parallel to each other.
 導電性細線5の線幅は、ライン状液体4の線幅よりも細く、好ましくは10μm以下、より好ましくは7μm以下、最も好ましくは5μm以下にすることができる。導電性細線5の線幅の下限は格別限定されないが、安定な導電性を付与する等の観点では、例えば1μm以上とすることができる。この好ましい線幅は、後述するめっき加工後の線幅にも適用される。 The line width of the conductive thin wire 5 is narrower than the line width of the line-like liquid 4, preferably 10 μm or less, more preferably 7 μm or less, and most preferably 5 μm or less. The lower limit of the line width of the conductive thin wire 5 is not particularly limited, but can be set to, for example, 1 μm or more from the viewpoint of imparting stable conductivity. This preferable line width is also applied to the line width after plating, which will be described later.
 導電性細線5によって種々のパターンを形成することができる。このようなパターンとして、例えば、ストライプパターンやメッシュパターン(導電性細線メッシュ)等が挙げられる。 Various patterns can be formed by the conductive thin wires 5. Examples of such a pattern include a stripe pattern and a mesh pattern (conductive thin wire mesh).
 このようなパターン、特にメッシュパターンによって、上述したセンサーチャネル22を構成することは好ましいことである。センサーチャネル22は、ベタ状に付与された導体によって構成されてもよいが、ストライプパターンやメッシュパターンによって構成されることによって、導電性細線間の間隙を通して透光性が得られるため、不透明な導体を用いる場合においてもセンサーチャネル22に透明性を付与できる。 It is preferable to configure the sensor channel 22 described above by such a pattern, particularly a mesh pattern. The sensor channel 22 may be configured by a solid conductor. However, since the sensor channel 22 is configured by a stripe pattern or a mesh pattern, translucency is obtained through a gap between the conductive thin wires. Even in the case of using the sensor channel 22, transparency can be imparted to the sensor channel 22.
 以下に、図5を参照してメッシュパターン形成の第一態様について説明し、次いで、図6を参照してメッシュパターン形成の第二態様について説明する。 Hereinafter, the first mode of mesh pattern formation will be described with reference to FIG. 5, and then the second mode of mesh pattern formation will be described with reference to FIG.
 メッシュパターン形成の第一態様においては、まず、図5(a)に示すように、基材1上に、所定の間隔で並設された複数のライン状液体4を形成する。 In the first mode of forming the mesh pattern, first, as shown in FIG. 5A, a plurality of line-shaped liquids 4 arranged in parallel at predetermined intervals are formed on the substrate 1.
 次いで、図5(b)に示すように、ライン状液体4を乾燥させる際にコーヒーステイン現象を利用して、各々のライン状液体4から一対の導電性細線5、5を形成する。 Next, as shown in FIG. 5B, a pair of conductive thin wires 5 and 5 are formed from each line-shaped liquid 4 by utilizing the coffee stain phenomenon when the line-shaped liquid 4 is dried.
 次いで、図5(c)に示すように、先に形成された複数の導電性細線5と交差するように、所定の間隔で並設された複数のライン状液体4を形成する。 Next, as shown in FIG. 5 (c), a plurality of line-shaped liquids 4 arranged in parallel at predetermined intervals so as to intersect with the plurality of previously formed conductive thin wires 5 are formed.
 次いで、図5(d)に示すように、ライン状液体4を乾燥させる際にコーヒーステイン現象を利用して、各々のライン状液体4から一対の導電性細線5、5を形成する。以上のようにしてメッシュパターンを形成することができる。 Next, as shown in FIG. 5 (d), when the line-shaped liquid 4 is dried, a pair of conductive thin wires 5, 5 are formed from each line-shaped liquid 4 using the coffee stain phenomenon. A mesh pattern can be formed as described above.
 図5の例では、ライン状液体4及び導電性細線5を直線にしているが、これに限定されない。ライン状液体4及び導電性細線5の形状は、例えば波線又は折線等であってもよい。導電性細線5が波線又は折線等の非直線形状を有することによって、透明導電体を湾曲させたりしても断線が防止される効果が得られる。 In the example of FIG. 5, the line-like liquid 4 and the conductive thin wire 5 are straight, but the present invention is not limited to this. The shape of the line-like liquid 4 and the conductive thin wire 5 may be, for example, a wavy line or a broken line. Since the conductive thin wire 5 has a non-linear shape such as a wavy line or a broken line, an effect of preventing disconnection can be obtained even if the transparent conductor is curved.
 メッシュパターン形成の第二態様においては、まず、図6(a)に示すように、基材1上に、基材1の長手方向(図中、上下方向)及び幅方向(図中、左右方向)に所定の間隔で並設された、複数の四角形を成すライン状液体4を形成する。 In the second mode of forming the mesh pattern, first, as shown in FIG. 6A, the longitudinal direction (vertical direction in the figure) and the width direction (horizontal direction in the figure) of the base material 1 are formed on the base material 1. The line-shaped liquid 4 having a plurality of quadrangles arranged in parallel at a predetermined interval is formed.
 次いで、図6(b)に示すように、ライン状液体4を乾燥させる際にコーヒーステイン現象を利用して、各々のライン状液体4から、一対の導電性細線5、5からなる細線ユニットを形成する。かかる細線ユニットにおいて、導電性細線5、5は、一方(外側の導電性細線5)が他方(内側の導電性細線5)を内部に包含しており、同心状に形成されている。また、導電性細線5、5はそれぞれ、ライン状液体4の両縁(内周縁及び外周縁)の形状に対応して四角形を成している。 Next, as shown in FIG. 6B, a thin line unit composed of a pair of conductive thin wires 5 and 5 is formed from each line-like liquid 4 by utilizing the coffee stain phenomenon when the line-like liquid 4 is dried. Form. In such a thin wire unit, the conductive thin wires 5 and 5 are formed concentrically, with one (outside conductive thin wire 5) including the other (inner conductive thin wire 5) inside. The conductive thin wires 5 and 5 each have a quadrangular shape corresponding to the shape of both edges (inner and outer periphery) of the line-shaped liquid 4.
 次いで、図6(c)に示すように、基材1上に、基材1の長手方向及び幅方向に所定の間隔で並設された、複数の四角形を成すライン状液体4を形成する。ここで、複数の四角形を成すライン状液体4は、先に形成された細線ユニットの間に挟まれる位置に形成される。ここでは、四角形を成すライン状液体4は、これに隣接する細線ユニットのうちの外側の導電性細線5と接触するが、内側の導電性細線5とは接触しないように配置されている。 Next, as shown in FIG. 6 (c), the line-shaped liquid 4 having a plurality of quadrangles arranged side by side in the longitudinal direction and the width direction of the base material 1 is formed on the base material 1. Here, the line-shaped liquid 4 that forms a plurality of quadrangles is formed at a position sandwiched between the previously formed thin line units. Here, the line-shaped liquid 4 having a quadrangular shape is arranged so as to be in contact with the outer conductive thin wire 5 of the thin wire units adjacent thereto, but not in contact with the inner conductive thin wire 5.
 次いで、図6(d)に示すように、ライン状液体4を乾燥させる際にコーヒーステイン現象を利用して、各々のライン状液体4から、一対の導電性細線5、5からなる細線ユニットを更に形成する。 Next, as shown in FIG. 6 (d), a thin line unit composed of a pair of conductive thin wires 5, 5 is formed from each line-shaped liquid 4 by utilizing the coffee stain phenomenon when the line-shaped liquid 4 is dried. Further form.
 図6(d)に示すパターンにおいて、外側の導電性細線5は、隣接する外側の導電性細線5と互いに接続されている。一方、内側の導電性細線5は、他の内側の導電性細線5、及び、外側の導電性細線5と接続されていない。即ち、内側の導電性細線5は、孤立するように配置されている。 In the pattern shown in FIG. 6D, the outer conductive fine wires 5 are connected to the adjacent outer conductive fine wires 5. On the other hand, the inner conductive wire 5 is not connected to the other inner conductive wires 5 and the outer conductive wires 5. That is, the inner conductive thin wires 5 are arranged so as to be isolated.
 図6(d)に示すパターンを、そのままメッシュパターンとして用いてもよい。また、図6(d)に示すパターンにおける内側の導電性細線5を除去し、外側の導電性細線5からなるメッシュパターン(図6(e))を形成してもよい。メッシュパターン形成の第二態様によれば、導電性細線5を自由度高く形成できる効果が得られる。特に複数の導電性細線5の配置間隔を、ライン状液体4の線幅に依拠せず自由度高く設定できる効果が得られる。 The pattern shown in FIG. 6D may be used as a mesh pattern as it is. Alternatively, the inner conductive thin wires 5 in the pattern shown in FIG. 6D may be removed to form a mesh pattern (FIG. 6E) including the outer conductive thin wires 5. According to the second aspect of forming the mesh pattern, an effect that the conductive thin wire 5 can be formed with a high degree of freedom is obtained. In particular, it is possible to obtain an effect that the interval between the plurality of conductive thin wires 5 can be set with a high degree of freedom without depending on the line width of the line-like liquid 4.
 内側の導電性細線5を除去する方法は格別限定されず、例えば、レーザー光等のようなエネルギー線を照射する方法や、化学的にエッチング処理する方法等を用いることができる。 The method of removing the inner conductive thin wire 5 is not particularly limited, and for example, a method of irradiating an energy beam such as a laser beam or a method of chemically etching can be used.
 また、外側の導電性細線5に後に詳述する電解めっきを施す際に、内側の導電性細線5をめっき液によって除去する方法を用いてもよい。上述したように内側の導電性細線5は孤立するように配置されており、外側の導電性細線5に電解めっきを施すための通電経路から除外することができる。そのため、外側の導電性細線5に電解めっきを施している間(通電している間)に、電解めっきが施されない内側の導電性細線5を、めっき液によって溶解又は分解して除去することができる。 Further, when electrolytic plating, which will be described in detail later, is performed on the outer conductive thin wire 5, a method of removing the inner conductive thin wire 5 with a plating solution may be used. As described above, the inner conductive thin wires 5 are disposed so as to be isolated, and can be excluded from the energization path for applying electrolytic plating to the outer conductive thin wires 5. Therefore, while the outer conductive thin wire 5 is being electroplated (while being energized), the inner conductive thin wire 5 that is not electroplated can be removed by dissolution or decomposition with a plating solution. it can.
 以上のようにして、四角形を成す導電性細線5を複数組み合わせて、メッシュパターンを構成することができる。 As described above, a mesh pattern can be configured by combining a plurality of conductive thin wires 5 having a rectangular shape.
 図6の例では、ライン状液体22及び導電性細線5を四角形にしているが、これに限定されない。ライン状液体4及び導電性細線5の形状として、例えば閉じられた幾何学図形が挙げられる。閉じられた幾何学図形としては、例えば三角形、四角形、六角形、八角形等の多角形が挙げられる。また、閉じられた幾何学図形は、例えば円形、楕円形等のように曲線要素を含むことができる。 In the example of FIG. 6, the line-like liquid 22 and the conductive thin wire 5 are rectangular, but it is not limited to this. Examples of the shape of the line-like liquid 4 and the conductive thin wire 5 include a closed geometric figure. Examples of the closed geometric figure include polygons such as a triangle, a quadrangle, a hexagon, and an octagon. In addition, the closed geometric figure may include a curved element such as a circle or an ellipse.
 次に、印刷法、特に上述したコーヒーステイン現象に好適に用いられるインクについて、詳しく説明する。 Next, the printing method, particularly the ink that is preferably used for the above-described coffee stain phenomenon will be described in detail.
 インクには金属微粒子を含有させることができる。金属微粒子を構成する金属として、例えば、Au、Pt、Ag、Cu、Ni、Cr、Rh、Pd、Zn、Co、Mo、Ru、W、Os、Ir、Fe、Mn、Ge、Sn、Ga、In等が挙げられる。これらの中でも、Au、Ag、Cuが好ましく、Agが特に好ましい。金属微粒子の平均粒子径は、例えば1~100nm、更には3~50nmとすることができる。平均粒子径は、体積平均粒子径であり、マルバーン社製「ゼータサイザ1000HS」により測定することができる。 The ink can contain metal fine particles. Examples of the metal constituting the metal fine particle include Au, Pt, Ag, Cu, Ni, Cr, Rh, Pd, Zn, Co, Mo, Ru, W, Os, Ir, Fe, Mn, Ge, Sn, Ga, In etc. are mentioned. Among these, Au, Ag, and Cu are preferable, and Ag is particularly preferable. The average particle diameter of the metal fine particles can be, for example, 1 to 100 nm, further 3 to 50 nm. The average particle diameter is a volume average particle diameter, and can be measured by “Zeta Sizer 1000HS” manufactured by Malvern.
 インク中の金属微粒子の濃度は、例えば5重量%以下とすることができ、更には0.01重量%以上1.0重量%以下とすることができる。これにより、コーヒーステイン現象が促進され、導電性細線を更に細くできる等の効果が得られる。 The concentration of the metal fine particles in the ink can be, for example, 5% by weight or less, and further 0.01% by weight or more and 1.0% by weight or less. As a result, the coffee stain phenomenon is promoted, and effects such as further narrowing of the conductive thin wire can be obtained.
 インクに用いられる溶媒は格別限定されず、水や有機溶剤から選択された一種又は複数種を含むことができる。有機溶剤としては、例えば、1,2-ヘキサンジオール、2-メチル-2,4-ペンタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、プロピレングリコール等のアルコール類、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、トリエチレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル等のエーテル類等が挙げられる。 The solvent used in the ink is not particularly limited, and may include one or more selected from water and organic solvents. Examples of the organic solvent include 1,2-hexanediol, 2-methyl-2,4-pentanediol, 1,3-butanediol, 1,4-butanediol, alcohols such as propylene glycol, diethylene glycol monomethyl ether, Examples include ethers such as diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, triethylene glycol monomethyl ether, dipropylene glycol monomethyl ether, and dipropylene glycol monoethyl ether.
 また、インクには界面活性剤等の他の成分を含有させることができる。界面活性剤は格別限定されず、例えばシリコン系界面活性剤等が挙げられる。インク中の界面活性剤の濃度は、例えば1重量%以下とすることができる。 In addition, the ink can contain other components such as a surfactant. The surfactant is not particularly limited, and examples thereof include a silicon surfactant. The concentration of the surfactant in the ink can be, for example, 1% by weight or less.
 基材上に付与されたインク(ライン状液体)の乾燥方法は自然乾燥でも強制乾燥でもよい。強制乾燥に用いる乾燥方法は格別限定されず、例えば、基材の表面を所定温度に加温する方法や、基材の表面に気流を形成する方法等を単独で、あるいは組み合わせて用いることができる。気流は、例えばファン等を用いて、送風又は吸引を行うことによって形成することができる。 The drying method of the ink (line liquid) applied on the substrate may be natural drying or forced drying. The drying method used for forced drying is not particularly limited. For example, a method of heating the surface of the substrate to a predetermined temperature, a method of forming an air flow on the surface of the substrate, or the like can be used alone or in combination. . The airflow can be formed by blowing or sucking using a fan or the like, for example.
 回路部2の回路21を、上述したコーヒーステイン現象を利用して形成された導電性細線によって構成し、ケーブル部3の配線31を、コーヒーステイン現象を利用せずに形成された導体によって構成してもよい。この場合、配線31を形成するためのインクにおける導体の濃度(重量%)を、回路21を形成するためのインクにおける導体の濃度(重量%)より高くすることが好ましい。これにより、比較的低濃度のインクによって、コーヒーステイン現象を促進して回路21を形成できると共に、比較的高濃度のインクによって、配線31を構成する導体の厚みを、回路21を構成する導体(導電性細線)の厚みよりも大きくすることができる。 The circuit 21 of the circuit unit 2 is configured by the conductive thin wire formed using the coffee stain phenomenon described above, and the wiring 31 of the cable unit 3 is configured by the conductor formed without using the coffee stain phenomenon. May be. In this case, it is preferable that the concentration (% by weight) of the conductor in the ink for forming the wiring 31 is higher than the concentration (% by weight) of the conductor in the ink for forming the circuit 21. As a result, the circuit 21 can be formed by accelerating the coffee stain phenomenon with a relatively low concentration of ink, and the thickness of the conductor constituting the wiring 31 can be reduced by the relatively high concentration of ink. It can be made larger than the thickness of the conductive thin wire.
 以上の説明では、センサーチャネル22が複数の導電性細線によって構成される場合について主に示したが、これに限定されない。センサーチャネル22は、例えば、ベタ状に付与された導体によって構成されてもよい。このことは、センサーチャネル22以外の回路21を形成する場合においても同様である。 In the above description, the case where the sensor channel 22 is configured by a plurality of conductive thin wires is mainly shown, but the present invention is not limited to this. The sensor channel 22 may be constituted by, for example, a solid conductor. The same applies to the case where the circuit 21 other than the sensor channel 22 is formed.
 印刷法によって基材上に形成された導体に焼成処理を施すことができる。焼成処理としては、例えば、光照射処理、熱処理等が挙げられる。光照射処理には、例えば、ガンマ線、X線、紫外線、可視光、赤外線(IR)、マイクロ波、電波等を用いることができる。熱処理には、例えば、熱風、加熱ステージ、加熱プレス等を用いることができる。 The conductor formed on the substrate by a printing method can be baked. Examples of the firing treatment include light irradiation treatment and heat treatment. For the light irradiation treatment, for example, gamma rays, X-rays, ultraviolet rays, visible light, infrared rays (IR), microwaves, radio waves, and the like can be used. For the heat treatment, for example, hot air, a heating stage, a heating press, or the like can be used.
〔めっき加工〕
 めっき加工としては、例えば、無電解めっき、電解めっき等を用いることができる。電解めっきでは、印刷工程において基材上に付与された導体(好ましくは導電性細線の形態を有する)の導電性を利用して、該導体に選択的にめっきを施すことができる。めっき加工によって、印刷法によって形成された導体からなる印刷層と、該導体を被覆するめっき層(めっき皮膜)とによって構成された導体が得られる。
[Plating]
As the plating process, for example, electroless plating, electrolytic plating, or the like can be used. In the electrolytic plating, the conductor can be selectively plated using the conductivity of the conductor (preferably having the form of a conductive fine wire) provided on the substrate in the printing process. By the plating process, a conductor constituted by a printed layer made of a conductor formed by a printing method and a plated layer (plated film) covering the conductor is obtained.
 無電解めっき、電解めっきの何れにおいても、めっき時間の調整によって、導体の厚みを調整することができる。また、電解めっきを用いる場合は、単位面積当たりのめっき電流量を調整することによって、導体の厚みを調整することができる。 In any of electroless plating and electrolytic plating, the thickness of the conductor can be adjusted by adjusting the plating time. Moreover, when using electroplating, the thickness of a conductor can be adjusted by adjusting the amount of plating current per unit area.
 めっき時間の調整は、めっき液への浸漬時間によって調整することができる。 The plating time can be adjusted by the immersion time in the plating solution.
 例えば、ケーブル部3の配線31のめっき液への浸漬時間を、回路部2の回路21のめっき液への浸漬時間より長くすることで、配線31を構成する導体の厚みを、回路21を構成する導体の厚みより大きくすることができる。 For example, by setting the immersion time of the wiring 31 of the cable part 3 in the plating solution to be longer than the immersion time of the circuit 21 of the circuit part 2 in the plating solution, the thickness of the conductor constituting the wiring 31 is configured. The thickness of the conductor to be made can be made larger.
 単位面積当たりのめっき電流量の調整は、めっき液への浸漬時間、及び又は、給電部位の選択によって調整することができる。 The adjustment of the plating current amount per unit area can be adjusted by the immersion time in the plating solution and / or the selection of the feeding part.
 例えば、ケーブル部3の配線31のめっき液への浸漬時間を、回路部2の回路21のめっき液への浸漬時間より長くすることで、ケーブル部3の配線31への単位面積当たりのめっき電流量を、回路部2の回路21への単位面積当たりのめっき電流量より大きくすることができる。これにより、配線31を構成する導体の厚みを、回路21を構成する導体の厚みより大きくすることができる。 For example, the plating current per unit area to the wiring 31 of the cable part 3 is set longer by immersing the wiring part 31 of the cable part 3 in the plating liquid than the immersion time of the circuit part 2 of the circuit 21 in the plating liquid. The amount can be larger than the amount of plating current per unit area to the circuit 21 of the circuit unit 2. Thereby, the thickness of the conductor which comprises the wiring 31 can be made larger than the thickness of the conductor which comprises the circuit 21. FIG.
 上述した給電部位は、電解めっきのための電極(通常はカソード)を接触させる部位であり、給電部位に近いほど単位面積当たりのめっき電流量は大きくなる。従って、例えば、ケーブル部3の配線31を給電部位として選択することによって、ケーブル部3の配線31への単位面積当たりのめっき電流量を、回路部2の回路21への単位面積当たりのめっき電流量より大きくすることができる。これにより、配線31を構成する導体の厚みを、回路21を構成する導体の厚みより大きくすることができる。 The above-described power feeding part is a part where an electrode for electroplating (usually a cathode) is brought into contact, and the closer to the power feeding part, the larger the plating current amount per unit area. Therefore, for example, by selecting the wiring 31 of the cable part 3 as a feeding part, the amount of plating current per unit area to the wiring 31 of the cable part 3 is changed to the plating current per unit area to the circuit 21 of the circuit part 2. Can be greater than the amount. Thereby, the thickness of the conductor which comprises the wiring 31 can be made larger than the thickness of the conductor which comprises the circuit 21. FIG.
 印刷工程において基材上に付与された導体に複数回のめっき加工を施してもよい。めっき金属を異ならせた複数回のめっき加工を施してもよい。複数回のめっき加工によって、導電性細線上に複数の金属層(めっき層)を積層することができる。例えば、複数の金属層を積層する場合、Agからなる導電性細線上に、Cuからなる第1金属層、Ni又はCrからなる第2金属層を順に積層することによって、Cuによる導電性向上の効果と、Ni又はCrによる耐候性向上の効果及び色味を消す効果を得ることができる。 In the printing process, the conductor applied on the base material may be subjected to plating several times. A plurality of plating processes using different plating metals may be performed. A plurality of metal layers (plating layers) can be laminated on the conductive thin wire by a plurality of plating processes. For example, when laminating a plurality of metal layers, the first metal layer made of Cu and the second metal layer made of Ni or Cr are sequentially laminated on the conductive thin wire made of Ag, thereby improving the conductivity by Cu. The effect, the effect of improving weather resistance by Ni or Cr, and the effect of eliminating the color can be obtained.
 ケーブル部3の配線31に施すめっき加工の回数を、回路部2の回路21に施すめっき加工の回数より多くすることによって、配線31を構成する導体の厚みを、回路21を構成する導体の厚みより大きくしてもよい。 By increasing the number of times of plating applied to the wiring 31 of the cable part 3 to the number of times of plating applied to the circuit 21 of the circuit part 2, the thickness of the conductor constituting the wiring 31 is changed to the thickness of the conductor constituting the circuit 21. It may be larger.
3.ケーブル付きフレキシブル回路中間体
 本発明のケーブル付きフレキシブル回路中間体(以下、単に中間体ともいう。)は、以上に説明したケーブル付きフレキシブル回路を製造するための材料として用いることができる。中間体については、ケーブル付きフレキシブル回路及びその製造方法についてした説明が援用される。
3. Flexible circuit intermediate with cable The flexible circuit intermediate with cable of the present invention (hereinafter also simply referred to as an intermediate) can be used as a material for producing the flexible circuit with cable described above. About the intermediate body, the description about the flexible circuit with a cable and its manufacturing method is used.
 図7に示すように、中間体は、長尺状のフレキシブル基材1の少なくとも一方の面に、導体により構成された回路21が設けられた回路部2と、導体により構成され、前記回路21に電気的に接続された一端及び外部回路に電気的に接続するための他端を有する配線31が設けられたケーブル部3とによって構成されたユニットUが、該フレキシブル基材1の長手方向に沿って、複数印刷されている。 As shown in FIG. 7, the intermediate body is composed of a circuit portion 2 in which a circuit 21 composed of a conductor is provided on at least one surface of the elongated flexible base material 1, and the circuit 21. A unit U configured by a cable portion 3 provided with a wiring 31 having one end electrically connected to the external circuit and the other end electrically connected to an external circuit is arranged in the longitudinal direction of the flexible substrate 1. A plurality of prints are printed along.
 ケーブル付きフレキシブル回路について上述したように、回路21を構成する導体と、配線31を構成する導体とは、少なくとも1種の金属を共通に含む。また、配線31を構成する導体の厚みは、回路21を構成する導体の厚みより大きい。 As described above for the flexible circuit with cable, the conductor constituting the circuit 21 and the conductor constituting the wiring 31 include at least one metal in common. Further, the thickness of the conductor constituting the wiring 31 is larger than the thickness of the conductor constituting the circuit 21.
 かかる中間体から、ユニットUごとにフレキシブル基材1を図7中の点線に沿って切り出すことによって、上述したケーブル付きフレキシブル回路を製造することができる。 By cutting out the flexible base material 1 along the dotted line in FIG. 7 for each unit U from such an intermediate, the above-described flexible circuit with cable can be manufactured.
 かかる中間体によれば、ケーブル付きフレキシブル回路の生産性に優れ、電気的な接続の信頼性に優れる効果が得られる。 According to such an intermediate, the productivity of the flexible circuit with cable is excellent, and the effect of excellent reliability of electrical connection can be obtained.
 ユニットUを構成する少なくとも1つの配線31、好ましくは図7の例に示されるように全ての配線31は、回路21からフレキシブル基材1の長辺に向けて伸びることが好ましい。これにより、生産性を更に向上する効果が得られる。 It is preferable that at least one wiring 31 constituting the unit U, preferably all the wirings 31 extend from the circuit 21 toward the long side of the flexible substrate 1 as shown in the example of FIG. Thereby, the effect of further improving productivity can be obtained.
 例えば、中間体において、配線31の他端を露出させるように、回路21及び配線31上に保護材料4を積層する場合、中間体をロールtoロール搬送しながら、保護層4からなる保護層を連続的にラミネート形成することができる。このとき、配線31がフレキシブル基材1の長辺に向けて伸びていることによって、配線31の他端がラミネート範囲外になるように、一定のラミネート幅Lを好適に設定することができる。 For example, when the protective material 4 is laminated on the circuit 21 and the wiring 31 so that the other end of the wiring 31 is exposed in the intermediate body, the protective layer made of the protective layer 4 is formed while the intermediate body is being rolled to roll. It can be laminated continuously. At this time, since the wiring 31 extends toward the long side of the flexible base material 1, the constant laminate width L can be suitably set so that the other end of the wiring 31 is out of the lamination range.
 1:フレキシブル基材
 2:回路部
  21:回路
  22:センサーチャネル
  23:引出配線
  24:集約部
 3:ケーブル部
  31:配線
 4:保護材料
1: Flexible base material 2: Circuit part 21: Circuit 22: Sensor channel 23: Lead wiring 24: Aggregation part 3: Cable part 31: Wiring 4: Protection material

Claims (13)

  1.  フレキシブル基材の少なくとも一方の面に、導体により構成された回路が設けられた回路部と、導体により構成され、前記回路に接続された一端及び外部回路に接続するための他端を有する配線が設けられたケーブル部とが印刷されており、
     前記回路を構成する導体と、前記配線を構成する導体とは、少なくとも1種の金属を共通に含み、
     前記配線を構成する導体の厚みが、前記回路を構成する導体の厚みより大きく、
     前記フレキシブル基材は、基材本体と、該基材本体から帯状に延設された帯状部とを備え、
     前記基材本体に前記回路部が設けられると共に、前記帯状部に前記ケーブル部が設けられ、
     前記帯状部の先端に前記ケーブル部を構成する前記配線の前記他端が設けられる、ケーブル付きフレキシブル回路。
    A circuit portion provided with a circuit constituted by a conductor on at least one surface of the flexible base material, and a wiring having one end connected to the circuit and the other end connected to the external circuit constituted by the conductor. The cable part provided is printed,
    The conductor constituting the circuit and the conductor constituting the wiring include at least one metal in common,
    The thickness of the conductor constituting the wiring is larger than the thickness of the conductor constituting the circuit,
    The flexible base material includes a base material main body, and a belt-shaped portion extending in a belt shape from the base material main body,
    The circuit part is provided on the base body, and the cable part is provided on the belt-like part.
    A flexible circuit with a cable, wherein the other end of the wiring constituting the cable portion is provided at a tip of the strip-shaped portion.
  2.  前記回路を構成する導体と、前記配線を構成する導体とは、それぞれ合金である、請求項1記載のケーブル付きフレキシブル回路。 The flexible circuit with cable according to claim 1, wherein the conductor constituting the circuit and the conductor constituting the wiring are each an alloy.
  3.  前記回路を構成する合金と、前記配線を構成する合金とは、ニッケル、クロム、モリブデン、マンガン及びコバルトから選択される1種以上を共通に含む、請求項2記載のケーブル付きフレキシブル回路。 The flexible circuit with cable according to claim 2, wherein the alloy constituting the circuit and the alloy constituting the wiring commonly include at least one selected from nickel, chromium, molybdenum, manganese, and cobalt.
  4.  前記回路を構成する導体の厚みが0.05μm~10μmであり、
     前記配線を構成する導体の厚みが、前記回路を構成する導体の厚みの1.5倍~10倍である、請求項1~3の何れかに記載のケーブル付きフレキシブル回路。
    The thickness of the conductor constituting the circuit is 0.05 μm to 10 μm,
    The flexible circuit with cable according to any one of claims 1 to 3, wherein a thickness of a conductor constituting the wiring is 1.5 to 10 times a thickness of a conductor constituting the circuit.
  5.  前記配線の前記他端を露出させるように、前記回路及び前記配線上に保護材料が積層されている、請求項1~4の何れかに記載のケーブル付きフレキシブル回路。 The flexible circuit with a cable according to any one of claims 1 to 4, wherein a protective material is laminated on the circuit and the wiring so as to expose the other end of the wiring.
  6.  前記回路は、複数のセンサーチャネルによって構成されたタッチセンサー回路である、請求項1~5の何れかに記載のケーブル付きフレキシブル回路。 The flexible circuit with a cable according to any one of claims 1 to 5, wherein the circuit is a touch sensor circuit configured by a plurality of sensor channels.
  7.  前記回路は、通電によって発熱する発熱体回路である、請求項1~5の何れかに記載のケーブル付きフレキシブル回路。 The flexible circuit with a cable according to any one of claims 1 to 5, wherein the circuit is a heating element circuit that generates heat when energized.
  8.  請求項1~7の何れかに記載のケーブル付きフレキシブル回路を製造する製造方法であって、
     前記回路と前記配線とを、印刷法とめっき加工とを組み合わせて形成する際に、前記配線を構成する導体の厚みが前記回路を構成する導体の厚みより大きくなるように、前記回路と前記配線とで印刷条件及びめっき条件の少なくとも一方を異ならせる、ケーブル付きフレキシブル回路の製造方法。
    A manufacturing method for manufacturing a flexible circuit with a cable according to any one of claims 1 to 7,
    When forming the circuit and the wiring by combining printing and plating, the circuit and the wiring are arranged such that the thickness of the conductor constituting the wiring is larger than the thickness of the conductor constituting the circuit. A method for manufacturing a flexible circuit with a cable, in which at least one of a printing condition and a plating condition is different.
  9.  前記回路と前記配線とを形成する際の印刷法において、前記配線への単位面積当たりのインク付与量を、前記回路への単位面積当たりのインク付与量より大きくする、請求項8記載のケーブル付きフレキシブル回路の製造方法。 The printing method when forming the circuit and the wiring, wherein the amount of ink applied per unit area to the wiring is made larger than the amount of ink applied per unit area to the circuit. A method of manufacturing a flexible circuit.
  10.  前記回路と前記配線とを形成する際のめっき加工において、前記配線へのめっき時間を、前記回路へのめっき時間より長くする、請求項8又は9記載のケーブル付きフレキシブル回路の製造方法。 The method for manufacturing a flexible circuit with a cable according to claim 8 or 9, wherein a plating time for the wiring is made longer than a plating time for the circuit in the plating process for forming the circuit and the wiring.
  11.  前記回路と前記配線とを形成する際のめっき加工において、電解めっきを用いると共に、前記配線への単位面積当たりのめっき電流量を、前記回路への単位面積当たりのめっき電流量より大きくする、請求項8~10の何れかに記載のケーブル付きフレキシブル回路の製造方法。 In the plating process for forming the circuit and the wiring, electrolytic plating is used, and a plating current amount per unit area for the wiring is made larger than a plating current amount per unit area for the circuit. Item 11. A method for producing a flexible circuit with a cable according to any one of Items 8 to 10.
  12.  長尺状のフレキシブル基材の少なくとも一方の面に、導体により構成された回路が設けられた回路部と、導体により構成され、前記回路に接続された一端及び外部回路に接続するための他端を有する配線が設けられたケーブル部とによって構成されたユニットが、該フレキシブル基材の長手方向に沿って、複数印刷されており、
     前記回路を構成する導体と、前記配線を構成する導体とは、少なくとも1種の金属を共通に含み、
     前記配線を構成する導体の厚みが、前記回路を構成する導体の厚みより大きい、ケーブル付きフレキシブル回路中間体。
    A circuit part provided with a circuit composed of a conductor on at least one surface of a long flexible substrate, one end composed of a conductor and connected to the circuit, and the other end connected to an external circuit A plurality of units configured by a cable portion provided with wiring having a length of the flexible base material are printed along the longitudinal direction of the flexible base material,
    The conductor constituting the circuit and the conductor constituting the wiring include at least one metal in common,
    A flexible circuit intermediate with a cable, wherein a thickness of a conductor constituting the wiring is larger than a thickness of a conductor constituting the circuit.
  13.  前記ユニットを構成する少なくとも1つの前記配線は、前記回路から前記フレキシブル基材の長辺に向けて伸びる、請求項12記載のケーブル付きフレキシブル回路中間体。 The flexible circuit intermediate with a cable according to claim 12, wherein at least one of the wirings constituting the unit extends from the circuit toward a long side of the flexible base material.
PCT/JP2018/021627 2018-06-05 2018-06-05 Flexible circuit with cable, manufacturing method therefor, and intermediate for flexible circuit with cable WO2019234841A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/021627 WO2019234841A1 (en) 2018-06-05 2018-06-05 Flexible circuit with cable, manufacturing method therefor, and intermediate for flexible circuit with cable
JP2020523899A JPWO2019234841A1 (en) 2018-06-05 2018-06-05 Flexible circuit with cable and its manufacturing method, and flexible circuit intermediate with cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/021627 WO2019234841A1 (en) 2018-06-05 2018-06-05 Flexible circuit with cable, manufacturing method therefor, and intermediate for flexible circuit with cable

Publications (1)

Publication Number Publication Date
WO2019234841A1 true WO2019234841A1 (en) 2019-12-12

Family

ID=68770249

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/021627 WO2019234841A1 (en) 2018-06-05 2018-06-05 Flexible circuit with cable, manufacturing method therefor, and intermediate for flexible circuit with cable

Country Status (2)

Country Link
JP (1) JPWO2019234841A1 (en)
WO (1) WO2019234841A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002246700A (en) * 2001-02-13 2002-08-30 Alps Electric Co Ltd Printed wiring board
JP2006269605A (en) * 2005-03-23 2006-10-05 Shinko Electric Ind Co Ltd Flexible circuit board and manufacturing method thereof
JP2009192835A (en) * 2008-02-14 2009-08-27 Seiko Epson Corp Electrooptical device and electronic apparatus
JP2010226006A (en) * 2009-03-25 2010-10-07 Casio Computer Co Ltd Method of manufacturing flexible circuit sheet junction
JP2014197181A (en) * 2013-03-07 2014-10-16 株式会社半導体エネルギー研究所 Display device
WO2016075988A1 (en) * 2014-11-13 2016-05-19 富士フイルム株式会社 Method for molding conductor, and conductor
JP2017069001A (en) * 2015-09-29 2017-04-06 コニカミノルタ株式会社 Method for forming conductive pattern, and conductive pattern

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002246700A (en) * 2001-02-13 2002-08-30 Alps Electric Co Ltd Printed wiring board
JP2006269605A (en) * 2005-03-23 2006-10-05 Shinko Electric Ind Co Ltd Flexible circuit board and manufacturing method thereof
JP2009192835A (en) * 2008-02-14 2009-08-27 Seiko Epson Corp Electrooptical device and electronic apparatus
JP2010226006A (en) * 2009-03-25 2010-10-07 Casio Computer Co Ltd Method of manufacturing flexible circuit sheet junction
JP2014197181A (en) * 2013-03-07 2014-10-16 株式会社半導体エネルギー研究所 Display device
WO2016075988A1 (en) * 2014-11-13 2016-05-19 富士フイルム株式会社 Method for molding conductor, and conductor
JP2017069001A (en) * 2015-09-29 2017-04-06 コニカミノルタ株式会社 Method for forming conductive pattern, and conductive pattern

Also Published As

Publication number Publication date
JPWO2019234841A1 (en) 2021-07-08

Similar Documents

Publication Publication Date Title
KR101906694B1 (en) Electroconductive pattern, substrate with electroconductive pattern, method for manufacturing substrate with electroconductive pattern, structure having on-surface electroconductive pattern, and method for manufacturing said structure
TWI666658B (en) Method for forming functional thin line pattern, method for forming transparent conductive film, method for manufacturing element, and method for manufacturing electronic device
JP6439641B2 (en) Method for forming conductive pattern and conductive pattern
JP6733586B2 (en) Transparent conductor and method for producing transparent conductor
JP2019219949A (en) Manufacturing method for conductive thin line pattern and manufacturing method for touch panel sensor
WO2019234841A1 (en) Flexible circuit with cable, manufacturing method therefor, and intermediate for flexible circuit with cable
JP6753300B2 (en) Manufacturing method of transparent conductor
CN110062820B (en) Method for forming transparent conductive film and plating solution for electroplating
JP2019008361A (en) Sensor film and image display device with sensor film
JP2018098446A (en) Touch panel sensor intermediate, and manufacturing method of touch panel sensor
WO2017056977A1 (en) Touch panel sensor manufacturing method and touch panel sensor
JPWO2019064595A1 (en) Touch panel sensor and manufacturing method of touch panel sensor
WO2019215929A1 (en) Touch sensor film manufacturing method and touch sensor film intermediate
KR102388225B1 (en) How to form a pattern
JP7073860B2 (en) Manufacturing method of base material with functional thin wire, and set of ink and base material
JP2017224117A (en) Transparent planar device and method for manufacturing the same
WO2018146963A1 (en) Touch screen and method for manufacturing touch screen
WO2020161876A1 (en) Method for forming functional thin-line pattern precursor and method for forming functional thin-line pattern
TW201624501A (en) Conductive pattern, conductive patterned substrate, method of manufacturing conductive patterned substrate, structure having conductive pattern on surface and manufacturing method of the same
JP2018196992A (en) Functional fine line pattern, substrate with transparent conductive film, device, and electronic device
WO2017110580A1 (en) Functional fine-wire pattern and method for manufacturing functional fine-wire pattern
KR20130025564A (en) Transparent conductive layer and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18921830

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020523899

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18921830

Country of ref document: EP

Kind code of ref document: A1