WO2019233455A1 - 一种用药依从性评估方法 - Google Patents

一种用药依从性评估方法 Download PDF

Info

Publication number
WO2019233455A1
WO2019233455A1 PCT/CN2019/090219 CN2019090219W WO2019233455A1 WO 2019233455 A1 WO2019233455 A1 WO 2019233455A1 CN 2019090219 W CN2019090219 W CN 2019090219W WO 2019233455 A1 WO2019233455 A1 WO 2019233455A1
Authority
WO
WIPO (PCT)
Prior art keywords
medication
actual
time
compliance
drug
Prior art date
Application number
PCT/CN2019/090219
Other languages
English (en)
French (fr)
Inventor
吕玮
宋震东
李太生
Original Assignee
上海镁善斯健康科技有限公司
中国医学科学院北京协和医院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海镁善斯健康科技有限公司, 中国医学科学院北京协和医院 filed Critical 上海镁善斯健康科技有限公司
Publication of WO2019233455A1 publication Critical patent/WO2019233455A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H70/00ICT specially adapted for the handling or processing of medical references
    • G16H70/40ICT specially adapted for the handling or processing of medical references relating to drugs, e.g. their side effects or intended usage
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • G16H20/10ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients

Definitions

  • the invention belongs to the field of medication detection, and relates to a medication detection and evaluation method, and in particular to a medication compliance evaluation method.
  • Non-compliance refers to the inability to take the prescribed medication at the prescribed time and the recommended dosage, resulting in insufficient medication, excessive medication, or inability to optimally control the condition.
  • accurately measuring compliance can have benefits such as: increased statistical reliability of clinical research; and more accurate conclusions from clinical research.
  • accurately assessing compliance has many important benefits, such as: excluding interference from medication compliance to accurately determine the effectiveness of the treatment plan, the effect of the drug itself and toxic and side effects; timely warning patients of deterioration in compliance will Potential for drug resistance; and identification of side effects associated with overdose.
  • the direct measurement method assesses a patient's medication by measuring the concentration of the drug in the blood or urine.
  • the advantage is that it is relatively accurate, and the disadvantage is that it only provides a yes or no result.
  • the cost is high, the operability is poor, and it is impossible to remind the patient of any regularity in medication compliance.
  • MPR How many days have you taken the last time? How many days have you taken since the last time?
  • the time of medication data is some discrete time points, and the unprocessed time points are difficult to effectively assist doctors and other management personnel to make decisions;
  • the purpose of the present invention is to combine the completion rate of patients' medication with the accuracy rate of medication time, and propose a method for evaluating medication compliance.
  • the medication compliance assessed by this method can accurately determine the medication situation of patients in various aspects.
  • Different drugs can optimize compliance quantification methods, such as antiviral treatment drugs, so that this compliance index is used to guide patients in medication, timely intervention and adjustment of medication, and can also evaluate differences for different drugs, which has important clinical guidance significance.
  • a method for evaluating medication compliance which is characterized in that the method includes the following steps:
  • Adherence Index ⁇ ⁇ W + ⁇ ⁇ Q
  • the actual medication completion rate As a preference, the actual medication completion rate
  • D is the actual number of medications taken during the compliance calculation period
  • N is the number of medications that should be taken during the compliance calculation period.
  • V i the i th medication fluctuations, whose value is 1 or 0, is determined by the following method:
  • ⁇ and ⁇ can be determined according to pharmacokinetics. The more sensitive the drug is to the time of taking, the larger the value of ⁇ , but satisfying ⁇ ⁇ .
  • ⁇ and ⁇ can be determined by analyzing and optimizing the clinical trial data.
  • the maximum allowable error L of the medication is determined by optimization based on pharmacokinetics or clinical trial data analysis.
  • the actual medication time and number of medications of the patient can be recorded by manual recording, software, smart medication equipment or smart vial.
  • each drug can calculate a drug compliance index AI k separately , and then weight the average of the drug compliance index of each drug to obtain a comprehensive average drug compliance index
  • M is the number of co-administered drugs
  • AI k is the medication compliance index of the k-th drug
  • k ranges from 1 to M
  • ⁇ k is the weight of the medication compliance index of the k-th drug
  • ⁇ k is a constant, which is determined based on pharmacokinetics or clinical data.
  • the medication compliance assessed by the method of the present invention can accurately determine the patient's medication situation in various aspects. Different ⁇ and ⁇ can be selected according to different diseases (such as antiviral treatment) and different drug metabolism (such as short half-life drugs). Therefore, the compliance index calculated in this way is more instructive in guiding the clinic.
  • diseases such as antiviral treatment
  • drug metabolism such as short half-life drugs
  • FIG. 1 is a flowchart of a method for evaluating drug compliance according to the present invention
  • FIG. 2 is a record of medication time of Patient 1 in the last 30 days in the embodiment.
  • FIG. 3 is a record of medication time of Patient 2 in the last 30 days in the embodiment.
  • a method for evaluating medication compliance includes the following steps:
  • Adherence Index ⁇ ⁇ W + ⁇ ⁇ Q
  • Actual medication completion rate D is the actual number of medications taken during the compliance calculation period
  • N is the number of medications that should be taken during the compliance calculation period.
  • i indicates the i-th medication, its range is 1 to D, and vi is the fluctuation of the i-th medication, and its value is 1 or 0. It is judged by the following methods:
  • the first part of the above formula evaluates whether to take medication (that is, the completion rate of medication), and the second part evaluates the fluctuation of medication time (that is, the accuracy rate of medication time), and calculates the medication compliance index based on a comprehensive judgment of the two conditions.
  • the second part of the above formula Will be less than 1, Will be less than ⁇ , so although the patient takes the medicine every day, the compliance index is not 100%.
  • the first part of this formula quantifies whether the patient takes the medicine, and the second part quantifies whether the medicine is taken on time. Then, according to the weight of each part, the compliance of whether to take the medicine and the compliance of taking the medicine on time are combined to calculate the compliance index.
  • Figure 2 shows the medication time record of Patient 1 in the last 30 days.
  • Patient 1 takes antiviral therapy every day, and the time of daily medication is very consistent. Such medication regularity can reduce the possibility of virus resistance.
  • Figure 3 is a record of the medication time of Patient 2 in the past 30 days. Patient 2 also took antiviral therapy daily, but the time of daily medication fluctuated greatly. Such medication regularity increased the probability of virus resistance.
  • ⁇ and ⁇ may be related to the pharmacokinetics of the specific medication. For example, if the half-life of the medicine being taken is short, the time of taking the medicine is very important to maintain a stable blood concentration, and the value of ⁇ is relatively large; if the time of taking the medicine is different by several hours, there is no blood concentration. What effect does it need to be small or even zero? Generally speaking, ⁇ ⁇ .
  • ⁇ and ⁇ are also related to the clinical situation of the patient.
  • the same antiviral drugs are used in the treatment of AIDS patients.
  • the requirements for taking drugs on time are relatively high.
  • should be larger.
  • is Can be smaller.
  • the actual time and number of medications taken by a patient can be recorded either manually or through smart medication equipment or smart vials.
  • clinical data is used to determine ⁇ and ⁇ , once it is known whether the patient should take the drug each time the drug is taken and the difference between the actual time and the time should be taken, you can try different combinations of ⁇ , ⁇ and L to calculate compliance. index.
  • the clinical prognosis of the patient can be correlated with the calculated compliance index, which is obtained by calculating which ⁇ , ⁇ , and L selection combination
  • the correlation coefficient between the compliance index and clinical prognosis (such as the development of drug resistance, such as mortality) is the highest to determine the appropriate ⁇ , ⁇ , and L. It is worth noting that different choices of clinical prognostic indicators will result in different combinations of optimal ⁇ , ⁇ , and L values.
  • the invention not only quantifies the assessment method of compliance, but also closely combines the calculation of the compliance index with specific clinical applications.
  • the selection values of ⁇ , ⁇ , and L of the present invention can change with changes in clinical prognostic indicators, and meet the monitoring needs of different prognostic indicators, thereby having important guiding significance in more accurate disease management.
  • each drug can calculate the drug compliance index AI k separately , and then weight the average of the drug compliance index for each drug to obtain a comprehensive average drug compliance index
  • M is the number of drugs taken, a positive integer
  • AI k is the medication compliance index of the k-th drug
  • k ranges from 1 to M
  • ⁇ k is the weight of the medication compliance index of the k-th drug
  • ⁇ k is a constant, which is determined based on pharmacokinetics or clinical data.
  • ⁇ k can be averaged for each drug. For example, a patient takes two drugs at the same time, and each drug selects 50%.
  • can also be selected according to actual needs. For example, for AIDS patients with elevated blood lipids, a larger ⁇ can be selected for antiviral drugs, and a smaller ⁇ can be selected for drugs that control blood lipids.
  • a clinical trial method can also be adopted to select different ⁇ -weighted average combinations, and the ⁇ combination that predicts the best clinical prognosis is the best.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Primary Health Care (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Toxicology (AREA)
  • Medical Treatment And Welfare Office Work (AREA)

Abstract

一种用药依从性评估方法,该评估方法首先记录患者实际用药时间和用药次数;通过用药次数和用药时间的实际值与设定值计算得到实际用药完成率W和实际用药时间准确率Q;针对实际用药完成率和实际用药时间准确率对用药依从性的影响设定权重α和β;综合计算得到用药依从性指数AI,AI数值越接近100%,依从性越好,通过依从性好坏预估用药效果并对患者用药进行干预。当患者服用多种药物情况下,每个药物的用药依从性指数可以进一步加权平均,得到综合平均用药依从性指数。该方法既可以准确的,及时的,多方面的反映患者服药情况,又充分考虑到不同疾病和不同药物治疗对计算依从性的影响,从而让该指数在指导临床疾病管理中,更有实际意义。

Description

一种用药依从性评估方法 技术领域
本发明属于用药检测领域,涉及一种用药检测评估方法,具体涉及一种用药依从性评估方法。
背景技术
患者对由其医生所制定的治疗方案的不依从会造成医疗保健的成本增加、临床预后的变差、病死率增加以及药品的浪费。不依从是指不能遵医嘱在规定的时间服用指定的药物,服用建议的剂量,从而导致用药不足,用药过度,或病情无法得到最优控制。
在药物的临床研究阶段,准确地测量依从性可以有诸如以下好处:临床研究的统计可靠性增加;临床研究的结论更准确。在治疗阶段,准确地评估依从性有很多重要的好处,例如:排除用药依从性高低的干扰以准确判定治疗方案的有效性,药品自身的效果和毒副作用;及时警告患者依从性的变差将有可能导致耐药性的产生;以及识别与过量用药有关的副作用。
目前在医疗领域,评估病人依从性有直接与间接的方法。直接测量的方法通过测量血液或者尿液中药物的浓度来评估病人用药情况。其优点是相对准确,缺点是只提供一个是或者不是的结果。同时成本高昂,可操作性差,并且无法提示病人服药依从性上的任何规律。
间接评估的方式有很多种。常用的有:
1、依赖医生来估测;让病人记录服药日志,然后根据记录来评估;靠问诊的时候询问病人,让病人自我评估用药情况。
2、病人随访时清点剩余药粒数(pill count)。依从性=(实发药粒数-剩余药粒数)/(每天应服药粒数×距离上次随访天数)
3、Medication Possession Ratio(MPR)。MPR=上一次拿了足够多少天服用的药/这一次拿药距离上次拿药的天数
依赖医生评估,病人自诉的方法都明显存在受主观因素影响而可能不够准确的问题,同时由于目前门诊时间有限,医患的信任程度等原因,医生往往难以花足够的时间,与病人深度交流,发现是否存在依从性问题,如果存在,真正的原因是什么。依赖清点剩余药粒方法与MPR实际上都是评估结果,而且缺乏精度。对有些慢性病如高血压,糖尿病,再次拿药距离上一次拿药的时间可能有较长的时间间隔,如出现严重的依从性问题,可能已经严重的影响到临床预后了。更为关键的是,单纯的评估结果对于了解真正影响病人服药的规律,缺乏依从性的原因,没有帮助,也就难以做到有针对性的干预。
现有技术中也存在通过智能药瓶来记录和判断患者服药情况,但是尚缺乏通用的用药依从性的量化标准。
·在缺乏通用的量化标准的情况下:服药时间数据为一些离散型的时间点,而未经加工的时间点难以有效的协助医生等管理人员进行决策;
·如果只是二进制的记录吃药或者没吃药,并不能反映服药时间的波动。然而对于某些疾病,对于某些药物,服药时间的波动对于控制病情也很关键,如抗病毒治疗;
·在缺乏通用的量化标准情况下,不同研究的结果难以比较;
·更重要的是,目前缺乏一个前瞻性的,可以动态的评估病人用药依从性并据此进行有针对性的管理的指标。
如果有更好的方法能够提供更及时,更准确的,更精细化的关于病人服药情况的信息,那么将对于医患双方早期发现问题,早期解决会有很大的帮助。
发明内容
本发明的目的在于将患者用药完成率和用药时间准确率相结合,提出一种用药依从性评估方法,通过该方法评估的用药依从性可以准确的多方面判断患者服药情况,对于不同的疾病,不同药物可以优化依从性量化的方法,如抗病毒治疗药物,这样使得此依从性指数在指导患者用药,及时干预调整用药,并且针对不同药物还可进行差异性评估,具有重要的临床指导意义。
为了解决上述技术问题,本发明采用的技术方案是:
一种用药依从性评估方法,其特征在于,该评估方法包括以下步骤:
a、记录患者实际用药时间和用药次数;
b、通过实际用药次数和设定的应用药次数计算得到实际用药完成率W;
c、通过实际用药时间和设定的应用药时间计算得到实际用药时间准确率Q;
d、针对实际用药完成率和实际用药时间准确率对用药依从性的影响设定权重α和β;
e、综合计算得到用药依从性指数(Adherence Index)AI=α·W+β·Q,通过AI大小判断用药依从性情况,AI数值越接近100%,依从性越好。
作为优选,实际用药完成率
Figure PCTCN2019090219-appb-000001
D为在依从性计算时间段内的实际服药次数;
N为在依从性计算时间段内的应服药次数。
作为优选,实际用药时间准确率
Figure PCTCN2019090219-appb-000002
i代表第i次用药,其范围为1到D,V i为第i次用药波动情况,其取值为1或者0,通过下面方法判断:
如果|T i-T 0|≤L成立,则V i=1;否则V i=0,其中T i为第i次用药实际时间,T 0为设定的应用药时间,L为设定的用药时间最大允许误差,为一个常数,当所有实际用药时间均在用药时间最大允许误差范围内时,实际用药时间准确率Q=1。
作为优选,实际用药完成率权重α和实际用药时间准确率权重β满足:α+β=1,0<α≤1。
作为优选,α和β可根据药物动力学确定,药物对服用时间越敏感,则β取值越大,但满足β<α。
作为优选,α和β可以通过临床试验数据分析优化确定。
作为优选,所述最大用药允许误差L根据药物动力学或者临床试验数据分析优化确定。
作为优选,患者实际用药时间和用药次数可通过手工记录,软件,智能用药设备或智能药瓶记录。
作为优选,当用户服用多种药物时,每个药物可分别计算用药依从性指数AI k,再将各个药物的用药依从性指数加权平均,获得综合平均用药依从性指数
Figure PCTCN2019090219-appb-000003
其中M为共服用药物品种数,为正整数,AI k为第k种药物的用药依从性指数,k取值范围为1到M,θ k为第k种药物的用药依从性指数的权重,θ k为常数,其根据药物动力学或者临床数据确定。
本发明有益效果是:
通过本发明方法评估的用药依从性可以准确的多方面判断患者服药情况,可以根据疾病的不同,(如抗病毒治疗),药物代谢的不同(如半衰期短的药物)来选择不同的α及β,这样计算出的依从性指数在指导临床才更有指导意义。
附图说明
图1为本发明用药依从性评估方法流程图
图2为实施例中病人1近30天用药时间记录图。
图3为实施例中病人2近30天用药时间记录图。
具体实施方式
下面结合附图对本发明进行举例说明,
如图1所示,一种用药依从性评估方法,该评估方法包括以下步骤:
a、记录患者实际用药时间和用药次数;
b、通过实际用药次数和设定的应用药次数计算得到实际用药完成率W;
c、通过实际用药时间和设定的应用药时间计算得到实际用药时间准确率Q;
d、针对实际用药完成率和实际用药时间准确率对用药依从性的影响设定权重α和β;
e、综合计算得到用药依从性指数(Adherence Index)AI=α·W+β·Q,通过AI大小判断用药依从性情况,AI数值越接近100%,依从性越好。
实际用药完成率
Figure PCTCN2019090219-appb-000004
D为在依从性计算时间段内的实际服药次数;
N为在依从性计算时间段内的应服药次数。
实际用药时间准确率
Figure PCTCN2019090219-appb-000005
i表示第i次用药,其范围为1到D,V i为第i次用药波动情况,其取值为1或者0,通过下面方法判断:
如果|T i-T 0|≤L成立,则V i=1;否则V i=0,其中T i为第i次用药实际时间,T 0为设定的应用药时间,L为设定的用药时间最大允许误差,为一个常数,当所有实际用药时间均在用药时间最大允许误差范围内时,实际用药时间准确率Q=1。
因此用药依从性指数(Adherence Index)
Figure PCTCN2019090219-appb-000006
上述公式第一部分评估是否服用情况(即用药完成率),第二部分评估用药时间波动情况(即用药时间准确率),根据两者情况综合判断计算出用药依从性指数。
作为一种更优的实施例,当只考虑实际用药完成率和实际用药时间准确率两种因素对用药依从性的影响时,实际用药完成率权重α和实际用药时间准确率权重β满足:α+β=1,0<α≤1,依从性越好,AI数值越大最终趋近于100%,最完美状态等于100%;所述最大用药允许误差L根据药物动力学或者临床试验数据分析优化确定。以下举例说明
如果患者每次都服药,而且按时服药,那么依从性参数就是依从性指数AI=α+β=100%
如果患者每次都吃药,但是吃药的时间波动太大的话,那么上述公式中第二部分
Figure PCTCN2019090219-appb-000007
就会小于1,
Figure PCTCN2019090219-appb-000008
就会小于β,那么虽然病人每天吃药,依从性指数也不是100%。这一公式的第一部分量化病人是否服药,第二部分量化是否按时服药;再根据每一部分的权重,将是否服药的依从性情况与是否按时服药的依从性结合起来,计算出依从性指数。
如图2为病人1近30天用药时间记录,病人1每天服药进行抗病毒治疗,而且每天服药时间非常一致,这样的服药规律可以减小病毒抗药性产生的可能。图3为病人2近30天用药时间记录,病人2同样每天服药进行抗病毒治疗,但是每天服药时间波动较大,这样的服药规律增加了病毒抗药性产生的几率。
如果按照传统的医生问诊,可能难以发现服药时间波动的问题。因为病人确实每天都在吃药,病人自己也很可能完全没有意识到服药时间上的 差异。如果采用传统的pill count,或者MPR的计算方法,单纯检查服药结果,两个病人都是100%的依从性;但是显然两个病人出现病毒耐药的几率不同。而如果根据本发明技术方案中的依从性指数来计算,那么第一个病人的依从性指数还是100%;而第二个病人由于服药时间波动,计算公式的第二部分会小于β,进而依从性指数就会小于100%,这样依从性指数与其实际服药情况,临床预后情况更加符合。而从医生的角度,通过查看究竟是依从性指数的第一部分还是第二部分出现问题,也可以帮助他们迅速判断潜在问题出现在什么地方,如何进行有针对性的干预。
α和β的数值可能与具体服药的药物动力学有关。例如,如果所服药物的半衰期很短,那么服药的时间对于保持稳定的血药浓度就很重要,β取值相对大一些;如果所服药物的服药时间相差几个小时对于血药浓度都没有什么影响的话,就需很小甚至为零,总体来说一般β<α。
α和β的选择也与病人的临床情况有关。例如同样是抗病毒治疗的药物,应用在艾滋病病人治疗上,对于按时服药的要求就比较高,以尽量减小抗药性病毒的产生,β就应该大一些;而对于感冒病人来说,β就可以小一些。
值得一提的是,作为一项新提出的指数,α和β的数值因需根据具体临床应用不同而不同,但是可以通过临床试验数据分析优化确定。
基于临床数据,对于一般性的疾病及药物治疗,可以选取α=0.9,β=0.1,L=1小时;对于容易产生抗药性的治疗如抗病毒治疗,可以选取α=0.7,β=0.3,L=0.5小时。
患者实际用药时间和用药次数既可手动记录也可以通过智能用药设备或智能药瓶记录。采用临床数据确定α和β时,一旦知道患者具体每次应服药时是否服药,实际服药时间与应服药时间差异,就可以尝试不同的α、β 与L的选值的组合来计算出依从性指数。在有一定规模的病人数据(人数,随访时间,临床预后等)后,即可以将病人临床预后与计算出的依从性指数进行关联,算出哪一种α、β与L选值组合得出的依从性指数与临床预后(如抗药性的产生,如死亡率)的相关系数最高,以此来确定合适的α、β与L。值得说明的是,临床预后指标的选择不同,最优的α、β与L的选值的组合也会不同。本发明既量化了依从性的评估方法,又将依从性指数的计算与具体临床应用紧密结合起来。本发明α、β与L的选值可以随着临床预后指标变化而变化,适应不同预后指标监测需要,从而在更精准的进行疾病管理方面具有重要的指导意义。
当用户服用多种药物时,每个药物可分别计算用药依从性指数AI k,再将各个药物的用药依从性指数加权平均,获得综合平均用药依从性指数
Figure PCTCN2019090219-appb-000009
其中M为服用药物品种数,为正整数,AI k为第k种药物的用药依从性指数,k取值范围为1到M,θ k为第k种药物的用药依从性指数的权重,θ k为常数,其根据药物动力学或者临床数据确定。
θ k的取值可以采用每种药物平均的方法。例如病人同时服用两种药物,每种药物选取θ为50%。在临床上,也可根据实际需求来选取θ,例如,对于有血脂升高的艾滋病病人,可以对抗病毒的药物选取较大的θ,而对控制血脂的药物选取较小的θ。另外也可以采取临床试验的方法,选取不同的θ加权平均组合,其中预测临床预后最佳的θ组合即为最佳。

Claims (9)

  1. 一种用药依从性评估方法,其特征在于,该评估方法包括以下步骤:
    a、记录患者实际用药时间和用药次数;
    b、通过实际用药次数和设定的应用药次数计算得到实际用药完成率W;
    c、通过实际用药时间和设定的应用药时间计算得到实际用药时间准确率Q;
    d、针对实际用药完成率和实际用药时间准确率对用药依从性的影响设定权重α和β;
    e、综合计算得到用药依从性指数AI=α·W+β·Q,通过AI大小判断用药依从性情况,AI数值越接近100%,依从性越好。
  2. 如权利要求1所述一种用药依从性评估方法,其特征在于:实际用药完成率
    Figure PCTCN2019090219-appb-100001
    D为在依从性计算时间段内的实际服药次数;
    N为在依从性计算时间段内的应服药次数。
  3. 如权利要求2所述一种用药依从性评估方法,其特征在于:实际用药时间准确率
    Figure PCTCN2019090219-appb-100002
    i表示第i次用药,其范围为1到D,V i为第i次用药波动情况,其取值为1或者0,通过下面方法判断:
    如果|T i-T 0|≤L成立,则V i=1;否则V i=0,其中T i为第i次用药实际时间,T 0为设定的应用药时间,L为设定的用药时间最大允许误差,为一个常数,当所有实际用药时间均在用药时间最大允许误差范围内时,实际用药时间准确率Q=1。
  4. 如权利要求3所述一种用药依从性评估方法,其特征在于:实际用药完成率权重α和实际用药时间准确率权重β满足:α+β=1,0<α≤1。
  5. 如权利要求4所述一种用药依从性评估方法,其特征在于:α和β可根据药物动力学确定,药物对服用时间越敏感,则β取值越大,但满足β<α。
  6. 如权利要求4所述一种用药依从性评估方法,其特征在于:α和β可以通过临床试验数据分析优化确定。
  7. 如权利要求3所述一种用药依从性评估方法,其特征在于:所述用药时间最大允许误差L根据药物动力学或者临床试验数据分析优化确定。
  8. 如权利要求1至7任意一项所述一种用药依从性评估方法,其特征在于:患者实际用药时间和用药次数可通过手工记录,软件,智能用药设备或智能药瓶记录。
  9. 如权利要求1至7任意一项所述一种用药依从性评估方法,其特征在于:当用户服用多种药物时,每个药物可分别计算用药依从性指数AI k,再将各个药物的用药依从性指数加权平均,获得综合平均用药依从性指数
    Figure PCTCN2019090219-appb-100003
    其中M为共服用药物品种数,为正整数,AI k为第k种药物的用药依从性指数,k取值范围为1到M,θ k为第k种药物的用药依从性指数的权重,θ k为常数,其根据药物动力学或者临床数据确定。
PCT/CN2019/090219 2018-06-07 2019-06-06 一种用药依从性评估方法 WO2019233455A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810579343.6A CN108877954B (zh) 2018-06-07 2018-06-07 一种用药依从性评估方法
CN201810579343.6 2018-06-07

Publications (1)

Publication Number Publication Date
WO2019233455A1 true WO2019233455A1 (zh) 2019-12-12

Family

ID=64337213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/090219 WO2019233455A1 (zh) 2018-06-07 2019-06-06 一种用药依从性评估方法

Country Status (2)

Country Link
CN (1) CN108877954B (zh)
WO (1) WO2019233455A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113380408A (zh) * 2021-06-04 2021-09-10 合肥巧士健康科技有限责任公司 一种基于行为-时间护栏的服药行为分析系统
CN113707263A (zh) * 2021-08-31 2021-11-26 平安科技(深圳)有限公司 基于群体划分的药物有效性评价方法、装置及计算机设备
CN115831312A (zh) * 2022-11-24 2023-03-21 上海市精神卫生中心(上海市心理咨询培训中心) 一种用药异常识别方法及系统
CN118072915A (zh) * 2024-03-18 2024-05-24 广州海博特医药科技有限公司 一种随访路径定义方法和系统

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108877954B (zh) * 2018-06-07 2022-05-17 中国医学科学院北京协和医院 一种用药依从性评估方法
CN110718304B (zh) * 2019-10-10 2022-09-27 电子科技大学 一种艾滋病患者用药依从性监测方法
CN111145845A (zh) * 2019-12-20 2020-05-12 四川大学华西第二医院 基于区块链抗肿瘤药物分级管理及追踪用药依从性系统
CN113488133A (zh) * 2021-07-13 2021-10-08 中国人民解放军联勤保障部队第九六〇医院 一种用于抗幽门螺旋杆菌感染的服药提醒手机应用软件
CN114420244A (zh) * 2022-02-28 2022-04-29 北京大学第三医院(北京大学第三临床医学院) 一种帕金森病患者的用药分析方法和装置
CN115050447A (zh) * 2022-03-01 2022-09-13 厦门宸力科技有限公司 智能服药机及其模糊综合评价的信誉评估方法和服药方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104537265A (zh) * 2015-01-15 2015-04-22 曹庆恒 一种智能计算个性化合理用药时间的方法、系统和设备
CN105701356A (zh) * 2016-02-24 2016-06-22 黄文佳 患者服药依从性的判断方法
CN106599554A (zh) * 2016-12-01 2017-04-26 广东省中医院 基于患者肾功能水平监控用药的方法
CN107229833A (zh) * 2017-06-14 2017-10-03 重庆新三禾网络科技有限公司 一种用药追踪评分方法及系统
CN107391941A (zh) * 2017-07-26 2017-11-24 上海科瓴医疗科技有限公司 一种提高用药依从性的方法和系统
CN108877954A (zh) * 2018-06-07 2018-11-23 中国医学科学院北京协和医院 一种用药依从性评估方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120203573A1 (en) * 2010-09-22 2012-08-09 I.D. Therapeutics Llc Methods, systems, and apparatus for optimizing effects of treatment with medication using medication compliance patterns

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104537265A (zh) * 2015-01-15 2015-04-22 曹庆恒 一种智能计算个性化合理用药时间的方法、系统和设备
CN105701356A (zh) * 2016-02-24 2016-06-22 黄文佳 患者服药依从性的判断方法
CN106599554A (zh) * 2016-12-01 2017-04-26 广东省中医院 基于患者肾功能水平监控用药的方法
CN107229833A (zh) * 2017-06-14 2017-10-03 重庆新三禾网络科技有限公司 一种用药追踪评分方法及系统
CN107391941A (zh) * 2017-07-26 2017-11-24 上海科瓴医疗科技有限公司 一种提高用药依从性的方法和系统
CN108877954A (zh) * 2018-06-07 2018-11-23 中国医学科学院北京协和医院 一种用药依从性评估方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113380408A (zh) * 2021-06-04 2021-09-10 合肥巧士健康科技有限责任公司 一种基于行为-时间护栏的服药行为分析系统
CN113380408B (zh) * 2021-06-04 2023-06-02 合肥巧士健康科技有限责任公司 一种基于行为-时间护栏的服药行为分析系统
CN113707263A (zh) * 2021-08-31 2021-11-26 平安科技(深圳)有限公司 基于群体划分的药物有效性评价方法、装置及计算机设备
CN113707263B (zh) * 2021-08-31 2023-09-12 平安科技(深圳)有限公司 基于群体划分的药物有效性评价方法、装置及计算机设备
CN115831312A (zh) * 2022-11-24 2023-03-21 上海市精神卫生中心(上海市心理咨询培训中心) 一种用药异常识别方法及系统
CN118072915A (zh) * 2024-03-18 2024-05-24 广州海博特医药科技有限公司 一种随访路径定义方法和系统

Also Published As

Publication number Publication date
CN108877954A (zh) 2018-11-23
CN108877954B (zh) 2022-05-17

Similar Documents

Publication Publication Date Title
WO2019233455A1 (zh) 一种用药依从性评估方法
US20230178203A1 (en) Systems and methods for patient-specific dosing
Finlay et al. Measuring the modified early warning score and the Rothman index: advantages of utilizing the electronic medical record in an early warning system
Karabatsou et al. Variable cost of ICU care, a micro-costing analysis
Mazze et al. Characterizing glucose exposure for individuals with normal glucose tolerance using continuous glucose monitoring and ambulatory glucose profile analysis
EP2654564B1 (en) Calibration of a handheld diabetes managing device that receives data from a continuous glucose monitor
JP6408479B2 (ja) 患者モニタリングシステム及び患者モニタリング方法
US20240148339A1 (en) Method for providing alert of potential thyroid abnormality
TWI502537B (zh) 生理資料量測管理系統及其方法
US20210090732A1 (en) System and method for predicting survival time
US20120165639A1 (en) Storage of calibration data at a continuous glucose monitor
WO2020013230A1 (ja) ヘルスケア管理方法
US12053292B2 (en) Method and system for improving a physiological response
Njagi et al. A joint survival-longitudinal modelling approach for the dynamic prediction of rehospitalization in telemonitored chronic heart failure patients
CN110786865A (zh) 使用个性化直方图来控制血液葡萄糖的系统及方法
Khouli et al. Use of the Broselow tape in a Mexican emergency department
Sadan et al. Glucose variability as measured by inter-measurement percentage change is predictive of in-patient mortality in aneurysmal subarachnoid hemorrhage
US20200121257A1 (en) Method and system for monitoring a diabetes treatment plan
Lin et al. The ambulatory glucose profile and its interpretation
CN117577267A (zh) 一种肝癌消融护理质量评价方法及系统
WO2022246882A1 (zh) 一种诊断多囊卵巢综合征的系统和方法
Jordan et al. Average area under the curve: An alternative method for quantifying the dental caries experience in longitudinal studies
KR20240029727A (ko) 대상에 대한 갑상선기능이상증의 예측방법 및 시스템
Mulè et al. Self‐blood pressure monitoring as a tool to increase hypertension awareness, adherence to antihypertensive therapy, and blood pressure control
CN114999647A (zh) 一种基于大数据的智慧健康监测方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19816136

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19816136

Country of ref document: EP

Kind code of ref document: A1