WO2019233214A1 - 一种用于模拟pdc齿载荷温度耦合磨损的实验装置 - Google Patents

一种用于模拟pdc齿载荷温度耦合磨损的实验装置 Download PDF

Info

Publication number
WO2019233214A1
WO2019233214A1 PCT/CN2019/084458 CN2019084458W WO2019233214A1 WO 2019233214 A1 WO2019233214 A1 WO 2019233214A1 CN 2019084458 W CN2019084458 W CN 2019084458W WO 2019233214 A1 WO2019233214 A1 WO 2019233214A1
Authority
WO
WIPO (PCT)
Prior art keywords
support frame
tooth
pdc
hydraulic cylinder
lower support
Prior art date
Application number
PCT/CN2019/084458
Other languages
English (en)
French (fr)
Inventor
马亚超
黄志强
练章华
牛世伟
张文琳
谢豆
Original Assignee
西南石油大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西南石油大学 filed Critical 西南石油大学
Priority to CA3070032A priority Critical patent/CA3070032C/en
Publication of WO2019233214A1 publication Critical patent/WO2019233214A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/02Gearings; Transmission mechanisms
    • G01M13/021Gearings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Definitions

  • the invention relates to an experimental device for simulating PDC tooth load temperature coupling wear, and belongs to the field of mechanical wear experimental devices.
  • PDC bit is an important rock breaking tool in the oil and gas, geothermal, coal and other drilling fields. Based on the advantages of low drilling pressure and high drilling speed, the PDC bit has gradually expanded its share in the oil and gas drilling market. At present, PDC bits have reached 80% of the world's oil and gas drilling market, accounting for more than 90% of the world's total drilling footage. It has become the main bit in the field of oil drilling, which has greatly promoted the acceleration of drilling and the development of drilling technology. .
  • the traditional friction and wear experimental device has three shortcomings: one is that it can only control the ambient temperature and cannot control the temperature of the PDC teeth; the other is that the debris generated by the metal-rock grinding is the metal-metal grinding As many as many times, the traditional friction and wear experimental device is difficult to deal with the large amount of rock debris generated during the grinding process; the third is that the traditional friction and wear experimental device is only a single reciprocating motion or circular motion, and based on the characteristics that the rock will be heavily worn, Cutting teeth are required for compound motion.
  • the purpose of the present invention is to overcome the shortcomings of the prior art and provide an experimental device for simulating PDC tooth load temperature coupling wear, which can realize the research of PDC tooth wear performance under different tooth body temperature and different cutting load coupling.
  • the invention relates to an experimental device for simulating PDC tooth load temperature coupling wear, which includes a motor, a hydraulic power source, a lower support frame, a left hydraulic cylinder, a left guide loading block, a miniature power end, a left guide post, an upper support frame, and a PDC.
  • Tooth traverse mechanism right guide column, right guide loading block, temperature measurement and control mechanism, right hydraulic cylinder, rock rotation mechanism, chip removal device, reduction box;
  • the PDC tooth traverse mechanism consists of a lateral guide column, PDC tooth fixture, wire
  • the temperature control mechanism is composed of a heating wire, a water-cooled tube, and an infrared temperature tester;
  • the rock rotation mechanism is composed of a rock fixture, a fixed chassis, a thrust ball bearing, and a pad;
  • the chip removal device It consists of a water collecting tank, a chip discharge pipe, a fixed seat and an annular groove.
  • the motor is screwed in the lower support frame, and the hydraulic power source is welded in the lower support frame to provide power for the left and right hydraulic cylinders; the left hydraulic cylinder is threadedly connected to the lower support frame, and the upper end of the left hydraulic cylinder is guided to the left
  • the load block is fastened; the left guide load block cooperates with the left guide post, and the left guide post provides the guiding function for the movement of the left guide load block; the upper end of the left guide post is screwed with the upper support frame; the upper support frame is welded to the lower support frame;
  • the upper end of the right guide column is connected to the upper support frame, the lower end is connected to the lower support frame, the right guide column is assembled with the right guide load block in a gap; the right hydraulic cylinder is threadedly connected to the lower support frame, and the upper end of the right hydraulic cylinder is tightly connected to the right guide load block.
  • the reduction gear box is installed in a lower support frame, and the reduction gear box is connected with a thrust ball bearing
  • connection ring of the miniature power end is matched with the left guide post, and the welding block is welded with the left guide loading block.
  • the miniature power end is connected to the lead screw through the transmission hole and provides rotational power for the lead screw;
  • PDC is installed in the tooth groove of the PDC tooth fixture Tool teeth, which are connected with PDC tool tooth pins by pin holes, threaded holes are connected with the screw thread, and guide holes are matched with the lateral guide post; the lead screw and the lateral guide post are installed between the left guide load block and the right load block .
  • the heating wire, water-cooled tube, and infrared temperature tester are installed on the PDC tooth fixture, and the heating wire surrounds the outside of the PDC tool tooth; the end of the water-cooled pipe is directly opposite the tooth surface of the PDC tool; the infrared temperature tester is used for the temperature of the tooth body of the PDC tool Test.
  • a cylindrical rock is installed in the cylinder of the rock fixture, and a counterbore is connected to the bottom end of the cylinder.
  • the counterbore is bolted to the fixed chassis.
  • Four bosses are evenly arranged around the cylinder. The centerline of the hole coincides with the centerline of the boss, the flat end of the pad completely fits the rock, the curved end of the pad completely fits the cylinder, and the screw passes through the boss and the pad to secure the cylindrical rock;
  • the fixed chassis is provided with an inverted T-shaped groove and an annular groove, the inverted T-shaped groove and the counterbore are bolted, and the fixed chassis and the thrust ball bearing are fastened.
  • the fixed seat on the chip removal device is threadedly connected to the lower support frame.
  • the chip removal device has a water collecting tank, and a chip removal tube is installed on the outside.
  • the chip removal device is provided with an annular groove on the inside.
  • An O-shaped seal is installed between the annular groove and the annular groove. ring.
  • the invention overcomes the limitations of the single reciprocating motion or circular motion of the traditional friction and wear experimental device, and realizes the circumferential and lateral motions of PDC tooth rock breaking through the combined effect of PDC tooth lateral movement mechanism, rock rotation mechanism and hydraulic pressure.
  • the PDC can be used to scrape and cut rocks in the circumferential direction, and the purpose of adjusting the longitudinal height and lateral displacement of the PDC teeth can be adjusted according to the cutting conditions of the rock.
  • Monitoring and control the temperature control of the PDC tooth is realized, which is more accurate and reliable than the traditional ambient temperature control; 3.
  • the PDC tooth chipbreaking device is designed to effectively remove a large amount of rock generated during the PDC rock breaking wear test Crumbs.
  • FIG. 1 is a schematic structural diagram of an experimental device for simulating PDC tooth load temperature-coupled wear according to the present invention
  • FIG. 2 is a schematic diagram of a PDC tooth lateral movement mechanism of the present invention
  • FIG. 3 is a schematic diagram of a temperature measurement and control device according to the present invention.
  • FIG. 4 is a schematic diagram of a rock rotation mechanism according to the present invention.
  • FIG. 5 is a schematic diagram of a chip removal device according to the present invention.
  • FIG. 6 is a schematic diagram of a micro power terminal of the present invention.
  • FIG. 7 is a schematic diagram of a PDC tooth fixture of the present invention.
  • FIG. 8 is a schematic structural diagram of a rock fixture according to the present invention.
  • FIG. 9 is a view of a cushion block according to the present invention.
  • FIG. 10 is a view of a fixed chassis of the present invention.
  • an experimental device for simulating PDC tooth load temperature coupling wear includes a motor 1, a hydraulic power source 2, a lower support frame 3, and a left Hydraulic cylinder 4, left guide load block 5, micro power end 6, left guide post 7, upper support frame 8, PDC tooth traverse mechanism 9, right guide post 10, right guide load block 11, temperature measurement and control mechanism 12, right hydraulic pressure Cylinder 13, rock rotation mechanism 14, chip removal device 15, reduction box 16;
  • the PDC tooth traverse mechanism 9 is composed of a lateral guide column 17, a PDC tooth fixture 18, a screw 19 and a PDC cutter tooth 20;
  • the mechanism 12 is composed of a heating wire 21, a water cooling tube 22, and an infrared temperature tester 23.
  • the rock rotation mechanism 14 is composed of a rock fixture 24, a fixed chassis 25, a thrust ball bearing 26, and a pad 27.
  • the chip removal device 15 is composed of The water collecting tank 28, the chip discharge pipe 29, the fixed seat 30 and the annular groove 31 are composed.
  • the motor 1 is screwed in the lower support frame 3, and the hydraulic power source 2 is welded in the lower support frame 3 to provide power for the left hydraulic cylinder 4 and the right hydraulic cylinder 13; the left hydraulic cylinder 4 and The lower support frame 3 is threaded, and the upper end of the left hydraulic cylinder 4 is fastened with the left guide loading block 5; the left guide loading block 5 and the left guide post 7 are clearance-fitted, and the left guide post 7 provides a guiding function for the movement of the left guide loading block 5;
  • the upper end of the left guide column 7 is screwed to the upper support frame 8; the upper support frame 8 is welded to the lower support frame 3; the upper end of the right guide column 10 is connected to the upper support frame 8; the lower end is connected to the lower support frame 3; the right guide column 10 is connected to the right
  • the guide load block 11 is assembled with clearance; the right hydraulic cylinder 13 is screwed with the lower support frame 3, and the upper end of the right hydraulic cylinder 13 is fastened with the right guide load block 11;
  • the connecting ring 32 of the micro power end 6 is matched with the left guide post 7, the welding block 34 is welded to the left guide loading block 5, and the micro power end 6 is connected to the lead screw through the transmission hole 33.
  • PDC cutter tooth 20 is installed in the tooth groove 37 of the PDC tooth fixture 18, and the PDC cutter tooth 20 is connected by the pin hole 38, and the threaded hole 39 is threaded with the screw 19 and guided.
  • the hole 36 is clearance-fitted with the lateral guide post 17; the lead screw 19 and the lateral guide post 17 are installed between the left guide loading block 5 and the right loading block 11.
  • the heating wire 21, the water cooling pipe 22, and the infrared temperature tester 23 are all mounted on the PDC tooth fixture 18, and the heating wire 21 surrounds the outside of the PDC cutter tooth 20; the end of the water cooling pipe 22 faces the PDC cutter tooth 20 teeth
  • the infrared temperature tester 23 is used to test the temperature of the tooth body of the PDC cutter teeth 20.
  • a cylindrical rock is installed in the cylinder 42 of the rock fixture 24.
  • a counterbore 41 is connected to the bottom end of the cylinder 42, and the counterbore 41 is bolted to the fixed chassis 25.
  • the block 27 is provided with threaded holes 43. The center line of the threaded hole 43 coincides with the center line of the boss 40.
  • the flat end 44 of the block 27 is completely attached to the rock.
  • the curved end 45 of the cushion block 27 completely fits the cylinder 42.
  • the screw passes through the boss 40 and the cushion block 27 to fasten the cylindrical rock.
  • the fixed chassis 25 is provided with an inverted T-shaped groove 46 and an annular groove 47.
  • the inverted T-slot 46 and the counterbore 41 are bolted, and the fixed chassis 25 and the thrust ball bearing 26 are fastened.
  • the fixed seat 30 on the chip removing device 15 is screwed to the lower support frame 3.
  • the chip removing device 15 has a water collecting tank 28, a chip removing pipe 29 is installed on the outside, and a ring groove is opened on the inside of the chip removing device 15. 31.
  • An O-ring is installed between the annular groove 47 and the annular groove 31.
  • An experimental device for simulating PDC tooth load temperature-coupled wear of the present invention has three main functions: PDC tooth scraping rock function, temperature measurement and control function, and cuttings cleaning function.
  • the function of PDC tooth scraping rock is realized by a combination of circular motion and linear motion; the motor 1 transmits the rotational energy to the rock rotation mechanism 14 through the reduction box 16 and the thrust ball bearing 26.
  • the rock rotation mechanism 14 drives the rock in the rock fixture 24 to make a circle
  • the micro power end 6 can drive the screw 19 to rotate, thereby achieving the lateral movement of the PDC cutter tooth 20
  • the hydraulic power source 2 provides hydraulic power for the left hydraulic cylinder 4 and the right hydraulic cylinder 13
  • the left hydraulic cylinder 4 and the right hydraulic cylinder 13 drives the left guide loading block 5 and the right guide loading block 11 to move up and down, thereby realizing the longitudinal load application and longitudinal movement of the PDC cutter teeth 20
  • the control end 35 on the micro power end 6 can move the PDC cutter teeth laterally and longitudinally Parameters are adjusted and monitored.
  • the temperature measurement and control function is realized by the heating wire 21, water cooling tube 22 and infrared temperature tester 23; the infrared temperature tester 23 is used to monitor the temperature of the tooth body of the PDC cutter tooth 20; when the temperature is too high, the end of the water cooling pipe 22 is facing the PDC cutter tooth Cooling fluid is sprayed on the 20-tooth surface to achieve rapid cooling of the PDC cutter tooth 20 tooth body; when the temperature is too low, the heating wire 21 wrapped around the PDC cutter tooth 20 directly heats the tooth body.
  • the debris generated by the PDC cutter teeth 20 scraping the rock is carried by the coolant, flows to the outside of the rock fixture 24, flows into the water collection tank 28 through the fixed chassis 25, and is discharged through the chip discharge pipe 29; among the fixed chassis 25 and the chip removal device 15 Sealed by an O-ring between the annular groove 47 and the annular groove 31 to prevent rock debris and coolant from entering the thrust ball bearing 26.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Earth Drilling (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

一种用于模拟PDC齿(20)载荷温度耦合磨损的实验装置,由电机(1)、液压动力源(2)、下支撑架(3)、左液压缸(4)、左导向加载块(5)、微型动力端(6)、左导向柱(7)、上支撑架(8)、PDC齿横移机构(9)、右导向柱(10)、右导向加载块(11)、温度测控机构(12)、右液压缸(13)、岩石旋转机构(14)、排屑装置(15)、减速箱(16)构成;克服了传统摩擦磨损实验装置单一的往复或圆周运动的局限性,通过PDC齿横移机构(9)、岩石旋转机构(14)和液压综合作用,实现了PDC齿(20)周向、横向和纵向的复合运动,同时也实现了纵向载荷施加;通过对PDC刀具齿(20)齿体温度的监测与控制,实现了PDC齿(20)齿体温度的直接调节,比传统的环境温度控制更加精确可靠;能实现不同齿体温度和载荷耦合作用下的PDC齿(20)磨损性能实验研究。

Description

一种用于模拟PDC齿载荷温度耦合磨损的实验装置 技术领域
本发明涉及一种用于模拟PDC齿载荷温度耦合磨损的实验装置,属于机械磨损实验装置领域。
背景技术
PDC钻头是石油天然气、地热、煤炭等钻井领域中重要的破岩工具,其基于钻压低、钻速高等优点,在油气钻井市场的份额逐步扩大。目前,PDC钻头在世界油气钻井市场的份额已达80%,占世界钻井总进尺比例的90%以上,已成为石油钻井领域中的主力钻头,对钻井提速和钻井技术发展起到了巨大的推动作用。
然而,当钻遇高温复杂硬地层时,由于温度和载荷的耦合作用使PDC齿磨损严重,降低了钻头寿命和钻井效率,制约了PDC钻头的发展。而目前,国内外学者缺乏温度与载荷耦合下的PDC齿磨损研究,配套实验装置更是未见报道。
此外,传统的摩擦磨损实验装置有三点不足:一是其只能控制环境温度,不能控制PDC齿齿体温度;二是金属与岩石对磨产生的碎屑是金属与金属对磨产生碎屑的数倍之多,传统的摩擦磨损实验装置难以处理对磨过程中产生的大量岩屑;三是传统摩擦磨损实验装置仅是单一的往复运动或圆周运动,而基于岩石会被大量磨损的特点,需要切削齿进行复合运动。
因此,急需研发一种用于模拟PDC齿载荷温度耦合磨损的实验装置,以研究PDC齿的载荷温度耦合磨损性能,为抗高温耐磨PDC齿研制、地热钻头研制等提供理论基础和指导。
技术问题
本发明目的是为了克服现有技术不足,提供一种用于模拟PDC齿载荷温度耦合磨损的实验装置,能实现不同齿体温度、不同切削载荷耦合作用下的PDC齿磨损性能研究。
技术解决方案
本发明一种用于模拟PDC齿载荷温度耦合磨损的实验装置,包括电机、液压动力源、下支撑架、左液压缸、左导向加载块、微型动力端、左导向柱、上支撑架、PDC齿横移机构、右导向柱、右导向加载块、温度测控机构、右液压缸、岩石旋转机构、排屑装置、减速箱;所述PDC齿横移机构由横向导向柱、PDC齿夹具、丝杠和PDC刀具齿构成;所述温度控制机构由加热丝、水冷管、红外线温度测试仪组成;所述岩石旋转机构由岩石夹具、固定底盘、推力球轴承和垫块组成;所述排屑装置由集水槽、排屑管,固定座和环形槽组成。
所述电机螺纹紧固在下支撑架内,液压动力源焊接在下支撑架内,为左液压缸和右液压缸提供动力;所述左液压缸与下支撑架螺纹连接,左液压缸上端与左导向加载块紧固;左导向加载块与左导向柱间隙配合,左导向柱为左导向加载块的运动提供导向作用;左导向柱上端与上支撑架螺纹连接;上支撑架焊接在下支撑架上;右导向柱上端与上支撑架连接,下端与下支撑架连接,右导向柱与右导向加载块间隙装配;所述右液压缸与下支撑架螺纹连接,右液压缸上端与右导向加载块紧固;所述的减速箱安装在下支撑架内,减速箱连接着推力球轴承转子和电机,起传递动力以及减速作用。
微型动力端的连接环与左导向柱间隙配合,焊接块与左导向加载块焊接,微型动力端通过传动孔与丝杠连接,并为丝杠提供旋转动力;PDC齿夹具的齿槽内安装有PDC刀具齿,靠销钉孔与PDC刀具齿销钉连接,螺纹孔与丝杠螺纹连接,导向孔与横向导向柱间隙配合;所述丝杠和横向导向柱安装在左导向加载块和右加载块之间。
加热丝、水冷管、红外线温度测试仪均安装在PDC齿夹具上,加热丝包围在PDC刀具齿外侧;水冷管末端正对PDC刀具齿齿面;红外线温度测试仪用于PDC刀具齿齿体温度的测试。
所述岩石夹具的圆筒内装有圆柱形岩石,圆筒底端连接有沉孔,沉孔与固定底盘螺栓连接,圆筒四周均匀布置有四个凸台;垫块上开有螺纹孔,螺纹孔的中心线和凸台的中心线重合,垫块的平面端与岩石完全贴合,垫块的曲面端与圆筒完全贴合,螺钉穿过凸台和垫块紧固圆柱形岩石;所述固定底盘上开有倒T型槽和环形槽,倒T型槽和沉孔间螺栓连接,固定底盘和推力球轴承紧固。
排屑装置上的固定座与下支撑架螺纹连接,排屑装置内有集水槽,外侧安装有排屑管,排屑装置内侧开有环形槽,环形槽和环形槽之间安装有O型密封圈。
有益效果
1. 本发明克服了传统摩擦磨损实验装置单一的往复运动或圆周运动的局限性,通过PDC齿横移机构、岩石旋转机构和液压的综合作用,实现了PDC齿破岩周向运动、横向运动和纵向运动的复合运动,达到了PDC周向刮切破岩的同时,还可根据岩石切削状况,调整PDC齿的纵向高度和横向位移的目的;2. 本发明通过直接对PDC刀具齿体温度的监测与控制,实现了PDC齿齿体温度控制,比传统的环境温度控制更加精确可靠;3. 设计了PDC齿破岩排屑装置,可有效清除PDC破岩磨损试验过程中产生的大量岩屑。
附图说明
图1为本发明一种用于模拟PDC齿载荷温度耦合磨损的实验装置结构示意图;
图2为本发明PDC齿横移机构示意图;
图3为本发明温度测控装置示意图;
图4为本发明岩石旋转机构示意图;
图5为本发明排屑装置示意图;
图6为本发明微型动力端示意图;
图7为本发明PDC齿夹具示意图;
图8为本发明岩石夹具结构示意图;
图9为本发明垫块视图;
图10为本发明固定底盘视图;
图中:1.电机;2.液压动力源;3.下支撑架;4.左液压缸;5.左导向加载块;6.微型动力端;7.左导向柱;8.上支撑架;9.PDC齿横移机构;10.右导向柱;11.右导向加载块;12.温度测控装置;13.右液压缸;14. 岩石旋转机构;15.排屑装置;16.减速箱;17.横向导向柱;18.PDC齿夹具;19.丝杠;20.PDC刀具齿;21.加热丝;22.水冷管;23.红外线温度测试仪;24.岩石夹具;25.固定底盘;26.推力球轴承;27.垫块;28.集水槽;29.排屑管;30.固定座;31.环形槽;32.连接环;33.传动孔;34.焊接块;35.控制端;36.导向孔;37.齿槽;38.销钉孔;39.螺纹孔;40.凸台;41.沉孔;42.圆筒;43.螺纹孔;44.平面端;45.曲面端;46.倒T型槽;47.环形槽。
本发明的实施方式
下面结合附图和实施例对本发明作进一步说明:
如图1、图2、图3、图4和图5所示,本发明一种用于模拟PDC齿载荷温度耦合磨损的实验装置,包括电机1、液压动力源2、下支撑架3、左液压缸4、左导向加载块5、微型动力端6、左导向柱7、上支撑架8、PDC齿横移机构9、右导向柱10、右导向加载块11、温度测控机构12、右液压缸13、岩石旋转机构14、排屑装置15、减速箱16;所述PDC齿横移机构9由横向导向柱17、PDC齿夹具18、丝杠19和PDC刀具齿20构成;所述温度控制机构12由加热丝21、水冷管22、红外线温度测试仪23组成;所述岩石旋转机构14由岩石夹具24、固定底盘25、推力球轴承26和垫块27组成;所述排屑装置15由集水槽28、排屑管29,固定座30和环形槽31组成。
如图1所示,所述电机1螺纹紧固在下支撑架3内,液压动力源2焊接在下支撑架3内,为左液压缸4和右液压缸13提供动力;所述左液压缸4与下支撑架3螺纹连接,左液压缸4上端与左导向加载块5紧固;左导向加载块5与左导向柱7间隙配合,左导向柱7为左导向加载块5的运动提供导向作用;左导向柱7上端与上支撑架8螺纹连接;上支撑架8焊接在下支撑架3上;右导向柱10上端与上支撑架8连接,下端与下支撑架3连接,右导向柱10与右导向加载块11间隙装配;所述右液压缸13与下支撑架3螺纹连接,右液压缸13上端与右导向加载块11紧固;所述的减速箱16安装在下支撑架3内,减速箱16连接着推力球轴承转子26和电机1,起传递动力以及减速作用。
如图2、图6和图7所示,微型动力端6的连接环32与左导向柱7间隙配合,焊接块34与左导向加载块5焊接,微型动力端6通过传动孔33与丝杠19连接,并为丝杠提供旋转动力;PDC齿夹具18的齿槽37内安装有PDC刀具齿20,靠销钉孔38与PDC刀具齿20销钉连接,螺纹孔39与丝杠19螺纹连接,导向孔36与横向导向柱17间隙配合;所述丝杠19和横向导向柱17安装在左导向加载块5和右加载块11之间。
如图3所示,加热丝21、水冷管22、红外线温度测试仪23均安装在PDC齿夹具18上,加热丝21包围在PDC刀具齿20外侧;水冷管22末端正对PDC刀具齿20齿面;红外线温度测试仪23用于PDC刀具齿20齿体温度的测试。
如图4、图8、图9和图10所示,所述岩石夹具24的圆筒42内装有圆柱形岩石,圆筒42底端连接有沉孔41,沉孔41与固定底盘25螺栓连接,圆筒42四周均匀布置有四个凸台40;垫块27上开有螺纹孔43,螺纹孔43的中心线和凸台40的中心线重合,垫块27的平面端44与岩石完全贴合,垫块27的曲面端45与圆筒42完全贴合,螺钉穿过凸台40和垫块27紧固圆柱形岩石;所述固定底盘25上开有倒T型槽46和环形槽47,倒T型槽46和沉孔41间螺栓连接,固定底盘25和推力球轴承26紧固。
如图5所示,排屑装置15上的固定座30与下支撑架3螺纹连接,排屑装置15内有集水槽28,外侧安装有排屑管29,排屑装置15内侧开有环形槽31,环形槽47和环形槽31之间安装有O型密封圈。
 [0033] 本发明一种用于模拟PDC齿载荷温度耦合磨损的实验装置共有三个主要功能:PDC齿刮切岩石功能、温度测控功能和岩屑清理功能。PDC齿刮切岩石功能靠圆周运动和直线运动的复合实现;电机1通过减速箱16和推力球轴承26将转动能传递给岩石旋转机构14,岩石旋转机构14带动岩石夹具24内的岩石做圆周运动;同时微型动力端6可带动丝杠19旋转,进而实现PDC刀具齿20的横向移动;液压动力源2为左液压缸4和右液压缸13提供液压动力,左液压缸4和右液压缸13带动左导向加载块5和右导向加载块11上下运动,进而实现PDC刀具齿20的纵向载荷施加以及纵向移动;微型动力端6上的控制端35可对PDC刀具齿的横向移动和纵向移动参数进行调整和监测。温度测控功能通过加热丝21、水冷管22和红外线温度测试仪23实现;红外线温度测试仪23用于PDC刀具齿20齿体温度的监测;温度过高时,水冷管22末端正对PDC刀具齿20齿面喷射冷却液,实现PDC刀具齿20齿体的快速冷却;温度过低时,包裹在PDC刀具齿20周围的加热丝21对齿体进行直接加热。PDC刀具齿20刮切岩石产生的岩屑由冷却液携带,流向岩石夹具24外侧,经固定底盘25流入集水槽28,后经排屑管29排出;其中固定底盘25和排屑装置15之间靠环形槽47和环形槽31间的O型密封圈密封,防止岩屑和冷却液进入推力球轴承26内部。 

Claims (1)

  1. 一种用于模拟PDC齿载荷温度耦合磨损的实验装置,其特征在于,该装置包括电机(1)、液压动力源(2)、下支撑架(3)、左液压缸(4)、左导向加载块(5)、微型动力端(6)、左导向柱(7)、上支撑架(8)、PDC齿横移机构(9)、右导向柱(10)、右导向加载块(11)、温度测控机构(12)、右液压缸(13)、岩石旋转机构(14)、排屑装置(15)和减速箱(16);所述PDC齿横移机构(9)由横向导向柱(17)、PDC齿夹具(18)、丝杠(19)和PDC刀具齿(20)构成;所述温度控制机构(12)由加热丝(21)、水冷管(22)和红外线温度测试仪(23)组成;所述岩石旋转机构(14)由岩石夹具(24)、固定底盘(25)、推力球轴承(26)和垫块(27)组成;所述排屑装置(15)由集水槽(28)、排屑管(29),固定座(30)和环形槽(31)组成;所述电机(1)紧固在下支撑架(3)内,液压动力源(2)置于下支撑架(3)内,为左液压缸(4)和右液压缸(13)提供动力;所述左液压缸(4)与下支撑架(3)连接,左液压缸(4)上端与左导向加载块(5)紧固;左导向加载块(5)与左导向柱(7)间隙配合,左导向柱(7)为左导向加载块(5)的运动提供导向作用;左导向柱(7)上端与上支撑架(8)连接;上支撑架(8)焊接在下支撑架(3)上;右导向柱(10)上端与上支撑架(8)连接,下端与下支撑架(3)连接,右导向柱(10)与右导向加载块(11)间隙装配;所述右液压缸(13)与下支撑架(3)连接,右液压缸(13)上端与右导向加载块(11)紧固;所述的减速箱(16)安装在下支撑架(3)内,减速箱(16)连接着推力球轴承转子(26)和电机(1),起传递动力以及减速作用。
    2.如权利要求1所述的用于模拟PDC齿载荷温度耦合磨损的实验装置,其特征在于,所述电机(1)螺纹紧固在下支撑架(3)内,液压动力源(2)焊接在下支撑架(3)内,为左液压缸(4)和右液压缸(13)提供动力;所述左液压缸(4)与下支撑架(3)螺纹连接,左液压缸(4)上端与左导向加载块(5)紧固;左导向加载块(5)与左导向柱(7)间隙配合,左导向柱(7)为左导向加载块(5)的运动提供导向作用;左导向柱(7)上端与上支撑架(8)螺纹连接;上支撑架(8)焊接在下支撑架(3)上;右导向柱(10)上端与上支撑架(8)连接,下端与下支撑架(3)连接,右导向柱(10)与右导向加载块(11)间隙装配;所述右液压缸(13)与下支撑架(3)螺纹连接,右液压缸(13)上端与右导向加载块(11)紧固;所述的减速箱(16)安装在下支撑架(3)内,减速箱(16)连接着推力球轴承转子(26)和电机(1),起传递动力以及减速作用。
    3.如权利要求1所述的一种用于模拟PDC齿载荷温度耦合磨损的实验装置,其特征在于,所述微型动力端(6)的连接环(32)与左导向柱(7)间隙配合,焊接块(34)与左导向加载块(5)焊接,微型动力端(6)通过传动孔(33)与丝杠(19)连接,并为丝杠(19)提供旋转动力;所述PDC齿夹具(18)的齿槽(37)内安装有PDC刀具齿(20),靠销钉孔(38)与PDC刀具齿(20)销钉连接,螺纹孔(39)与丝杠(19)螺纹连接,导向孔(36)与横向导向柱(17)间隙配合;所述丝杠(19)和横向导向柱(17)安装在左导向加载块(5)和右加载块(11)之间。
    4.如权利要求1所述的一种用于模拟PDC齿载荷温度耦合磨损的实验装置,其特征在于,所述加热丝(21)、水冷管(22)、红外线温度测试仪(23)均安装在PDC齿夹具(18)上,加热丝(21)包围在PDC刀具齿(20)外侧;水冷管(22)末端正对PDC刀具齿(20)齿面;红外线温度测试仪(23)用于PDC刀具齿(20)齿体温度的测试。
    5.如权利要求1所述的一种用于模拟PDC齿载荷温度耦合磨损的实验装置,其特征在于,所述岩石夹具(24)的圆筒(42)内装有圆柱形岩石,圆筒(42)底端连接有沉孔(41),沉孔(41)与固定底盘(25)螺栓连接,圆筒(42)四周均匀布置有四个凸台(40);垫块(27)上开有螺纹孔(43),螺纹孔(43)的中心线和凸台(40)的中心线重合,垫块(27)的平面端(44)与岩石完全贴合,垫块()27的曲面端(45)与圆筒(42)完全贴合,螺钉穿过凸台(40)和垫块(27)紧固圆柱形岩石;所述固定底盘(25)上开有倒T型槽(46)和环形槽(47),倒T型槽(46)和沉孔(41)间螺栓连接,固定底盘(25)和推力球轴承(26)紧固。
    6.如权利要求1所述的一种用于模拟PDC齿载荷温度耦合磨损的实验装置,其特征在于,排屑装置(15)上的固定座(30)与下支撑架(3)螺纹连接,排屑装置(15)内有集水槽(28),外侧安装有排屑管(29),排屑装置(15)内侧开有环形槽(31),环形槽(47)和环形槽(31)之间安装有O型密封圈。
PCT/CN2019/084458 2018-06-05 2019-04-26 一种用于模拟pdc齿载荷温度耦合磨损的实验装置 WO2019233214A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA3070032A CA3070032C (en) 2018-06-05 2019-04-26 An apparatus for simulating load-temperature coupling wear behavior of a polycrystalline diamond compact cutter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810568558.8A CN108709739B (zh) 2018-06-05 2018-06-05 一种用于模拟pdc齿载荷温度耦合磨损的实验装置
CN201810568558.8 2018-06-05

Publications (1)

Publication Number Publication Date
WO2019233214A1 true WO2019233214A1 (zh) 2019-12-12

Family

ID=63870460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/084458 WO2019233214A1 (zh) 2018-06-05 2019-04-26 一种用于模拟pdc齿载荷温度耦合磨损的实验装置

Country Status (3)

Country Link
CN (1) CN108709739B (zh)
CA (1) CA3070032C (zh)
WO (1) WO2019233214A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108709739B (zh) * 2018-06-05 2019-05-24 西南石油大学 一种用于模拟pdc齿载荷温度耦合磨损的实验装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201364304Y (zh) * 2009-03-09 2009-12-16 中国石化集团胜利石油管理局钻井工艺研究院 Pdc钻凿特性测定试验装置
US20110146372A1 (en) * 2009-12-18 2011-06-23 Varel Europe S.A.S. Synthetic Materials for PDC Cutter Testing or for Testing Other Superhard Materials
CN103278527A (zh) * 2013-05-10 2013-09-04 吉林大学 金刚石钻头散热性能原位测量试验台
CN105067231A (zh) * 2015-07-10 2015-11-18 中国石油大学(北京) 多功能石油钻头单齿切削试验装置及方法
CN105716982A (zh) * 2016-04-25 2016-06-29 西南石油大学 一种金刚石复合片耐磨性测试实验装置
CN108709739A (zh) * 2018-06-05 2018-10-26 西南石油大学 一种用于模拟pdc齿载荷温度耦合磨损的实验装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3591089B2 (ja) * 1995-10-31 2004-11-17 株式会社大林組 ビットの摩耗試験方法
CN101539507A (zh) * 2009-03-09 2009-09-23 中国石化集团胜利石油管理局钻井工艺研究院 Pdc钻凿特性测定试验装置
US8365599B2 (en) * 2010-04-06 2013-02-05 Varel Europe S.A.S. Acoustic emission toughness testing for PDC, PCBN, or other hard or superhard materials
EP2570794A3 (en) * 2011-09-19 2014-06-11 Varel International, Ind., L.P. Thermal-mechanical wear testing for pdc shear cutters
CN103091186A (zh) * 2011-10-31 2013-05-08 中国石油化工股份有限公司 岩石研磨性实验装置
CN104502182B (zh) * 2014-11-27 2016-10-05 西南石油大学 一种冲击旋转钻井实验装置
CN106053274B (zh) * 2016-05-17 2019-11-29 西南石油大学 一种岩石研磨性参数和金属耐磨性参数测试装置
US10031056B2 (en) * 2016-06-30 2018-07-24 Varel International Ind., L.P. Thermomechanical testing of shear cutters
CN106323788A (zh) * 2016-09-27 2017-01-11 东北石油大学 不同钻井方式钻头磨损和岩石研磨性评价装置及评价方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201364304Y (zh) * 2009-03-09 2009-12-16 中国石化集团胜利石油管理局钻井工艺研究院 Pdc钻凿特性测定试验装置
US20110146372A1 (en) * 2009-12-18 2011-06-23 Varel Europe S.A.S. Synthetic Materials for PDC Cutter Testing or for Testing Other Superhard Materials
CN103278527A (zh) * 2013-05-10 2013-09-04 吉林大学 金刚石钻头散热性能原位测量试验台
CN105067231A (zh) * 2015-07-10 2015-11-18 中国石油大学(北京) 多功能石油钻头单齿切削试验装置及方法
CN105716982A (zh) * 2016-04-25 2016-06-29 西南石油大学 一种金刚石复合片耐磨性测试实验装置
CN108709739A (zh) * 2018-06-05 2018-10-26 西南石油大学 一种用于模拟pdc齿载荷温度耦合磨损的实验装置

Also Published As

Publication number Publication date
CN108709739A (zh) 2018-10-26
CN108709739B (zh) 2019-05-24
CA3070032C (en) 2021-10-19
CA3070032A1 (en) 2019-12-12

Similar Documents

Publication Publication Date Title
CN101694149B (zh) 一种深井钻进减速机及其工作方法
WO2017005197A1 (zh) 液力柔振提速钻具
WO2017054472A1 (zh) 扭力冲击提速装置
CN104775754B (zh) 一种极盘式多臂凿岩台车
CN112943136B (zh) 一种取芯机构及取芯方法
CN113319337B (zh) 基于内外冷智能切换的介质循环散热铣削加工系统
WO2019233214A1 (zh) 一种用于模拟pdc齿载荷温度耦合磨损的实验装置
CN203248060U (zh) 一种煤矿钻孔用液压钻机
CN107350521A (zh) 一种管道开孔器
CN109577854A (zh) 极硬岩智能变频电驱动反井钻机
CN102587834A (zh) 钻具及桩工机械
CN201738805U (zh) 一种切削钻机回转动力头
CN101936130A (zh) 切削钻机回转动力头
CN202325280U (zh) 一种减震螺杆钻具
CN201546614U (zh) 一种深井钻进减速机
CN213144379U (zh) 一种组合式工程三牙轮钻头
CN211038584U (zh) 一种钻井用井下液动井眼修复清洁工具
CN201228740Y (zh) 液压盘式刹车装置刹车盘
CN109798073B (zh) 一种利用摩擦热能碎岩的孕镶金刚石钻具
CN203185305U (zh) 工程钻机的水冷却机构
CN206794832U (zh) 一种连杆钻孔系统
CN214815008U (zh) 一种半自动液压小口径管道开孔机
CN205895124U (zh) 一种新型的便携带的液压凿岩机
CN201756910U (zh) 旋挖钻机动力头多功能防护装置
CN212177026U (zh) 一种钻机用分体主轴结构

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 3070032

Country of ref document: CA

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19814063

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19814063

Country of ref document: EP

Kind code of ref document: A1